xref: /openbmc/linux/drivers/usb/core/urb.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Released under the GPLv2 only.
4  */
5 
6 #include <linux/module.h>
7 #include <linux/string.h>
8 #include <linux/bitops.h>
9 #include <linux/slab.h>
10 #include <linux/log2.h>
11 #include <linux/usb.h>
12 #include <linux/wait.h>
13 #include <linux/usb/hcd.h>
14 #include <linux/scatterlist.h>
15 
16 #define to_urb(d) container_of(d, struct urb, kref)
17 
18 
19 static void urb_destroy(struct kref *kref)
20 {
21 	struct urb *urb = to_urb(kref);
22 
23 	if (urb->transfer_flags & URB_FREE_BUFFER)
24 		kfree(urb->transfer_buffer);
25 
26 	kfree(urb);
27 }
28 
29 /**
30  * usb_init_urb - initializes a urb so that it can be used by a USB driver
31  * @urb: pointer to the urb to initialize
32  *
33  * Initializes a urb so that the USB subsystem can use it properly.
34  *
35  * If a urb is created with a call to usb_alloc_urb() it is not
36  * necessary to call this function.  Only use this if you allocate the
37  * space for a struct urb on your own.  If you call this function, be
38  * careful when freeing the memory for your urb that it is no longer in
39  * use by the USB core.
40  *
41  * Only use this function if you _really_ understand what you are doing.
42  */
43 void usb_init_urb(struct urb *urb)
44 {
45 	if (urb) {
46 		memset(urb, 0, sizeof(*urb));
47 		kref_init(&urb->kref);
48 		INIT_LIST_HEAD(&urb->anchor_list);
49 	}
50 }
51 EXPORT_SYMBOL_GPL(usb_init_urb);
52 
53 /**
54  * usb_alloc_urb - creates a new urb for a USB driver to use
55  * @iso_packets: number of iso packets for this urb
56  * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
57  *	valid options for this.
58  *
59  * Creates an urb for the USB driver to use, initializes a few internal
60  * structures, increments the usage counter, and returns a pointer to it.
61  *
62  * If the driver want to use this urb for interrupt, control, or bulk
63  * endpoints, pass '0' as the number of iso packets.
64  *
65  * The driver must call usb_free_urb() when it is finished with the urb.
66  *
67  * Return: A pointer to the new urb, or %NULL if no memory is available.
68  */
69 struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
70 {
71 	struct urb *urb;
72 
73 	urb = kmalloc(struct_size(urb, iso_frame_desc, iso_packets),
74 		      mem_flags);
75 	if (!urb)
76 		return NULL;
77 	usb_init_urb(urb);
78 	return urb;
79 }
80 EXPORT_SYMBOL_GPL(usb_alloc_urb);
81 
82 /**
83  * usb_free_urb - frees the memory used by a urb when all users of it are finished
84  * @urb: pointer to the urb to free, may be NULL
85  *
86  * Must be called when a user of a urb is finished with it.  When the last user
87  * of the urb calls this function, the memory of the urb is freed.
88  *
89  * Note: The transfer buffer associated with the urb is not freed unless the
90  * URB_FREE_BUFFER transfer flag is set.
91  */
92 void usb_free_urb(struct urb *urb)
93 {
94 	if (urb)
95 		kref_put(&urb->kref, urb_destroy);
96 }
97 EXPORT_SYMBOL_GPL(usb_free_urb);
98 
99 /**
100  * usb_get_urb - increments the reference count of the urb
101  * @urb: pointer to the urb to modify, may be NULL
102  *
103  * This must be  called whenever a urb is transferred from a device driver to a
104  * host controller driver.  This allows proper reference counting to happen
105  * for urbs.
106  *
107  * Return: A pointer to the urb with the incremented reference counter.
