xref: /openbmc/linux/drivers/usb/core/urb.c (revision 803a5362)
1 #include <linux/module.h>
2 #include <linux/string.h>
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/log2.h>
6 #include <linux/usb.h>
7 #include <linux/wait.h>
8 #include <linux/usb/hcd.h>
9 #include <linux/scatterlist.h>
10 
11 #define to_urb(d) container_of(d, struct urb, kref)
12 
13 
14 static void urb_destroy(struct kref *kref)
15 {
16 	struct urb *urb = to_urb(kref);
17 
18 	if (urb->transfer_flags & URB_FREE_BUFFER)
19 		kfree(urb->transfer_buffer);
20 
21 	kfree(urb);
22 }
23 
24 /**
25  * usb_init_urb - initializes a urb so that it can be used by a USB driver
26  * @urb: pointer to the urb to initialize
27  *
28  * Initializes a urb so that the USB subsystem can use it properly.
29  *
30  * If a urb is created with a call to usb_alloc_urb() it is not
31  * necessary to call this function.  Only use this if you allocate the
32  * space for a struct urb on your own.  If you call this function, be
33  * careful when freeing the memory for your urb that it is no longer in
34  * use by the USB core.
35  *
36  * Only use this function if you _really_ understand what you are doing.
37  */
38 void usb_init_urb(struct urb *urb)
39 {
40 	if (urb) {
41 		memset(urb, 0, sizeof(*urb));
42 		kref_init(&urb->kref);
43 		INIT_LIST_HEAD(&urb->anchor_list);
44 	}
45 }
46 EXPORT_SYMBOL_GPL(usb_init_urb);
47 
48 /**
49  * usb_alloc_urb - creates a new urb for a USB driver to use
50  * @iso_packets: number of iso packets for this urb
51  * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
52  *	valid options for this.
53  *
54  * Creates an urb for the USB driver to use, initializes a few internal
55  * structures, increments the usage counter, and returns a pointer to it.
56  *
57  * If the driver want to use this urb for interrupt, control, or bulk
58  * endpoints, pass '0' as the number of iso packets.
59  *
60  * The driver must call usb_free_urb() when it is finished with the urb.
61  *
62  * Return: A pointer to the new urb, or %NULL if no memory is available.
63  */
64 struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
65 {
66 	struct urb *urb;
67 
68 	urb = kmalloc(sizeof(struct urb) +
69 		iso_packets * sizeof(struct usb_iso_packet_descriptor),
70 		mem_flags);
71 	if (!urb) {
72 		printk(KERN_ERR "alloc_urb: kmalloc failed\n");
73 		return NULL;
74 	}
75 	usb_init_urb(urb);
76 	return urb;
77 }
78 EXPORT_SYMBOL_GPL(usb_alloc_urb);
79 
80 /**
81  * usb_free_urb - frees the memory used by a urb when all users of it are finished
82  * @urb: pointer to the urb to free, may be NULL
83  *
84  * Must be called when a user of a urb is finished with it.  When the last user
85  * of the urb calls this function, the memory of the urb is freed.
86  *
87  * Note: The transfer buffer associated with the urb is not freed unless the
88  * URB_FREE_BUFFER transfer flag is set.
89  */
90 void usb_free_urb(struct urb *urb)
91 {
92 	if (urb)
93 		kref_put(&urb->kref, urb_destroy);
94 }
95 EXPORT_SYMBOL_GPL(usb_free_urb);
96 
97 /**
98  * usb_get_urb - increments the reference count of the urb
99  * @urb: pointer to the urb to modify, may be NULL
100  *
101  * This must be  called whenever a urb is transferred from a device driver to a
102  * host controller driver.  This allows proper reference counting to happen
103  * for urbs.
104  *
105  * Return: A pointer to the urb with the incremented reference counter.
