1 #include <linux/module.h> 2 #include <linux/string.h> 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/init.h> 6 #include <linux/log2.h> 7 #include <linux/usb.h> 8 #include <linux/wait.h> 9 #include "hcd.h" 10 11 #define to_urb(d) container_of(d, struct urb, kref) 12 13 14 static void urb_destroy(struct kref *kref) 15 { 16 struct urb *urb = to_urb(kref); 17 18 if (urb->transfer_flags & URB_FREE_BUFFER) 19 kfree(urb->transfer_buffer); 20 21 kfree(urb); 22 } 23 24 /** 25 * usb_init_urb - initializes a urb so that it can be used by a USB driver 26 * @urb: pointer to the urb to initialize 27 * 28 * Initializes a urb so that the USB subsystem can use it properly. 29 * 30 * If a urb is created with a call to usb_alloc_urb() it is not 31 * necessary to call this function. Only use this if you allocate the 32 * space for a struct urb on your own. If you call this function, be 33 * careful when freeing the memory for your urb that it is no longer in 34 * use by the USB core. 35 * 36 * Only use this function if you _really_ understand what you are doing. 37 */ 38 void usb_init_urb(struct urb *urb) 39 { 40 if (urb) { 41 memset(urb, 0, sizeof(*urb)); 42 kref_init(&urb->kref); 43 INIT_LIST_HEAD(&urb->anchor_list); 44 } 45 } 46 EXPORT_SYMBOL_GPL(usb_init_urb); 47 48 /** 49 * usb_alloc_urb - creates a new urb for a USB driver to use 50 * @iso_packets: number of iso packets for this urb 51 * @mem_flags: the type of memory to allocate, see kmalloc() for a list of 52 * valid options for this. 53 * 54 * Creates an urb for the USB driver to use, initializes a few internal 55 * structures, incrementes the usage counter, and returns a pointer to it. 56 * 57 * If no memory is available, NULL is returned. 58 * 59 * If the driver want to use this urb for interrupt, control, or bulk 60 * endpoints, pass '0' as the number of iso packets. 61 * 62 * The driver must call usb_free_urb() when it is finished with the urb. 63 */ 64 struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags) 65 { 66 struct urb *urb; 67 68 urb = kmalloc(sizeof(struct urb) + 69 iso_packets * sizeof(struct usb_iso_packet_descriptor), 70 mem_flags); 71 if (!urb) { 72 printk(KERN_ERR "alloc_urb: kmalloc failed\n"); 73 return NULL; 74 } 75 usb_init_urb(urb); 76 return urb; 77 } 78 EXPORT_SYMBOL_GPL(usb_alloc_urb); 79 80 /** 81 * usb_free_urb - frees the memory used by a urb when all users of it are finished 82 * @urb: pointer to the urb to free, may be NULL 83 * 84 * Must be called when a user of a urb is finished with it. When the last user 85 * of the urb calls this function, the memory of the urb is freed. 86 * 87 * Note: The transfer buffer associated with the urb is not freed unless the 88 * URB_FREE_BUFFER transfer flag is set. 89 */ 90 void usb_free_urb(struct urb *urb) 91 { 92 if (urb) 93 kref_put(&urb->kref, urb_destroy); 94 } 95 EXPORT_SYMBOL_GPL(usb_free_urb); 96 97 /** 98 * usb_get_urb - increments the reference count of the urb 99 * @urb: pointer to the urb to modify, may be NULL 100 * 101 * This must be called whenever a urb is transferred from a device driver to a 102 * host controller driver. This allows proper reference counting to happen 103 * for urbs. 104 * 105 * A pointer to the urb with the incremented reference counter is returned. 