1 /* 2 * message.c - synchronous message handling 3 */ 4 5 #include <linux/pci.h> /* for scatterlist macros */ 6 #include <linux/usb.h> 7 #include <linux/module.h> 8 #include <linux/slab.h> 9 #include <linux/init.h> 10 #include <linux/mm.h> 11 #include <linux/timer.h> 12 #include <linux/ctype.h> 13 #include <linux/nls.h> 14 #include <linux/device.h> 15 #include <linux/scatterlist.h> 16 #include <linux/usb/quirks.h> 17 #include <asm/byteorder.h> 18 19 #include "hcd.h" /* for usbcore internals */ 20 #include "usb.h" 21 22 static void cancel_async_set_config(struct usb_device *udev); 23 24 struct api_context { 25 struct completion done; 26 int status; 27 }; 28 29 static void usb_api_blocking_completion(struct urb *urb) 30 { 31 struct api_context *ctx = urb->context; 32 33 ctx->status = urb->status; 34 complete(&ctx->done); 35 } 36 37 38 /* 39 * Starts urb and waits for completion or timeout. Note that this call 40 * is NOT interruptible. Many device driver i/o requests should be 41 * interruptible and therefore these drivers should implement their 42 * own interruptible routines. 43 */ 44 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length) 45 { 46 struct api_context ctx; 47 unsigned long expire; 48 int retval; 49 50 init_completion(&ctx.done); 51 urb->context = &ctx; 52 urb->actual_length = 0; 53 retval = usb_submit_urb(urb, GFP_NOIO); 54 if (unlikely(retval)) 55 goto out; 56 57 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT; 58 if (!wait_for_completion_timeout(&ctx.done, expire)) { 59 usb_kill_urb(urb); 60 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status); 61 62 dev_dbg(&urb->dev->dev, 63 "%s timed out on ep%d%s len=%u/%u\n", 64 current->comm, 65 usb_endpoint_num(&urb->ep->desc), 66 usb_urb_dir_in(urb) ? "in" : "out", 67 urb->actual_length, 68 urb->transfer_buffer_length); 69 } else 70 retval = ctx.status; 71 out: 72 if (actual_length) 73 *actual_length = urb->actual_length; 74 75 usb_free_urb(urb); 76 return retval; 77 } 78 79 /*-------------------------------------------------------------------*/ 80 /* returns status (negative) or length (positive) */ 81 static int usb_internal_control_msg(struct usb_device *usb_dev, 82 unsigned int pipe, 83 struct usb_ctrlrequest *cmd, 84 void *data, int len, int timeout) 85 { 86 struct urb *urb; 87 int retv; 88 int length; 89 90 urb = usb_alloc_urb(0, GFP_NOIO); 91 if (!urb) 92 return -ENOMEM; 93 94 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data, 95 len, usb_api_blocking_completion, NULL); 96 97 retv = usb_start_wait_urb(urb, timeout, &length); 98 if (retv < 0) 99 return retv; 100 else 101 return length; 102 } 103 104 /** 105 * usb_control_msg - Builds a control urb, sends it off and waits for completion 106 * @dev: pointer to the usb device to send the message to 107 * @pipe: endpoint "pipe" to send the message to 108 * @request: USB message request value 109 * @requesttype: USB message request type value 110 * @value: USB message value 111 * @index: USB message index value 112 * @data: pointer to the data to send 113 * @size: length in bytes of the data to send 114 * @timeout: time in msecs to wait for the message to complete before timing 115 * out (if 0 the wait is forever) 116 * 117 * Context: !in_interrupt () 118 * 119 * This function sends a simple control message to a specified endpoint and 120 * waits for the message to complete, or timeout. 121 * 122 * If successful, it returns the number of bytes transferred, otherwise a 123 * negative error number. 124 * 125 * Don't use this function from within an interrupt context, like a bottom half 126 * handler. If you need an asynchronous message, or need to send a message 127 * from within interrupt context, use usb_submit_urb(). 128 * If a thread in your driver uses this call, make sure your disconnect() 129 * method can wait for it to complete. Since you don't have a handle on the 130 * URB used, you can't cancel the request. 131 */ 132 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, 133 __u8 requesttype, __u16 value, __u16 index, void *data, 134 __u16 size, int timeout) 135 { 136 struct usb_ctrlrequest *dr; 137 int ret; 138 139 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO); 140 if (!dr) 141 return -ENOMEM; 142 143 dr->bRequestType = requesttype; 144 dr->bRequest = request; 145 dr->wValue = cpu_to_le16(value); 146 dr->wIndex = cpu_to_le16(index); 147 dr->wLength = cpu_to_le16(size); 148 149 /* dbg("usb_control_msg"); */ 150 151 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout); 152 153 kfree(dr); 154 155 return ret; 156 } 157 EXPORT_SYMBOL_GPL(usb_control_msg); 158 159 /** 160 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion 161 * @usb_dev: pointer to the usb device to send the message to 162 * @pipe: endpoint "pipe" to send the message to 163 * @data: pointer to the data to send 164 * @len: length in bytes of the data to send 165 * @actual_length: pointer to a location to put the actual length transferred 166 * in bytes 167 * @timeout: time in msecs to wait for the message to complete before 168 * timing out (if 0 the wait is forever) 169 * 170 * Context: !in_interrupt () 171 * 172 * This function sends a simple interrupt message to a specified endpoint and 173 * waits for the message to complete, or timeout. 174 * 175 * If successful, it returns 0, otherwise a negative error number. The number 176 * of actual bytes transferred will be stored in the actual_length paramater. 177 * 178 * Don't use this function from within an interrupt context, like a bottom half 179 * handler. If you need an asynchronous message, or need to send a message 180 * from within interrupt context, use usb_submit_urb() If a thread in your 181 * driver uses this call, make sure your disconnect() method can wait for it to 182 * complete. Since you don't have a handle on the URB used, you can't cancel 183 * the request. 184 */ 185 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 186 void *data, int len, int *actual_length, int timeout) 187 { 188 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout); 189 } 190 EXPORT_SYMBOL_GPL(usb_interrupt_msg); 191 192 /** 193 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion 194 * @usb_dev: pointer to the usb device to send the message to 195 * @pipe: endpoint "pipe" to send the message to 196 * @data: pointer to the data to send 197 * @len: length in bytes of the data to send 198 * @actual_length: pointer to a location to put the actual length transferred 199 * in bytes 200 * @timeout: time in msecs to wait for the message to complete before 201 * timing out (if 0 the wait is forever) 202 * 203 * Context: !in_interrupt () 204 * 205 * This function sends a simple bulk message to a specified endpoint 206 * and waits for the message to complete, or timeout. 207 * 208 * If successful, it returns 0, otherwise a negative error number. The number 209 * of actual bytes transferred will be stored in the actual_length paramater. 210 * 211 * Don't use this function from within an interrupt context, like a bottom half 212 * handler. If you need an asynchronous message, or need to send a message 213 * from within interrupt context, use usb_submit_urb() If a thread in your 214 * driver uses this call, make sure your disconnect() method can wait for it to 215 * complete. Since you don't have a handle on the URB used, you can't cancel 216 * the request. 217 * 218 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl, 219 * users are forced to abuse this routine by using it to submit URBs for 220 * interrupt endpoints. We will take the liberty of creating an interrupt URB 221 * (with the default interval) if the target is an interrupt endpoint. 