106  */
107 struct urb *usb_get_urb(struct urb *urb)
108 {
109 	if (urb)
110 		kref_get(&urb->kref);
111 	return urb;
112 }
113 EXPORT_SYMBOL_GPL(usb_get_urb);
114 
115 /**
116  * usb_anchor_urb - anchors an URB while it is processed
117  * @urb: pointer to the urb to anchor
118  * @anchor: pointer to the anchor
119  *
120  * This can be called to have access to URBs which are to be executed
121  * without bothering to track them
122  */
123 void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
124 {
125 	unsigned long flags;
126 
127 	spin_lock_irqsave(&anchor->lock, flags);
128 	usb_get_urb(urb);
129 	list_add_tail(&urb->anchor_list, &anchor->urb_list);
130 	urb->anchor = anchor;
131 
132 	if (unlikely(anchor->poisoned)) {
133 		atomic_inc(&urb->reject);
134 	}
135 
136 	spin_unlock_irqrestore(&anchor->lock, flags);
137 }
138 EXPORT_SYMBOL_GPL(usb_anchor_urb);
139 
140 static int usb_anchor_check_wakeup(struct usb_anchor *anchor)
141 {
142 	return atomic_read(&anchor->suspend_wakeups) == 0 &&
143 		list_empty(&anchor->urb_list);
144 }
145 
146 /* Callers must hold anchor->lock */
147 static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
148 {
149 	urb->anchor = NULL;
150 	list_del(&urb->anchor_list);
151 	usb_put_urb(urb);
152 	if (usb_anchor_check_wakeup(anchor))
153 		wake_up(&anchor->wait);
154 }
155 
156 /**
157  * usb_unanchor_urb - unanchors an URB
158  * @urb: pointer to the urb to anchor
159  *
160  * Call this to stop the system keeping track of this URB
161  */
162 void usb_unanchor_urb(struct urb *urb)
163 {
164 	unsigned long flags;
165 	struct usb_anchor *anchor;
166 
167 	if (!urb)
168 		return;
169 
170 	anchor = urb->anchor;
171 	if (!anchor)
172 		return;
173 
174 	spin_lock_irqsave(&anchor->lock, flags);
175 	/*
176 	 * At this point, we could be competing with another thread which
177 	 * has the same intention. To protect the urb from being unanchored
178 	 * twice, only the winner of the race gets the job.
179 	 */
180 	if (likely(anchor == urb->anchor))
181 		__usb_unanchor_urb(urb, anchor);
182 	spin_unlock_irqrestore(&anchor->lock, flags);
183 }
184 EXPORT_SYMBOL_GPL(usb_unanchor_urb);
185 
186 /*-------------------------------------------------------------------*/
187 
188 /**
189  * usb_submit_urb - issue an asynchronous transfer request for an endpoint
190  * @urb: pointer to the urb describing the request
191  * @mem_flags: the type of memory to allocate, see kmalloc() for a list
192  *	of valid options for this.
193  *
194  * This submits a transfer request, and transfers control of the URB
195  * describing that request to the USB subsystem.  Request completion will
196  * be indicated later, asynchronously, by calling the completion handler.
197  * The three types of completion are success, error, and unlink
198  * (a software-induced fault, also called "request cancellation").
199  *
200  * URBs may be submitted in interrupt context.
201  *
202  * The caller must have correctly initialized the URB before submitting
203  * it.  Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
204  * available to ensure that most fields are correctly initialized, for
205  * the particular kind of transfer, although they will not initialize
206  * any transfer flags.
207  *
208  * If the submission is successful, the complete() callback from the URB
209  * will be called exactly once, when the USB core and Host Controller Driver
210  * (HCD) are finished with the URB.  When the completion function is called,
211  * control of the URB is returned to the device driver which issued the
212  * request.  The completion handler may then immediately free or reuse that
213  * URB.
214  *
215  * With few exceptions, USB device drivers should never access URB fields
216  * provided by usbcore or the HCD until its complete() is called.
217  * The exceptions relate to periodic transfer scheduling.  For both
218  * interrupt and isochronous urbs, as part of successful URB submission
219  * urb->interval is modified to reflect the actual transfer period used
220  * (normally some power of two units).  And for isochronous urbs,
221  * urb->start_frame is modified to reflect when the URB's transfers were
222  * scheduled to start.
223  *
224  * Not all isochronous transfer scheduling policies will work, but most
225  * host controller drivers should easily handle ISO queues going from now
226  * until 10-200 msec into the future.  Drivers should try to keep at
227  * least one or two msec of data in the queue; many controllers require
228  * that new transfers start at least 1 msec in the future when they are
229  * added.  If the driver is unable to keep up and the queue empties out,
230  * the behavior for new submissions is governed by the URB_ISO_ASAP flag.
231  * If the flag is set, or if the queue is idle, then the URB is always
232  * assigned to the first available (and not yet expired) slot in the
233  * endpoint's schedule.  If the flag is not set and the queue is active
234  * then the URB is always assigned to the next slot in the schedule
235  * following the end of the endpoint's previous URB, even if that slot is
236  * in the past.  When a packet is assigned in this way to a slot that has
237  * already expired, the packet is not transmitted and the corresponding
238  * usb_iso_packet_descriptor's status field will return -EXDEV.  If this
239  * would happen to all the packets in the URB, submission fails with a
240  * -EXDEV error code.
