xref: /openbmc/linux/drivers/usb/core/urb.c (revision de2bdb3d)
1 #include <linux/module.h>
2 #include <linux/string.h>
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/log2.h>
6 #include <linux/usb.h>
7 #include <linux/wait.h>
8 #include <linux/usb/hcd.h>
9 #include <linux/scatterlist.h>
10 
11 #define to_urb(d) container_of(d, struct urb, kref)
12 
13 
14 static void urb_destroy(struct kref *kref)
15 {
16 	struct urb *urb = to_urb(kref);
17 
18 	if (urb->transfer_flags & URB_FREE_BUFFER)
19 		kfree(urb->transfer_buffer);
20 
21 	kfree(urb);
22 }
23 
24 /**
25  * usb_init_urb - initializes a urb so that it can be used by a USB driver
26  * @urb: pointer to the urb to initialize
27  *
28  * Initializes a urb so that the USB subsystem can use it properly.
29  *
30  * If a urb is created with a call to usb_alloc_urb() it is not
31  * necessary to call this function.  Only use this if you allocate the
32  * space for a struct urb on your own.  If you call this function, be
33  * careful when freeing the memory for your urb that it is no longer in
34  * use by the USB core.
35  *
36  * Only use this function if you _really_ understand what you are doing.
37  */
38 void usb_init_urb(struct urb *urb)
39 {
40 	if (urb) {
41 		memset(urb, 0, sizeof(*urb));
42 		kref_init(&urb->kref);
43 		INIT_LIST_HEAD(&urb->anchor_list);
44 	}
45 }
46 EXPORT_SYMBOL_GPL(usb_init_urb);
47 
48 /**
49  * usb_alloc_urb - creates a new urb for a USB driver to use
50  * @iso_packets: number of iso packets for this urb
51  * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
52  *	valid options for this.
53  *
54  * Creates an urb for the USB driver to use, initializes a few internal
55  * structures, increments the usage counter, and returns a pointer to it.
56  *
57  * If the driver want to use this urb for interrupt, control, or bulk
58  * endpoints, pass '0' as the number of iso packets.
59  *
60  * The driver must call usb_free_urb() when it is finished with the urb.
61  *
62  * Return: A pointer to the new urb, or %NULL if no memory is available.
63  */
64 struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
65 {
66 	struct urb *urb;
67 
68 	urb = kmalloc(sizeof(struct urb) +
69 		iso_packets * sizeof(struct usb_iso_packet_descriptor),
70 		mem_flags);
71 	if (!urb)
72 		return NULL;
73 	usb_init_urb(urb);
74 	return urb;
75 }
76 EXPORT_SYMBOL_GPL(usb_alloc_urb);
77 
78 /**
79  * usb_free_urb - frees the memory used by a urb when all users of it are finished
80  * @urb: pointer to the urb to free, may be NULL
81  *
82  * Must be called when a user of a urb is finished with it.  When the last user
83  * of the urb calls this function, the memory of the urb is freed.
84  *
85  * Note: The transfer buffer associated with the urb is not freed unless the
86  * URB_FREE_BUFFER transfer flag is set.
87  */
88 void usb_free_urb(struct urb *urb)
89 {
90 	if (urb)
91 		kref_put(&urb->kref, urb_destroy);
92 }
93 EXPORT_SYMBOL_GPL(usb_free_urb);
94 
95 /**
96  * usb_get_urb - increments the reference count of the urb
97  * @urb: pointer to the urb to modify, may be NULL
98  *
99  * This must be  called whenever a urb is transferred from a device driver to a
100  * host controller driver.  This allows proper reference counting to happen
101  * for urbs.
102  *
103  * Return: A pointer to the urb with the incremented reference counter.
