xref: /openbmc/linux/drivers/usb/core/message.c (revision fd589a8f)
1 /*
2  * message.c - synchronous message handling
3  */
4 
5 #include <linux/pci.h>	/* for scatterlist macros */
6 #include <linux/usb.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/timer.h>
12 #include <linux/ctype.h>
13 #include <linux/nls.h>
14 #include <linux/device.h>
15 #include <linux/scatterlist.h>
16 #include <linux/usb/quirks.h>
17 #include <asm/byteorder.h>
18 
19 #include "hcd.h"	/* for usbcore internals */
20 #include "usb.h"
21 
22 static void cancel_async_set_config(struct usb_device *udev);
23 
24 struct api_context {
25 	struct completion	done;
26 	int			status;
27 };
28 
29 static void usb_api_blocking_completion(struct urb *urb)
30 {
31 	struct api_context *ctx = urb->context;
32 
33 	ctx->status = urb->status;
34 	complete(&ctx->done);
35 }
36 
37 
38 /*
39  * Starts urb and waits for completion or timeout. Note that this call
40  * is NOT interruptible. Many device driver i/o requests should be
41  * interruptible and therefore these drivers should implement their
42  * own interruptible routines.
43  */
44 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
45 {
46 	struct api_context ctx;
47 	unsigned long expire;
48 	int retval;
49 
50 	init_completion(&ctx.done);
51 	urb->context = &ctx;
52 	urb->actual_length = 0;
53 	retval = usb_submit_urb(urb, GFP_NOIO);
54 	if (unlikely(retval))
55 		goto out;
56 
57 	expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
58 	if (!wait_for_completion_timeout(&ctx.done, expire)) {
59 		usb_kill_urb(urb);
60 		retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
61 
62 		dev_dbg(&urb->dev->dev,
63 			"%s timed out on ep%d%s len=%u/%u\n",
64 			current->comm,
65 			usb_endpoint_num(&urb->ep->desc),
66 			usb_urb_dir_in(urb) ? "in" : "out",
67 			urb->actual_length,
68 			urb->transfer_buffer_length);
69 	} else
70 		retval = ctx.status;
71 out:
72 	if (actual_length)
73 		*actual_length = urb->actual_length;
74 
75 	usb_free_urb(urb);
76 	return retval;
77 }
78 
79 /*-------------------------------------------------------------------*/
80 /* returns status (negative) or length (positive) */
81 static int usb_internal_control_msg(struct usb_device *usb_dev,
82 				    unsigned int pipe,
83 				    struct usb_ctrlrequest *cmd,
84 				    void *data, int len, int timeout)
85 {
86 	struct urb *urb;
87 	int retv;
88 	int length;
89 
90 	urb = usb_alloc_urb(0, GFP_NOIO);
91 	if (!urb)
92 		return -ENOMEM;
93 
94 	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
95 			     len, usb_api_blocking_completion, NULL);
96 
97 	retv = usb_start_wait_urb(urb, timeout, &length);
98 	if (retv < 0)
99 		return retv;
100 	else
101 		return length;
102 }
103 
104 /**
105  * usb_control_msg - Builds a control urb, sends it off and waits for completion
106  * @dev: pointer to the usb device to send the message to
107  * @pipe: endpoint "pipe" to send the message to
108  * @request: USB message request value
109  * @requesttype: USB message request type value
110  * @value: USB message value
111  * @index: USB message index value
112  * @data: pointer to the data to send
113  * @size: length in bytes of the data to send
114  * @timeout: time in msecs to wait for the message to complete before timing
115  *	out (if 0 the wait is forever)
116  *
117  * Context: !in_interrupt ()
118  *
119  * This function sends a simple control message to a specified endpoint and
120  * waits for the message to complete, or timeout.
121  *
122  * If successful, it returns the number of bytes transferred, otherwise a
123  * negative error number.
124  *
125  * Don't use this function from within an interrupt context, like a bottom half
126  * handler.  If you need an asynchronous message, or need to send a message
127  * from within interrupt context, use usb_submit_urb().
128  * If a thread in your driver uses this call, make sure your disconnect()
129  * method can wait for it to complete.  Since you don't have a handle on the
130  * URB used, you can't cancel the request.
131  */
132 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
133 		    __u8 requesttype, __u16 value, __u16 index, void *data,
134 		    __u16 size, int timeout)
135 {
136 	struct usb_ctrlrequest *dr;
137 	int ret;
138 
139 	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
140 	if (!dr)
141 		return -ENOMEM;
142 
143 	dr->bRequestType = requesttype;
144 	dr->bRequest = request;
145 	dr->wValue = cpu_to_le16(value);
146 	dr->wIndex = cpu_to_le16(index);
147 	dr->wLength = cpu_to_le16(size);
148 
149 	/* dbg("usb_control_msg"); */
150 
151 	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
152 
153 	kfree(dr);
154 
155 	return ret;
156 }
157 EXPORT_SYMBOL_GPL(usb_control_msg);
158 
159 /**
160  * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
161  * @usb_dev: pointer to the usb device to send the message to
162  * @pipe: endpoint "pipe" to send the message to
163  * @data: pointer to the data to send
164  * @len: length in bytes of the data to send
165  * @actual_length: pointer to a location to put the actual length transferred
166  *	in bytes
167  * @timeout: time in msecs to wait for the message to complete before
168  *	timing out (if 0 the wait is forever)
169  *
170  * Context: !in_interrupt ()
171  *
172  * This function sends a simple interrupt message to a specified endpoint and
173  * waits for the message to complete, or timeout.
174  *
175  * If successful, it returns 0, otherwise a negative error number.  The number
176  * of actual bytes transferred will be stored in the actual_length paramater.
177  *
178  * Don't use this function from within an interrupt context, like a bottom half
179  * handler.  If you need an asynchronous message, or need to send a message
180  * from within interrupt context, use usb_submit_urb() If a thread in your
181  * driver uses this call, make sure your disconnect() method can wait for it to
182  * complete.  Since you don't have a handle on the URB used, you can't cancel
183  * the request.
184  */
185 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
186 		      void *data, int len, int *actual_length, int timeout)
187 {
188 	return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
189 }
190 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
191 
192 /**
193  * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
194  * @usb_dev: pointer to the usb device to send the message to
195  * @pipe: endpoint "pipe" to send the message to
196  * @data: pointer to the data to send
197  * @len: length in bytes of the data to send
198  * @actual_length: pointer to a location to put the actual length transferred
199  *	in bytes
200  * @timeout: time in msecs to wait for the message to complete before
201  *	timing out (if 0 the wait is forever)
202  *
203  * Context: !in_interrupt ()
204  *
205  * This function sends a simple bulk message to a specified endpoint
206  * and waits for the message to complete, or timeout.
207  *
208  * If successful, it returns 0, otherwise a negative error number.  The number
209  * of actual bytes transferred will be stored in the actual_length paramater.
210  *
211  * Don't use this function from within an interrupt context, like a bottom half
212  * handler.  If you need an asynchronous message, or need to send a message
213  * from within interrupt context, use usb_submit_urb() If a thread in your
214  * driver uses this call, make sure your disconnect() method can wait for it to
215  * complete.  Since you don't have a handle on the URB used, you can't cancel
216  * the request.
217  *
218  * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
219  * users are forced to abuse this routine by using it to submit URBs for
220  * interrupt endpoints.  We will take the liberty of creating an interrupt URB
221  * (with the default interval) if the target is an interrupt endpoint.
222  */
223 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
224 		 void *data, int len, int *actual_length, int timeout)
225 {
226 	struct urb *urb;
227 	struct usb_host_endpoint *ep;
228 
229 	ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out)
230 			[usb_pipeendpoint(pipe)];
231 	if (!ep || len < 0)
232 		return -EINVAL;
233 
234 	urb = usb_alloc_urb(0, GFP_KERNEL);
235 	if (!urb)
236 		return -ENOMEM;
237 
238 	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
239 			USB_ENDPOINT_XFER_INT) {
240 		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
241 		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
242 				usb_api_blocking_completion, NULL,
243 				ep->desc.bInterval);
244 	} else
245 		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
246 				usb_api_blocking_completion, NULL);
247 
248 	return usb_start_wait_urb(urb, timeout, actual_length);
249 }
250 EXPORT_SYMBOL_GPL(usb_bulk_msg);
251 
252 /*-------------------------------------------------------------------*/
253 
254 static void sg_clean(struct usb_sg_request *io)
255 {
256 	if (io->urbs) {
257 		while (io->entries--)
258 			usb_free_urb(io->urbs [io->entries]);
259 		kfree(io->urbs);
260 		io->urbs = NULL;
261 	}
262 	if (io->dev->dev.dma_mask != NULL)
263 		usb_buffer_unmap_sg(io->dev, usb_pipein(io->pipe),
264 				    io->sg, io->nents);
265 	io->dev = NULL;
266 }
267 
268 static void sg_complete(struct urb *urb)
269 {
270 	struct usb_sg_request *io = urb->context;
271 	int status = urb->status;
272 
273 	spin_lock(&io->lock);
274 
275 	/* In 2.5 we require hcds' endpoint queues not to progress after fault
276 	 * reports, until the completion callback (this!) returns.  That lets
277 	 * device driver code (like this routine) unlink queued urbs first,
278 	 * if it needs to, since the HC won't work on them at all.  So it's
279 	 * not possible for page N+1 to overwrite page N, and so on.