222 */ 223 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 224 void *data, int len, int *actual_length, int timeout) 225 { 226 struct urb *urb; 227 struct usb_host_endpoint *ep; 228 229 ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out) 230 [usb_pipeendpoint(pipe)]; 231 if (!ep || len < 0) 232 return -EINVAL; 233 234 urb = usb_alloc_urb(0, GFP_KERNEL); 235 if (!urb) 236 return -ENOMEM; 237 238 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 239 USB_ENDPOINT_XFER_INT) { 240 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30); 241 usb_fill_int_urb(urb, usb_dev, pipe, data, len, 242 usb_api_blocking_completion, NULL, 243 ep->desc.bInterval); 244 } else 245 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len, 246 usb_api_blocking_completion, NULL); 247 248 return usb_start_wait_urb(urb, timeout, actual_length); 249 } 250 EXPORT_SYMBOL_GPL(usb_bulk_msg); 251 252 /*-------------------------------------------------------------------*/ 253 254 static void sg_clean(struct usb_sg_request *io) 255 { 256 if (io->urbs) { 257 while (io->entries--) 258 usb_free_urb(io->urbs [io->entries]); 259 kfree(io->urbs); 260 io->urbs = NULL; 261 } 262 if (io->dev->dev.dma_mask != NULL) 263 usb_buffer_unmap_sg(io->dev, usb_pipein(io->pipe), 264 io->sg, io->nents); 265 io->dev = NULL; 266 } 267 268 static void sg_complete(struct urb *urb) 269 { 270 struct usb_sg_request *io = urb->context; 271 int status = urb->status; 272 273 spin_lock(&io->lock); 274 275 /* In 2.5 we require hcds' endpoint queues not to progress after fault 276 * reports, until the completion callback (this!) returns. That lets 277 * device driver code (like this routine) unlink queued urbs first, 278 * if it needs to, since the HC won't work on them at all. So it's 279 * not possible for page N+1 to overwrite page N, and so on. 280 * 281 * That's only for "hard" faults; "soft" faults (unlinks) sometimes 282 * complete before the HCD can get requests away from hardware, 283 * though never during cleanup after a hard fault. 284 */ 285 if (io->status 286 && (io->status != -ECONNRESET 287 || status != -ECONNRESET) 288 && urb->actual_length) { 289 dev_err(io->dev->bus->controller, 290 "dev %s ep%d%s scatterlist error %d/%d\n", 291 io->dev->devpath, 292 usb_endpoint_num(&urb->ep->desc), 293 usb_urb_dir_in(urb) ? "in" : "out", 294 status, io->status); 295 /* BUG (); */ 296 } 297 298 if (io->status == 0 && status && status != -ECONNRESET) { 299 int i, found, retval; 300 301 io->status = status; 302 303 /* the previous urbs, and this one, completed already. 304 * unlink pending urbs so they won't rx/tx bad data. 305 * careful: unlink can sometimes be synchronous... 306 */ 307 spin_unlock(&io->lock); 308 for (i = 0, found = 0; i < io->entries; i++) { 309 if (!io->urbs [i] || !io->urbs [i]->dev) 310 continue; 311 if (found) { 312 retval = usb_unlink_urb(io->urbs [i]); 313 if (retval != -EINPROGRESS && 314 retval != -ENODEV && 315 retval != -EBUSY) 316 dev_err(&io->dev->dev, 317 "%s, unlink --> %d\n", 318 __func__, retval); 319 } else if (urb == io->urbs [i]) 320 found = 1; 321 } 322 spin_lock(&io->lock); 323 } 324 urb->dev = NULL; 325 326 /* on the last completion, signal usb_sg_wait() */ 327 io->bytes += urb->actual_length; 328 io->count--; 329 if (!io->count) 330 complete(&io->complete); 331 332 spin_unlock(&io->lock); 333 } 334 335 336 /** 337 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request 338 * @io: request block being initialized. until usb_sg_wait() returns, 339 * treat this as a pointer to an opaque block of memory, 340 * @dev: the usb device that will send or receive the data 341 * @pipe: endpoint "pipe" used to transfer the data 342 * @period: polling rate for interrupt endpoints, in frames or 343 * (for high speed endpoints) microframes; ignored for bulk 344 * @sg: scatterlist entries 345 * @nents: how many entries in the scatterlist 346 * @length: how many bytes to send from the scatterlist, or zero to 347 * send every byte identified in the list. 348 * @mem_flags: SLAB_* flags affecting memory allocations in this call 349 * 350 * Returns zero for success, else a negative errno value. This initializes a 351 * scatter/gather request, allocating resources such as I/O mappings and urb 352 * memory (except maybe memory used by USB controller drivers). 353 * 354 * The request must be issued using usb_sg_wait(), which waits for the I/O to 355 * complete (or to be canceled) and then cleans up all resources allocated by 356 * usb_sg_init(). 357 * 358 * The request may be canceled with usb_sg_cancel(), either before or after 359 * usb_sg_wait() is called. 360 */ 361 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev, 362 unsigned pipe, unsigned period, struct scatterlist *sg, 363 int nents, size_t length, gfp_t mem_flags) 364 { 365 int i; 366 int urb_flags; 367 int dma; 368 int use_sg; 369 370 if (!io || !dev || !sg 371 || usb_pipecontrol(pipe) 372 || usb_pipeisoc(pipe) 373 || nents <= 0) 374 return -EINVAL; 375 376 spin_lock_init(&io->lock); 377 io->dev = dev; 378 io->pipe = pipe; 379 io->sg = sg; 380 io->nents = nents; 381 382 /* not all host controllers use DMA (like the mainstream pci ones); 383 * they can use PIO (sl811) or be software over another transport. 384 */ 385 dma = (dev->dev.dma_mask != NULL); 386 if (dma) 387 io->entries = usb_buffer_map_sg(dev, usb_pipein(pipe), 388 sg, nents); 389 else 390 io->entries = nents; 391 392 /* initialize all the urbs we'll use */ 393 if (io->entries <= 0) 394 return io->entries; 395 396 /* If we're running on an xHCI host controller, queue the whole scatter 397 * gather list with one call to urb_enqueue(). This is only for bulk, 398 * as that endpoint type does not care how the data gets broken up 399 * across frames. 400 */ 401 if (usb_pipebulk(pipe) && 402 bus_to_hcd(dev->bus)->driver->flags & HCD_USB3) { 403 io->urbs = kmalloc(sizeof *io->urbs, mem_flags); 404 use_sg = true; 405 } else { 406 io->urbs = kmalloc(io->entries * sizeof *io->urbs, mem_flags); 407 use_sg = false; 408 } 409 if (!io->urbs) 410 goto nomem; 411 412 urb_flags = URB_NO_INTERRUPT; 413 if (dma) 414 urb_flags |= URB_NO_TRANSFER_DMA_MAP; 415 if (usb_pipein(pipe)) 416 urb_flags |= URB_SHORT_NOT_OK; 417 418 if (use_sg) { 419 io->urbs[0] = usb_alloc_urb(0, mem_flags); 420 if (!io->urbs[0]) { 421 io->entries = 0; 422 goto nomem; 423 } 424 425 io->urbs[0]->dev = NULL; 426 io->urbs[0]->pipe = pipe; 427 io->urbs[0]->interval = period; 428 io->urbs[0]->transfer_flags = urb_flags; 429 430 io->urbs[0]->complete = sg_complete; 431 io->urbs[0]->context = io; 432 /* A length of zero means transfer the whole sg list */ 433 io->urbs[0]->transfer_buffer_length = length; 434 if (length == 0) { 435 for_each_sg(sg, sg, io->entries, i) { 436 io->urbs[0]->transfer_buffer_length += 437 sg_dma_len(sg); 438 } 439 } 440 io->urbs[0]->sg = io; 441 io->urbs[0]->num_sgs = io->entries; 442 io->entries = 1; 443 } else { 444 for_each_sg(sg, sg, io->entries, i) { 445 unsigned len; 446 447 io->urbs[i] = usb_alloc_urb(0, mem_flags); 448 if (!io->urbs[i]) { 449 io->entries = i; 450 goto nomem; 451 } 452 453 io->urbs[i]->dev = NULL; 454 io->urbs[i]->pipe = pipe; 455 io->urbs[i]->interval = period; 456 io->urbs[i]->transfer_flags = urb_flags; 457 458 io->urbs[i]->complete = sg_complete; 459 io->urbs[i]->context = io; 460 461 /* 462 * Some systems need to revert to PIO when DMA is 463 * temporarily unavailable. For their sakes, both 464 * transfer_buffer and transfer_dma are set when 465 * possible. However this can only work on systems 466 * without: 467 * 468 * - HIGHMEM, since DMA buffers located in high memory 469 * are not directly addressable by the CPU for PIO; 470 * 471 * - IOMMU, since dma_map_sg() is allowed to use an 472 * IOMMU to make virtually discontiguous buffers be 473 * "dma-contiguous" so that PIO and DMA need diferent 474 * numbers of URBs. 475 * 476 * So when HIGHMEM or IOMMU are in use, transfer_buffer 477 * is NULL to prevent stale pointers and to help spot 478 * bugs. 479 */ 480 if (dma) { 481 io->urbs[i]->transfer_dma = sg_dma_address(sg); 482 len = sg_dma_len(sg); 483 #if defined(CONFIG_HIGHMEM) || defined(CONFIG_GART_IOMMU) 484 io->urbs[i]->transfer_buffer = NULL; 485 #else 486 io->urbs[i]->transfer_buffer = sg_virt(sg); 487 #endif 488 } else { 489 /* hc may use _only_ transfer_buffer */ 490 io->urbs[i]->transfer_buffer = sg_virt(sg); 491 len = sg->length; 492 } 493 494 if (length) { 495 len = min_t(unsigned, len, length); 496 length -= len; 497 if (length == 0) 498 io->entries = i + 1; 499 } 500 io->urbs[i]->transfer_buffer_length = len; 501 } 502 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT; 503 } 504 505 /* transaction state */ 506 io->count = io->entries; 507 io->status = 0; 508 io->bytes = 0; 509 init_completion(&io->complete); 510 return 0; 511 512 nomem: 513 sg_clean(io); 514 return -ENOMEM; 515 } 516 EXPORT_SYMBOL_GPL(usb_sg_init); 517 518 /** 519 * usb_sg_wait - synchronously execute scatter/gather request 520 * @io: request block handle, as initialized with usb_sg_init(). 