xref: /openbmc/linux/drivers/usb/core/urb.c (revision d9fd5a71)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Released under the GPLv2 only.
4  */
5 
6 #include <linux/module.h>
7 #include <linux/string.h>
8 #include <linux/bitops.h>
9 #include <linux/slab.h>
10 #include <linux/log2.h>
11 #include <linux/usb.h>
12 #include <linux/wait.h>
13 #include <linux/usb/hcd.h>
14 #include <linux/scatterlist.h>
15 
16 #define to_urb(d) container_of(d, struct urb, kref)
17 
18 
19 static void urb_destroy(struct kref *kref)
20 {
21 	struct urb *urb = to_urb(kref);
22 
23 	if (urb->transfer_flags & URB_FREE_BUFFER)
24 		kfree(urb->transfer_buffer);
25 
26 	kfree(urb);
27 }
28 
29 /**
30  * usb_init_urb - initializes a urb so that it can be used by a USB driver
31  * @urb: pointer to the urb to initialize
32  *
33  * Initializes a urb so that the USB subsystem can use it properly.
34  *
35  * If a urb is created with a call to usb_alloc_urb() it is not
36  * necessary to call this function.  Only use this if you allocate the
37  * space for a struct urb on your own.  If you call this function, be
38  * careful when freeing the memory for your urb that it is no longer in
39  * use by the USB core.
40  *
41  * Only use this function if you _really_ understand what you are doing.
42  */
43 void usb_init_urb(struct urb *urb)
44 {
45 	if (urb) {
46 		memset(urb, 0, sizeof(*urb));
47 		kref_init(&urb->kref);
48 		INIT_LIST_HEAD(&urb->urb_list);
49 		INIT_LIST_HEAD(&urb->anchor_list);
50 	}
51 }
52 EXPORT_SYMBOL_GPL(usb_init_urb);
53 
54 /**
55  * usb_alloc_urb - creates a new urb for a USB driver to use
56  * @iso_packets: number of iso packets for this urb
57  * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
58  *	valid options for this.
59  *
60  * Creates an urb for the USB driver to use, initializes a few internal
61  * structures, increments the usage counter, and returns a pointer to it.
62  *
63  * If the driver want to use this urb for interrupt, control, or bulk
64  * endpoints, pass '0' as the number of iso packets.
65  *
66  * The driver must call usb_free_urb() when it is finished with the urb.
67  *
68  * Return: A pointer to the new urb, or %NULL if no memory is available.
69  */
70 struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
71 {
72 	struct urb *urb;
73 
74 	urb = kmalloc(struct_size(urb, iso_frame_desc, iso_packets),
75 		      mem_flags);
76 	if (!urb)
77 		return NULL;
78 	usb_init_urb(urb);
79 	return urb;
80 }
81 EXPORT_SYMBOL_GPL(usb_alloc_urb);
82 
83 /**
84  * usb_free_urb - frees the memory used by a urb when all users of it are finished
85  * @urb: pointer to the urb to free, may be NULL
86  *
87  * Must be called when a user of a urb is finished with it.  When the last user
88  * of the urb calls this function, the memory of the urb is freed.
89  *
90  * Note: The transfer buffer associated with the urb is not freed unless the
91  * URB_FREE_BUFFER transfer flag is set.
92  */
93 void usb_free_urb(struct urb *urb)
94 {
95 	if (urb)
96 		kref_put(&urb->kref, urb_destroy);
97 }
98 EXPORT_SYMBOL_GPL(usb_free_urb);
99 
100 /**
101  * usb_get_urb - increments the reference count of the urb
102  * @urb: pointer to the urb to modify, may be NULL
103  *
104  * This must be  called whenever a urb is transferred from a device driver to a
105  * host controller driver.  This allows proper reference counting to happen
106  * for urbs.
107  *
108  * Return: A pointer to the urb with the incremented reference counter.
