xref: /openbmc/linux/drivers/usb/core/urb.c (revision e227867f)
1 #include <linux/module.h>
2 #include <linux/string.h>
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/init.h>
6 #include <linux/log2.h>
7 #include <linux/usb.h>
8 #include <linux/wait.h>
9 #include <linux/usb/hcd.h>
10 #include <linux/scatterlist.h>
11 
12 #define to_urb(d) container_of(d, struct urb, kref)
13 
14 
15 static void urb_destroy(struct kref *kref)
16 {
17 	struct urb *urb = to_urb(kref);
18 
19 	if (urb->transfer_flags & URB_FREE_BUFFER)
20 		kfree(urb->transfer_buffer);
21 
22 	kfree(urb);
23 }
24 
25 /**
26  * usb_init_urb - initializes a urb so that it can be used by a USB driver
27  * @urb: pointer to the urb to initialize
28  *
29  * Initializes a urb so that the USB subsystem can use it properly.
30  *
31  * If a urb is created with a call to usb_alloc_urb() it is not
32  * necessary to call this function.  Only use this if you allocate the
33  * space for a struct urb on your own.  If you call this function, be
34  * careful when freeing the memory for your urb that it is no longer in
35  * use by the USB core.
36  *
37  * Only use this function if you _really_ understand what you are doing.
38  */
39 void usb_init_urb(struct urb *urb)
40 {
41 	if (urb) {
42 		memset(urb, 0, sizeof(*urb));
43 		kref_init(&urb->kref);
44 		INIT_LIST_HEAD(&urb->anchor_list);
45 	}
46 }
47 EXPORT_SYMBOL_GPL(usb_init_urb);
48 
49 /**
50  * usb_alloc_urb - creates a new urb for a USB driver to use
51  * @iso_packets: number of iso packets for this urb
52  * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
53  *	valid options for this.
54  *
55  * Creates an urb for the USB driver to use, initializes a few internal
56  * structures, incrementes the usage counter, and returns a pointer to it.
57  *
58  * If the driver want to use this urb for interrupt, control, or bulk
59  * endpoints, pass '0' as the number of iso packets.
60  *
61  * The driver must call usb_free_urb() when it is finished with the urb.
62  *
63  * Return: A pointer to the new urb, or %NULL if no memory is available.
64  */
65 struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
66 {
67 	struct urb *urb;
68 
69 	urb = kmalloc(sizeof(struct urb) +
70 		iso_packets * sizeof(struct usb_iso_packet_descriptor),
71 		mem_flags);
72 	if (!urb) {
73 		printk(KERN_ERR "alloc_urb: kmalloc failed\n");
74 		return NULL;
75 	}
76 	usb_init_urb(urb);
77 	return urb;
78 }
79 EXPORT_SYMBOL_GPL(usb_alloc_urb);
80 
81 /**
82  * usb_free_urb - frees the memory used by a urb when all users of it are finished
83  * @urb: pointer to the urb to free, may be NULL
84  *
85  * Must be called when a user of a urb is finished with it.  When the last user
86  * of the urb calls this function, the memory of the urb is freed.
87  *
88  * Note: The transfer buffer associated with the urb is not freed unless the
89  * URB_FREE_BUFFER transfer flag is set.
90  */
91 void usb_free_urb(struct urb *urb)
92 {
93 	if (urb)
94 		kref_put(&urb->kref, urb_destroy);
95 }
96 EXPORT_SYMBOL_GPL(usb_free_urb);
97 
98 /**
99  * usb_get_urb - increments the reference count of the urb
100  * @urb: pointer to the urb to modify, may be NULL
101  *
102  * This must be  called whenever a urb is transferred from a device driver to a
103  * host controller driver.  This allows proper reference counting to happen
104  * for urbs.
105  *
106  * Return: A pointer to the urb with the incremented reference counter.