104  */
105 struct urb *usb_get_urb(struct urb *urb)
106 {
107 	if (urb)
108 		kref_get(&urb->kref);
109 	return urb;
110 }
111 EXPORT_SYMBOL_GPL(usb_get_urb);
112 
113 /**
114  * usb_anchor_urb - anchors an URB while it is processed
115  * @urb: pointer to the urb to anchor
116  * @anchor: pointer to the anchor
117  *
118  * This can be called to have access to URBs which are to be executed
119  * without bothering to track them
120  */
121 void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
122 {
123 	unsigned long flags;
124 
125 	spin_lock_irqsave(&anchor->lock, flags);
126 	usb_get_urb(urb);
127 	list_add_tail(&urb->anchor_list, &anchor->urb_list);
128 	urb->anchor = anchor;
129 
130 	if (unlikely(anchor->poisoned))
131 		atomic_inc(&urb->reject);
132 
133 	spin_unlock_irqrestore(&anchor->lock, flags);
134 }
135 EXPORT_SYMBOL_GPL(usb_anchor_urb);
136 
137 static int usb_anchor_check_wakeup(struct usb_anchor *anchor)
138 {
139 	return atomic_read(&anchor->suspend_wakeups) == 0 &&
140 		list_empty(&anchor->urb_list);
141 }
142 
143 /* Callers must hold anchor->lock */
144 static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
145 {
146 	urb->anchor = NULL;
147 	list_del(&urb->anchor_list);
148 	usb_put_urb(urb);
149 	if (usb_anchor_check_wakeup(anchor))
150 		wake_up(&anchor->wait);
151 }
152 
153 /**
154  * usb_unanchor_urb - unanchors an URB
155  * @urb: pointer to the urb to anchor
156  *
157  * Call this to stop the system keeping track of this URB
158  */
159 void usb_unanchor_urb(struct urb *urb)
160 {
161 	unsigned long flags;
162 	struct usb_anchor *anchor;
163 
164 	if (!urb)
165 		return;
166 
167 	anchor = urb->anchor;
168 	if (!anchor)
169 		return;
170 
171 	spin_lock_irqsave(&anchor->lock, flags);
172 	/*
173 	 * At this point, we could be competing with another thread which
174 	 * has the same intention. To protect the urb from being unanchored
175 	 * twice, only the winner of the race gets the job.
176 	 */
177 	if (likely(anchor == urb->anchor))
178 		__usb_unanchor_urb(urb, anchor);
179 	spin_unlock_irqrestore(&anchor->lock, flags);
180 }
181 EXPORT_SYMBOL_GPL(usb_unanchor_urb);
182 
183 /*-------------------------------------------------------------------*/
184 
185 /**
186  * usb_submit_urb - issue an asynchronous transfer request for an endpoint
187  * @urb: pointer to the urb describing the request
188  * @mem_flags: the type of memory to allocate, see kmalloc() for a list
189  *	of valid options for this.
190  *
191  * This submits a transfer request, and transfers control of the URB
192  * describing that request to the USB subsystem.  Request completion will
193  * be indicated later, asynchronously, by calling the completion handler.
194  * The three types of completion are success, error, and unlink
195  * (a software-induced fault, also called "request cancellation").
196  *
197  * URBs may be submitted in interrupt context.
198  *
199  * The caller must have correctly initialized the URB before submitting
200  * it.  Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
201  * available to ensure that most fields are correctly initialized, for
202  * the particular kind of transfer, although they will not initialize
203  * any transfer flags.
204  *
205  * If the submission is successful, the complete() callback from the URB
206  * will be called exactly once, when the USB core and Host Controller Driver
207  * (HCD) are finished with the URB.  When the completion function is called,
208  * control of the URB is returned to the device driver which issued the
209  * request.  The completion handler may then immediately free or reuse that
210  * URB.
211  *
212  * With few exceptions, USB device drivers should never access URB fields
213  * provided by usbcore or the HCD until its complete() is called.
214  * The exceptions relate to periodic transfer scheduling.  For both
215  * interrupt and isochronous urbs, as part of successful URB submission
216  * urb->interval is modified to reflect the actual transfer period used
217  * (normally some power of two units).  And for isochronous urbs,
218  * urb->start_frame is modified to reflect when the URB's transfers were
219  * scheduled to start.
220  *
221  * Not all isochronous transfer scheduling policies will work, but most
222  * host controller drivers should easily handle ISO queues going from now
223  * until 10-200 msec into the future.  Drivers should try to keep at
224  * least one or two msec of data in the queue; many controllers require
225  * that new transfers start at least 1 msec in the future when they are
226  * added.  If the driver is unable to keep up and the queue empties out,
227  * the behavior for new submissions is governed by the URB_ISO_ASAP flag.
228  * If the flag is set, or if the queue is idle, then the URB is always
229  * assigned to the first available (and not yet expired) slot in the
230  * endpoint's schedule.  If the flag is not set and the queue is active
231  * then the URB is always assigned to the next slot in the schedule
232  * following the end of the endpoint's previous URB, even if that slot is
233  * in the past.  When a packet is assigned in this way to a slot that has
234  * already expired, the packet is not transmitted and the corresponding
235  * usb_iso_packet_descriptor's status field will return -EXDEV.  If this
236  * would happen to all the packets in the URB, submission fails with a
237  * -EXDEV error code.
238  *
239  * For control endpoints, the synchronous usb_control_msg() call is
240  * often used (in non-interrupt context) instead of this call.