106 */ 107 struct urb *usb_get_urb(struct urb *urb) 108 { 109 if (urb) 110 kref_get(&urb->kref); 111 return urb; 112 } 113 EXPORT_SYMBOL_GPL(usb_get_urb); 114 115 /** 116 * usb_anchor_urb - anchors an URB while it is processed 117 * @urb: pointer to the urb to anchor 118 * @anchor: pointer to the anchor 119 * 120 * This can be called to have access to URBs which are to be executed 121 * without bothering to track them 122 */ 123 void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor) 124 { 125 unsigned long flags; 126 127 spin_lock_irqsave(&anchor->lock, flags); 128 usb_get_urb(urb); 129 list_add_tail(&urb->anchor_list, &anchor->urb_list); 130 urb->anchor = anchor; 131 132 if (unlikely(anchor->poisoned)) { 133 atomic_inc(&urb->reject); 134 } 135 136 spin_unlock_irqrestore(&anchor->lock, flags); 137 } 138 EXPORT_SYMBOL_GPL(usb_anchor_urb); 139 140 /** 141 * usb_unanchor_urb - unanchors an URB 142 * @urb: pointer to the urb to anchor 143 * 144 * Call this to stop the system keeping track of this URB 145 */ 146 void usb_unanchor_urb(struct urb *urb) 147 { 148 unsigned long flags; 149 struct usb_anchor *anchor; 150 151 if (!urb) 152 return; 153 154 anchor = urb->anchor; 155 if (!anchor) 156 return; 157 158 spin_lock_irqsave(&anchor->lock, flags); 159 if (unlikely(anchor != urb->anchor)) { 160 /* we've lost the race to another thread */ 161 spin_unlock_irqrestore(&anchor->lock, flags); 162 return; 163 } 164 urb->anchor = NULL; 165 list_del(&urb->anchor_list); 166 spin_unlock_irqrestore(&anchor->lock, flags); 167 usb_put_urb(urb); 168 if (list_empty(&anchor->urb_list)) 169 wake_up(&anchor->wait); 170 } 171 EXPORT_SYMBOL_GPL(usb_unanchor_urb); 172 173 /*-------------------------------------------------------------------*/ 174 175 /** 176 * usb_submit_urb - issue an asynchronous transfer request for an endpoint 177 * @urb: pointer to the urb describing the request 178 * @mem_flags: the type of memory to allocate, see kmalloc() for a list 179 * of valid options for this. 180 * 181 * This submits a transfer request, and transfers control of the URB 182 * describing that request to the USB subsystem. Request completion will 183 * be indicated later, asynchronously, by calling the completion handler. 184 * The three types of completion are success, error, and unlink 185 * (a software-induced fault, also called "request cancellation"). 186 * 187 * URBs may be submitted in interrupt context. 188 * 189 * The caller must have correctly initialized the URB before submitting 190 * it. Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are 191 * available to ensure that most fields are correctly initialized, for 192 * the particular kind of transfer, although they will not initialize 193 * any transfer flags. 194 * 195 * Successful submissions return 0; otherwise this routine returns a 196 * negative error number. If the submission is successful, the complete() 197 * callback from the URB will be called exactly once, when the USB core and 198 * Host Controller Driver (HCD) are finished with the URB. When the completion 199 * function is called, control of the URB is returned to the device 200 * driver which issued the request. The completion handler may then 201 * immediately free or reuse that URB. 202 * 203 * With few exceptions, USB device drivers should never access URB fields 204 * provided by usbcore or the HCD until its complete() is called. 205 * The exceptions relate to periodic transfer scheduling. For both 206 * interrupt and isochronous urbs, as part of successful URB submission 207 * urb->interval is modified to reflect the actual transfer period used 208 * (normally some power of two units). And for isochronous urbs, 209 * urb->start_frame is modified to reflect when the URB's transfers were 210 * scheduled to start. Not all isochronous transfer scheduling policies 211 * will work, but most host controller drivers should easily handle ISO 212 * queues going from now until 10-200 msec into the future. 