107  */
108 struct urb *usb_get_urb(struct urb *urb)
109 {
110 	if (urb)
111 		kref_get(&urb->kref);
112 	return urb;
113 }
114 EXPORT_SYMBOL_GPL(usb_get_urb);
115 
116 /**
117  * usb_anchor_urb - anchors an URB while it is processed
118  * @urb: pointer to the urb to anchor
119  * @anchor: pointer to the anchor
120  *
121  * This can be called to have access to URBs which are to be executed
122  * without bothering to track them
123  */
124 void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
125 {
126 	unsigned long flags;
127 
128 	spin_lock_irqsave(&anchor->lock, flags);
129 	usb_get_urb(urb);
130 	list_add_tail(&urb->anchor_list, &anchor->urb_list);
131 	urb->anchor = anchor;
132 
133 	if (unlikely(anchor->poisoned)) {
134 		atomic_inc(&urb->reject);
135 	}
136 
137 	spin_unlock_irqrestore(&anchor->lock, flags);
138 }
139 EXPORT_SYMBOL_GPL(usb_anchor_urb);
140 
141 static int usb_anchor_check_wakeup(struct usb_anchor *anchor)
142 {
143 	return atomic_read(&anchor->suspend_wakeups) == 0 &&
144 		list_empty(&anchor->urb_list);
145 }
146 
147 /* Callers must hold anchor->lock */
148 static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
149 {
150 	urb->anchor = NULL;
151 	list_del(&urb->anchor_list);
152 	usb_put_urb(urb);
153 	if (usb_anchor_check_wakeup(anchor))
154 		wake_up(&anchor->wait);
155 }
156 
157 /**
158  * usb_unanchor_urb - unanchors an URB
159  * @urb: pointer to the urb to anchor
160  *
161  * Call this to stop the system keeping track of this URB
162  */
163 void usb_unanchor_urb(struct urb *urb)
164 {
165 	unsigned long flags;
166 	struct usb_anchor *anchor;
167 
168 	if (!urb)
169 		return;
170 
171 	anchor = urb->anchor;
172 	if (!anchor)
173 		return;
174 
175 	spin_lock_irqsave(&anchor->lock, flags);
176 	/*
177 	 * At this point, we could be competing with another thread which
178 	 * has the same intention. To protect the urb from being unanchored
179 	 * twice, only the winner of the race gets the job.
180 	 */
181 	if (likely(anchor == urb->anchor))
182 		__usb_unanchor_urb(urb, anchor);
183 	spin_unlock_irqrestore(&anchor->lock, flags);
184 }
185 EXPORT_SYMBOL_GPL(usb_unanchor_urb);
186 
187 /*-------------------------------------------------------------------*/
188 
189 /**
190  * usb_submit_urb - issue an asynchronous transfer request for an endpoint
191  * @urb: pointer to the urb describing the request
192  * @mem_flags: the type of memory to allocate, see kmalloc() for a list
193  *	of valid options for this.
194  *
195  * This submits a transfer request, and transfers control of the URB
196  * describing that request to the USB subsystem.  Request completion will
197  * be indicated later, asynchronously, by calling the completion handler.
198  * The three types of completion are success, error, and unlink
199  * (a software-induced fault, also called "request cancellation").
200  *
201  * URBs may be submitted in interrupt context.
202  *
203  * The caller must have correctly initialized the URB before submitting
204  * it.  Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
205  * available to ensure that most fields are correctly initialized, for
206  * the particular kind of transfer, although they will not initialize
207  * any transfer flags.
208  *
209  * If the submission is successful, the complete() callback from the URB
210  * will be called exactly once, when the USB core and Host Controller Driver
211  * (HCD) are finished with the URB.  When the completion function is called,
212  * control of the URB is returned to the device driver which issued the
213  * request.  The completion handler may then immediately free or reuse that
214  * URB.
215  *
216  * With few exceptions, USB device drivers should never access URB fields
217  * provided by usbcore or the HCD until its complete() is called.
218  * The exceptions relate to periodic transfer scheduling.  For both
219  * interrupt and isochronous urbs, as part of successful URB submission
220  * urb->interval is modified to reflect the actual transfer period used
221  * (normally some power of two units).  And for isochronous urbs,
222  * urb->start_frame is modified to reflect when the URB's transfers were
223  * scheduled to start.
224  *
225  * Not all isochronous transfer scheduling policies will work, but most
226  * host controller drivers should easily handle ISO queues going from now
227  * until 10-200 msec into the future.  Drivers should try to keep at
228  * least one or two msec of data in the queue; many controllers require
229  * that new transfers start at least 1 msec in the future when they are
230  * added.  If the driver is unable to keep up and the queue empties out,
231  * the behavior for new submissions is governed by the URB_ISO_ASAP flag.
232  * If the flag is set, or if the queue is idle, then the URB is always
233  * assigned to the first available (and not yet expired) slot in the
234  * endpoint's schedule.  If the flag is not set and the queue is active
235  * then the URB is always assigned to the next slot in the schedule
236  * following the end of the endpoint's previous URB, even if that slot is
237  * in the past.  When a packet is assigned in this way to a slot that has
238  * already expired, the packet is not transmitted and the corresponding
239  * usb_iso_packet_descriptor's status field will return -EXDEV.  If this
240  * would happen to all the packets in the URB, submission fails with a
241  * -EXDEV error code.