521 * some fields become accessible when this call returns. 522 * Context: !in_interrupt () 523 * 524 * This function blocks until the specified I/O operation completes. It 525 * leverages the grouping of the related I/O requests to get good transfer 526 * rates, by queueing the requests. At higher speeds, such queuing can 527 * significantly improve USB throughput. 528 * 529 * There are three kinds of completion for this function. 530 * (1) success, where io->status is zero. The number of io->bytes 531 * transferred is as requested. 532 * (2) error, where io->status is a negative errno value. The number 533 * of io->bytes transferred before the error is usually less 534 * than requested, and can be nonzero. 535 * (3) cancellation, a type of error with status -ECONNRESET that 536 * is initiated by usb_sg_cancel(). 537 * 538 * When this function returns, all memory allocated through usb_sg_init() or 539 * this call will have been freed. The request block parameter may still be 540 * passed to usb_sg_cancel(), or it may be freed. It could also be 541 * reinitialized and then reused. 542 * 543 * Data Transfer Rates: 544 * 545 * Bulk transfers are valid for full or high speed endpoints. 546 * The best full speed data rate is 19 packets of 64 bytes each 547 * per frame, or 1216 bytes per millisecond. 548 * The best high speed data rate is 13 packets of 512 bytes each 549 * per microframe, or 52 KBytes per millisecond. 550 * 551 * The reason to use interrupt transfers through this API would most likely 552 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond 553 * could be transferred. That capability is less useful for low or full 554 * speed interrupt endpoints, which allow at most one packet per millisecond, 555 * of at most 8 or 64 bytes (respectively). 556 * 557 * It is not necessary to call this function to reserve bandwidth for devices 558 * under an xHCI host controller, as the bandwidth is reserved when the 559 * configuration or interface alt setting is selected. 560 */ 561 void usb_sg_wait(struct usb_sg_request *io) 562 { 563 int i; 564 int entries = io->entries; 565 566 /* queue the urbs. */ 567 spin_lock_irq(&io->lock); 568 i = 0; 569 while (i < entries && !io->status) { 570 int retval; 571 572 io->urbs[i]->dev = io->dev; 573 retval = usb_submit_urb(io->urbs [i], GFP_ATOMIC); 574 575 /* after we submit, let completions or cancelations fire; 576 * we handshake using io->status. 577 */ 578 spin_unlock_irq(&io->lock); 579 switch (retval) { 580 /* maybe we retrying will recover */ 581 case -ENXIO: /* hc didn't queue this one */ 582 case -EAGAIN: 583 case -ENOMEM: 584 io->urbs[i]->dev = NULL; 585 retval = 0; 586 yield(); 587 break; 588 589 /* no error? continue immediately. 590 * 591 * NOTE: to work better with UHCI (4K I/O buffer may 592 * need 3K of TDs) it may be good to limit how many 593 * URBs are queued at once; N milliseconds? 594 */ 595 case 0: 596 ++i; 597 cpu_relax(); 598 break; 599 600 /* fail any uncompleted urbs */ 601 default: 602 io->urbs[i]->dev = NULL; 603 io->urbs[i]->status = retval; 604 dev_dbg(&io->dev->dev, "%s, submit --> %d\n", 605 __func__, retval); 606 usb_sg_cancel(io); 607 } 608 spin_lock_irq(&io->lock); 609 if (retval && (io->status == 0 || io->status == -ECONNRESET)) 610 io->status = retval; 611 } 612 io->count -= entries - i; 613 if (io->count == 0) 614 complete(&io->complete); 615 spin_unlock_irq(&io->lock); 616 617 /* OK, yes, this could be packaged as non-blocking. 618 * So could the submit loop above ... but it's easier to 619 * solve neither problem than to solve both! 620 */ 621 wait_for_completion(&io->complete); 622 623 sg_clean(io); 624 } 625 EXPORT_SYMBOL_GPL(usb_sg_wait); 626 627 /** 628 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait() 629 * @io: request block, initialized with usb_sg_init() 630 * 631 * This stops a request after it has been started by usb_sg_wait(). 632 * It can also prevents one initialized by usb_sg_init() from starting, 633 * so that call just frees resources allocated to the request. 634 */ 635 void usb_sg_cancel(struct usb_sg_request *io) 636 { 637 unsigned long flags; 638 639 spin_lock_irqsave(&io->lock, flags); 640 641 /* shut everything down, if it didn't already */ 642 if (!io->status) { 643 int i; 644 645 io->status = -ECONNRESET; 646 spin_unlock(&io->lock); 647 for (i = 0; i < io->entries; i++) { 648 int retval; 649 650 if (!io->urbs [i]->dev) 651 continue; 652 retval = usb_unlink_urb(io->urbs [i]); 653 if (retval != -EINPROGRESS && retval != -EBUSY) 654 dev_warn(&io->dev->dev, "%s, unlink --> %d\n", 655 __func__, retval); 656 } 657 spin_lock(&io->lock); 658 } 659 spin_unlock_irqrestore(&io->lock, flags); 660 } 661 EXPORT_SYMBOL_GPL(usb_sg_cancel); 662 663 /*-------------------------------------------------------------------*/ 664 665 /** 666 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request 667 * @dev: the device whose descriptor is being retrieved 668 * @type: the descriptor type (USB_DT_*) 669 * @index: the number of the descriptor 670 * @buf: where to put the descriptor 671 * @size: how big is "buf"? 672 * Context: !in_interrupt () 673 * 674 * Gets a USB descriptor. Convenience functions exist to simplify 675 * getting some types of descriptors. Use 676 * usb_get_string() or usb_string() for USB_DT_STRING. 677 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG) 678 * are part of the device structure. 679 * In addition to a number of USB-standard descriptors, some 680 * devices also use class-specific or vendor-specific descriptors. 681 * 682 * This call is synchronous, and may not be used in an interrupt context. 683 * 684 * Returns the number of bytes received on success, or else the status code 685 * returned by the underlying usb_control_msg() call. 686 */ 687 int usb_get_descriptor(struct usb_device *dev, unsigned char type, 688 unsigned char index, void *buf, int size) 689 { 690 int i; 691 int result; 692 693 memset(buf, 0, size); /* Make sure we parse really received data */ 694 695 for (i = 0; i < 3; ++i) { 696 /* retry on length 0 or error; some devices are flakey */ 697 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 698 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 699 (type << 8) + index, 0, buf, size, 700 USB_CTRL_GET_TIMEOUT); 701 if (result <= 0 && result != -ETIMEDOUT) 702 continue; 703 if (result > 1 && ((u8 *)buf)[1] != type) { 704 result = -ENODATA; 705 continue; 706 } 707 break; 708 } 709 return result; 710 } 711 EXPORT_SYMBOL_GPL(usb_get_descriptor); 712 713 /** 714 * usb_get_string - gets a string descriptor 715 * @dev: the device whose string descriptor is being retrieved 716 * @langid: code for language chosen (from string descriptor zero) 717 * @index: the number of the descriptor 718 * @buf: where to put the string 719 * @size: how big is "buf"? 720 * Context: !in_interrupt () 721 * 722 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character, 723 * in little-endian byte order). 724 * The usb_string() function will often be a convenient way to turn 725 * these strings into kernel-printable form. 726 * 727 * Strings may be referenced in device, configuration, interface, or other 728 * descriptors, and could also be used in vendor-specific ways. 729 * 730 * This call is synchronous, and may not be used in an interrupt context. 