xref: /openbmc/linux/drivers/usb/core/urb.c (revision 87c2ce3b)
1 #include <linux/config.h>
2 #include <linux/module.h>
3 #include <linux/string.h>
4 #include <linux/bitops.h>
5 #include <linux/slab.h>
6 #include <linux/init.h>
7 #include <linux/usb.h>
8 #include "hcd.h"
9 
10 #define to_urb(d) container_of(d, struct urb, kref)
11 
12 static void urb_destroy(struct kref *kref)
13 {
14 	struct urb *urb = to_urb(kref);
15 	kfree(urb);
16 }
17 
18 /**
19  * usb_init_urb - initializes a urb so that it can be used by a USB driver
20  * @urb: pointer to the urb to initialize
21  *
22  * Initializes a urb so that the USB subsystem can use it properly.
23  *
24  * If a urb is created with a call to usb_alloc_urb() it is not
25  * necessary to call this function.  Only use this if you allocate the
26  * space for a struct urb on your own.  If you call this function, be
27  * careful when freeing the memory for your urb that it is no longer in
28  * use by the USB core.
29  *
30  * Only use this function if you _really_ understand what you are doing.
31  */
32 void usb_init_urb(struct urb *urb)
33 {
34 	if (urb) {
35 		memset(urb, 0, sizeof(*urb));
36 		kref_init(&urb->kref);
37 		spin_lock_init(&urb->lock);
38 	}
39 }
40 
41 /**
42  * usb_alloc_urb - creates a new urb for a USB driver to use
43  * @iso_packets: number of iso packets for this urb
44  * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
45  *	valid options for this.
46  *
47  * Creates an urb for the USB driver to use, initializes a few internal
48  * structures, incrementes the usage counter, and returns a pointer to it.
49  *
50  * If no memory is available, NULL is returned.
51  *
52  * If the driver want to use this urb for interrupt, control, or bulk
53  * endpoints, pass '0' as the number of iso packets.
54  *
55  * The driver must call usb_free_urb() when it is finished with the urb.
56  */
57 struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
58 {
59 	struct urb *urb;
60 
61 	urb = (struct urb *)kmalloc(sizeof(struct urb) +
62 		iso_packets * sizeof(struct usb_iso_packet_descriptor),
63 		mem_flags);
64 	if (!urb) {
65 		err("alloc_urb: kmalloc failed");
66 		return NULL;
67 	}
68 	usb_init_urb(urb);
69 	return urb;
70 }
71 
72 /**
73  * usb_free_urb - frees the memory used by a urb when all users of it are finished
74  * @urb: pointer to the urb to free, may be NULL
75  *
76  * Must be called when a user of a urb is finished with it.  When the last user
77  * of the urb calls this function, the memory of the urb is freed.
78  *
79  * Note: The transfer buffer associated with the urb is not freed, that must be
80  * done elsewhere.
81  */
82 void usb_free_urb(struct urb *urb)
83 {
84 	if (urb)
85 		kref_put(&urb->kref, urb_destroy);
86 }
87 
88 /**
89  * usb_get_urb - increments the reference count of the urb
90  * @urb: pointer to the urb to modify, may be NULL
91  *
92  * This must be  called whenever a urb is transferred from a device driver to a
93  * host controller driver.  This allows proper reference counting to happen
94  * for urbs.
95  *
96  * A pointer to the urb with the incremented reference counter is returned.
97  */
98 struct urb * usb_get_urb(struct urb *urb)
99 {
100 	if (urb)
101 		kref_get(&urb->kref);
102 	return urb;
103 }
104 
105 
106 /*-------------------------------------------------------------------*/
107 
108 /**
109  * usb_submit_urb - issue an asynchronous transfer request for an endpoint
110  * @urb: pointer to the urb describing the request
111  * @mem_flags: the type of memory to allocate, see kmalloc() for a list
112  *	of valid options for this.
113  *
114  * This submits a transfer request, and transfers control of the URB
115  * describing that request to the USB subsystem.  Request completion will
116  * be indicated later, asynchronously, by calling the completion handler.
