1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Released under the GPLv2 only. 4 */ 5 6 #include <linux/module.h> 7 #include <linux/string.h> 8 #include <linux/bitops.h> 9 #include <linux/slab.h> 10 #include <linux/log2.h> 11 #include <linux/usb.h> 12 #include <linux/wait.h> 13 #include <linux/usb/hcd.h> 14 #include <linux/scatterlist.h> 15 16 #define to_urb(d) container_of(d, struct urb, kref) 17 18 19 static void urb_destroy(struct kref *kref) 20 { 21 struct urb *urb = to_urb(kref); 22 23 if (urb->transfer_flags & URB_FREE_BUFFER) 24 kfree(urb->transfer_buffer); 25 26 kfree(urb); 27 } 28 29 /** 30 * usb_init_urb - initializes a urb so that it can be used by a USB driver 31 * @urb: pointer to the urb to initialize 32 * 33 * Initializes a urb so that the USB subsystem can use it properly. 34 * 35 * If a urb is created with a call to usb_alloc_urb() it is not 36 * necessary to call this function. Only use this if you allocate the 37 * space for a struct urb on your own. If you call this function, be 38 * careful when freeing the memory for your urb that it is no longer in 39 * use by the USB core. 40 * 41 * Only use this function if you _really_ understand what you are doing. 42 */ 43 void usb_init_urb(struct urb *urb) 44 { 45 if (urb) { 46 memset(urb, 0, sizeof(*urb)); 47 kref_init(&urb->kref); 48 INIT_LIST_HEAD(&urb->urb_list); 49 INIT_LIST_HEAD(&urb->anchor_list); 50 } 51 } 52 EXPORT_SYMBOL_GPL(usb_init_urb); 53 54 /** 55 * usb_alloc_urb - creates a new urb for a USB driver to use 56 * @iso_packets: number of iso packets for this urb 57 * @mem_flags: the type of memory to allocate, see kmalloc() for a list of 58 * valid options for this. 59 * 60 * Creates an urb for the USB driver to use, initializes a few internal 61 * structures, increments the usage counter, and returns a pointer to it. 62 * 63 * If the driver want to use this urb for interrupt, control, or bulk 64 * endpoints, pass '0' as the number of iso packets. 65 * 66 * The driver must call usb_free_urb() when it is finished with the urb. 67 * 68 * Return: A pointer to the new urb, or %NULL if no memory is available. 69 */ 70 struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags) 71 { 72 struct urb *urb; 73 74 urb = kmalloc(struct_size(urb, iso_frame_desc, iso_packets), 75 mem_flags); 76 if (!urb) 77 return NULL; 78 usb_init_urb(urb); 79 return urb; 80 } 81 EXPORT_SYMBOL_GPL(usb_alloc_urb); 82 83 /** 84 * usb_free_urb - frees the memory used by a urb when all users of it are finished 85 * @urb: pointer to the urb to free, may be NULL 86 * 87 * Must be called when a user of a urb is finished with it. When the last user 88 * of the urb calls this function, the memory of the urb is freed. 89 * 90 * Note: The transfer buffer associated with the urb is not freed unless the 91 * URB_FREE_BUFFER transfer flag is set. 92 */ 93 void usb_free_urb(struct urb *urb) 94 { 95 if (urb) 96 kref_put(&urb->kref, urb_destroy); 97 } 98 EXPORT_SYMBOL_GPL(usb_free_urb); 99 100 /** 101 * usb_get_urb - increments the reference count of the urb 102 * @urb: pointer to the urb to modify, may be NULL 103 * 104 * This must be called whenever a urb is transferred from a device driver to a 105 * host controller driver. This allows proper reference counting to happen 106 * for urbs. 107 * 108 * Return: A pointer to the urb with the incremented reference counter. 109 */ 110 struct urb *usb_get_urb(struct urb *urb) 111 { 112 if (urb) 113 kref_get(&urb->kref); 114 return urb; 115 } 116 EXPORT_SYMBOL_GPL(usb_get_urb); 117 118 /** 119 * usb_anchor_urb - anchors an URB while it is processed 120 * @urb: pointer to the urb to anchor 121 * @anchor: pointer to the anchor 122 * 123 * This can be called to have access to URBs which are to be executed 124 * without bothering to track them 125 */ 126 void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor) 127 { 128 unsigned long flags; 129 130 spin_lock_irqsave(&anchor->lock, flags); 131 usb_get_urb(urb); 132 list_add_tail(&urb->anchor_list, &anchor->urb_list); 133 urb->anchor = anchor; 134 135 if (unlikely(anchor->poisoned)) 136 atomic_inc(&urb->reject); 137 138 spin_unlock_irqrestore(&anchor->lock, flags); 139 } 140 EXPORT_SYMBOL_GPL(usb_anchor_urb); 141 142 static int usb_anchor_check_wakeup(struct usb_anchor *anchor) 143 { 144 return atomic_read(&anchor->suspend_wakeups) == 0 && 145 list_empty(&anchor->urb_list); 146 } 147 148 /* Callers must hold anchor->lock */ 149 static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor) 150 { 151 urb->anchor = NULL; 152 list_del(&urb->anchor_list); 153 usb_put_urb(urb); 154 if (usb_anchor_check_wakeup(anchor)) 155 wake_up(&anchor->wait); 156 } 157 158 /** 159 * usb_unanchor_urb - unanchors an URB 160 * @urb: pointer to the urb to anchor 161 * 162 * Call this to stop the system keeping track of this URB 163 */ 164 void usb_unanchor_urb(struct urb *urb) 165 { 166 unsigned long flags; 167 struct usb_anchor *anchor; 168 169 if (!urb) 170 return; 171 172 anchor = urb->anchor; 173 if (!anchor) 174 return; 175 176 spin_lock_irqsave(&anchor->lock, flags); 177 /* 178 * At this point, we could be competing with another thread which 179 * has the same intention. To protect the urb from being unanchored 180 * twice, only the winner of the race gets the job. 181 */ 182 if (likely(anchor == urb->anchor)) 183 __usb_unanchor_urb(urb, anchor); 184 spin_unlock_irqrestore(&anchor->lock, flags); 185 } 186 EXPORT_SYMBOL_GPL(usb_unanchor_urb); 187 188 /*-------------------------------------------------------------------*/ 189 190 static const int pipetypes[4] = { 191 PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT 192 }; 193 194 /** 195 * usb_pipe_type_check - sanity check of a specific pipe for a usb device 196 * @dev: struct usb_device to be checked 197 * @pipe: pipe to check 198 * 199 * This performs a light-weight sanity check for the endpoint in the 200 * given usb device. It returns 0 if the pipe is valid for the specific usb 201 * device, otherwise a negative error code. 202 */ 203 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe) 204 { 205 const struct usb_host_endpoint *ep; 206 207 ep = usb_pipe_endpoint(dev, pipe); 208 if (!ep) 209 return -EINVAL; 210 if (usb_pipetype(pipe) != pipetypes[usb_endpoint_type(&ep->desc)]) 211 return -EINVAL; 212 return 0; 213 } 214 EXPORT_SYMBOL_GPL(usb_pipe_type_check); 215 216 /** 217 * usb_urb_ep_type_check - sanity check of endpoint in the given urb 218 * @urb: urb to be checked 219 * 220 * This performs a light-weight sanity check for the endpoint in the 221 * given urb. It returns 0 if the urb contains a valid endpoint, otherwise 222 * a negative error code. 223 */ 224 int usb_urb_ep_type_check(const struct urb *urb) 225 { 226 return usb_pipe_type_check(urb->dev, urb->pipe); 227 } 228 EXPORT_SYMBOL_GPL(usb_urb_ep_type_check); 229 230 /** 231 * usb_submit_urb - issue an asynchronous transfer request for an endpoint 232 * @urb: pointer to the urb describing the request 233 * @mem_flags: the type of memory to allocate, see kmalloc() for a list 234 * of valid options for this. 235 * 236 * This submits a transfer request, and transfers control of the URB 237 * describing that request to the USB subsystem. Request completion will 238 * be indicated later, asynchronously, by calling the completion handler. 239 * The three types of completion are success, error, and unlink 240 * (a software-induced fault, also called "request cancellation"). 241 * 242 * URBs may be submitted in interrupt context. 243 * 244 * The caller must have correctly initialized the URB before submitting 245 * it. Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are 246 * available to ensure that most fields are correctly initialized, for 247 * the particular kind of transfer, although they will not initialize 248 * any transfer flags. 249 * 250 * If the submission is successful, the complete() callback from the URB 251 * will be called exactly once, when the USB core and Host Controller Driver 252 * (HCD) are finished with the URB. When the completion function is called, 253 * control of the URB is returned to the device driver which issued the 254 * request. The completion handler may then immediately free or reuse that 255 * URB. 256 * 257 * With few exceptions, USB device drivers should never access URB fields 258 * provided by usbcore or the HCD until its complete() is called. 259 * The exceptions relate to periodic transfer scheduling. For both 260 * interrupt and isochronous urbs, as part of successful URB submission 261 * urb->interval is modified to reflect the actual transfer period used 262 * (normally some power of two units). And for isochronous urbs, 263 * urb->start_frame is modified to reflect when the URB's transfers were 264 * scheduled to start. 