xref: /openbmc/linux/drivers/usb/core/urb.c (revision 8835f665)
1 #include <linux/config.h>
2 #include <linux/module.h>
3 #include <linux/string.h>
4 #include <linux/bitops.h>
5 #include <linux/slab.h>
6 #include <linux/init.h>
7 
8 #ifdef CONFIG_USB_DEBUG
9 	#define DEBUG
10 #else
11 	#undef DEBUG
12 #endif
13 #include <linux/usb.h>
14 #include "hcd.h"
15 
16 #define to_urb(d) container_of(d, struct urb, kref)
17 
18 static void urb_destroy(struct kref *kref)
19 {
20 	struct urb *urb = to_urb(kref);
21 	kfree(urb);
22 }
23 
24 /**
25  * usb_init_urb - initializes a urb so that it can be used by a USB driver
26  * @urb: pointer to the urb to initialize
27  *
28  * Initializes a urb so that the USB subsystem can use it properly.
29  *
30  * If a urb is created with a call to usb_alloc_urb() it is not
31  * necessary to call this function.  Only use this if you allocate the
32  * space for a struct urb on your own.  If you call this function, be
33  * careful when freeing the memory for your urb that it is no longer in
34  * use by the USB core.
35  *
36  * Only use this function if you _really_ understand what you are doing.
37  */
38 void usb_init_urb(struct urb *urb)
39 {
40 	if (urb) {
41 		memset(urb, 0, sizeof(*urb));
42 		kref_init(&urb->kref);
43 		spin_lock_init(&urb->lock);
44 	}
45 }
46 
47 /**
48  * usb_alloc_urb - creates a new urb for a USB driver to use
49  * @iso_packets: number of iso packets for this urb
50  * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
51  *	valid options for this.
52  *
53  * Creates an urb for the USB driver to use, initializes a few internal
54  * structures, incrementes the usage counter, and returns a pointer to it.
55  *
56  * If no memory is available, NULL is returned.
57  *
58  * If the driver want to use this urb for interrupt, control, or bulk
59  * endpoints, pass '0' as the number of iso packets.
60  *
61  * The driver must call usb_free_urb() when it is finished with the urb.
62  */
63 struct urb *usb_alloc_urb(int iso_packets, int mem_flags)
64 {
65 	struct urb *urb;
66 
67 	urb = (struct urb *)kmalloc(sizeof(struct urb) +
68 		iso_packets * sizeof(struct usb_iso_packet_descriptor),
69 		mem_flags);
70 	if (!urb) {
71 		err("alloc_urb: kmalloc failed");
72 		return NULL;
73 	}
74 	usb_init_urb(urb);
75 	return urb;
76 }
77 
78 /**
79  * usb_free_urb - frees the memory used by a urb when all users of it are finished
80  * @urb: pointer to the urb to free, may be NULL
81  *
82  * Must be called when a user of a urb is finished with it.  When the last user
83  * of the urb calls this function, the memory of the urb is freed.
84  *
85  * Note: The transfer buffer associated with the urb is not freed, that must be
86  * done elsewhere.
87  */
88 void usb_free_urb(struct urb *urb)
89 {
90 	if (urb)
91 		kref_put(&urb->kref, urb_destroy);
92 }
93 
94 /**
95  * usb_get_urb - increments the reference count of the urb
96  * @urb: pointer to the urb to modify, may be NULL
97  *
98  * This must be  called whenever a urb is transferred from a device driver to a
99  * host controller driver.  This allows proper reference counting to happen
100  * for urbs.
101  *
102  * A pointer to the urb with the incremented reference counter is returned.
103  */
104 struct urb * usb_get_urb(struct urb *urb)
105 {
106 	if (urb)
107 		kref_get(&urb->kref);
108 	return urb;
109 }
110 
111 
112 /*-------------------------------------------------------------------*/
113 
114 /**
115  * usb_submit_urb - issue an asynchronous transfer request for an endpoint
116  * @urb: pointer to the urb describing the request
117  * @mem_flags: the type of memory to allocate, see kmalloc() for a list
118  *	of valid options for this.
119  *
120  * This submits a transfer request, and transfers control of the URB
121  * describing that request to the USB subsystem.  Request completion will
122  * be indicated later, asynchronously, by calling the completion handler.