117  * The three types of completion are success, error, and unlink
118  * (a software-induced fault, also called "request cancellation").
119  *
120  * URBs may be submitted in interrupt context.
121  *
122  * The caller must have correctly initialized the URB before submitting
123  * it.  Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
124  * available to ensure that most fields are correctly initialized, for
125  * the particular kind of transfer, although they will not initialize
126  * any transfer flags.
127  *
128  * Successful submissions return 0; otherwise this routine returns a
129  * negative error number.  If the submission is successful, the complete()
130  * callback from the URB will be called exactly once, when the USB core and
131  * Host Controller Driver (HCD) are finished with the URB.  When the completion
132  * function is called, control of the URB is returned to the device
133  * driver which issued the request.  The completion handler may then
134  * immediately free or reuse that URB.
135  *
136  * With few exceptions, USB device drivers should never access URB fields
137  * provided by usbcore or the HCD until its complete() is called.
138  * The exceptions relate to periodic transfer scheduling.  For both
139  * interrupt and isochronous urbs, as part of successful URB submission
140  * urb->interval is modified to reflect the actual transfer period used
141  * (normally some power of two units).  And for isochronous urbs,
142  * urb->start_frame is modified to reflect when the URB's transfers were
143  * scheduled to start.  Not all isochronous transfer scheduling policies
144  * will work, but most host controller drivers should easily handle ISO
145  * queues going from now until 10-200 msec into the future.
146  *
147  * For control endpoints, the synchronous usb_control_msg() call is
148  * often used (in non-interrupt context) instead of this call.
149  * That is often used through convenience wrappers, for the requests
150  * that are standardized in the USB 2.0 specification.  For bulk
151  * endpoints, a synchronous usb_bulk_msg() call is available.
152  *
153  * Request Queuing:
154  *
155  * URBs may be submitted to endpoints before previous ones complete, to
156  * minimize the impact of interrupt latencies and system overhead on data
157  * throughput.  With that queuing policy, an endpoint's queue would never
158  * be empty.  This is required for continuous isochronous data streams,
159  * and may also be required for some kinds of interrupt transfers. Such
160  * queuing also maximizes bandwidth utilization by letting USB controllers
161  * start work on later requests before driver software has finished the
162  * completion processing for earlier (successful) requests.
163  *
164  * As of Linux 2.6, all USB endpoint transfer queues support depths greater
165  * than one.  This was previously a HCD-specific behavior, except for ISO
166  * transfers.  Non-isochronous endpoint queues are inactive during cleanup
167  * after faults (transfer errors or cancellation).
168  *
169  * Reserved Bandwidth Transfers:
170  *
171  * Periodic transfers (interrupt or isochronous) are performed repeatedly,
172  * using the interval specified in the urb.  Submitting the first urb to
173  * the endpoint reserves the bandwidth necessary to make those transfers.
174  * If the USB subsystem can't allocate sufficient bandwidth to perform
175  * the periodic request, submitting such a periodic request should fail.
176  *
177  * Device drivers must explicitly request that repetition, by ensuring that
178  * some URB is always on the endpoint's queue (except possibly for short
179  * periods during completion callacks).  When there is no longer an urb
180  * queued, the endpoint's bandwidth reservation is canceled.  This means
181  * drivers can use their completion handlers to ensure they keep bandwidth
182  * they need, by reinitializing and resubmitting the just-completed urb
183  * until the driver longer needs that periodic bandwidth.
184  *
185  * Memory Flags:
186  *
187  * The general rules for how to decide which mem_flags to use
188  * are the same as for kmalloc.  There are four
189  * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
190  * GFP_ATOMIC.
191  *
192  * GFP_NOFS is not ever used, as it has not been implemented yet.
193  *
194  * GFP_ATOMIC is used when
195  *   (a) you are inside a completion handler, an interrupt, bottom half,
196  *       tasklet or timer, or
197  *   (b) you are holding a spinlock or rwlock (does not apply to
198  *       semaphores), or
199  *   (c) current->state != TASK_RUNNING, this is the case only after
200  *       you've changed it.