265 * 266 * Not all isochronous transfer scheduling policies will work, but most 267 * host controller drivers should easily handle ISO queues going from now 268 * until 10-200 msec into the future. Drivers should try to keep at 269 * least one or two msec of data in the queue; many controllers require 270 * that new transfers start at least 1 msec in the future when they are 271 * added. If the driver is unable to keep up and the queue empties out, 272 * the behavior for new submissions is governed by the URB_ISO_ASAP flag. 273 * If the flag is set, or if the queue is idle, then the URB is always 274 * assigned to the first available (and not yet expired) slot in the 275 * endpoint's schedule. If the flag is not set and the queue is active 276 * then the URB is always assigned to the next slot in the schedule 277 * following the end of the endpoint's previous URB, even if that slot is 278 * in the past. When a packet is assigned in this way to a slot that has 279 * already expired, the packet is not transmitted and the corresponding 280 * usb_iso_packet_descriptor's status field will return -EXDEV. If this 281 * would happen to all the packets in the URB, submission fails with a 282 * -EXDEV error code. 283 * 284 * For control endpoints, the synchronous usb_control_msg() call is 285 * often used (in non-interrupt context) instead of this call. 286 * That is often used through convenience wrappers, for the requests 287 * that are standardized in the USB 2.0 specification. For bulk 288 * endpoints, a synchronous usb_bulk_msg() call is available. 289 * 290 * Return: 291 * 0 on successful submissions. A negative error number otherwise. 292 * 293 * Request Queuing: 294 * 295 * URBs may be submitted to endpoints before previous ones complete, to 296 * minimize the impact of interrupt latencies and system overhead on data 297 * throughput. With that queuing policy, an endpoint's queue would never 298 * be empty. This is required for continuous isochronous data streams, 299 * and may also be required for some kinds of interrupt transfers. Such 300 * queuing also maximizes bandwidth utilization by letting USB controllers 301 * start work on later requests before driver software has finished the 302 * completion processing for earlier (successful) requests. 303 * 304 * As of Linux 2.6, all USB endpoint transfer queues support depths greater 305 * than one. This was previously a HCD-specific behavior, except for ISO 306 * transfers. Non-isochronous endpoint queues are inactive during cleanup 307 * after faults (transfer errors or cancellation). 308 * 309 * Reserved Bandwidth Transfers: 310 * 311 * Periodic transfers (interrupt or isochronous) are performed repeatedly, 312 * using the interval specified in the urb. Submitting the first urb to 313 * the endpoint reserves the bandwidth necessary to make those transfers. 314 * If the USB subsystem can't allocate sufficient bandwidth to perform 315 * the periodic request, submitting such a periodic request should fail. 316 * 317 * For devices under xHCI, the bandwidth is reserved at configuration time, or 318 * when the alt setting is selected. If there is not enough bus bandwidth, the 319 * configuration/alt setting request will fail. Therefore, submissions to 320 * periodic endpoints on devices under xHCI should never fail due to bandwidth 321 * constraints. 322 * 323 * Device drivers must explicitly request that repetition, by ensuring that 324 * some URB is always on the endpoint's queue (except possibly for short 325 * periods during completion callbacks). When there is no longer an urb 326 * queued, the endpoint's bandwidth reservation is canceled. This means 327 * drivers can use their completion handlers to ensure they keep bandwidth 328 * they need, by reinitializing and resubmitting the just-completed urb 329 * until the driver longer needs that periodic bandwidth. 330 * 331 * Memory Flags: 332 * 333 * The general rules for how to decide which mem_flags to use 334 * are the same as for kmalloc. There are four 335 * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and 336 * GFP_ATOMIC. 337 * 338 * GFP_NOFS is not ever used, as it has not been implemented yet. 339 * 340 * GFP_ATOMIC is used when 341 * (a) you are inside a completion handler, an interrupt, bottom half, 342 * tasklet or timer, or 343 * (b) you are holding a spinlock or rwlock (does not apply to 344 * semaphores), or 345 * (c) current->state != TASK_RUNNING, this is the case only after 346 * you've changed it. 347 * 348 * GFP_NOIO is used in the block io path and error handling of storage 349 * devices. 350 * 351 * All other situations use GFP_KERNEL. 