xref: /openbmc/linux/drivers/usb/core/usb.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/usb/core/usb.c
4  *
5  * (C) Copyright Linus Torvalds 1999
6  * (C) Copyright Johannes Erdfelt 1999-2001
7  * (C) Copyright Andreas Gal 1999
8  * (C) Copyright Gregory P. Smith 1999
9  * (C) Copyright Deti Fliegl 1999 (new USB architecture)
10  * (C) Copyright Randy Dunlap 2000
11  * (C) Copyright David Brownell 2000-2004
12  * (C) Copyright Yggdrasil Computing, Inc. 2000
13  *     (usb_device_id matching changes by Adam J. Richter)
14  * (C) Copyright Greg Kroah-Hartman 2002-2003
15  *
16  * Released under the GPLv2 only.
17  *
18  * NOTE! This is not actually a driver at all, rather this is
19  * just a collection of helper routines that implement the
20  * generic USB things that the real drivers can use..
21  *
22  * Think of this as a "USB library" rather than anything else.
23  * It should be considered a slave, with no callbacks. Callbacks
24  * are evil.
25  */
26 
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/string.h>
30 #include <linux/bitops.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>  /* for in_interrupt() */
33 #include <linux/kmod.h>
34 #include <linux/init.h>
35 #include <linux/spinlock.h>
36 #include <linux/errno.h>
37 #include <linux/usb.h>
38 #include <linux/usb/hcd.h>
39 #include <linux/mutex.h>
40 #include <linux/workqueue.h>
41 #include <linux/debugfs.h>
42 #include <linux/usb/of.h>
43 
44 #include <asm/io.h>
45 #include <linux/scatterlist.h>
46 #include <linux/mm.h>
47 #include <linux/dma-mapping.h>
48 
49 #include "usb.h"
50 
51 
52 const char *usbcore_name = "usbcore";
53 
54 static bool nousb;	/* Disable USB when built into kernel image */
55 
56 module_param(nousb, bool, 0444);
57 
58 /*
59  * for external read access to <nousb>
60  */
61 int usb_disabled(void)
62 {
63 	return nousb;
64 }
65 EXPORT_SYMBOL_GPL(usb_disabled);
66 
67 #ifdef	CONFIG_PM
68 static int usb_autosuspend_delay = 2;		/* Default delay value,
69 						 * in seconds */
70 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
71 MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
72 
73 #else
74 #define usb_autosuspend_delay		0
75 #endif
76 
77 static bool match_endpoint(struct usb_endpoint_descriptor *epd,
78 		struct usb_endpoint_descriptor **bulk_in,
79 		struct usb_endpoint_descriptor **bulk_out,
80 		struct usb_endpoint_descriptor **int_in,
81 		struct usb_endpoint_descriptor **int_out)
82 {
83 	switch (usb_endpoint_type(epd)) {
84 	case USB_ENDPOINT_XFER_BULK:
85 		if (usb_endpoint_dir_in(epd)) {
86 			if (bulk_in && !*bulk_in) {
87 				*bulk_in = epd;
88 				break;
89 			}
90 		} else {
91 			if (bulk_out && !*bulk_out) {
92 				*bulk_out = epd;
93 				break;
94 			}
95 		}
96 
97 		return false;
98 	case USB_ENDPOINT_XFER_INT:
99 		if (usb_endpoint_dir_in(epd)) {
100 			if (int_in && !*int_in) {
101 				*int_in = epd;
102 				break;
103 			}
104 		} else {
105 			if (int_out && !*int_out) {
106 				*int_out = epd;
107 				break;
108 			}
109 		}
110 
111 		return false;
112 	default:
113 		return false;
114 	}
115 
116 	return (!bulk_in || *bulk_in) && (!bulk_out || *bulk_out) &&
117 			(!int_in || *int_in) && (!int_out || *int_out);
118 }
119 
120 /**
121  * usb_find_common_endpoints() -- look up common endpoint descriptors
122  * @alt:	alternate setting to search
123  * @bulk_in:	pointer to descriptor pointer, or NULL
124  * @bulk_out:	pointer to descriptor pointer, or NULL
125  * @int_in:	pointer to descriptor pointer, or NULL
126  * @int_out:	pointer to descriptor pointer, or NULL
127  *
128  * Search the alternate setting's endpoint descriptors for the first bulk-in,
129  * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
130  * provided pointers (unless they are NULL).
131  *
132  * If a requested endpoint is not found, the corresponding pointer is set to
133  * NULL.
134  *
135  * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
136  */
137 int usb_find_common_endpoints(struct usb_host_interface *alt,
138 		struct usb_endpoint_descriptor **bulk_in,
139 		struct usb_endpoint_descriptor **bulk_out,
140 		struct usb_endpoint_descriptor **int_in,
141 		struct usb_endpoint_descriptor **int_out)
142 {
143 	struct usb_endpoint_descriptor *epd;
144 	int i;
145 
146 	if (bulk_in)
147 		*bulk_in = NULL;
148 	if (bulk_out)
149 		*bulk_out = NULL;
150 	if (int_in)
151 		*int_in = NULL;
152 	if (int_out)
153 		*int_out = NULL;
154 
155 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
156 		epd = &alt->endpoint[i].desc;
157 
158 		if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
159 			return 0;
160 	}
161 
162 	return -ENXIO;
163 }
164 EXPORT_SYMBOL_GPL(usb_find_common_endpoints);
165 
166 /**
167  * usb_find_common_endpoints_reverse() -- look up common endpoint descriptors
168  * @alt:	alternate setting to search
169  * @bulk_in:	pointer to descriptor pointer, or NULL
170  * @bulk_out:	pointer to descriptor pointer, or NULL
171  * @int_in:	pointer to descriptor pointer, or NULL
172  * @int_out:	pointer to descriptor pointer, or NULL
173  *
174  * Search the alternate setting's endpoint descriptors for the last bulk-in,
175  * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
176  * provided pointers (unless they are NULL).
