xref: /openbmc/linux/drivers/usb/core/urb.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 #include <linux/module.h>
2 #include <linux/string.h>
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/init.h>
6 #include <linux/log2.h>
7 #include <linux/usb.h>
8 #include <linux/wait.h>
9 #include "hcd.h"
10 
11 #define to_urb(d) container_of(d, struct urb, kref)
12 
13 
14 static void urb_destroy(struct kref *kref)
15 {
16 	struct urb *urb = to_urb(kref);
17 
18 	if (urb->transfer_flags & URB_FREE_BUFFER)
19 		kfree(urb->transfer_buffer);
20 
21 	kfree(urb);
22 }
23 
24 /**
25  * usb_init_urb - initializes a urb so that it can be used by a USB driver
26  * @urb: pointer to the urb to initialize
27  *
28  * Initializes a urb so that the USB subsystem can use it properly.
29  *
30  * If a urb is created with a call to usb_alloc_urb() it is not
31  * necessary to call this function.  Only use this if you allocate the
32  * space for a struct urb on your own.  If you call this function, be
33  * careful when freeing the memory for your urb that it is no longer in
34  * use by the USB core.
35  *
36  * Only use this function if you _really_ understand what you are doing.
37  */
38 void usb_init_urb(struct urb *urb)
39 {
40 	if (urb) {
41 		memset(urb, 0, sizeof(*urb));
42 		kref_init(&urb->kref);
43 		INIT_LIST_HEAD(&urb->anchor_list);
44 	}
45 }
46 EXPORT_SYMBOL_GPL(usb_init_urb);
47 
48 /**
49  * usb_alloc_urb - creates a new urb for a USB driver to use
50  * @iso_packets: number of iso packets for this urb
51  * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
52  *	valid options for this.
53  *
54  * Creates an urb for the USB driver to use, initializes a few internal
55  * structures, incrementes the usage counter, and returns a pointer to it.
56  *
57  * If no memory is available, NULL is returned.
58  *
59  * If the driver want to use this urb for interrupt, control, or bulk
60  * endpoints, pass '0' as the number of iso packets.
61  *
62  * The driver must call usb_free_urb() when it is finished with the urb.
63  */
64 struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
65 {
66 	struct urb *urb;
67 
68 	urb = kmalloc(sizeof(struct urb) +
69 		iso_packets * sizeof(struct usb_iso_packet_descriptor),
70 		mem_flags);
71 	if (!urb) {
72 		printk(KERN_ERR "alloc_urb: kmalloc failed\n");
73 		return NULL;
74 	}
75 	usb_init_urb(urb);
76 	return urb;
77 }
78 EXPORT_SYMBOL_GPL(usb_alloc_urb);
79 
80 /**
81  * usb_free_urb - frees the memory used by a urb when all users of it are finished
82  * @urb: pointer to the urb to free, may be NULL
83  *
84  * Must be called when a user of a urb is finished with it.  When the last user
85  * of the urb calls this function, the memory of the urb is freed.
86  *
87  * Note: The transfer buffer associated with the urb is not freed unless the
88  * URB_FREE_BUFFER transfer flag is set.
89  */
90 void usb_free_urb(struct urb *urb)
91 {
92 	if (urb)
93 		kref_put(&urb->kref, urb_destroy);
94 }
95 EXPORT_SYMBOL_GPL(usb_free_urb);
96 
97 /**
98  * usb_get_urb - increments the reference count of the urb
99  * @urb: pointer to the urb to modify, may be NULL
100  *
101  * This must be  called whenever a urb is transferred from a device driver to a
102  * host controller driver.  This allows proper reference counting to happen
103  * for urbs.
104  *
105  * A pointer to the urb with the incremented reference counter is returned.