241  * That is often used through convenience wrappers, for the requests
242  * that are standardized in the USB 2.0 specification.  For bulk
243  * endpoints, a synchronous usb_bulk_msg() call is available.
244  *
245  * Return:
246  * 0 on successful submissions. A negative error number otherwise.
247  *
248  * Request Queuing:
249  *
250  * URBs may be submitted to endpoints before previous ones complete, to
251  * minimize the impact of interrupt latencies and system overhead on data
252  * throughput.  With that queuing policy, an endpoint's queue would never
253  * be empty.  This is required for continuous isochronous data streams,
254  * and may also be required for some kinds of interrupt transfers. Such
255  * queuing also maximizes bandwidth utilization by letting USB controllers
256  * start work on later requests before driver software has finished the
257  * completion processing for earlier (successful) requests.
258  *
259  * As of Linux 2.6, all USB endpoint transfer queues support depths greater
260  * than one.  This was previously a HCD-specific behavior, except for ISO
261  * transfers.  Non-isochronous endpoint queues are inactive during cleanup
262  * after faults (transfer errors or cancellation).
263  *
264  * Reserved Bandwidth Transfers:
265  *
266  * Periodic transfers (interrupt or isochronous) are performed repeatedly,
267  * using the interval specified in the urb.  Submitting the first urb to
268  * the endpoint reserves the bandwidth necessary to make those transfers.
269  * If the USB subsystem can't allocate sufficient bandwidth to perform
270  * the periodic request, submitting such a periodic request should fail.
271  *
272  * For devices under xHCI, the bandwidth is reserved at configuration time, or
273  * when the alt setting is selected.  If there is not enough bus bandwidth, the
274  * configuration/alt setting request will fail.  Therefore, submissions to
275  * periodic endpoints on devices under xHCI should never fail due to bandwidth
276  * constraints.
277  *
278  * Device drivers must explicitly request that repetition, by ensuring that
279  * some URB is always on the endpoint's queue (except possibly for short
280  * periods during completion callbacks).  When there is no longer an urb
281  * queued, the endpoint's bandwidth reservation is canceled.  This means
282  * drivers can use their completion handlers to ensure they keep bandwidth
283  * they need, by reinitializing and resubmitting the just-completed urb
284  * until the driver longer needs that periodic bandwidth.
285  *
286  * Memory Flags:
287  *
288  * The general rules for how to decide which mem_flags to use
289  * are the same as for kmalloc.  There are four
290  * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
291  * GFP_ATOMIC.
292  *
293  * GFP_NOFS is not ever used, as it has not been implemented yet.
294  *
295  * GFP_ATOMIC is used when
296  *   (a) you are inside a completion handler, an interrupt, bottom half,
297  *       tasklet or timer, or
298  *   (b) you are holding a spinlock or rwlock (does not apply to
299  *       semaphores), or
300  *   (c) current->state != TASK_RUNNING, this is the case only after
301  *       you've changed it.
302  *
303  * GFP_NOIO is used in the block io path and error handling of storage
304  * devices.
305  *
306  * All other situations use GFP_KERNEL.
307  *
308  * Some more specific rules for mem_flags can be inferred, such as
309  *  (1) start_xmit, timeout, and receive methods of network drivers must
310  *      use GFP_ATOMIC (they are called with a spinlock held);
311  *  (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
312  *      called with a spinlock held);
313  *  (3) If you use a kernel thread with a network driver you must use
314  *      GFP_NOIO, unless (b) or (c) apply;
315  *  (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
316  *      apply or your are in a storage driver's block io path;
317  *  (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
318  *  (6) changing firmware on a running storage or net device uses
319  *      GFP_NOIO, unless b) or c) apply
320  *
321  */
322 int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
323 {
324 	static int			pipetypes[4] = {
325 		PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
326 	};
327 	int				xfertype, max;
328 	struct usb_device		*dev;
329 	struct usb_host_endpoint	*ep;
330 	int				is_out;
331 	unsigned int			allowed;
332 
333 	if (!urb || !urb->complete)
334 		return -EINVAL;
335 	if (urb->hcpriv) {
336 		WARN_ONCE(1, "URB %p submitted while active\n", urb);
337 		return -EBUSY;
338 	}
339 
340 	dev = urb->dev;
341 	if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
342 		return -ENODEV;
343 
344 	/* For now, get the endpoint from the pipe.  Eventually drivers
345 	 * will be required to set urb->ep directly and we will eliminate
346 	 * urb->pipe.
