xref: /openbmc/linux/drivers/usb/core/urb.c (revision 10c1d542c7e871865bca381842fd04a92d2b95ec)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Released under the GPLv2 only.
4  */
5 
6 #include <linux/module.h>
7 #include <linux/string.h>
8 #include <linux/bitops.h>
9 #include <linux/slab.h>
10 #include <linux/log2.h>
11 #include <linux/usb.h>
12 #include <linux/wait.h>
13 #include <linux/usb/hcd.h>
14 #include <linux/scatterlist.h>
15 
16 #define to_urb(d) container_of(d, struct urb, kref)
17 
18 
19 static void urb_destroy(struct kref *kref)
20 {
21 	struct urb *urb = to_urb(kref);
22 
23 	if (urb->transfer_flags & URB_FREE_BUFFER)
24 		kfree(urb->transfer_buffer);
25 
26 	kfree(urb);
27 }
28 
29 /**
30  * usb_init_urb - initializes a urb so that it can be used by a USB driver
31  * @urb: pointer to the urb to initialize
32  *
33  * Initializes a urb so that the USB subsystem can use it properly.
34  *
35  * If a urb is created with a call to usb_alloc_urb() it is not
36  * necessary to call this function.  Only use this if you allocate the
37  * space for a struct urb on your own.  If you call this function, be
38  * careful when freeing the memory for your urb that it is no longer in
39  * use by the USB core.
40  *
41  * Only use this function if you _really_ understand what you are doing.
42  */
43 void usb_init_urb(struct urb *urb)
44 {
45 	if (urb) {
46 		memset(urb, 0, sizeof(*urb));
47 		kref_init(&urb->kref);
48 		INIT_LIST_HEAD(&urb->anchor_list);
49 	}
50 }
51 EXPORT_SYMBOL_GPL(usb_init_urb);
52 
53 /**
54  * usb_alloc_urb - creates a new urb for a USB driver to use
55  * @iso_packets: number of iso packets for this urb
56  * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
57  *	valid options for this.
58  *
59  * Creates an urb for the USB driver to use, initializes a few internal
60  * structures, increments the usage counter, and returns a pointer to it.
61  *
62  * If the driver want to use this urb for interrupt, control, or bulk
63  * endpoints, pass '0' as the number of iso packets.
64  *
65  * The driver must call usb_free_urb() when it is finished with the urb.
66  *
67  * Return: A pointer to the new urb, or %NULL if no memory is available.
68  */
69 struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
70 {
71 	struct urb *urb;
72 
73 	urb = kmalloc(sizeof(struct urb) +
74 		iso_packets * sizeof(struct usb_iso_packet_descriptor),
75 		mem_flags);
76 	if (!urb)
77 		return NULL;
78 	usb_init_urb(urb);
79 	return urb;
80 }
81 EXPORT_SYMBOL_GPL(usb_alloc_urb);
82 
83 /**
84  * usb_free_urb - frees the memory used by a urb when all users of it are finished
85  * @urb: pointer to the urb to free, may be NULL
86  *
87  * Must be called when a user of a urb is finished with it.  When the last user
88  * of the urb calls this function, the memory of the urb is freed.
89  *
90  * Note: The transfer buffer associated with the urb is not freed unless the
91  * URB_FREE_BUFFER transfer flag is set.
92  */
93 void usb_free_urb(struct urb *urb)
94 {
95 	if (urb)
96 		kref_put(&urb->kref, urb_destroy);
97 }
98 EXPORT_SYMBOL_GPL(usb_free_urb);
99 
100 /**
101  * usb_get_urb - increments the reference count of the urb
102  * @urb: pointer to the urb to modify, may be NULL
103  *
104  * This must be  called whenever a urb is transferred from a device driver to a
105  * host controller driver.  This allows proper reference counting to happen
106  * for urbs.
107  *
108  * Return: A pointer to the urb with the incremented reference counter.