213 * 214 * For control endpoints, the synchronous usb_control_msg() call is 215 * often used (in non-interrupt context) instead of this call. 216 * That is often used through convenience wrappers, for the requests 217 * that are standardized in the USB 2.0 specification. For bulk 218 * endpoints, a synchronous usb_bulk_msg() call is available. 219 * 220 * Request Queuing: 221 * 222 * URBs may be submitted to endpoints before previous ones complete, to 223 * minimize the impact of interrupt latencies and system overhead on data 224 * throughput. With that queuing policy, an endpoint's queue would never 225 * be empty. This is required for continuous isochronous data streams, 226 * and may also be required for some kinds of interrupt transfers. Such 227 * queuing also maximizes bandwidth utilization by letting USB controllers 228 * start work on later requests before driver software has finished the 229 * completion processing for earlier (successful) requests. 230 * 231 * As of Linux 2.6, all USB endpoint transfer queues support depths greater 232 * than one. This was previously a HCD-specific behavior, except for ISO 233 * transfers. Non-isochronous endpoint queues are inactive during cleanup 234 * after faults (transfer errors or cancellation). 235 * 236 * Reserved Bandwidth Transfers: 237 * 238 * Periodic transfers (interrupt or isochronous) are performed repeatedly, 239 * using the interval specified in the urb. Submitting the first urb to 240 * the endpoint reserves the bandwidth necessary to make those transfers. 241 * If the USB subsystem can't allocate sufficient bandwidth to perform 242 * the periodic request, submitting such a periodic request should fail. 243 * 244 * Device drivers must explicitly request that repetition, by ensuring that 245 * some URB is always on the endpoint's queue (except possibly for short 246 * periods during completion callacks). When there is no longer an urb 247 * queued, the endpoint's bandwidth reservation is canceled. This means 248 * drivers can use their completion handlers to ensure they keep bandwidth 249 * they need, by reinitializing and resubmitting the just-completed urb 250 * until the driver longer needs that periodic bandwidth. 251 * 252 * Memory Flags: 253 * 254 * The general rules for how to decide which mem_flags to use 255 * are the same as for kmalloc. There are four 256 * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and 257 * GFP_ATOMIC. 258 * 259 * GFP_NOFS is not ever used, as it has not been implemented yet. 260 * 261 * GFP_ATOMIC is used when 262 * (a) you are inside a completion handler, an interrupt, bottom half, 263 * tasklet or timer, or 264 * (b) you are holding a spinlock or rwlock (does not apply to 265 * semaphores), or 266 * (c) current->state != TASK_RUNNING, this is the case only after 267 * you've changed it. 268 * 269 * GFP_NOIO is used in the block io path and error handling of storage 270 * devices. 271 * 272 * All other situations use GFP_KERNEL. 273 * 274 * Some more specific rules for mem_flags can be inferred, such as 275 * (1) start_xmit, timeout, and receive methods of network drivers must 276 * use GFP_ATOMIC (they are called with a spinlock held); 277 * (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also 278 * called with a spinlock held); 279 * (3) If you use a kernel thread with a network driver you must use 280 * GFP_NOIO, unless (b) or (c) apply; 281 * (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c) 282 * apply or your are in a storage driver's block io path; 283 * (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and 284 * (6) changing firmware on a running storage or net device uses 285 * GFP_NOIO, unless b) or c) apply 286 * 287 */ 288 int usb_submit_urb(struct urb *urb, gfp_t mem_flags) 289 { 290 int xfertype, max; 291 struct usb_device *dev; 292 struct usb_host_endpoint *ep; 293 int is_out; 294 295 if (!urb || urb->hcpriv || !urb->complete) 296 return -EINVAL; 297 dev = urb->dev; 298 if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED)) 299 return -ENODEV; 300 301 /* For now, get the endpoint from the pipe. Eventually drivers 302 * will be required to set urb->ep directly and we will eliminate 303 * urb->pipe. 304 */ 305 ep = (usb_pipein(urb->pipe) ? dev->ep_in : dev->ep_out) 306 [usb_pipeendpoint(urb->pipe)]; 307 if (!ep) 308 return -ENOENT; 309 310 urb->ep = ep; 311 urb->status = -EINPROGRESS; 312 urb->actual_length = 0; 313 314 /* Lots of sanity checks, so HCDs can rely on clean data 315 * and don't need to duplicate tests 316 */ 317 xfertype = usb_endpoint_type(&ep->desc); 318 if (xfertype == USB_ENDPOINT_XFER_CONTROL) { 319 struct usb_ctrlrequest *setup = 320 (struct usb_ctrlrequest *) urb->setup_packet; 321 322 if (!setup) 323 return -ENOEXEC; 324 is_out = !(setup->bRequestType & USB_DIR_IN) || 325 !setup->wLength; 326 } else { 327 is_out = usb_endpoint_dir_out(&ep->desc); 328 } 329 330 /* Cache the direction for later use */ 331 urb->transfer_flags = (urb->transfer_flags & ~URB_DIR_MASK) | 332 (is_out ? URB_DIR_OUT : URB_DIR_IN); 333 334 if (xfertype != USB_ENDPOINT_XFER_CONTROL && 335 dev->state < USB_STATE_CONFIGURED) 336 return -ENODEV; 337 338 max = le16_to_cpu(ep->desc.wMaxPacketSize); 339 if (max <= 0) { 340 dev_dbg(&dev->dev, 341 "bogus endpoint ep%d%s in %s (bad maxpacket %d)\n", 342 usb_endpoint_num(&ep->desc), is_out ? "out" : "in", 343 __func__, max); 344 return -EMSGSIZE; 345 } 346 347 /* periodic transfers limit size per frame/uframe, 348 * but drivers only control those sizes for ISO. 349 * while we're checking, initialize return status. 350 */ 351 if (xfertype == USB_ENDPOINT_XFER_ISOC) { 352 int n, len; 353 354 /* "high bandwidth" mode, 1-3 packets/uframe? */ 355 if (dev->speed == USB_SPEED_HIGH) { 356 int mult = 1 + ((max >> 11) & 0x03); 357 max &= 0x07ff; 358 max *= mult; 359 } 360 361 if (urb->number_of_packets <= 0) 362 return -EINVAL; 363 for (n = 0; n < urb->number_of_packets; n++) { 364 len = urb->iso_frame_desc[n].length; 365 if (len < 0 || len > max) 366 return -EMSGSIZE; 367 urb->iso_frame_desc[n].status = -EXDEV; 368 urb->iso_frame_desc[n].actual_length = 0; 369 } 370 } 371 372 /* the I/O buffer must be mapped/unmapped, except when length=0 */ 373 if (urb->transfer_buffer_length > INT_MAX) 374 return -EMSGSIZE; 375 376 #ifdef DEBUG 377 /* stuff that drivers shouldn't do, but which shouldn't 378 * cause problems in HCDs if they get it wrong. 379 */ 380 { 381 unsigned int orig_flags = urb->transfer_flags; 382 unsigned int allowed; 383 384 /* enforce simple/standard policy */ 385 allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_SETUP_DMA_MAP | 386 URB_NO_INTERRUPT | URB_DIR_MASK | URB_FREE_BUFFER); 387 switch (xfertype) { 388 case USB_ENDPOINT_XFER_BULK: 389 if (is_out) 390 allowed |= URB_ZERO_PACKET; 391 /* FALLTHROUGH */ 392 case USB_ENDPOINT_XFER_CONTROL: 393 allowed |= URB_NO_FSBR; /* only affects UHCI */ 394 /* FALLTHROUGH */ 395 default: /* all non-iso endpoints */ 396 if (!is_out) 397 allowed |= URB_SHORT_NOT_OK; 398 break; 399 case USB_ENDPOINT_XFER_ISOC: 400 allowed |= URB_ISO_ASAP; 401 break; 402 } 403 urb->transfer_flags &= allowed; 404 405 /* fail if submitter gave bogus flags */ 406 if (urb->transfer_flags != orig_flags) { 407 dev_err(&dev->dev, "BOGUS urb flags, %x --> %x\n", 408 orig_flags, urb->transfer_flags); 409 return -EINVAL; 410 } 411 } 412 #endif 413 /* 414 * Force periodic transfer intervals to be legal values that are 415 * a power of two (so HCDs don't need to). 