177  *
178  * If a requested endpoint is not found, the corresponding pointer is set to
179  * NULL.
180  *
181  * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
182  */
183 int usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
184 		struct usb_endpoint_descriptor **bulk_in,
185 		struct usb_endpoint_descriptor **bulk_out,
186 		struct usb_endpoint_descriptor **int_in,
187 		struct usb_endpoint_descriptor **int_out)
188 {
189 	struct usb_endpoint_descriptor *epd;
190 	int i;
191 
192 	if (bulk_in)
193 		*bulk_in = NULL;
194 	if (bulk_out)
195 		*bulk_out = NULL;
196 	if (int_in)
197 		*int_in = NULL;
198 	if (int_out)
199 		*int_out = NULL;
200 
201 	for (i = alt->desc.bNumEndpoints - 1; i >= 0; --i) {
202 		epd = &alt->endpoint[i].desc;
203 
204 		if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
205 			return 0;
206 	}
207 
208 	return -ENXIO;
209 }
210 EXPORT_SYMBOL_GPL(usb_find_common_endpoints_reverse);
211 
212 /**
213  * usb_find_alt_setting() - Given a configuration, find the alternate setting
214  * for the given interface.
215  * @config: the configuration to search (not necessarily the current config).
216  * @iface_num: interface number to search in
217  * @alt_num: alternate interface setting number to search for.
218  *
219  * Search the configuration's interface cache for the given alt setting.
220  *
221  * Return: The alternate setting, if found. %NULL otherwise.
222  */
223 struct usb_host_interface *usb_find_alt_setting(
224 		struct usb_host_config *config,
225 		unsigned int iface_num,
226 		unsigned int alt_num)
227 {
228 	struct usb_interface_cache *intf_cache = NULL;
229 	int i;
230 
231 	if (!config)
232 		return NULL;
233 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
234 		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
235 				== iface_num) {
236 			intf_cache = config->intf_cache[i];
237 			break;
238 		}
239 	}
240 	if (!intf_cache)
241 		return NULL;
242 	for (i = 0; i < intf_cache->num_altsetting; i++)
243 		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
244 			return &intf_cache->altsetting[i];
245 
246 	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
247 			"config %u\n", alt_num, iface_num,
248 			config->desc.bConfigurationValue);
249 	return NULL;
250 }
251 EXPORT_SYMBOL_GPL(usb_find_alt_setting);
252 
253 /**
254  * usb_ifnum_to_if - get the interface object with a given interface number
255  * @dev: the device whose current configuration is considered
256  * @ifnum: the desired interface
257  *
258  * This walks the device descriptor for the currently active configuration
259  * to find the interface object with the particular interface number.
260  *
261  * Note that configuration descriptors are not required to assign interface
262  * numbers sequentially, so that it would be incorrect to assume that
263  * the first interface in that descriptor corresponds to interface zero.
264  * This routine helps device drivers avoid such mistakes.
265  * However, you should make sure that you do the right thing with any
266  * alternate settings available for this interfaces.
267  *
268  * Don't call this function unless you are bound to one of the interfaces
269  * on this device or you have locked the device!
270  *
271  * Return: A pointer to the interface that has @ifnum as interface number,
272  * if found. %NULL otherwise.
273  */
274 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
275 				      unsigned ifnum)
276 {
277 	struct usb_host_config *config = dev->actconfig;
278 	int i;
279 
280 	if (!config)
281 		return NULL;
282 	for (i = 0; i < config->desc.bNumInterfaces; i++)
283 		if (config->interface[i]->altsetting[0]
284 				.desc.bInterfaceNumber == ifnum)
285 			return config->interface[i];
286 
287 	return NULL;
288 }
289 EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
290 
291 /**
292  * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
293  * @intf: the interface containing the altsetting in question
294  * @altnum: the desired alternate setting number
295  *
296  * This searches the altsetting array of the specified interface for
297  * an entry with the correct bAlternateSetting value.
298  *
299  * Note that altsettings need not be stored sequentially by number, so
300  * it would be incorrect to assume that the first altsetting entry in
301  * the array corresponds to altsetting zero.  This routine helps device
302  * drivers avoid such mistakes.
303  *
304  * Don't call this function unless you are bound to the intf interface
305  * or you have locked the device!
306  *
307  * Return: A pointer to the entry of the altsetting array of @intf that
308  * has @altnum as the alternate setting number. %NULL if not found.