242  *
243  * For control endpoints, the synchronous usb_control_msg() call is
244  * often used (in non-interrupt context) instead of this call.
245  * That is often used through convenience wrappers, for the requests
246  * that are standardized in the USB 2.0 specification.  For bulk
247  * endpoints, a synchronous usb_bulk_msg() call is available.
248  *
249  * Return:
250  * 0 on successful submissions. A negative error number otherwise.
251  *
252  * Request Queuing:
253  *
254  * URBs may be submitted to endpoints before previous ones complete, to
255  * minimize the impact of interrupt latencies and system overhead on data
256  * throughput.  With that queuing policy, an endpoint's queue would never
257  * be empty.  This is required for continuous isochronous data streams,
258  * and may also be required for some kinds of interrupt transfers. Such
259  * queuing also maximizes bandwidth utilization by letting USB controllers
260  * start work on later requests before driver software has finished the
261  * completion processing for earlier (successful) requests.
262  *
263  * As of Linux 2.6, all USB endpoint transfer queues support depths greater
264  * than one.  This was previously a HCD-specific behavior, except for ISO
265  * transfers.  Non-isochronous endpoint queues are inactive during cleanup
266  * after faults (transfer errors or cancellation).
267  *
268  * Reserved Bandwidth Transfers:
269  *
270  * Periodic transfers (interrupt or isochronous) are performed repeatedly,
271  * using the interval specified in the urb.  Submitting the first urb to
272  * the endpoint reserves the bandwidth necessary to make those transfers.
273  * If the USB subsystem can't allocate sufficient bandwidth to perform
274  * the periodic request, submitting such a periodic request should fail.
275  *
276  * For devices under xHCI, the bandwidth is reserved at configuration time, or
277  * when the alt setting is selected.  If there is not enough bus bandwidth, the
278  * configuration/alt setting request will fail.  Therefore, submissions to
279  * periodic endpoints on devices under xHCI should never fail due to bandwidth
280  * constraints.
281  *
282  * Device drivers must explicitly request that repetition, by ensuring that
283  * some URB is always on the endpoint's queue (except possibly for short
284  * periods during completion callacks).  When there is no longer an urb
285  * queued, the endpoint's bandwidth reservation is canceled.  This means
286  * drivers can use their completion handlers to ensure they keep bandwidth
287  * they need, by reinitializing and resubmitting the just-completed urb
288  * until the driver longer needs that periodic bandwidth.
289  *
290  * Memory Flags:
291  *
292  * The general rules for how to decide which mem_flags to use
293  * are the same as for kmalloc.  There are four
294  * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
295  * GFP_ATOMIC.
296  *
297  * GFP_NOFS is not ever used, as it has not been implemented yet.
298  *
299  * GFP_ATOMIC is used when
300  *   (a) you are inside a completion handler, an interrupt, bottom half,
301  *       tasklet or timer, or
302  *   (b) you are holding a spinlock or rwlock (does not apply to
303  *       semaphores), or
304  *   (c) current->state != TASK_RUNNING, this is the case only after
305  *       you've changed it.
306  *
307  * GFP_NOIO is used in the block io path and error handling of storage
308  * devices.
309  *
310  * All other situations use GFP_KERNEL.
311  *
312  * Some more specific rules for mem_flags can be inferred, such as
313  *  (1) start_xmit, timeout, and receive methods of network drivers must
314  *      use GFP_ATOMIC (they are called with a spinlock held);
315  *  (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
316  *      called with a spinlock held);
317  *  (3) If you use a kernel thread with a network driver you must use
318  *      GFP_NOIO, unless (b) or (c) apply;
319  *  (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
320  *      apply or your are in a storage driver's block io path;
321  *  (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
322  *  (6) changing firmware on a running storage or net device uses
323  *      GFP_NOIO, unless b) or c) apply
324  *
325  */
326 int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
327 {
328 	int				xfertype, max;
329 	struct usb_device		*dev;
330 	struct usb_host_endpoint	*ep;
331 	int				is_out;
332 
333 	if (!urb || !urb->complete)
334 		return -EINVAL;
335 	if (urb->hcpriv) {
336 		WARN_ONCE(1, "URB %p submitted while active\n", urb);
337 		return -EBUSY;
338 	}
339 
340 	dev = urb->dev;
341 	if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
342 		return -ENODEV;
343 
344 	/* For now, get the endpoint from the pipe.  Eventually drivers
345 	 * will be required to set urb->ep directly and we will eliminate
346 	 * urb->pipe.