347 	 */
348 	ep = usb_pipe_endpoint(dev, urb->pipe);
349 	if (!ep)
350 		return -ENOENT;
351 
352 	urb->ep = ep;
353 	urb->status = -EINPROGRESS;
354 	urb->actual_length = 0;
355 
356 	/* Lots of sanity checks, so HCDs can rely on clean data
357 	 * and don't need to duplicate tests
358 	 */
359 	xfertype = usb_endpoint_type(&ep->desc);
360 	if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
361 		struct usb_ctrlrequest *setup =
362 				(struct usb_ctrlrequest *) urb->setup_packet;
363 
364 		if (!setup)
365 			return -ENOEXEC;
366 		is_out = !(setup->bRequestType & USB_DIR_IN) ||
367 				!setup->wLength;
368 	} else {
369 		is_out = usb_endpoint_dir_out(&ep->desc);
370 	}
371 
372 	/* Clear the internal flags and cache the direction for later use */
373 	urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
374 			URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
375 			URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
376 			URB_DMA_SG_COMBINED);
377 	urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
378 
379 	if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
380 			dev->state < USB_STATE_CONFIGURED)
381 		return -ENODEV;
382 
383 	max = usb_endpoint_maxp(&ep->desc);
384 	if (max <= 0) {
385 		dev_dbg(&dev->dev,
386 			"bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
387 			usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
388 			__func__, max);
389 		return -EMSGSIZE;
390 	}
391 
392 	/* periodic transfers limit size per frame/uframe,
393 	 * but drivers only control those sizes for ISO.
394 	 * while we're checking, initialize return status.
395 	 */
396 	if (xfertype == USB_ENDPOINT_XFER_ISOC) {
397 		int	n, len;
398 
399 		/* SuperSpeed isoc endpoints have up to 16 bursts of up to
400 		 * 3 packets each
401 		 */
402 		if (dev->speed >= USB_SPEED_SUPER) {
403 			int     burst = 1 + ep->ss_ep_comp.bMaxBurst;
404 			int     mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
405 			max *= burst;
406 			max *= mult;
407 		}
408 
409 		/* "high bandwidth" mode, 1-3 packets/uframe? */
410 		if (dev->speed == USB_SPEED_HIGH) {
411 			int	mult = 1 + ((max >> 11) & 0x03);
412 			max &= 0x07ff;
413 			max *= mult;
414 		}
415 
416 		if (urb->number_of_packets <= 0)
417 			return -EINVAL;
418 		for (n = 0; n < urb->number_of_packets; n++) {
419 			len = urb->iso_frame_desc[n].length;
420 			if (len < 0 || len > max)
421 				return -EMSGSIZE;
422 			urb->iso_frame_desc[n].status = -EXDEV;
423 			urb->iso_frame_desc[n].actual_length = 0;
424 		}
425 	} else if (urb->num_sgs && !urb->dev->bus->no_sg_constraint &&
426 			dev->speed != USB_SPEED_WIRELESS) {
427 		struct scatterlist *sg;
428 		int i;
429 
430 		for_each_sg(urb->sg, sg, urb->num_sgs - 1, i)
431 			if (sg->length % max)
432 				return -EINVAL;
433 	}
434 
435 	/* the I/O buffer must be mapped/unmapped, except when length=0 */
436 	if (urb->transfer_buffer_length > INT_MAX)
437 		return -EMSGSIZE;
438 
439 	/*
440 	 * stuff that drivers shouldn't do, but which shouldn't
441 	 * cause problems in HCDs if they get it wrong.
442 	 */
443 
444 	/* Check that the pipe's type matches the endpoint's type */
445 	if (usb_pipetype(urb->pipe) != pipetypes[xfertype])
446 		dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
447 			usb_pipetype(urb->pipe), pipetypes[xfertype]);
448 
449 	/* Check against a simple/standard policy */
450 	allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
451 			URB_FREE_BUFFER);
452 	switch (xfertype) {
453 	case USB_ENDPOINT_XFER_BULK:
454 	case USB_ENDPOINT_XFER_INT:
455 		if (is_out)
456 			allowed |= URB_ZERO_PACKET;
457 		/* FALLTHROUGH */
458 	case USB_ENDPOINT_XFER_CONTROL:
459 		allowed |= URB_NO_FSBR;	/* only affects UHCI */
460 		/* FALLTHROUGH */
461 	default:			/* all non-iso endpoints */
462 		if (!is_out)
463 			allowed |= URB_SHORT_NOT_OK;
464 		break;
465 	case USB_ENDPOINT_XFER_ISOC:
466 		allowed |= URB_ISO_ASAP;
467 		break;
468 	}
469 	allowed &= urb->transfer_flags;
470 
471 	/* warn if submitter gave bogus flags */
472 	if (allowed != urb->transfer_flags)
473 		dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
474 			urb->transfer_flags, allowed);
475 
476 	/*
477 	 * Force periodic transfer intervals to be legal values that are
478 	 * a power of two (so HCDs don't need to).
