1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Released under the GPLv2 only. 4 */ 5 6 #include <linux/module.h> 7 #include <linux/string.h> 8 #include <linux/bitops.h> 9 #include <linux/slab.h> 10 #include <linux/log2.h> 11 #include <linux/usb.h> 12 #include <linux/wait.h> 13 #include <linux/usb/hcd.h> 14 #include <linux/scatterlist.h> 15 16 #define to_urb(d) container_of(d, struct urb, kref) 17 18 19 static void urb_destroy(struct kref *kref) 20 { 21 struct urb *urb = to_urb(kref); 22 23 if (urb->transfer_flags & URB_FREE_BUFFER) 24 kfree(urb->transfer_buffer); 25 26 kfree(urb); 27 } 28 29 /** 30 * usb_init_urb - initializes a urb so that it can be used by a USB driver 31 * @urb: pointer to the urb to initialize 32 * 33 * Initializes a urb so that the USB subsystem can use it properly. 34 * 35 * If a urb is created with a call to usb_alloc_urb() it is not 36 * necessary to call this function. Only use this if you allocate the 37 * space for a struct urb on your own. If you call this function, be 38 * careful when freeing the memory for your urb that it is no longer in 39 * use by the USB core. 40 * 41 * Only use this function if you _really_ understand what you are doing. 42 */ 43 void usb_init_urb(struct urb *urb) 44 { 45 if (urb) { 46 memset(urb, 0, sizeof(*urb)); 47 kref_init(&urb->kref); 48 INIT_LIST_HEAD(&urb->urb_list); 49 INIT_LIST_HEAD(&urb->anchor_list); 50 } 51 } 52 EXPORT_SYMBOL_GPL(usb_init_urb); 53 54 /** 55 * usb_alloc_urb - creates a new urb for a USB driver to use 56 * @iso_packets: number of iso packets for this urb 57 * @mem_flags: the type of memory to allocate, see kmalloc() for a list of 58 * valid options for this. 59 * 60 * Creates an urb for the USB driver to use, initializes a few internal 61 * structures, increments the usage counter, and returns a pointer to it. 62 * 63 * If the driver want to use this urb for interrupt, control, or bulk 64 * endpoints, pass '0' as the number of iso packets. 65 * 66 * The driver must call usb_free_urb() when it is finished with the urb. 67 * 68 * Return: A pointer to the new urb, or %NULL if no memory is available. 69 */ 70 struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags) 71 { 72 struct urb *urb; 73 74 urb = kmalloc(struct_size(urb, iso_frame_desc, iso_packets), 75 mem_flags); 76 if (!urb) 77 return NULL; 78 usb_init_urb(urb); 79 return urb; 80 } 81 EXPORT_SYMBOL_GPL(usb_alloc_urb); 82 83 /** 84 * usb_free_urb - frees the memory used by a urb when all users of it are finished 85 * @urb: pointer to the urb to free, may be NULL 86 * 87 * Must be called when a user of a urb is finished with it. When the last user 88 * of the urb calls this function, the memory of the urb is freed. 89 * 90 * Note: The transfer buffer associated with the urb is not freed unless the 91 * URB_FREE_BUFFER transfer flag is set. 92 */ 93 void usb_free_urb(struct urb *urb) 94 { 95 if (urb) 96 kref_put(&urb->kref, urb_destroy); 97 } 98 EXPORT_SYMBOL_GPL(usb_free_urb); 99 100 /** 101 * usb_get_urb - increments the reference count of the urb 102 * @urb: pointer to the urb to modify, may be NULL 103 * 104 * This must be called whenever a urb is transferred from a device driver to a 105 * host controller driver. This allows proper reference counting to happen 106 * for urbs. 107 * 108 * Return: A pointer to the urb with the incremented reference counter. 109 */ 110 struct urb *usb_get_urb(struct urb *urb) 111 { 112 if (urb) 113 kref_get(&urb->kref); 114 return urb; 115 } 116 EXPORT_SYMBOL_GPL(usb_get_urb); 117 118 /** 119 * usb_anchor_urb - anchors an URB while it is processed 120 * @urb: pointer to the urb to anchor 121 * @anchor: pointer to the anchor 122 * 123 * This can be called to have access to URBs which are to be executed 124 * without bothering to track them 125 */ 126 void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor) 127 { 128 unsigned long flags; 129 130 spin_lock_irqsave(&anchor->lock, flags); 131 usb_get_urb(urb); 132 list_add_tail(&urb->anchor_list, &anchor->urb_list); 133 urb->anchor = anchor; 134 135 if (unlikely(anchor->poisoned)) 136 atomic_inc(&urb->reject); 137 138 spin_unlock_irqrestore(&anchor->lock, flags); 139 } 140 EXPORT_SYMBOL_GPL(usb_anchor_urb); 141 142 static int usb_anchor_check_wakeup(struct usb_anchor *anchor) 143 { 144 return atomic_read(&anchor->suspend_wakeups) == 0 && 145 list_empty(&anchor->urb_list); 146 } 147 148 /* Callers must hold anchor->lock */ 149 static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor) 150 { 151 urb->anchor = NULL; 152 list_del(&urb->anchor_list); 153 usb_put_urb(urb); 154 