731 * 732 * Returns the number of bytes received on success, or else the status code 733 * returned by the underlying usb_control_msg() call. 734 */ 735 static int usb_get_string(struct usb_device *dev, unsigned short langid, 736 unsigned char index, void *buf, int size) 737 { 738 int i; 739 int result; 740 741 for (i = 0; i < 3; ++i) { 742 /* retry on length 0 or stall; some devices are flakey */ 743 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 744 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 745 (USB_DT_STRING << 8) + index, langid, buf, size, 746 USB_CTRL_GET_TIMEOUT); 747 if (result == 0 || result == -EPIPE) 748 continue; 749 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) { 750 result = -ENODATA; 751 continue; 752 } 753 break; 754 } 755 return result; 756 } 757 758 static void usb_try_string_workarounds(unsigned char *buf, int *length) 759 { 760 int newlength, oldlength = *length; 761 762 for (newlength = 2; newlength + 1 < oldlength; newlength += 2) 763 if (!isprint(buf[newlength]) || buf[newlength + 1]) 764 break; 765 766 if (newlength > 2) { 767 buf[0] = newlength; 768 *length = newlength; 769 } 770 } 771 772 static int usb_string_sub(struct usb_device *dev, unsigned int langid, 773 unsigned int index, unsigned char *buf) 774 { 775 int rc; 776 777 /* Try to read the string descriptor by asking for the maximum 778 * possible number of bytes */ 779 if (dev->quirks & USB_QUIRK_STRING_FETCH_255) 780 rc = -EIO; 781 else 782 rc = usb_get_string(dev, langid, index, buf, 255); 783 784 /* If that failed try to read the descriptor length, then 785 * ask for just that many bytes */ 786 if (rc < 2) { 787 rc = usb_get_string(dev, langid, index, buf, 2); 788 if (rc == 2) 789 rc = usb_get_string(dev, langid, index, buf, buf[0]); 790 } 791 792 if (rc >= 2) { 793 if (!buf[0] && !buf[1]) 794 usb_try_string_workarounds(buf, &rc); 795 796 /* There might be extra junk at the end of the descriptor */ 797 if (buf[0] < rc) 798 rc = buf[0]; 799 800 rc = rc - (rc & 1); /* force a multiple of two */ 801 } 802 803 if (rc < 2) 804 rc = (rc < 0 ? rc : -EINVAL); 805 806 return rc; 807 } 808 809 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf) 810 { 811 int err; 812 813 if (dev->have_langid) 814 return 0; 815 816 if (dev->string_langid < 0) 817 return -EPIPE; 818 819 err = usb_string_sub(dev, 0, 0, tbuf); 820 821 /* If the string was reported but is malformed, default to english 822 * (0x0409) */ 823 if (err == -ENODATA || (err > 0 && err < 4)) { 824 dev->string_langid = 0x0409; 825 dev->have_langid = 1; 826 dev_err(&dev->dev, 827 "string descriptor 0 malformed (err = %d), " 828 "defaulting to 0x%04x\n", 829 err, dev->string_langid); 830 return 0; 831 } 832 833 /* In case of all other errors, we assume the device is not able to 834 * deal with strings at all. Set string_langid to -1 in order to 835 * prevent any string to be retrieved from the device */ 836 if (err < 0) { 837 dev_err(&dev->dev, "string descriptor 0 read error: %d\n", 838 err); 839 dev->string_langid = -1; 840 return -EPIPE; 841 } 842 843 /* always use the first langid listed */ 844 dev->string_langid = tbuf[2] | (tbuf[3] << 8); 845 dev->have_langid = 1; 846 dev_dbg(&dev->dev, "default language 0x%04x\n", 847 dev->string_langid); 848 return 0; 849 } 850 851 /** 852 * usb_string - returns UTF-8 version of a string descriptor 853 * @dev: the device whose string descriptor is being retrieved 854 * @index: the number of the descriptor 855 * @buf: where to put the string 856 * @size: how big is "buf"? 857 * Context: !in_interrupt () 858 * 859 * This converts the UTF-16LE encoded strings returned by devices, from 860 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones 861 * that are more usable in most kernel contexts. Note that this function 862 * chooses strings in the first language supported by the device. 863 * 864 * This call is synchronous, and may not be used in an interrupt context. 865 * 866 * Returns length of the string (>= 0) or usb_control_msg status (< 0). 867 */ 868 int usb_string(struct usb_device *dev, int index, char *buf, size_t size) 869 { 870 unsigned char *tbuf; 871 int err; 872 873 if (dev->state == USB_STATE_SUSPENDED) 874 return -EHOSTUNREACH; 875 if (size <= 0 || !buf || !index) 876 return -EINVAL; 877 buf[0] = 0; 878 tbuf = kmalloc(256, GFP_NOIO); 879 if (!tbuf) 880 return -ENOMEM; 881 882 err = usb_get_langid(dev, tbuf); 883 if (err < 0) 884 goto errout; 885 886 err = usb_string_sub(dev, dev->string_langid, index, tbuf); 887 if (err < 0) 888 goto errout; 889 890 size--; /* leave room for trailing NULL char in output buffer */ 891 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2, 892 UTF16_LITTLE_ENDIAN, buf, size); 893 buf[err] = 0; 894 895 if (tbuf[1] != USB_DT_STRING) 896 dev_dbg(&dev->dev, 897 "wrong descriptor type %02x for string %d (\"%s\")\n", 898 tbuf[1], index, buf); 899 900 errout: 901 kfree(tbuf); 902 return err; 903 } 904 EXPORT_SYMBOL_GPL(usb_string); 905 906 /* one UTF-8-encoded 16-bit character has at most three bytes */ 907 #define MAX_USB_STRING_SIZE (127 * 3 + 1) 908 909 /** 910 * usb_cache_string - read a string descriptor and cache it for later use 911 * @udev: the device whose string descriptor is being read 912 * @index: the descriptor index 913 * 914 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string, 915 * or NULL if the index is 0 or the string could not be read. 916 */ 917 char *usb_cache_string(struct usb_device *udev, int index) 918 { 919 char *buf; 920 char *smallbuf = NULL; 921 int len; 922 923 if (index <= 0) 924 return NULL; 925 926 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_KERNEL); 927 if (buf) { 928 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE); 929 if (len > 0) { 930 smallbuf = kmalloc(++len, GFP_KERNEL); 931 if (!smallbuf) 932 return buf; 933 memcpy(smallbuf, buf, len); 934 } 935 kfree(buf); 936 } 937 return smallbuf; 938 } 939 940 /* 941 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore) 942 * @dev: the device whose device descriptor is being updated 943 * @size: how much of the descriptor to read 944 * Context: !in_interrupt () 945 * 946 * Updates the copy of the device descriptor stored in the device structure, 947 * which dedicates space for this purpose. 948 * 949 * Not exported, only for use by the core. If drivers really want to read 950 * the device descriptor directly, they can call usb_get_descriptor() with 951 * type = USB_DT_DEVICE and index = 0. 952 * 953 * This call is synchronous, and may not be used in an interrupt context. 954 * 955 * Returns the number of bytes received on success, or else the status code 956 * returned by the underlying usb_control_msg() call. 957 */ 958 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size) 959 { 960 struct usb_device_descriptor *desc; 961 int ret; 962 963 if (size > sizeof(*desc)) 964 return -EINVAL; 965 desc = kmalloc(sizeof(*desc), GFP_NOIO); 966 if (!desc) 967 return -ENOMEM; 968 969 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size); 970 if (ret >= 0) 971 memcpy(&dev->descriptor, desc, size); 972 kfree(desc); 973 return ret; 974 } 975 976 /** 977 * usb_get_status - issues a GET_STATUS call 978 * @dev: the device whose status is being checked 979 * @type: USB_RECIP_*; for device, interface, or endpoint 980 * @target: zero (for device), else interface or endpoint number 981 * @data: pointer to two bytes of bitmap data 982 * Context: !in_interrupt () 983 * 984 * Returns device, interface, or endpoint status. Normally only of 985 * interest to see if the device is self powered, or has enabled the 986 * remote wakeup facility; or whether a bulk or interrupt endpoint 987 * is halted ("stalled"). 988 * 989 * Bits in these status bitmaps are set using the SET_FEATURE request, 990 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt() 991 * function should be used to clear halt ("stall") status. 992 * 993 * This call is synchronous, and may not be used in an interrupt context. 