109  */
110 struct urb *usb_get_urb(struct urb *urb)
111 {
112 	if (urb)
113 		kref_get(&urb->kref);
114 	return urb;
115 }
116 EXPORT_SYMBOL_GPL(usb_get_urb);
117 
118 /**
119  * usb_anchor_urb - anchors an URB while it is processed
120  * @urb: pointer to the urb to anchor
121  * @anchor: pointer to the anchor
122  *
123  * This can be called to have access to URBs which are to be executed
124  * without bothering to track them
125  */
126 void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
127 {
128 	unsigned long flags;
129 
130 	spin_lock_irqsave(&anchor->lock, flags);
131 	usb_get_urb(urb);
132 	list_add_tail(&urb->anchor_list, &anchor->urb_list);
133 	urb->anchor = anchor;
134 
135 	if (unlikely(anchor->poisoned))
136 		atomic_inc(&urb->reject);
137 
138 	spin_unlock_irqrestore(&anchor->lock, flags);
139 }
140 EXPORT_SYMBOL_GPL(usb_anchor_urb);
141 
142 static int usb_anchor_check_wakeup(struct usb_anchor *anchor)
143 {
144 	return atomic_read(&anchor->suspend_wakeups) == 0 &&
145 		list_empty(&anchor->urb_list);
146 }
147 
148 /* Callers must hold anchor->lock */
149 static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
150 {
151 	urb->anchor = NULL;
152 	list_del(&urb->anchor_list);
153 	usb_put_urb(urb);
154 	if (usb_anchor_check_wakeup(anchor))
155 		wake_up(&anchor->wait);
156 }
157 
158 /**
159  * usb_unanchor_urb - unanchors an URB
160  * @urb: pointer to the urb to anchor
161  *
162  * Call this to stop the system keeping track of this URB
163  */
164 void usb_unanchor_urb(struct urb *urb)
165 {
166 	unsigned long flags;
167 	struct usb_anchor *anchor;
168 
169 	if (!urb)
170 		return;
171 
172 	anchor = urb->anchor;
173 	if (!anchor)
174 		return;
175 
176 	spin_lock_irqsave(&anchor->lock, flags);
177 	/*
178 	 * At this point, we could be competing with another thread which
179 	 * has the same intention. To protect the urb from being unanchored
180 	 * twice, only the winner of the race gets the job.
181 	 */
182 	if (likely(anchor == urb->anchor))
183 		__usb_unanchor_urb(urb, anchor);
184 	spin_unlock_irqrestore(&anchor->lock, flags);
185 }
186 EXPORT_SYMBOL_GPL(usb_unanchor_urb);
187 
188 /*-------------------------------------------------------------------*/
189 
190 static const int pipetypes[4] = {
191 	PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
192 };
193 
194 /**
195  * usb_pipe_type_check - sanity check of a specific pipe for a usb device
196  * @dev: struct usb_device to be checked
197  * @pipe: pipe to check
198  *
199  * This performs a light-weight sanity check for the endpoint in the
200  * given usb device.  It returns 0 if the pipe is valid for the specific usb
201  * device, otherwise a negative error code.
202  */
203 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe)
204 {
205 	const struct usb_host_endpoint *ep;
206 
207 	ep = usb_pipe_endpoint(dev, pipe);
208 	if (!ep)
209 		return -EINVAL;
210 	if (usb_pipetype(pipe) != pipetypes[usb_endpoint_type(&ep->desc)])
211 		return -EINVAL;
212 	return 0;
213 }
214 EXPORT_SYMBOL_GPL(usb_pipe_type_check);
215 
216 /**
217  * usb_urb_ep_type_check - sanity check of endpoint in the given urb
218  * @urb: urb to be checked
219  *
220  * This performs a light-weight sanity check for the endpoint in the
221  * given urb.  It returns 0 if the urb contains a valid endpoint, otherwise
222  * a negative error code.
223  */
224 int usb_urb_ep_type_check(const struct urb *urb)
225 {
226 	return usb_pipe_type_check(urb->dev, urb->pipe);
227 }
228 EXPORT_SYMBOL_GPL(usb_urb_ep_type_check);
229 
230 /**
231  * usb_submit_urb - issue an asynchronous transfer request for an endpoint
232  * @urb: pointer to the urb describing the request
233  * @mem_flags: the type of memory to allocate, see kmalloc() for a list
234  *	of valid options for this.
235  *
236  * This submits a transfer request, and transfers control of the URB
237  * describing that request to the USB subsystem.  Request completion will
238  * be indicated later, asynchronously, by calling the completion handler.
239  * The three types of completion are success, error, and unlink
240  * (a software-induced fault, also called "request cancellation").
241  *
242  * URBs may be submitted in interrupt context.
243  *
244  * The caller must have correctly initialized the URB before submitting
245  * it.  Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
246  * available to ensure that most fields are correctly initialized, for
247  * the particular kind of transfer, although they will not initialize
248  * any transfer flags.
249  *
250  * If the submission is successful, the complete() callback from the URB
251  * will be called exactly once, when the USB core and Host Controller Driver
252  * (HCD) are finished with the URB.  When the completion function is called,
253  * control of the URB is returned to the device driver which issued the
254  * request.  The completion handler may then immediately free or reuse that
255  * URB.
256  *
257  * With few exceptions, USB device drivers should never access URB fields
258  * provided by usbcore or the HCD until its complete() is called.
259  * The exceptions relate to periodic transfer scheduling.  For both
260  * interrupt and isochronous urbs, as part of successful URB submission
261  * urb->interval is modified to reflect the actual transfer period used
262  * (normally some power of two units).  And for isochronous urbs,
263  * urb->start_frame is modified to reflect when the URB's transfers were
264  * scheduled to start.