416 * 417 * FIXME want bus->{intr,iso}_sched_horizon values here. Each HC 418 * supports different values... this uses EHCI/UHCI defaults (and 419 * EHCI can use smaller non-default values). 420 */ 421 switch (xfertype) { 422 case USB_ENDPOINT_XFER_ISOC: 423 case USB_ENDPOINT_XFER_INT: 424 /* too small? */ 425 if (urb->interval <= 0) 426 return -EINVAL; 427 /* too big? */ 428 switch (dev->speed) { 429 case USB_SPEED_HIGH: /* units are microframes */ 430 /* NOTE usb handles 2^15 */ 431 if (urb->interval > (1024 * 8)) 432 urb->interval = 1024 * 8; 433 max = 1024 * 8; 434 break; 435 case USB_SPEED_FULL: /* units are frames/msec */ 436 case USB_SPEED_LOW: 437 if (xfertype == USB_ENDPOINT_XFER_INT) { 438 if (urb->interval > 255) 439 return -EINVAL; 440 /* NOTE ohci only handles up to 32 */ 441 max = 128; 442 } else { 443 if (urb->interval > 1024) 444 urb->interval = 1024; 445 /* NOTE usb and ohci handle up to 2^15 */ 446 max = 1024; 447 } 448 break; 449 default: 450 return -EINVAL; 451 } 452 /* Round down to a power of 2, no more than max */ 453 urb->interval = min(max, 1 << ilog2(urb->interval)); 454 } 455 456 return usb_hcd_submit_urb(urb, mem_flags); 457 } 458 EXPORT_SYMBOL_GPL(usb_submit_urb); 459 460 /*-------------------------------------------------------------------*/ 461 462 /** 463 * usb_unlink_urb - abort/cancel a transfer request for an endpoint 464 * @urb: pointer to urb describing a previously submitted request, 465 * may be NULL 466 * 467 * This routine cancels an in-progress request. URBs complete only once 468 * per submission, and may be canceled only once per submission. 469 * Successful cancellation means termination of @urb will be expedited 470 * and the completion handler will be called with a status code 471 * indicating that the request has been canceled (rather than any other 472 * code). 473 * 474 * Drivers should not call this routine or related routines, such as 475 * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect 476 * method has returned. The disconnect function should synchronize with 477 * a driver's I/O routines to insure that all URB-related activity has 478 * completed before it returns. 479 * 480 * This request is always asynchronous. Success is indicated by 481 * returning -EINPROGRESS, at which time the URB will probably not yet 482 * have been given back to the device driver. When it is eventually 483 * called, the completion function will see @urb->status == -ECONNRESET. 484 * Failure is indicated by usb_unlink_urb() returning any other value. 485 * Unlinking will fail when @urb is not currently "linked" (i.e., it was 486 * never submitted, or it was unlinked before, or the hardware is already 487 * finished with it), even if the completion handler has not yet run. 488 * 489 * Unlinking and Endpoint Queues: 490 * 491 * [The behaviors and guarantees described below do not apply to virtual 492 * root hubs but only to endpoint queues for physical USB devices.] 493 * 494 * Host Controller Drivers (HCDs) place all the URBs for a particular 495 * endpoint in a queue. Normally the queue advances as the controller 496 * hardware processes each request. But when an URB terminates with an 497 * error its queue generally stops (see below), at least until that URB's 498 * completion routine returns. It is guaranteed that a stopped queue 499 * will not restart until all its unlinked URBs have been fully retired, 500 * with their completion routines run, even if that's not until some time 501 * after the original completion handler returns. The same behavior and 502 * guarantee apply when an URB terminates because it was unlinked. 