201  *
202  * GFP_NOIO is used in the block io path and error handling of storage
203  * devices.
204  *
205  * All other situations use GFP_KERNEL.
206  *
207  * Some more specific rules for mem_flags can be inferred, such as
208  *  (1) start_xmit, timeout, and receive methods of network drivers must
209  *      use GFP_ATOMIC (they are called with a spinlock held);
210  *  (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
211  *      called with a spinlock held);
212  *  (3) If you use a kernel thread with a network driver you must use
213  *      GFP_NOIO, unless (b) or (c) apply;
214  *  (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
215  *      apply or your are in a storage driver's block io path;
216  *  (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
217  *  (6) changing firmware on a running storage or net device uses
218  *      GFP_NOIO, unless b) or c) apply
219  *
220  */
221 int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
222 {
223 	int			pipe, temp, max;
224 	struct usb_device	*dev;
225 	struct usb_operations	*op;
226 	int			is_out;
227 
228 	if (!urb || urb->hcpriv || !urb->complete)
229 		return -EINVAL;
230 	if (!(dev = urb->dev) ||
231 	    (dev->state < USB_STATE_DEFAULT) ||
232 	    (!dev->bus) || (dev->devnum <= 0))
233 		return -ENODEV;
234 	if (dev->bus->controller->power.power_state.event != PM_EVENT_ON
235 			|| dev->state == USB_STATE_SUSPENDED)
236 		return -EHOSTUNREACH;
237 	if (!(op = dev->bus->op) || !op->submit_urb)
238 		return -ENODEV;
239 
240 	urb->status = -EINPROGRESS;
241 	urb->actual_length = 0;
242 	urb->bandwidth = 0;
243 
244 	/* Lots of sanity checks, so HCDs can rely on clean data
245 	 * and don't need to duplicate tests
246 	 */
247 	pipe = urb->pipe;
248 	temp = usb_pipetype (pipe);
249 	is_out = usb_pipeout (pipe);
250 
251 	if (!usb_pipecontrol (pipe) && dev->state < USB_STATE_CONFIGURED)
252 		return -ENODEV;
253 
254 	/* FIXME there should be a sharable lock protecting us against
255 	 * config/altsetting changes and disconnects, kicking in here.
256 	 * (here == before maxpacket, and eventually endpoint type,
257 	 * checks get made.)
258 	 */
259 
260 	max = usb_maxpacket (dev, pipe, is_out);
261 	if (max <= 0) {
262 		dev_dbg(&dev->dev,
263 			"bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
264 			usb_pipeendpoint (pipe), is_out ? "out" : "in",
265 			__FUNCTION__, max);
266 		return -EMSGSIZE;
267 	}
268 
269 	/* periodic transfers limit size per frame/uframe,
270 	 * but drivers only control those sizes for ISO.
271 	 * while we're checking, initialize return status.
272 	 */
273 	if (temp == PIPE_ISOCHRONOUS) {
274 		int	n, len;
275 
276 		/* "high bandwidth" mode, 1-3 packets/uframe? */
277 		if (dev->speed == USB_SPEED_HIGH) {
278 			int	mult = 1 + ((max >> 11) & 0x03);
279 			max &= 0x07ff;
280 			max *= mult;
281 		}
282 
283 		if (urb->number_of_packets <= 0)
284 			return -EINVAL;
285 		for (n = 0; n < urb->number_of_packets; n++) {
286 			len = urb->iso_frame_desc [n].length;
287 			if (len < 0 || len > max)
288 				return -EMSGSIZE;
289 			urb->iso_frame_desc [n].status = -EXDEV;
290 			urb->iso_frame_desc [n].actual_length = 0;
291 		}
292 	}
293 
294 	/* the I/O buffer must be mapped/unmapped, except when length=0 */
295 	if (urb->transfer_buffer_length < 0)
296 		return -EMSGSIZE;
297 
298 #ifdef DEBUG
299 	/* stuff that drivers shouldn't do, but which shouldn't
300 	 * cause problems in HCDs if they get it wrong.