347 	 */
348 	ep = usb_pipe_endpoint(dev, urb->pipe);
349 	if (!ep)
350 		return -ENOENT;
351 
352 	urb->ep = ep;
353 	urb->status = -EINPROGRESS;
354 	urb->actual_length = 0;
355 
356 	/* Lots of sanity checks, so HCDs can rely on clean data
357 	 * and don't need to duplicate tests
358 	 */
359 	xfertype = usb_endpoint_type(&ep->desc);
360 	if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
361 		struct usb_ctrlrequest *setup =
362 				(struct usb_ctrlrequest *) urb->setup_packet;
363 
364 		if (!setup)
365 			return -ENOEXEC;
366 		is_out = !(setup->bRequestType & USB_DIR_IN) ||
367 				!setup->wLength;
368 	} else {
369 		is_out = usb_endpoint_dir_out(&ep->desc);
370 	}
371 
372 	/* Clear the internal flags and cache the direction for later use */
373 	urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
374 			URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
375 			URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
376 			URB_DMA_SG_COMBINED);
377 	urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
378 
379 	if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
380 			dev->state < USB_STATE_CONFIGURED)
381 		return -ENODEV;
382 
383 	max = usb_endpoint_maxp(&ep->desc);
384 	if (max <= 0) {
385 		dev_dbg(&dev->dev,
386 			"bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
387 			usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
388 			__func__, max);
389 		return -EMSGSIZE;
390 	}
391 
392 	/* periodic transfers limit size per frame/uframe,
393 	 * but drivers only control those sizes for ISO.
394 	 * while we're checking, initialize return status.
395 	 */
396 	if (xfertype == USB_ENDPOINT_XFER_ISOC) {
397 		int	n, len;
398 
399 		/* SuperSpeed isoc endpoints have up to 16 bursts of up to
400 		 * 3 packets each
401 		 */
402 		if (dev->speed == USB_SPEED_SUPER) {
403 			int     burst = 1 + ep->ss_ep_comp.bMaxBurst;
404 			int     mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
405 			max *= burst;
406 			max *= mult;
407 		}
408 
409 		/* "high bandwidth" mode, 1-3 packets/uframe? */
410 		if (dev->speed == USB_SPEED_HIGH) {
411 			int	mult = 1 + ((max >> 11) & 0x03);
412 			max &= 0x07ff;
413 			max *= mult;
414 		}
415 
416 		if (urb->number_of_packets <= 0)
417 			return -EINVAL;
418 		for (n = 0; n < urb->number_of_packets; n++) {
419 			len = urb->iso_frame_desc[n].length;
420 			if (len < 0 || len > max)
421 				return -EMSGSIZE;
422 			urb->iso_frame_desc[n].status = -EXDEV;
423 			urb->iso_frame_desc[n].actual_length = 0;
424 		}
425 	} else if (urb->num_sgs && !urb->dev->bus->no_sg_constraint &&
426 			dev->speed != USB_SPEED_WIRELESS) {
427 		struct scatterlist *sg;
428 		int i;
429 
430 		for_each_sg(urb->sg, sg, urb->num_sgs - 1, i)
431 			if (sg->length % max)
432 				return -EINVAL;
433 	}
434 
435 	/* the I/O buffer must be mapped/unmapped, except when length=0 */
436 	if (urb->transfer_buffer_length > INT_MAX)
437 		return -EMSGSIZE;
438 
439 #ifdef DEBUG
440 	/* stuff that drivers shouldn't do, but which shouldn't
441 	 * cause problems in HCDs if they get it wrong.
442 	 */
443 	{
444 	unsigned int	allowed;
445 	static int pipetypes[4] = {
446 		PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
447 	};
448 
449 	/* Check that the pipe's type matches the endpoint's type */
450 	if (usb_pipetype(urb->pipe) != pipetypes[xfertype])
451 		dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
452 			usb_pipetype(urb->pipe), pipetypes[xfertype]);
453 
454 	/* Check against a simple/standard policy */
455 	allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
456 			URB_FREE_BUFFER);
457 	switch (xfertype) {
458 	case USB_ENDPOINT_XFER_BULK:
459 		if (is_out)
460 			allowed |= URB_ZERO_PACKET;
461 		/* FALLTHROUGH */
462 	case USB_ENDPOINT_XFER_CONTROL:
463 		allowed |= URB_NO_FSBR;	/* only affects UHCI */
464 		/* FALLTHROUGH */
465 	default:			/* all non-iso endpoints */
466 		if (!is_out)
467 			allowed |= URB_SHORT_NOT_OK;
468 		break;
469 	case USB_ENDPOINT_XFER_ISOC:
470 		allowed |= URB_ISO_ASAP;
471 		break;
472 	}
473 	allowed &= urb->transfer_flags;
474 
475 	/* warn if submitter gave bogus flags */
476 	if (allowed != urb->transfer_flags)
477 		dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
478 			urb->transfer_flags, allowed);
479 	}
480 #endif
481 	/*
482 	 * Force periodic transfer intervals to be legal values that are
483 	 * a power of two (so HCDs don't need to).