106  */
107 struct urb *usb_get_urb(struct urb *urb)
108 {
109 	if (urb)
110 		kref_get(&urb->kref);
111 	return urb;
112 }
113 EXPORT_SYMBOL_GPL(usb_get_urb);
114 
115 /**
116  * usb_anchor_urb - anchors an URB while it is processed
117  * @urb: pointer to the urb to anchor
118  * @anchor: pointer to the anchor
119  *
120  * This can be called to have access to URBs which are to be executed
121  * without bothering to track them
122  */
123 void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
124 {
125 	unsigned long flags;
126 
127 	spin_lock_irqsave(&anchor->lock, flags);
128 	usb_get_urb(urb);
129 	list_add_tail(&urb->anchor_list, &anchor->urb_list);
130 	urb->anchor = anchor;
131 
132 	if (unlikely(anchor->poisoned)) {
133 		atomic_inc(&urb->reject);
134 	}
135 
136 	spin_unlock_irqrestore(&anchor->lock, flags);
137 }
138 EXPORT_SYMBOL_GPL(usb_anchor_urb);
139 
140 /**
141  * usb_unanchor_urb - unanchors an URB
142  * @urb: pointer to the urb to anchor
143  *
144  * Call this to stop the system keeping track of this URB
145  */
146 void usb_unanchor_urb(struct urb *urb)
147 {
148 	unsigned long flags;
149 	struct usb_anchor *anchor;
150 
151 	if (!urb)
152 		return;
153 
154 	anchor = urb->anchor;
155 	if (!anchor)
156 		return;
157 
158 	spin_lock_irqsave(&anchor->lock, flags);
159 	if (unlikely(anchor != urb->anchor)) {
160 		/* we've lost the race to another thread */
161 		spin_unlock_irqrestore(&anchor->lock, flags);
162 		return;
163 	}
164 	urb->anchor = NULL;
165 	list_del(&urb->anchor_list);
166 	spin_unlock_irqrestore(&anchor->lock, flags);
167 	usb_put_urb(urb);
168 	if (list_empty(&anchor->urb_list))
169 		wake_up(&anchor->wait);
170 }
171 EXPORT_SYMBOL_GPL(usb_unanchor_urb);
172 
173 /*-------------------------------------------------------------------*/
174 
175 /**
176  * usb_submit_urb - issue an asynchronous transfer request for an endpoint
177  * @urb: pointer to the urb describing the request
178  * @mem_flags: the type of memory to allocate, see kmalloc() for a list
179  *	of valid options for this.
180  *
181  * This submits a transfer request, and transfers control of the URB
182  * describing that request to the USB subsystem.  Request completion will
183  * be indicated later, asynchronously, by calling the completion handler.
184  * The three types of completion are success, error, and unlink
185  * (a software-induced fault, also called "request cancellation").
186  *
187  * URBs may be submitted in interrupt context.
188  *
189  * The caller must have correctly initialized the URB before submitting
190  * it.  Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
191  * available to ensure that most fields are correctly initialized, for
192  * the particular kind of transfer, although they will not initialize
193  * any transfer flags.
194  *
195  * Successful submissions return 0; otherwise this routine returns a
196  * negative error number.  If the submission is successful, the complete()
197  * callback from the URB will be called exactly once, when the USB core and
198  * Host Controller Driver (HCD) are finished with the URB.  When the completion
199  * function is called, control of the URB is returned to the device
200  * driver which issued the request.  The completion handler may then
201  * immediately free or reuse that URB.
202  *
203  * With few exceptions, USB device drivers should never access URB fields
204  * provided by usbcore or the HCD until its complete() is called.
205  * The exceptions relate to periodic transfer scheduling.  For both
206  * interrupt and isochronous urbs, as part of successful URB submission
207  * urb->interval is modified to reflect the actual transfer period used
208  * (normally some power of two units).  And for isochronous urbs,
209  * urb->start_frame is modified to reflect when the URB's transfers were
210  * scheduled to start.  Not all isochronous transfer scheduling policies
211  * will work, but most host controller drivers should easily handle ISO
212  * queues going from now until 10-200 msec into the future.