479 	 *
480 	 * FIXME want bus->{intr,iso}_sched_horizon values here.  Each HC
481 	 * supports different values... this uses EHCI/UHCI defaults (and
482 	 * EHCI can use smaller non-default values).
483 	 */
484 	switch (xfertype) {
485 	case USB_ENDPOINT_XFER_ISOC:
486 	case USB_ENDPOINT_XFER_INT:
487 		/* too small? */
488 		switch (dev->speed) {
489 		case USB_SPEED_WIRELESS:
490 			if ((urb->interval < 6)
491 				&& (xfertype == USB_ENDPOINT_XFER_INT))
492 				return -EINVAL;
493 		default:
494 			if (urb->interval <= 0)
495 				return -EINVAL;
496 			break;
497 		}
498 		/* too big? */
499 		switch (dev->speed) {
500 		case USB_SPEED_SUPER_PLUS:
501 		case USB_SPEED_SUPER:	/* units are 125us */
502 			/* Handle up to 2^(16-1) microframes */
503 			if (urb->interval > (1 << 15))
504 				return -EINVAL;
505 			max = 1 << 15;
506 			break;
507 		case USB_SPEED_WIRELESS:
508 			if (urb->interval > 16)
509 				return -EINVAL;
510 			break;
511 		case USB_SPEED_HIGH:	/* units are microframes */
512 			/* NOTE usb handles 2^15 */
513 			if (urb->interval > (1024 * 8))
514 				urb->interval = 1024 * 8;
515 			max = 1024 * 8;
516 			break;
517 		case USB_SPEED_FULL:	/* units are frames/msec */
518 		case USB_SPEED_LOW:
519 			if (xfertype == USB_ENDPOINT_XFER_INT) {
520 				if (urb->interval > 255)
521 					return -EINVAL;
522 				/* NOTE ohci only handles up to 32 */
523 				max = 128;
524 			} else {
525 				if (urb->interval > 1024)
526 					urb->interval = 1024;
527 				/* NOTE usb and ohci handle up to 2^15 */
528 				max = 1024;
529 			}
530 			break;
531 		default:
532 			return -EINVAL;
533 		}
534 		if (dev->speed != USB_SPEED_WIRELESS) {
535 			/* Round down to a power of 2, no more than max */
536 			urb->interval = min(max, 1 << ilog2(urb->interval));
537 		}
538 	}
539 
540 	return usb_hcd_submit_urb(urb, mem_flags);
541 }
542 EXPORT_SYMBOL_GPL(usb_submit_urb);
543 
544 /*-------------------------------------------------------------------*/
545 
546 /**
547  * usb_unlink_urb - abort/cancel a transfer request for an endpoint
548  * @urb: pointer to urb describing a previously submitted request,
549  *	may be NULL
550  *
551  * This routine cancels an in-progress request.  URBs complete only once
552  * per submission, and may be canceled only once per submission.
553  * Successful cancellation means termination of @urb will be expedited
554  * and the completion handler will be called with a status code
555  * indicating that the request has been canceled (rather than any other
556  * code).
557  *
558  * Drivers should not call this routine or related routines, such as
559  * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
560  * method has returned.  The disconnect function should synchronize with
561  * a driver's I/O routines to insure that all URB-related activity has
562  * completed before it returns.
563  *
564  * This request is asynchronous, however the HCD might call the ->complete()
565  * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
566  * must not hold any locks that may be taken by the completion function.
567  * Success is indicated by returning -EINPROGRESS, at which time the URB will
568  * probably not yet have been given back to the device driver. When it is
569  * eventually called, the completion function will see @urb->status ==
570  * -ECONNRESET.
571  * Failure is indicated by usb_unlink_urb() returning any other value.
572  * Unlinking will fail when @urb is not currently "linked" (i.e., it was
573  * never submitted, or it was unlinked before, or the hardware is already
574  * finished with it), even if the completion handler has not yet run.
575  *
576  * The URB must not be deallocated while this routine is running.  In
577  * particular, when a driver calls this routine, it must insure that the
578  * completion handler cannot deallocate the URB.
579  *
580  * Return: -EINPROGRESS on success. See description for other values on
581  * failure.