484 	 *
485 	 * FIXME want bus->{intr,iso}_sched_horizon values here.  Each HC
486 	 * supports different values... this uses EHCI/UHCI defaults (and
487 	 * EHCI can use smaller non-default values).
488 	 */
489 	switch (xfertype) {
490 	case USB_ENDPOINT_XFER_ISOC:
491 	case USB_ENDPOINT_XFER_INT:
492 		/* too small? */
493 		switch (dev->speed) {
494 		case USB_SPEED_WIRELESS:
495 			if (urb->interval < 6)
496 				return -EINVAL;
497 			break;
498 		default:
499 			if (urb->interval <= 0)
500 				return -EINVAL;
501 			break;
502 		}
503 		/* too big? */
504 		switch (dev->speed) {
505 		case USB_SPEED_SUPER:	/* units are 125us */
506 			/* Handle up to 2^(16-1) microframes */
507 			if (urb->interval > (1 << 15))
508 				return -EINVAL;
509 			max = 1 << 15;
510 			break;
511 		case USB_SPEED_WIRELESS:
512 			if (urb->interval > 16)
513 				return -EINVAL;
514 			break;
515 		case USB_SPEED_HIGH:	/* units are microframes */
516 			/* NOTE usb handles 2^15 */
517 			if (urb->interval > (1024 * 8))
518 				urb->interval = 1024 * 8;
519 			max = 1024 * 8;
520 			break;
521 		case USB_SPEED_FULL:	/* units are frames/msec */
522 		case USB_SPEED_LOW:
523 			if (xfertype == USB_ENDPOINT_XFER_INT) {
524 				if (urb->interval > 255)
525 					return -EINVAL;
526 				/* NOTE ohci only handles up to 32 */
527 				max = 128;
528 			} else {
529 				if (urb->interval > 1024)
530 					urb->interval = 1024;
531 				/* NOTE usb and ohci handle up to 2^15 */
532 				max = 1024;
533 			}
534 			break;
535 		default:
536 			return -EINVAL;
537 		}
538 		if (dev->speed != USB_SPEED_WIRELESS) {
539 			/* Round down to a power of 2, no more than max */
540 			urb->interval = min(max, 1 << ilog2(urb->interval));
541 		}
542 	}
543 
544 	return usb_hcd_submit_urb(urb, mem_flags);
545 }
546 EXPORT_SYMBOL_GPL(usb_submit_urb);
547 
548 /*-------------------------------------------------------------------*/
549 
550 /**
551  * usb_unlink_urb - abort/cancel a transfer request for an endpoint
552  * @urb: pointer to urb describing a previously submitted request,
553  *	may be NULL
554  *
555  * This routine cancels an in-progress request.  URBs complete only once
556  * per submission, and may be canceled only once per submission.
557  * Successful cancellation means termination of @urb will be expedited
558  * and the completion handler will be called with a status code
559  * indicating that the request has been canceled (rather than any other
560  * code).
561  *
562  * Drivers should not call this routine or related routines, such as
563  * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
564  * method has returned.  The disconnect function should synchronize with
565  * a driver's I/O routines to insure that all URB-related activity has
566  * completed before it returns.
567  *
568  * This request is asynchronous, however the HCD might call the ->complete()
569  * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
570  * must not hold any locks that may be taken by the completion function.
571  * Success is indicated by returning -EINPROGRESS, at which time the URB will
572  * probably not yet have been given back to the device driver. When it is
573  * eventually called, the completion function will see @urb->status ==
574  * -ECONNRESET.
575  * Failure is indicated by usb_unlink_urb() returning any other value.
576  * Unlinking will fail when @urb is not currently "linked" (i.e., it was
577  * never submitted, or it was unlinked before, or the hardware is already
578  * finished with it), even if the completion handler has not yet run.
579  *
580  * The URB must not be deallocated while this routine is running.  In
581  * particular, when a driver calls this routine, it must insure that the
582  * completion handler cannot deallocate the URB.
583  *
584  * Return: -EINPROGRESS on success. See description for other values on
585  * failure.