108  */
109 struct urb *usb_get_urb(struct urb *urb)
110 {
111 	if (urb)
112 		kref_get(&urb->kref);
113 	return urb;
114 }
115 EXPORT_SYMBOL_GPL(usb_get_urb);
116 
117 /**
118  * usb_anchor_urb - anchors an URB while it is processed
119  * @urb: pointer to the urb to anchor
120  * @anchor: pointer to the anchor
121  *
122  * This can be called to have access to URBs which are to be executed
123  * without bothering to track them
124  */
125 void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
126 {
127 	unsigned long flags;
128 
129 	spin_lock_irqsave(&anchor->lock, flags);
130 	usb_get_urb(urb);
131 	list_add_tail(&urb->anchor_list, &anchor->urb_list);
132 	urb->anchor = anchor;
133 
134 	if (unlikely(anchor->poisoned))
135 		atomic_inc(&urb->reject);
136 
137 	spin_unlock_irqrestore(&anchor->lock, flags);
138 }
139 EXPORT_SYMBOL_GPL(usb_anchor_urb);
140 
141 static int usb_anchor_check_wakeup(struct usb_anchor *anchor)
142 {
143 	return atomic_read(&anchor->suspend_wakeups) == 0 &&
144 		list_empty(&anchor->urb_list);
145 }
146 
147 /* Callers must hold anchor->lock */
148 static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
149 {
150 	urb->anchor = NULL;
151 	list_del(&urb->anchor_list);
152 	usb_put_urb(urb);
153 	if (usb_anchor_check_wakeup(anchor))
154 		wake_up(&anchor->wait);
155 }
156 
157 /**
158  * usb_unanchor_urb - unanchors an URB
159  * @urb: pointer to the urb to anchor
160  *
161  * Call this to stop the system keeping track of this URB
162  */
163 void usb_unanchor_urb(struct urb *urb)
164 {
165 	unsigned long flags;
166 	struct usb_anchor *anchor;
167 
168 	if (!urb)
169 		return;
170 
171 	anchor = urb->anchor;
172 	if (!anchor)
173 		return;
174 
175 	spin_lock_irqsave(&anchor->lock, flags);
176 	/*
177 	 * At this point, we could be competing with another thread which
178 	 * has the same intention. To protect the urb from being unanchored
179 	 * twice, only the winner of the race gets the job.
180 	 */
181 	if (likely(anchor == urb->anchor))
182 		__usb_unanchor_urb(urb, anchor);
183 	spin_unlock_irqrestore(&anchor->lock, flags);
184 }
185 EXPORT_SYMBOL_GPL(usb_unanchor_urb);
186 
187 /*-------------------------------------------------------------------*/
188 
189 static const int pipetypes[4] = {
190 	PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
191 };
192 
193 /**
194  * usb_urb_ep_type_check - sanity check of endpoint in the given urb
195  * @urb: urb to be checked
196  *
197  * This performs a light-weight sanity check for the endpoint in the
198  * given urb.  It returns 0 if the urb contains a valid endpoint, otherwise
199  * a negative error code.
200  */
201 int usb_urb_ep_type_check(const struct urb *urb)
202 {
203 	const struct usb_host_endpoint *ep;
204 
205 	ep = usb_pipe_endpoint(urb->dev, urb->pipe);
206 	if (!ep)
207 		return -EINVAL;
208 	if (usb_pipetype(urb->pipe) != pipetypes[usb_endpoint_type(&ep->desc)])
209 		return -EINVAL;
210 	return 0;
211 }
212 EXPORT_SYMBOL_GPL(usb_urb_ep_type_check);
213 
214 /**
215  * usb_submit_urb - issue an asynchronous transfer request for an endpoint
216  * @urb: pointer to the urb describing the request
217  * @mem_flags: the type of memory to allocate, see kmalloc() for a list
218  *	of valid options for this.
219  *
220  * This submits a transfer request, and transfers control of the URB
221  * describing that request to the USB subsystem.  Request completion will
222  * be indicated later, asynchronously, by calling the completion handler.
223  * The three types of completion are success, error, and unlink
224  * (a software-induced fault, also called "request cancellation").
225  *
226  * URBs may be submitted in interrupt context.
227  *
228  * The caller must have correctly initialized the URB before submitting
229  * it.  Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
230  * available to ensure that most fields are correctly initialized, for
231  * the particular kind of transfer, although they will not initialize
232  * any transfer flags.
233  *
234  * If the submission is successful, the complete() callback from the URB
235  * will be called exactly once, when the USB core and Host Controller Driver
236  * (HCD) are finished with the URB.  When the completion function is called,
237  * control of the URB is returned to the device driver which issued the
238  * request.  The completion handler may then immediately free or reuse that
239  * URB.
240  *
241  * With few exceptions, USB device drivers should never access URB fields
242  * provided by usbcore or the HCD until its complete() is called.
243  * The exceptions relate to periodic transfer scheduling.  For both
244  * interrupt and isochronous urbs, as part of successful URB submission
245  * urb->interval is modified to reflect the actual transfer period used
246  * (normally some power of two units).  And for isochronous urbs,
247  * urb->start_frame is modified to reflect when the URB's transfers were
248  * scheduled to start.
249  *
250  * Not all isochronous transfer scheduling policies will work, but most
251  * host controller drivers should easily handle ISO queues going from now
252  * until 10-200 msec into the future.  Drivers should try to keep at
253  * least one or two msec of data in the queue; many controllers require
254  * that new transfers start at least 1 msec in the future when they are
255  * added.  If the driver is unable to keep up and the queue empties out,
256  * the behavior for new submissions is governed by the URB_ISO_ASAP flag.