280 	 *
281 	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
282 	 * complete before the HCD can get requests away from hardware,
283 	 * though never during cleanup after a hard fault.
284 	 */
285 	if (io->status
286 			&& (io->status != -ECONNRESET
287 				|| status != -ECONNRESET)
288 			&& urb->actual_length) {
289 		dev_err(io->dev->bus->controller,
290 			"dev %s ep%d%s scatterlist error %d/%d\n",
291 			io->dev->devpath,
292 			usb_endpoint_num(&urb->ep->desc),
293 			usb_urb_dir_in(urb) ? "in" : "out",
294 			status, io->status);
295 		/* BUG (); */
296 	}
297 
298 	if (io->status == 0 && status && status != -ECONNRESET) {
299 		int i, found, retval;
300 
301 		io->status = status;
302 
303 		/* the previous urbs, and this one, completed already.
304 		 * unlink pending urbs so they won't rx/tx bad data.
305 		 * careful: unlink can sometimes be synchronous...
306 		 */
307 		spin_unlock(&io->lock);
308 		for (i = 0, found = 0; i < io->entries; i++) {
309 			if (!io->urbs [i] || !io->urbs [i]->dev)
310 				continue;
311 			if (found) {
312 				retval = usb_unlink_urb(io->urbs [i]);
313 				if (retval != -EINPROGRESS &&
314 				    retval != -ENODEV &&
315 				    retval != -EBUSY)
316 					dev_err(&io->dev->dev,
317 						"%s, unlink --> %d\n",
318 						__func__, retval);
319 			} else if (urb == io->urbs [i])
320 				found = 1;
321 		}
322 		spin_lock(&io->lock);
323 	}
324 	urb->dev = NULL;
325 
326 	/* on the last completion, signal usb_sg_wait() */
327 	io->bytes += urb->actual_length;
328 	io->count--;
329 	if (!io->count)
330 		complete(&io->complete);
331 
332 	spin_unlock(&io->lock);
333 }
334 
335 
336 /**
337  * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
338  * @io: request block being initialized.  until usb_sg_wait() returns,
339  *	treat this as a pointer to an opaque block of memory,
340  * @dev: the usb device that will send or receive the data
341  * @pipe: endpoint "pipe" used to transfer the data
342  * @period: polling rate for interrupt endpoints, in frames or
343  * 	(for high speed endpoints) microframes; ignored for bulk
344  * @sg: scatterlist entries
345  * @nents: how many entries in the scatterlist
346  * @length: how many bytes to send from the scatterlist, or zero to
347  * 	send every byte identified in the list.
348  * @mem_flags: SLAB_* flags affecting memory allocations in this call
349  *
350  * Returns zero for success, else a negative errno value.  This initializes a
351  * scatter/gather request, allocating resources such as I/O mappings and urb
352  * memory (except maybe memory used by USB controller drivers).
353  *
354  * The request must be issued using usb_sg_wait(), which waits for the I/O to
355  * complete (or to be canceled) and then cleans up all resources allocated by
356  * usb_sg_init().
357  *
358  * The request may be canceled with usb_sg_cancel(), either before or after
359  * usb_sg_wait() is called.
360  */
361 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
362 		unsigned pipe, unsigned	period, struct scatterlist *sg,
363 		int nents, size_t length, gfp_t mem_flags)
364 {
365 	int i;
366 	int urb_flags;
367 	int dma;
368 	int use_sg;
369 
370 	if (!io || !dev || !sg
371 			|| usb_pipecontrol(pipe)
372 			|| usb_pipeisoc(pipe)
373 			|| nents <= 0)
374 		return -EINVAL;
375 
376 	spin_lock_init(&io->lock);
377 	io->dev = dev;
378 	io->pipe = pipe;
379 	io->sg = sg;
380 	io->nents = nents;
381 
382 	/* not all host controllers use DMA (like the mainstream pci ones);
383 	 * they can use PIO (sl811) or be software over another transport.
384 	 */
385 	dma = (dev->dev.dma_mask != NULL);
386 	if (dma)
387 		io->entries = usb_buffer_map_sg(dev, usb_pipein(pipe),
388 						sg, nents);
389 	else
390 		io->entries = nents;
391 
392 	/* initialize all the urbs we'll use */
393 	if (io->entries <= 0)
394 		return io->entries;
395 
396 	/* If we're running on an xHCI host controller, queue the whole scatter
397 	 * gather list with one call to urb_enqueue().  This is only for bulk,
398 	 * as that endpoint type does not care how the data gets broken up
399 	 * across frames.
400 	 */
401 	if (usb_pipebulk(pipe) &&
402 			bus_to_hcd(dev->bus)->driver->flags & HCD_USB3) {
403 		io->urbs = kmalloc(sizeof *io->urbs, mem_flags);
404 		use_sg = true;
405 	} else {
406 		io->urbs = kmalloc(io->entries * sizeof *io->urbs, mem_flags);
407 		use_sg = false;
408 	}
409 	if (!io->urbs)
410 		goto nomem;
411 
412 	urb_flags = URB_NO_INTERRUPT;
413 	if (dma)
414 		urb_flags |= URB_NO_TRANSFER_DMA_MAP;
415 	if (usb_pipein(pipe))
416 		urb_flags |= URB_SHORT_NOT_OK;
417 
418 	if (use_sg) {
419 		io->urbs[0] = usb_alloc_urb(0, mem_flags);
420 		if (!io->urbs[0]) {
421 			io->entries = 0;
422 			goto nomem;
423 		}
424 
425 		io->urbs[0]->dev = NULL;
426 		io->urbs[0]->pipe = pipe;
427 		io->urbs[0]->interval = period;
428 		io->urbs[0]->transfer_flags = urb_flags;
429 
430 		io->urbs[0]->complete = sg_complete;
431 		io->urbs[0]->context = io;
432 		/* A length of zero means transfer the whole sg list */
433 		io->urbs[0]->transfer_buffer_length = length;
434 		if (length == 0) {
435 			for_each_sg(sg, sg, io->entries, i) {
436 				io->urbs[0]->transfer_buffer_length +=
437 					sg_dma_len(sg);
438 			}
439 		}
440 		io->urbs[0]->sg = io;
441 		io->urbs[0]->num_sgs = io->entries;
442 		io->entries = 1;
443 	} else {
444 		for_each_sg(sg, sg, io->entries, i) {
445 			unsigned len;
446 
447 			io->urbs[i] = usb_alloc_urb(0, mem_flags);
448 			if (!io->urbs[i]) {
449 				io->entries = i;
450 				goto nomem;
451 			}
452 
453 			io->urbs[i]->dev = NULL;
454 			io->urbs[i]->pipe = pipe;
455 			io->urbs[i]->interval = period;
456 			io->urbs[i]->transfer_flags = urb_flags;
457 
458 			io->urbs[i]->complete = sg_complete;
459 			io->urbs[i]->context = io;
460 
461 			/*
462 			 * Some systems need to revert to PIO when DMA is
463 			 * temporarily unavailable.  For their sakes, both
464 			 * transfer_buffer and transfer_dma are set when
465 			 * possible.  However this can only work on systems
466 			 * without:
467 			 *
468 			 *  - HIGHMEM, since DMA buffers located in high memory
469 			 *    are not directly addressable by the CPU for PIO;
470 			 *
471 			 *  - IOMMU, since dma_map_sg() is allowed to use an
472 			 *    IOMMU to make virtually discontiguous buffers be
473 			 *    "dma-contiguous" so that PIO and DMA need diferent
474 			 *    numbers of URBs.
475 			 *
476 			 * So when HIGHMEM or IOMMU are in use, transfer_buffer
477 			 * is NULL to prevent stale pointers and to help spot
478 			 * bugs.