994 * 995 * Returns the number of bytes received on success, or else the status code 996 * returned by the underlying usb_control_msg() call. 997 */ 998 int usb_get_status(struct usb_device *dev, int type, int target, void *data) 999 { 1000 int ret; 1001 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL); 1002 1003 if (!status) 1004 return -ENOMEM; 1005 1006 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 1007 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status, 1008 sizeof(*status), USB_CTRL_GET_TIMEOUT); 1009 1010 *(u16 *)data = *status; 1011 kfree(status); 1012 return ret; 1013 } 1014 EXPORT_SYMBOL_GPL(usb_get_status); 1015 1016 /** 1017 * usb_clear_halt - tells device to clear endpoint halt/stall condition 1018 * @dev: device whose endpoint is halted 1019 * @pipe: endpoint "pipe" being cleared 1020 * Context: !in_interrupt () 1021 * 1022 * This is used to clear halt conditions for bulk and interrupt endpoints, 1023 * as reported by URB completion status. Endpoints that are halted are 1024 * sometimes referred to as being "stalled". Such endpoints are unable 1025 * to transmit or receive data until the halt status is cleared. Any URBs 1026 * queued for such an endpoint should normally be unlinked by the driver 1027 * before clearing the halt condition, as described in sections 5.7.5 1028 * and 5.8.5 of the USB 2.0 spec. 1029 * 1030 * Note that control and isochronous endpoints don't halt, although control 1031 * endpoints report "protocol stall" (for unsupported requests) using the 1032 * same status code used to report a true stall. 1033 * 1034 * This call is synchronous, and may not be used in an interrupt context. 1035 * 1036 * Returns zero on success, or else the status code returned by the 1037 * underlying usb_control_msg() call. 1038 */ 1039 int usb_clear_halt(struct usb_device *dev, int pipe) 1040 { 1041 int result; 1042 int endp = usb_pipeendpoint(pipe); 1043 1044 if (usb_pipein(pipe)) 1045 endp |= USB_DIR_IN; 1046 1047 /* we don't care if it wasn't halted first. in fact some devices 1048 * (like some ibmcam model 1 units) seem to expect hosts to make 1049 * this request for iso endpoints, which can't halt! 1050 */ 1051 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1052 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 1053 USB_ENDPOINT_HALT, endp, NULL, 0, 1054 USB_CTRL_SET_TIMEOUT); 1055 1056 /* don't un-halt or force to DATA0 except on success */ 1057 if (result < 0) 1058 return result; 1059 1060 /* NOTE: seems like Microsoft and Apple don't bother verifying 1061 * the clear "took", so some devices could lock up if you check... 1062 * such as the Hagiwara FlashGate DUAL. So we won't bother. 1063 * 1064 * NOTE: make sure the logic here doesn't diverge much from 1065 * the copy in usb-storage, for as long as we need two copies. 1066 */ 1067 1068 usb_reset_endpoint(dev, endp); 1069 1070 return 0; 1071 } 1072 EXPORT_SYMBOL_GPL(usb_clear_halt); 1073 1074 static int create_intf_ep_devs(struct usb_interface *intf) 1075 { 1076 struct usb_device *udev = interface_to_usbdev(intf); 1077 struct usb_host_interface *alt = intf->cur_altsetting; 1078 int i; 1079 1080 if (intf->ep_devs_created || intf->unregistering) 1081 return 0; 1082 1083 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1084 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev); 1085 intf->ep_devs_created = 1; 1086 return 0; 1087 } 1088 1089 static void remove_intf_ep_devs(struct usb_interface *intf) 1090 { 1091 struct usb_host_interface *alt = intf->cur_altsetting; 1092 int i; 1093 1094 if (!intf->ep_devs_created) 1095 return; 1096 1097 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1098 usb_remove_ep_devs(&alt->endpoint[i]); 1099 intf->ep_devs_created = 0; 1100 } 1101 1102 /** 1103 * usb_disable_endpoint -- Disable an endpoint by address 1104 * @dev: the device whose endpoint is being disabled 1105 * @epaddr: the endpoint's address. Endpoint number for output, 1106 * endpoint number + USB_DIR_IN for input 1107 * @reset_hardware: flag to erase any endpoint state stored in the 1108 * controller hardware 1109 * 1110 * Disables the endpoint for URB submission and nukes all pending URBs. 1111 * If @reset_hardware is set then also deallocates hcd/hardware state 1112 * for the endpoint. 1113 */ 1114 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr, 1115 bool reset_hardware) 1116 { 1117 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1118 struct usb_host_endpoint *ep; 1119 1120 if (!dev) 1121 return; 1122 1123 if (usb_endpoint_out(epaddr)) { 1124 ep = dev->ep_out[epnum]; 1125 if (reset_hardware) 1126 dev->ep_out[epnum] = NULL; 1127 } else { 1128 ep = dev->ep_in[epnum]; 1129 if (reset_hardware) 1130 dev->ep_in[epnum] = NULL; 1131 } 1132 if (ep) { 1133 ep->enabled = 0; 1134 usb_hcd_flush_endpoint(dev, ep); 1135 if (reset_hardware) 1136 usb_hcd_disable_endpoint(dev, ep); 1137 } 1138 } 1139 1140 /** 1141 * usb_reset_endpoint - Reset an endpoint's state. 1142 * @dev: the device whose endpoint is to be reset 1143 * @epaddr: the endpoint's address. Endpoint number for output, 1144 * endpoint number + USB_DIR_IN for input 1145 * 1146 * Resets any host-side endpoint state such as the toggle bit, 1147 * sequence number or current window. 1148 */ 1149 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr) 1150 { 1151 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1152 struct usb_host_endpoint *ep; 1153 1154 if (usb_endpoint_out(epaddr)) 1155 ep = dev->ep_out[epnum]; 1156 else 1157 ep = dev->ep_in[epnum]; 1158 if (ep) 1159 usb_hcd_reset_endpoint(dev, ep); 1160 } 1161 EXPORT_SYMBOL_GPL(usb_reset_endpoint); 1162 1163 1164 /** 1165 * usb_disable_interface -- Disable all endpoints for an interface 1166 * @dev: the device whose interface is being disabled 1167 * @intf: pointer to the interface descriptor 1168 * @reset_hardware: flag to erase any endpoint state stored in the 1169 * controller hardware 1170 * 1171 * Disables all the endpoints for the interface's current altsetting. 1172 */ 1173 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf, 1174 bool reset_hardware) 1175 { 1176 struct usb_host_interface *alt = intf->cur_altsetting; 1177 int i; 1178 1179 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 1180 usb_disable_endpoint(dev, 1181 alt->endpoint[i].desc.bEndpointAddress, 1182 reset_hardware); 1183 } 1184 } 1185 1186 /** 1187 * usb_disable_device - Disable all the endpoints for a USB device 1188 * @dev: the device whose endpoints are being disabled 1189 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. 1190 * 1191 * Disables all the device's endpoints, potentially including endpoint 0. 1192 * Deallocates hcd/hardware state for the endpoints (nuking all or most 1193 * pending urbs) and usbcore state for the interfaces, so that usbcore 1194 * must usb_set_configuration() before any interfaces could be used. 1195 */ 1196 void usb_disable_device(struct usb_device *dev, int skip_ep0) 1197 { 1198 int i; 1199 1200 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__, 1201 skip_ep0 ? "non-ep0" : "all"); 1202 for (i = skip_ep0; i < 16; ++i) { 1203 usb_disable_endpoint(dev, i, true); 1204 usb_disable_endpoint(dev, i + USB_DIR_IN, true); 1205 } 1206 1207 /* getting rid of interfaces will disconnect 1208 * any drivers bound to them (a key side effect) 1209 */ 1210 if (dev->actconfig) { 1211 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1212 struct usb_interface *interface; 1213 1214 /* remove this interface if it has been registered */ 1215 interface = dev->actconfig->interface[i]; 1216 if (!device_is_registered(&interface->dev)) 1217 continue; 1218 dev_dbg(&dev->dev, "unregistering interface %s\n", 1219 dev_name(&interface->dev)); 1220 interface->unregistering = 1; 1221 remove_intf_ep_devs(interface); 1222 device_del(&interface->dev); 1223 } 1224 1225 /* Now that the interfaces are unbound, nobody should 1226 * try to access them. 1227 */ 1228 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1229 put_device(&dev->actconfig->interface[i]->dev); 1230 dev->actconfig->interface[i] = NULL; 1231 } 1232 dev->actconfig = NULL; 1233 if (dev->state == USB_STATE_CONFIGURED) 1234 usb_set_device_state(dev, USB_STATE_ADDRESS); 1235 } 1236 } 1237 1238 /** 1239 * usb_enable_endpoint - Enable an endpoint for USB communications 1240 * @dev: the device whose interface is being enabled 1241 * @ep: the endpoint 1242 * @reset_ep: flag to reset the endpoint state 1243 * 1244 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers. 1245 * For control endpoints, both the input and output sides are handled. 