if (usb_anchor_check_wakeup(anchor)) 155 wake_up(&anchor->wait); 156 } 157 158 /** 159 * usb_unanchor_urb - unanchors an URB 160 * @urb: pointer to the urb to anchor 161 * 162 * Call this to stop the system keeping track of this URB 163 */ 164 void usb_unanchor_urb(struct urb *urb) 165 { 166 unsigned long flags; 167 struct usb_anchor *anchor; 168 169 if (!urb) 170 return; 171 172 anchor = urb->anchor; 173 if (!anchor) 174 return; 175 176 spin_lock_irqsave(&anchor->lock, flags); 177 /* 178 * At this point, we could be competing with another thread which 179 * has the same intention. To protect the urb from being unanchored 180 * twice, only the winner of the race gets the job. 181 */ 182 if (likely(anchor == urb->anchor)) 183 __usb_unanchor_urb(urb, anchor); 184 spin_unlock_irqrestore(&anchor->lock, flags); 185 } 186 EXPORT_SYMBOL_GPL(usb_unanchor_urb); 187 188 /*-------------------------------------------------------------------*/ 189 190 static const int pipetypes[4] = { 191 PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT 192 }; 193 194 /** 195 * usb_pipe_type_check - sanity check of a specific pipe for a usb device 196 * @dev: struct usb_device to be checked 197 * @pipe: pipe to check 198 * 199 * This performs a light-weight sanity check for the endpoint in the 200 * given usb device. It returns 0 if the pipe is valid for the specific usb 201 * device, otherwise a negative error code. 202 */ 203 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe) 204 { 205 const struct usb_host_endpoint *ep; 206 207 ep = usb_pipe_endpoint(dev, pipe); 208 if (!ep) 209 return -EINVAL; 210 if (usb_pipetype(pipe) != pipetypes[usb_endpoint_type(&ep->desc)]) 211 return -EINVAL; 212 return 0; 213 } 214 EXPORT_SYMBOL_GPL(usb_pipe_type_check); 215 216 /** 217 * usb_urb_ep_type_check - sanity check of endpoint in the given urb 218 * @urb: urb to be checked 219 * 220 * This performs a light-weight sanity check for the endpoint in the 221 * given urb. It returns 0 if the urb contains a valid endpoint, otherwise 222 * a negative error code. 223 */ 224 int usb_urb_ep_type_check(const struct urb *urb) 225 { 226 return usb_pipe_type_check(urb->dev, urb->pipe); 227 } 228 EXPORT_SYMBOL_GPL(usb_urb_ep_type_check); 229 230 /** 231 * usb_submit_urb - issue an asynchronous transfer request for an endpoint 232 * @urb: pointer to the urb describing the request 233 * @mem_flags: the type of memory to allocate, see kmalloc() for a list 234 * of valid options for this. 235 * 236 * This submits a transfer request, and transfers control of the URB 237 * describing that request to the USB subsystem. Request completion will 238 * be indicated later, asynchronously, by calling the completion handler. 239 * The three types of completion are success, error, and unlink 240 * (a software-induced fault, also called "request cancellation"). 241 * 242 * URBs may be submitted in interrupt context. 243 * 244 * The caller must have correctly initialized the URB before submitting 245 * it. Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are 246 * available to ensure that most fields are correctly initialized, for 247 * the particular kind of transfer, although they will not initialize 248 * any transfer flags. 249 * 250 * If the submission is successful, the complete() callback from the URB 251 * will be called exactly once, when the USB core and Host Controller Driver 252 * (HCD) are finished with the URB. When the completion function is called, 253 * control of the URB is returned to the device driver which issued the 254 * request. The completion handler may then immediately free or reuse that 255 * URB. 256 * 257 * With few exceptions, USB device drivers should never access URB fields 258 * provided by usbcore or the HCD until its complete() is called. 259 * The exceptions relate to periodic transfer scheduling. For both 260 * interrupt and isochronous urbs, as part of successful URB submission 261 * urb->interval is modified to reflect the actual transfer period used 262 * (normally some power of two units). And for isochronous urbs, 263 * urb->start_frame is modified to reflect when the URB's transfers were 264 * scheduled to start. 