309  */
310 struct usb_host_interface *usb_altnum_to_altsetting(
311 					const struct usb_interface *intf,
312 					unsigned int altnum)
313 {
314 	int i;
315 
316 	for (i = 0; i < intf->num_altsetting; i++) {
317 		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
318 			return &intf->altsetting[i];
319 	}
320 	return NULL;
321 }
322 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
323 
324 struct find_interface_arg {
325 	int minor;
326 	struct device_driver *drv;
327 };
328 
329 static int __find_interface(struct device *dev, void *data)
330 {
331 	struct find_interface_arg *arg = data;
332 	struct usb_interface *intf;
333 
334 	if (!is_usb_interface(dev))
335 		return 0;
336 
337 	if (dev->driver != arg->drv)
338 		return 0;
339 	intf = to_usb_interface(dev);
340 	return intf->minor == arg->minor;
341 }
342 
343 /**
344  * usb_find_interface - find usb_interface pointer for driver and device
345  * @drv: the driver whose current configuration is considered
346  * @minor: the minor number of the desired device
347  *
348  * This walks the bus device list and returns a pointer to the interface
349  * with the matching minor and driver.  Note, this only works for devices
350  * that share the USB major number.
351  *
352  * Return: A pointer to the interface with the matching major and @minor.
353  */
354 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
355 {
356 	struct find_interface_arg argb;
357 	struct device *dev;
358 
359 	argb.minor = minor;
360 	argb.drv = &drv->drvwrap.driver;
361 
362 	dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
363 
364 	/* Drop reference count from bus_find_device */
365 	put_device(dev);
366 
367 	return dev ? to_usb_interface(dev) : NULL;
368 }
369 EXPORT_SYMBOL_GPL(usb_find_interface);
370 
371 struct each_dev_arg {
372 	void *data;
373 	int (*fn)(struct usb_device *, void *);
374 };
375 
376 static int __each_dev(struct device *dev, void *data)
377 {
378 	struct each_dev_arg *arg = (struct each_dev_arg *)data;
379 
380 	/* There are struct usb_interface on the same bus, filter them out */
381 	if (!is_usb_device(dev))
382 		return 0;
383 
384 	return arg->fn(to_usb_device(dev), arg->data);
385 }
386 
387 /**
388  * usb_for_each_dev - iterate over all USB devices in the system
389  * @data: data pointer that will be handed to the callback function
390  * @fn: callback function to be called for each USB device
391  *
392  * Iterate over all USB devices and call @fn for each, passing it @data. If it
393  * returns anything other than 0, we break the iteration prematurely and return
394  * that value.
395  */
396 int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *))
397 {
398 	struct each_dev_arg arg = {data, fn};
399 
400 	return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev);
401 }
402 EXPORT_SYMBOL_GPL(usb_for_each_dev);
403 
404 /**
405  * usb_release_dev - free a usb device structure when all users of it are finished.
406  * @dev: device that's been disconnected
407  *
408  * Will be called only by the device core when all users of this usb device are
409  * done.
410  */
411 static void usb_release_dev(struct device *dev)
412 {
413 	struct usb_device *udev;
414 	struct usb_hcd *hcd;
415 
416 	udev = to_usb_device(dev);
417 	hcd = bus_to_hcd(udev->bus);
418 
419 	usb_destroy_configuration(udev);
420 	usb_release_bos_descriptor(udev);
421 	of_node_put(dev->of_node);
422 	usb_put_hcd(hcd);
423 	kfree(udev->product);
424 	kfree(udev->manufacturer);
425 	kfree(udev->serial);
426 	kfree(udev);
427 }
428 
429 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
430 {
431 	struct usb_device *usb_dev;
432 
433 	usb_dev = to_usb_device(dev);
434 
435 	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
436 		return -ENOMEM;
437 
438 	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
439 		return -ENOMEM;
440 
441 	return 0;
442 }
443 
444 #ifdef	CONFIG_PM
445 
446 /* USB device Power-Management thunks.
447  * There's no need to distinguish here between quiescing a USB device
448  * and powering it down; the generic_suspend() routine takes care of
449  * it by skipping the usb_port_suspend() call for a quiesce.  And for
450  * USB interfaces there's no difference at all.
451  */
452 
453 static int usb_dev_prepare(struct device *dev)
454 {
455 	return 0;		/* Implement eventually? */
456 }
457 
458 static void usb_dev_complete(struct device *dev)
459 {
460 	/* Currently used only for rebinding interfaces */
461 	usb_resume_complete(dev);
462 }
463 
464 static int usb_dev_suspend(struct device *dev)
465 {
466 	return usb_suspend(dev, PMSG_SUSPEND);
467 }
468 
469 static int usb_dev_resume(struct device *dev)
470 {
471 	return usb_resume(dev, PMSG_RESUME);
472 }
473 
474 static int usb_dev_freeze(struct device *dev)
475 {
476 	return usb_suspend(dev, PMSG_FREEZE);
477 }
478 
479 static int usb_dev_thaw(struct device *dev)
480 {
481 	return usb_resume(dev, PMSG_THAW);
482 }
483 
484 static int usb_dev_poweroff(struct device *dev)
485 {
486 	return usb_suspend(dev, PMSG_HIBERNATE);
487 }
488 
489 static int usb_dev_restore(struct device *dev)
490 {
491 	return usb_resume(dev, PMSG_RESTORE);
492 }
493 
494 static const struct dev_pm_ops usb_device_pm_ops = {
495 	.prepare =	usb_dev_prepare,
496 	.complete =	usb_dev_complete,
497 	.suspend =	usb_dev_suspend,
498 	.resume =	usb_dev_resume,
499 	.freeze =	usb_dev_freeze,
500 	.thaw =		usb_dev_thaw,
501 	.poweroff =	usb_dev_poweroff,
502 	.restore =	usb_dev_restore,
503 	.runtime_suspend =	usb_runtime_suspend,
504 	.runtime_resume =	usb_runtime_resume,
505 	.runtime_idle =		usb_runtime_idle,
506 };
507 
508 #endif	/* CONFIG_PM */
509 
510 
511 static char *usb_devnode(struct device *dev,
512 			 umode_t *mode, kuid_t *uid, kgid_t *gid)
513 {
514 	struct usb_device *usb_dev;
515 
516 	usb_dev = to_usb_device(dev);
517 	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
518 			 usb_dev->bus->busnum, usb_dev->devnum);
519 }
520 
521 struct device_type usb_device_type = {
522 	.name =		"usb_device",
523 	.release =	usb_release_dev,
524 	.uevent =	usb_dev_uevent,
525 	.devnode = 	usb_devnode,
526 #ifdef CONFIG_PM
527 	.pm =		&usb_device_pm_ops,
528 #endif
529 };
530 
531 
532 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */
533 static unsigned usb_bus_is_wusb(struct usb_bus *bus)
534 {
535 	struct usb_hcd *hcd = bus_to_hcd(bus);
536 	return hcd->wireless;
537 }
538 
539 
540 /**
541  * usb_alloc_dev - usb device constructor (usbcore-internal)
542  * @parent: hub to which device is connected; null to allocate a root hub
543  * @bus: bus used to access the device
544  * @port1: one-based index of port; ignored for root hubs
545  * Context: !in_interrupt()
546  *
547  * Only hub drivers (including virtual root hub drivers for host
548  * controllers) should ever call this.