109  */
110 struct urb *usb_get_urb(struct urb *urb)
111 {
112 	if (urb)
113 		kref_get(&urb->kref);
114 	return urb;
115 }
116 EXPORT_SYMBOL_GPL(usb_get_urb);
117 
118 /**
119  * usb_anchor_urb - anchors an URB while it is processed
120  * @urb: pointer to the urb to anchor
121  * @anchor: pointer to the anchor
122  *
123  * This can be called to have access to URBs which are to be executed
124  * without bothering to track them
125  */
126 void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
127 {
128 	unsigned long flags;
129 
130 	spin_lock_irqsave(&anchor->lock, flags);
131 	usb_get_urb(urb);
132 	list_add_tail(&urb->anchor_list, &anchor->urb_list);
133 	urb->anchor = anchor;
134 
135 	if (unlikely(anchor->poisoned))
136 		atomic_inc(&urb->reject);
137 
138 	spin_unlock_irqrestore(&anchor->lock, flags);
139 }
140 EXPORT_SYMBOL_GPL(usb_anchor_urb);
141 
142 static int usb_anchor_check_wakeup(struct usb_anchor *anchor)
143 {
144 	return atomic_read(&anchor->suspend_wakeups) == 0 &&
145 		list_empty(&anchor->urb_list);
146 }
147 
148 /* Callers must hold anchor->lock */
149 static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
150 {
151 	urb->anchor = NULL;
152 	list_del(&urb->anchor_list);
153 	usb_put_urb(urb);
154 	if (usb_anchor_check_wakeup(anchor))
155 		wake_up(&anchor->wait);
156 }
157 
158 /**
159  * usb_unanchor_urb - unanchors an URB
160  * @urb: pointer to the urb to anchor
161  *
162  * Call this to stop the system keeping track of this URB
163  */
164 void usb_unanchor_urb(struct urb *urb)
165 {
166 	unsigned long flags;
167 	struct usb_anchor *anchor;
168 
169 	if (!urb)
170 		return;
171 
172 	anchor = urb->anchor;
173 	if (!anchor)
174 		return;
175 
176 	spin_lock_irqsave(&anchor->lock, flags);
177 	/*
178 	 * At this point, we could be competing with another thread which
179 	 * has the same intention. To protect the urb from being unanchored
180 	 * twice, only the winner of the race gets the job.
181 	 */
182 	if (likely(anchor == urb->anchor))
183 		__usb_unanchor_urb(urb, anchor);
184 	spin_unlock_irqrestore(&anchor->lock, flags);
185 }
186 EXPORT_SYMBOL_GPL(usb_unanchor_urb);
187 
188 /*-------------------------------------------------------------------*/
189 
190 static const int pipetypes[4] = {
191 	PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
192 };
193 
194 /**
195  * usb_urb_ep_type_check - sanity check of endpoint in the given urb
196  * @urb: urb to be checked
197  *
198  * This performs a light-weight sanity check for the endpoint in the
199  * given urb.  It returns 0 if the urb contains a valid endpoint, otherwise
200  * a negative error code.
201  */
202 int usb_urb_ep_type_check(const struct urb *urb)
203 {
204 	const struct usb_host_endpoint *ep;
205 
206 	ep = usb_pipe_endpoint(urb->dev, urb->pipe);
207 	if (!ep)
208 		return -EINVAL;
209 	if (usb_pipetype(urb->pipe) != pipetypes[usb_endpoint_type(&ep->desc)])
210 		return -EINVAL;
211 	return 0;
212 }
213 EXPORT_SYMBOL_GPL(usb_urb_ep_type_check);
214 
215 /**
216  * usb_submit_urb - issue an asynchronous transfer request for an endpoint
217  * @urb: pointer to the urb describing the request
218  * @mem_flags: the type of memory to allocate, see kmalloc() for a list
219  *	of valid options for this.
220  *
221  * This submits a transfer request, and transfers control of the URB
222  * describing that request to the USB subsystem.  Request completion will
223  * be indicated later, asynchronously, by calling the completion handler.
224  * The three types of completion are success, error, and unlink
225  * (a software-induced fault, also called "request cancellation").
226  *
227  * URBs may be submitted in interrupt context.
228  *
229  * The caller must have correctly initialized the URB before submitting
230  * it.  Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
231  * available to ensure that most fields are correctly initialized, for
232  * the particular kind of transfer, although they will not initialize
233  * any transfer flags.
234  *
235  * If the submission is successful, the complete() callback from the URB
236  * will be called exactly once, when the USB core and Host Controller Driver
237  * (HCD) are finished with the URB.  When the completion function is called,
238  * control of the URB is returned to the device driver which issued the
239  * request.  The completion handler may then immediately free or reuse that
240  * URB.
241  *
242  * With few exceptions, USB device drivers should never access URB fields
243  * provided by usbcore or the HCD until its complete() is called.
244  * The exceptions relate to periodic transfer scheduling.  For both
245  * interrupt and isochronous urbs, as part of successful URB submission
246  * urb->interval is modified to reflect the actual transfer period used
247  * (normally some power of two units).  And for isochronous urbs,
248  * urb->start_frame is modified to reflect when the URB's transfers were
249  * scheduled to start.
250  *
251  * Not all isochronous transfer scheduling policies will work, but most
252  * host controller drivers should easily handle ISO queues going from now
253  * until 10-200 msec into the future.  Drivers should try to keep at
254  * least one or two msec of data in the queue; many controllers require
255  * that new transfers start at least 1 msec in the future when they are
256  * added.  If the driver is unable to keep up and the queue empties out,
257  * the behavior for new submissions is governed by the URB_ISO_ASAP flag.