241  *
242  * For control endpoints, the synchronous usb_control_msg() call is
243  * often used (in non-interrupt context) instead of this call.
244  * That is often used through convenience wrappers, for the requests
245  * that are standardized in the USB 2.0 specification.  For bulk
246  * endpoints, a synchronous usb_bulk_msg() call is available.
247  *
248  * Return:
249  * 0 on successful submissions. A negative error number otherwise.
250  *
251  * Request Queuing:
252  *
253  * URBs may be submitted to endpoints before previous ones complete, to
254  * minimize the impact of interrupt latencies and system overhead on data
255  * throughput.  With that queuing policy, an endpoint's queue would never
256  * be empty.  This is required for continuous isochronous data streams,
257  * and may also be required for some kinds of interrupt transfers. Such
258  * queuing also maximizes bandwidth utilization by letting USB controllers
259  * start work on later requests before driver software has finished the
260  * completion processing for earlier (successful) requests.
261  *
262  * As of Linux 2.6, all USB endpoint transfer queues support depths greater
263  * than one.  This was previously a HCD-specific behavior, except for ISO
264  * transfers.  Non-isochronous endpoint queues are inactive during cleanup
265  * after faults (transfer errors or cancellation).
266  *
267  * Reserved Bandwidth Transfers:
268  *
269  * Periodic transfers (interrupt or isochronous) are performed repeatedly,
270  * using the interval specified in the urb.  Submitting the first urb to
271  * the endpoint reserves the bandwidth necessary to make those transfers.
272  * If the USB subsystem can't allocate sufficient bandwidth to perform
273  * the periodic request, submitting such a periodic request should fail.
274  *
275  * For devices under xHCI, the bandwidth is reserved at configuration time, or
276  * when the alt setting is selected.  If there is not enough bus bandwidth, the
277  * configuration/alt setting request will fail.  Therefore, submissions to
278  * periodic endpoints on devices under xHCI should never fail due to bandwidth
279  * constraints.
280  *
281  * Device drivers must explicitly request that repetition, by ensuring that
282  * some URB is always on the endpoint's queue (except possibly for short
283  * periods during completion callbacks).  When there is no longer an urb
284  * queued, the endpoint's bandwidth reservation is canceled.  This means
285  * drivers can use their completion handlers to ensure they keep bandwidth
286  * they need, by reinitializing and resubmitting the just-completed urb
287  * until the driver longer needs that periodic bandwidth.
288  *
289  * Memory Flags:
290  *
291  * The general rules for how to decide which mem_flags to use
292  * are the same as for kmalloc.  There are four
293  * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
294  * GFP_ATOMIC.
295  *
296  * GFP_NOFS is not ever used, as it has not been implemented yet.
297  *
298  * GFP_ATOMIC is used when
299  *   (a) you are inside a completion handler, an interrupt, bottom half,
300  *       tasklet or timer, or
301  *   (b) you are holding a spinlock or rwlock (does not apply to
302  *       semaphores), or
303  *   (c) current->state != TASK_RUNNING, this is the case only after
304  *       you've changed it.
305  *
306  * GFP_NOIO is used in the block io path and error handling of storage
307  * devices.
308  *
309  * All other situations use GFP_KERNEL.
310  *
311  * Some more specific rules for mem_flags can be inferred, such as
312  *  (1) start_xmit, timeout, and receive methods of network drivers must
313  *      use GFP_ATOMIC (they are called with a spinlock held);
314  *  (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
315  *      called with a spinlock held);
316  *  (3) If you use a kernel thread with a network driver you must use
317  *      GFP_NOIO, unless (b) or (c) apply;
318  *  (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
319  *      apply or your are in a storage driver's block io path;
320  *  (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
321  *  (6) changing firmware on a running storage or net device uses
322  *      GFP_NOIO, unless b) or c) apply
323  *
324  */
325 int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
326 {
327 	static int			pipetypes[4] = {
328 		PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
329 	};
330 	int				xfertype, max;
331 	struct usb_device		*dev;
332 	struct usb_host_endpoint	*ep;
333 	int				is_out;
334 	unsigned int			allowed;
335 
336 	if (!urb || !urb->complete)
337 		return -EINVAL;
338 	if (urb->hcpriv) {
339 		WARN_ONCE(1, "URB %p submitted while active\n", urb);
340 		return -EBUSY;
341 	}
342 
343 	dev = urb->dev;
344 	if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
345 		return -ENODEV;
346 
347 	/* For now, get the endpoint from the pipe.  Eventually drivers
348 	 * will be required to set urb->ep directly and we will eliminate
349 	 * urb->pipe.