257  * If the flag is set, or if the queue is idle, then the URB is always
258  * assigned to the first available (and not yet expired) slot in the
259  * endpoint's schedule.  If the flag is not set and the queue is active
260  * then the URB is always assigned to the next slot in the schedule
261  * following the end of the endpoint's previous URB, even if that slot is
262  * in the past.  When a packet is assigned in this way to a slot that has
263  * already expired, the packet is not transmitted and the corresponding
264  * usb_iso_packet_descriptor's status field will return -EXDEV.  If this
265  * would happen to all the packets in the URB, submission fails with a
266  * -EXDEV error code.
267  *
268  * For control endpoints, the synchronous usb_control_msg() call is
269  * often used (in non-interrupt context) instead of this call.
270  * That is often used through convenience wrappers, for the requests
271  * that are standardized in the USB 2.0 specification.  For bulk
272  * endpoints, a synchronous usb_bulk_msg() call is available.
273  *
274  * Return:
275  * 0 on successful submissions. A negative error number otherwise.
276  *
277  * Request Queuing:
278  *
279  * URBs may be submitted to endpoints before previous ones complete, to
280  * minimize the impact of interrupt latencies and system overhead on data
281  * throughput.  With that queuing policy, an endpoint's queue would never
282  * be empty.  This is required for continuous isochronous data streams,
283  * and may also be required for some kinds of interrupt transfers. Such
284  * queuing also maximizes bandwidth utilization by letting USB controllers
285  * start work on later requests before driver software has finished the
286  * completion processing for earlier (successful) requests.
287  *
288  * As of Linux 2.6, all USB endpoint transfer queues support depths greater
289  * than one.  This was previously a HCD-specific behavior, except for ISO
290  * transfers.  Non-isochronous endpoint queues are inactive during cleanup
291  * after faults (transfer errors or cancellation).
292  *
293  * Reserved Bandwidth Transfers:
294  *
295  * Periodic transfers (interrupt or isochronous) are performed repeatedly,
296  * using the interval specified in the urb.  Submitting the first urb to
297  * the endpoint reserves the bandwidth necessary to make those transfers.
298  * If the USB subsystem can't allocate sufficient bandwidth to perform
299  * the periodic request, submitting such a periodic request should fail.
300  *
301  * For devices under xHCI, the bandwidth is reserved at configuration time, or
302  * when the alt setting is selected.  If there is not enough bus bandwidth, the
303  * configuration/alt setting request will fail.  Therefore, submissions to
304  * periodic endpoints on devices under xHCI should never fail due to bandwidth
305  * constraints.
306  *
307  * Device drivers must explicitly request that repetition, by ensuring that
308  * some URB is always on the endpoint's queue (except possibly for short
309  * periods during completion callbacks).  When there is no longer an urb
310  * queued, the endpoint's bandwidth reservation is canceled.  This means
311  * drivers can use their completion handlers to ensure they keep bandwidth
312  * they need, by reinitializing and resubmitting the just-completed urb
313  * until the driver longer needs that periodic bandwidth.
314  *
315  * Memory Flags:
316  *
317  * The general rules for how to decide which mem_flags to use
318  * are the same as for kmalloc.  There are four
319  * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
320  * GFP_ATOMIC.
321  *
322  * GFP_NOFS is not ever used, as it has not been implemented yet.
323  *
324  * GFP_ATOMIC is used when
325  *   (a) you are inside a completion handler, an interrupt, bottom half,
326  *       tasklet or timer, or
327  *   (b) you are holding a spinlock or rwlock (does not apply to
328  *       semaphores), or
329  *   (c) current->state != TASK_RUNNING, this is the case only after
330  *       you've changed it.
331  *
332  * GFP_NOIO is used in the block io path and error handling of storage
333  * devices.
334  *
335  * All other situations use GFP_KERNEL.
336  *
337  * Some more specific rules for mem_flags can be inferred, such as
338  *  (1) start_xmit, timeout, and receive methods of network drivers must
339  *      use GFP_ATOMIC (they are called with a spinlock held);
340  *  (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
341  *      called with a spinlock held);
342  *  (3) If you use a kernel thread with a network driver you must use
343  *      GFP_NOIO, unless (b) or (c) apply;
344  *  (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
345  *      apply or your are in a storage driver's block io path;
346  *  (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
347  *  (6) changing firmware on a running storage or net device uses
348  *      GFP_NOIO, unless b) or c) apply
349  *
350  */
351 int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
352 {
353 	int				xfertype, max;
354 	struct usb_device		*dev;
355 	struct usb_host_endpoint	*ep;
356 	int				is_out;
357 	unsigned int			allowed;
358 
359 	if (!urb || !urb->complete)
360 		return -EINVAL;
361 	if (urb->hcpriv) {
362 		WARN_ONCE(1, "URB %pK submitted while active\n", urb);
363 		return -EBUSY;
364 	}
365 
366 	dev = urb->dev;
367 	if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
368 		return -ENODEV;
369 
370 	/* For now, get the endpoint from the pipe.  Eventually drivers
371 	 * will be required to set urb->ep directly and we will eliminate
372 	 * urb->pipe.