213  *
214  * For control endpoints, the synchronous usb_control_msg() call is
215  * often used (in non-interrupt context) instead of this call.
216  * That is often used through convenience wrappers, for the requests
217  * that are standardized in the USB 2.0 specification.  For bulk
218  * endpoints, a synchronous usb_bulk_msg() call is available.
219  *
220  * Request Queuing:
221  *
222  * URBs may be submitted to endpoints before previous ones complete, to
223  * minimize the impact of interrupt latencies and system overhead on data
224  * throughput.  With that queuing policy, an endpoint's queue would never
225  * be empty.  This is required for continuous isochronous data streams,
226  * and may also be required for some kinds of interrupt transfers. Such
227  * queuing also maximizes bandwidth utilization by letting USB controllers
228  * start work on later requests before driver software has finished the
229  * completion processing for earlier (successful) requests.
230  *
231  * As of Linux 2.6, all USB endpoint transfer queues support depths greater
232  * than one.  This was previously a HCD-specific behavior, except for ISO
233  * transfers.  Non-isochronous endpoint queues are inactive during cleanup
234  * after faults (transfer errors or cancellation).
235  *
236  * Reserved Bandwidth Transfers:
237  *
238  * Periodic transfers (interrupt or isochronous) are performed repeatedly,
239  * using the interval specified in the urb.  Submitting the first urb to
240  * the endpoint reserves the bandwidth necessary to make those transfers.
241  * If the USB subsystem can't allocate sufficient bandwidth to perform
242  * the periodic request, submitting such a periodic request should fail.
243  *
244  * Device drivers must explicitly request that repetition, by ensuring that
245  * some URB is always on the endpoint's queue (except possibly for short
246  * periods during completion callacks).  When there is no longer an urb
247  * queued, the endpoint's bandwidth reservation is canceled.  This means
248  * drivers can use their completion handlers to ensure they keep bandwidth
249  * they need, by reinitializing and resubmitting the just-completed urb
250  * until the driver longer needs that periodic bandwidth.
251  *
252  * Memory Flags:
253  *
254  * The general rules for how to decide which mem_flags to use
255  * are the same as for kmalloc.  There are four
256  * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
257  * GFP_ATOMIC.
258  *
259  * GFP_NOFS is not ever used, as it has not been implemented yet.
260  *
261  * GFP_ATOMIC is used when
262  *   (a) you are inside a completion handler, an interrupt, bottom half,
263  *       tasklet or timer, or
264  *   (b) you are holding a spinlock or rwlock (does not apply to
265  *       semaphores), or
266  *   (c) current->state != TASK_RUNNING, this is the case only after
267  *       you've changed it.
268  *
269  * GFP_NOIO is used in the block io path and error handling of storage
270  * devices.
271  *
272  * All other situations use GFP_KERNEL.
273  *
274  * Some more specific rules for mem_flags can be inferred, such as
275  *  (1) start_xmit, timeout, and receive methods of network drivers must
276  *      use GFP_ATOMIC (they are called with a spinlock held);
277  *  (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
278  *      called with a spinlock held);
279  *  (3) If you use a kernel thread with a network driver you must use
280  *      GFP_NOIO, unless (b) or (c) apply;
281  *  (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
282  *      apply or your are in a storage driver's block io path;
283  *  (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
284  *  (6) changing firmware on a running storage or net device uses
285  *      GFP_NOIO, unless b) or c) apply
286  *
287  */
288 int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
289 {
290 	int				xfertype, max;
291 	struct usb_device		*dev;
292 	struct usb_host_endpoint	*ep;
293 	int				is_out;
294 
295 	if (!urb || urb->hcpriv || !urb->complete)
296 		return -EINVAL;
297 	dev = urb->dev;
298 	if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
299 		return -ENODEV;
300 
301 	/* For now, get the endpoint from the pipe.  Eventually drivers
302 	 * will be required to set urb->ep directly and we will eliminate
303 	 * urb->pipe.