350 	 */
351 	ep = usb_pipe_endpoint(dev, urb->pipe);
352 	if (!ep)
353 		return -ENOENT;
354 
355 	urb->ep = ep;
356 	urb->status = -EINPROGRESS;
357 	urb->actual_length = 0;
358 
359 	/* Lots of sanity checks, so HCDs can rely on clean data
360 	 * and don't need to duplicate tests
361 	 */
362 	xfertype = usb_endpoint_type(&ep->desc);
363 	if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
364 		struct usb_ctrlrequest *setup =
365 				(struct usb_ctrlrequest *) urb->setup_packet;
366 
367 		if (!setup)
368 			return -ENOEXEC;
369 		is_out = !(setup->bRequestType & USB_DIR_IN) ||
370 				!setup->wLength;
371 	} else {
372 		is_out = usb_endpoint_dir_out(&ep->desc);
373 	}
374 
375 	/* Clear the internal flags and cache the direction for later use */
376 	urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
377 			URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
378 			URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
379 			URB_DMA_SG_COMBINED);
380 	urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
381 
382 	if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
383 			dev->state < USB_STATE_CONFIGURED)
384 		return -ENODEV;
385 
386 	max = usb_endpoint_maxp(&ep->desc);
387 	if (max <= 0) {
388 		dev_dbg(&dev->dev,
389 			"bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
390 			usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
391 			__func__, max);
392 		return -EMSGSIZE;
393 	}
394 
395 	/* periodic transfers limit size per frame/uframe,
396 	 * but drivers only control those sizes for ISO.
397 	 * while we're checking, initialize return status.
398 	 */
399 	if (xfertype == USB_ENDPOINT_XFER_ISOC) {
400 		int	n, len;
401 
402 		/* SuperSpeed isoc endpoints have up to 16 bursts of up to
403 		 * 3 packets each
404 		 */
405 		if (dev->speed == USB_SPEED_SUPER) {
406 			int     burst = 1 + ep->ss_ep_comp.bMaxBurst;
407 			int     mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
408 			max *= burst;
409 			max *= mult;
410 		}
411 
412 		/* "high bandwidth" mode, 1-3 packets/uframe? */
413 		if (dev->speed == USB_SPEED_HIGH) {
414 			int	mult = 1 + ((max >> 11) & 0x03);
415 			max &= 0x07ff;
416 			max *= mult;
417 		}
418 
419 		if (urb->number_of_packets <= 0)
420 			return -EINVAL;
421 		for (n = 0; n < urb->number_of_packets; n++) {
422 			len = urb->iso_frame_desc[n].length;
423 			if (len < 0 || len > max)
424 				return -EMSGSIZE;
425 			urb->iso_frame_desc[n].status = -EXDEV;
426 			urb->iso_frame_desc[n].actual_length = 0;
427 		}
428 	} else if (urb->num_sgs && !urb->dev->bus->no_sg_constraint &&
429 			dev->speed != USB_SPEED_WIRELESS) {
430 		struct scatterlist *sg;
431 		int i;
432 
433 		for_each_sg(urb->sg, sg, urb->num_sgs - 1, i)
434 			if (sg->length % max)
435 				return -EINVAL;
436 	}
437 
438 	/* the I/O buffer must be mapped/unmapped, except when length=0 */
439 	if (urb->transfer_buffer_length > INT_MAX)
440 		return -EMSGSIZE;
441 
442 	/*
443 	 * stuff that drivers shouldn't do, but which shouldn't
444 	 * cause problems in HCDs if they get it wrong.
445 	 */
446 
447 	/* Check that the pipe's type matches the endpoint's type */
448 	if (usb_pipetype(urb->pipe) != pipetypes[xfertype])
449 		dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
450 			usb_pipetype(urb->pipe), pipetypes[xfertype]);
451 
452 	/* Check against a simple/standard policy */
453 	allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
454 			URB_FREE_BUFFER);
455 	switch (xfertype) {
456 	case USB_ENDPOINT_XFER_BULK:
457 		if (is_out)
458 			allowed |= URB_ZERO_PACKET;
459 		/* FALLTHROUGH */
460 	case USB_ENDPOINT_XFER_CONTROL:
461 		allowed |= URB_NO_FSBR;	/* only affects UHCI */
462 		/* FALLTHROUGH */
463 	default:			/* all non-iso endpoints */
464 		if (!is_out)
465 			allowed |= URB_SHORT_NOT_OK;
466 		break;
467 	case USB_ENDPOINT_XFER_ISOC:
468 		allowed |= URB_ISO_ASAP;
469 		break;
470 	}
471 	allowed &= urb->transfer_flags;
472 
473 	/* warn if submitter gave bogus flags */
474 	if (allowed != urb->transfer_flags)
475 		dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
476 			urb->transfer_flags, allowed);
477 
478 	/*
479 	 * Force periodic transfer intervals to be legal values that are
480 	 * a power of two (so HCDs don't need to).