265  *
266  * Not all isochronous transfer scheduling policies will work, but most
267  * host controller drivers should easily handle ISO queues going from now
268  * until 10-200 msec into the future.  Drivers should try to keep at
269  * least one or two msec of data in the queue; many controllers require
270  * that new transfers start at least 1 msec in the future when they are
271  * added.  If the driver is unable to keep up and the queue empties out,
272  * the behavior for new submissions is governed by the URB_ISO_ASAP flag.
273  * If the flag is set, or if the queue is idle, then the URB is always
274  * assigned to the first available (and not yet expired) slot in the
275  * endpoint's schedule.  If the flag is not set and the queue is active
276  * then the URB is always assigned to the next slot in the schedule
277  * following the end of the endpoint's previous URB, even if that slot is
278  * in the past.  When a packet is assigned in this way to a slot that has
279  * already expired, the packet is not transmitted and the corresponding
280  * usb_iso_packet_descriptor's status field will return -EXDEV.  If this
281  * would happen to all the packets in the URB, submission fails with a
282  * -EXDEV error code.
283  *
284  * For control endpoints, the synchronous usb_control_msg() call is
285  * often used (in non-interrupt context) instead of this call.
286  * That is often used through convenience wrappers, for the requests
287  * that are standardized in the USB 2.0 specification.  For bulk
288  * endpoints, a synchronous usb_bulk_msg() call is available.
289  *
290  * Return:
291  * 0 on successful submissions. A negative error number otherwise.
292  *
293  * Request Queuing:
294  *
295  * URBs may be submitted to endpoints before previous ones complete, to
296  * minimize the impact of interrupt latencies and system overhead on data
297  * throughput.  With that queuing policy, an endpoint's queue would never
298  * be empty.  This is required for continuous isochronous data streams,
299  * and may also be required for some kinds of interrupt transfers. Such
300  * queuing also maximizes bandwidth utilization by letting USB controllers
301  * start work on later requests before driver software has finished the
302  * completion processing for earlier (successful) requests.
303  *
304  * As of Linux 2.6, all USB endpoint transfer queues support depths greater
305  * than one.  This was previously a HCD-specific behavior, except for ISO
306  * transfers.  Non-isochronous endpoint queues are inactive during cleanup
307  * after faults (transfer errors or cancellation).
308  *
309  * Reserved Bandwidth Transfers:
310  *
311  * Periodic transfers (interrupt or isochronous) are performed repeatedly,
312  * using the interval specified in the urb.  Submitting the first urb to
313  * the endpoint reserves the bandwidth necessary to make those transfers.
314  * If the USB subsystem can't allocate sufficient bandwidth to perform
315  * the periodic request, submitting such a periodic request should fail.
316  *
317  * For devices under xHCI, the bandwidth is reserved at configuration time, or
318  * when the alt setting is selected.  If there is not enough bus bandwidth, the
319  * configuration/alt setting request will fail.  Therefore, submissions to
320  * periodic endpoints on devices under xHCI should never fail due to bandwidth
321  * constraints.
322  *
323  * Device drivers must explicitly request that repetition, by ensuring that
324  * some URB is always on the endpoint's queue (except possibly for short
325  * periods during completion callbacks).  When there is no longer an urb
326  * queued, the endpoint's bandwidth reservation is canceled.  This means
327  * drivers can use their completion handlers to ensure they keep bandwidth
328  * they need, by reinitializing and resubmitting the just-completed urb
329  * until the driver longer needs that periodic bandwidth.
330  *
331  * Memory Flags:
332  *
333  * The general rules for how to decide which mem_flags to use
334  * are the same as for kmalloc.  There are four
335  * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
336  * GFP_ATOMIC.
337  *
338  * GFP_NOFS is not ever used, as it has not been implemented yet.
339  *
340  * GFP_ATOMIC is used when
341  *   (a) you are inside a completion handler, an interrupt, bottom half,
342  *       tasklet or timer, or
343  *   (b) you are holding a spinlock or rwlock (does not apply to
344  *       semaphores), or
345  *   (c) current->state != TASK_RUNNING, this is the case only after
346  *       you've changed it.
347  *
348  * GFP_NOIO is used in the block io path and error handling of storage
349  * devices.
350  *
351  * All other situations use GFP_KERNEL.
352  *
353  * Some more specific rules for mem_flags can be inferred, such as
354  *  (1) start_xmit, timeout, and receive methods of network drivers must
355  *      use GFP_ATOMIC (they are called with a spinlock held);
356  *  (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
357  *      called with a spinlock held);
358  *  (3) If you use a kernel thread with a network driver you must use
359  *      GFP_NOIO, unless (b) or (c) apply;
360  *  (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
361  *      apply or your are in a storage driver's block io path;
362  *  (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
363  *  (6) changing firmware on a running storage or net device uses
364  *      GFP_NOIO, unless b) or c) apply
365  *
366  */
367 int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
368 {
369 	int				xfertype, max;
370 	struct usb_device		*dev;
371 	struct usb_host_endpoint	*ep;
372 	int				is_out;
373 	unsigned int			allowed;
374 
375 	if (!urb || !urb->complete)
376 		return -EINVAL;
377 	if (urb->hcpriv) {
378 		WARN_ONCE(1, "URB %pK submitted while active\n", urb);
379 		return -EBUSY;
380 	}
381 
382 	dev = urb->dev;
383 	if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
384 		return -ENODEV;
385 
386 	/* For now, get the endpoint from the pipe.  Eventually drivers
387 	 * will be required to set urb->ep directly and we will eliminate
388 	 * urb->pipe.