265 * 266 * Not all isochronous transfer scheduling policies will work, but most 267 * host controller drivers should easily handle ISO queues going from now 268 * until 10-200 msec into the future. Drivers should try to keep at 269 * least one or two msec of data in the queue; many controllers require 270 * that new transfers start at least 1 msec in the future when they are 271 * added. If the driver is unable to keep up and the queue empties out, 272 * the behavior for new submissions is governed by the URB_ISO_ASAP flag. 273 * If the flag is set, or if the queue is idle, then the URB is always 274 * assigned to the first available (and not yet expired) slot in the 275 * endpoint's schedule. If the flag is not set and the queue is active 276 * then the URB is always assigned to the next slot in the schedule 277 * following the end of the endpoint's previous URB, even if that slot is 278 * in the past. When a packet is assigned in this way to a slot that has 279 * already expired, the packet is not transmitted and the corresponding 280 * usb_iso_packet_descriptor's status field will return -EXDEV. If this 281 * would happen to all the packets in the URB, submission fails with a 282 * -EXDEV error code. 283 * 284 * For control endpoints, the synchronous usb_control_msg() call is 285 * often used (in non-interrupt context) instead of this call. 286 * That is often used through convenience wrappers, for the requests 287 * that are standardized in the USB 2.0 specification. For bulk 288 * endpoints, a synchronous usb_bulk_msg() call is available. 289 * 290 * Return: 291 * 0 on successful submissions. A negative error number otherwise. 292 * 293 * Request Queuing: 294 * 295 * URBs may be submitted to endpoints before previous ones complete, to 296 * minimize the impact of interrupt latencies and system overhead on data 297 * throughput. With that queuing policy, an endpoint's queue would never 298 * be empty. This is required for continuous isochronous data streams, 299 * and may also be required for some kinds of interrupt transfers. Such 300 * queuing also maximizes bandwidth utilization by letting USB controllers 301 * start work on later requests before driver software has finished the 302 * completion processing for earlier (successful) requests. 303 * 304 * As of Linux 2.6, all USB endpoint transfer queues support depths greater 305 * than one. This was previously a HCD-specific behavior, except for ISO 306 * transfers. Non-isochronous endpoint queues are inactive during cleanup 307 * after faults (transfer errors or cancellation). 308 * 309 * Reserved Bandwidth Transfers: 310 * 311 * Periodic transfers (interrupt or isochronous) are performed repeatedly, 312 * using the interval specified in the urb. Submitting the first urb to 313 * the endpoint reserves the bandwidth necessary to make those transfers. 314 * If the USB subsystem can't allocate sufficient bandwidth to perform 315 * the periodic request, submitting such a periodic request should fail. 316 * 317 * For devices under xHCI, the bandwidth is reserved at configuration time, or 318 * when the alt setting is selected. If there is not enough bus bandwidth, the 319 * configuration/alt setting request will fail. Therefore, submissions to 320 * periodic endpoints on devices under xHCI should never fail due to bandwidth 321 * constraints. 322 * 323 * Device drivers must explicitly request that repetition, by ensuring that 324 * some URB is always on the endpoint's queue (except possibly for short 325 * periods during completion callbacks). When there is no longer an urb 326 * queued, the endpoint's bandwidth reservation is canceled. This means 327 * drivers can use their completion handlers to ensure they keep bandwidth 328 * they need, by reinitializing and resubmitting the just-completed urb 329 * until the driver longer needs that periodic bandwidth. 330 * 331 * Memory Flags: 332 * 333 * The general rules for how to decide which mem_flags to use 334 * are the same as for kmalloc. There are four 335 * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and 336 * GFP_ATOMIC. 337 * 338 * GFP_NOFS is not ever used, as it has not been implemented yet. 339 * 340 * GFP_ATOMIC is used when 341 * (a) you are inside a completion handler, an interrupt, bottom half, 342 * tasklet or timer, or 343 * (b) you are holding a spinlock or rwlock (does not apply to 344 * semaphores), or 345 * (c) current->state != TASK_RUNNING, this is the case only after 346 * you've changed it. 347 * 348 * GFP_NOIO is used in the block io path and error handling of storage 349 * devices. 350 * 351 * All other situations use GFP_KERNEL. 