373 	 */
374 	ep = usb_pipe_endpoint(dev, urb->pipe);
375 	if (!ep)
376 		return -ENOENT;
377 
378 	urb->ep = ep;
379 	urb->status = -EINPROGRESS;
380 	urb->actual_length = 0;
381 
382 	/* Lots of sanity checks, so HCDs can rely on clean data
383 	 * and don't need to duplicate tests
384 	 */
385 	xfertype = usb_endpoint_type(&ep->desc);
386 	if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
387 		struct usb_ctrlrequest *setup =
388 				(struct usb_ctrlrequest *) urb->setup_packet;
389 
390 		if (!setup)
391 			return -ENOEXEC;
392 		is_out = !(setup->bRequestType & USB_DIR_IN) ||
393 				!setup->wLength;
394 	} else {
395 		is_out = usb_endpoint_dir_out(&ep->desc);
396 	}
397 
398 	/* Clear the internal flags and cache the direction for later use */
399 	urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
400 			URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
401 			URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
402 			URB_DMA_SG_COMBINED);
403 	urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
404 
405 	if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
406 			dev->state < USB_STATE_CONFIGURED)
407 		return -ENODEV;
408 
409 	max = usb_endpoint_maxp(&ep->desc);
410 	if (max <= 0) {
411 		dev_dbg(&dev->dev,
412 			"bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
413 			usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
414 			__func__, max);
415 		return -EMSGSIZE;
416 	}
417 
418 	/* periodic transfers limit size per frame/uframe,
419 	 * but drivers only control those sizes for ISO.
420 	 * while we're checking, initialize return status.
421 	 */
422 	if (xfertype == USB_ENDPOINT_XFER_ISOC) {
423 		int	n, len;
424 
425 		/* SuperSpeed isoc endpoints have up to 16 bursts of up to
426 		 * 3 packets each
427 		 */
428 		if (dev->speed >= USB_SPEED_SUPER) {
429 			int     burst = 1 + ep->ss_ep_comp.bMaxBurst;
430 			int     mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
431 			max *= burst;
432 			max *= mult;
433 		}
434 
435 		if (dev->speed == USB_SPEED_SUPER_PLUS &&
436 		    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes)) {
437 			struct usb_ssp_isoc_ep_comp_descriptor *isoc_ep_comp;
438 
439 			isoc_ep_comp = &ep->ssp_isoc_ep_comp;
440 			max = le32_to_cpu(isoc_ep_comp->dwBytesPerInterval);
441 		}
442 
443 		/* "high bandwidth" mode, 1-3 packets/uframe? */
444 		if (dev->speed == USB_SPEED_HIGH)
445 			max *= usb_endpoint_maxp_mult(&ep->desc);
446 
447 		if (urb->number_of_packets <= 0)
448 			return -EINVAL;
449 		for (n = 0; n < urb->number_of_packets; n++) {
450 			len = urb->iso_frame_desc[n].length;
451 			if (len < 0 || len > max)
452 				return -EMSGSIZE;
453 			urb->iso_frame_desc[n].status = -EXDEV;
454 			urb->iso_frame_desc[n].actual_length = 0;
455 		}
456 	} else if (urb->num_sgs && !urb->dev->bus->no_sg_constraint &&
457 			dev->speed != USB_SPEED_WIRELESS) {
458 		struct scatterlist *sg;
459 		int i;
460 
461 		for_each_sg(urb->sg, sg, urb->num_sgs - 1, i)
462 			if (sg->length % max)
463 				return -EINVAL;
464 	}
465 
466 	/* the I/O buffer must be mapped/unmapped, except when length=0 */
467 	if (urb->transfer_buffer_length > INT_MAX)
468 		return -EMSGSIZE;
469 
470 	/*
471 	 * stuff that drivers shouldn't do, but which shouldn't
472 	 * cause problems in HCDs if they get it wrong.