481 	 *
482 	 * FIXME want bus->{intr,iso}_sched_horizon values here.  Each HC
483 	 * supports different values... this uses EHCI/UHCI defaults (and
484 	 * EHCI can use smaller non-default values).
485 	 */
486 	switch (xfertype) {
487 	case USB_ENDPOINT_XFER_ISOC:
488 	case USB_ENDPOINT_XFER_INT:
489 		/* too small? */
490 		switch (dev->speed) {
491 		case USB_SPEED_WIRELESS:
492 			if ((urb->interval < 6)
493 				&& (xfertype == USB_ENDPOINT_XFER_INT))
494 				return -EINVAL;
495 		default:
496 			if (urb->interval <= 0)
497 				return -EINVAL;
498 			break;
499 		}
500 		/* too big? */
501 		switch (dev->speed) {
502 		case USB_SPEED_SUPER:	/* units are 125us */
503 			/* Handle up to 2^(16-1) microframes */
504 			if (urb->interval > (1 << 15))
505 				return -EINVAL;
506 			max = 1 << 15;
507 			break;
508 		case USB_SPEED_WIRELESS:
509 			if (urb->interval > 16)
510 				return -EINVAL;
511 			break;
512 		case USB_SPEED_HIGH:	/* units are microframes */
513 			/* NOTE usb handles 2^15 */
514 			if (urb->interval > (1024 * 8))
515 				urb->interval = 1024 * 8;
516 			max = 1024 * 8;
517 			break;
518 		case USB_SPEED_FULL:	/* units are frames/msec */
519 		case USB_SPEED_LOW:
520 			if (xfertype == USB_ENDPOINT_XFER_INT) {
521 				if (urb->interval > 255)
522 					return -EINVAL;
523 				/* NOTE ohci only handles up to 32 */
524 				max = 128;
525 			} else {
526 				if (urb->interval > 1024)
527 					urb->interval = 1024;
528 				/* NOTE usb and ohci handle up to 2^15 */
529 				max = 1024;
530 			}
531 			break;
532 		default:
533 			return -EINVAL;
534 		}
535 		if (dev->speed != USB_SPEED_WIRELESS) {
536 			/* Round down to a power of 2, no more than max */
537 			urb->interval = min(max, 1 << ilog2(urb->interval));
538 		}
539 	}
540 
541 	return usb_hcd_submit_urb(urb, mem_flags);
542 }
543 EXPORT_SYMBOL_GPL(usb_submit_urb);
544 
545 /*-------------------------------------------------------------------*/
546 
547 /**
548  * usb_unlink_urb - abort/cancel a transfer request for an endpoint
549  * @urb: pointer to urb describing a previously submitted request,
550  *	may be NULL
551  *
552  * This routine cancels an in-progress request.  URBs complete only once
553  * per submission, and may be canceled only once per submission.
554  * Successful cancellation means termination of @urb will be expedited
555  * and the completion handler will be called with a status code
556  * indicating that the request has been canceled (rather than any other
557  * code).
558  *
559  * Drivers should not call this routine or related routines, such as
560  * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
561  * method has returned.  The disconnect function should synchronize with
562  * a driver's I/O routines to insure that all URB-related activity has
563  * completed before it returns.
564  *
565  * This request is asynchronous, however the HCD might call the ->complete()
566  * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
567  * must not hold any locks that may be taken by the completion function.
568  * Success is indicated by returning -EINPROGRESS, at which time the URB will
569  * probably not yet have been given back to the device driver. When it is
570  * eventually called, the completion function will see @urb->status ==
571  * -ECONNRESET.
572  * Failure is indicated by usb_unlink_urb() returning any other value.
573  * Unlinking will fail when @urb is not currently "linked" (i.e., it was
574  * never submitted, or it was unlinked before, or the hardware is already
575  * finished with it), even if the completion handler has not yet run.
576  *
577  * The URB must not be deallocated while this routine is running.  In
578  * particular, when a driver calls this routine, it must insure that the
579  * completion handler cannot deallocate the URB.
580  *
581  * Return: -EINPROGRESS on success. See description for other values on
582  * failure.