549  *
550  * This call may not be used in a non-sleeping context.
551  *
552  * Return: On success, a pointer to the allocated usb device. %NULL on
553  * failure.
554  */
555 struct usb_device *usb_alloc_dev(struct usb_device *parent,
556 				 struct usb_bus *bus, unsigned port1)
557 {
558 	struct usb_device *dev;
559 	struct usb_hcd *usb_hcd = bus_to_hcd(bus);
560 	unsigned root_hub = 0;
561 	unsigned raw_port = port1;
562 
563 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
564 	if (!dev)
565 		return NULL;
566 
567 	if (!usb_get_hcd(usb_hcd)) {
568 		kfree(dev);
569 		return NULL;
570 	}
571 	/* Root hubs aren't true devices, so don't allocate HCD resources */
572 	if (usb_hcd->driver->alloc_dev && parent &&
573 		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
574 		usb_put_hcd(bus_to_hcd(bus));
575 		kfree(dev);
576 		return NULL;
577 	}
578 
579 	device_initialize(&dev->dev);
580 	dev->dev.bus = &usb_bus_type;
581 	dev->dev.type = &usb_device_type;
582 	dev->dev.groups = usb_device_groups;
583 	/*
584 	 * Fake a dma_mask/offset for the USB device:
585 	 * We cannot really use the dma-mapping API (dma_alloc_* and
586 	 * dma_map_*) for USB devices but instead need to use
587 	 * usb_alloc_coherent and pass data in 'urb's, but some subsystems
588 	 * manually look into the mask/offset pair to determine whether
589 	 * they need bounce buffers.
590 	 * Note: calling dma_set_mask() on a USB device would set the
591 	 * mask for the entire HCD, so don't do that.
592 	 */
593 	dev->dev.dma_mask = bus->sysdev->dma_mask;
594 	dev->dev.dma_pfn_offset = bus->sysdev->dma_pfn_offset;
595 	set_dev_node(&dev->dev, dev_to_node(bus->sysdev));
596 	dev->state = USB_STATE_ATTACHED;
597 	dev->lpm_disable_count = 1;
598 	atomic_set(&dev->urbnum, 0);
599 
600 	INIT_LIST_HEAD(&dev->ep0.urb_list);
601 	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
602 	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
603 	/* ep0 maxpacket comes later, from device descriptor */
604 	usb_enable_endpoint(dev, &dev->ep0, false);
605 	dev->can_submit = 1;
606 
607 	/* Save readable and stable topology id, distinguishing devices
608 	 * by location for diagnostics, tools, driver model, etc.  The
609 	 * string is a path along hub ports, from the root.  Each device's
610 	 * dev->devpath will be stable until USB is re-cabled, and hubs
611 	 * are often labeled with these port numbers.  The name isn't
612 	 * as stable:  bus->busnum changes easily from modprobe order,
613 	 * cardbus or pci hotplugging, and so on.