473 	 */
474 
475 	/* Check that the pipe's type matches the endpoint's type */
476 	if (usb_urb_ep_type_check(urb))
477 		dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
478 			usb_pipetype(urb->pipe), pipetypes[xfertype]);
479 
480 	/* Check against a simple/standard policy */
481 	allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
482 			URB_FREE_BUFFER);
483 	switch (xfertype) {
484 	case USB_ENDPOINT_XFER_BULK:
485 	case USB_ENDPOINT_XFER_INT:
486 		if (is_out)
487 			allowed |= URB_ZERO_PACKET;
488 		/* FALLTHROUGH */
489 	default:			/* all non-iso endpoints */
490 		if (!is_out)
491 			allowed |= URB_SHORT_NOT_OK;
492 		break;
493 	case USB_ENDPOINT_XFER_ISOC:
494 		allowed |= URB_ISO_ASAP;
495 		break;
496 	}
497 	allowed &= urb->transfer_flags;
498 
499 	/* warn if submitter gave bogus flags */
500 	if (allowed != urb->transfer_flags)
501 		dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
502 			urb->transfer_flags, allowed);
503 
504 	/*
505 	 * Force periodic transfer intervals to be legal values that are
506 	 * a power of two (so HCDs don't need to).
507 	 *
508 	 * FIXME want bus->{intr,iso}_sched_horizon values here.  Each HC
509 	 * supports different values... this uses EHCI/UHCI defaults (and
510 	 * EHCI can use smaller non-default values).
511 	 */
512 	switch (xfertype) {
513 	case USB_ENDPOINT_XFER_ISOC:
514 	case USB_ENDPOINT_XFER_INT:
515 		/* too small? */
516 		switch (dev->speed) {
517 		case USB_SPEED_WIRELESS:
518 			if ((urb->interval < 6)
519 				&& (xfertype == USB_ENDPOINT_XFER_INT))
520 				return -EINVAL;
521 			/* fall through */
522 		default:
523 			if (urb->interval <= 0)
524 				return -EINVAL;
525 			break;
526 		}
527 		/* too big? */
528 		switch (dev->speed) {
529 		case USB_SPEED_SUPER_PLUS:
530 		case USB_SPEED_SUPER:	/* units are 125us */
531 			/* Handle up to 2^(16-1) microframes */
532 			if (urb->interval > (1 << 15))
533 				return -EINVAL;
534 			max = 1 << 15;
535 			break;
536 		case USB_SPEED_WIRELESS:
537 			if (urb->interval > 16)
538 				return -EINVAL;
539 			break;
540 		case USB_SPEED_HIGH:	/* units are microframes */
541 			/* NOTE usb handles 2^15 */
542 			if (urb->interval > (1024 * 8))
543 				urb->interval = 1024 * 8;
544 			max = 1024 * 8;
545 			break;
546 		case USB_SPEED_FULL:	/* units are frames/msec */
547 		case USB_SPEED_LOW:
548 			if (xfertype == USB_ENDPOINT_XFER_INT) {
549 				if (urb->interval > 255)
550 					return -EINVAL;
551 				/* NOTE ohci only handles up to 32 */
552 				max = 128;
553 			} else {
554 				if (urb->interval > 1024)
555 					urb->interval = 1024;
556 				/* NOTE usb and ohci handle up to 2^15 */
557 				max = 1024;
558 			}
559 			break;
560 		default:
561 			return -EINVAL;
562 		}
563 		if (dev->speed != USB_SPEED_WIRELESS) {
564 			/* Round down to a power of 2, no more than max */
565 			urb->interval = min(max, 1 << ilog2(urb->interval));
566 		}
567 	}
568 
569 	return usb_hcd_submit_urb(urb, mem_flags);
570 }
571 EXPORT_SYMBOL_GPL(usb_submit_urb);
572 
573 /*-------------------------------------------------------------------*/
574 
575 /**
576  * usb_unlink_urb - abort/cancel a transfer request for an endpoint
577  * @urb: pointer to urb describing a previously submitted request,
578  *	may be NULL
579  *
580  * This routine cancels an in-progress request.  URBs complete only once
581  * per submission, and may be canceled only once per submission.
582  * Successful cancellation means termination of @urb will be expedited
583  * and the completion handler will be called with a status code
584  * indicating that the request has been canceled (rather than any other
585  * code).
586  *
587  * Drivers should not call this routine or related routines, such as
588  * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
589  * method has returned.  The disconnect function should synchronize with
590  * a driver's I/O routines to insure that all URB-related activity has
591  * completed before it returns.
592  *
593  * This request is asynchronous, however the HCD might call the ->complete()
594  * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
595  * must not hold any locks that may be taken by the completion function.
596  * Success is indicated by returning -EINPROGRESS, at which time the URB will
597  * probably not yet have been given back to the device driver. When it is
598  * eventually called, the completion function will see @urb->status ==
599  * -ECONNRESET.
600  * Failure is indicated by usb_unlink_urb() returning any other value.
601  * Unlinking will fail when @urb is not currently "linked" (i.e., it was
602  * never submitted, or it was unlinked before, or the hardware is already
603  * finished with it), even if the completion handler has not yet run.