1246 */ 1247 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep, 1248 bool reset_ep) 1249 { 1250 int epnum = usb_endpoint_num(&ep->desc); 1251 int is_out = usb_endpoint_dir_out(&ep->desc); 1252 int is_control = usb_endpoint_xfer_control(&ep->desc); 1253 1254 if (reset_ep) 1255 usb_hcd_reset_endpoint(dev, ep); 1256 if (is_out || is_control) 1257 dev->ep_out[epnum] = ep; 1258 if (!is_out || is_control) 1259 dev->ep_in[epnum] = ep; 1260 ep->enabled = 1; 1261 } 1262 1263 /** 1264 * usb_enable_interface - Enable all the endpoints for an interface 1265 * @dev: the device whose interface is being enabled 1266 * @intf: pointer to the interface descriptor 1267 * @reset_eps: flag to reset the endpoints' state 1268 * 1269 * Enables all the endpoints for the interface's current altsetting. 1270 */ 1271 void usb_enable_interface(struct usb_device *dev, 1272 struct usb_interface *intf, bool reset_eps) 1273 { 1274 struct usb_host_interface *alt = intf->cur_altsetting; 1275 int i; 1276 1277 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1278 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps); 1279 } 1280 1281 /** 1282 * usb_set_interface - Makes a particular alternate setting be current 1283 * @dev: the device whose interface is being updated 1284 * @interface: the interface being updated 1285 * @alternate: the setting being chosen. 1286 * Context: !in_interrupt () 1287 * 1288 * This is used to enable data transfers on interfaces that may not 1289 * be enabled by default. Not all devices support such configurability. 1290 * Only the driver bound to an interface may change its setting. 1291 * 1292 * Within any given configuration, each interface may have several 1293 * alternative settings. These are often used to control levels of 1294 * bandwidth consumption. For example, the default setting for a high 1295 * speed interrupt endpoint may not send more than 64 bytes per microframe, 1296 * while interrupt transfers of up to 3KBytes per microframe are legal. 1297 * Also, isochronous endpoints may never be part of an 1298 * interface's default setting. To access such bandwidth, alternate 1299 * interface settings must be made current. 1300 * 1301 * Note that in the Linux USB subsystem, bandwidth associated with 1302 * an endpoint in a given alternate setting is not reserved until an URB 1303 * is submitted that needs that bandwidth. Some other operating systems 1304 * allocate bandwidth early, when a configuration is chosen. 1305 * 1306 * This call is synchronous, and may not be used in an interrupt context. 1307 * Also, drivers must not change altsettings while urbs are scheduled for 1308 * endpoints in that interface; all such urbs must first be completed 1309 * (perhaps forced by unlinking). 1310 * 1311 * Returns zero on success, or else the status code returned by the 1312 * underlying usb_control_msg() call. 1313 */ 1314 int usb_set_interface(struct usb_device *dev, int interface, int alternate) 1315 { 1316 struct usb_interface *iface; 1317 struct usb_host_interface *alt; 1318 int ret; 1319 int manual = 0; 1320 unsigned int epaddr; 1321 unsigned int pipe; 1322 1323 if (dev->state == USB_STATE_SUSPENDED) 1324 return -EHOSTUNREACH; 1325 1326 iface = usb_ifnum_to_if(dev, interface); 1327 if (!iface) { 1328 dev_dbg(&dev->dev, "selecting invalid interface %d\n", 1329 interface); 1330 return -EINVAL; 1331 } 1332 1333 alt = usb_altnum_to_altsetting(iface, alternate); 1334 if (!alt) { 1335 dev_warn(&dev->dev, "selecting invalid altsetting %d", 1336 alternate); 1337 return -EINVAL; 1338 } 1339 1340 if (dev->quirks & USB_QUIRK_NO_SET_INTF) 1341 ret = -EPIPE; 1342 else 1343 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1344 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE, 1345 alternate, interface, NULL, 0, 5000); 1346 1347 /* 9.4.10 says devices don't need this and are free to STALL the 1348 * request if the interface only has one alternate setting. 1349 */ 1350 if (ret == -EPIPE && iface->num_altsetting == 1) { 1351 dev_dbg(&dev->dev, 1352 "manual set_interface for iface %d, alt %d\n", 1353 interface, alternate); 1354 manual = 1; 1355 } else if (ret < 0) 1356 return ret; 1357 1358 /* FIXME drivers shouldn't need to replicate/bugfix the logic here 1359 * when they implement async or easily-killable versions of this or 1360 * other "should-be-internal" functions (like clear_halt). 1361 * should hcd+usbcore postprocess control requests? 1362 */ 1363 1364 /* prevent submissions using previous endpoint settings */ 1365 if (iface->cur_altsetting != alt) { 1366 remove_intf_ep_devs(iface); 1367 usb_remove_sysfs_intf_files(iface); 1368 } 1369 usb_disable_interface(dev, iface, true); 1370 1371 iface->cur_altsetting = alt; 1372 1373 /* If the interface only has one altsetting and the device didn't 1374 * accept the request, we attempt to carry out the equivalent action 1375 * by manually clearing the HALT feature for each endpoint in the 1376 * new altsetting. 1377 */ 1378 if (manual) { 1379 int i; 1380 1381 for (i = 0; i < alt->desc.bNumEndpoints; i++) { 1382 epaddr = alt->endpoint[i].desc.bEndpointAddress; 1383 pipe = __create_pipe(dev, 1384 USB_ENDPOINT_NUMBER_MASK & epaddr) | 1385 (usb_endpoint_out(epaddr) ? 1386 USB_DIR_OUT : USB_DIR_IN); 1387 1388 usb_clear_halt(dev, pipe); 1389 } 1390 } 1391 1392 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting 1393 * 1394 * Note: 1395 * Despite EP0 is always present in all interfaces/AS, the list of 1396 * endpoints from the descriptor does not contain EP0. Due to its 1397 * omnipresence one might expect EP0 being considered "affected" by 1398 * any SetInterface request and hence assume toggles need to be reset. 1399 * However, EP0 toggles are re-synced for every individual transfer 1400 * during the SETUP stage - hence EP0 toggles are "don't care" here. 1401 * (Likewise, EP0 never "halts" on well designed devices.) 1402 */ 1403 usb_enable_interface(dev, iface, true); 1404 if (device_is_registered(&iface->dev)) { 1405 usb_create_sysfs_intf_files(iface); 1406 create_intf_ep_devs(iface); 1407 } 1408 return 0; 1409 } 1410 EXPORT_SYMBOL_GPL(usb_set_interface); 1411 1412 /** 1413 * usb_reset_configuration - lightweight device reset 1414 * @dev: the device whose configuration is being reset 1415 * 1416 * This issues a standard SET_CONFIGURATION request to the device using 1417 * the current configuration. The effect is to reset most USB-related 1418 * state in the device, including interface altsettings (reset to zero), 1419 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt 1420 * endpoints). Other usbcore state is unchanged, including bindings of 1421 * usb device drivers to interfaces. 1422 * 1423 * Because this affects multiple interfaces, avoid using this with composite 1424 * (multi-interface) devices. Instead, the driver for each interface may 1425 * use usb_set_interface() on the interfaces it claims. Be careful though; 1426 * some devices don't support the SET_INTERFACE request, and others won't 1427 * reset all the interface state (notably endpoint state). Resetting the whole 1428 * configuration would affect other drivers' interfaces. 1429 * 1430 * The caller must own the device lock. 1431 * 1432 * Returns zero on success, else a negative error code. 1433 */ 1434 int usb_reset_configuration(struct usb_device *dev) 1435 { 1436 int i, retval; 1437 struct usb_host_config *config; 1438 1439 if (dev->state == USB_STATE_SUSPENDED) 1440 return -EHOSTUNREACH; 1441 1442 /* caller must have locked the device and must own 1443 * the usb bus readlock (so driver bindings are stable); 1444 * calls during probe() are fine 1445 */ 1446 1447 for (i = 1; i < 16; ++i) { 1448 usb_disable_endpoint(dev, i, true); 1449 usb_disable_endpoint(dev, i + USB_DIR_IN, true); 1450 } 1451 1452 config = dev->actconfig; 1453 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1454 USB_REQ_SET_CONFIGURATION, 0, 1455 config->desc.bConfigurationValue, 0, 1456 NULL, 0, USB_CTRL_SET_TIMEOUT); 1457 if (retval < 0) 1458 return retval; 1459 1460 /* re-init hc/hcd interface/endpoint state */ 1461 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1462 struct usb_interface *intf = config->interface[i]; 1463 struct usb_host_interface *alt; 1464 1465 alt = usb_altnum_to_altsetting(intf, 0); 1466 1467 /* No altsetting 0? We'll assume the first altsetting. 