503 * 504 * Bulk and interrupt endpoint queues are guaranteed to stop whenever an 505 * URB terminates with any sort of error, including -ECONNRESET, -ENOENT, 506 * and -EREMOTEIO. Control endpoint queues behave the same way except 507 * that they are not guaranteed to stop for -EREMOTEIO errors. Queues 508 * for isochronous endpoints are treated differently, because they must 509 * advance at fixed rates. Such queues do not stop when an URB 510 * encounters an error or is unlinked. An unlinked isochronous URB may 511 * leave a gap in the stream of packets; it is undefined whether such 512 * gaps can be filled in. 513 * 514 * Note that early termination of an URB because a short packet was 515 * received will generate a -EREMOTEIO error if and only if the 516 * URB_SHORT_NOT_OK flag is set. By setting this flag, USB device 517 * drivers can build deep queues for large or complex bulk transfers 518 * and clean them up reliably after any sort of aborted transfer by 519 * unlinking all pending URBs at the first fault. 520 * 521 * When a control URB terminates with an error other than -EREMOTEIO, it 522 * is quite likely that the status stage of the transfer will not take 523 * place. 524 */ 525 int usb_unlink_urb(struct urb *urb) 526 { 527 if (!urb) 528 return -EINVAL; 529 if (!urb->dev) 530 return -ENODEV; 531 if (!urb->ep) 532 return -EIDRM; 533 return usb_hcd_unlink_urb(urb, -ECONNRESET); 534 } 535 EXPORT_SYMBOL_GPL(usb_unlink_urb); 536 537 /** 538 * usb_kill_urb - cancel a transfer request and wait for it to finish 539 * @urb: pointer to URB describing a previously submitted request, 540 * may be NULL 541 * 542 * This routine cancels an in-progress request. It is guaranteed that 543 * upon return all completion handlers will have finished and the URB 544 * will be totally idle and available for reuse. These features make 545 * this an ideal way to stop I/O in a disconnect() callback or close() 546 * function. If the request has not already finished or been unlinked 547 * the completion handler will see urb->status == -ENOENT. 548 * 549 * While the routine is running, attempts to resubmit the URB will fail 550 * with error -EPERM. Thus even if the URB's completion handler always 551 * tries to resubmit, it will not succeed and the URB will become idle. 552 * 553 * This routine may not be used in an interrupt context (such as a bottom 554 * half or a completion handler), or when holding a spinlock, or in other 555 * situations where the caller can't schedule(). 556 * 557 * This routine should not be called by a driver after its disconnect 558 * method has returned. 559 */ 560 void usb_kill_urb(struct urb *urb) 561 { 562 might_sleep(); 563 if (!(urb && urb->dev && urb->ep)) 564 return; 565 atomic_inc(&urb->reject); 566 567 usb_hcd_unlink_urb(urb, -ENOENT); 568 wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0); 569 570 atomic_dec(&urb->reject); 571 } 572 EXPORT_SYMBOL_GPL(usb_kill_urb); 573 574 /** 575 * usb_poison_urb - reliably kill a transfer and prevent further use of an URB 576 * @urb: pointer to URB describing a previously submitted request, 577 * may be NULL 578 * 579 * This routine cancels an in-progress request. It is guaranteed that 580 * upon return all completion handlers will have finished and the URB 581 * will be totally idle and cannot be reused. These features make 582 * this an ideal way to stop I/O in a disconnect() callback. 