586  *
587  * Unlinking and Endpoint Queues:
588  *
589  * [The behaviors and guarantees described below do not apply to virtual
590  * root hubs but only to endpoint queues for physical USB devices.]
591  *
592  * Host Controller Drivers (HCDs) place all the URBs for a particular
593  * endpoint in a queue.  Normally the queue advances as the controller
594  * hardware processes each request.  But when an URB terminates with an
595  * error its queue generally stops (see below), at least until that URB's
596  * completion routine returns.  It is guaranteed that a stopped queue
597  * will not restart until all its unlinked URBs have been fully retired,
598  * with their completion routines run, even if that's not until some time
599  * after the original completion handler returns.  The same behavior and
600  * guarantee apply when an URB terminates because it was unlinked.
601  *
602  * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
603  * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
604  * and -EREMOTEIO.  Control endpoint queues behave the same way except
605  * that they are not guaranteed to stop for -EREMOTEIO errors.  Queues
606  * for isochronous endpoints are treated differently, because they must
607  * advance at fixed rates.  Such queues do not stop when an URB
608  * encounters an error or is unlinked.  An unlinked isochronous URB may
609  * leave a gap in the stream of packets; it is undefined whether such
610  * gaps can be filled in.
611  *
612  * Note that early termination of an URB because a short packet was
613  * received will generate a -EREMOTEIO error if and only if the
614  * URB_SHORT_NOT_OK flag is set.  By setting this flag, USB device
615  * drivers can build deep queues for large or complex bulk transfers
616  * and clean them up reliably after any sort of aborted transfer by
617  * unlinking all pending URBs at the first fault.
618  *
619  * When a control URB terminates with an error other than -EREMOTEIO, it
620  * is quite likely that the status stage of the transfer will not take
621  * place.
622  */
623 int usb_unlink_urb(struct urb *urb)
624 {
625 	if (!urb)
626 		return -EINVAL;
627 	if (!urb->dev)
628 		return -ENODEV;
629 	if (!urb->ep)
630 		return -EIDRM;
631 	return usb_hcd_unlink_urb(urb, -ECONNRESET);
632 }
633 EXPORT_SYMBOL_GPL(usb_unlink_urb);
634 
635 /**
636  * usb_kill_urb - cancel a transfer request and wait for it to finish
637  * @urb: pointer to URB describing a previously submitted request,
638  *	may be NULL
639  *
640  * This routine cancels an in-progress request.  It is guaranteed that
641  * upon return all completion handlers will have finished and the URB
642  * will be totally idle and available for reuse.  These features make
643  * this an ideal way to stop I/O in a disconnect() callback or close()
644  * function.  If the request has not already finished or been unlinked
645  * the completion handler will see urb->status == -ENOENT.
646  *
647  * While the routine is running, attempts to resubmit the URB will fail
648  * with error -EPERM.  Thus even if the URB's completion handler always
649  * tries to resubmit, it will not succeed and the URB will become idle.
650  *
651  * The URB must not be deallocated while this routine is running.  In
652  * particular, when a driver calls this routine, it must insure that the
653  * completion handler cannot deallocate the URB.
654  *
655  * This routine may not be used in an interrupt context (such as a bottom
656  * half or a completion handler), or when holding a spinlock, or in other
657  * situations where the caller can't schedule().
658  *
659  * This routine should not be called by a driver after its disconnect
660  * method has returned.
661  */
662 void usb_kill_urb(struct urb *urb)
663 {
664 	might_sleep();
665 	if (!(urb && urb->dev && urb->ep))
666 		return;
667 	atomic_inc(&urb->reject);
668 
669 	usb_hcd_unlink_urb(urb, -ENOENT);
670 	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
671 
672 	atomic_dec(&urb->reject);
673 }
674 EXPORT_SYMBOL_GPL(usb_kill_urb);
675 
676 /**
677  * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
678  * @urb: pointer to URB describing a previously submitted request,
679  *	may be NULL
680  *
681  * This routine cancels an in-progress request.  It is guaranteed that
682  * upon return all completion handlers will have finished and the URB
683  * will be totally idle and cannot be reused.  These features make
684  * this an ideal way to stop I/O in a disconnect() callback.
685  * If the request has not already finished or been unlinked
686  * the completion handler will see urb->status == -ENOENT.
687  *
688  * After and while the routine runs, attempts to resubmit the URB will fail
689  * with error -EPERM.  Thus even if the URB's completion handler always
690  * tries to resubmit, it will not succeed and the URB will become idle.
691  *
692  * The URB must not be deallocated while this routine is running.  In
693  * particular, when a driver calls this routine, it must insure that the
694  * completion handler cannot deallocate the URB.