389 	 */
390 	ep = usb_pipe_endpoint(dev, urb->pipe);
391 	if (!ep)
392 		return -ENOENT;
393 
394 	urb->ep = ep;
395 	urb->status = -EINPROGRESS;
396 	urb->actual_length = 0;
397 
398 	/* Lots of sanity checks, so HCDs can rely on clean data
399 	 * and don't need to duplicate tests
400 	 */
401 	xfertype = usb_endpoint_type(&ep->desc);
402 	if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
403 		struct usb_ctrlrequest *setup =
404 				(struct usb_ctrlrequest *) urb->setup_packet;
405 
406 		if (!setup)
407 			return -ENOEXEC;
408 		is_out = !(setup->bRequestType & USB_DIR_IN) ||
409 				!setup->wLength;
410 	} else {
411 		is_out = usb_endpoint_dir_out(&ep->desc);
412 	}
413 
414 	/* Clear the internal flags and cache the direction for later use */
415 	urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
416 			URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
417 			URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
418 			URB_DMA_SG_COMBINED);
419 	urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
420 
421 	if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
422 			dev->state < USB_STATE_CONFIGURED)
423 		return -ENODEV;
424 
425 	max = usb_endpoint_maxp(&ep->desc);
426 	if (max <= 0) {
427 		dev_dbg(&dev->dev,
428 			"bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
429 			usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
430 			__func__, max);
431 		return -EMSGSIZE;
432 	}
433 
434 	/* periodic transfers limit size per frame/uframe,
435 	 * but drivers only control those sizes for ISO.
436 	 * while we're checking, initialize return status.
437 	 */
438 	if (xfertype == USB_ENDPOINT_XFER_ISOC) {
439 		int	n, len;
440 
441 		/* SuperSpeed isoc endpoints have up to 16 bursts of up to
442 		 * 3 packets each
443 		 */
444 		if (dev->speed >= USB_SPEED_SUPER) {
445 			int     burst = 1 + ep->ss_ep_comp.bMaxBurst;
446 			int     mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
447 			max *= burst;
448 			max *= mult;
449 		}
450 
451 		if (dev->speed == USB_SPEED_SUPER_PLUS &&
452 		    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes)) {
453 			struct usb_ssp_isoc_ep_comp_descriptor *isoc_ep_comp;
454 
455 			isoc_ep_comp = &ep->ssp_isoc_ep_comp;
456 			max = le32_to_cpu(isoc_ep_comp->dwBytesPerInterval);
457 		}
458 
459 		/* "high bandwidth" mode, 1-3 packets/uframe? */
460 		if (dev->speed == USB_SPEED_HIGH)
461 			max *= usb_endpoint_maxp_mult(&ep->desc);
462 
463 		if (urb->number_of_packets <= 0)
464 			return -EINVAL;
465 		for (n = 0; n < urb->number_of_packets; n++) {
466 			len = urb->iso_frame_desc[n].length;
467 			if (len < 0 || len > max)
468 				return -EMSGSIZE;
469 			urb->iso_frame_desc[n].status = -EXDEV;
470 			urb->iso_frame_desc[n].actual_length = 0;
471 		}
472 	} else if (urb->num_sgs && !urb->dev->bus->no_sg_constraint &&
473 			dev->speed != USB_SPEED_WIRELESS) {
474 		struct scatterlist *sg;
475 		int i;
476 
477 		for_each_sg(urb->sg, sg, urb->num_sgs - 1, i)
478 			if (sg->length % max)
479 				return -EINVAL;
480 	}
481 
482 	/* the I/O buffer must be mapped/unmapped, except when length=0 */
483 	if (urb->transfer_buffer_length > INT_MAX)
484 		return -EMSGSIZE;
485 
486 	/*
487 	 * stuff that drivers shouldn't do, but which shouldn't
488 	 * cause problems in HCDs if they get it wrong.