258  * If the flag is set, or if the queue is idle, then the URB is always
259  * assigned to the first available (and not yet expired) slot in the
260  * endpoint's schedule.  If the flag is not set and the queue is active
261  * then the URB is always assigned to the next slot in the schedule
262  * following the end of the endpoint's previous URB, even if that slot is
263  * in the past.  When a packet is assigned in this way to a slot that has
264  * already expired, the packet is not transmitted and the corresponding
265  * usb_iso_packet_descriptor's status field will return -EXDEV.  If this
266  * would happen to all the packets in the URB, submission fails with a
267  * -EXDEV error code.
268  *
269  * For control endpoints, the synchronous usb_control_msg() call is
270  * often used (in non-interrupt context) instead of this call.
271  * That is often used through convenience wrappers, for the requests
272  * that are standardized in the USB 2.0 specification.  For bulk
273  * endpoints, a synchronous usb_bulk_msg() call is available.
274  *
275  * Return:
276  * 0 on successful submissions. A negative error number otherwise.
277  *
278  * Request Queuing:
279  *
280  * URBs may be submitted to endpoints before previous ones complete, to
281  * minimize the impact of interrupt latencies and system overhead on data
282  * throughput.  With that queuing policy, an endpoint's queue would never
283  * be empty.  This is required for continuous isochronous data streams,
284  * and may also be required for some kinds of interrupt transfers. Such
285  * queuing also maximizes bandwidth utilization by letting USB controllers
286  * start work on later requests before driver software has finished the
287  * completion processing for earlier (successful) requests.
288  *
289  * As of Linux 2.6, all USB endpoint transfer queues support depths greater
290  * than one.  This was previously a HCD-specific behavior, except for ISO
291  * transfers.  Non-isochronous endpoint queues are inactive during cleanup
292  * after faults (transfer errors or cancellation).
293  *
294  * Reserved Bandwidth Transfers:
295  *
296  * Periodic transfers (interrupt or isochronous) are performed repeatedly,
297  * using the interval specified in the urb.  Submitting the first urb to
298  * the endpoint reserves the bandwidth necessary to make those transfers.
299  * If the USB subsystem can't allocate sufficient bandwidth to perform
300  * the periodic request, submitting such a periodic request should fail.
301  *
302  * For devices under xHCI, the bandwidth is reserved at configuration time, or
303  * when the alt setting is selected.  If there is not enough bus bandwidth, the
304  * configuration/alt setting request will fail.  Therefore, submissions to
305  * periodic endpoints on devices under xHCI should never fail due to bandwidth
306  * constraints.
307  *
308  * Device drivers must explicitly request that repetition, by ensuring that
309  * some URB is always on the endpoint's queue (except possibly for short
310  * periods during completion callbacks).  When there is no longer an urb
311  * queued, the endpoint's bandwidth reservation is canceled.  This means
312  * drivers can use their completion handlers to ensure they keep bandwidth
313  * they need, by reinitializing and resubmitting the just-completed urb
314  * until the driver longer needs that periodic bandwidth.
315  *
316  * Memory Flags:
317  *
318  * The general rules for how to decide which mem_flags to use
319  * are the same as for kmalloc.  There are four
320  * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
321  * GFP_ATOMIC.
322  *
323  * GFP_NOFS is not ever used, as it has not been implemented yet.
324  *
325  * GFP_ATOMIC is used when
326  *   (a) you are inside a completion handler, an interrupt, bottom half,
327  *       tasklet or timer, or
328  *   (b) you are holding a spinlock or rwlock (does not apply to
329  *       semaphores), or
330  *   (c) current->state != TASK_RUNNING, this is the case only after
331  *       you've changed it.
332  *
333  * GFP_NOIO is used in the block io path and error handling of storage
334  * devices.
335  *
336  * All other situations use GFP_KERNEL.
337  *
338  * Some more specific rules for mem_flags can be inferred, such as
339  *  (1) start_xmit, timeout, and receive methods of network drivers must
340  *      use GFP_ATOMIC (they are called with a spinlock held);
341  *  (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
342  *      called with a spinlock held);
343  *  (3) If you use a kernel thread with a network driver you must use
344  *      GFP_NOIO, unless (b) or (c) apply;
345  *  (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
346  *      apply or your are in a storage driver's block io path;
347  *  (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
348  *  (6) changing firmware on a running storage or net device uses
349  *      GFP_NOIO, unless b) or c) apply
350  *
351  */
352 int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
353 {
354 	int				xfertype, max;
355 	struct usb_device		*dev;
356 	struct usb_host_endpoint	*ep;
357 	int				is_out;
358 	unsigned int			allowed;
359 
360 	if (!urb || !urb->complete)
361 		return -EINVAL;
362 	if (urb->hcpriv) {
363 		WARN_ONCE(1, "URB %pK submitted while active\n", urb);
364 		return -EBUSY;
365 	}
366 
367 	dev = urb->dev;
368 	if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
369 		return -ENODEV;
370 
371 	/* For now, get the endpoint from the pipe.  Eventually drivers
372 	 * will be required to set urb->ep directly and we will eliminate
373 	 * urb->pipe.