352 * 353 * Some more specific rules for mem_flags can be inferred, such as 354 * (1) start_xmit, timeout, and receive methods of network drivers must 355 * use GFP_ATOMIC (they are called with a spinlock held); 356 * (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also 357 * called with a spinlock held); 358 * (3) If you use a kernel thread with a network driver you must use 359 * GFP_NOIO, unless (b) or (c) apply; 360 * (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c) 361 * apply or your are in a storage driver's block io path; 362 * (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and 363 * (6) changing firmware on a running storage or net device uses 364 * GFP_NOIO, unless b) or c) apply 365 * 366 */ 367 int usb_submit_urb(struct urb *urb, gfp_t mem_flags) 368 { 369 int xfertype, max; 370 struct usb_device *dev; 371 struct usb_host_endpoint *ep; 372 int is_out; 373 unsigned int allowed; 374 375 if (!urb || !urb->complete) 376 return -EINVAL; 377 if (urb->hcpriv) { 378 WARN_ONCE(1, "URB %pK submitted while active\n", urb); 379 return -EBUSY; 380 } 381 382 dev = urb->dev; 383 if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED)) 384 return -ENODEV; 385 386 /* For now, get the endpoint from the pipe. Eventually drivers 387 * will be required to set urb->ep directly and we will eliminate 388 * urb->pipe. 389 */ 390 ep = usb_pipe_endpoint(dev, urb->pipe); 391 if (!ep) 392 return -ENOENT; 393 394 urb->ep = ep; 395 urb->status = -EINPROGRESS; 396 urb->actual_length = 0; 397 398 /* Lots of sanity checks, so HCDs can rely on clean data 399 * and don't need to duplicate tests 400 */ 401 xfertype = usb_endpoint_type(&ep->desc); 402 if (xfertype == USB_ENDPOINT_XFER_CONTROL) { 403 struct usb_ctrlrequest *setup = 404 (struct usb_ctrlrequest *) urb->setup_packet; 405 406 if (!setup) 407 return -ENOEXEC; 408 is_out = !(setup->bRequestType & USB_DIR_IN) || 409 !setup->wLength; 410 } else { 411 is_out = usb_endpoint_dir_out(&ep->desc); 412 } 413 414 /* Clear the internal flags and cache the direction for later use */ 415 urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE | 416 URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL | 417 URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL | 418 URB_DMA_SG_COMBINED); 419 urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN); 420 421 if (xfertype != USB_ENDPOINT_XFER_CONTROL && 422 dev->state < USB_STATE_CONFIGURED) 423 return -ENODEV; 424 425 max = usb_endpoint_maxp(&ep->desc); 426 if (max <= 0) { 427 dev_dbg(&dev->dev, 428 "bogus endpoint ep%d%s in %s (bad maxpacket %d)\n", 429 usb_endpoint_num(&ep->desc), is_out ? "out" : "in", 430 __func__, max); 431 return -EMSGSIZE; 432 } 433 434 /* periodic transfers limit size per frame/uframe, 435 * but drivers only control those sizes for ISO. 436 * while we're checking, initialize return status. 437 */ 438 if (xfertype == USB_ENDPOINT_XFER_ISOC) { 439 int n, len; 440 441 /* SuperSpeed isoc endpoints have up to 16 bursts of up to 442 * 3 packets each 443 */ 444 if (dev->speed >= USB_SPEED_SUPER) { 445 int burst = 1 + ep->ss_ep_comp.bMaxBurst; 446 int mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes); 447 max *= burst; 448 max *= mult; 449 } 450 451 if (dev->speed == USB_SPEED_SUPER_PLUS && 452 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes)) { 453 struct usb_ssp_isoc_ep_comp_descriptor *isoc_ep_comp; 454 455 isoc_ep_comp = &ep->ssp_isoc_ep_comp; 456 max = le32_to_cpu(isoc_ep_comp->dwBytesPerInterval); 457 } 458 459 /* "high bandwidth" mode, 1-3 packets/uframe? */ 460 if (dev->speed == USB_SPEED_HIGH) 461 max *= usb_endpoint_maxp_mult(&ep->desc); 462 463 if (urb->number_of_packets <= 0) 464 return -EINVAL; 465 for (n = 0; n < urb->number_of_packets; n++) { 466 len = urb->iso_frame_desc[n].length; 467 if (len < 0 || len > max) 468 return -EMSGSIZE; 469 urb->iso_frame_desc[n].status = -EXDEV; 470 urb->iso_frame_desc[n].actual_length = 0; 471 } 472 } else if (urb->num_sgs && !urb->dev->bus->no_sg_constraint && 473 dev->speed != USB_SPEED_WIRELESS) { 474 struct scatterlist *sg; 475 int i; 476 477 for_each_sg(urb->sg, sg, urb->num_sgs - 1, i) 478 if (sg->length % max) 479 return -EINVAL; 480 } 481 482 /* the I/O buffer must be mapped/unmapped, except when length=0 */ 483 if (urb->transfer_buffer_length > INT_MAX) 484 return -EMSGSIZE; 485 486 /* 487 * stuff that drivers shouldn't do, but which shouldn't 488 * cause problems in HCDs if they get it wrong. 