1468 * We could use a GetInterface call, but if a device is 1469 * so non-compliant that it doesn't have altsetting 0 1470 * then I wouldn't trust its reply anyway. 1471 */ 1472 if (!alt) 1473 alt = &intf->altsetting[0]; 1474 1475 if (alt != intf->cur_altsetting) { 1476 remove_intf_ep_devs(intf); 1477 usb_remove_sysfs_intf_files(intf); 1478 } 1479 intf->cur_altsetting = alt; 1480 usb_enable_interface(dev, intf, true); 1481 if (device_is_registered(&intf->dev)) { 1482 usb_create_sysfs_intf_files(intf); 1483 create_intf_ep_devs(intf); 1484 } 1485 } 1486 return 0; 1487 } 1488 EXPORT_SYMBOL_GPL(usb_reset_configuration); 1489 1490 static void usb_release_interface(struct device *dev) 1491 { 1492 struct usb_interface *intf = to_usb_interface(dev); 1493 struct usb_interface_cache *intfc = 1494 altsetting_to_usb_interface_cache(intf->altsetting); 1495 1496 kref_put(&intfc->ref, usb_release_interface_cache); 1497 kfree(intf); 1498 } 1499 1500 #ifdef CONFIG_HOTPLUG 1501 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env) 1502 { 1503 struct usb_device *usb_dev; 1504 struct usb_interface *intf; 1505 struct usb_host_interface *alt; 1506 1507 intf = to_usb_interface(dev); 1508 usb_dev = interface_to_usbdev(intf); 1509 alt = intf->cur_altsetting; 1510 1511 if (add_uevent_var(env, "INTERFACE=%d/%d/%d", 1512 alt->desc.bInterfaceClass, 1513 alt->desc.bInterfaceSubClass, 1514 alt->desc.bInterfaceProtocol)) 1515 return -ENOMEM; 1516 1517 if (add_uevent_var(env, 1518 "MODALIAS=usb:" 1519 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X", 1520 le16_to_cpu(usb_dev->descriptor.idVendor), 1521 le16_to_cpu(usb_dev->descriptor.idProduct), 1522 le16_to_cpu(usb_dev->descriptor.bcdDevice), 1523 usb_dev->descriptor.bDeviceClass, 1524 usb_dev->descriptor.bDeviceSubClass, 1525 usb_dev->descriptor.bDeviceProtocol, 1526 alt->desc.bInterfaceClass, 1527 alt->desc.bInterfaceSubClass, 1528 alt->desc.bInterfaceProtocol)) 1529 return -ENOMEM; 1530 1531 return 0; 1532 } 1533 1534 #else 1535 1536 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env) 1537 { 1538 return -ENODEV; 1539 } 1540 #endif /* CONFIG_HOTPLUG */ 1541 1542 struct device_type usb_if_device_type = { 1543 .name = "usb_interface", 1544 .release = usb_release_interface, 1545 .uevent = usb_if_uevent, 1546 }; 1547 1548 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev, 1549 struct usb_host_config *config, 1550 u8 inum) 1551 { 1552 struct usb_interface_assoc_descriptor *retval = NULL; 1553 struct usb_interface_assoc_descriptor *intf_assoc; 1554 int first_intf; 1555 int last_intf; 1556 int i; 1557 1558 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) { 1559 intf_assoc = config->intf_assoc[i]; 1560 if (intf_assoc->bInterfaceCount == 0) 1561 continue; 1562 1563 first_intf = intf_assoc->bFirstInterface; 1564 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1); 1565 if (inum >= first_intf && inum <= last_intf) { 1566 if (!retval) 1567 retval = intf_assoc; 1568 else 1569 dev_err(&dev->dev, "Interface #%d referenced" 1570 " by multiple IADs\n", inum); 1571 } 1572 } 1573 1574 return retval; 1575 } 1576 1577 1578 /* 1579 * Internal function to queue a device reset 1580 * 1581 * This is initialized into the workstruct in 'struct 1582 * usb_device->reset_ws' that is launched by 1583 * message.c:usb_set_configuration() when initializing each 'struct 1584 * usb_interface'. 1585 * 1586 * It is safe to get the USB device without reference counts because 1587 * the life cycle of @iface is bound to the life cycle of @udev. Then, 1588 * this function will be ran only if @iface is alive (and before 1589 * freeing it any scheduled instances of it will have been cancelled). 1590 * 1591 * We need to set a flag (usb_dev->reset_running) because when we call 1592 * the reset, the interfaces might be unbound. The current interface 1593 * cannot try to remove the queued work as it would cause a deadlock 1594 * (you cannot remove your work from within your executing 1595 * workqueue). This flag lets it know, so that 1596 * usb_cancel_queued_reset() doesn't try to do it. 1597 * 1598 * See usb_queue_reset_device() for more details 1599 */ 1600 void __usb_queue_reset_device(struct work_struct *ws) 1601 { 1602 int rc; 1603 struct usb_interface *iface = 1604 container_of(ws, struct usb_interface, reset_ws); 1605 struct usb_device *udev = interface_to_usbdev(iface); 1606 1607 rc = usb_lock_device_for_reset(udev, iface); 1608 if (rc >= 0) { 1609 iface->reset_running = 1; 1610 usb_reset_device(udev); 1611 iface->reset_running = 0; 1612 usb_unlock_device(udev); 1613 } 1614 } 1615 1616 1617 /* 1618 * usb_set_configuration - Makes a particular device setting be current 1619 * @dev: the device whose configuration is being updated 1620 * @configuration: the configuration being chosen. 1621 * Context: !in_interrupt(), caller owns the device lock 1622 * 1623 * This is used to enable non-default device modes. Not all devices 1624 * use this kind of configurability; many devices only have one 1625 * configuration. 1626 * 1627 * @configuration is the value of the configuration to be installed. 1628 * According to the USB spec (e.g. section 9.1.1.5), configuration values 1629 * must be non-zero; a value of zero indicates that the device in 1630 * unconfigured. However some devices erroneously use 0 as one of their 1631 * configuration values. To help manage such devices, this routine will 1632 * accept @configuration = -1 as indicating the device should be put in 1633 * an unconfigured state. 1634 * 1635 * USB device configurations may affect Linux interoperability, 1636 * power consumption and the functionality available. For example, 1637 * the default configuration is limited to using 100mA of bus power, 1638 * so that when certain device functionality requires more power, 1639 * and the device is bus powered, that functionality should be in some 1640 * non-default device configuration. Other device modes may also be 1641 * reflected as configuration options, such as whether two ISDN 1642 * channels are available independently; and choosing between open 1643 * standard device protocols (like CDC) or proprietary ones. 1644 * 1645 * Note that a non-authorized device (dev->authorized == 0) will only 1646 * be put in unconfigured mode. 1647 * 1648 * Note that USB has an additional level of device configurability, 1649 * associated with interfaces. That configurability is accessed using 1650 * usb_set_interface(). 1651 * 1652 * This call is synchronous. The calling context must be able to sleep, 1653 * must own the device lock, and must not hold the driver model's USB 1654 * bus mutex; usb interface driver probe() methods cannot use this routine. 1655 * 1656 * Returns zero on success, or else the status code returned by the 1657 * underlying call that failed. On successful completion, each interface 1658 * in the original device configuration has been destroyed, and each one 1659 * in the new configuration has been probed by all relevant usb device 1660 * drivers currently known to the kernel. 1661 */ 1662 int usb_set_configuration(struct usb_device *dev, int configuration) 1663 { 1664 int i, ret; 1665 struct usb_host_config *cp = NULL; 1666 struct usb_interface **new_interfaces = NULL; 1667 int n, nintf; 1668 1669 if (dev->authorized == 0 || configuration == -1) 1670 configuration = 0; 1671 else { 1672 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) { 1673 if (dev->config[i].desc.bConfigurationValue == 1674 configuration) { 1675 cp = &dev->config[i]; 1676 break; 1677 } 1678 } 1679 } 1680 if ((!cp && configuration != 0)) 1681 return -EINVAL; 1682 1683 /* The USB spec says configuration 0 means unconfigured. 1684 * But if a device includes a configuration numbered 0, 1685 * we will accept it as a correctly configured state. 