123  * The three types of completion are success, error, and unlink
124  * (a software-induced fault, also called "request cancelation").
125  *
126  * URBs may be submitted in interrupt context.
127  *
128  * The caller must have correctly initialized the URB before submitting
129  * it.  Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
130  * available to ensure that most fields are correctly initialized, for
131  * the particular kind of transfer, although they will not initialize
132  * any transfer flags.
133  *
134  * Successful submissions return 0; otherwise this routine returns a
135  * negative error number.  If the submission is successful, the complete()
136  * callback from the URB will be called exactly once, when the USB core and
137  * Host Controller Driver (HCD) are finished with the URB.  When the completion
138  * function is called, control of the URB is returned to the device
139  * driver which issued the request.  The completion handler may then
140  * immediately free or reuse that URB.
141  *
142  * With few exceptions, USB device drivers should never access URB fields
143  * provided by usbcore or the HCD until its complete() is called.
144  * The exceptions relate to periodic transfer scheduling.  For both
145  * interrupt and isochronous urbs, as part of successful URB submission
146  * urb->interval is modified to reflect the actual transfer period used
147  * (normally some power of two units).  And for isochronous urbs,
148  * urb->start_frame is modified to reflect when the URB's transfers were
149  * scheduled to start.  Not all isochronous transfer scheduling policies
150  * will work, but most host controller drivers should easily handle ISO
151  * queues going from now until 10-200 msec into the future.
152  *
153  * For control endpoints, the synchronous usb_control_msg() call is
154  * often used (in non-interrupt context) instead of this call.
155  * That is often used through convenience wrappers, for the requests
156  * that are standardized in the USB 2.0 specification.  For bulk
157  * endpoints, a synchronous usb_bulk_msg() call is available.
158  *
159  * Request Queuing:
160  *
161  * URBs may be submitted to endpoints before previous ones complete, to
162  * minimize the impact of interrupt latencies and system overhead on data
163  * throughput.  With that queuing policy, an endpoint's queue would never
164  * be empty.  This is required for continuous isochronous data streams,
165  * and may also be required for some kinds of interrupt transfers. Such
166  * queuing also maximizes bandwidth utilization by letting USB controllers
167  * start work on later requests before driver software has finished the
168  * completion processing for earlier (successful) requests.
169  *
170  * As of Linux 2.6, all USB endpoint transfer queues support depths greater
171  * than one.  This was previously a HCD-specific behavior, except for ISO
172  * transfers.  Non-isochronous endpoint queues are inactive during cleanup
173  * after faults (transfer errors or cancelation).
174  *
175  * Reserved Bandwidth Transfers:
176  *
177  * Periodic transfers (interrupt or isochronous) are performed repeatedly,
178  * using the interval specified in the urb.  Submitting the first urb to
179  * the endpoint reserves the bandwidth necessary to make those transfers.
180  * If the USB subsystem can't allocate sufficient bandwidth to perform
181  * the periodic request, submitting such a periodic request should fail.
182  *
183  * Device drivers must explicitly request that repetition, by ensuring that
184  * some URB is always on the endpoint's queue (except possibly for short
185  * periods during completion callacks).  When there is no longer an urb
186  * queued, the endpoint's bandwidth reservation is canceled.  This means
187  * drivers can use their completion handlers to ensure they keep bandwidth
188  * they need, by reinitializing and resubmitting the just-completed urb
189  * until the driver longer needs that periodic bandwidth.
190  *
191  * Memory Flags:
192  *
193  * The general rules for how to decide which mem_flags to use
194  * are the same as for kmalloc.  There are four
195  * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
196  * GFP_ATOMIC.
197  *
198  * GFP_NOFS is not ever used, as it has not been implemented yet.
199  *
200  * GFP_ATOMIC is used when
201  *   (a) you are inside a completion handler, an interrupt, bottom half,
202  *       tasklet or timer, or
203  *   (b) you are holding a spinlock or rwlock (does not apply to
204  *       semaphores), or
205  *   (c) current->state != TASK_RUNNING, this is the case only after
206  *       you've changed it.
207  *
208  * GFP_NOIO is used in the block io path and error handling of storage
209  * devices.
210  *
211  * All other situations use GFP_KERNEL.