582  *
583  * Unlinking and Endpoint Queues:
584  *
585  * [The behaviors and guarantees described below do not apply to virtual
586  * root hubs but only to endpoint queues for physical USB devices.]
587  *
588  * Host Controller Drivers (HCDs) place all the URBs for a particular
589  * endpoint in a queue.  Normally the queue advances as the controller
590  * hardware processes each request.  But when an URB terminates with an
591  * error its queue generally stops (see below), at least until that URB's
592  * completion routine returns.  It is guaranteed that a stopped queue
593  * will not restart until all its unlinked URBs have been fully retired,
594  * with their completion routines run, even if that's not until some time
595  * after the original completion handler returns.  The same behavior and
596  * guarantee apply when an URB terminates because it was unlinked.
597  *
598  * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
599  * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
600  * and -EREMOTEIO.  Control endpoint queues behave the same way except
601  * that they are not guaranteed to stop for -EREMOTEIO errors.  Queues
602  * for isochronous endpoints are treated differently, because they must
603  * advance at fixed rates.  Such queues do not stop when an URB
604  * encounters an error or is unlinked.  An unlinked isochronous URB may
605  * leave a gap in the stream of packets; it is undefined whether such
606  * gaps can be filled in.
607  *
608  * Note that early termination of an URB because a short packet was
609  * received will generate a -EREMOTEIO error if and only if the
610  * URB_SHORT_NOT_OK flag is set.  By setting this flag, USB device
611  * drivers can build deep queues for large or complex bulk transfers
612  * and clean them up reliably after any sort of aborted transfer by
613  * unlinking all pending URBs at the first fault.
614  *
615  * When a control URB terminates with an error other than -EREMOTEIO, it
616  * is quite likely that the status stage of the transfer will not take
617  * place.
618  */
619 int usb_unlink_urb(struct urb *urb)
620 {
621 	if (!urb)
622 		return -EINVAL;
623 	if (!urb->dev)
624 		return -ENODEV;
625 	if (!urb->ep)
626 		return -EIDRM;
627 	return usb_hcd_unlink_urb(urb, -ECONNRESET);
628 }
629 EXPORT_SYMBOL_GPL(usb_unlink_urb);
630 
631 /**
632  * usb_kill_urb - cancel a transfer request and wait for it to finish
633  * @urb: pointer to URB describing a previously submitted request,
634  *	may be NULL
635  *
636  * This routine cancels an in-progress request.  It is guaranteed that
637  * upon return all completion handlers will have finished and the URB
638  * will be totally idle and available for reuse.  These features make
639  * this an ideal way to stop I/O in a disconnect() callback or close()
640  * function.  If the request has not already finished or been unlinked
641  * the completion handler will see urb->status == -ENOENT.
642  *
643  * While the routine is running, attempts to resubmit the URB will fail
644  * with error -EPERM.  Thus even if the URB's completion handler always
645  * tries to resubmit, it will not succeed and the URB will become idle.
646  *
647  * The URB must not be deallocated while this routine is running.  In
648  * particular, when a driver calls this routine, it must insure that the
649  * completion handler cannot deallocate the URB.
650  *
651  * This routine may not be used in an interrupt context (such as a bottom
652  * half or a completion handler), or when holding a spinlock, or in other
653  * situations where the caller can't schedule().
654  *
655  * This routine should not be called by a driver after its disconnect
656  * method has returned.
657  */
658 void usb_kill_urb(struct urb *urb)
659 {
660 	might_sleep();
661 	if (!(urb && urb->dev && urb->ep))
662 		return;
663 	atomic_inc(&urb->reject);
664 
665 	usb_hcd_unlink_urb(urb, -ENOENT);
666 	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
667 
668 	atomic_dec(&urb->reject);
669 }
670 EXPORT_SYMBOL_GPL(usb_kill_urb);
671 
672 /**
673  * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
674  * @urb: pointer to URB describing a previously submitted request,
675  *	may be NULL
676  *
677  * This routine cancels an in-progress request.  It is guaranteed that
678  * upon return all completion handlers will have finished and the URB
679  * will be totally idle and cannot be reused.  These features make
680  * this an ideal way to stop I/O in a disconnect() callback.
681  * If the request has not already finished or been unlinked
682  * the completion handler will see urb->status == -ENOENT.
683  *
684  * After and while the routine runs, attempts to resubmit the URB will fail
685  * with error -EPERM.  Thus even if the URB's completion handler always
686  * tries to resubmit, it will not succeed and the URB will become idle.
687  *
688  * The URB must not be deallocated while this routine is running.  In
689  * particular, when a driver calls this routine, it must insure that the
690  * completion handler cannot deallocate the URB.