374 	 */
375 	ep = usb_pipe_endpoint(dev, urb->pipe);
376 	if (!ep)
377 		return -ENOENT;
378 
379 	urb->ep = ep;
380 	urb->status = -EINPROGRESS;
381 	urb->actual_length = 0;
382 
383 	/* Lots of sanity checks, so HCDs can rely on clean data
384 	 * and don't need to duplicate tests
385 	 */
386 	xfertype = usb_endpoint_type(&ep->desc);
387 	if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
388 		struct usb_ctrlrequest *setup =
389 				(struct usb_ctrlrequest *) urb->setup_packet;
390 
391 		if (!setup)
392 			return -ENOEXEC;
393 		is_out = !(setup->bRequestType & USB_DIR_IN) ||
394 				!setup->wLength;
395 	} else {
396 		is_out = usb_endpoint_dir_out(&ep->desc);
397 	}
398 
399 	/* Clear the internal flags and cache the direction for later use */
400 	urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
401 			URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
402 			URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
403 			URB_DMA_SG_COMBINED);
404 	urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
405 
406 	if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
407 			dev->state < USB_STATE_CONFIGURED)
408 		return -ENODEV;
409 
410 	max = usb_endpoint_maxp(&ep->desc);
411 	if (max <= 0) {
412 		dev_dbg(&dev->dev,
413 			"bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
414 			usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
415 			__func__, max);
416 		return -EMSGSIZE;
417 	}
418 
419 	/* periodic transfers limit size per frame/uframe,
420 	 * but drivers only control those sizes for ISO.
421 	 * while we're checking, initialize return status.
422 	 */
423 	if (xfertype == USB_ENDPOINT_XFER_ISOC) {
424 		int	n, len;
425 
426 		/* SuperSpeed isoc endpoints have up to 16 bursts of up to
427 		 * 3 packets each
428 		 */
429 		if (dev->speed >= USB_SPEED_SUPER) {
430 			int     burst = 1 + ep->ss_ep_comp.bMaxBurst;
431 			int     mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
432 			max *= burst;
433 			max *= mult;
434 		}
435 
436 		/* "high bandwidth" mode, 1-3 packets/uframe? */
437 		if (dev->speed == USB_SPEED_HIGH)
438 			max *= usb_endpoint_maxp_mult(&ep->desc);
439 
440 		if (urb->number_of_packets <= 0)
441 			return -EINVAL;
442 		for (n = 0; n < urb->number_of_packets; n++) {
443 			len = urb->iso_frame_desc[n].length;
444 			if (len < 0 || len > max)
445 				return -EMSGSIZE;
446 			urb->iso_frame_desc[n].status = -EXDEV;
447 			urb->iso_frame_desc[n].actual_length = 0;
448 		}
449 	} else if (urb->num_sgs && !urb->dev->bus->no_sg_constraint &&
450 			dev->speed != USB_SPEED_WIRELESS) {
451 		struct scatterlist *sg;
452 		int i;
453 
454 		for_each_sg(urb->sg, sg, urb->num_sgs - 1, i)
455 			if (sg->length % max)
456 				return -EINVAL;
457 	}
458 
459 	/* the I/O buffer must be mapped/unmapped, except when length=0 */
460 	if (urb->transfer_buffer_length > INT_MAX)
461 		return -EMSGSIZE;
462 
463 	/*
464 	 * stuff that drivers shouldn't do, but which shouldn't
465 	 * cause problems in HCDs if they get it wrong.