212  *
213  * Some more specific rules for mem_flags can be inferred, such as
214  *  (1) start_xmit, timeout, and receive methods of network drivers must
215  *      use GFP_ATOMIC (they are called with a spinlock held);
216  *  (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
217  *      called with a spinlock held);
218  *  (3) If you use a kernel thread with a network driver you must use
219  *      GFP_NOIO, unless (b) or (c) apply;
220  *  (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
221  *      apply or your are in a storage driver's block io path;
222  *  (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
223  *  (6) changing firmware on a running storage or net device uses
224  *      GFP_NOIO, unless b) or c) apply
225  *
226  */
227 int usb_submit_urb(struct urb *urb, int mem_flags)
228 {
229 	int			pipe, temp, max;
230 	struct usb_device	*dev;
231 	struct usb_operations	*op;
232 	int			is_out;
233 
234 	if (!urb || urb->hcpriv || !urb->complete)
235 		return -EINVAL;
236 	if (!(dev = urb->dev) ||
237 	    (dev->state < USB_STATE_DEFAULT) ||
238 	    (!dev->bus) || (dev->devnum <= 0))
239 		return -ENODEV;
240 	if (dev->state == USB_STATE_SUSPENDED)
241 		return -EHOSTUNREACH;
242 	if (!(op = dev->bus->op) || !op->submit_urb)
243 		return -ENODEV;
244 
245 	urb->status = -EINPROGRESS;
246 	urb->actual_length = 0;
247 	urb->bandwidth = 0;
248 
249 	/* Lots of sanity checks, so HCDs can rely on clean data
250 	 * and don't need to duplicate tests
251 	 */
252 	pipe = urb->pipe;
253 	temp = usb_pipetype (pipe);
254 	is_out = usb_pipeout (pipe);
255 
256 	if (!usb_pipecontrol (pipe) && dev->state < USB_STATE_CONFIGURED)
257 		return -ENODEV;
258 
259 	/* FIXME there should be a sharable lock protecting us against
260 	 * config/altsetting changes and disconnects, kicking in here.
261 	 * (here == before maxpacket, and eventually endpoint type,
262 	 * checks get made.)
263 	 */
264 
265 	max = usb_maxpacket (dev, pipe, is_out);
266 	if (max <= 0) {
267 		dev_dbg(&dev->dev,
268 			"bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
269 			usb_pipeendpoint (pipe), is_out ? "out" : "in",
270 			__FUNCTION__, max);
271 		return -EMSGSIZE;
272 	}
273 
274 	/* periodic transfers limit size per frame/uframe,
275 	 * but drivers only control those sizes for ISO.
276 	 * while we're checking, initialize return status.
277 	 */
278 	if (temp == PIPE_ISOCHRONOUS) {
279 		int	n, len;
280 
281 		/* "high bandwidth" mode, 1-3 packets/uframe? */
282 		if (dev->speed == USB_SPEED_HIGH) {
283 			int	mult = 1 + ((max >> 11) & 0x03);
284 			max &= 0x07ff;
285 			max *= mult;
286 		}
287 
288 		if (urb->number_of_packets <= 0)
289 			return -EINVAL;
290 		for (n = 0; n < urb->number_of_packets; n++) {
291 			len = urb->iso_frame_desc [n].length;
292 			if (len < 0 || len > max)
293 				return -EMSGSIZE;
294 			urb->iso_frame_desc [n].status = -EXDEV;
295 			urb->iso_frame_desc [n].actual_length = 0;
296 		}
297 	}
298 
299 	/* the I/O buffer must be mapped/unmapped, except when length=0 */
300 	if (urb->transfer_buffer_length < 0)
301 		return -EMSGSIZE;
302 
303 #ifdef DEBUG
304 	/* stuff that drivers shouldn't do, but which shouldn't
305 	 * cause problems in HCDs if they get it wrong.