583  *
584  * Unlinking and Endpoint Queues:
585  *
586  * [The behaviors and guarantees described below do not apply to virtual
587  * root hubs but only to endpoint queues for physical USB devices.]
588  *
589  * Host Controller Drivers (HCDs) place all the URBs for a particular
590  * endpoint in a queue.  Normally the queue advances as the controller
591  * hardware processes each request.  But when an URB terminates with an
592  * error its queue generally stops (see below), at least until that URB's
593  * completion routine returns.  It is guaranteed that a stopped queue
594  * will not restart until all its unlinked URBs have been fully retired,
595  * with their completion routines run, even if that's not until some time
596  * after the original completion handler returns.  The same behavior and
597  * guarantee apply when an URB terminates because it was unlinked.
598  *
599  * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
600  * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
601  * and -EREMOTEIO.  Control endpoint queues behave the same way except
602  * that they are not guaranteed to stop for -EREMOTEIO errors.  Queues
603  * for isochronous endpoints are treated differently, because they must
604  * advance at fixed rates.  Such queues do not stop when an URB
605  * encounters an error or is unlinked.  An unlinked isochronous URB may
606  * leave a gap in the stream of packets; it is undefined whether such
607  * gaps can be filled in.
608  *
609  * Note that early termination of an URB because a short packet was
610  * received will generate a -EREMOTEIO error if and only if the
611  * URB_SHORT_NOT_OK flag is set.  By setting this flag, USB device
612  * drivers can build deep queues for large or complex bulk transfers
613  * and clean them up reliably after any sort of aborted transfer by
614  * unlinking all pending URBs at the first fault.
615  *
616  * When a control URB terminates with an error other than -EREMOTEIO, it
617  * is quite likely that the status stage of the transfer will not take
618  * place.
619  */
620 int usb_unlink_urb(struct urb *urb)
621 {
622 	if (!urb)
623 		return -EINVAL;
624 	if (!urb->dev)
625 		return -ENODEV;
626 	if (!urb->ep)
627 		return -EIDRM;
628 	return usb_hcd_unlink_urb(urb, -ECONNRESET);
629 }
630 EXPORT_SYMBOL_GPL(usb_unlink_urb);
631 
632 /**
633  * usb_kill_urb - cancel a transfer request and wait for it to finish
634  * @urb: pointer to URB describing a previously submitted request,
635  *	may be NULL
636  *
637  * This routine cancels an in-progress request.  It is guaranteed that
638  * upon return all completion handlers will have finished and the URB
639  * will be totally idle and available for reuse.  These features make
640  * this an ideal way to stop I/O in a disconnect() callback or close()
641  * function.  If the request has not already finished or been unlinked
642  * the completion handler will see urb->status == -ENOENT.
643  *
644  * While the routine is running, attempts to resubmit the URB will fail
645  * with error -EPERM.  Thus even if the URB's completion handler always
646  * tries to resubmit, it will not succeed and the URB will become idle.
647  *
648  * The URB must not be deallocated while this routine is running.  In
649  * particular, when a driver calls this routine, it must insure that the
650  * completion handler cannot deallocate the URB.
651  *
652  * This routine may not be used in an interrupt context (such as a bottom
653  * half or a completion handler), or when holding a spinlock, or in other
654  * situations where the caller can't schedule().
655  *
656  * This routine should not be called by a driver after its disconnect
657  * method has returned.
658  */
659 void usb_kill_urb(struct urb *urb)
660 {
661 	might_sleep();
662 	if (!(urb && urb->dev && urb->ep))
663 		return;
664 	atomic_inc(&urb->reject);
665 
666 	usb_hcd_unlink_urb(urb, -ENOENT);
667 	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
668 
669 	atomic_dec(&urb->reject);
670 }
671 EXPORT_SYMBOL_GPL(usb_kill_urb);
672 
673 /**
674  * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
675  * @urb: pointer to URB describing a previously submitted request,
676  *	may be NULL
677  *
678  * This routine cancels an in-progress request.  It is guaranteed that
679  * upon return all completion handlers will have finished and the URB
680  * will be totally idle and cannot be reused.  These features make
681  * this an ideal way to stop I/O in a disconnect() callback.
682  * If the request has not already finished or been unlinked
683  * the completion handler will see urb->status == -ENOENT.
684  *
685  * After and while the routine runs, attempts to resubmit the URB will fail
686  * with error -EPERM.  Thus even if the URB's completion handler always
687  * tries to resubmit, it will not succeed and the URB will become idle.
688  *
689  * The URB must not be deallocated while this routine is running.  In
690  * particular, when a driver calls this routine, it must insure that the
691  * completion handler cannot deallocate the URB.