489 */ 490 491 /* Check that the pipe's type matches the endpoint's type */ 492 if (usb_pipe_type_check(urb->dev, urb->pipe)) 493 dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n", 494 usb_pipetype(urb->pipe), pipetypes[xfertype]); 495 496 /* Check against a simple/standard policy */ 497 allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK | 498 URB_FREE_BUFFER); 499 switch (xfertype) { 500 case USB_ENDPOINT_XFER_BULK: 501 case USB_ENDPOINT_XFER_INT: 502 if (is_out) 503 allowed |= URB_ZERO_PACKET; 504 fallthrough; 505 default: /* all non-iso endpoints */ 506 if (!is_out) 507 allowed |= URB_SHORT_NOT_OK; 508 break; 509 case USB_ENDPOINT_XFER_ISOC: 510 allowed |= URB_ISO_ASAP; 511 break; 512 } 513 allowed &= urb->transfer_flags; 514 515 /* warn if submitter gave bogus flags */ 516 if (allowed != urb->transfer_flags) 517 dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n", 518 urb->transfer_flags, allowed); 519 520 /* 521 * Force periodic transfer intervals to be legal values that are 522 * a power of two (so HCDs don't need to). 523 * 524 * FIXME want bus->{intr,iso}_sched_horizon values here. Each HC 525 * supports different values... this uses EHCI/UHCI defaults (and 526 * EHCI can use smaller non-default values). 527 */ 528 switch (xfertype) { 529 case USB_ENDPOINT_XFER_ISOC: 530 case USB_ENDPOINT_XFER_INT: 531 /* too small? */ 532 switch (dev->speed) { 533 case USB_SPEED_WIRELESS: 534 if ((urb->interval < 6) 535 && (xfertype == USB_ENDPOINT_XFER_INT)) 536 return -EINVAL; 537 fallthrough; 538 default: 539 if (urb->interval <= 0) 540 return -EINVAL; 541 break; 542 } 543 /* too big? */ 544 switch (dev->speed) { 545 case USB_SPEED_SUPER_PLUS: 546 case USB_SPEED_SUPER: /* units are 125us */ 547 /* Handle up to 2^(16-1) microframes */ 548 if (urb->interval > (1 << 15)) 549 return -EINVAL; 550 max = 1 << 15; 551 break; 552 case USB_SPEED_WIRELESS: 553 if (urb->interval > 16) 554 return -EINVAL; 555 break; 556 case USB_SPEED_HIGH: /* units are microframes */ 557 /* NOTE usb handles 2^15 */ 558 if (urb->interval > (1024 * 8)) 559 urb->interval = 1024 * 8; 560 max = 1024 * 8; 561 break; 562 case USB_SPEED_FULL: /* units are frames/msec */ 563 case USB_SPEED_LOW: 564 if (xfertype == USB_ENDPOINT_XFER_INT) { 565 if (urb->interval > 255) 566 return -EINVAL; 567 /* NOTE ohci only handles up to 32 */ 568 max = 128; 569 } else { 570 if (urb->interval > 1024) 571 urb->interval = 1024; 572 /* NOTE usb and ohci handle up to 2^15 */ 573 max = 1024; 574 } 575 break; 576 default: 577 return -EINVAL; 578 } 579 if (dev->speed != USB_SPEED_WIRELESS) { 580 /* Round down to a power of 2, no more than max */ 581 urb->interval = min(max, 1 << ilog2(urb->interval)); 582 } 583 } 584 585 return usb_hcd_submit_urb(urb, mem_flags); 586 } 587 EXPORT_SYMBOL_GPL(usb_submit_urb); 588 589 /*-------------------------------------------------------------------*/ 590 591 /** 592 * usb_unlink_urb - abort/cancel a transfer request for an endpoint 593 * @urb: pointer to urb describing a previously submitted request, 594 * may be NULL 595 * 596 * This routine cancels an in-progress request. URBs complete only once 597 * per submission, and may be canceled only once per submission. 598 * Successful cancellation means termination of @urb will be expedited 599 * and the completion handler will be called with a status code 600 * indicating that the request has been canceled (rather than any other 601 * code). 602 * 603 * Drivers should not call this routine or related routines, such as 604 * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect 605 * method has returned. The disconnect function should synchronize with 606 * a driver's I/O routines to insure that all URB-related activity has 607 * completed before it returns. 608 * 609 * This request is asynchronous, however the HCD might call the ->complete() 610 * callback during unlink. Therefore when drivers call usb_unlink_urb(), they 611 * must not hold any locks that may be taken by the completion function. 612 * Success is indicated by returning -EINPROGRESS, at which time the URB will 613 * probably not yet have been given back to the device driver. When it is 614 * eventually called, the completion function will see @urb->status == 615 * -ECONNRESET. 616 * Failure is indicated by usb_unlink_urb() returning any other value. 617 * Unlinking will fail when @urb is not currently "linked" (i.e., it was 618 * never submitted, or it was unlinked before, or the hardware is already 619 * finished with it), even if the completion handler has not yet run. 620 * 621 * The URB must not be deallocated while this routine is running. In 622 * particular, when a driver calls this routine, it must insure that the 623 * completion handler cannot deallocate the URB. 624 * 625 * Return: -EINPROGRESS on success. See description for other values on 626 * failure. 627 * 628 * Unlinking and Endpoint Queues: 629 * 630 * [The behaviors and guarantees described below do not apply to virtual 631 * root hubs but only to endpoint queues for physical USB devices.] 