306 	 */
307 	{
308 	unsigned int	orig_flags = urb->transfer_flags;
309 	unsigned int	allowed;
310 
311 	/* enforce simple/standard policy */
312 	allowed = URB_ASYNC_UNLINK;	// affects later unlinks
313 	allowed |= (URB_NO_TRANSFER_DMA_MAP | URB_NO_SETUP_DMA_MAP);
314 	allowed |= URB_NO_INTERRUPT;
315 	switch (temp) {
316 	case PIPE_BULK:
317 		if (is_out)
318 			allowed |= URB_ZERO_PACKET;
319 		/* FALLTHROUGH */
320 	case PIPE_CONTROL:
321 		allowed |= URB_NO_FSBR;	/* only affects UHCI */
322 		/* FALLTHROUGH */
323 	default:			/* all non-iso endpoints */
324 		if (!is_out)
325 			allowed |= URB_SHORT_NOT_OK;
326 		break;
327 	case PIPE_ISOCHRONOUS:
328 		allowed |= URB_ISO_ASAP;
329 		break;
330 	}
331 	urb->transfer_flags &= allowed;
332 
333 	/* fail if submitter gave bogus flags */
334 	if (urb->transfer_flags != orig_flags) {
335 		err ("BOGUS urb flags, %x --> %x",
336 			orig_flags, urb->transfer_flags);
337 		return -EINVAL;
338 	}
339 	}
340 #endif
341 	/*
342 	 * Force periodic transfer intervals to be legal values that are
343 	 * a power of two (so HCDs don't need to).
344 	 *
345 	 * FIXME want bus->{intr,iso}_sched_horizon values here.  Each HC
346 	 * supports different values... this uses EHCI/UHCI defaults (and
347 	 * EHCI can use smaller non-default values).
348 	 */
349 	switch (temp) {
350 	case PIPE_ISOCHRONOUS:
351 	case PIPE_INTERRUPT:
352 		/* too small? */
353 		if (urb->interval <= 0)
354 			return -EINVAL;
355 		/* too big? */
356 		switch (dev->speed) {
357 		case USB_SPEED_HIGH:	/* units are microframes */
358 			// NOTE usb handles 2^15
359 			if (urb->interval > (1024 * 8))
360 				urb->interval = 1024 * 8;
361 			temp = 1024 * 8;
362 			break;
363 		case USB_SPEED_FULL:	/* units are frames/msec */
364 		case USB_SPEED_LOW:
365 			if (temp == PIPE_INTERRUPT) {
366 				if (urb->interval > 255)
367 					return -EINVAL;
368 				// NOTE ohci only handles up to 32
369 				temp = 128;
370 			} else {
371 				if (urb->interval > 1024)
372 					urb->interval = 1024;
373 				// NOTE usb and ohci handle up to 2^15
374 				temp = 1024;
375 			}
376 			break;
377 		default:
378 			return -EINVAL;
379 		}
380 		/* power of two? */
381 		while (temp > urb->interval)
382 			temp >>= 1;
383 		urb->interval = temp;
384 	}
385 
386 	return op->submit_urb (urb, mem_flags);
387 }
388 
389 /*-------------------------------------------------------------------*/
390 
391 /**
392  * usb_unlink_urb - abort/cancel a transfer request for an endpoint
393  * @urb: pointer to urb describing a previously submitted request,
394  *	may be NULL
395  *
396  * This routine cancels an in-progress request.  URBs complete only
397  * once per submission, and may be canceled only once per submission.
398  * Successful cancelation means the requests's completion handler will
399  * be called with a status code indicating that the request has been
400  * canceled (rather than any other code) and will quickly be removed
401  * from host controller data structures.
402  *
403  * In the past, clearing the URB_ASYNC_UNLINK transfer flag for the
404  * URB indicated that the request was synchronous.  This usage is now
405  * deprecated; if the flag is clear the call will be forwarded to
406  * usb_kill_urb() and the return value will be 0.  In the future, drivers
407  * should call usb_kill_urb() directly for synchronous unlinking.
408  *
409  * When the URB_ASYNC_UNLINK transfer flag for the URB is set, this
410  * request is asynchronous.  Success is indicated by returning -EINPROGRESS,
411  * at which time the URB will normally have been unlinked but not yet
412  * given back to the device driver.  When it is called, the completion
413  * function will see urb->status == -ECONNRESET.  Failure is indicated
414  * by any other return value.  Unlinking will fail when the URB is not
415  * currently "linked" (i.e., it was never submitted, or it was unlinked
416  * before, or the hardware is already finished with it), even if the
417  * completion handler has not yet run.