614 	 */
615 	if (unlikely(!parent)) {
616 		dev->devpath[0] = '0';
617 		dev->route = 0;
618 
619 		dev->dev.parent = bus->controller;
620 		device_set_of_node_from_dev(&dev->dev, bus->sysdev);
621 		dev_set_name(&dev->dev, "usb%d", bus->busnum);
622 		root_hub = 1;
623 	} else {
624 		/* match any labeling on the hubs; it's one-based */
625 		if (parent->devpath[0] == '0') {
626 			snprintf(dev->devpath, sizeof dev->devpath,
627 				"%d", port1);
628 			/* Root ports are not counted in route string */
629 			dev->route = 0;
630 		} else {
631 			snprintf(dev->devpath, sizeof dev->devpath,
632 				"%s.%d", parent->devpath, port1);
633 			/* Route string assumes hubs have less than 16 ports */
634 			if (port1 < 15)
635 				dev->route = parent->route +
636 					(port1 << ((parent->level - 1)*4));
637 			else
638 				dev->route = parent->route +
639 					(15 << ((parent->level - 1)*4));
640 		}
641 
642 		dev->dev.parent = &parent->dev;
643 		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
644 
645 		if (!parent->parent) {
646 			/* device under root hub's port */
647 			raw_port = usb_hcd_find_raw_port_number(usb_hcd,
648 				port1);
649 		}
650 		dev->dev.of_node = usb_of_get_device_node(parent, raw_port);
651 
652 		/* hub driver sets up TT records */
653 	}
654 
655 	dev->portnum = port1;
656 	dev->bus = bus;
657 	dev->parent = parent;
658 	INIT_LIST_HEAD(&dev->filelist);
659 
660 #ifdef	CONFIG_PM
661 	pm_runtime_set_autosuspend_delay(&dev->dev,
662 			usb_autosuspend_delay * 1000);
663 	dev->connect_time = jiffies;
664 	dev->active_duration = -jiffies;
665 #endif
666 	if (root_hub)	/* Root hub always ok [and always wired] */
667 		dev->authorized = 1;
668 	else {
669 		dev->authorized = !!HCD_DEV_AUTHORIZED(usb_hcd);
670 		dev->wusb = usb_bus_is_wusb(bus) ? 1 : 0;
671 	}
672 	return dev;
673 }
674 EXPORT_SYMBOL_GPL(usb_alloc_dev);
675 
676 /**
677  * usb_get_dev - increments the reference count of the usb device structure
678  * @dev: the device being referenced
679  *
680  * Each live reference to a device should be refcounted.
681  *
682  * Drivers for USB interfaces should normally record such references in
683  * their probe() methods, when they bind to an interface, and release
684  * them by calling usb_put_dev(), in their disconnect() methods.
685  *
686  * Return: A pointer to the device with the incremented reference counter.
687  */
688 struct usb_device *usb_get_dev(struct usb_device *dev)
689 {
690 	if (dev)
691 		get_device(&dev->dev);
692 	return dev;
693 }
694 EXPORT_SYMBOL_GPL(usb_get_dev);
695 
696 /**
697  * usb_put_dev - release a use of the usb device structure
698  * @dev: device that's been disconnected
699  *
700  * Must be called when a user of a device is finished with it.  When the last
701  * user of the device calls this function, the memory of the device is freed.
702  */
703 void usb_put_dev(struct usb_device *dev)
704 {
705 	if (dev)
706 		put_device(&dev->dev);
707 }
708 EXPORT_SYMBOL_GPL(usb_put_dev);
709 
710 /**
711  * usb_get_intf - increments the reference count of the usb interface structure
712  * @intf: the interface being referenced
713  *
714  * Each live reference to a interface must be refcounted.
715  *
716  * Drivers for USB interfaces should normally record such references in
717  * their probe() methods, when they bind to an interface, and release
718  * them by calling usb_put_intf(), in their disconnect() methods.
719  *
720  * Return: A pointer to the interface with the incremented reference counter.
721  */
722 struct usb_interface *usb_get_intf(struct usb_interface *intf)
723 {
724 	if (intf)
725 		get_device(&intf->dev);
726 	return intf;
727 }
728 EXPORT_SYMBOL_GPL(usb_get_intf);
729 
730 /**
731  * usb_put_intf - release a use of the usb interface structure
732  * @intf: interface that's been decremented
733  *
734  * Must be called when a user of an interface is finished with it.  When the
735  * last user of the interface calls this function, the memory of the interface
736  * is freed.
737  */
738 void usb_put_intf(struct usb_interface *intf)
739 {
740 	if (intf)
741 		put_device(&intf->dev);
742 }
743 EXPORT_SYMBOL_GPL(usb_put_intf);
744 
745 /*			USB device locking
746  *
747  * USB devices and interfaces are locked using the semaphore in their
748  * embedded struct device.  The hub driver guarantees that whenever a
749  * device is connected or disconnected, drivers are called with the
750  * USB device locked as well as their particular interface.
751  *
752  * Complications arise when several devices are to be locked at the same
753  * time.  Only hub-aware drivers that are part of usbcore ever have to
754  * do this; nobody else needs to worry about it.  The rule for locking
755  * is simple:
756  *
757  *	When locking both a device and its parent, always lock the
758  *	the parent first.
759  */
760 
761 /**
762  * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
763  * @udev: device that's being locked
764  * @iface: interface bound to the driver making the request (optional)
765  *
766  * Attempts to acquire the device lock, but fails if the device is
767  * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
768  * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
769  * lock, the routine polls repeatedly.  This is to prevent deadlock with
770  * disconnect; in some drivers (such as usb-storage) the disconnect()
771  * or suspend() method will block waiting for a device reset to complete.
772  *
773  * Return: A negative error code for failure, otherwise 0.