304 	 */
305 	ep = (usb_pipein(urb->pipe) ? dev->ep_in : dev->ep_out)
306 			[usb_pipeendpoint(urb->pipe)];
307 	if (!ep)
308 		return -ENOENT;
309 
310 	urb->ep = ep;
311 	urb->status = -EINPROGRESS;
312 	urb->actual_length = 0;
313 
314 	/* Lots of sanity checks, so HCDs can rely on clean data
315 	 * and don't need to duplicate tests
316 	 */
317 	xfertype = usb_endpoint_type(&ep->desc);
318 	if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
319 		struct usb_ctrlrequest *setup =
320 				(struct usb_ctrlrequest *) urb->setup_packet;
321 
322 		if (!setup)
323 			return -ENOEXEC;
324 		is_out = !(setup->bRequestType & USB_DIR_IN) ||
325 				!setup->wLength;
326 	} else {
327 		is_out = usb_endpoint_dir_out(&ep->desc);
328 	}
329 
330 	/* Cache the direction for later use */
331 	urb->transfer_flags = (urb->transfer_flags & ~URB_DIR_MASK) |
332 			(is_out ? URB_DIR_OUT : URB_DIR_IN);
333 
334 	if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
335 			dev->state < USB_STATE_CONFIGURED)
336 		return -ENODEV;
337 
338 	max = le16_to_cpu(ep->desc.wMaxPacketSize);
339 	if (max <= 0) {
340 		dev_dbg(&dev->dev,
341 			"bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
342 			usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
343 			__func__, max);
344 		return -EMSGSIZE;
345 	}
346 
347 	/* periodic transfers limit size per frame/uframe,
348 	 * but drivers only control those sizes for ISO.
349 	 * while we're checking, initialize return status.
350 	 */
351 	if (xfertype == USB_ENDPOINT_XFER_ISOC) {
352 		int	n, len;
353 
354 		/* "high bandwidth" mode, 1-3 packets/uframe? */
355 		if (dev->speed == USB_SPEED_HIGH) {
356 			int	mult = 1 + ((max >> 11) & 0x03);
357 			max &= 0x07ff;
358 			max *= mult;
359 		}
360 
361 		if (urb->number_of_packets <= 0)
362 			return -EINVAL;
363 		for (n = 0; n < urb->number_of_packets; n++) {
364 			len = urb->iso_frame_desc[n].length;
365 			if (len < 0 || len > max)
366 				return -EMSGSIZE;
367 			urb->iso_frame_desc[n].status = -EXDEV;
368 			urb->iso_frame_desc[n].actual_length = 0;
369 		}
370 	}
371 
372 	/* the I/O buffer must be mapped/unmapped, except when length=0 */
373 	if (urb->transfer_buffer_length > INT_MAX)
374 		return -EMSGSIZE;
375 
376 #ifdef DEBUG
377 	/* stuff that drivers shouldn't do, but which shouldn't
378 	 * cause problems in HCDs if they get it wrong.
379 	 */
380 	{
381 	unsigned int	orig_flags = urb->transfer_flags;
382 	unsigned int	allowed;
383 
384 	/* enforce simple/standard policy */
385 	allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_SETUP_DMA_MAP |
386 			URB_NO_INTERRUPT | URB_DIR_MASK | URB_FREE_BUFFER);
387 	switch (xfertype) {
388 	case USB_ENDPOINT_XFER_BULK:
389 		if (is_out)
390 			allowed |= URB_ZERO_PACKET;
391 		/* FALLTHROUGH */
392 	case USB_ENDPOINT_XFER_CONTROL:
393 		allowed |= URB_NO_FSBR;	/* only affects UHCI */
394 		/* FALLTHROUGH */
395 	default:			/* all non-iso endpoints */
396 		if (!is_out)
397 			allowed |= URB_SHORT_NOT_OK;
398 		break;
399 	case USB_ENDPOINT_XFER_ISOC:
400 		allowed |= URB_ISO_ASAP;
401 		break;
402 	}
403 	urb->transfer_flags &= allowed;
404 
405 	/* fail if submitter gave bogus flags */
406 	if (urb->transfer_flags != orig_flags) {
407 		dev_err(&dev->dev, "BOGUS urb flags, %x --> %x\n",
408 			orig_flags, urb->transfer_flags);
409 		return -EINVAL;
410 	}
411 	}
412 #endif
413 	/*
414 	 * Force periodic transfer intervals to be legal values that are
415 	 * a power of two (so HCDs don't need to).