418  *
419  * Unlinking and Endpoint Queues:
420  *
421  * Host Controller Drivers (HCDs) place all the URBs for a particular
422  * endpoint in a queue.  Normally the queue advances as the controller
423  * hardware processes each request.  But when an URB terminates with an
424  * error its queue stops, at least until that URB's completion routine
425  * returns.  It is guaranteed that the queue will not restart until all
426  * its unlinked URBs have been fully retired, with their completion
427  * routines run, even if that's not until some time after the original
428  * completion handler returns.  Normally the same behavior and guarantees
429  * apply when an URB terminates because it was unlinked; however if an
430  * URB is unlinked before the hardware has started to execute it, then
431  * its queue is not guaranteed to stop until all the preceding URBs have
432  * completed.
433  *
434  * This means that USB device drivers can safely build deep queues for
435  * large or complex transfers, and clean them up reliably after any sort
436  * of aborted transfer by unlinking all pending URBs at the first fault.
437  *
438  * Note that an URB terminating early because a short packet was received
439  * will count as an error if and only if the URB_SHORT_NOT_OK flag is set.
440  * Also, that all unlinks performed in any URB completion handler must
441  * be asynchronous.
442  *
443  * Queues for isochronous endpoints are treated differently, because they
444  * advance at fixed rates.  Such queues do not stop when an URB is unlinked.
445  * An unlinked URB may leave a gap in the stream of packets.  It is undefined
446  * whether such gaps can be filled in.
447  *
448  * When a control URB terminates with an error, it is likely that the
449  * status stage of the transfer will not take place, even if it is merely
450  * a soft error resulting from a short-packet with URB_SHORT_NOT_OK set.
451  */
452 int usb_unlink_urb(struct urb *urb)
453 {
454 	if (!urb)
455 		return -EINVAL;
456 	if (!(urb->transfer_flags & URB_ASYNC_UNLINK)) {
457 #ifdef CONFIG_DEBUG_KERNEL
458 		if (printk_ratelimit()) {
459 			printk(KERN_NOTICE "usb_unlink_urb() is deprecated for "
460 				"synchronous unlinks.  Use usb_kill_urb() instead.\n");
461 			WARN_ON(1);
462 		}
463 #endif
464 		usb_kill_urb(urb);
465 		return 0;
466 	}
467 	if (!(urb->dev && urb->dev->bus && urb->dev->bus->op))
468 		return -ENODEV;
469 	return urb->dev->bus->op->unlink_urb(urb, -ECONNRESET);
470 }
471 
472 /**
473  * usb_kill_urb - cancel a transfer request and wait for it to finish
474  * @urb: pointer to URB describing a previously submitted request,
475  *	may be NULL
476  *
477  * This routine cancels an in-progress request.  It is guaranteed that
478  * upon return all completion handlers will have finished and the URB
479  * will be totally idle and available for reuse.  These features make
480  * this an ideal way to stop I/O in a disconnect() callback or close()
481  * function.  If the request has not already finished or been unlinked
482  * the completion handler will see urb->status == -ENOENT.
483  *
484  * While the routine is running, attempts to resubmit the URB will fail
485  * with error -EPERM.  Thus even if the URB's completion handler always
486  * tries to resubmit, it will not succeed and the URB will become idle.
487  *
488  * This routine may not be used in an interrupt context (such as a bottom
489  * half or a completion handler), or when holding a spinlock, or in other
490  * situations where the caller can't schedule().
491  */
492 void usb_kill_urb(struct urb *urb)
493 {
494 	if (!(urb && urb->dev && urb->dev->bus && urb->dev->bus->op))
495 		return;
496 	spin_lock_irq(&urb->lock);
497 	++urb->reject;
498 	spin_unlock_irq(&urb->lock);
499 
500 	urb->dev->bus->op->unlink_urb(urb, -ENOENT);
501 	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
502 
503 	spin_lock_irq(&urb->lock);
504 	--urb->reject;
505 	spin_unlock_irq(&urb->lock);
506 }
507 
508 EXPORT_SYMBOL(usb_init_urb);
509 EXPORT_SYMBOL(usb_alloc_urb);
510 EXPORT_SYMBOL(usb_free_urb);
511 EXPORT_SYMBOL(usb_get_urb);
512 EXPORT_SYMBOL(usb_submit_urb);
513 EXPORT_SYMBOL(usb_unlink_urb);
514 EXPORT_SYMBOL(usb_kill_urb);
515 
516