352 * 353 * Some more specific rules for mem_flags can be inferred, such as 354 * (1) start_xmit, timeout, and receive methods of network drivers must 355 * use GFP_ATOMIC (they are called with a spinlock held); 356 * (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also 357 * called with a spinlock held); 358 * (3) If you use a kernel thread with a network driver you must use 359 * GFP_NOIO, unless (b) or (c) apply; 360 * (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c) 361 * apply or your are in a storage driver's block io path; 362 * (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and 363 * (6) changing firmware on a running storage or net device uses 364 * GFP_NOIO, unless b) or c) apply 365 * 366 */ 367 int usb_submit_urb(struct urb *urb, gfp_t mem_flags) 368 { 369 int xfertype, max; 370 struct usb_device *dev; 371 struct usb_host_endpoint *ep; 372 int is_out; 373 unsigned int allowed; 374 375 if (!urb || !urb->complete) 376 return -EINVAL; 377 if (urb->hcpriv) { 378 WARN_ONCE(1, "URB %pK submitted while active\n", urb); 379 return -EBUSY; 380 } 381 382 dev = urb->dev; 383 if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED)) 384 return -ENODEV; 385 386 /* For now, get the endpoint from the pipe. Eventually drivers 387 * will be required to set urb->ep directly and we will eliminate 388 * urb->pipe. 389 */ 390 ep = usb_pipe_endpoint(dev, urb->pipe); 391 if (!ep) 392 return -ENOENT; 393 394 urb->ep = ep; 395 urb->status = -EINPROGRESS; 396 urb->actual_length = 0; 397 398 /* Lots of sanity checks, so HCDs can rely on clean data 399 * and don't need to duplicate tests 400 */ 401 xfertype = usb_endpoint_type(&ep->desc); 402 if (xfertype == USB_ENDPOINT_XFER_CONTROL) { 403 struct usb_ctrlrequest *setup = 404 (struct usb_ctrlrequest *) urb->setup_packet; 405 406 if (!setup) 407 return -ENOEXEC; 408 is_out = !(setup->bRequestType & USB_DIR_IN) || 409 !setup->wLength; 410 dev_WARN_ONCE(&dev->dev, (usb_pipeout(urb->pipe) != is_out), 411 "BOGUS control dir, pipe %x doesn't match bRequestType %x\n", 412 urb->pipe, setup->bRequestType); 413 if (le16_to_cpu(setup->wLength) != urb->transfer_buffer_length) { 414 dev_dbg(&dev->dev, "BOGUS control len %d doesn't match transfer length %d\n", 415 le16_to_cpu(setup->wLength), 416 urb->transfer_buffer_length); 417 return -EBADR; 418 } 419 } else { 420 is_out = usb_endpoint_dir_out(&ep->desc); 421 } 422 423 /* Clear the internal flags and cache the direction for later use */ 424 urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE | 425 URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL | 426 URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL | 427 URB_DMA_SG_COMBINED); 428 urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN); 429 430 if (xfertype != USB_ENDPOINT_XFER_CONTROL && 431 dev->state < USB_STATE_CONFIGURED) 432 return -ENODEV; 433 434 max = usb_endpoint_maxp(&ep->desc); 435 if (max <= 0) { 436 dev_dbg(&dev->dev, 437 "bogus endpoint ep%d%s in %s (bad maxpacket %d)\n", 438 usb_endpoint_num(&ep->desc), is_out ? "out" : "in", 439 __func__, max); 440 return -EMSGSIZE; 441 } 442 443 /* periodic transfers limit size per frame/uframe, 444 * but drivers only control those sizes for ISO. 445 * while we're checking, initialize return status. 446 */ 447 if (xfertype == USB_ENDPOINT_XFER_ISOC) { 448 int n, len; 449 450 /* SuperSpeed isoc endpoints have up to 16 bursts of up to 451 * 3 packets each 452 */ 453 if (dev->speed >= USB_SPEED_SUPER) { 454 int burst = 1 + ep->ss_ep_comp.bMaxBurst; 455 int mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes); 456 max *= burst; 457 max *= mult; 458 } 459 460 if (dev->speed == USB_SPEED_SUPER_PLUS && 461 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes)) { 462 struct usb_ssp_isoc_ep_comp_descriptor *isoc_ep_comp; 463 464 isoc_ep_comp = &ep->ssp_isoc_ep_comp; 465 max = le32_to_cpu(isoc_ep_comp->dwBytesPerInterval); 466 } 467 468 /* "high bandwidth" mode, 1-3 packets/uframe? */ 469 if (dev->speed == USB_SPEED_HIGH) 470 max *= usb_endpoint_maxp_mult(&ep->desc); 471 472 if (urb->number_of_packets <= 0) 473 return -EINVAL; 474 for (n = 0; n < urb->number_of_packets; n++) { 475 len = urb->iso_frame_desc[n].length; 476 if (len < 0 || len > max) 477 return -EMSGSIZE; 478 urb->iso_frame_desc[n].status = -EXDEV; 479 urb->iso_frame_desc[n].actual_length = 0; 480 } 481 } else if (urb->num_sgs && !urb->dev->bus->no_sg_constraint && 482 dev->speed != USB_SPEED_WIRELESS) { 483 struct scatterlist *sg; 484 int i; 485 486 for_each_sg(urb->sg, sg, urb->num_sgs - 1, i) 487 if (sg->length % max) 488 return -EINVAL; 489 } 490 491 /* the I/O buffer must be mapped/unmapped, except when length=0 */ 492 if (urb->transfer_buffer_length > INT_MAX) 493 return -EMSGSIZE; 494 495 /* 496 * stuff that drivers shouldn't do, but which shouldn't 497 * cause problems in HCDs if they get it wrong. 