1686 * Use -1 if you really want to unconfigure the device. 1687 */ 1688 if (cp && configuration == 0) 1689 dev_warn(&dev->dev, "config 0 descriptor??\n"); 1690 1691 /* Allocate memory for new interfaces before doing anything else, 1692 * so that if we run out then nothing will have changed. */ 1693 n = nintf = 0; 1694 if (cp) { 1695 nintf = cp->desc.bNumInterfaces; 1696 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces), 1697 GFP_KERNEL); 1698 if (!new_interfaces) { 1699 dev_err(&dev->dev, "Out of memory\n"); 1700 return -ENOMEM; 1701 } 1702 1703 for (; n < nintf; ++n) { 1704 new_interfaces[n] = kzalloc( 1705 sizeof(struct usb_interface), 1706 GFP_KERNEL); 1707 if (!new_interfaces[n]) { 1708 dev_err(&dev->dev, "Out of memory\n"); 1709 ret = -ENOMEM; 1710 free_interfaces: 1711 while (--n >= 0) 1712 kfree(new_interfaces[n]); 1713 kfree(new_interfaces); 1714 return ret; 1715 } 1716 } 1717 1718 i = dev->bus_mA - cp->desc.bMaxPower * 2; 1719 if (i < 0) 1720 dev_warn(&dev->dev, "new config #%d exceeds power " 1721 "limit by %dmA\n", 1722 configuration, -i); 1723 } 1724 1725 /* Wake up the device so we can send it the Set-Config request */ 1726 ret = usb_autoresume_device(dev); 1727 if (ret) 1728 goto free_interfaces; 1729 1730 /* Make sure we have bandwidth (and available HCD resources) for this 1731 * configuration. Remove endpoints from the schedule if we're dropping 1732 * this configuration to set configuration 0. After this point, the 1733 * host controller will not allow submissions to dropped endpoints. If 1734 * this call fails, the device state is unchanged. 1735 */ 1736 if (cp) 1737 ret = usb_hcd_check_bandwidth(dev, cp, NULL); 1738 else 1739 ret = usb_hcd_check_bandwidth(dev, NULL, NULL); 1740 if (ret < 0) { 1741 usb_autosuspend_device(dev); 1742 goto free_interfaces; 1743 } 1744 1745 /* if it's already configured, clear out old state first. 1746 * getting rid of old interfaces means unbinding their drivers. 1747 */ 1748 if (dev->state != USB_STATE_ADDRESS) 1749 usb_disable_device(dev, 1); /* Skip ep0 */ 1750 1751 /* Get rid of pending async Set-Config requests for this device */ 1752 cancel_async_set_config(dev); 1753 1754 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1755 USB_REQ_SET_CONFIGURATION, 0, configuration, 0, 1756 NULL, 0, USB_CTRL_SET_TIMEOUT); 1757 if (ret < 0) { 1758 /* All the old state is gone, so what else can we do? 1759 * The device is probably useless now anyway. 1760 */ 1761 cp = NULL; 1762 } 1763 1764 dev->actconfig = cp; 1765 if (!cp) { 1766 usb_set_device_state(dev, USB_STATE_ADDRESS); 1767 usb_hcd_check_bandwidth(dev, NULL, NULL); 1768 usb_autosuspend_device(dev); 1769 goto free_interfaces; 1770 } 1771 usb_set_device_state(dev, USB_STATE_CONFIGURED); 1772 1773 /* Initialize the new interface structures and the 1774 * hc/hcd/usbcore interface/endpoint state. 1775 */ 1776 for (i = 0; i < nintf; ++i) { 1777 struct usb_interface_cache *intfc; 1778 struct usb_interface *intf; 1779 struct usb_host_interface *alt; 1780 1781 cp->interface[i] = intf = new_interfaces[i]; 1782 intfc = cp->intf_cache[i]; 1783 intf->altsetting = intfc->altsetting; 1784 intf->num_altsetting = intfc->num_altsetting; 1785 intf->intf_assoc = find_iad(dev, cp, i); 1786 kref_get(&intfc->ref); 1787 1788 alt = usb_altnum_to_altsetting(intf, 0); 1789 1790 /* No altsetting 0? We'll assume the first altsetting. 1791 * We could use a GetInterface call, but if a device is 1792 * so non-compliant that it doesn't have altsetting 0 1793 * then I wouldn't trust its reply anyway. 1794 */ 1795 if (!alt) 1796 alt = &intf->altsetting[0]; 1797 1798 intf->cur_altsetting = alt; 1799 usb_enable_interface(dev, intf, true); 1800 intf->dev.parent = &dev->dev; 1801 intf->dev.driver = NULL; 1802 intf->dev.bus = &usb_bus_type; 1803 intf->dev.type = &usb_if_device_type; 1804 intf->dev.groups = usb_interface_groups; 1805 intf->dev.dma_mask = dev->dev.dma_mask; 1806 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device); 1807 device_initialize(&intf->dev); 1808 mark_quiesced(intf); 1809 dev_set_name(&intf->dev, "%d-%s:%d.%d", 1810 dev->bus->busnum, dev->devpath, 1811 configuration, alt->desc.bInterfaceNumber); 1812 } 1813 kfree(new_interfaces); 1814 1815 if (cp->string == NULL && 1816 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS)) 1817 cp->string = usb_cache_string(dev, cp->desc.iConfiguration); 1818 1819 /* Now that all the interfaces are set up, register them 1820 * to trigger binding of drivers to interfaces. probe() 1821 * routines may install different altsettings and may 1822 * claim() any interfaces not yet bound. Many class drivers 1823 * need that: CDC, audio, video, etc. 1824 */ 1825 for (i = 0; i < nintf; ++i) { 1826 struct usb_interface *intf = cp->interface[i]; 1827 1828 dev_dbg(&dev->dev, 1829 "adding %s (config #%d, interface %d)\n", 1830 dev_name(&intf->dev), configuration, 1831 intf->cur_altsetting->desc.bInterfaceNumber); 1832 ret = device_add(&intf->dev); 1833 if (ret != 0) { 1834 dev_err(&dev->dev, "device_add(%s) --> %d\n", 1835 dev_name(&intf->dev), ret); 1836 continue; 1837 } 1838 create_intf_ep_devs(intf); 1839 } 1840 1841 usb_autosuspend_device(dev); 1842 return 0; 1843 } 1844 1845 static LIST_HEAD(set_config_list); 1846 static DEFINE_SPINLOCK(set_config_lock); 1847 1848 struct set_config_request { 1849 struct usb_device *udev; 1850 int config; 1851 struct work_struct work; 1852 struct list_head node; 1853 }; 1854 1855 /* Worker routine for usb_driver_set_configuration() */ 1856 static void driver_set_config_work(struct work_struct *work) 1857 { 1858 struct set_config_request *req = 1859 container_of(work, struct set_config_request, work); 1860 struct usb_device *udev = req->udev; 1861 1862 usb_lock_device(udev); 1863 spin_lock(&set_config_lock); 1864 list_del(&req->node); 1865 spin_unlock(&set_config_lock); 1866 1867 if (req->config >= -1) /* Is req still valid? */ 1868 usb_set_configuration(udev, req->config); 1869 usb_unlock_device(udev); 1870 usb_put_dev(udev); 1871 kfree(req); 1872 } 1873 1874 /* Cancel pending Set-Config requests for a device whose configuration 1875 * was just changed 1876 */ 1877 static void cancel_async_set_config(struct usb_device *udev) 1878 { 1879 struct set_config_request *req; 1880 1881 spin_lock(&set_config_lock); 1882 list_for_each_entry(req, &set_config_list, node) { 1883 if (req->udev == udev) 1884 req->config = -999; /* Mark as cancelled */ 1885 } 1886 spin_unlock(&set_config_lock); 1887 } 1888 1889 /** 1890 * usb_driver_set_configuration - Provide a way for drivers to change device configurations 1891 * @udev: the device whose configuration is being updated 1892 * @config: the configuration being chosen. 1893 * Context: In process context, must be able to sleep 1894 * 1895 * Device interface drivers are not allowed to change device configurations. 1896 * This is because changing configurations will destroy the interface the 1897 * driver is bound to and create new ones; it would be like a floppy-disk 1898 * driver telling the computer to replace the floppy-disk drive with a 1899 * tape drive! 1900 * 1901 * Still, in certain specialized circumstances the need may arise. This 1902 * routine gets around the normal restrictions by using a work thread to 1903 * submit the change-config request. 1904 * 1905 * Returns 0 if the request was succesfully queued, error code otherwise. 1906 * The caller has no way to know whether the queued request will eventually 1907 * succeed. 1908 */ 1909 int usb_driver_set_configuration(struct usb_device *udev, int config) 1910 { 1911 struct set_config_request *req; 1912 1913 req = kmalloc(sizeof(*req), GFP_KERNEL); 1914 if (!req) 1915 return -ENOMEM; 1916 req->udev = udev; 1917 req->config = config; 1918 INIT_WORK(&req->work, driver_set_config_work); 1919 1920 spin_lock(&set_config_lock); 1921 list_add(&req->node, &set_config_list); 1922 spin_unlock(&set_config_lock); 1923 1924 usb_get_dev(udev); 1925 schedule_work(&req->work); 1926 return 0; 1927 } 1928 EXPORT_SYMBOL_GPL(usb_driver_set_configuration); 1929