489 	 */
490 
491 	/* Check that the pipe's type matches the endpoint's type */
492 	if (usb_pipe_type_check(urb->dev, urb->pipe))
493 		dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
494 			usb_pipetype(urb->pipe), pipetypes[xfertype]);
495 
496 	/* Check against a simple/standard policy */
497 	allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
498 			URB_FREE_BUFFER);
499 	switch (xfertype) {
500 	case USB_ENDPOINT_XFER_BULK:
501 	case USB_ENDPOINT_XFER_INT:
502 		if (is_out)
503 			allowed |= URB_ZERO_PACKET;
504 		fallthrough;
505 	default:			/* all non-iso endpoints */
506 		if (!is_out)
507 			allowed |= URB_SHORT_NOT_OK;
508 		break;
509 	case USB_ENDPOINT_XFER_ISOC:
510 		allowed |= URB_ISO_ASAP;
511 		break;
512 	}
513 	allowed &= urb->transfer_flags;
514 
515 	/* warn if submitter gave bogus flags */
516 	if (allowed != urb->transfer_flags)
517 		dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
518 			urb->transfer_flags, allowed);
519 
520 	/*
521 	 * Force periodic transfer intervals to be legal values that are
522 	 * a power of two (so HCDs don't need to).
523 	 *
524 	 * FIXME want bus->{intr,iso}_sched_horizon values here.  Each HC
525 	 * supports different values... this uses EHCI/UHCI defaults (and
526 	 * EHCI can use smaller non-default values).
527 	 */
528 	switch (xfertype) {
529 	case USB_ENDPOINT_XFER_ISOC:
530 	case USB_ENDPOINT_XFER_INT:
531 		/* too small? */
532 		switch (dev->speed) {
533 		case USB_SPEED_WIRELESS:
534 			if ((urb->interval < 6)
535 				&& (xfertype == USB_ENDPOINT_XFER_INT))
536 				return -EINVAL;
537 			fallthrough;
538 		default:
539 			if (urb->interval <= 0)
540 				return -EINVAL;
541 			break;
542 		}
543 		/* too big? */
544 		switch (dev->speed) {
545 		case USB_SPEED_SUPER_PLUS:
546 		case USB_SPEED_SUPER:	/* units are 125us */
547 			/* Handle up to 2^(16-1) microframes */
548 			if (urb->interval > (1 << 15))
549 				return -EINVAL;
550 			max = 1 << 15;
551 			break;
552 		case USB_SPEED_WIRELESS:
553 			if (urb->interval > 16)
554 				return -EINVAL;
555 			break;
556 		case USB_SPEED_HIGH:	/* units are microframes */
557 			/* NOTE usb handles 2^15 */
558 			if (urb->interval > (1024 * 8))
559 				urb->interval = 1024 * 8;
560 			max = 1024 * 8;
561 			break;
562 		case USB_SPEED_FULL:	/* units are frames/msec */
563 		case USB_SPEED_LOW:
564 			if (xfertype == USB_ENDPOINT_XFER_INT) {
565 				if (urb->interval > 255)
566 					return -EINVAL;
567 				/* NOTE ohci only handles up to 32 */
568 				max = 128;
569 			} else {
570 				if (urb->interval > 1024)
571 					urb->interval = 1024;
572 				/* NOTE usb and ohci handle up to 2^15 */
573 				max = 1024;
574 			}
575 			break;
576 		default:
577 			return -EINVAL;
578 		}
579 		if (dev->speed != USB_SPEED_WIRELESS) {
580 			/* Round down to a power of 2, no more than max */
581 			urb->interval = min(max, 1 << ilog2(urb->interval));
582 		}
583 	}
584 
585 	return usb_hcd_submit_urb(urb, mem_flags);
586 }
587 EXPORT_SYMBOL_GPL(usb_submit_urb);
588 
589 /*-------------------------------------------------------------------*/
590 
591 /**
592  * usb_unlink_urb - abort/cancel a transfer request for an endpoint
593  * @urb: pointer to urb describing a previously submitted request,
594  *	may be NULL
595  *
596  * This routine cancels an in-progress request.  URBs complete only once
597  * per submission, and may be canceled only once per submission.
598  * Successful cancellation means termination of @urb will be expedited
599  * and the completion handler will be called with a status code
600  * indicating that the request has been canceled (rather than any other
601  * code).
602  *
603  * Drivers should not call this routine or related routines, such as
604  * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
605  * method has returned.  The disconnect function should synchronize with
606  * a driver's I/O routines to insure that all URB-related activity has
607  * completed before it returns.
608  *
609  * This request is asynchronous, however the HCD might call the ->complete()
610  * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
611  * must not hold any locks that may be taken by the completion function.
612  * Success is indicated by returning -EINPROGRESS, at which time the URB will
613  * probably not yet have been given back to the device driver. When it is
614  * eventually called, the completion function will see @urb->status ==
615  * -ECONNRESET.
616  * Failure is indicated by usb_unlink_urb() returning any other value.
617  * Unlinking will fail when @urb is not currently "linked" (i.e., it was
618  * never submitted, or it was unlinked before, or the hardware is already
619  * finished with it), even if the completion handler has not yet run.
620  *
621  * The URB must not be deallocated while this routine is running.  In
622  * particular, when a driver calls this routine, it must insure that the
623  * completion handler cannot deallocate the URB.