479 			 */
480 			if (dma) {
481 				io->urbs[i]->transfer_dma = sg_dma_address(sg);
482 				len = sg_dma_len(sg);
483 #if defined(CONFIG_HIGHMEM) || defined(CONFIG_GART_IOMMU)
484 				io->urbs[i]->transfer_buffer = NULL;
485 #else
486 				io->urbs[i]->transfer_buffer = sg_virt(sg);
487 #endif
488 			} else {
489 				/* hc may use _only_ transfer_buffer */
490 				io->urbs[i]->transfer_buffer = sg_virt(sg);
491 				len = sg->length;
492 			}
493 
494 			if (length) {
495 				len = min_t(unsigned, len, length);
496 				length -= len;
497 				if (length == 0)
498 					io->entries = i + 1;
499 			}
500 			io->urbs[i]->transfer_buffer_length = len;
501 		}
502 		io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
503 	}
504 
505 	/* transaction state */
506 	io->count = io->entries;
507 	io->status = 0;
508 	io->bytes = 0;
509 	init_completion(&io->complete);
510 	return 0;
511 
512 nomem:
513 	sg_clean(io);
514 	return -ENOMEM;
515 }
516 EXPORT_SYMBOL_GPL(usb_sg_init);
517 
518 /**
519  * usb_sg_wait - synchronously execute scatter/gather request
520  * @io: request block handle, as initialized with usb_sg_init().
521  * 	some fields become accessible when this call returns.
522  * Context: !in_interrupt ()
523  *
524  * This function blocks until the specified I/O operation completes.  It
525  * leverages the grouping of the related I/O requests to get good transfer
526  * rates, by queueing the requests.  At higher speeds, such queuing can
527  * significantly improve USB throughput.
528  *
529  * There are three kinds of completion for this function.
530  * (1) success, where io->status is zero.  The number of io->bytes
531  *     transferred is as requested.
532  * (2) error, where io->status is a negative errno value.  The number
533  *     of io->bytes transferred before the error is usually less
534  *     than requested, and can be nonzero.
535  * (3) cancellation, a type of error with status -ECONNRESET that
536  *     is initiated by usb_sg_cancel().
537  *
538  * When this function returns, all memory allocated through usb_sg_init() or
539  * this call will have been freed.  The request block parameter may still be
540  * passed to usb_sg_cancel(), or it may be freed.  It could also be
541  * reinitialized and then reused.
542  *
543  * Data Transfer Rates:
544  *
545  * Bulk transfers are valid for full or high speed endpoints.
546  * The best full speed data rate is 19 packets of 64 bytes each
547  * per frame, or 1216 bytes per millisecond.
548  * The best high speed data rate is 13 packets of 512 bytes each
549  * per microframe, or 52 KBytes per millisecond.
550  *
551  * The reason to use interrupt transfers through this API would most likely
552  * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
553  * could be transferred.  That capability is less useful for low or full
554  * speed interrupt endpoints, which allow at most one packet per millisecond,
555  * of at most 8 or 64 bytes (respectively).
556  *
557  * It is not necessary to call this function to reserve bandwidth for devices
558  * under an xHCI host controller, as the bandwidth is reserved when the
559  * configuration or interface alt setting is selected.
560  */
561 void usb_sg_wait(struct usb_sg_request *io)
562 {
563 	int i;
564 	int entries = io->entries;
565 
566 	/* queue the urbs.  */
567 	spin_lock_irq(&io->lock);
568 	i = 0;
569 	while (i < entries && !io->status) {
570 		int retval;
571 
572 		io->urbs[i]->dev = io->dev;
573 		retval = usb_submit_urb(io->urbs [i], GFP_ATOMIC);
574 
575 		/* after we submit, let completions or cancelations fire;
576 		 * we handshake using io->status.
577 		 */
578 		spin_unlock_irq(&io->lock);
579 		switch (retval) {
580 			/* maybe we retrying will recover */
581 		case -ENXIO:	/* hc didn't queue this one */
582 		case -EAGAIN:
583 		case -ENOMEM:
584 			io->urbs[i]->dev = NULL;
585 			retval = 0;
586 			yield();
587 			break;
588 
589 			/* no error? continue immediately.
590 			 *
591 			 * NOTE: to work better with UHCI (4K I/O buffer may
592 			 * need 3K of TDs) it may be good to limit how many
593 			 * URBs are queued at once; N milliseconds?
594 			 */
595 		case 0:
596 			++i;
597 			cpu_relax();
598 			break;
599 
600 			/* fail any uncompleted urbs */
601 		default:
602 			io->urbs[i]->dev = NULL;
603 			io->urbs[i]->status = retval;
604 			dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
605 				__func__, retval);
606 			usb_sg_cancel(io);
607 		}
608 		spin_lock_irq(&io->lock);
609 		if (retval && (io->status == 0 || io->status == -ECONNRESET))
610 			io->status = retval;
611 	}
612 	io->count -= entries - i;
613 	if (io->count == 0)
614 		complete(&io->complete);
615 	spin_unlock_irq(&io->lock);
616 
617 	/* OK, yes, this could be packaged as non-blocking.
618 	 * So could the submit loop above ... but it's easier to
619 	 * solve neither problem than to solve both!
620 	 */
621 	wait_for_completion(&io->complete);
622 
623 	sg_clean(io);
624 }
625 EXPORT_SYMBOL_GPL(usb_sg_wait);
626 
627 /**
628  * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
629  * @io: request block, initialized with usb_sg_init()
630  *
631  * This stops a request after it has been started by usb_sg_wait().
632  * It can also prevents one initialized by usb_sg_init() from starting,
633  * so that call just frees resources allocated to the request.
634  */
635 void usb_sg_cancel(struct usb_sg_request *io)
636 {
637 	unsigned long flags;
638 
639 	spin_lock_irqsave(&io->lock, flags);
640 
641 	/* shut everything down, if it didn't already */
642 	if (!io->status) {
643 		int i;
644 
645 		io->status = -ECONNRESET;
646 		spin_unlock(&io->lock);
647 		for (i = 0; i < io->entries; i++) {
648 			int retval;
649 
650 			if (!io->urbs [i]->dev)
651 				continue;
652 			retval = usb_unlink_urb(io->urbs [i]);
653 			if (retval != -EINPROGRESS && retval != -EBUSY)
654 				dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
655 					__func__, retval);
656 		}
657 		spin_lock(&io->lock);
658 	}
659 	spin_unlock_irqrestore(&io->lock, flags);
660 }
661 EXPORT_SYMBOL_GPL(usb_sg_cancel);
662 
663 /*-------------------------------------------------------------------*/
664 
665 /**
666  * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
667  * @dev: the device whose descriptor is being retrieved
668  * @type: the descriptor type (USB_DT_*)
669  * @index: the number of the descriptor
670  * @buf: where to put the descriptor
671  * @size: how big is "buf"?
672  * Context: !in_interrupt ()
673  *
674  * Gets a USB descriptor.  Convenience functions exist to simplify
675  * getting some types of descriptors.  Use
676  * usb_get_string() or usb_string() for USB_DT_STRING.
677  * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
678  * are part of the device structure.
679  * In addition to a number of USB-standard descriptors, some
680  * devices also use class-specific or vendor-specific descriptors.
681  *
682  * This call is synchronous, and may not be used in an interrupt context.
683  *
684  * Returns the number of bytes received on success, or else the status code
685  * returned by the underlying usb_control_msg() call.
686  */
687 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
688 		       unsigned char index, void *buf, int size)
689 {
690 	int i;
691 	int result;
692 
693 	memset(buf, 0, size);	/* Make sure we parse really received data */
694 
695 	for (i = 0; i < 3; ++i) {
696 		/* retry on length 0 or error; some devices are flakey */
697 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
698 				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
699 				(type << 8) + index, 0, buf, size,
700 				USB_CTRL_GET_TIMEOUT);
701 		if (result <= 0 && result != -ETIMEDOUT)
702 			continue;
703 		if (result > 1 && ((u8 *)buf)[1] != type) {
704 			result = -ENODATA;
705 			continue;
706 		}
707 		break;
708 	}
709 	return result;
710 }
711 EXPORT_SYMBOL_GPL(usb_get_descriptor);
712 
713 /**
714  * usb_get_string - gets a string descriptor
715  * @dev: the device whose string descriptor is being retrieved
716  * @langid: code for language chosen (from string descriptor zero)
717  * @index: the number of the descriptor
718  * @buf: where to put the string
719  * @size: how big is "buf"?
720  * Context: !in_interrupt ()
721  *
722  * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
723  * in little-endian byte order).
724  * The usb_string() function will often be a convenient way to turn
725  * these strings into kernel-printable form.
726  *
727  * Strings may be referenced in device, configuration, interface, or other
728  * descriptors, and could also be used in vendor-specific ways.
729  *
730  * This call is synchronous, and may not be used in an interrupt context.
731  *
732  * Returns the number of bytes received on success, or else the status code
733  * returned by the underlying usb_control_msg() call.