774  */
775 int usb_lock_device_for_reset(struct usb_device *udev,
776 			      const struct usb_interface *iface)
777 {
778 	unsigned long jiffies_expire = jiffies + HZ;
779 
780 	if (udev->state == USB_STATE_NOTATTACHED)
781 		return -ENODEV;
782 	if (udev->state == USB_STATE_SUSPENDED)
783 		return -EHOSTUNREACH;
784 	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
785 			iface->condition == USB_INTERFACE_UNBOUND))
786 		return -EINTR;
787 
788 	while (!usb_trylock_device(udev)) {
789 
790 		/* If we can't acquire the lock after waiting one second,
791 		 * we're probably deadlocked */
792 		if (time_after(jiffies, jiffies_expire))
793 			return -EBUSY;
794 
795 		msleep(15);
796 		if (udev->state == USB_STATE_NOTATTACHED)
797 			return -ENODEV;
798 		if (udev->state == USB_STATE_SUSPENDED)
799 			return -EHOSTUNREACH;
800 		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
801 				iface->condition == USB_INTERFACE_UNBOUND))
802 			return -EINTR;
803 	}
804 	return 0;
805 }
806 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
807 
808 /**
809  * usb_get_current_frame_number - return current bus frame number
810  * @dev: the device whose bus is being queried
811  *
812  * Return: The current frame number for the USB host controller used
813  * with the given USB device. This can be used when scheduling
814  * isochronous requests.
815  *
816  * Note: Different kinds of host controller have different "scheduling
817  * horizons". While one type might support scheduling only 32 frames
818  * into the future, others could support scheduling up to 1024 frames
819  * into the future.
820  *
821  */
822 int usb_get_current_frame_number(struct usb_device *dev)
823 {
824 	return usb_hcd_get_frame_number(dev);
825 }
826 EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
827 
828 /*-------------------------------------------------------------------*/
829 /*
830  * __usb_get_extra_descriptor() finds a descriptor of specific type in the
831  * extra field of the interface and endpoint descriptor structs.
832  */
833 
834 int __usb_get_extra_descriptor(char *buffer, unsigned size,
835 			       unsigned char type, void **ptr, size_t minsize)
836 {
837 	struct usb_descriptor_header *header;
838 
839 	while (size >= sizeof(struct usb_descriptor_header)) {
840 		header = (struct usb_descriptor_header *)buffer;
841 
842 		if (header->bLength < 2 || header->bLength > size) {
843 			printk(KERN_ERR
844 				"%s: bogus descriptor, type %d length %d\n",
845 				usbcore_name,
846 				header->bDescriptorType,
847 				header->bLength);
848 			return -1;
849 		}
850 
851 		if (header->bDescriptorType == type && header->bLength >= minsize) {
852 			*ptr = header;
853 			return 0;
854 		}
855 
856 		buffer += header->bLength;
857 		size -= header->bLength;
858 	}
859 	return -1;
860 }
861 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
862 
863 /**
864  * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
865  * @dev: device the buffer will be used with
866  * @size: requested buffer size
867  * @mem_flags: affect whether allocation may block
868  * @dma: used to return DMA address of buffer
869  *
870  * Return: Either null (indicating no buffer could be allocated), or the
871  * cpu-space pointer to a buffer that may be used to perform DMA to the
872  * specified device.  Such cpu-space buffers are returned along with the DMA
873  * address (through the pointer provided).
874  *
875  * Note:
876  * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
877  * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
878  * hardware during URB completion/resubmit.  The implementation varies between
879  * platforms, depending on details of how DMA will work to this device.
880  * Using these buffers also eliminates cacheline sharing problems on
881  * architectures where CPU caches are not DMA-coherent.  On systems without
882  * bus-snooping caches, these buffers are uncached.
883  *
884  * When the buffer is no longer used, free it with usb_free_coherent().
885  */
886 void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
887 			 dma_addr_t *dma)
888 {
889 	if (!dev || !dev->bus)
890 		return NULL;
891 	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
892 }
893 EXPORT_SYMBOL_GPL(usb_alloc_coherent);
894 
895 /**
896  * usb_free_coherent - free memory allocated with usb_alloc_coherent()
897  * @dev: device the buffer was used with
898  * @size: requested buffer size
899  * @addr: CPU address of buffer
900  * @dma: DMA address of buffer
901  *
902  * This reclaims an I/O buffer, letting it be reused.  The memory must have
903  * been allocated using usb_alloc_coherent(), and the parameters must match
904  * those provided in that allocation request.
905  */
906 void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
907 		       dma_addr_t dma)
908 {
909 	if (!dev || !dev->bus)
910 		return;
911 	if (!addr)
912 		return;
913 	hcd_buffer_free(dev->bus, size, addr, dma);
914 }
915 EXPORT_SYMBOL_GPL(usb_free_coherent);
916 
917 /**
918  * usb_buffer_map - create DMA mapping(s) for an urb
919  * @urb: urb whose transfer_buffer/setup_packet will be mapped
920  *
921  * URB_NO_TRANSFER_DMA_MAP is added to urb->transfer_flags if the operation
922  * succeeds. If the device is connected to this system through a non-DMA
923  * controller, this operation always succeeds.
924  *
925  * This call would normally be used for an urb which is reused, perhaps
926  * as the target of a large periodic transfer, with usb_buffer_dmasync()
927  * calls to synchronize memory and dma state.
928  *
929  * Reverse the effect of this call with usb_buffer_unmap().
930  *
931  * Return: Either %NULL (indicating no buffer could be mapped), or @urb.