624  *
625  * Return: -EINPROGRESS on success. See description for other values on
626  * failure.
627  *
628  * Unlinking and Endpoint Queues:
629  *
630  * [The behaviors and guarantees described below do not apply to virtual
631  * root hubs but only to endpoint queues for physical USB devices.]
632  *
633  * Host Controller Drivers (HCDs) place all the URBs for a particular
634  * endpoint in a queue.  Normally the queue advances as the controller
635  * hardware processes each request.  But when an URB terminates with an
636  * error its queue generally stops (see below), at least until that URB's
637  * completion routine returns.  It is guaranteed that a stopped queue
638  * will not restart until all its unlinked URBs have been fully retired,
639  * with their completion routines run, even if that's not until some time
640  * after the original completion handler returns.  The same behavior and
641  * guarantee apply when an URB terminates because it was unlinked.
642  *
643  * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
644  * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
645  * and -EREMOTEIO.  Control endpoint queues behave the same way except
646  * that they are not guaranteed to stop for -EREMOTEIO errors.  Queues
647  * for isochronous endpoints are treated differently, because they must
648  * advance at fixed rates.  Such queues do not stop when an URB
649  * encounters an error or is unlinked.  An unlinked isochronous URB may
650  * leave a gap in the stream of packets; it is undefined whether such
651  * gaps can be filled in.
652  *
653  * Note that early termination of an URB because a short packet was
654  * received will generate a -EREMOTEIO error if and only if the
655  * URB_SHORT_NOT_OK flag is set.  By setting this flag, USB device
656  * drivers can build deep queues for large or complex bulk transfers
657  * and clean them up reliably after any sort of aborted transfer by
658  * unlinking all pending URBs at the first fault.
659  *
660  * When a control URB terminates with an error other than -EREMOTEIO, it
661  * is quite likely that the status stage of the transfer will not take
662  * place.
663  */
664 int usb_unlink_urb(struct urb *urb)
665 {
666 	if (!urb)
667 		return -EINVAL;
668 	if (!urb->dev)
669 		return -ENODEV;
670 	if (!urb->ep)
671 		return -EIDRM;
672 	return usb_hcd_unlink_urb(urb, -ECONNRESET);
673 }
674 EXPORT_SYMBOL_GPL(usb_unlink_urb);
675 
676 /**
677  * usb_kill_urb - cancel a transfer request and wait for it to finish
678  * @urb: pointer to URB describing a previously submitted request,
679  *	may be NULL
680  *
681  * This routine cancels an in-progress request.  It is guaranteed that
682  * upon return all completion handlers will have finished and the URB
683  * will be totally idle and available for reuse.  These features make
684  * this an ideal way to stop I/O in a disconnect() callback or close()
685  * function.  If the request has not already finished or been unlinked
686  * the completion handler will see urb->status == -ENOENT.
687  *
688  * While the routine is running, attempts to resubmit the URB will fail
689  * with error -EPERM.  Thus even if the URB's completion handler always
690  * tries to resubmit, it will not succeed and the URB will become idle.
691  *
692  * The URB must not be deallocated while this routine is running.  In
693  * particular, when a driver calls this routine, it must insure that the
694  * completion handler cannot deallocate the URB.
695  *
696  * This routine may not be used in an interrupt context (such as a bottom
697  * half or a completion handler), or when holding a spinlock, or in other
698  * situations where the caller can't schedule().
699  *
700  * This routine should not be called by a driver after its disconnect
701  * method has returned.
702  */
703 void usb_kill_urb(struct urb *urb)
704 {
705 	might_sleep();
706 	if (!(urb && urb->dev && urb->ep))
707 		return;
708 	atomic_inc(&urb->reject);
709 
710 	usb_hcd_unlink_urb(urb, -ENOENT);
711 	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
712 
713 	atomic_dec(&urb->reject);
714 }
715 EXPORT_SYMBOL_GPL(usb_kill_urb);
716 
717 /**
718  * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
719  * @urb: pointer to URB describing a previously submitted request,
720  *	may be NULL
721  *
722  * This routine cancels an in-progress request.  It is guaranteed that
723  * upon return all completion handlers will have finished and the URB
724  * will be totally idle and cannot be reused.  These features make
725  * this an ideal way to stop I/O in a disconnect() callback.
726  * If the request has not already finished or been unlinked
727  * the completion handler will see urb->status == -ENOENT.
728  *
729  * After and while the routine runs, attempts to resubmit the URB will fail
730  * with error -EPERM.  Thus even if the URB's completion handler always
731  * tries to resubmit, it will not succeed and the URB will become idle.
732  *
733  * The URB must not be deallocated while this routine is running.  In
734  * particular, when a driver calls this routine, it must insure that the
735  * completion handler cannot deallocate the URB.
736  *
737  * This routine may not be used in an interrupt context (such as a bottom
738  * half or a completion handler), or when holding a spinlock, or in other
739  * situations where the caller can't schedule().