734  */
735 static int usb_get_string(struct usb_device *dev, unsigned short langid,
736 			  unsigned char index, void *buf, int size)
737 {
738 	int i;
739 	int result;
740 
741 	for (i = 0; i < 3; ++i) {
742 		/* retry on length 0 or stall; some devices are flakey */
743 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
744 			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
745 			(USB_DT_STRING << 8) + index, langid, buf, size,
746 			USB_CTRL_GET_TIMEOUT);
747 		if (result == 0 || result == -EPIPE)
748 			continue;
749 		if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
750 			result = -ENODATA;
751 			continue;
752 		}
753 		break;
754 	}
755 	return result;
756 }
757 
758 static void usb_try_string_workarounds(unsigned char *buf, int *length)
759 {
760 	int newlength, oldlength = *length;
761 
762 	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
763 		if (!isprint(buf[newlength]) || buf[newlength + 1])
764 			break;
765 
766 	if (newlength > 2) {
767 		buf[0] = newlength;
768 		*length = newlength;
769 	}
770 }
771 
772 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
773 			  unsigned int index, unsigned char *buf)
774 {
775 	int rc;
776 
777 	/* Try to read the string descriptor by asking for the maximum
778 	 * possible number of bytes */
779 	if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
780 		rc = -EIO;
781 	else
782 		rc = usb_get_string(dev, langid, index, buf, 255);
783 
784 	/* If that failed try to read the descriptor length, then
785 	 * ask for just that many bytes */
786 	if (rc < 2) {
787 		rc = usb_get_string(dev, langid, index, buf, 2);
788 		if (rc == 2)
789 			rc = usb_get_string(dev, langid, index, buf, buf[0]);
790 	}
791 
792 	if (rc >= 2) {
793 		if (!buf[0] && !buf[1])
794 			usb_try_string_workarounds(buf, &rc);
795 
796 		/* There might be extra junk at the end of the descriptor */
797 		if (buf[0] < rc)
798 			rc = buf[0];
799 
800 		rc = rc - (rc & 1); /* force a multiple of two */
801 	}
802 
803 	if (rc < 2)
804 		rc = (rc < 0 ? rc : -EINVAL);
805 
806 	return rc;
807 }
808 
809 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
810 {
811 	int err;
812 
813 	if (dev->have_langid)
814 		return 0;
815 
816 	if (dev->string_langid < 0)
817 		return -EPIPE;
818 
819 	err = usb_string_sub(dev, 0, 0, tbuf);
820 
821 	/* If the string was reported but is malformed, default to english
822 	 * (0x0409) */
823 	if (err == -ENODATA || (err > 0 && err < 4)) {
824 		dev->string_langid = 0x0409;
825 		dev->have_langid = 1;
826 		dev_err(&dev->dev,
827 			"string descriptor 0 malformed (err = %d), "
828 			"defaulting to 0x%04x\n",
829 				err, dev->string_langid);
830 		return 0;
831 	}
832 
833 	/* In case of all other errors, we assume the device is not able to
834 	 * deal with strings at all. Set string_langid to -1 in order to
835 	 * prevent any string to be retrieved from the device */
836 	if (err < 0) {
837 		dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
838 					err);
839 		dev->string_langid = -1;
840 		return -EPIPE;
841 	}
842 
843 	/* always use the first langid listed */
844 	dev->string_langid = tbuf[2] | (tbuf[3] << 8);
845 	dev->have_langid = 1;
846 	dev_dbg(&dev->dev, "default language 0x%04x\n",
847 				dev->string_langid);
848 	return 0;
849 }
850 
851 /**
852  * usb_string - returns UTF-8 version of a string descriptor
853  * @dev: the device whose string descriptor is being retrieved
854  * @index: the number of the descriptor
855  * @buf: where to put the string
856  * @size: how big is "buf"?
857  * Context: !in_interrupt ()
858  *
859  * This converts the UTF-16LE encoded strings returned by devices, from
860  * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
861  * that are more usable in most kernel contexts.  Note that this function
862  * chooses strings in the first language supported by the device.
863  *
864  * This call is synchronous, and may not be used in an interrupt context.
865  *
866  * Returns length of the string (>= 0) or usb_control_msg status (< 0).
867  */
868 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
869 {
870 	unsigned char *tbuf;
871 	int err;
872 
873 	if (dev->state == USB_STATE_SUSPENDED)
874 		return -EHOSTUNREACH;
875 	if (size <= 0 || !buf || !index)
876 		return -EINVAL;
877 	buf[0] = 0;
878 	tbuf = kmalloc(256, GFP_NOIO);
879 	if (!tbuf)
880 		return -ENOMEM;
881 
882 	err = usb_get_langid(dev, tbuf);
883 	if (err < 0)
884 		goto errout;
885 
886 	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
887 	if (err < 0)
888 		goto errout;
889 
890 	size--;		/* leave room for trailing NULL char in output buffer */
891 	err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
892 			UTF16_LITTLE_ENDIAN, buf, size);
893 	buf[err] = 0;
894 
895 	if (tbuf[1] != USB_DT_STRING)
896 		dev_dbg(&dev->dev,
897 			"wrong descriptor type %02x for string %d (\"%s\")\n",
898 			tbuf[1], index, buf);
899 
900  errout:
901 	kfree(tbuf);
902 	return err;
903 }
904 EXPORT_SYMBOL_GPL(usb_string);
905 
906 /* one UTF-8-encoded 16-bit character has at most three bytes */
907 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
908 
909 /**
910  * usb_cache_string - read a string descriptor and cache it for later use
911  * @udev: the device whose string descriptor is being read
912  * @index: the descriptor index
913  *
914  * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
915  * or NULL if the index is 0 or the string could not be read.
916  */
917 char *usb_cache_string(struct usb_device *udev, int index)
918 {
919 	char *buf;
920 	char *smallbuf = NULL;
921 	int len;
922 
923 	if (index <= 0)
924 		return NULL;
925 
926 	buf = kmalloc(MAX_USB_STRING_SIZE, GFP_KERNEL);
927 	if (buf) {
928 		len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
929 		if (len > 0) {
930 			smallbuf = kmalloc(++len, GFP_KERNEL);
931 			if (!smallbuf)
932 				return buf;
933 			memcpy(smallbuf, buf, len);
934 		}
935 		kfree(buf);
936 	}
937 	return smallbuf;
938 }
939 
940 /*
941  * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
942  * @dev: the device whose device descriptor is being updated
943  * @size: how much of the descriptor to read
944  * Context: !in_interrupt ()
945  *
946  * Updates the copy of the device descriptor stored in the device structure,
947  * which dedicates space for this purpose.
948  *
949  * Not exported, only for use by the core.  If drivers really want to read
950  * the device descriptor directly, they can call usb_get_descriptor() with
951  * type = USB_DT_DEVICE and index = 0.
952  *
953  * This call is synchronous, and may not be used in an interrupt context.
954  *
955  * Returns the number of bytes received on success, or else the status code
956  * returned by the underlying usb_control_msg() call.
957  */
958 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
959 {
960 	struct usb_device_descriptor *desc;
961 	int ret;
962 
963 	if (size > sizeof(*desc))
964 		return -EINVAL;
965 	desc = kmalloc(sizeof(*desc), GFP_NOIO);
966 	if (!desc)
967 		return -ENOMEM;
968 
969 	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
970 	if (ret >= 0)
971 		memcpy(&dev->descriptor, desc, size);
972 	kfree(desc);
973 	return ret;
974 }
975 
976 /**
977  * usb_get_status - issues a GET_STATUS call
978  * @dev: the device whose status is being checked
979  * @type: USB_RECIP_*; for device, interface, or endpoint
980  * @target: zero (for device), else interface or endpoint number
981  * @data: pointer to two bytes of bitmap data
982  * Context: !in_interrupt ()
983  *
984  * Returns device, interface, or endpoint status.  Normally only of
985  * interest to see if the device is self powered, or has enabled the
986  * remote wakeup facility; or whether a bulk or interrupt endpoint
987  * is halted ("stalled").
988  *
989  * Bits in these status bitmaps are set using the SET_FEATURE request,
990  * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
991  * function should be used to clear halt ("stall") status.
992  *
993  * This call is synchronous, and may not be used in an interrupt context.
994  *
995  * Returns the number of bytes received on success, or else the status code
996  * returned by the underlying usb_control_msg() call.