691  *
692  * This routine may not be used in an interrupt context (such as a bottom
693  * half or a completion handler), or when holding a spinlock, or in other
694  * situations where the caller can't schedule().
695  *
696  * This routine should not be called by a driver after its disconnect
697  * method has returned.
698  */
699 void usb_poison_urb(struct urb *urb)
700 {
701 	might_sleep();
702 	if (!urb)
703 		return;
704 	atomic_inc(&urb->reject);
705 
706 	if (!urb->dev || !urb->ep)
707 		return;
708 
709 	usb_hcd_unlink_urb(urb, -ENOENT);
710 	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
711 }
712 EXPORT_SYMBOL_GPL(usb_poison_urb);
713 
714 void usb_unpoison_urb(struct urb *urb)
715 {
716 	if (!urb)
717 		return;
718 
719 	atomic_dec(&urb->reject);
720 }
721 EXPORT_SYMBOL_GPL(usb_unpoison_urb);
722 
723 /**
724  * usb_block_urb - reliably prevent further use of an URB
725  * @urb: pointer to URB to be blocked, may be NULL
726  *
727  * After the routine has run, attempts to resubmit the URB will fail
728  * with error -EPERM.  Thus even if the URB's completion handler always
729  * tries to resubmit, it will not succeed and the URB will become idle.
730  *
731  * The URB must not be deallocated while this routine is running.  In
732  * particular, when a driver calls this routine, it must insure that the
733  * completion handler cannot deallocate the URB.
734  */
735 void usb_block_urb(struct urb *urb)
736 {
737 	if (!urb)
738 		return;
739 
740 	atomic_inc(&urb->reject);
741 }
742 EXPORT_SYMBOL_GPL(usb_block_urb);
743 
744 /**
745  * usb_kill_anchored_urbs - cancel transfer requests en masse
746  * @anchor: anchor the requests are bound to
747  *
748  * this allows all outstanding URBs to be killed starting
749  * from the back of the queue
750  *
751  * This routine should not be called by a driver after its disconnect
752  * method has returned.
753  */
754 void usb_kill_anchored_urbs(struct usb_anchor *anchor)
755 {
756 	struct urb *victim;
757 
758 	spin_lock_irq(&anchor->lock);
759 	while (!list_empty(&anchor->urb_list)) {
760 		victim = list_entry(anchor->urb_list.prev, struct urb,
761 				    anchor_list);
762 		/* we must make sure the URB isn't freed before we kill it*/
763 		usb_get_urb(victim);
764 		spin_unlock_irq(&anchor->lock);
765 		/* this will unanchor the URB */
766 		usb_kill_urb(victim);
767 		usb_put_urb(victim);
768 		spin_lock_irq(&anchor->lock);
769 	}
770 	spin_unlock_irq(&anchor->lock);
771 }
772 EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
773 
774 
775 /**
776  * usb_poison_anchored_urbs - cease all traffic from an anchor
777  * @anchor: anchor the requests are bound to
778  *
779  * this allows all outstanding URBs to be poisoned starting
780  * from the back of the queue. Newly added URBs will also be
781  * poisoned
782  *
783  * This routine should not be called by a driver after its disconnect
784  * method has returned.
785  */
786 void usb_poison_anchored_urbs(struct usb_anchor *anchor)
787 {
788 	struct urb *victim;
789 
790 	spin_lock_irq(&anchor->lock);
791 	anchor->poisoned = 1;
792 	while (!list_empty(&anchor->urb_list)) {
793 		victim = list_entry(anchor->urb_list.prev, struct urb,
794 				    anchor_list);
795 		/* we must make sure the URB isn't freed before we kill it*/
796 		usb_get_urb(victim);
797 		spin_unlock_irq(&anchor->lock);
798 		/* this will unanchor the URB */
799 		usb_poison_urb(victim);
800 		usb_put_urb(victim);
801 		spin_lock_irq(&anchor->lock);
802 	}
803 	spin_unlock_irq(&anchor->lock);
804 }
805 EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
806 
807 /**
808  * usb_unpoison_anchored_urbs - let an anchor be used successfully again
809  * @anchor: anchor the requests are bound to
810  *
811  * Reverses the effect of usb_poison_anchored_urbs
812  * the anchor can be used normally after it returns
813  */
814 void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
815 {
816 	unsigned long flags;
817 	struct urb *lazarus;
818 
819 	spin_lock_irqsave(&anchor->lock, flags);
820 	list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
821 		usb_unpoison_urb(lazarus);
822 	}
823 	anchor->poisoned = 0;
824 	spin_unlock_irqrestore(&anchor->lock, flags);
825 }
826 EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
827 /**
828  * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
829  * @anchor: anchor the requests are bound to
830  *
831  * this allows all outstanding URBs to be unlinked starting
832  * from the back of the queue. This function is asynchronous.