740  *
741  * This routine should not be called by a driver after its disconnect
742  * method has returned.
743  */
744 void usb_poison_urb(struct urb *urb)
745 {
746 	might_sleep();
747 	if (!urb)
748 		return;
749 	atomic_inc(&urb->reject);
750 
751 	if (!urb->dev || !urb->ep)
752 		return;
753 
754 	usb_hcd_unlink_urb(urb, -ENOENT);
755 	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
756 }
757 EXPORT_SYMBOL_GPL(usb_poison_urb);
758 
759 void usb_unpoison_urb(struct urb *urb)
760 {
761 	if (!urb)
762 		return;
763 
764 	atomic_dec(&urb->reject);
765 }
766 EXPORT_SYMBOL_GPL(usb_unpoison_urb);
767 
768 /**
769  * usb_block_urb - reliably prevent further use of an URB
770  * @urb: pointer to URB to be blocked, may be NULL
771  *
772  * After the routine has run, attempts to resubmit the URB will fail
773  * with error -EPERM.  Thus even if the URB's completion handler always
774  * tries to resubmit, it will not succeed and the URB will become idle.
775  *
776  * The URB must not be deallocated while this routine is running.  In
777  * particular, when a driver calls this routine, it must insure that the
778  * completion handler cannot deallocate the URB.
779  */
780 void usb_block_urb(struct urb *urb)
781 {
782 	if (!urb)
783 		return;
784 
785 	atomic_inc(&urb->reject);
786 }
787 EXPORT_SYMBOL_GPL(usb_block_urb);
788 
789 /**
790  * usb_kill_anchored_urbs - kill all URBs associated with an anchor
791  * @anchor: anchor the requests are bound to
792  *
793  * This kills all outstanding URBs starting from the back of the queue,
794  * with guarantee that no completer callbacks will take place from the
795  * anchor after this function returns.
796  *
797  * This routine should not be called by a driver after its disconnect
798  * method has returned.
799  */
800 void usb_kill_anchored_urbs(struct usb_anchor *anchor)
801 {
802 	struct urb *victim;
803 	int surely_empty;
804 
805 	do {
806 		spin_lock_irq(&anchor->lock);
807 		while (!list_empty(&anchor->urb_list)) {
808 			victim = list_entry(anchor->urb_list.prev,
809 					    struct urb, anchor_list);
810 			/* make sure the URB isn't freed before we kill it */
811 			usb_get_urb(victim);
812 			spin_unlock_irq(&anchor->lock);
813 			/* this will unanchor the URB */
814 			usb_kill_urb(victim);
815 			usb_put_urb(victim);
816 			spin_lock_irq(&anchor->lock);
817 		}
818 		surely_empty = usb_anchor_check_wakeup(anchor);
819 
820 		spin_unlock_irq(&anchor->lock);
821 		cpu_relax();
822 	} while (!surely_empty);
823 }
824 EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
825 
826 
827 /**
828  * usb_poison_anchored_urbs - cease all traffic from an anchor
829  * @anchor: anchor the requests are bound to
830  *
831  * this allows all outstanding URBs to be poisoned starting
832  * from the back of the queue. Newly added URBs will also be
833  * poisoned
834  *
835  * This routine should not be called by a driver after its disconnect
836  * method has returned.
837  */
838 void usb_poison_anchored_urbs(struct usb_anchor *anchor)
839 {
840 	struct urb *victim;
841 	int surely_empty;
842 
843 	do {
844 		spin_lock_irq(&anchor->lock);
845 		anchor->poisoned = 1;
846 		while (!list_empty(&anchor->urb_list)) {
847 			victim = list_entry(anchor->urb_list.prev,
848 					    struct urb, anchor_list);
849 			/* make sure the URB isn't freed before we kill it */
850 			usb_get_urb(victim);
851 			spin_unlock_irq(&anchor->lock);
852 			/* this will unanchor the URB */
853 			usb_poison_urb(victim);
854 			usb_put_urb(victim);
855 			spin_lock_irq(&anchor->lock);
856 		}
857 		surely_empty = usb_anchor_check_wakeup(anchor);
858 
859 		spin_unlock_irq(&anchor->lock);
860 		cpu_relax();
861 	} while (!surely_empty);
862 }
863 EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
864 
865 /**
866  * usb_unpoison_anchored_urbs - let an anchor be used successfully again
867  * @anchor: anchor the requests are bound to
868  *
869  * Reverses the effect of usb_poison_anchored_urbs
870  * the anchor can be used normally after it returns
871  */
872 void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
873 {
874 	unsigned long flags;
875 	struct urb *lazarus;
876 
877 	spin_lock_irqsave(&anchor->lock, flags);
878 	list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
879 		usb_unpoison_urb(lazarus);
880 	}
881 	anchor->poisoned = 0;
882 	spin_unlock_irqrestore(&anchor->lock, flags);
883 }
884 EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
885 /**
886  * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
887  * @anchor: anchor the requests are bound to
888  *
889  * this allows all outstanding URBs to be unlinked starting
890  * from the back of the queue. This function is asynchronous.