997  */
998 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
999 {
1000 	int ret;
1001 	u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
1002 
1003 	if (!status)
1004 		return -ENOMEM;
1005 
1006 	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
1007 		USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
1008 		sizeof(*status), USB_CTRL_GET_TIMEOUT);
1009 
1010 	*(u16 *)data = *status;
1011 	kfree(status);
1012 	return ret;
1013 }
1014 EXPORT_SYMBOL_GPL(usb_get_status);
1015 
1016 /**
1017  * usb_clear_halt - tells device to clear endpoint halt/stall condition
1018  * @dev: device whose endpoint is halted
1019  * @pipe: endpoint "pipe" being cleared
1020  * Context: !in_interrupt ()
1021  *
1022  * This is used to clear halt conditions for bulk and interrupt endpoints,
1023  * as reported by URB completion status.  Endpoints that are halted are
1024  * sometimes referred to as being "stalled".  Such endpoints are unable
1025  * to transmit or receive data until the halt status is cleared.  Any URBs
1026  * queued for such an endpoint should normally be unlinked by the driver
1027  * before clearing the halt condition, as described in sections 5.7.5
1028  * and 5.8.5 of the USB 2.0 spec.
1029  *
1030  * Note that control and isochronous endpoints don't halt, although control
1031  * endpoints report "protocol stall" (for unsupported requests) using the
1032  * same status code used to report a true stall.
1033  *
1034  * This call is synchronous, and may not be used in an interrupt context.
1035  *
1036  * Returns zero on success, or else the status code returned by the
1037  * underlying usb_control_msg() call.
1038  */
1039 int usb_clear_halt(struct usb_device *dev, int pipe)
1040 {
1041 	int result;
1042 	int endp = usb_pipeendpoint(pipe);
1043 
1044 	if (usb_pipein(pipe))
1045 		endp |= USB_DIR_IN;
1046 
1047 	/* we don't care if it wasn't halted first. in fact some devices
1048 	 * (like some ibmcam model 1 units) seem to expect hosts to make
1049 	 * this request for iso endpoints, which can't halt!
1050 	 */
1051 	result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1052 		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1053 		USB_ENDPOINT_HALT, endp, NULL, 0,
1054 		USB_CTRL_SET_TIMEOUT);
1055 
1056 	/* don't un-halt or force to DATA0 except on success */
1057 	if (result < 0)
1058 		return result;
1059 
1060 	/* NOTE:  seems like Microsoft and Apple don't bother verifying
1061 	 * the clear "took", so some devices could lock up if you check...
1062 	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
1063 	 *
1064 	 * NOTE:  make sure the logic here doesn't diverge much from
1065 	 * the copy in usb-storage, for as long as we need two copies.
1066 	 */
1067 
1068 	usb_reset_endpoint(dev, endp);
1069 
1070 	return 0;
1071 }
1072 EXPORT_SYMBOL_GPL(usb_clear_halt);
1073 
1074 static int create_intf_ep_devs(struct usb_interface *intf)
1075 {
1076 	struct usb_device *udev = interface_to_usbdev(intf);
1077 	struct usb_host_interface *alt = intf->cur_altsetting;
1078 	int i;
1079 
1080 	if (intf->ep_devs_created || intf->unregistering)
1081 		return 0;
1082 
1083 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1084 		(void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1085 	intf->ep_devs_created = 1;
1086 	return 0;
1087 }
1088 
1089 static void remove_intf_ep_devs(struct usb_interface *intf)
1090 {
1091 	struct usb_host_interface *alt = intf->cur_altsetting;
1092 	int i;
1093 
1094 	if (!intf->ep_devs_created)
1095 		return;
1096 
1097 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1098 		usb_remove_ep_devs(&alt->endpoint[i]);
1099 	intf->ep_devs_created = 0;
1100 }
1101 
1102 /**
1103  * usb_disable_endpoint -- Disable an endpoint by address
1104  * @dev: the device whose endpoint is being disabled
1105  * @epaddr: the endpoint's address.  Endpoint number for output,
1106  *	endpoint number + USB_DIR_IN for input
1107  * @reset_hardware: flag to erase any endpoint state stored in the
1108  *	controller hardware
1109  *
1110  * Disables the endpoint for URB submission and nukes all pending URBs.
1111  * If @reset_hardware is set then also deallocates hcd/hardware state
1112  * for the endpoint.
1113  */
1114 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1115 		bool reset_hardware)
1116 {
1117 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1118 	struct usb_host_endpoint *ep;
1119 
1120 	if (!dev)
1121 		return;
1122 
1123 	if (usb_endpoint_out(epaddr)) {
1124 		ep = dev->ep_out[epnum];
1125 		if (reset_hardware)
1126 			dev->ep_out[epnum] = NULL;
1127 	} else {
1128 		ep = dev->ep_in[epnum];
1129 		if (reset_hardware)
1130 			dev->ep_in[epnum] = NULL;
1131 	}
1132 	if (ep) {
1133 		ep->enabled = 0;
1134 		usb_hcd_flush_endpoint(dev, ep);
1135 		if (reset_hardware)
1136 			usb_hcd_disable_endpoint(dev, ep);
1137 	}
1138 }
1139 
1140 /**
1141  * usb_reset_endpoint - Reset an endpoint's state.
1142  * @dev: the device whose endpoint is to be reset
1143  * @epaddr: the endpoint's address.  Endpoint number for output,
1144  *	endpoint number + USB_DIR_IN for input
1145  *
1146  * Resets any host-side endpoint state such as the toggle bit,
1147  * sequence number or current window.
1148  */
1149 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1150 {
1151 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1152 	struct usb_host_endpoint *ep;
1153 
1154 	if (usb_endpoint_out(epaddr))
1155 		ep = dev->ep_out[epnum];
1156 	else
1157 		ep = dev->ep_in[epnum];
1158 	if (ep)
1159 		usb_hcd_reset_endpoint(dev, ep);
1160 }
1161 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1162 
1163 
1164 /**
1165  * usb_disable_interface -- Disable all endpoints for an interface
1166  * @dev: the device whose interface is being disabled
1167  * @intf: pointer to the interface descriptor
1168  * @reset_hardware: flag to erase any endpoint state stored in the
1169  *	controller hardware
1170  *
1171  * Disables all the endpoints for the interface's current altsetting.
1172  */
1173 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1174 		bool reset_hardware)
1175 {
1176 	struct usb_host_interface *alt = intf->cur_altsetting;
1177 	int i;
1178 
1179 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1180 		usb_disable_endpoint(dev,
1181 				alt->endpoint[i].desc.bEndpointAddress,
1182 				reset_hardware);
1183 	}
1184 }
1185 
1186 /**
1187  * usb_disable_device - Disable all the endpoints for a USB device
1188  * @dev: the device whose endpoints are being disabled
1189  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1190  *
1191  * Disables all the device's endpoints, potentially including endpoint 0.
1192  * Deallocates hcd/hardware state for the endpoints (nuking all or most
1193  * pending urbs) and usbcore state for the interfaces, so that usbcore
1194  * must usb_set_configuration() before any interfaces could be used.
1195  */
1196 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1197 {
1198 	int i;
1199 
1200 	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1201 		skip_ep0 ? "non-ep0" : "all");
1202 	for (i = skip_ep0; i < 16; ++i) {
1203 		usb_disable_endpoint(dev, i, true);
1204 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1205 	}
1206 
1207 	/* getting rid of interfaces will disconnect
1208 	 * any drivers bound to them (a key side effect)
1209 	 */
1210 	if (dev->actconfig) {
1211 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1212 			struct usb_interface	*interface;
1213 
1214 			/* remove this interface if it has been registered */
1215 			interface = dev->actconfig->interface[i];
1216 			if (!device_is_registered(&interface->dev))
1217 				continue;
1218 			dev_dbg(&dev->dev, "unregistering interface %s\n",
1219 				dev_name(&interface->dev));
1220 			interface->unregistering = 1;
1221 			remove_intf_ep_devs(interface);
1222 			device_del(&interface->dev);
1223 		}
1224 
1225 		/* Now that the interfaces are unbound, nobody should
1226 		 * try to access them.
1227 		 */
1228 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1229 			put_device(&dev->actconfig->interface[i]->dev);
1230 			dev->actconfig->interface[i] = NULL;
1231 		}
1232 		dev->actconfig = NULL;
1233 		if (dev->state == USB_STATE_CONFIGURED)
1234 			usb_set_device_state(dev, USB_STATE_ADDRESS);
1235 	}
1236 }
1237 
1238 /**
1239  * usb_enable_endpoint - Enable an endpoint for USB communications
1240  * @dev: the device whose interface is being enabled
1241  * @ep: the endpoint
1242  * @reset_ep: flag to reset the endpoint state
1243  *
1244  * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1245  * For control endpoints, both the input and output sides are handled.