932  *
933  */
934 #if 0
935 struct urb *usb_buffer_map(struct urb *urb)
936 {
937 	struct usb_bus		*bus;
938 	struct device		*controller;
939 
940 	if (!urb
941 			|| !urb->dev
942 			|| !(bus = urb->dev->bus)
943 			|| !(controller = bus->sysdev))
944 		return NULL;
945 
946 	if (controller->dma_mask) {
947 		urb->transfer_dma = dma_map_single(controller,
948 			urb->transfer_buffer, urb->transfer_buffer_length,
949 			usb_pipein(urb->pipe)
950 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
951 	/* FIXME generic api broken like pci, can't report errors */
952 	/* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */
953 	} else
954 		urb->transfer_dma = ~0;
955 	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
956 	return urb;
957 }
958 EXPORT_SYMBOL_GPL(usb_buffer_map);
959 #endif  /*  0  */
960 
961 /* XXX DISABLED, no users currently.  If you wish to re-enable this
962  * XXX please determine whether the sync is to transfer ownership of
963  * XXX the buffer from device to cpu or vice verse, and thusly use the
964  * XXX appropriate _for_{cpu,device}() method.  -DaveM
965  */
966 #if 0
967 
968 /**
969  * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
970  * @urb: urb whose transfer_buffer/setup_packet will be synchronized
971  */
972 void usb_buffer_dmasync(struct urb *urb)
973 {
974 	struct usb_bus		*bus;
975 	struct device		*controller;
976 
977 	if (!urb
978 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
979 			|| !urb->dev
980 			|| !(bus = urb->dev->bus)
981 			|| !(controller = bus->sysdev))
982 		return;
983 
984 	if (controller->dma_mask) {
985 		dma_sync_single_for_cpu(controller,
986 			urb->transfer_dma, urb->transfer_buffer_length,
987 			usb_pipein(urb->pipe)
988 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
989 		if (usb_pipecontrol(urb->pipe))
990 			dma_sync_single_for_cpu(controller,
991 					urb->setup_dma,
992 					sizeof(struct usb_ctrlrequest),
993 					DMA_TO_DEVICE);
994 	}
995 }
996 EXPORT_SYMBOL_GPL(usb_buffer_dmasync);
997 #endif
998 
999 /**
1000  * usb_buffer_unmap - free DMA mapping(s) for an urb
1001  * @urb: urb whose transfer_buffer will be unmapped
1002  *
1003  * Reverses the effect of usb_buffer_map().
1004  */
1005 #if 0
1006 void usb_buffer_unmap(struct urb *urb)
1007 {
1008 	struct usb_bus		*bus;
1009 	struct device		*controller;
1010 
1011 	if (!urb
1012 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
1013 			|| !urb->dev
1014 			|| !(bus = urb->dev->bus)
1015 			|| !(controller = bus->sysdev))
1016 		return;
1017 
1018 	if (controller->dma_mask) {
1019 		dma_unmap_single(controller,
1020 			urb->transfer_dma, urb->transfer_buffer_length,
1021 			usb_pipein(urb->pipe)
1022 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1023 	}
1024 	urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP;
1025 }
1026 EXPORT_SYMBOL_GPL(usb_buffer_unmap);
1027 #endif  /*  0  */
1028 
1029 #if 0
1030 /**
1031  * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
1032  * @dev: device to which the scatterlist will be mapped
1033  * @is_in: mapping transfer direction
1034  * @sg: the scatterlist to map
1035  * @nents: the number of entries in the scatterlist
1036  *
1037  * Return: Either < 0 (indicating no buffers could be mapped), or the
1038  * number of DMA mapping array entries in the scatterlist.
1039  *
1040  * Note:
1041  * The caller is responsible for placing the resulting DMA addresses from
1042  * the scatterlist into URB transfer buffer pointers, and for setting the
1043  * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
1044  *
1045  * Top I/O rates come from queuing URBs, instead of waiting for each one
1046  * to complete before starting the next I/O.   This is particularly easy
1047  * to do with scatterlists.  Just allocate and submit one URB for each DMA
1048  * mapping entry returned, stopping on the first error or when all succeed.
1049  * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
1050  *
1051  * This call would normally be used when translating scatterlist requests,
1052  * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
1053  * may be able to coalesce mappings for improved I/O efficiency.
1054  *
1055  * Reverse the effect of this call with usb_buffer_unmap_sg().
1056  */
1057 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1058 		      struct scatterlist *sg, int nents)
1059 {
1060 	struct usb_bus		*bus;
1061 	struct device		*controller;
1062 
1063 	if (!dev
1064 			|| !(bus = dev->bus)
1065 			|| !(controller = bus->sysdev)
1066 			|| !controller->dma_mask)
1067 		return -EINVAL;
1068 
1069 	/* FIXME generic api broken like pci, can't report errors */
1070 	return dma_map_sg(controller, sg, nents,
1071 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM;
1072 }
1073 EXPORT_SYMBOL_GPL(usb_buffer_map_sg);
1074 #endif
1075 
1076 /* XXX DISABLED, no users currently.  If you wish to re-enable this
1077  * XXX please determine whether the sync is to transfer ownership of
1078  * XXX the buffer from device to cpu or vice verse, and thusly use the
1079  * XXX appropriate _for_{cpu,device}() method.  -DaveM
1080  */
1081 #if 0
1082 
1083 /**
1084  * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
1085  * @dev: device to which the scatterlist will be mapped
1086  * @is_in: mapping transfer direction
1087  * @sg: the scatterlist to synchronize
1088  * @n_hw_ents: the positive return value from usb_buffer_map_sg
1089  *
1090  * Use this when you are re-using a scatterlist's data buffers for
1091  * another USB request.