692  *
693  * This routine may not be used in an interrupt context (such as a bottom
694  * half or a completion handler), or when holding a spinlock, or in other
695  * situations where the caller can't schedule().
696  *
697  * This routine should not be called by a driver after its disconnect
698  * method has returned.
699  */
700 void usb_poison_urb(struct urb *urb)
701 {
702 	might_sleep();
703 	if (!urb)
704 		return;
705 	atomic_inc(&urb->reject);
706 
707 	if (!urb->dev || !urb->ep)
708 		return;
709 
710 	usb_hcd_unlink_urb(urb, -ENOENT);
711 	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
712 }
713 EXPORT_SYMBOL_GPL(usb_poison_urb);
714 
715 void usb_unpoison_urb(struct urb *urb)
716 {
717 	if (!urb)
718 		return;
719 
720 	atomic_dec(&urb->reject);
721 }
722 EXPORT_SYMBOL_GPL(usb_unpoison_urb);
723 
724 /**
725  * usb_block_urb - reliably prevent further use of an URB
726  * @urb: pointer to URB to be blocked, may be NULL
727  *
728  * After the routine has run, attempts to resubmit the URB will fail
729  * with error -EPERM.  Thus even if the URB's completion handler always
730  * tries to resubmit, it will not succeed and the URB will become idle.
731  *
732  * The URB must not be deallocated while this routine is running.  In
733  * particular, when a driver calls this routine, it must insure that the
734  * completion handler cannot deallocate the URB.
735  */
736 void usb_block_urb(struct urb *urb)
737 {
738 	if (!urb)
739 		return;
740 
741 	atomic_inc(&urb->reject);
742 }
743 EXPORT_SYMBOL_GPL(usb_block_urb);
744 
745 /**
746  * usb_kill_anchored_urbs - cancel transfer requests en masse
747  * @anchor: anchor the requests are bound to
748  *
749  * this allows all outstanding URBs to be killed starting
750  * from the back of the queue
751  *
752  * This routine should not be called by a driver after its disconnect
753  * method has returned.
754  */
755 void usb_kill_anchored_urbs(struct usb_anchor *anchor)
756 {
757 	struct urb *victim;
758 
759 	spin_lock_irq(&anchor->lock);
760 	while (!list_empty(&anchor->urb_list)) {
761 		victim = list_entry(anchor->urb_list.prev, struct urb,
762 				    anchor_list);
763 		/* we must make sure the URB isn't freed before we kill it*/
764 		usb_get_urb(victim);
765 		spin_unlock_irq(&anchor->lock);
766 		/* this will unanchor the URB */
767 		usb_kill_urb(victim);
768 		usb_put_urb(victim);
769 		spin_lock_irq(&anchor->lock);
770 	}
771 	spin_unlock_irq(&anchor->lock);
772 }
773 EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
774 
775 
776 /**
777  * usb_poison_anchored_urbs - cease all traffic from an anchor
778  * @anchor: anchor the requests are bound to
779  *
780  * this allows all outstanding URBs to be poisoned starting
781  * from the back of the queue. Newly added URBs will also be
782  * poisoned
783  *
784  * This routine should not be called by a driver after its disconnect
785  * method has returned.
786  */
787 void usb_poison_anchored_urbs(struct usb_anchor *anchor)
788 {
789 	struct urb *victim;
790 
791 	spin_lock_irq(&anchor->lock);
792 	anchor->poisoned = 1;
793 	while (!list_empty(&anchor->urb_list)) {
794 		victim = list_entry(anchor->urb_list.prev, struct urb,
795 				    anchor_list);
796 		/* we must make sure the URB isn't freed before we kill it*/
797 		usb_get_urb(victim);
798 		spin_unlock_irq(&anchor->lock);
799 		/* this will unanchor the URB */
800 		usb_poison_urb(victim);
801 		usb_put_urb(victim);
802 		spin_lock_irq(&anchor->lock);
803 	}
804 	spin_unlock_irq(&anchor->lock);
805 }
806 EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
807 
808 /**
809  * usb_unpoison_anchored_urbs - let an anchor be used successfully again
810  * @anchor: anchor the requests are bound to
811  *
812  * Reverses the effect of usb_poison_anchored_urbs
813  * the anchor can be used normally after it returns
814  */
815 void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
816 {
817 	unsigned long flags;
818 	struct urb *lazarus;
819 
820 	spin_lock_irqsave(&anchor->lock, flags);
821 	list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
822 		usb_unpoison_urb(lazarus);
823 	}
824 	anchor->poisoned = 0;
825 	spin_unlock_irqrestore(&anchor->lock, flags);
826 }
827 EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
828 /**
829  * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
830  * @anchor: anchor the requests are bound to
831  *
832  * this allows all outstanding URBs to be unlinked starting
833  * from the back of the queue. This function is asynchronous.