833  * The unlinking is just triggered. It may happen after this
834  * function has returned.
835  *
836  * This routine should not be called by a driver after its disconnect
837  * method has returned.
838  */
839 void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
840 {
841 	struct urb *victim;
842 
843 	while ((victim = usb_get_from_anchor(anchor)) != NULL) {
844 		usb_unlink_urb(victim);
845 		usb_put_urb(victim);
846 	}
847 }
848 EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
849 
850 /**
851  * usb_anchor_suspend_wakeups
852  * @anchor: the anchor you want to suspend wakeups on
853  *
854  * Call this to stop the last urb being unanchored from waking up any
855  * usb_wait_anchor_empty_timeout waiters. This is used in the hcd urb give-
856  * back path to delay waking up until after the completion handler has run.
857  */
858 void usb_anchor_suspend_wakeups(struct usb_anchor *anchor)
859 {
860 	if (anchor)
861 		atomic_inc(&anchor->suspend_wakeups);
862 }
863 EXPORT_SYMBOL_GPL(usb_anchor_suspend_wakeups);
864 
865 /**
866  * usb_anchor_resume_wakeups
867  * @anchor: the anchor you want to resume wakeups on
868  *
869  * Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and
870  * wake up any current waiters if the anchor is empty.
871  */
872 void usb_anchor_resume_wakeups(struct usb_anchor *anchor)
873 {
874 	if (!anchor)
875 		return;
876 
877 	atomic_dec(&anchor->suspend_wakeups);
878 	if (usb_anchor_check_wakeup(anchor))
879 		wake_up(&anchor->wait);
880 }
881 EXPORT_SYMBOL_GPL(usb_anchor_resume_wakeups);
882 
883 /**
884  * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
885  * @anchor: the anchor you want to become unused
886  * @timeout: how long you are willing to wait in milliseconds
887  *
888  * Call this is you want to be sure all an anchor's
889  * URBs have finished
890  *
891  * Return: Non-zero if the anchor became unused. Zero on timeout.
892  */
893 int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
894 				  unsigned int timeout)
895 {
896 	return wait_event_timeout(anchor->wait,
897 				  usb_anchor_check_wakeup(anchor),
898 				  msecs_to_jiffies(timeout));
899 }
900 EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
901 
902 /**
903  * usb_get_from_anchor - get an anchor's oldest urb
904  * @anchor: the anchor whose urb you want
905  *
906  * This will take the oldest urb from an anchor,
907  * unanchor and return it
908  *
909  * Return: The oldest urb from @anchor, or %NULL if @anchor has no
910  * urbs associated with it.
911  */
912 struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
913 {
914 	struct urb *victim;
915 	unsigned long flags;
916 
917 	spin_lock_irqsave(&anchor->lock, flags);
918 	if (!list_empty(&anchor->urb_list)) {
919 		victim = list_entry(anchor->urb_list.next, struct urb,
920 				    anchor_list);
921 		usb_get_urb(victim);
922 		__usb_unanchor_urb(victim, anchor);
923 	} else {
924 		victim = NULL;
925 	}
926 	spin_unlock_irqrestore(&anchor->lock, flags);
927 
928 	return victim;
929 }
930 
931 EXPORT_SYMBOL_GPL(usb_get_from_anchor);
932 
933 /**
934  * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
935  * @anchor: the anchor whose urbs you want to unanchor
936  *
937  * use this to get rid of all an anchor's urbs
938  */
939 void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
940 {
941 	struct urb *victim;
942 	unsigned long flags;
943 
944 	spin_lock_irqsave(&anchor->lock, flags);
945 	while (!list_empty(&anchor->urb_list)) {
946 		victim = list_entry(anchor->urb_list.prev, struct urb,
947 				    anchor_list);
948 		__usb_unanchor_urb(victim, anchor);
949 	}
950 	spin_unlock_irqrestore(&anchor->lock, flags);
951 }
952 
953 EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
954 
955 /**
956  * usb_anchor_empty - is an anchor empty
957  * @anchor: the anchor you want to query
958  *
959  * Return: 1 if the anchor has no urbs associated with it.
960  */
961 int usb_anchor_empty(struct usb_anchor *anchor)
962 {
963 	return list_empty(&anchor->urb_list);
964 }
965 
966 EXPORT_SYMBOL_GPL(usb_anchor_empty);
967 
968