695  *
696  * This routine may not be used in an interrupt context (such as a bottom
697  * half or a completion handler), or when holding a spinlock, or in other
698  * situations where the caller can't schedule().
699  *
700  * This routine should not be called by a driver after its disconnect
701  * method has returned.
702  */
703 void usb_poison_urb(struct urb *urb)
704 {
705 	might_sleep();
706 	if (!urb)
707 		return;
708 	atomic_inc(&urb->reject);
709 
710 	if (!urb->dev || !urb->ep)
711 		return;
712 
713 	usb_hcd_unlink_urb(urb, -ENOENT);
714 	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
715 }
716 EXPORT_SYMBOL_GPL(usb_poison_urb);
717 
718 void usb_unpoison_urb(struct urb *urb)
719 {
720 	if (!urb)
721 		return;
722 
723 	atomic_dec(&urb->reject);
724 }
725 EXPORT_SYMBOL_GPL(usb_unpoison_urb);
726 
727 /**
728  * usb_block_urb - reliably prevent further use of an URB
729  * @urb: pointer to URB to be blocked, may be NULL
730  *
731  * After the routine has run, attempts to resubmit the URB will fail
732  * with error -EPERM.  Thus even if the URB's completion handler always
733  * tries to resubmit, it will not succeed and the URB will become idle.
734  *
735  * The URB must not be deallocated while this routine is running.  In
736  * particular, when a driver calls this routine, it must insure that the
737  * completion handler cannot deallocate the URB.
738  */
739 void usb_block_urb(struct urb *urb)
740 {
741 	if (!urb)
742 		return;
743 
744 	atomic_inc(&urb->reject);
745 }
746 EXPORT_SYMBOL_GPL(usb_block_urb);
747 
748 /**
749  * usb_kill_anchored_urbs - cancel transfer requests en masse
750  * @anchor: anchor the requests are bound to
751  *
752  * this allows all outstanding URBs to be killed starting
753  * from the back of the queue
754  *
755  * This routine should not be called by a driver after its disconnect
756  * method has returned.
757  */
758 void usb_kill_anchored_urbs(struct usb_anchor *anchor)
759 {
760 	struct urb *victim;
761 
762 	spin_lock_irq(&anchor->lock);
763 	while (!list_empty(&anchor->urb_list)) {
764 		victim = list_entry(anchor->urb_list.prev, struct urb,
765 				    anchor_list);
766 		/* we must make sure the URB isn't freed before we kill it*/
767 		usb_get_urb(victim);
768 		spin_unlock_irq(&anchor->lock);
769 		/* this will unanchor the URB */
770 		usb_kill_urb(victim);
771 		usb_put_urb(victim);
772 		spin_lock_irq(&anchor->lock);
773 	}
774 	spin_unlock_irq(&anchor->lock);
775 }
776 EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
777 
778 
779 /**
780  * usb_poison_anchored_urbs - cease all traffic from an anchor
781  * @anchor: anchor the requests are bound to
782  *
783  * this allows all outstanding URBs to be poisoned starting
784  * from the back of the queue. Newly added URBs will also be
785  * poisoned
786  *
787  * This routine should not be called by a driver after its disconnect
788  * method has returned.
789  */
790 void usb_poison_anchored_urbs(struct usb_anchor *anchor)
791 {
792 	struct urb *victim;
793 
794 	spin_lock_irq(&anchor->lock);
795 	anchor->poisoned = 1;
796 	while (!list_empty(&anchor->urb_list)) {
797 		victim = list_entry(anchor->urb_list.prev, struct urb,
798 				    anchor_list);
799 		/* we must make sure the URB isn't freed before we kill it*/
800 		usb_get_urb(victim);
801 		spin_unlock_irq(&anchor->lock);
802 		/* this will unanchor the URB */
803 		usb_poison_urb(victim);
804 		usb_put_urb(victim);
805 		spin_lock_irq(&anchor->lock);
806 	}
807 	spin_unlock_irq(&anchor->lock);
808 }
809 EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
810 
811 /**
812  * usb_unpoison_anchored_urbs - let an anchor be used successfully again
813  * @anchor: anchor the requests are bound to
814  *
815  * Reverses the effect of usb_poison_anchored_urbs
816  * the anchor can be used normally after it returns
817  */
818 void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
819 {
820 	unsigned long flags;
821 	struct urb *lazarus;
822 
823 	spin_lock_irqsave(&anchor->lock, flags);
824 	list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
825 		usb_unpoison_urb(lazarus);
826 	}
827 	anchor->poisoned = 0;
828 	spin_unlock_irqrestore(&anchor->lock, flags);
829 }
830 EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
831 /**
832  * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
833  * @anchor: anchor the requests are bound to
834  *
835  * this allows all outstanding URBs to be unlinked starting
836  * from the back of the queue. This function is asynchronous.