583 * If the request has not already finished or been unlinked 584 * the completion handler will see urb->status == -ENOENT. 585 * 586 * After and while the routine runs, attempts to resubmit the URB will fail 587 * with error -EPERM. Thus even if the URB's completion handler always 588 * tries to resubmit, it will not succeed and the URB will become idle. 589 * 590 * This routine may not be used in an interrupt context (such as a bottom 591 * half or a completion handler), or when holding a spinlock, or in other 592 * situations where the caller can't schedule(). 593 * 594 * This routine should not be called by a driver after its disconnect 595 * method has returned. 596 */ 597 void usb_poison_urb(struct urb *urb) 598 { 599 might_sleep(); 600 if (!(urb && urb->dev && urb->ep)) 601 return; 602 atomic_inc(&urb->reject); 603 604 usb_hcd_unlink_urb(urb, -ENOENT); 605 wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0); 606 } 607 EXPORT_SYMBOL_GPL(usb_poison_urb); 608 609 void usb_unpoison_urb(struct urb *urb) 610 { 611 if (!urb) 612 return; 613 614 atomic_dec(&urb->reject); 615 } 616 EXPORT_SYMBOL_GPL(usb_unpoison_urb); 617 618 /** 619 * usb_kill_anchored_urbs - cancel transfer requests en masse 620 * @anchor: anchor the requests are bound to 621 * 622 * this allows all outstanding URBs to be killed starting 623 * from the back of the queue 624 * 625 * This routine should not be called by a driver after its disconnect 626 * method has returned. 627 */ 628 void usb_kill_anchored_urbs(struct usb_anchor *anchor) 629 { 630 struct urb *victim; 631 632 spin_lock_irq(&anchor->lock); 633 while (!list_empty(&anchor->urb_list)) { 634 victim = list_entry(anchor->urb_list.prev, struct urb, 635 anchor_list); 636 /* we must make sure the URB isn't freed before we kill it*/ 637 usb_get_urb(victim); 638 spin_unlock_irq(&anchor->lock); 639 /* this will unanchor the URB */ 640 usb_kill_urb(victim); 641 usb_put_urb(victim); 642 spin_lock_irq(&anchor->lock); 643 } 644 spin_unlock_irq(&anchor->lock); 645 } 646 EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs); 647 648 649 /** 650 * usb_poison_anchored_urbs - cease all traffic from an anchor 651 * @anchor: anchor the requests are bound to 652 * 653 * this allows all outstanding URBs to be poisoned starting 654 * from the back of the queue. Newly added URBs will also be 655 * poisoned 656 * 657 * This routine should not be called by a driver after its disconnect 658 * method has returned. 659 */ 660 void usb_poison_anchored_urbs(struct usb_anchor *anchor) 661 { 662 struct urb *victim; 663 664 spin_lock_irq(&anchor->lock); 665 anchor->poisoned = 1; 666 while (!list_empty(&anchor->urb_list)) { 667 victim = list_entry(anchor->urb_list.prev, struct urb, 668 anchor_list); 669 /* we must make sure the URB isn't freed before we kill it*/ 670 usb_get_urb(victim); 671 spin_unlock_irq(&anchor->lock); 672 /* this will unanchor the URB */ 673 usb_poison_urb(victim); 674 usb_put_urb(victim); 675 spin_lock_irq(&anchor->lock); 676 } 677 spin_unlock_irq(&anchor->lock); 678 } 679 EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs); 680 681 /** 682 * usb_unpoison_anchored_urbs - let an anchor be used successfully again 683 * @anchor: anchor the requests are bound to 684 * 685 * Reverses the effect of usb_poison_anchored_urbs 686 * the anchor can be used normally after it returns 687 */ 688 void usb_unpoison_anchored_urbs(struct usb_anchor *anchor) 689 { 690 unsigned long flags; 691 struct urb *lazarus; 692 693 spin_lock_irqsave(&anchor->lock, flags); 694 list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) { 695 usb_unpoison_urb(lazarus); 696 } 697 anchor->poisoned = 0; 698 spin_unlock_irqrestore(&anchor->lock, flags); 699 } 700 EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs); 701 /** 702 * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse 703 * @anchor: anchor the requests are bound to 704 * 705 * this allows all outstanding URBs to be unlinked starting 706 * from the back of the queue. This function is asynchronous. 