1246  */
1247 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1248 		bool reset_ep)
1249 {
1250 	int epnum = usb_endpoint_num(&ep->desc);
1251 	int is_out = usb_endpoint_dir_out(&ep->desc);
1252 	int is_control = usb_endpoint_xfer_control(&ep->desc);
1253 
1254 	if (reset_ep)
1255 		usb_hcd_reset_endpoint(dev, ep);
1256 	if (is_out || is_control)
1257 		dev->ep_out[epnum] = ep;
1258 	if (!is_out || is_control)
1259 		dev->ep_in[epnum] = ep;
1260 	ep->enabled = 1;
1261 }
1262 
1263 /**
1264  * usb_enable_interface - Enable all the endpoints for an interface
1265  * @dev: the device whose interface is being enabled
1266  * @intf: pointer to the interface descriptor
1267  * @reset_eps: flag to reset the endpoints' state
1268  *
1269  * Enables all the endpoints for the interface's current altsetting.
1270  */
1271 void usb_enable_interface(struct usb_device *dev,
1272 		struct usb_interface *intf, bool reset_eps)
1273 {
1274 	struct usb_host_interface *alt = intf->cur_altsetting;
1275 	int i;
1276 
1277 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1278 		usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1279 }
1280 
1281 /**
1282  * usb_set_interface - Makes a particular alternate setting be current
1283  * @dev: the device whose interface is being updated
1284  * @interface: the interface being updated
1285  * @alternate: the setting being chosen.
1286  * Context: !in_interrupt ()
1287  *
1288  * This is used to enable data transfers on interfaces that may not
1289  * be enabled by default.  Not all devices support such configurability.
1290  * Only the driver bound to an interface may change its setting.
1291  *
1292  * Within any given configuration, each interface may have several
1293  * alternative settings.  These are often used to control levels of
1294  * bandwidth consumption.  For example, the default setting for a high
1295  * speed interrupt endpoint may not send more than 64 bytes per microframe,
1296  * while interrupt transfers of up to 3KBytes per microframe are legal.
1297  * Also, isochronous endpoints may never be part of an
1298  * interface's default setting.  To access such bandwidth, alternate
1299  * interface settings must be made current.
1300  *
1301  * Note that in the Linux USB subsystem, bandwidth associated with
1302  * an endpoint in a given alternate setting is not reserved until an URB
1303  * is submitted that needs that bandwidth.  Some other operating systems
1304  * allocate bandwidth early, when a configuration is chosen.
1305  *
1306  * This call is synchronous, and may not be used in an interrupt context.
1307  * Also, drivers must not change altsettings while urbs are scheduled for
1308  * endpoints in that interface; all such urbs must first be completed
1309  * (perhaps forced by unlinking).
1310  *
1311  * Returns zero on success, or else the status code returned by the
1312  * underlying usb_control_msg() call.
1313  */
1314 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1315 {
1316 	struct usb_interface *iface;
1317 	struct usb_host_interface *alt;
1318 	int ret;
1319 	int manual = 0;
1320 	unsigned int epaddr;
1321 	unsigned int pipe;
1322 
1323 	if (dev->state == USB_STATE_SUSPENDED)
1324 		return -EHOSTUNREACH;
1325 
1326 	iface = usb_ifnum_to_if(dev, interface);
1327 	if (!iface) {
1328 		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1329 			interface);
1330 		return -EINVAL;
1331 	}
1332 
1333 	alt = usb_altnum_to_altsetting(iface, alternate);
1334 	if (!alt) {
1335 		dev_warn(&dev->dev, "selecting invalid altsetting %d",
1336 			 alternate);
1337 		return -EINVAL;
1338 	}
1339 
1340 	if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1341 		ret = -EPIPE;
1342 	else
1343 		ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1344 				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1345 				   alternate, interface, NULL, 0, 5000);
1346 
1347 	/* 9.4.10 says devices don't need this and are free to STALL the
1348 	 * request if the interface only has one alternate setting.
1349 	 */
1350 	if (ret == -EPIPE && iface->num_altsetting == 1) {
1351 		dev_dbg(&dev->dev,
1352 			"manual set_interface for iface %d, alt %d\n",
1353 			interface, alternate);
1354 		manual = 1;
1355 	} else if (ret < 0)
1356 		return ret;
1357 
1358 	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1359 	 * when they implement async or easily-killable versions of this or
1360 	 * other "should-be-internal" functions (like clear_halt).
1361 	 * should hcd+usbcore postprocess control requests?
1362 	 */
1363 
1364 	/* prevent submissions using previous endpoint settings */
1365 	if (iface->cur_altsetting != alt) {
1366 		remove_intf_ep_devs(iface);
1367 		usb_remove_sysfs_intf_files(iface);
1368 	}
1369 	usb_disable_interface(dev, iface, true);
1370 
1371 	iface->cur_altsetting = alt;
1372 
1373 	/* If the interface only has one altsetting and the device didn't
1374 	 * accept the request, we attempt to carry out the equivalent action
1375 	 * by manually clearing the HALT feature for each endpoint in the
1376 	 * new altsetting.
1377 	 */
1378 	if (manual) {
1379 		int i;
1380 
1381 		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1382 			epaddr = alt->endpoint[i].desc.bEndpointAddress;
1383 			pipe = __create_pipe(dev,
1384 					USB_ENDPOINT_NUMBER_MASK & epaddr) |
1385 					(usb_endpoint_out(epaddr) ?
1386 					USB_DIR_OUT : USB_DIR_IN);
1387 
1388 			usb_clear_halt(dev, pipe);
1389 		}
1390 	}
1391 
1392 	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1393 	 *
1394 	 * Note:
1395 	 * Despite EP0 is always present in all interfaces/AS, the list of
1396 	 * endpoints from the descriptor does not contain EP0. Due to its
1397 	 * omnipresence one might expect EP0 being considered "affected" by
1398 	 * any SetInterface request and hence assume toggles need to be reset.
1399 	 * However, EP0 toggles are re-synced for every individual transfer
1400 	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1401 	 * (Likewise, EP0 never "halts" on well designed devices.)
1402 	 */
1403 	usb_enable_interface(dev, iface, true);
1404 	if (device_is_registered(&iface->dev)) {
1405 		usb_create_sysfs_intf_files(iface);
1406 		create_intf_ep_devs(iface);
1407 	}
1408 	return 0;
1409 }
1410 EXPORT_SYMBOL_GPL(usb_set_interface);
1411 
1412 /**
1413  * usb_reset_configuration - lightweight device reset
1414  * @dev: the device whose configuration is being reset
1415  *
1416  * This issues a standard SET_CONFIGURATION request to the device using
1417  * the current configuration.  The effect is to reset most USB-related
1418  * state in the device, including interface altsettings (reset to zero),
1419  * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1420  * endpoints).  Other usbcore state is unchanged, including bindings of
1421  * usb device drivers to interfaces.
1422  *
1423  * Because this affects multiple interfaces, avoid using this with composite
1424  * (multi-interface) devices.  Instead, the driver for each interface may
1425  * use usb_set_interface() on the interfaces it claims.  Be careful though;
1426  * some devices don't support the SET_INTERFACE request, and others won't
1427  * reset all the interface state (notably endpoint state).  Resetting the whole
1428  * configuration would affect other drivers' interfaces.
1429  *
1430  * The caller must own the device lock.
1431  *
1432  * Returns zero on success, else a negative error code.
1433  */
1434 int usb_reset_configuration(struct usb_device *dev)
1435 {
1436 	int			i, retval;
1437 	struct usb_host_config	*config;
1438 
1439 	if (dev->state == USB_STATE_SUSPENDED)
1440 		return -EHOSTUNREACH;
1441 
1442 	/* caller must have locked the device and must own
1443 	 * the usb bus readlock (so driver bindings are stable);
1444 	 * calls during probe() are fine
1445 	 */
1446 
1447 	for (i = 1; i < 16; ++i) {
1448 		usb_disable_endpoint(dev, i, true);
1449 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1450 	}
1451 
1452 	config = dev->actconfig;
1453 	retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1454 			USB_REQ_SET_CONFIGURATION, 0,
1455 			config->desc.bConfigurationValue, 0,
1456 			NULL, 0, USB_CTRL_SET_TIMEOUT);
1457 	if (retval < 0)
1458 		return retval;
1459 
1460 	/* re-init hc/hcd interface/endpoint state */
1461 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1462 		struct usb_interface *intf = config->interface[i];
1463 		struct usb_host_interface *alt;
1464 
1465 		alt = usb_altnum_to_altsetting(intf, 0);
1466 
1467 		/* No altsetting 0?  We'll assume the first altsetting.
1468 		 * We could use a GetInterface call, but if a device is
1469 		 * so non-compliant that it doesn't have altsetting 0
1470 		 * then I wouldn't trust its reply anyway.