498 */ 499 500 /* Check that the pipe's type matches the endpoint's type */ 501 if (usb_pipe_type_check(urb->dev, urb->pipe)) 502 dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n", 503 usb_pipetype(urb->pipe), pipetypes[xfertype]); 504 505 /* Check against a simple/standard policy */ 506 allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK | 507 URB_FREE_BUFFER); 508 switch (xfertype) { 509 case USB_ENDPOINT_XFER_BULK: 510 case USB_ENDPOINT_XFER_INT: 511 if (is_out) 512 allowed |= URB_ZERO_PACKET; 513 fallthrough; 514 default: /* all non-iso endpoints */ 515 if (!is_out) 516 allowed |= URB_SHORT_NOT_OK; 517 break; 518 case USB_ENDPOINT_XFER_ISOC: 519 allowed |= URB_ISO_ASAP; 520 break; 521 } 522 allowed &= urb->transfer_flags; 523 524 /* warn if submitter gave bogus flags */ 525 if (allowed != urb->transfer_flags) 526 dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n", 527 urb->transfer_flags, allowed); 528 529 /* 530 * Force periodic transfer intervals to be legal values that are 531 * a power of two (so HCDs don't need to). 532 * 533 * FIXME want bus->{intr,iso}_sched_horizon values here. Each HC 534 * supports different values... this uses EHCI/UHCI defaults (and 535 * EHCI can use smaller non-default values). 536 */ 537 switch (xfertype) { 538 case USB_ENDPOINT_XFER_ISOC: 539 case USB_ENDPOINT_XFER_INT: 540 /* too small? */ 541 switch (dev->speed) { 542 case USB_SPEED_WIRELESS: 543 if ((urb->interval < 6) 544 && (xfertype == USB_ENDPOINT_XFER_INT)) 545 return -EINVAL; 546 fallthrough; 547 default: 548 if (urb->interval <= 0) 549 return -EINVAL; 550 break; 551 } 552 /* too big? */ 553 switch (dev->speed) { 554 case USB_SPEED_SUPER_PLUS: 555 case USB_SPEED_SUPER: /* units are 125us */ 556 /* Handle up to 2^(16-1) microframes */ 557 if (urb->interval > (1 << 15)) 558 return -EINVAL; 559 max = 1 << 15; 560 break; 561 case USB_SPEED_WIRELESS: 562 if (urb->interval > 16) 563 return -EINVAL; 564 break; 565 case USB_SPEED_HIGH: /* units are microframes */ 566 /* NOTE usb handles 2^15 */ 567 if (urb->interval > (1024 * 8)) 568 urb->interval = 1024 * 8; 569 max = 1024 * 8; 570 break; 571 case USB_SPEED_FULL: /* units are frames/msec */ 572 case USB_SPEED_LOW: 573 if (xfertype == USB_ENDPOINT_XFER_INT) { 574 if (urb->interval > 255) 575 return -EINVAL; 576 /* NOTE ohci only handles up to 32 */ 577 max = 128; 578 } else { 579 if (urb->interval > 1024) 580 urb->interval = 1024; 581 /* NOTE usb and ohci handle up to 2^15 */ 582 max = 1024; 583 } 584 break; 585 default: 586 return -EINVAL; 587 } 588 if (dev->speed != USB_SPEED_WIRELESS) { 589 /* Round down to a power of 2, no more than max */ 590 urb->interval = min(max, 1 << ilog2(urb->interval)); 591 } 592 } 593 594 return usb_hcd_submit_urb(urb, mem_flags); 595 } 596 EXPORT_SYMBOL_GPL(usb_submit_urb); 597 598 /*-------------------------------------------------------------------*/ 599 600 /** 601 * usb_unlink_urb - abort/cancel a transfer request for an endpoint 602 * @urb: pointer to urb describing a previously submitted request, 603 * may be NULL 604 * 605 * This routine cancels an in-progress request. URBs complete only once 606 * per submission, and may be canceled only once per submission. 607 * Successful cancellation means termination of @urb will be expedited 608 * and the completion handler will be called with a status code 609 * indicating that the request has been canceled (rather than any other 610 * code). 611 * 612 * Drivers should not call this routine or related routines, such as 613 * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect 614 * method has returned. The disconnect function should synchronize with 615 * a driver's I/O routines to insure that all URB-related activity has 616 * completed before it returns. 617 * 618 * This request is asynchronous, however the HCD might call the ->complete() 619 * callback during unlink. Therefore when drivers call usb_unlink_urb(), they 620 * must not hold any locks that may be taken by the completion function. 621 * Success is indicated by returning -EINPROGRESS, at which time the URB will 622 * probably not yet have been given back to the device driver. When it is 623 * eventually called, the completion function will see @urb->status == 624 * -ECONNRESET. 625 * Failure is indicated by usb_unlink_urb() returning any other value. 626 * Unlinking will fail when @urb is not currently "linked" (i.e., it was 627 * never submitted, or it was unlinked before, or the hardware is already 628 * finished with it), even if the completion handler has not yet run. 629 * 630 * The URB must not be deallocated while this routine is running. In 631 * particular, when a driver calls this routine, it must insure that the 632 * completion handler cannot deallocate the URB. 633 * 634 * Return: -EINPROGRESS on success. See description for other values on 635 * failure. 636 * 637 * Unlinking and Endpoint Queues: 638 * 639 * [The behaviors and guarantees described below do not apply to virtual 640 * root hubs but only to endpoint queues for physical USB devices.] 