xref: /openbmc/linux/drivers/usb/core/message.c (revision f97769fd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * message.c - synchronous message handling
4  *
5  * Released under the GPLv2 only.
6  */
7 
8 #include <linux/acpi.h>
9 #include <linux/pci.h>	/* for scatterlist macros */
10 #include <linux/usb.h>
11 #include <linux/module.h>
12 #include <linux/slab.h>
13 #include <linux/mm.h>
14 #include <linux/timer.h>
15 #include <linux/ctype.h>
16 #include <linux/nls.h>
17 #include <linux/device.h>
18 #include <linux/scatterlist.h>
19 #include <linux/usb/cdc.h>
20 #include <linux/usb/quirks.h>
21 #include <linux/usb/hcd.h>	/* for usbcore internals */
22 #include <linux/usb/of.h>
23 #include <asm/byteorder.h>
24 
25 #include "usb.h"
26 
27 static void cancel_async_set_config(struct usb_device *udev);
28 
29 struct api_context {
30 	struct completion	done;
31 	int			status;
32 };
33 
34 static void usb_api_blocking_completion(struct urb *urb)
35 {
36 	struct api_context *ctx = urb->context;
37 
38 	ctx->status = urb->status;
39 	complete(&ctx->done);
40 }
41 
42 
43 /*
44  * Starts urb and waits for completion or timeout. Note that this call
45  * is NOT interruptible. Many device driver i/o requests should be
46  * interruptible and therefore these drivers should implement their
47  * own interruptible routines.
48  */
49 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
50 {
51 	struct api_context ctx;
52 	unsigned long expire;
53 	int retval;
54 
55 	init_completion(&ctx.done);
56 	urb->context = &ctx;
57 	urb->actual_length = 0;
58 	retval = usb_submit_urb(urb, GFP_NOIO);
59 	if (unlikely(retval))
60 		goto out;
61 
62 	expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
63 	if (!wait_for_completion_timeout(&ctx.done, expire)) {
64 		usb_kill_urb(urb);
65 		retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
66 
67 		dev_dbg(&urb->dev->dev,
68 			"%s timed out on ep%d%s len=%u/%u\n",
69 			current->comm,
70 			usb_endpoint_num(&urb->ep->desc),
71 			usb_urb_dir_in(urb) ? "in" : "out",
72 			urb->actual_length,
73 			urb->transfer_buffer_length);
74 	} else
75 		retval = ctx.status;
76 out:
77 	if (actual_length)
78 		*actual_length = urb->actual_length;
79 
80 	usb_free_urb(urb);
81 	return retval;
82 }
83 
84 /*-------------------------------------------------------------------*/
85 /* returns status (negative) or length (positive) */
86 static int usb_internal_control_msg(struct usb_device *usb_dev,
87 				    unsigned int pipe,
88 				    struct usb_ctrlrequest *cmd,
89 				    void *data, int len, int timeout)
90 {
91 	struct urb *urb;
92 	int retv;
93 	int length;
94 
95 	urb = usb_alloc_urb(0, GFP_NOIO);
96 	if (!urb)
97 		return -ENOMEM;
98 
99 	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
100 			     len, usb_api_blocking_completion, NULL);
101 
102 	retv = usb_start_wait_urb(urb, timeout, &length);
103 	if (retv < 0)
104 		return retv;
105 	else
106 		return length;
107 }
108 
109 /**
110  * usb_control_msg - Builds a control urb, sends it off and waits for completion
111  * @dev: pointer to the usb device to send the message to
112  * @pipe: endpoint "pipe" to send the message to
113  * @request: USB message request value
114  * @requesttype: USB message request type value
115  * @value: USB message value
116  * @index: USB message index value
117  * @data: pointer to the data to send
118  * @size: length in bytes of the data to send
119  * @timeout: time in msecs to wait for the message to complete before timing
120  *	out (if 0 the wait is forever)
121  *
122  * Context: !in_interrupt ()
123  *
124  * This function sends a simple control message to a specified endpoint and
125  * waits for the message to complete, or timeout.