834  * The unlinking is just tiggered. It may happen after this
835  * function has returned.
836  *
837  * This routine should not be called by a driver after its disconnect
838  * method has returned.
839  */
840 void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
841 {
842 	struct urb *victim;
843 
844 	while ((victim = usb_get_from_anchor(anchor)) != NULL) {
845 		usb_unlink_urb(victim);
846 		usb_put_urb(victim);
847 	}
848 }
849 EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
850 
851 /**
852  * usb_anchor_suspend_wakeups
853  * @anchor: the anchor you want to suspend wakeups on
854  *
855  * Call this to stop the last urb being unanchored from waking up any
856  * usb_wait_anchor_empty_timeout waiters. This is used in the hcd urb give-
857  * back path to delay waking up until after the completion handler has run.
858  */
859 void usb_anchor_suspend_wakeups(struct usb_anchor *anchor)
860 {
861 	if (anchor)
862 		atomic_inc(&anchor->suspend_wakeups);
863 }
864 EXPORT_SYMBOL_GPL(usb_anchor_suspend_wakeups);
865 
866 /**
867  * usb_anchor_resume_wakeups
868  * @anchor: the anchor you want to resume wakeups on
869  *
870  * Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and
871  * wake up any current waiters if the anchor is empty.
872  */
873 void usb_anchor_resume_wakeups(struct usb_anchor *anchor)
874 {
875 	if (!anchor)
876 		return;
877 
878 	atomic_dec(&anchor->suspend_wakeups);
879 	if (usb_anchor_check_wakeup(anchor))
880 		wake_up(&anchor->wait);
881 }
882 EXPORT_SYMBOL_GPL(usb_anchor_resume_wakeups);
883 
884 /**
885  * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
886  * @anchor: the anchor you want to become unused
887  * @timeout: how long you are willing to wait in milliseconds
888  *
889  * Call this is you want to be sure all an anchor's
890  * URBs have finished
891  *
892  * Return: Non-zero if the anchor became unused. Zero on timeout.
893  */
894 int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
895 				  unsigned int timeout)
896 {
897 	return wait_event_timeout(anchor->wait,
898 				  usb_anchor_check_wakeup(anchor),
899 				  msecs_to_jiffies(timeout));
900 }
901 EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
902 
903 /**
904  * usb_get_from_anchor - get an anchor's oldest urb
905  * @anchor: the anchor whose urb you want
906  *
907  * This will take the oldest urb from an anchor,
908  * unanchor and return it
909  *
910  * Return: The oldest urb from @anchor, or %NULL if @anchor has no
911  * urbs associated with it.
912  */
913 struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
914 {
915 	struct urb *victim;
916 	unsigned long flags;
917 
918 	spin_lock_irqsave(&anchor->lock, flags);
919 	if (!list_empty(&anchor->urb_list)) {
920 		victim = list_entry(anchor->urb_list.next, struct urb,
921 				    anchor_list);
922 		usb_get_urb(victim);
923 		__usb_unanchor_urb(victim, anchor);
924 	} else {
925 		victim = NULL;
926 	}
927 	spin_unlock_irqrestore(&anchor->lock, flags);
928 
929 	return victim;
930 }
931 
932 EXPORT_SYMBOL_GPL(usb_get_from_anchor);
933 
934 /**
935  * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
936  * @anchor: the anchor whose urbs you want to unanchor
937  *
938  * use this to get rid of all an anchor's urbs
939  */
940 void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
941 {
942 	struct urb *victim;
943 	unsigned long flags;
944 
945 	spin_lock_irqsave(&anchor->lock, flags);
946 	while (!list_empty(&anchor->urb_list)) {
947 		victim = list_entry(anchor->urb_list.prev, struct urb,
948 				    anchor_list);
949 		__usb_unanchor_urb(victim, anchor);
950 	}
951 	spin_unlock_irqrestore(&anchor->lock, flags);
952 }
953 
954 EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
955 
956 /**
957  * usb_anchor_empty - is an anchor empty
958  * @anchor: the anchor you want to query
959  *
960  * Return: 1 if the anchor has no urbs associated with it.
961  */
962 int usb_anchor_empty(struct usb_anchor *anchor)
963 {
964 	return list_empty(&anchor->urb_list);
965 }
966 
967 EXPORT_SYMBOL_GPL(usb_anchor_empty);
968 
969