416 	 *
417 	 * FIXME want bus->{intr,iso}_sched_horizon values here.  Each HC
418 	 * supports different values... this uses EHCI/UHCI defaults (and
419 	 * EHCI can use smaller non-default values).
420 	 */
421 	switch (xfertype) {
422 	case USB_ENDPOINT_XFER_ISOC:
423 	case USB_ENDPOINT_XFER_INT:
424 		/* too small? */
425 		if (urb->interval <= 0)
426 			return -EINVAL;
427 		/* too big? */
428 		switch (dev->speed) {
429 		case USB_SPEED_HIGH:	/* units are microframes */
430 			/* NOTE usb handles 2^15 */
431 			if (urb->interval > (1024 * 8))
432 				urb->interval = 1024 * 8;
433 			max = 1024 * 8;
434 			break;
435 		case USB_SPEED_FULL:	/* units are frames/msec */
436 		case USB_SPEED_LOW:
437 			if (xfertype == USB_ENDPOINT_XFER_INT) {
438 				if (urb->interval > 255)
439 					return -EINVAL;
440 				/* NOTE ohci only handles up to 32 */
441 				max = 128;
442 			} else {
443 				if (urb->interval > 1024)
444 					urb->interval = 1024;
445 				/* NOTE usb and ohci handle up to 2^15 */
446 				max = 1024;
447 			}
448 			break;
449 		default:
450 			return -EINVAL;
451 		}
452 		/* Round down to a power of 2, no more than max */
453 		urb->interval = min(max, 1 << ilog2(urb->interval));
454 	}
455 
456 	return usb_hcd_submit_urb(urb, mem_flags);
457 }
458 EXPORT_SYMBOL_GPL(usb_submit_urb);
459 
460 /*-------------------------------------------------------------------*/
461 
462 /**
463  * usb_unlink_urb - abort/cancel a transfer request for an endpoint
464  * @urb: pointer to urb describing a previously submitted request,
465  *	may be NULL
466  *
467  * This routine cancels an in-progress request.  URBs complete only once
468  * per submission, and may be canceled only once per submission.
469  * Successful cancellation means termination of @urb will be expedited
470  * and the completion handler will be called with a status code
471  * indicating that the request has been canceled (rather than any other
472  * code).
473  *
474  * Drivers should not call this routine or related routines, such as
475  * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
476  * method has returned.  The disconnect function should synchronize with
477  * a driver's I/O routines to insure that all URB-related activity has
478  * completed before it returns.
479  *
480  * This request is always asynchronous.  Success is indicated by
481  * returning -EINPROGRESS, at which time the URB will probably not yet
482  * have been given back to the device driver.  When it is eventually
483  * called, the completion function will see @urb->status == -ECONNRESET.
484  * Failure is indicated by usb_unlink_urb() returning any other value.
485  * Unlinking will fail when @urb is not currently "linked" (i.e., it was
486  * never submitted, or it was unlinked before, or the hardware is already
487  * finished with it), even if the completion handler has not yet run.
488  *
489  * Unlinking and Endpoint Queues:
490  *
491  * [The behaviors and guarantees described below do not apply to virtual
492  * root hubs but only to endpoint queues for physical USB devices.]