837  * The unlinking is just triggered. It may happen after this
838  * function has returned.
839  *
840  * This routine should not be called by a driver after its disconnect
841  * method has returned.
842  */
843 void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
844 {
845 	struct urb *victim;
846 
847 	while ((victim = usb_get_from_anchor(anchor)) != NULL) {
848 		usb_unlink_urb(victim);
849 		usb_put_urb(victim);
850 	}
851 }
852 EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
853 
854 /**
855  * usb_anchor_suspend_wakeups
856  * @anchor: the anchor you want to suspend wakeups on
857  *
858  * Call this to stop the last urb being unanchored from waking up any
859  * usb_wait_anchor_empty_timeout waiters. This is used in the hcd urb give-
860  * back path to delay waking up until after the completion handler has run.
861  */
862 void usb_anchor_suspend_wakeups(struct usb_anchor *anchor)
863 {
864 	if (anchor)
865 		atomic_inc(&anchor->suspend_wakeups);
866 }
867 EXPORT_SYMBOL_GPL(usb_anchor_suspend_wakeups);
868 
869 /**
870  * usb_anchor_resume_wakeups
871  * @anchor: the anchor you want to resume wakeups on
872  *
873  * Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and
874  * wake up any current waiters if the anchor is empty.
875  */
876 void usb_anchor_resume_wakeups(struct usb_anchor *anchor)
877 {
878 	if (!anchor)
879 		return;
880 
881 	atomic_dec(&anchor->suspend_wakeups);
882 	if (usb_anchor_check_wakeup(anchor))
883 		wake_up(&anchor->wait);
884 }
885 EXPORT_SYMBOL_GPL(usb_anchor_resume_wakeups);
886 
887 /**
888  * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
889  * @anchor: the anchor you want to become unused
890  * @timeout: how long you are willing to wait in milliseconds
891  *
892  * Call this is you want to be sure all an anchor's
893  * URBs have finished
894  *
895  * Return: Non-zero if the anchor became unused. Zero on timeout.
896  */
897 int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
898 				  unsigned int timeout)
899 {
900 	return wait_event_timeout(anchor->wait,
901 				  usb_anchor_check_wakeup(anchor),
902 				  msecs_to_jiffies(timeout));
903 }
904 EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
905 
906 /**
907  * usb_get_from_anchor - get an anchor's oldest urb
908  * @anchor: the anchor whose urb you want
909  *
910  * This will take the oldest urb from an anchor,
911  * unanchor and return it
912  *
913  * Return: The oldest urb from @anchor, or %NULL if @anchor has no
914  * urbs associated with it.
915  */
916 struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
917 {
918 	struct urb *victim;
919 	unsigned long flags;
920 
921 	spin_lock_irqsave(&anchor->lock, flags);
922 	if (!list_empty(&anchor->urb_list)) {
923 		victim = list_entry(anchor->urb_list.next, struct urb,
924 				    anchor_list);
925 		usb_get_urb(victim);
926 		__usb_unanchor_urb(victim, anchor);
927 	} else {
928 		victim = NULL;
929 	}
930 	spin_unlock_irqrestore(&anchor->lock, flags);
931 
932 	return victim;
933 }
934 
935 EXPORT_SYMBOL_GPL(usb_get_from_anchor);
936 
937 /**
938  * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
939  * @anchor: the anchor whose urbs you want to unanchor
940  *
941  * use this to get rid of all an anchor's urbs
942  */
943 void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
944 {
945 	struct urb *victim;
946 	unsigned long flags;
947 
948 	spin_lock_irqsave(&anchor->lock, flags);
949 	while (!list_empty(&anchor->urb_list)) {
950 		victim = list_entry(anchor->urb_list.prev, struct urb,
951 				    anchor_list);
952 		__usb_unanchor_urb(victim, anchor);
953 	}
954 	spin_unlock_irqrestore(&anchor->lock, flags);
955 }
956 
957 EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
958 
959 /**
960  * usb_anchor_empty - is an anchor empty
961  * @anchor: the anchor you want to query
962  *
963  * Return: 1 if the anchor has no urbs associated with it.
964  */
965 int usb_anchor_empty(struct usb_anchor *anchor)
966 {
967 	return list_empty(&anchor->urb_list);
968 }
969 
970 EXPORT_SYMBOL_GPL(usb_anchor_empty);
971 
972