707 * The unlinking is just tiggered. It may happen after this 708 * function has returned. 709 * 710 * This routine should not be called by a driver after its disconnect 711 * method has returned. 712 */ 713 void usb_unlink_anchored_urbs(struct usb_anchor *anchor) 714 { 715 struct urb *victim; 716 unsigned long flags; 717 718 spin_lock_irqsave(&anchor->lock, flags); 719 while (!list_empty(&anchor->urb_list)) { 720 victim = list_entry(anchor->urb_list.prev, struct urb, 721 anchor_list); 722 usb_get_urb(victim); 723 spin_unlock_irqrestore(&anchor->lock, flags); 724 /* this will unanchor the URB */ 725 usb_unlink_urb(victim); 726 usb_put_urb(victim); 727 spin_lock_irqsave(&anchor->lock, flags); 728 } 729 spin_unlock_irqrestore(&anchor->lock, flags); 730 } 731 EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs); 732 733 /** 734 * usb_wait_anchor_empty_timeout - wait for an anchor to be unused 735 * @anchor: the anchor you want to become unused 736 * @timeout: how long you are willing to wait in milliseconds 737 * 738 * Call this is you want to be sure all an anchor's 739 * URBs have finished 740 */ 741 int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 742 unsigned int timeout) 743 { 744 return wait_event_timeout(anchor->wait, list_empty(&anchor->urb_list), 745 msecs_to_jiffies(timeout)); 746 } 747 EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout); 748 749 /** 750 * usb_get_from_anchor - get an anchor's oldest urb 751 * @anchor: the anchor whose urb you want 752 * 753 * this will take the oldest urb from an anchor, 754 * unanchor and return it 755 */ 756 struct urb *usb_get_from_anchor(struct usb_anchor *anchor) 757 { 758 struct urb *victim; 759 unsigned long flags; 760 761 spin_lock_irqsave(&anchor->lock, flags); 762 if (!list_empty(&anchor->urb_list)) { 763 victim = list_entry(anchor->urb_list.next, struct urb, 764 anchor_list); 765 usb_get_urb(victim); 766 spin_unlock_irqrestore(&anchor->lock, flags); 767 usb_unanchor_urb(victim); 768 } else { 769 spin_unlock_irqrestore(&anchor->lock, flags); 770 victim = NULL; 771 } 772 773 return victim; 774 } 775 776 EXPORT_SYMBOL_GPL(usb_get_from_anchor); 777 778 /** 779 * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs 780 * @anchor: the anchor whose urbs you want to unanchor 781 * 782 * use this to get rid of all an anchor's urbs 783 */ 784 void usb_scuttle_anchored_urbs(struct usb_anchor *anchor) 785 { 786 struct urb *victim; 787 unsigned long flags; 788 789 spin_lock_irqsave(&anchor->lock, flags); 790 while (!list_empty(&anchor->urb_list)) { 791 victim = list_entry(anchor->urb_list.prev, struct urb, 792 anchor_list); 793 usb_get_urb(victim); 794 spin_unlock_irqrestore(&anchor->lock, flags); 795 /* this may free the URB */ 796 usb_unanchor_urb(victim); 797 usb_put_urb(victim); 798 spin_lock_irqsave(&anchor->lock, flags); 799 } 800 spin_unlock_irqrestore(&anchor->lock, flags); 801 } 802 803 EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs); 804 805 /** 806 * usb_anchor_empty - is an anchor empty 807 * @anchor: the anchor you want to query 808 * 809 * returns 1 if the anchor has no urbs associated with it 810 */ 811 int usb_anchor_empty(struct usb_anchor *anchor) 812 { 813 return list_empty(&anchor->urb_list); 814 } 815 816 EXPORT_SYMBOL_GPL(usb_anchor_empty); 817 818