493  *
494  * Host Controller Drivers (HCDs) place all the URBs for a particular
495  * endpoint in a queue.  Normally the queue advances as the controller
496  * hardware processes each request.  But when an URB terminates with an
497  * error its queue generally stops (see below), at least until that URB's
498  * completion routine returns.  It is guaranteed that a stopped queue
499  * will not restart until all its unlinked URBs have been fully retired,
500  * with their completion routines run, even if that's not until some time
501  * after the original completion handler returns.  The same behavior and
502  * guarantee apply when an URB terminates because it was unlinked.
503  *
504  * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
505  * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
506  * and -EREMOTEIO.  Control endpoint queues behave the same way except
507  * that they are not guaranteed to stop for -EREMOTEIO errors.  Queues
508  * for isochronous endpoints are treated differently, because they must
509  * advance at fixed rates.  Such queues do not stop when an URB
510  * encounters an error or is unlinked.  An unlinked isochronous URB may
511  * leave a gap in the stream of packets; it is undefined whether such
512  * gaps can be filled in.
513  *
514  * Note that early termination of an URB because a short packet was
515  * received will generate a -EREMOTEIO error if and only if the
516  * URB_SHORT_NOT_OK flag is set.  By setting this flag, USB device
517  * drivers can build deep queues for large or complex bulk transfers
518  * and clean them up reliably after any sort of aborted transfer by
519  * unlinking all pending URBs at the first fault.
520  *
521  * When a control URB terminates with an error other than -EREMOTEIO, it
522  * is quite likely that the status stage of the transfer will not take
523  * place.
524  */
525 int usb_unlink_urb(struct urb *urb)
526 {
527 	if (!urb)
528 		return -EINVAL;
529 	if (!urb->dev)
530 		return -ENODEV;
531 	if (!urb->ep)
532 		return -EIDRM;
533 	return usb_hcd_unlink_urb(urb, -ECONNRESET);
534 }
535 EXPORT_SYMBOL_GPL(usb_unlink_urb);
536 
537 /**
538  * usb_kill_urb - cancel a transfer request and wait for it to finish
539  * @urb: pointer to URB describing a previously submitted request,
540  *	may be NULL
541  *
542  * This routine cancels an in-progress request.  It is guaranteed that
543  * upon return all completion handlers will have finished and the URB
544  * will be totally idle and available for reuse.  These features make
545  * this an ideal way to stop I/O in a disconnect() callback or close()
546  * function.  If the request has not already finished or been unlinked
547  * the completion handler will see urb->status == -ENOENT.
548  *
549  * While the routine is running, attempts to resubmit the URB will fail
550  * with error -EPERM.  Thus even if the URB's completion handler always
551  * tries to resubmit, it will not succeed and the URB will become idle.
552  *
553  * This routine may not be used in an interrupt context (such as a bottom
554  * half or a completion handler), or when holding a spinlock, or in other
555  * situations where the caller can't schedule().
556  *
557  * This routine should not be called by a driver after its disconnect
558  * method has returned.
559  */
560 void usb_kill_urb(struct urb *urb)
561 {
562 	might_sleep();
563 	if (!(urb && urb->dev && urb->ep))
564 		return;
565 	atomic_inc(&urb->reject);
566 
567 	usb_hcd_unlink_urb(urb, -ENOENT);
568 	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
569 
570 	atomic_dec(&urb->reject);
571 }
572 EXPORT_SYMBOL_GPL(usb_kill_urb);
573 
574 /**
575  * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
576  * @urb: pointer to URB describing a previously submitted request,
577  *	may be NULL
578  *
579  * This routine cancels an in-progress request.  It is guaranteed that
580  * upon return all completion handlers will have finished and the URB
581  * will be totally idle and cannot be reused.  These features make
582  * this an ideal way to stop I/O in a disconnect() callback.
583  * If the request has not already finished or been unlinked
584  * the completion handler will see urb->status == -ENOENT.