466 	 */
467 
468 	/* Check that the pipe's type matches the endpoint's type */
469 	if (usb_urb_ep_type_check(urb))
470 		dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
471 			usb_pipetype(urb->pipe), pipetypes[xfertype]);
472 
473 	/* Check against a simple/standard policy */
474 	allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
475 			URB_FREE_BUFFER);
476 	switch (xfertype) {
477 	case USB_ENDPOINT_XFER_BULK:
478 	case USB_ENDPOINT_XFER_INT:
479 		if (is_out)
480 			allowed |= URB_ZERO_PACKET;
481 		/* FALLTHROUGH */
482 	default:			/* all non-iso endpoints */
483 		if (!is_out)
484 			allowed |= URB_SHORT_NOT_OK;
485 		break;
486 	case USB_ENDPOINT_XFER_ISOC:
487 		allowed |= URB_ISO_ASAP;
488 		break;
489 	}
490 	allowed &= urb->transfer_flags;
491 
492 	/* warn if submitter gave bogus flags */
493 	if (allowed != urb->transfer_flags)
494 		dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
495 			urb->transfer_flags, allowed);
496 
497 	/*
498 	 * Force periodic transfer intervals to be legal values that are
499 	 * a power of two (so HCDs don't need to).
500 	 *
501 	 * FIXME want bus->{intr,iso}_sched_horizon values here.  Each HC
502 	 * supports different values... this uses EHCI/UHCI defaults (and
503 	 * EHCI can use smaller non-default values).
504 	 */
505 	switch (xfertype) {
506 	case USB_ENDPOINT_XFER_ISOC:
507 	case USB_ENDPOINT_XFER_INT:
508 		/* too small? */
509 		switch (dev->speed) {
510 		case USB_SPEED_WIRELESS:
511 			if ((urb->interval < 6)
512 				&& (xfertype == USB_ENDPOINT_XFER_INT))
513 				return -EINVAL;
514 			/* fall through */
515 		default:
516 			if (urb->interval <= 0)
517 				return -EINVAL;
518 			break;
519 		}
520 		/* too big? */
521 		switch (dev->speed) {
522 		case USB_SPEED_SUPER_PLUS:
523 		case USB_SPEED_SUPER:	/* units are 125us */
524 			/* Handle up to 2^(16-1) microframes */
525 			if (urb->interval > (1 << 15))
526 				return -EINVAL;
527 			max = 1 << 15;
528 			break;
529 		case USB_SPEED_WIRELESS:
530 			if (urb->interval > 16)
531 				return -EINVAL;
532 			break;
533 		case USB_SPEED_HIGH:	/* units are microframes */
534 			/* NOTE usb handles 2^15 */
535 			if (urb->interval > (1024 * 8))
536 				urb->interval = 1024 * 8;
537 			max = 1024 * 8;
538 			break;
539 		case USB_SPEED_FULL:	/* units are frames/msec */
540 		case USB_SPEED_LOW:
541 			if (xfertype == USB_ENDPOINT_XFER_INT) {
542 				if (urb->interval > 255)
543 					return -EINVAL;
544 				/* NOTE ohci only handles up to 32 */
545 				max = 128;
546 			} else {
547 				if (urb->interval > 1024)
548 					urb->interval = 1024;
549 				/* NOTE usb and ohci handle up to 2^15 */
550 				max = 1024;
551 			}
552 			break;
553 		default:
554 			return -EINVAL;
555 		}
556 		if (dev->speed != USB_SPEED_WIRELESS) {
557 			/* Round down to a power of 2, no more than max */
558 			urb->interval = min(max, 1 << ilog2(urb->interval));
559 		}
560 	}
561 
562 	return usb_hcd_submit_urb(urb, mem_flags);
563 }
564 EXPORT_SYMBOL_GPL(usb_submit_urb);
565 
566 /*-------------------------------------------------------------------*/
567 
568 /**
569  * usb_unlink_urb - abort/cancel a transfer request for an endpoint
570  * @urb: pointer to urb describing a previously submitted request,
571  *	may be NULL
572  *
573  * This routine cancels an in-progress request.  URBs complete only once
574  * per submission, and may be canceled only once per submission.
575  * Successful cancellation means termination of @urb will be expedited
576  * and the completion handler will be called with a status code
577  * indicating that the request has been canceled (rather than any other
578  * code).
579  *
580  * Drivers should not call this routine or related routines, such as
581  * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
582  * method has returned.  The disconnect function should synchronize with
583  * a driver's I/O routines to insure that all URB-related activity has
584  * completed before it returns.
585  *
586  * This request is asynchronous, however the HCD might call the ->complete()
587  * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
588  * must not hold any locks that may be taken by the completion function.
589  * Success is indicated by returning -EINPROGRESS, at which time the URB will
590  * probably not yet have been given back to the device driver. When it is
591  * eventually called, the completion function will see @urb->status ==
592  * -ECONNRESET.
593  * Failure is indicated by usb_unlink_urb() returning any other value.
594  * Unlinking will fail when @urb is not currently "linked" (i.e., it was
595  * never submitted, or it was unlinked before, or the hardware is already
596  * finished with it), even if the completion handler has not yet run.