632 * 633 * Host Controller Drivers (HCDs) place all the URBs for a particular 634 * endpoint in a queue. Normally the queue advances as the controller 635 * hardware processes each request. But when an URB terminates with an 636 * error its queue generally stops (see below), at least until that URB's 637 * completion routine returns. It is guaranteed that a stopped queue 638 * will not restart until all its unlinked URBs have been fully retired, 639 * with their completion routines run, even if that's not until some time 640 * after the original completion handler returns. The same behavior and 641 * guarantee apply when an URB terminates because it was unlinked. 642 * 643 * Bulk and interrupt endpoint queues are guaranteed to stop whenever an 644 * URB terminates with any sort of error, including -ECONNRESET, -ENOENT, 645 * and -EREMOTEIO. Control endpoint queues behave the same way except 646 * that they are not guaranteed to stop for -EREMOTEIO errors. Queues 647 * for isochronous endpoints are treated differently, because they must 648 * advance at fixed rates. Such queues do not stop when an URB 649 * encounters an error or is unlinked. An unlinked isochronous URB may 650 * leave a gap in the stream of packets; it is undefined whether such 651 * gaps can be filled in. 652 * 653 * Note that early termination of an URB because a short packet was 654 * received will generate a -EREMOTEIO error if and only if the 655 * URB_SHORT_NOT_OK flag is set. By setting this flag, USB device 656 * drivers can build deep queues for large or complex bulk transfers 657 * and clean them up reliably after any sort of aborted transfer by 658 * unlinking all pending URBs at the first fault. 659 * 660 * When a control URB terminates with an error other than -EREMOTEIO, it 661 * is quite likely that the status stage of the transfer will not take 662 * place. 663 */ 664 int usb_unlink_urb(struct urb *urb) 665 { 666 if (!urb) 667 return -EINVAL; 668 if (!urb->dev) 669 return -ENODEV; 670 if (!urb->ep) 671 return -EIDRM; 672 return usb_hcd_unlink_urb(urb, -ECONNRESET); 673 } 674 EXPORT_SYMBOL_GPL(usb_unlink_urb); 675 676 /** 677 * usb_kill_urb - cancel a transfer request and wait for it to finish 678 * @urb: pointer to URB describing a previously submitted request, 679 * may be NULL 680 * 681 * This routine cancels an in-progress request. It is guaranteed that 682 * upon return all completion handlers will have finished and the URB 683 * will be totally idle and available for reuse. These features make 684 * this an ideal way to stop I/O in a disconnect() callback or close() 685 * function. If the request has not already finished or been unlinked 686 * the completion handler will see urb->status == -ENOENT. 687 * 688 * While the routine is running, attempts to resubmit the URB will fail 689 * with error -EPERM. Thus even if the URB's completion handler always 690 * tries to resubmit, it will not succeed and the URB will become idle. 691 * 692 * The URB must not be deallocated while this routine is running. In 693 * particular, when a driver calls this routine, it must insure that the 694 * completion handler cannot deallocate the URB. 695 * 696 * This routine may not be used in an interrupt context (such as a bottom 697 * half or a completion handler), or when holding a spinlock, or in other 698 * situations where the caller can't schedule(). 699 * 700 * This routine should not be called by a driver after its disconnect 701 * method has returned. 702 */ 703 void usb_kill_urb(struct urb *urb) 704 { 705 might_sleep(); 706 if (!(urb && urb->dev && urb->ep)) 707 return; 708 atomic_inc(&urb->reject); 709 710 usb_hcd_unlink_urb(urb, -ENOENT); 711 wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0); 712 713 atomic_dec(&urb->reject); 714 } 715 EXPORT_SYMBOL_GPL(usb_kill_urb); 716 717 /** 718 * usb_poison_urb - reliably kill a transfer and prevent further use of an URB 719 * @urb: pointer to URB describing a previously submitted request, 720 * may be NULL 721 * 722 * This routine cancels an in-progress request. It is guaranteed that 723 * upon return all completion handlers will have finished and the URB 724 * will be totally idle and cannot be reused. These features make 725 * this an ideal way to stop I/O in a disconnect() callback. 726 * If the request has not already finished or been unlinked 727 * the completion handler will see urb->status == -ENOENT. 