604  *
605  * The URB must not be deallocated while this routine is running.  In
606  * particular, when a driver calls this routine, it must insure that the
607  * completion handler cannot deallocate the URB.
608  *
609  * Return: -EINPROGRESS on success. See description for other values on
610  * failure.
611  *
612  * Unlinking and Endpoint Queues:
613  *
614  * [The behaviors and guarantees described below do not apply to virtual
615  * root hubs but only to endpoint queues for physical USB devices.]
616  *
617  * Host Controller Drivers (HCDs) place all the URBs for a particular
618  * endpoint in a queue.  Normally the queue advances as the controller
619  * hardware processes each request.  But when an URB terminates with an
620  * error its queue generally stops (see below), at least until that URB's
621  * completion routine returns.  It is guaranteed that a stopped queue
622  * will not restart until all its unlinked URBs have been fully retired,
623  * with their completion routines run, even if that's not until some time
624  * after the original completion handler returns.  The same behavior and
625  * guarantee apply when an URB terminates because it was unlinked.
626  *
627  * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
628  * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
629  * and -EREMOTEIO.  Control endpoint queues behave the same way except
630  * that they are not guaranteed to stop for -EREMOTEIO errors.  Queues
631  * for isochronous endpoints are treated differently, because they must
632  * advance at fixed rates.  Such queues do not stop when an URB
633  * encounters an error or is unlinked.  An unlinked isochronous URB may
634  * leave a gap in the stream of packets; it is undefined whether such
635  * gaps can be filled in.
636  *
637  * Note that early termination of an URB because a short packet was
638  * received will generate a -EREMOTEIO error if and only if the
639  * URB_SHORT_NOT_OK flag is set.  By setting this flag, USB device
640  * drivers can build deep queues for large or complex bulk transfers
641  * and clean them up reliably after any sort of aborted transfer by
642  * unlinking all pending URBs at the first fault.
643  *
644  * When a control URB terminates with an error other than -EREMOTEIO, it
645  * is quite likely that the status stage of the transfer will not take
646  * place.
647  */
648 int usb_unlink_urb(struct urb *urb)
649 {
650 	if (!urb)
651 		return -EINVAL;
652 	if (!urb->dev)
653 		return -ENODEV;
654 	if (!urb->ep)
655 		return -EIDRM;
656 	return usb_hcd_unlink_urb(urb, -ECONNRESET);
657 }
658 EXPORT_SYMBOL_GPL(usb_unlink_urb);
659 
660 /**
661  * usb_kill_urb - cancel a transfer request and wait for it to finish
662  * @urb: pointer to URB describing a previously submitted request,
663  *	may be NULL
664  *
665  * This routine cancels an in-progress request.  It is guaranteed that
666  * upon return all completion handlers will have finished and the URB
667  * will be totally idle and available for reuse.  These features make
668  * this an ideal way to stop I/O in a disconnect() callback or close()
669  * function.  If the request has not already finished or been unlinked
670  * the completion handler will see urb->status == -ENOENT.
671  *
672  * While the routine is running, attempts to resubmit the URB will fail
673  * with error -EPERM.  Thus even if the URB's completion handler always
674  * tries to resubmit, it will not succeed and the URB will become idle.
675  *
676  * The URB must not be deallocated while this routine is running.  In
677  * particular, when a driver calls this routine, it must insure that the
678  * completion handler cannot deallocate the URB.
679  *
680  * This routine may not be used in an interrupt context (such as a bottom
681  * half or a completion handler), or when holding a spinlock, or in other
682  * situations where the caller can't schedule().
683  *
684  * This routine should not be called by a driver after its disconnect
685  * method has returned.
686  */
687 void usb_kill_urb(struct urb *urb)
688 {
689 	might_sleep();
690 	if (!(urb && urb->dev && urb->ep))
691 		return;
692 	atomic_inc(&urb->reject);
693 
694 	usb_hcd_unlink_urb(urb, -ENOENT);
695 	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
696 
697 	atomic_dec(&urb->reject);
698 }
699 EXPORT_SYMBOL_GPL(usb_kill_urb);
700 
701 /**
702  * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
703  * @urb: pointer to URB describing a previously submitted request,
704  *	may be NULL
705  *
706  * This routine cancels an in-progress request.  It is guaranteed that
707  * upon return all completion handlers will have finished and the URB
708  * will be totally idle and cannot be reused.  These features make
709  * this an ideal way to stop I/O in a disconnect() callback.
710  * If the request has not already finished or been unlinked
711  * the completion handler will see urb->status == -ENOENT.
712  *
713  * After and while the routine runs, attempts to resubmit the URB will fail
714  * with error -EPERM.  Thus even if the URB's completion handler always
715  * tries to resubmit, it will not succeed and the URB will become idle.