597  *
598  * The URB must not be deallocated while this routine is running.  In
599  * particular, when a driver calls this routine, it must insure that the
600  * completion handler cannot deallocate the URB.
601  *
602  * Return: -EINPROGRESS on success. See description for other values on
603  * failure.
604  *
605  * Unlinking and Endpoint Queues:
606  *
607  * [The behaviors and guarantees described below do not apply to virtual
608  * root hubs but only to endpoint queues for physical USB devices.]
609  *
610  * Host Controller Drivers (HCDs) place all the URBs for a particular
611  * endpoint in a queue.  Normally the queue advances as the controller
612  * hardware processes each request.  But when an URB terminates with an
613  * error its queue generally stops (see below), at least until that URB's
614  * completion routine returns.  It is guaranteed that a stopped queue
615  * will not restart until all its unlinked URBs have been fully retired,
616  * with their completion routines run, even if that's not until some time
617  * after the original completion handler returns.  The same behavior and
618  * guarantee apply when an URB terminates because it was unlinked.
619  *
620  * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
621  * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
622  * and -EREMOTEIO.  Control endpoint queues behave the same way except
623  * that they are not guaranteed to stop for -EREMOTEIO errors.  Queues
624  * for isochronous endpoints are treated differently, because they must
625  * advance at fixed rates.  Such queues do not stop when an URB
626  * encounters an error or is unlinked.  An unlinked isochronous URB may
627  * leave a gap in the stream of packets; it is undefined whether such
628  * gaps can be filled in.
629  *
630  * Note that early termination of an URB because a short packet was
631  * received will generate a -EREMOTEIO error if and only if the
632  * URB_SHORT_NOT_OK flag is set.  By setting this flag, USB device
633  * drivers can build deep queues for large or complex bulk transfers
634  * and clean them up reliably after any sort of aborted transfer by
635  * unlinking all pending URBs at the first fault.
636  *
637  * When a control URB terminates with an error other than -EREMOTEIO, it
638  * is quite likely that the status stage of the transfer will not take
639  * place.
640  */
641 int usb_unlink_urb(struct urb *urb)
642 {
643 	if (!urb)
644 		return -EINVAL;
645 	if (!urb->dev)
646 		return -ENODEV;
647 	if (!urb->ep)
648 		return -EIDRM;
649 	return usb_hcd_unlink_urb(urb, -ECONNRESET);
650 }
651 EXPORT_SYMBOL_GPL(usb_unlink_urb);
652 
653 /**
654  * usb_kill_urb - cancel a transfer request and wait for it to finish
655  * @urb: pointer to URB describing a previously submitted request,
656  *	may be NULL
657  *
658  * This routine cancels an in-progress request.  It is guaranteed that
659  * upon return all completion handlers will have finished and the URB
660  * will be totally idle and available for reuse.  These features make
661  * this an ideal way to stop I/O in a disconnect() callback or close()
662  * function.  If the request has not already finished or been unlinked
663  * the completion handler will see urb->status == -ENOENT.
664  *
665  * While the routine is running, attempts to resubmit the URB will fail
666  * with error -EPERM.  Thus even if the URB's completion handler always
667  * tries to resubmit, it will not succeed and the URB will become idle.
668  *
669  * The URB must not be deallocated while this routine is running.  In
670  * particular, when a driver calls this routine, it must insure that the
671  * completion handler cannot deallocate the URB.
672  *
673  * This routine may not be used in an interrupt context (such as a bottom
674  * half or a completion handler), or when holding a spinlock, or in other
675  * situations where the caller can't schedule().
676  *
677  * This routine should not be called by a driver after its disconnect
678  * method has returned.
679  */
680 void usb_kill_urb(struct urb *urb)
681 {
682 	might_sleep();
683 	if (!(urb && urb->dev && urb->ep))
684 		return;
685 	atomic_inc(&urb->reject);
686 
687 	usb_hcd_unlink_urb(urb, -ENOENT);
688 	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
689 
690 	atomic_dec(&urb->reject);
691 }
692 EXPORT_SYMBOL_GPL(usb_kill_urb);
693 
694 /**
695  * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
696  * @urb: pointer to URB describing a previously submitted request,
697  *	may be NULL
698  *
699  * This routine cancels an in-progress request.  It is guaranteed that
700  * upon return all completion handlers will have finished and the URB
701  * will be totally idle and cannot be reused.  These features make
702  * this an ideal way to stop I/O in a disconnect() callback.
703  * If the request has not already finished or been unlinked
704  * the completion handler will see urb->status == -ENOENT.
705  *
706  * After and while the routine runs, attempts to resubmit the URB will fail
707  * with error -EPERM.  Thus even if the URB's completion handler always
708  * tries to resubmit, it will not succeed and the URB will become idle.