641 * 642 * Host Controller Drivers (HCDs) place all the URBs for a particular 643 * endpoint in a queue. Normally the queue advances as the controller 644 * hardware processes each request. But when an URB terminates with an 645 * error its queue generally stops (see below), at least until that URB's 646 * completion routine returns. It is guaranteed that a stopped queue 647 * will not restart until all its unlinked URBs have been fully retired, 648 * with their completion routines run, even if that's not until some time 649 * after the original completion handler returns. The same behavior and 650 * guarantee apply when an URB terminates because it was unlinked. 651 * 652 * Bulk and interrupt endpoint queues are guaranteed to stop whenever an 653 * URB terminates with any sort of error, including -ECONNRESET, -ENOENT, 654 * and -EREMOTEIO. Control endpoint queues behave the same way except 655 * that they are not guaranteed to stop for -EREMOTEIO errors. Queues 656 * for isochronous endpoints are treated differently, because they must 657 * advance at fixed rates. Such queues do not stop when an URB 658 * encounters an error or is unlinked. An unlinked isochronous URB may 659 * leave a gap in the stream of packets; it is undefined whether such 660 * gaps can be filled in. 661 * 662 * Note that early termination of an URB because a short packet was 663 * received will generate a -EREMOTEIO error if and only if the 664 * URB_SHORT_NOT_OK flag is set. By setting this flag, USB device 665 * drivers can build deep queues for large or complex bulk transfers 666 * and clean them up reliably after any sort of aborted transfer by 667 * unlinking all pending URBs at the first fault. 668 * 669 * When a control URB terminates with an error other than -EREMOTEIO, it 670 * is quite likely that the status stage of the transfer will not take 671 * place. 672 */ 673 int usb_unlink_urb(struct urb *urb) 674 { 675 if (!urb) 676 return -EINVAL; 677 if (!urb->dev) 678 return -ENODEV; 679 if (!urb->ep) 680 return -EIDRM; 681 return usb_hcd_unlink_urb(urb, -ECONNRESET); 682 } 683 EXPORT_SYMBOL_GPL(usb_unlink_urb); 684 685 /** 686 * usb_kill_urb - cancel a transfer request and wait for it to finish 687 * @urb: pointer to URB describing a previously submitted request, 688 * may be NULL 689 * 690 * This routine cancels an in-progress request. It is guaranteed that 691 * upon return all completion handlers will have finished and the URB 692 * will be totally idle and available for reuse. These features make 693 * this an ideal way to stop I/O in a disconnect() callback or close() 694 * function. If the request has not already finished or been unlinked 695 * the completion handler will see urb->status == -ENOENT. 696 * 697 * While the routine is running, attempts to resubmit the URB will fail 698 * with error -EPERM. Thus even if the URB's completion handler always 699 * tries to resubmit, it will not succeed and the URB will become idle. 700 * 701 * The URB must not be deallocated while this routine is running. In 702 * particular, when a driver calls this routine, it must insure that the 703 * completion handler cannot deallocate the URB. 704 * 705 * This routine may not be used in an interrupt context (such as a bottom 706 * half or a completion handler), or when holding a spinlock, or in other 707 * situations where the caller can't schedule(). 708 * 709 * This routine should not be called by a driver after its disconnect 710 * method has returned. 711 */ 712 void usb_kill_urb(struct urb *urb) 713 { 714 might_sleep(); 715 if (!(urb && urb->dev && urb->ep)) 716 return; 717 atomic_inc(&urb->reject); 718 /* 719 * Order the write of urb->reject above before the read 720 * of urb->use_count below. Pairs with the barriers in 721 * __usb_hcd_giveback_urb() and usb_hcd_submit_urb(). 722 */ 723 smp_mb__after_atomic(); 724 725 usb_hcd_unlink_urb(urb, -ENOENT); 726 wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0); 727 728 atomic_dec(&urb->reject); 729 } 730 EXPORT_SYMBOL_GPL(usb_kill_urb); 731 732 /** 733 * usb_poison_urb - reliably kill a transfer and prevent further use of an URB 734 * @urb: pointer to URB describing a previously submitted request, 735 * may be NULL 736 * 737 * This routine cancels an in-progress request. It is guaranteed that 738 * upon return all completion handlers will have finished and the URB 739 * will be totally idle and cannot be reused. These features make 740 * this an ideal way to stop I/O in a disconnect() callback. 741 * If the request has not already finished or been unlinked 742 * the completion handler will see urb->status == -ENOENT. 