585  *
586  * After and while the routine runs, attempts to resubmit the URB will fail
587  * with error -EPERM.  Thus even if the URB's completion handler always
588  * tries to resubmit, it will not succeed and the URB will become idle.
589  *
590  * This routine may not be used in an interrupt context (such as a bottom
591  * half or a completion handler), or when holding a spinlock, or in other
592  * situations where the caller can't schedule().
593  *
594  * This routine should not be called by a driver after its disconnect
595  * method has returned.
596  */
597 void usb_poison_urb(struct urb *urb)
598 {
599 	might_sleep();
600 	if (!(urb && urb->dev && urb->ep))
601 		return;
602 	atomic_inc(&urb->reject);
603 
604 	usb_hcd_unlink_urb(urb, -ENOENT);
605 	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
606 }
607 EXPORT_SYMBOL_GPL(usb_poison_urb);
608 
609 void usb_unpoison_urb(struct urb *urb)
610 {
611 	if (!urb)
612 		return;
613 
614 	atomic_dec(&urb->reject);
615 }
616 EXPORT_SYMBOL_GPL(usb_unpoison_urb);
617 
618 /**
619  * usb_kill_anchored_urbs - cancel transfer requests en masse
620  * @anchor: anchor the requests are bound to
621  *
622  * this allows all outstanding URBs to be killed starting
623  * from the back of the queue
624  *
625  * This routine should not be called by a driver after its disconnect
626  * method has returned.
627  */
628 void usb_kill_anchored_urbs(struct usb_anchor *anchor)
629 {
630 	struct urb *victim;
631 
632 	spin_lock_irq(&anchor->lock);
633 	while (!list_empty(&anchor->urb_list)) {
634 		victim = list_entry(anchor->urb_list.prev, struct urb,
635 				    anchor_list);
636 		/* we must make sure the URB isn't freed before we kill it*/
637 		usb_get_urb(victim);
638 		spin_unlock_irq(&anchor->lock);
639 		/* this will unanchor the URB */
640 		usb_kill_urb(victim);
641 		usb_put_urb(victim);
642 		spin_lock_irq(&anchor->lock);
643 	}
644 	spin_unlock_irq(&anchor->lock);
645 }
646 EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
647 
648 
649 /**
650  * usb_poison_anchored_urbs - cease all traffic from an anchor
651  * @anchor: anchor the requests are bound to
652  *
653  * this allows all outstanding URBs to be poisoned starting
654  * from the back of the queue. Newly added URBs will also be
655  * poisoned
656  *
657  * This routine should not be called by a driver after its disconnect
658  * method has returned.
659  */
660 void usb_poison_anchored_urbs(struct usb_anchor *anchor)
661 {
662 	struct urb *victim;
663 
664 	spin_lock_irq(&anchor->lock);
665 	anchor->poisoned = 1;
666 	while (!list_empty(&anchor->urb_list)) {
667 		victim = list_entry(anchor->urb_list.prev, struct urb,
668 				    anchor_list);
669 		/* we must make sure the URB isn't freed before we kill it*/
670 		usb_get_urb(victim);
671 		spin_unlock_irq(&anchor->lock);
672 		/* this will unanchor the URB */
673 		usb_poison_urb(victim);
674 		usb_put_urb(victim);
675 		spin_lock_irq(&anchor->lock);
676 	}
677 	spin_unlock_irq(&anchor->lock);
678 }
679 EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
680 
681 /**
682  * usb_unpoison_anchored_urbs - let an anchor be used successfully again
683  * @anchor: anchor the requests are bound to
684  *
685  * Reverses the effect of usb_poison_anchored_urbs
686  * the anchor can be used normally after it returns
687  */
688 void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
689 {
690 	unsigned long flags;
691 	struct urb *lazarus;
692 
693 	spin_lock_irqsave(&anchor->lock, flags);
694 	list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
695 		usb_unpoison_urb(lazarus);
696 	}
697 	anchor->poisoned = 0;
698 	spin_unlock_irqrestore(&anchor->lock, flags);
699 }
700 EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
701 /**
702  * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
703  * @anchor: anchor the requests are bound to
704  *
705  * this allows all outstanding URBs to be unlinked starting
706  * from the back of the queue. This function is asynchronous.