301 	 */
302 	{
303 	unsigned int	orig_flags = urb->transfer_flags;
304 	unsigned int	allowed;
305 
306 	/* enforce simple/standard policy */
307 	allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_SETUP_DMA_MAP |
308 			URB_NO_INTERRUPT);
309 	switch (temp) {
310 	case PIPE_BULK:
311 		if (is_out)
312 			allowed |= URB_ZERO_PACKET;
313 		/* FALLTHROUGH */
314 	case PIPE_CONTROL:
315 		allowed |= URB_NO_FSBR;	/* only affects UHCI */
316 		/* FALLTHROUGH */
317 	default:			/* all non-iso endpoints */
318 		if (!is_out)
319 			allowed |= URB_SHORT_NOT_OK;
320 		break;
321 	case PIPE_ISOCHRONOUS:
322 		allowed |= URB_ISO_ASAP;
323 		break;
324 	}
325 	urb->transfer_flags &= allowed;
326 
327 	/* fail if submitter gave bogus flags */
328 	if (urb->transfer_flags != orig_flags) {
329 		err ("BOGUS urb flags, %x --> %x",
330 			orig_flags, urb->transfer_flags);
331 		return -EINVAL;
332 	}
333 	}
334 #endif
335 	/*
336 	 * Force periodic transfer intervals to be legal values that are
337 	 * a power of two (so HCDs don't need to).
338 	 *
339 	 * FIXME want bus->{intr,iso}_sched_horizon values here.  Each HC
340 	 * supports different values... this uses EHCI/UHCI defaults (and
341 	 * EHCI can use smaller non-default values).
342 	 */
343 	switch (temp) {
344 	case PIPE_ISOCHRONOUS:
345 	case PIPE_INTERRUPT:
346 		/* too small? */
347 		if (urb->interval <= 0)
348 			return -EINVAL;
349 		/* too big? */
350 		switch (dev->speed) {
351 		case USB_SPEED_HIGH:	/* units are microframes */
352 			// NOTE usb handles 2^15
353 			if (urb->interval > (1024 * 8))
354 				urb->interval = 1024 * 8;
355 			temp = 1024 * 8;
356 			break;
357 		case USB_SPEED_FULL:	/* units are frames/msec */
358 		case USB_SPEED_LOW:
359 			if (temp == PIPE_INTERRUPT) {
360 				if (urb->interval > 255)
361 					return -EINVAL;
362 				// NOTE ohci only handles up to 32
363 				temp = 128;
364 			} else {
365 				if (urb->interval > 1024)
366 					urb->interval = 1024;
367 				// NOTE usb and ohci handle up to 2^15
368 				temp = 1024;
369 			}
370 			break;
371 		default:
372 			return -EINVAL;
373 		}
374 		/* power of two? */
375 		while (temp > urb->interval)
376 			temp >>= 1;
377 		urb->interval = temp;
378 	}
379 
380 	return op->submit_urb (urb, mem_flags);
381 }
382 
383 /*-------------------------------------------------------------------*/
384 
385 /**
386  * usb_unlink_urb - abort/cancel a transfer request for an endpoint
387  * @urb: pointer to urb describing a previously submitted request,
388  *	may be NULL
389  *
390  * This routine cancels an in-progress request.  URBs complete only
391  * once per submission, and may be canceled only once per submission.
392  * Successful cancellation means the requests's completion handler will
393  * be called with a status code indicating that the request has been
394  * canceled (rather than any other code) and will quickly be removed
395  * from host controller data structures.
396  *
397  * This request is always asynchronous.
398  * Success is indicated by returning -EINPROGRESS,
399  * at which time the URB will normally have been unlinked but not yet
400  * given back to the device driver.  When it is called, the completion
401  * function will see urb->status == -ECONNRESET.  Failure is indicated
402  * by any other return value.  Unlinking will fail when the URB is not
403  * currently "linked" (i.e., it was never submitted, or it was unlinked
404  * before, or the hardware is already finished with it), even if the
405  * completion handler has not yet run.