709  *
710  * The URB must not be deallocated while this routine is running.  In
711  * particular, when a driver calls this routine, it must insure that the
712  * completion handler cannot deallocate the URB.
713  *
714  * This routine may not be used in an interrupt context (such as a bottom
715  * half or a completion handler), or when holding a spinlock, or in other
716  * situations where the caller can't schedule().
717  *
718  * This routine should not be called by a driver after its disconnect
719  * method has returned.
720  */
721 void usb_poison_urb(struct urb *urb)
722 {
723 	might_sleep();
724 	if (!urb)
725 		return;
726 	atomic_inc(&urb->reject);
727 
728 	if (!urb->dev || !urb->ep)
729 		return;
730 
731 	usb_hcd_unlink_urb(urb, -ENOENT);
732 	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
733 }
734 EXPORT_SYMBOL_GPL(usb_poison_urb);
735 
736 void usb_unpoison_urb(struct urb *urb)
737 {
738 	if (!urb)
739 		return;
740 
741 	atomic_dec(&urb->reject);
742 }
743 EXPORT_SYMBOL_GPL(usb_unpoison_urb);
744 
745 /**
746  * usb_block_urb - reliably prevent further use of an URB
747  * @urb: pointer to URB to be blocked, may be NULL
748  *
749  * After the routine has run, attempts to resubmit the URB will fail
750  * with error -EPERM.  Thus even if the URB's completion handler always
751  * tries to resubmit, it will not succeed and the URB will become idle.
752  *
753  * The URB must not be deallocated while this routine is running.  In
754  * particular, when a driver calls this routine, it must insure that the
755  * completion handler cannot deallocate the URB.
756  */
757 void usb_block_urb(struct urb *urb)
758 {
759 	if (!urb)
760 		return;
761 
762 	atomic_inc(&urb->reject);
763 }
764 EXPORT_SYMBOL_GPL(usb_block_urb);
765 
766 /**
767  * usb_kill_anchored_urbs - cancel transfer requests en masse
768  * @anchor: anchor the requests are bound to
769  *
770  * this allows all outstanding URBs to be killed starting
771  * from the back of the queue
772  *
773  * This routine should not be called by a driver after its disconnect
774  * method has returned.
775  */
776 void usb_kill_anchored_urbs(struct usb_anchor *anchor)
777 {
778 	struct urb *victim;
779 
780 	spin_lock_irq(&anchor->lock);
781 	while (!list_empty(&anchor->urb_list)) {
782 		victim = list_entry(anchor->urb_list.prev, struct urb,
783 				    anchor_list);
784 		/* we must make sure the URB isn't freed before we kill it*/
785 		usb_get_urb(victim);
786 		spin_unlock_irq(&anchor->lock);
787 		/* this will unanchor the URB */
788 		usb_kill_urb(victim);
789 		usb_put_urb(victim);
790 		spin_lock_irq(&anchor->lock);
791 	}
792 	spin_unlock_irq(&anchor->lock);
793 }
794 EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
795 
796 
797 /**
798  * usb_poison_anchored_urbs - cease all traffic from an anchor
799  * @anchor: anchor the requests are bound to
800  *
801  * this allows all outstanding URBs to be poisoned starting
802  * from the back of the queue. Newly added URBs will also be
803  * poisoned
804  *
805  * This routine should not be called by a driver after its disconnect
806  * method has returned.
807  */
808 void usb_poison_anchored_urbs(struct usb_anchor *anchor)
809 {
810 	struct urb *victim;
811 
812 	spin_lock_irq(&anchor->lock);
813 	anchor->poisoned = 1;
814 	while (!list_empty(&anchor->urb_list)) {
815 		victim = list_entry(anchor->urb_list.prev, struct urb,
816 				    anchor_list);
817 		/* we must make sure the URB isn't freed before we kill it*/
818 		usb_get_urb(victim);
819 		spin_unlock_irq(&anchor->lock);
820 		/* this will unanchor the URB */
821 		usb_poison_urb(victim);
822 		usb_put_urb(victim);
823 		spin_lock_irq(&anchor->lock);
824 	}
825 	spin_unlock_irq(&anchor->lock);
826 }
827 EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
828 
829 /**
830  * usb_unpoison_anchored_urbs - let an anchor be used successfully again
831  * @anchor: anchor the requests are bound to
832  *
833  * Reverses the effect of usb_poison_anchored_urbs
834  * the anchor can be used normally after it returns
835  */
836 void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
837 {
838 	unsigned long flags;
839 	struct urb *lazarus;
840 
841 	spin_lock_irqsave(&anchor->lock, flags);
842 	list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
843 		usb_unpoison_urb(lazarus);
844 	}
845 	anchor->poisoned = 0;
846 	spin_unlock_irqrestore(&anchor->lock, flags);
847 }
848 EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
849 /**
850  * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
851  * @anchor: anchor the requests are bound to
852  *
853  * this allows all outstanding URBs to be unlinked starting
854  * from the back of the queue. This function is asynchronous.