728 * 729 * After and while the routine runs, attempts to resubmit the URB will fail 730 * with error -EPERM. Thus even if the URB's completion handler always 731 * tries to resubmit, it will not succeed and the URB will become idle. 732 * 733 * The URB must not be deallocated while this routine is running. In 734 * particular, when a driver calls this routine, it must insure that the 735 * completion handler cannot deallocate the URB. 736 * 737 * This routine may not be used in an interrupt context (such as a bottom 738 * half or a completion handler), or when holding a spinlock, or in other 739 * situations where the caller can't schedule(). 740 * 741 * This routine should not be called by a driver after its disconnect 742 * method has returned. 743 */ 744 void usb_poison_urb(struct urb *urb) 745 { 746 might_sleep(); 747 if (!urb) 748 return; 749 atomic_inc(&urb->reject); 750 751 if (!urb->dev || !urb->ep) 752 return; 753 754 usb_hcd_unlink_urb(urb, -ENOENT); 755 wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0); 756 } 757 EXPORT_SYMBOL_GPL(usb_poison_urb); 758 759 void usb_unpoison_urb(struct urb *urb) 760 { 761 if (!urb) 762 return; 763 764 atomic_dec(&urb->reject); 765 } 766 EXPORT_SYMBOL_GPL(usb_unpoison_urb); 767 768 /** 769 * usb_block_urb - reliably prevent further use of an URB 770 * @urb: pointer to URB to be blocked, may be NULL 771 * 772 * After the routine has run, attempts to resubmit the URB will fail 773 * with error -EPERM. Thus even if the URB's completion handler always 774 * tries to resubmit, it will not succeed and the URB will become idle. 775 * 776 * The URB must not be deallocated while this routine is running. In 777 * particular, when a driver calls this routine, it must insure that the 778 * completion handler cannot deallocate the URB. 779 */ 780 void usb_block_urb(struct urb *urb) 781 { 782 if (!urb) 783 return; 784 785 atomic_inc(&urb->reject); 786 } 787 EXPORT_SYMBOL_GPL(usb_block_urb); 788 789 /** 790 * usb_kill_anchored_urbs - kill all URBs associated with an anchor 791 * @anchor: anchor the requests are bound to 792 * 793 * This kills all outstanding URBs starting from the back of the queue, 794 * with guarantee that no completer callbacks will take place from the 795 * anchor after this function returns. 796 * 797 * This routine should not be called by a driver after its disconnect 798 * method has returned. 799 */ 800 void usb_kill_anchored_urbs(struct usb_anchor *anchor) 801 { 802 struct urb *victim; 803 int surely_empty; 804 805 do { 806 spin_lock_irq(&anchor->lock); 807 while (!list_empty(&anchor->urb_list)) { 808 victim = list_entry(anchor->urb_list.prev, 809 struct urb, anchor_list); 810 /* make sure the URB isn't freed before we kill it */ 811 usb_get_urb(victim); 812 spin_unlock_irq(&anchor->lock); 813 /* this will unanchor the URB */ 814 usb_kill_urb(victim); 815 usb_put_urb(victim); 816 spin_lock_irq(&anchor->lock); 817 } 818 surely_empty = usb_anchor_check_wakeup(anchor); 819 820 spin_unlock_irq(&anchor->lock); 821 cpu_relax(); 822 } while (!surely_empty); 823 } 824 EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs); 825 826 827 /** 828 * usb_poison_anchored_urbs - cease all traffic from an anchor 829 * @anchor: anchor the requests are bound to 830 * 831 * this allows all outstanding URBs to be poisoned starting 832 * from the back of the queue. Newly added URBs will also be 833 * poisoned 834 * 835 * This routine should not be called by a driver after its disconnect 836 * method has returned. 837 */ 838 void usb_poison_anchored_urbs(struct usb_anchor *anchor) 839 { 840 struct urb *victim; 841 int surely_empty; 842 843 do { 844 spin_lock_irq(&anchor->lock); 845 anchor->poisoned = 1; 846 while (!list_empty(&anchor->urb_list)) { 847 victim = list_entry(anchor->urb_list.prev, 848 struct urb, anchor_list); 849 /* make sure the URB isn't freed before we kill it */ 850 usb_get_urb(victim); 851 spin_unlock_irq(&anchor->lock); 852 /* this will unanchor the URB */ 853 usb_poison_urb(victim); 854 usb_put_urb(victim); 855 spin_lock_irq(&anchor->lock); 856 } 857 surely_empty = usb_anchor_check_wakeup(anchor); 858 859 spin_unlock_irq(&anchor->lock); 860 cpu_relax(); 861 } while (!surely_empty); 862 } 863 EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs); 864 865 /** 866 * usb_unpoison_anchored_urbs - let an anchor be used successfully again 867 * @anchor: anchor the requests are bound to 868 * 869 * Reverses the effect of usb_poison_anchored_urbs 870 * the anchor can be used normally after it returns 871 */ 872 void usb_unpoison_anchored_urbs(struct usb_anchor *anchor) 873 { 874 unsigned long flags; 875 struct urb *lazarus; 876 877 spin_lock_irqsave(&anchor->lock, flags); 878 list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) { 879 usb_unpoison_urb(lazarus); 880 } 881 anchor->poisoned = 0; 882 spin_unlock_irqrestore(&anchor->lock, flags); 883 } 884 EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs); 885 /** 886 * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse 887 * @anchor: anchor the requests are bound to 888 * 889 * this allows all outstanding URBs to be unlinked starting 890 * from the back of the queue. This function is asynchronous. 