406  *
407  * Unlinking and Endpoint Queues:
408  *
409  * Host Controller Drivers (HCDs) place all the URBs for a particular
410  * endpoint in a queue.  Normally the queue advances as the controller
411  * hardware processes each request.  But when an URB terminates with an
412  * error its queue stops, at least until that URB's completion routine
413  * returns.  It is guaranteed that the queue will not restart until all
414  * its unlinked URBs have been fully retired, with their completion
415  * routines run, even if that's not until some time after the original
416  * completion handler returns.  Normally the same behavior and guarantees
417  * apply when an URB terminates because it was unlinked; however if an
418  * URB is unlinked before the hardware has started to execute it, then
419  * its queue is not guaranteed to stop until all the preceding URBs have
420  * completed.
421  *
422  * This means that USB device drivers can safely build deep queues for
423  * large or complex transfers, and clean them up reliably after any sort
424  * of aborted transfer by unlinking all pending URBs at the first fault.
425  *
426  * Note that an URB terminating early because a short packet was received
427  * will count as an error if and only if the URB_SHORT_NOT_OK flag is set.
428  * Also, that all unlinks performed in any URB completion handler must
429  * be asynchronous.
430  *
431  * Queues for isochronous endpoints are treated differently, because they
432  * advance at fixed rates.  Such queues do not stop when an URB is unlinked.
433  * An unlinked URB may leave a gap in the stream of packets.  It is undefined
434  * whether such gaps can be filled in.
435  *
436  * When a control URB terminates with an error, it is likely that the
437  * status stage of the transfer will not take place, even if it is merely
438  * a soft error resulting from a short-packet with URB_SHORT_NOT_OK set.
439  */
440 int usb_unlink_urb(struct urb *urb)
441 {
442 	if (!urb)
443 		return -EINVAL;
444 	if (!(urb->dev && urb->dev->bus && urb->dev->bus->op))
445 		return -ENODEV;
446 	return urb->dev->bus->op->unlink_urb(urb, -ECONNRESET);
447 }
448 
449 /**
450  * usb_kill_urb - cancel a transfer request and wait for it to finish
451  * @urb: pointer to URB describing a previously submitted request,
452  *	may be NULL
453  *
454  * This routine cancels an in-progress request.  It is guaranteed that
455  * upon return all completion handlers will have finished and the URB
456  * will be totally idle and available for reuse.  These features make
457  * this an ideal way to stop I/O in a disconnect() callback or close()
458  * function.  If the request has not already finished or been unlinked
459  * the completion handler will see urb->status == -ENOENT.
460  *
461  * While the routine is running, attempts to resubmit the URB will fail
462  * with error -EPERM.  Thus even if the URB's completion handler always
463  * tries to resubmit, it will not succeed and the URB will become idle.
464  *
465  * This routine may not be used in an interrupt context (such as a bottom
466  * half or a completion handler), or when holding a spinlock, or in other
467  * situations where the caller can't schedule().
468  */
469 void usb_kill_urb(struct urb *urb)
470 {
471 	if (!(urb && urb->dev && urb->dev->bus && urb->dev->bus->op))
472 		return;
473 	spin_lock_irq(&urb->lock);
474 	++urb->reject;
475 	spin_unlock_irq(&urb->lock);
476 
477 	urb->dev->bus->op->unlink_urb(urb, -ENOENT);
478 	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
479 
480 	spin_lock_irq(&urb->lock);
481 	--urb->reject;
482 	spin_unlock_irq(&urb->lock);
483 }
484 
485 EXPORT_SYMBOL(usb_init_urb);
486 EXPORT_SYMBOL(usb_alloc_urb);
487 EXPORT_SYMBOL(usb_free_urb);
488 EXPORT_SYMBOL(usb_get_urb);
489 EXPORT_SYMBOL(usb_submit_urb);
490 EXPORT_SYMBOL(usb_unlink_urb);
491 EXPORT_SYMBOL(usb_kill_urb);
492 
493