855  * The unlinking is just triggered. It may happen after this
856  * function has returned.
857  *
858  * This routine should not be called by a driver after its disconnect
859  * method has returned.
860  */
861 void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
862 {
863 	struct urb *victim;
864 
865 	while ((victim = usb_get_from_anchor(anchor)) != NULL) {
866 		usb_unlink_urb(victim);
867 		usb_put_urb(victim);
868 	}
869 }
870 EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
871 
872 /**
873  * usb_anchor_suspend_wakeups
874  * @anchor: the anchor you want to suspend wakeups on
875  *
876  * Call this to stop the last urb being unanchored from waking up any
877  * usb_wait_anchor_empty_timeout waiters. This is used in the hcd urb give-
878  * back path to delay waking up until after the completion handler has run.
879  */
880 void usb_anchor_suspend_wakeups(struct usb_anchor *anchor)
881 {
882 	if (anchor)
883 		atomic_inc(&anchor->suspend_wakeups);
884 }
885 EXPORT_SYMBOL_GPL(usb_anchor_suspend_wakeups);
886 
887 /**
888  * usb_anchor_resume_wakeups
889  * @anchor: the anchor you want to resume wakeups on
890  *
891  * Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and
892  * wake up any current waiters if the anchor is empty.
893  */
894 void usb_anchor_resume_wakeups(struct usb_anchor *anchor)
895 {
896 	if (!anchor)
897 		return;
898 
899 	atomic_dec(&anchor->suspend_wakeups);
900 	if (usb_anchor_check_wakeup(anchor))
901 		wake_up(&anchor->wait);
902 }
903 EXPORT_SYMBOL_GPL(usb_anchor_resume_wakeups);
904 
905 /**
906  * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
907  * @anchor: the anchor you want to become unused
908  * @timeout: how long you are willing to wait in milliseconds
909  *
910  * Call this is you want to be sure all an anchor's
911  * URBs have finished
912  *
913  * Return: Non-zero if the anchor became unused. Zero on timeout.
914  */
915 int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
916 				  unsigned int timeout)
917 {
918 	return wait_event_timeout(anchor->wait,
919 				  usb_anchor_check_wakeup(anchor),
920 				  msecs_to_jiffies(timeout));
921 }
922 EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
923 
924 /**
925  * usb_get_from_anchor - get an anchor's oldest urb
926  * @anchor: the anchor whose urb you want
927  *
928  * This will take the oldest urb from an anchor,
929  * unanchor and return it
930  *
931  * Return: The oldest urb from @anchor, or %NULL if @anchor has no
932  * urbs associated with it.
933  */
934 struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
935 {
936 	struct urb *victim;
937 	unsigned long flags;
938 
939 	spin_lock_irqsave(&anchor->lock, flags);
940 	if (!list_empty(&anchor->urb_list)) {
941 		victim = list_entry(anchor->urb_list.next, struct urb,
942 				    anchor_list);
943 		usb_get_urb(victim);
944 		__usb_unanchor_urb(victim, anchor);
945 	} else {
946 		victim = NULL;
947 	}
948 	spin_unlock_irqrestore(&anchor->lock, flags);
949 
950 	return victim;
951 }
952 
953 EXPORT_SYMBOL_GPL(usb_get_from_anchor);
954 
955 /**
956  * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
957  * @anchor: the anchor whose urbs you want to unanchor
958  *
959  * use this to get rid of all an anchor's urbs
960  */
961 void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
962 {
963 	struct urb *victim;
964 	unsigned long flags;
965 
966 	spin_lock_irqsave(&anchor->lock, flags);
967 	while (!list_empty(&anchor->urb_list)) {
968 		victim = list_entry(anchor->urb_list.prev, struct urb,
969 				    anchor_list);
970 		__usb_unanchor_urb(victim, anchor);
971 	}
972 	spin_unlock_irqrestore(&anchor->lock, flags);
973 }
974 
975 EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
976 
977 /**
978  * usb_anchor_empty - is an anchor empty
979  * @anchor: the anchor you want to query
980  *
981  * Return: 1 if the anchor has no urbs associated with it.
982  */
983 int usb_anchor_empty(struct usb_anchor *anchor)
984 {
985 	return list_empty(&anchor->urb_list);
986 }
987 
988 EXPORT_SYMBOL_GPL(usb_anchor_empty);
989 
990