743 * 744 * After and while the routine runs, attempts to resubmit the URB will fail 745 * with error -EPERM. Thus even if the URB's completion handler always 746 * tries to resubmit, it will not succeed and the URB will become idle. 747 * 748 * The URB must not be deallocated while this routine is running. In 749 * particular, when a driver calls this routine, it must insure that the 750 * completion handler cannot deallocate the URB. 751 * 752 * This routine may not be used in an interrupt context (such as a bottom 753 * half or a completion handler), or when holding a spinlock, or in other 754 * situations where the caller can't schedule(). 755 * 756 * This routine should not be called by a driver after its disconnect 757 * method has returned. 758 */ 759 void usb_poison_urb(struct urb *urb) 760 { 761 might_sleep(); 762 if (!urb) 763 return; 764 atomic_inc(&urb->reject); 765 /* 766 * Order the write of urb->reject above before the read 767 * of urb->use_count below. Pairs with the barriers in 768 * __usb_hcd_giveback_urb() and usb_hcd_submit_urb(). 769 */ 770 smp_mb__after_atomic(); 771 772 if (!urb->dev || !urb->ep) 773 return; 774 775 usb_hcd_unlink_urb(urb, -ENOENT); 776 wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0); 777 } 778 EXPORT_SYMBOL_GPL(usb_poison_urb); 779 780 void usb_unpoison_urb(struct urb *urb) 781 { 782 if (!urb) 783 return; 784 785 atomic_dec(&urb->reject); 786 } 787 EXPORT_SYMBOL_GPL(usb_unpoison_urb); 788 789 /** 790 * usb_block_urb - reliably prevent further use of an URB 791 * @urb: pointer to URB to be blocked, may be NULL 792 * 793 * After the routine has run, attempts to resubmit the URB will fail 794 * with error -EPERM. Thus even if the URB's completion handler always 795 * tries to resubmit, it will not succeed and the URB will become idle. 796 * 797 * The URB must not be deallocated while this routine is running. In 798 * particular, when a driver calls this routine, it must insure that the 799 * completion handler cannot deallocate the URB. 800 */ 801 void usb_block_urb(struct urb *urb) 802 { 803 if (!urb) 804 return; 805 806 atomic_inc(&urb->reject); 807 } 808 EXPORT_SYMBOL_GPL(usb_block_urb); 809 810 /** 811 * usb_kill_anchored_urbs - kill all URBs associated with an anchor 812 * @anchor: anchor the requests are bound to 813 * 814 * This kills all outstanding URBs starting from the back of the queue, 815 * with guarantee that no completer callbacks will take place from the 816 * anchor after this function returns. 817 * 818 * This routine should not be called by a driver after its disconnect 819 * method has returned. 820 */ 821 void usb_kill_anchored_urbs(struct usb_anchor *anchor) 822 { 823 struct urb *victim; 824 int surely_empty; 825 826 do { 827 spin_lock_irq(&anchor->lock); 828 while (!list_empty(&anchor->urb_list)) { 829 victim = list_entry(anchor->urb_list.prev, 830 struct urb, anchor_list); 831 /* make sure the URB isn't freed before we kill it */ 832 usb_get_urb(victim); 833 spin_unlock_irq(&anchor->lock); 834 /* this will unanchor the URB */ 835 usb_kill_urb(victim); 836 usb_put_urb(victim); 837 spin_lock_irq(&anchor->lock); 838 } 839 surely_empty = usb_anchor_check_wakeup(anchor); 840 841 spin_unlock_irq(&anchor->lock); 842 cpu_relax(); 843 } while (!surely_empty); 844 } 845 EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs); 846 847 848 /** 849 * usb_poison_anchored_urbs - cease all traffic from an anchor 850 * @anchor: anchor the requests are bound to 851 * 852 * this allows all outstanding URBs to be poisoned starting 853 * from the back of the queue. Newly added URBs will also be 854 * poisoned 855 * 856 * This routine should not be called by a driver after its disconnect 857 * method has returned. 858 */ 859 void usb_poison_anchored_urbs(struct usb_anchor *anchor) 860 { 861 struct urb *victim; 862 int surely_empty; 863 864 do { 865 spin_lock_irq(&anchor->lock); 866 anchor->poisoned = 1; 867 while (!list_empty(&anchor->urb_list)) { 868 victim = list_entry(anchor->urb_list.prev, 869 struct urb, anchor_list); 870 /* make sure the URB isn't freed before we kill it */ 871 usb_get_urb(victim); 872 spin_unlock_irq(&anchor->lock); 873 /* this will unanchor the URB */ 874 usb_poison_urb(victim); 875 usb_put_urb(victim); 876 spin_lock_irq(&anchor->lock); 877 } 878 surely_empty = usb_anchor_check_wakeup(anchor); 879 880 spin_unlock_irq(&anchor->lock); 881 cpu_relax(); 882 } while (!surely_empty); 883 } 884 EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs); 885 886 /** 887 * usb_unpoison_anchored_urbs - let an anchor be used successfully again 888 * @anchor: anchor the requests are bound to 889 * 890 * Reverses the effect of usb_poison_anchored_urbs 891 * the anchor can be used normally after it returns 892 */ 893 void usb_unpoison_anchored_urbs(struct usb_anchor *anchor) 894 { 895 unsigned long flags; 896 struct urb *lazarus; 897 898 spin_lock_irqsave(&anchor->lock, flags); 899 list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) { 900 usb_unpoison_urb(lazarus); 901 } 902 anchor->poisoned = 0; 903 spin_unlock_irqrestore(&anchor->lock, flags); 904 } 905 EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs); 906 /** 907 * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse 908 * @anchor: anchor the requests are bound to 909 * 910 * this allows all outstanding URBs to be unlinked starting 911 * from the back of the queue. This function is asynchronous. 