1092  */
1093 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1094 			   struct scatterlist *sg, int n_hw_ents)
1095 {
1096 	struct usb_bus		*bus;
1097 	struct device		*controller;
1098 
1099 	if (!dev
1100 			|| !(bus = dev->bus)
1101 			|| !(controller = bus->sysdev)
1102 			|| !controller->dma_mask)
1103 		return;
1104 
1105 	dma_sync_sg_for_cpu(controller, sg, n_hw_ents,
1106 			    is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1107 }
1108 EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg);
1109 #endif
1110 
1111 #if 0
1112 /**
1113  * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
1114  * @dev: device to which the scatterlist will be mapped
1115  * @is_in: mapping transfer direction
1116  * @sg: the scatterlist to unmap
1117  * @n_hw_ents: the positive return value from usb_buffer_map_sg
1118  *
1119  * Reverses the effect of usb_buffer_map_sg().
1120  */
1121 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1122 			 struct scatterlist *sg, int n_hw_ents)
1123 {
1124 	struct usb_bus		*bus;
1125 	struct device		*controller;
1126 
1127 	if (!dev
1128 			|| !(bus = dev->bus)
1129 			|| !(controller = bus->sysdev)
1130 			|| !controller->dma_mask)
1131 		return;
1132 
1133 	dma_unmap_sg(controller, sg, n_hw_ents,
1134 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1135 }
1136 EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg);
1137 #endif
1138 
1139 /*
1140  * Notifications of device and interface registration
1141  */
1142 static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
1143 		void *data)
1144 {
1145 	struct device *dev = data;
1146 
1147 	switch (action) {
1148 	case BUS_NOTIFY_ADD_DEVICE:
1149 		if (dev->type == &usb_device_type)
1150 			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
1151 		else if (dev->type == &usb_if_device_type)
1152 			usb_create_sysfs_intf_files(to_usb_interface(dev));
1153 		break;
1154 
1155 	case BUS_NOTIFY_DEL_DEVICE:
1156 		if (dev->type == &usb_device_type)
1157 			usb_remove_sysfs_dev_files(to_usb_device(dev));
1158 		else if (dev->type == &usb_if_device_type)
1159 			usb_remove_sysfs_intf_files(to_usb_interface(dev));
1160 		break;
1161 	}
1162 	return 0;
1163 }
1164 
1165 static struct notifier_block usb_bus_nb = {
1166 	.notifier_call = usb_bus_notify,
1167 };
1168 
1169 struct dentry *usb_debug_root;
1170 EXPORT_SYMBOL_GPL(usb_debug_root);
1171 
1172 static void usb_debugfs_init(void)
1173 {
1174 	usb_debug_root = debugfs_create_dir("usb", NULL);
1175 	debugfs_create_file("devices", 0444, usb_debug_root, NULL,
1176 			    &usbfs_devices_fops);
1177 }
1178 
1179 static void usb_debugfs_cleanup(void)
1180 {
1181 	debugfs_remove_recursive(usb_debug_root);
1182 }
1183 
1184 /*
1185  * Init
1186  */
1187 static int __init usb_init(void)
1188 {
1189 	int retval;
1190 	if (usb_disabled()) {
1191 		pr_info("%s: USB support disabled\n", usbcore_name);
1192 		return 0;
1193 	}
1194 	usb_init_pool_max();
1195 
1196 	usb_debugfs_init();
1197 
1198 	usb_acpi_register();
1199 	retval = bus_register(&usb_bus_type);
1200 	if (retval)
1201 		goto bus_register_failed;
1202 	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1203 	if (retval)
1204 		goto bus_notifier_failed;
1205 	retval = usb_major_init();
1206 	if (retval)
1207 		goto major_init_failed;
1208 	retval = usb_register(&usbfs_driver);
1209 	if (retval)
1210 		goto driver_register_failed;
1211 	retval = usb_devio_init();
1212 	if (retval)
1213 		goto usb_devio_init_failed;
1214 	retval = usb_hub_init();
1215 	if (retval)
1216 		goto hub_init_failed;
1217 	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1218 	if (!retval)
1219 		goto out;
1220 
1221 	usb_hub_cleanup();
1222 hub_init_failed:
1223 	usb_devio_cleanup();
1224 usb_devio_init_failed:
1225 	usb_deregister(&usbfs_driver);
1226 driver_register_failed:
1227 	usb_major_cleanup();
1228 major_init_failed:
1229 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1230 bus_notifier_failed:
1231 	bus_unregister(&usb_bus_type);
1232 bus_register_failed:
1233 	usb_acpi_unregister();
1234 	usb_debugfs_cleanup();
1235 out:
1236 	return retval;
1237 }
1238 
1239 /*
1240  * Cleanup
1241  */
1242 static void __exit usb_exit(void)
1243 {
1244 	/* This will matter if shutdown/reboot does exitcalls. */
1245 	if (usb_disabled())
1246 		return;
1247 
1248 	usb_release_quirk_list();
1249 	usb_deregister_device_driver(&usb_generic_driver);
1250 	usb_major_cleanup();
1251 	usb_deregister(&usbfs_driver);
1252 	usb_devio_cleanup();
1253 	usb_hub_cleanup();
1254 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1255 	bus_unregister(&usb_bus_type);
1256 	usb_acpi_unregister();
1257 	usb_debugfs_cleanup();
1258 	idr_destroy(&usb_bus_idr);
1259 }
1260 
1261 subsys_initcall(usb_init);
1262 module_exit(usb_exit);
1263 MODULE_LICENSE("GPL");
1264