707  * The unlinking is just tiggered. It may happen after this
708  * function has returned.
709  *
710  * This routine should not be called by a driver after its disconnect
711  * method has returned.
712  */
713 void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
714 {
715 	struct urb *victim;
716 	unsigned long flags;
717 
718 	spin_lock_irqsave(&anchor->lock, flags);
719 	while (!list_empty(&anchor->urb_list)) {
720 		victim = list_entry(anchor->urb_list.prev, struct urb,
721 				    anchor_list);
722 		usb_get_urb(victim);
723 		spin_unlock_irqrestore(&anchor->lock, flags);
724 		/* this will unanchor the URB */
725 		usb_unlink_urb(victim);
726 		usb_put_urb(victim);
727 		spin_lock_irqsave(&anchor->lock, flags);
728 	}
729 	spin_unlock_irqrestore(&anchor->lock, flags);
730 }
731 EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
732 
733 /**
734  * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
735  * @anchor: the anchor you want to become unused
736  * @timeout: how long you are willing to wait in milliseconds
737  *
738  * Call this is you want to be sure all an anchor's
739  * URBs have finished
740  */
741 int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
742 				  unsigned int timeout)
743 {
744 	return wait_event_timeout(anchor->wait, list_empty(&anchor->urb_list),
745 				  msecs_to_jiffies(timeout));
746 }
747 EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
748 
749 /**
750  * usb_get_from_anchor - get an anchor's oldest urb
751  * @anchor: the anchor whose urb you want
752  *
753  * this will take the oldest urb from an anchor,
754  * unanchor and return it
755  */
756 struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
757 {
758 	struct urb *victim;
759 	unsigned long flags;
760 
761 	spin_lock_irqsave(&anchor->lock, flags);
762 	if (!list_empty(&anchor->urb_list)) {
763 		victim = list_entry(anchor->urb_list.next, struct urb,
764 				    anchor_list);
765 		usb_get_urb(victim);
766 		spin_unlock_irqrestore(&anchor->lock, flags);
767 		usb_unanchor_urb(victim);
768 	} else {
769 		spin_unlock_irqrestore(&anchor->lock, flags);
770 		victim = NULL;
771 	}
772 
773 	return victim;
774 }
775 
776 EXPORT_SYMBOL_GPL(usb_get_from_anchor);
777 
778 /**
779  * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
780  * @anchor: the anchor whose urbs you want to unanchor
781  *
782  * use this to get rid of all an anchor's urbs
783  */
784 void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
785 {
786 	struct urb *victim;
787 	unsigned long flags;
788 
789 	spin_lock_irqsave(&anchor->lock, flags);
790 	while (!list_empty(&anchor->urb_list)) {
791 		victim = list_entry(anchor->urb_list.prev, struct urb,
792 				    anchor_list);
793 		usb_get_urb(victim);
794 		spin_unlock_irqrestore(&anchor->lock, flags);
795 		/* this may free the URB */
796 		usb_unanchor_urb(victim);
797 		usb_put_urb(victim);
798 		spin_lock_irqsave(&anchor->lock, flags);
799 	}
800 	spin_unlock_irqrestore(&anchor->lock, flags);
801 }
802 
803 EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
804 
805 /**
806  * usb_anchor_empty - is an anchor empty
807  * @anchor: the anchor you want to query
808  *
809  * returns 1 if the anchor has no urbs associated with it
810  */
811 int usb_anchor_empty(struct usb_anchor *anchor)
812 {
813 	return list_empty(&anchor->urb_list);
814 }
815 
816 EXPORT_SYMBOL_GPL(usb_anchor_empty);
817 
818