891  * The unlinking is just triggered. It may happen after this
892  * function has returned.
893  *
894  * This routine should not be called by a driver after its disconnect
895  * method has returned.
896  */
897 void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
898 {
899 	struct urb *victim;
900 
901 	while ((victim = usb_get_from_anchor(anchor)) != NULL) {
902 		usb_unlink_urb(victim);
903 		usb_put_urb(victim);
904 	}
905 }
906 EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
907 
908 /**
909  * usb_anchor_suspend_wakeups
910  * @anchor: the anchor you want to suspend wakeups on
911  *
912  * Call this to stop the last urb being unanchored from waking up any
913  * usb_wait_anchor_empty_timeout waiters. This is used in the hcd urb give-
914  * back path to delay waking up until after the completion handler has run.
915  */
916 void usb_anchor_suspend_wakeups(struct usb_anchor *anchor)
917 {
918 	if (anchor)
919 		atomic_inc(&anchor->suspend_wakeups);
920 }
921 EXPORT_SYMBOL_GPL(usb_anchor_suspend_wakeups);
922 
923 /**
924  * usb_anchor_resume_wakeups
925  * @anchor: the anchor you want to resume wakeups on
926  *
927  * Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and
928  * wake up any current waiters if the anchor is empty.
929  */
930 void usb_anchor_resume_wakeups(struct usb_anchor *anchor)
931 {
932 	if (!anchor)
933 		return;
934 
935 	atomic_dec(&anchor->suspend_wakeups);
936 	if (usb_anchor_check_wakeup(anchor))
937 		wake_up(&anchor->wait);
938 }
939 EXPORT_SYMBOL_GPL(usb_anchor_resume_wakeups);
940 
941 /**
942  * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
943  * @anchor: the anchor you want to become unused
944  * @timeout: how long you are willing to wait in milliseconds
945  *
946  * Call this is you want to be sure all an anchor's
947  * URBs have finished
948  *
949  * Return: Non-zero if the anchor became unused. Zero on timeout.
950  */
951 int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
952 				  unsigned int timeout)
953 {
954 	return wait_event_timeout(anchor->wait,
955 				  usb_anchor_check_wakeup(anchor),
956 				  msecs_to_jiffies(timeout));
957 }
958 EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
959 
960 /**
961  * usb_get_from_anchor - get an anchor's oldest urb
962  * @anchor: the anchor whose urb you want
963  *
964  * This will take the oldest urb from an anchor,
965  * unanchor and return it
966  *
967  * Return: The oldest urb from @anchor, or %NULL if @anchor has no
968  * urbs associated with it.
969  */
970 struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
971 {
972 	struct urb *victim;
973 	unsigned long flags;
974 
975 	spin_lock_irqsave(&anchor->lock, flags);
976 	if (!list_empty(&anchor->urb_list)) {
977 		victim = list_entry(anchor->urb_list.next, struct urb,
978 				    anchor_list);
979 		usb_get_urb(victim);
980 		__usb_unanchor_urb(victim, anchor);
981 	} else {
982 		victim = NULL;
983 	}
984 	spin_unlock_irqrestore(&anchor->lock, flags);
985 
986 	return victim;
987 }
988 
989 EXPORT_SYMBOL_GPL(usb_get_from_anchor);
990 
991 /**
992  * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
993  * @anchor: the anchor whose urbs you want to unanchor
994  *
995  * use this to get rid of all an anchor's urbs
996  */
997 void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
998 {
999 	struct urb *victim;
1000 	unsigned long flags;
1001 	int surely_empty;
1002 
1003 	do {
1004 		spin_lock_irqsave(&anchor->lock, flags);
1005 		while (!list_empty(&anchor->urb_list)) {
1006 			victim = list_entry(anchor->urb_list.prev,
1007 					    struct urb, anchor_list);
1008 			__usb_unanchor_urb(victim, anchor);
1009 		}
1010 		surely_empty = usb_anchor_check_wakeup(anchor);
1011 
1012 		spin_unlock_irqrestore(&anchor->lock, flags);
1013 		cpu_relax();
1014 	} while (!surely_empty);
1015 }
1016 
1017 EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
1018 
1019 /**
1020  * usb_anchor_empty - is an anchor empty
1021  * @anchor: the anchor you want to query
1022  *
1023  * Return: 1 if the anchor has no urbs associated with it.
1024  */
1025 int usb_anchor_empty(struct usb_anchor *anchor)
1026 {
1027 	return list_empty(&anchor->urb_list);
1028 }
1029 
1030 EXPORT_SYMBOL_GPL(usb_anchor_empty);
1031 
1032