716  *
717  * The URB must not be deallocated while this routine is running.  In
718  * particular, when a driver calls this routine, it must insure that the
719  * completion handler cannot deallocate the URB.
720  *
721  * This routine may not be used in an interrupt context (such as a bottom
722  * half or a completion handler), or when holding a spinlock, or in other
723  * situations where the caller can't schedule().
724  *
725  * This routine should not be called by a driver after its disconnect
726  * method has returned.
727  */
728 void usb_poison_urb(struct urb *urb)
729 {
730 	might_sleep();
731 	if (!urb)
732 		return;
733 	atomic_inc(&urb->reject);
734 
735 	if (!urb->dev || !urb->ep)
736 		return;
737 
738 	usb_hcd_unlink_urb(urb, -ENOENT);
739 	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
740 }
741 EXPORT_SYMBOL_GPL(usb_poison_urb);
742 
743 void usb_unpoison_urb(struct urb *urb)
744 {
745 	if (!urb)
746 		return;
747 
748 	atomic_dec(&urb->reject);
749 }
750 EXPORT_SYMBOL_GPL(usb_unpoison_urb);
751 
752 /**
753  * usb_block_urb - reliably prevent further use of an URB
754  * @urb: pointer to URB to be blocked, may be NULL
755  *
756  * After the routine has run, attempts to resubmit the URB will fail
757  * with error -EPERM.  Thus even if the URB's completion handler always
758  * tries to resubmit, it will not succeed and the URB will become idle.
759  *
760  * The URB must not be deallocated while this routine is running.  In
761  * particular, when a driver calls this routine, it must insure that the
762  * completion handler cannot deallocate the URB.
763  */
764 void usb_block_urb(struct urb *urb)
765 {
766 	if (!urb)
767 		return;
768 
769 	atomic_inc(&urb->reject);
770 }
771 EXPORT_SYMBOL_GPL(usb_block_urb);
772 
773 /**
774  * usb_kill_anchored_urbs - cancel transfer requests en masse
775  * @anchor: anchor the requests are bound to
776  *
777  * this allows all outstanding URBs to be killed starting
778  * from the back of the queue
779  *
780  * This routine should not be called by a driver after its disconnect
781  * method has returned.
782  */
783 void usb_kill_anchored_urbs(struct usb_anchor *anchor)
784 {
785 	struct urb *victim;
786 
787 	spin_lock_irq(&anchor->lock);
788 	while (!list_empty(&anchor->urb_list)) {
789 		victim = list_entry(anchor->urb_list.prev, struct urb,
790 				    anchor_list);
791 		/* we must make sure the URB isn't freed before we kill it*/
792 		usb_get_urb(victim);
793 		spin_unlock_irq(&anchor->lock);
794 		/* this will unanchor the URB */
795 		usb_kill_urb(victim);
796 		usb_put_urb(victim);
797 		spin_lock_irq(&anchor->lock);
798 	}
799 	spin_unlock_irq(&anchor->lock);
800 }
801 EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
802 
803 
804 /**
805  * usb_poison_anchored_urbs - cease all traffic from an anchor
806  * @anchor: anchor the requests are bound to
807  *
808  * this allows all outstanding URBs to be poisoned starting
809  * from the back of the queue. Newly added URBs will also be
810  * poisoned
811  *
812  * This routine should not be called by a driver after its disconnect
813  * method has returned.
814  */
815 void usb_poison_anchored_urbs(struct usb_anchor *anchor)
816 {
817 	struct urb *victim;
818 
819 	spin_lock_irq(&anchor->lock);
820 	anchor->poisoned = 1;
821 	while (!list_empty(&anchor->urb_list)) {
822 		victim = list_entry(anchor->urb_list.prev, struct urb,
823 				    anchor_list);
824 		/* we must make sure the URB isn't freed before we kill it*/
825 		usb_get_urb(victim);
826 		spin_unlock_irq(&anchor->lock);
827 		/* this will unanchor the URB */
828 		usb_poison_urb(victim);
829 		usb_put_urb(victim);
830 		spin_lock_irq(&anchor->lock);
831 	}
832 	spin_unlock_irq(&anchor->lock);
833 }
834 EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
835 
836 /**
837  * usb_unpoison_anchored_urbs - let an anchor be used successfully again
838  * @anchor: anchor the requests are bound to
839  *
840  * Reverses the effect of usb_poison_anchored_urbs
841  * the anchor can be used normally after it returns
842  */
843 void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
844 {
845 	unsigned long flags;
846 	struct urb *lazarus;
847 
848 	spin_lock_irqsave(&anchor->lock, flags);
849 	list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
850 		usb_unpoison_urb(lazarus);
851 	}
852 	anchor->poisoned = 0;
853 	spin_unlock_irqrestore(&anchor->lock, flags);
854 }
855 EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
856 /**
857  * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
858  * @anchor: anchor the requests are bound to
859  *
860  * this allows all outstanding URBs to be unlinked starting
861  * from the back of the queue. This function is asynchronous.