891 * The unlinking is just triggered. It may happen after this 892 * function has returned. 893 * 894 * This routine should not be called by a driver after its disconnect 895 * method has returned. 896 */ 897 void usb_unlink_anchored_urbs(struct usb_anchor *anchor) 898 { 899 struct urb *victim; 900 901 while ((victim = usb_get_from_anchor(anchor)) != NULL) { 902 usb_unlink_urb(victim); 903 usb_put_urb(victim); 904 } 905 } 906 EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs); 907 908 /** 909 * usb_anchor_suspend_wakeups 910 * @anchor: the anchor you want to suspend wakeups on 911 * 912 * Call this to stop the last urb being unanchored from waking up any 913 * usb_wait_anchor_empty_timeout waiters. This is used in the hcd urb give- 914 * back path to delay waking up until after the completion handler has run. 915 */ 916 void usb_anchor_suspend_wakeups(struct usb_anchor *anchor) 917 { 918 if (anchor) 919 atomic_inc(&anchor->suspend_wakeups); 920 } 921 EXPORT_SYMBOL_GPL(usb_anchor_suspend_wakeups); 922 923 /** 924 * usb_anchor_resume_wakeups 925 * @anchor: the anchor you want to resume wakeups on 926 * 927 * Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and 928 * wake up any current waiters if the anchor is empty. 929 */ 930 void usb_anchor_resume_wakeups(struct usb_anchor *anchor) 931 { 932 if (!anchor) 933 return; 934 935 atomic_dec(&anchor->suspend_wakeups); 936 if (usb_anchor_check_wakeup(anchor)) 937 wake_up(&anchor->wait); 938 } 939 EXPORT_SYMBOL_GPL(usb_anchor_resume_wakeups); 940 941 /** 942 * usb_wait_anchor_empty_timeout - wait for an anchor to be unused 943 * @anchor: the anchor you want to become unused 944 * @timeout: how long you are willing to wait in milliseconds 945 * 946 * Call this is you want to be sure all an anchor's 947 * URBs have finished 948 * 949 * Return: Non-zero if the anchor became unused. Zero on timeout. 950 */ 951 int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 952 unsigned int timeout) 953 { 954 return wait_event_timeout(anchor->wait, 955 usb_anchor_check_wakeup(anchor), 956 msecs_to_jiffies(timeout)); 957 } 958 EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout); 959 960 /** 961 * usb_get_from_anchor - get an anchor's oldest urb 962 * @anchor: the anchor whose urb you want 963 * 964 * This will take the oldest urb from an anchor, 965 * unanchor and return it 966 * 967 * Return: The oldest urb from @anchor, or %NULL if @anchor has no 968 * urbs associated with it. 969 */ 970 struct urb *usb_get_from_anchor(struct usb_anchor *anchor) 971 { 972 struct urb *victim; 973 unsigned long flags; 974 975 spin_lock_irqsave(&anchor->lock, flags); 976 if (!list_empty(&anchor->urb_list)) { 977 victim = list_entry(anchor->urb_list.next, struct urb, 978 anchor_list); 979 usb_get_urb(victim); 980 __usb_unanchor_urb(victim, anchor); 981 } else { 982 victim = NULL; 983 } 984 spin_unlock_irqrestore(&anchor->lock, flags); 985 986 return victim; 987 } 988 989 EXPORT_SYMBOL_GPL(usb_get_from_anchor); 990 991 /** 992 * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs 993 * @anchor: the anchor whose urbs you want to unanchor 994 * 995 * use this to get rid of all an anchor's urbs 996 */ 997 void usb_scuttle_anchored_urbs(struct usb_anchor *anchor) 998 { 999 struct urb *victim; 1000 unsigned long flags; 1001 int surely_empty; 1002 1003 do { 1004 spin_lock_irqsave(&anchor->lock, flags); 1005 while (!list_empty(&anchor->urb_list)) { 1006 victim = list_entry(anchor->urb_list.prev, 1007 struct urb, anchor_list); 1008 __usb_unanchor_urb(victim, anchor); 1009 } 1010 surely_empty = usb_anchor_check_wakeup(anchor); 1011 1012 spin_unlock_irqrestore(&anchor->lock, flags); 1013 cpu_relax(); 1014 } while (!surely_empty); 1015 } 1016 1017 EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs); 1018 1019 /** 1020 * usb_anchor_empty - is an anchor empty 1021 * @anchor: the anchor you want to query 1022 * 1023 * Return: 1 if the anchor has no urbs associated with it. 1024 */ 1025 int usb_anchor_empty(struct usb_anchor *anchor) 1026 { 1027 return list_empty(&anchor->urb_list); 1028 } 1029 1030 EXPORT_SYMBOL_GPL(usb_anchor_empty); 1031 1032