1471 		 */
1472 		if (!alt)
1473 			alt = &intf->altsetting[0];
1474 
1475 		if (alt != intf->cur_altsetting) {
1476 			remove_intf_ep_devs(intf);
1477 			usb_remove_sysfs_intf_files(intf);
1478 		}
1479 		intf->cur_altsetting = alt;
1480 		usb_enable_interface(dev, intf, true);
1481 		if (device_is_registered(&intf->dev)) {
1482 			usb_create_sysfs_intf_files(intf);
1483 			create_intf_ep_devs(intf);
1484 		}
1485 	}
1486 	return 0;
1487 }
1488 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1489 
1490 static void usb_release_interface(struct device *dev)
1491 {
1492 	struct usb_interface *intf = to_usb_interface(dev);
1493 	struct usb_interface_cache *intfc =
1494 			altsetting_to_usb_interface_cache(intf->altsetting);
1495 
1496 	kref_put(&intfc->ref, usb_release_interface_cache);
1497 	kfree(intf);
1498 }
1499 
1500 #ifdef	CONFIG_HOTPLUG
1501 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1502 {
1503 	struct usb_device *usb_dev;
1504 	struct usb_interface *intf;
1505 	struct usb_host_interface *alt;
1506 
1507 	intf = to_usb_interface(dev);
1508 	usb_dev = interface_to_usbdev(intf);
1509 	alt = intf->cur_altsetting;
1510 
1511 	if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1512 		   alt->desc.bInterfaceClass,
1513 		   alt->desc.bInterfaceSubClass,
1514 		   alt->desc.bInterfaceProtocol))
1515 		return -ENOMEM;
1516 
1517 	if (add_uevent_var(env,
1518 		   "MODALIAS=usb:"
1519 		   "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
1520 		   le16_to_cpu(usb_dev->descriptor.idVendor),
1521 		   le16_to_cpu(usb_dev->descriptor.idProduct),
1522 		   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1523 		   usb_dev->descriptor.bDeviceClass,
1524 		   usb_dev->descriptor.bDeviceSubClass,
1525 		   usb_dev->descriptor.bDeviceProtocol,
1526 		   alt->desc.bInterfaceClass,
1527 		   alt->desc.bInterfaceSubClass,
1528 		   alt->desc.bInterfaceProtocol))
1529 		return -ENOMEM;
1530 
1531 	return 0;
1532 }
1533 
1534 #else
1535 
1536 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1537 {
1538 	return -ENODEV;
1539 }
1540 #endif	/* CONFIG_HOTPLUG */
1541 
1542 struct device_type usb_if_device_type = {
1543 	.name =		"usb_interface",
1544 	.release =	usb_release_interface,
1545 	.uevent =	usb_if_uevent,
1546 };
1547 
1548 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1549 						struct usb_host_config *config,
1550 						u8 inum)
1551 {
1552 	struct usb_interface_assoc_descriptor *retval = NULL;
1553 	struct usb_interface_assoc_descriptor *intf_assoc;
1554 	int first_intf;
1555 	int last_intf;
1556 	int i;
1557 
1558 	for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1559 		intf_assoc = config->intf_assoc[i];
1560 		if (intf_assoc->bInterfaceCount == 0)
1561 			continue;
1562 
1563 		first_intf = intf_assoc->bFirstInterface;
1564 		last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1565 		if (inum >= first_intf && inum <= last_intf) {
1566 			if (!retval)
1567 				retval = intf_assoc;
1568 			else
1569 				dev_err(&dev->dev, "Interface #%d referenced"
1570 					" by multiple IADs\n", inum);
1571 		}
1572 	}
1573 
1574 	return retval;
1575 }
1576 
1577 
1578 /*
1579  * Internal function to queue a device reset
1580  *
1581  * This is initialized into the workstruct in 'struct
1582  * usb_device->reset_ws' that is launched by
1583  * message.c:usb_set_configuration() when initializing each 'struct
1584  * usb_interface'.
1585  *
1586  * It is safe to get the USB device without reference counts because
1587  * the life cycle of @iface is bound to the life cycle of @udev. Then,
1588  * this function will be ran only if @iface is alive (and before
1589  * freeing it any scheduled instances of it will have been cancelled).
1590  *
1591  * We need to set a flag (usb_dev->reset_running) because when we call
1592  * the reset, the interfaces might be unbound. The current interface
1593  * cannot try to remove the queued work as it would cause a deadlock
1594  * (you cannot remove your work from within your executing
1595  * workqueue). This flag lets it know, so that
1596  * usb_cancel_queued_reset() doesn't try to do it.
1597  *
1598  * See usb_queue_reset_device() for more details
1599  */
1600 void __usb_queue_reset_device(struct work_struct *ws)
1601 {
1602 	int rc;
1603 	struct usb_interface *iface =
1604 		container_of(ws, struct usb_interface, reset_ws);
1605 	struct usb_device *udev = interface_to_usbdev(iface);
1606 
1607 	rc = usb_lock_device_for_reset(udev, iface);
1608 	if (rc >= 0) {
1609 		iface->reset_running = 1;
1610 		usb_reset_device(udev);
1611 		iface->reset_running = 0;
1612 		usb_unlock_device(udev);
1613 	}
1614 }
1615 
1616 
1617 /*
1618  * usb_set_configuration - Makes a particular device setting be current
1619  * @dev: the device whose configuration is being updated
1620  * @configuration: the configuration being chosen.
1621  * Context: !in_interrupt(), caller owns the device lock
1622  *
1623  * This is used to enable non-default device modes.  Not all devices
1624  * use this kind of configurability; many devices only have one
1625  * configuration.
1626  *
1627  * @configuration is the value of the configuration to be installed.
1628  * According to the USB spec (e.g. section 9.1.1.5), configuration values
1629  * must be non-zero; a value of zero indicates that the device in
1630  * unconfigured.  However some devices erroneously use 0 as one of their
1631  * configuration values.  To help manage such devices, this routine will
1632  * accept @configuration = -1 as indicating the device should be put in
1633  * an unconfigured state.
1634  *
1635  * USB device configurations may affect Linux interoperability,
1636  * power consumption and the functionality available.  For example,
1637  * the default configuration is limited to using 100mA of bus power,
1638  * so that when certain device functionality requires more power,
1639  * and the device is bus powered, that functionality should be in some
1640  * non-default device configuration.  Other device modes may also be
1641  * reflected as configuration options, such as whether two ISDN
1642  * channels are available independently; and choosing between open
1643  * standard device protocols (like CDC) or proprietary ones.
1644  *
1645  * Note that a non-authorized device (dev->authorized == 0) will only
1646  * be put in unconfigured mode.
1647  *
1648  * Note that USB has an additional level of device configurability,
1649  * associated with interfaces.  That configurability is accessed using
1650  * usb_set_interface().
1651  *
1652  * This call is synchronous. The calling context must be able to sleep,
1653  * must own the device lock, and must not hold the driver model's USB
1654  * bus mutex; usb interface driver probe() methods cannot use this routine.
1655  *
1656  * Returns zero on success, or else the status code returned by the
1657  * underlying call that failed.  On successful completion, each interface
1658  * in the original device configuration has been destroyed, and each one
1659  * in the new configuration has been probed by all relevant usb device
1660  * drivers currently known to the kernel.
1661  */
1662 int usb_set_configuration(struct usb_device *dev, int configuration)
1663 {
1664 	int i, ret;
1665 	struct usb_host_config *cp = NULL;
1666 	struct usb_interface **new_interfaces = NULL;
1667 	int n, nintf;
1668 
1669 	if (dev->authorized == 0 || configuration == -1)
1670 		configuration = 0;
1671 	else {
1672 		for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1673 			if (dev->config[i].desc.bConfigurationValue ==
1674 					configuration) {
1675 				cp = &dev->config[i];
1676 				break;
1677 			}
1678 		}
1679 	}
1680 	if ((!cp && configuration != 0))
1681 		return -EINVAL;
1682 
1683 	/* The USB spec says configuration 0 means unconfigured.
1684 	 * But if a device includes a configuration numbered 0,
1685 	 * we will accept it as a correctly configured state.
1686 	 * Use -1 if you really want to unconfigure the device.