862  * The unlinking is just triggered. It may happen after this
863  * function has returned.
864  *
865  * This routine should not be called by a driver after its disconnect
866  * method has returned.
867  */
868 void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
869 {
870 	struct urb *victim;
871 
872 	while ((victim = usb_get_from_anchor(anchor)) != NULL) {
873 		usb_unlink_urb(victim);
874 		usb_put_urb(victim);
875 	}
876 }
877 EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
878 
879 /**
880  * usb_anchor_suspend_wakeups
881  * @anchor: the anchor you want to suspend wakeups on
882  *
883  * Call this to stop the last urb being unanchored from waking up any
884  * usb_wait_anchor_empty_timeout waiters. This is used in the hcd urb give-
885  * back path to delay waking up until after the completion handler has run.
886  */
887 void usb_anchor_suspend_wakeups(struct usb_anchor *anchor)
888 {
889 	if (anchor)
890 		atomic_inc(&anchor->suspend_wakeups);
891 }
892 EXPORT_SYMBOL_GPL(usb_anchor_suspend_wakeups);
893 
894 /**
895  * usb_anchor_resume_wakeups
896  * @anchor: the anchor you want to resume wakeups on
897  *
898  * Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and
899  * wake up any current waiters if the anchor is empty.
900  */
901 void usb_anchor_resume_wakeups(struct usb_anchor *anchor)
902 {
903 	if (!anchor)
904 		return;
905 
906 	atomic_dec(&anchor->suspend_wakeups);
907 	if (usb_anchor_check_wakeup(anchor))
908 		wake_up(&anchor->wait);
909 }
910 EXPORT_SYMBOL_GPL(usb_anchor_resume_wakeups);
911 
912 /**
913  * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
914  * @anchor: the anchor you want to become unused
915  * @timeout: how long you are willing to wait in milliseconds
916  *
917  * Call this is you want to be sure all an anchor's
918  * URBs have finished
919  *
920  * Return: Non-zero if the anchor became unused. Zero on timeout.
921  */
922 int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
923 				  unsigned int timeout)
924 {
925 	return wait_event_timeout(anchor->wait,
926 				  usb_anchor_check_wakeup(anchor),
927 				  msecs_to_jiffies(timeout));
928 }
929 EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
930 
931 /**
932  * usb_get_from_anchor - get an anchor's oldest urb
933  * @anchor: the anchor whose urb you want
934  *
935  * This will take the oldest urb from an anchor,
936  * unanchor and return it
937  *
938  * Return: The oldest urb from @anchor, or %NULL if @anchor has no
939  * urbs associated with it.
940  */
941 struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
942 {
943 	struct urb *victim;
944 	unsigned long flags;
945 
946 	spin_lock_irqsave(&anchor->lock, flags);
947 	if (!list_empty(&anchor->urb_list)) {
948 		victim = list_entry(anchor->urb_list.next, struct urb,
949 				    anchor_list);
950 		usb_get_urb(victim);
951 		__usb_unanchor_urb(victim, anchor);
952 	} else {
953 		victim = NULL;
954 	}
955 	spin_unlock_irqrestore(&anchor->lock, flags);
956 
957 	return victim;
958 }
959 
960 EXPORT_SYMBOL_GPL(usb_get_from_anchor);
961 
962 /**
963  * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
964  * @anchor: the anchor whose urbs you want to unanchor
965  *
966  * use this to get rid of all an anchor's urbs
967  */
968 void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
969 {
970 	struct urb *victim;
971 	unsigned long flags;
972 
973 	spin_lock_irqsave(&anchor->lock, flags);
974 	while (!list_empty(&anchor->urb_list)) {
975 		victim = list_entry(anchor->urb_list.prev, struct urb,
976 				    anchor_list);
977 		__usb_unanchor_urb(victim, anchor);
978 	}
979 	spin_unlock_irqrestore(&anchor->lock, flags);
980 }
981 
982 EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
983 
984 /**
985  * usb_anchor_empty - is an anchor empty
986  * @anchor: the anchor you want to query
987  *
988  * Return: 1 if the anchor has no urbs associated with it.
989  */
990 int usb_anchor_empty(struct usb_anchor *anchor)
991 {
992 	return list_empty(&anchor->urb_list);
993 }
994 
995 EXPORT_SYMBOL_GPL(usb_anchor_empty);
996 
997