912 * The unlinking is just triggered. It may happen after this 913 * function has returned. 914 * 915 * This routine should not be called by a driver after its disconnect 916 * method has returned. 917 */ 918 void usb_unlink_anchored_urbs(struct usb_anchor *anchor) 919 { 920 struct urb *victim; 921 922 while ((victim = usb_get_from_anchor(anchor)) != NULL) { 923 usb_unlink_urb(victim); 924 usb_put_urb(victim); 925 } 926 } 927 EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs); 928 929 /** 930 * usb_anchor_suspend_wakeups 931 * @anchor: the anchor you want to suspend wakeups on 932 * 933 * Call this to stop the last urb being unanchored from waking up any 934 * usb_wait_anchor_empty_timeout waiters. This is used in the hcd urb give- 935 * back path to delay waking up until after the completion handler has run. 936 */ 937 void usb_anchor_suspend_wakeups(struct usb_anchor *anchor) 938 { 939 if (anchor) 940 atomic_inc(&anchor->suspend_wakeups); 941 } 942 EXPORT_SYMBOL_GPL(usb_anchor_suspend_wakeups); 943 944 /** 945 * usb_anchor_resume_wakeups 946 * @anchor: the anchor you want to resume wakeups on 947 * 948 * Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and 949 * wake up any current waiters if the anchor is empty. 950 */ 951 void usb_anchor_resume_wakeups(struct usb_anchor *anchor) 952 { 953 if (!anchor) 954 return; 955 956 atomic_dec(&anchor->suspend_wakeups); 957 if (usb_anchor_check_wakeup(anchor)) 958 wake_up(&anchor->wait); 959 } 960 EXPORT_SYMBOL_GPL(usb_anchor_resume_wakeups); 961 962 /** 963 * usb_wait_anchor_empty_timeout - wait for an anchor to be unused 964 * @anchor: the anchor you want to become unused 965 * @timeout: how long you are willing to wait in milliseconds 966 * 967 * Call this is you want to be sure all an anchor's 968 * URBs have finished 969 * 970 * Return: Non-zero if the anchor became unused. Zero on timeout. 971 */ 972 int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 973 unsigned int timeout) 974 { 975 return wait_event_timeout(anchor->wait, 976 usb_anchor_check_wakeup(anchor), 977 msecs_to_jiffies(timeout)); 978 } 979 EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout); 980 981 /** 982 * usb_get_from_anchor - get an anchor's oldest urb 983 * @anchor: the anchor whose urb you want 984 * 985 * This will take the oldest urb from an anchor, 986 * unanchor and return it 987 * 988 * Return: The oldest urb from @anchor, or %NULL if @anchor has no 989 * urbs associated with it. 990 */ 991 struct urb *usb_get_from_anchor(struct usb_anchor *anchor) 992 { 993 struct urb *victim; 994 unsigned long flags; 995 996 spin_lock_irqsave(&anchor->lock, flags); 997 if (!list_empty(&anchor->urb_list)) { 998 victim = list_entry(anchor->urb_list.next, struct urb, 999 anchor_list); 1000 usb_get_urb(victim); 1001 __usb_unanchor_urb(victim, anchor); 1002 } else { 1003 victim = NULL; 1004 } 1005 spin_unlock_irqrestore(&anchor->lock, flags); 1006 1007 return victim; 1008 } 1009 1010 EXPORT_SYMBOL_GPL(usb_get_from_anchor); 1011 1012 /** 1013 * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs 1014 * @anchor: the anchor whose urbs you want to unanchor 1015 * 1016 * use this to get rid of all an anchor's urbs 1017 */ 1018 void usb_scuttle_anchored_urbs(struct usb_anchor *anchor) 1019 { 1020 struct urb *victim; 1021 unsigned long flags; 1022 int surely_empty; 1023 1024 do { 1025 spin_lock_irqsave(&anchor->lock, flags); 1026 while (!list_empty(&anchor->urb_list)) { 1027 victim = list_entry(anchor->urb_list.prev, 1028 struct urb, anchor_list); 1029 __usb_unanchor_urb(victim, anchor); 1030 } 1031 surely_empty = usb_anchor_check_wakeup(anchor); 1032 1033 spin_unlock_irqrestore(&anchor->lock, flags); 1034 cpu_relax(); 1035 } while (!surely_empty); 1036 } 1037 1038 EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs); 1039 1040 /** 1041 * usb_anchor_empty - is an anchor empty 1042 * @anchor: the anchor you want to query 1043 * 1044 * Return: 1 if the anchor has no urbs associated with it. 1045 */ 1046 int usb_anchor_empty(struct usb_anchor *anchor) 1047 { 1048 return list_empty(&anchor->urb_list); 1049 } 1050 1051 EXPORT_SYMBOL_GPL(usb_anchor_empty); 1052 1053