1687 	 */
1688 	if (cp && configuration == 0)
1689 		dev_warn(&dev->dev, "config 0 descriptor??\n");
1690 
1691 	/* Allocate memory for new interfaces before doing anything else,
1692 	 * so that if we run out then nothing will have changed. */
1693 	n = nintf = 0;
1694 	if (cp) {
1695 		nintf = cp->desc.bNumInterfaces;
1696 		new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1697 				GFP_KERNEL);
1698 		if (!new_interfaces) {
1699 			dev_err(&dev->dev, "Out of memory\n");
1700 			return -ENOMEM;
1701 		}
1702 
1703 		for (; n < nintf; ++n) {
1704 			new_interfaces[n] = kzalloc(
1705 					sizeof(struct usb_interface),
1706 					GFP_KERNEL);
1707 			if (!new_interfaces[n]) {
1708 				dev_err(&dev->dev, "Out of memory\n");
1709 				ret = -ENOMEM;
1710 free_interfaces:
1711 				while (--n >= 0)
1712 					kfree(new_interfaces[n]);
1713 				kfree(new_interfaces);
1714 				return ret;
1715 			}
1716 		}
1717 
1718 		i = dev->bus_mA - cp->desc.bMaxPower * 2;
1719 		if (i < 0)
1720 			dev_warn(&dev->dev, "new config #%d exceeds power "
1721 					"limit by %dmA\n",
1722 					configuration, -i);
1723 	}
1724 
1725 	/* Wake up the device so we can send it the Set-Config request */
1726 	ret = usb_autoresume_device(dev);
1727 	if (ret)
1728 		goto free_interfaces;
1729 
1730 	/* Make sure we have bandwidth (and available HCD resources) for this
1731 	 * configuration.  Remove endpoints from the schedule if we're dropping
1732 	 * this configuration to set configuration 0.  After this point, the
1733 	 * host controller will not allow submissions to dropped endpoints.  If
1734 	 * this call fails, the device state is unchanged.
1735 	 */
1736 	if (cp)
1737 		ret = usb_hcd_check_bandwidth(dev, cp, NULL);
1738 	else
1739 		ret = usb_hcd_check_bandwidth(dev, NULL, NULL);
1740 	if (ret < 0) {
1741 		usb_autosuspend_device(dev);
1742 		goto free_interfaces;
1743 	}
1744 
1745 	/* if it's already configured, clear out old state first.
1746 	 * getting rid of old interfaces means unbinding their drivers.
1747 	 */
1748 	if (dev->state != USB_STATE_ADDRESS)
1749 		usb_disable_device(dev, 1);	/* Skip ep0 */
1750 
1751 	/* Get rid of pending async Set-Config requests for this device */
1752 	cancel_async_set_config(dev);
1753 
1754 	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1755 			      USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1756 			      NULL, 0, USB_CTRL_SET_TIMEOUT);
1757 	if (ret < 0) {
1758 		/* All the old state is gone, so what else can we do?
1759 		 * The device is probably useless now anyway.
1760 		 */
1761 		cp = NULL;
1762 	}
1763 
1764 	dev->actconfig = cp;
1765 	if (!cp) {
1766 		usb_set_device_state(dev, USB_STATE_ADDRESS);
1767 		usb_hcd_check_bandwidth(dev, NULL, NULL);
1768 		usb_autosuspend_device(dev);
1769 		goto free_interfaces;
1770 	}
1771 	usb_set_device_state(dev, USB_STATE_CONFIGURED);
1772 
1773 	/* Initialize the new interface structures and the
1774 	 * hc/hcd/usbcore interface/endpoint state.
1775 	 */
1776 	for (i = 0; i < nintf; ++i) {
1777 		struct usb_interface_cache *intfc;
1778 		struct usb_interface *intf;
1779 		struct usb_host_interface *alt;
1780 
1781 		cp->interface[i] = intf = new_interfaces[i];
1782 		intfc = cp->intf_cache[i];
1783 		intf->altsetting = intfc->altsetting;
1784 		intf->num_altsetting = intfc->num_altsetting;
1785 		intf->intf_assoc = find_iad(dev, cp, i);
1786 		kref_get(&intfc->ref);
1787 
1788 		alt = usb_altnum_to_altsetting(intf, 0);
1789 
1790 		/* No altsetting 0?  We'll assume the first altsetting.
1791 		 * We could use a GetInterface call, but if a device is
1792 		 * so non-compliant that it doesn't have altsetting 0
1793 		 * then I wouldn't trust its reply anyway.
1794 		 */
1795 		if (!alt)
1796 			alt = &intf->altsetting[0];
1797 
1798 		intf->cur_altsetting = alt;
1799 		usb_enable_interface(dev, intf, true);
1800 		intf->dev.parent = &dev->dev;
1801 		intf->dev.driver = NULL;
1802 		intf->dev.bus = &usb_bus_type;
1803 		intf->dev.type = &usb_if_device_type;
1804 		intf->dev.groups = usb_interface_groups;
1805 		intf->dev.dma_mask = dev->dev.dma_mask;
1806 		INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1807 		device_initialize(&intf->dev);
1808 		mark_quiesced(intf);
1809 		dev_set_name(&intf->dev, "%d-%s:%d.%d",
1810 			dev->bus->busnum, dev->devpath,
1811 			configuration, alt->desc.bInterfaceNumber);
1812 	}
1813 	kfree(new_interfaces);
1814 
1815 	if (cp->string == NULL &&
1816 			!(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1817 		cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1818 
1819 	/* Now that all the interfaces are set up, register them
1820 	 * to trigger binding of drivers to interfaces.  probe()
1821 	 * routines may install different altsettings and may
1822 	 * claim() any interfaces not yet bound.  Many class drivers
1823 	 * need that: CDC, audio, video, etc.
1824 	 */
1825 	for (i = 0; i < nintf; ++i) {
1826 		struct usb_interface *intf = cp->interface[i];
1827 
1828 		dev_dbg(&dev->dev,
1829 			"adding %s (config #%d, interface %d)\n",
1830 			dev_name(&intf->dev), configuration,
1831 			intf->cur_altsetting->desc.bInterfaceNumber);
1832 		ret = device_add(&intf->dev);
1833 		if (ret != 0) {
1834 			dev_err(&dev->dev, "device_add(%s) --> %d\n",
1835 				dev_name(&intf->dev), ret);
1836 			continue;
1837 		}
1838 		create_intf_ep_devs(intf);
1839 	}
1840 
1841 	usb_autosuspend_device(dev);
1842 	return 0;
1843 }
1844 
1845 static LIST_HEAD(set_config_list);
1846 static DEFINE_SPINLOCK(set_config_lock);
1847 
1848 struct set_config_request {
1849 	struct usb_device	*udev;
1850 	int			config;
1851 	struct work_struct	work;
1852 	struct list_head	node;
1853 };
1854 
1855 /* Worker routine for usb_driver_set_configuration() */
1856 static void driver_set_config_work(struct work_struct *work)
1857 {
1858 	struct set_config_request *req =
1859 		container_of(work, struct set_config_request, work);
1860 	struct usb_device *udev = req->udev;
1861 
1862 	usb_lock_device(udev);
1863 	spin_lock(&set_config_lock);
1864 	list_del(&req->node);
1865 	spin_unlock(&set_config_lock);
1866 
1867 	if (req->config >= -1)		/* Is req still valid? */
1868 		usb_set_configuration(udev, req->config);
1869 	usb_unlock_device(udev);
1870 	usb_put_dev(udev);
1871 	kfree(req);
1872 }
1873 
1874 /* Cancel pending Set-Config requests for a device whose configuration
1875  * was just changed
1876  */
1877 static void cancel_async_set_config(struct usb_device *udev)
1878 {
1879 	struct set_config_request *req;
1880 
1881 	spin_lock(&set_config_lock);
1882 	list_for_each_entry(req, &set_config_list, node) {
1883 		if (req->udev == udev)
1884 			req->config = -999;	/* Mark as cancelled */
1885 	}
1886 	spin_unlock(&set_config_lock);
1887 }
1888 
1889 /**
1890  * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1891  * @udev: the device whose configuration is being updated
1892  * @config: the configuration being chosen.
1893  * Context: In process context, must be able to sleep
1894  *
1895  * Device interface drivers are not allowed to change device configurations.
1896  * This is because changing configurations will destroy the interface the
1897  * driver is bound to and create new ones; it would be like a floppy-disk
1898  * driver telling the computer to replace the floppy-disk drive with a
1899  * tape drive!
1900  *
1901  * Still, in certain specialized circumstances the need may arise.  This
1902  * routine gets around the normal restrictions by using a work thread to
1903  * submit the change-config request.
1904  *
1905  * Returns 0 if the request was succesfully queued, error code otherwise.
1906  * The caller has no way to know whether the queued request will eventually
1907  * succeed.
1908  */
1909 int usb_driver_set_configuration(struct usb_device *udev, int config)
1910 {
1911 	struct set_config_request *req;
1912 
1913 	req = kmalloc(sizeof(*req), GFP_KERNEL);
1914 	if (!req)
1915 		return -ENOMEM;
1916 	req->udev = udev;
1917 	req->config = config;
1918 	INIT_WORK(&req->work, driver_set_config_work);
1919 
1920 	spin_lock(&set_config_lock);
1921 	list_add(&req->node, &set_config_list);
1922 	spin_unlock(&set_config_lock);
1923 
1924 	usb_get_dev(udev);
1925 	schedule_work(&req->work);
1926 	return 0;
1927 }
1928 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
1929