126  *
127  * Don't use this function from within an interrupt context. If you need
128  * an asynchronous message, or need to send a message from within interrupt
129  * context, use usb_submit_urb(). If a thread in your driver uses this call,
130  * make sure your disconnect() method can wait for it to complete. Since you
131  * don't have a handle on the URB used, you can't cancel the request.
132  *
133  * Return: If successful, the number of bytes transferred. Otherwise, a negative
134  * error number.
135  */
136 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
137 		    __u8 requesttype, __u16 value, __u16 index, void *data,
138 		    __u16 size, int timeout)
139 {
140 	struct usb_ctrlrequest *dr;
141 	int ret;
142 
143 	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
144 	if (!dr)
145 		return -ENOMEM;
146 
147 	dr->bRequestType = requesttype;
148 	dr->bRequest = request;
149 	dr->wValue = cpu_to_le16(value);
150 	dr->wIndex = cpu_to_le16(index);
151 	dr->wLength = cpu_to_le16(size);
152 
153 	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
154 
155 	/* Linger a bit, prior to the next control message. */
156 	if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG)
157 		msleep(200);
158 
159 	kfree(dr);
160 
161 	return ret;
162 }
163 EXPORT_SYMBOL_GPL(usb_control_msg);
164 
165 /**
166  * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
167  * @usb_dev: pointer to the usb device to send the message to
168  * @pipe: endpoint "pipe" to send the message to
169  * @data: pointer to the data to send
170  * @len: length in bytes of the data to send
171  * @actual_length: pointer to a location to put the actual length transferred
172  *	in bytes
173  * @timeout: time in msecs to wait for the message to complete before
174  *	timing out (if 0 the wait is forever)
175  *
176  * Context: !in_interrupt ()
177  *
178  * This function sends a simple interrupt message to a specified endpoint and
179  * waits for the message to complete, or timeout.
180  *
181  * Don't use this function from within an interrupt context. If you need
182  * an asynchronous message, or need to send a message from within interrupt
183  * context, use usb_submit_urb() If a thread in your driver uses this call,
184  * make sure your disconnect() method can wait for it to complete. Since you
185  * don't have a handle on the URB used, you can't cancel the request.
186  *
187  * Return:
188  * If successful, 0. Otherwise a negative error number. The number of actual
189  * bytes transferred will be stored in the @actual_length parameter.
190  */
191 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
192 		      void *data, int len, int *actual_length, int timeout)
193 {
194 	return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
195 }
196 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
197 
198 /**
199  * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
200  * @usb_dev: pointer to the usb device to send the message to
201  * @pipe: endpoint "pipe" to send the message to
202  * @data: pointer to the data to send
203  * @len: length in bytes of the data to send
204  * @actual_length: pointer to a location to put the actual length transferred
205  *	in bytes
206  * @timeout: time in msecs to wait for the message to complete before
207  *	timing out (if 0 the wait is forever)
208  *
209  * Context: !in_interrupt ()
210  *
211  * This function sends a simple bulk message to a specified endpoint
212  * and waits for the message to complete, or timeout.
213  *
214  * Don't use this function from within an interrupt context. If you need
215  * an asynchronous message, or need to send a message from within interrupt
216  * context, use usb_submit_urb() If a thread in your driver uses this call,
217  * make sure your disconnect() method can wait for it to complete. Since you
218  * don't have a handle on the URB used, you can't cancel the request.
219  *
220  * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
221  * users are forced to abuse this routine by using it to submit URBs for
222  * interrupt endpoints.  We will take the liberty of creating an interrupt URB
223  * (with the default interval) if the target is an interrupt endpoint.
224  *
225  * Return:
226  * If successful, 0. Otherwise a negative error number. The number of actual
227  * bytes transferred will be stored in the @actual_length parameter.
228  *
229  */
230 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
231 		 void *data, int len, int *actual_length, int timeout)
232 {
233 	struct urb *urb;
234 	struct usb_host_endpoint *ep;
235 
236 	ep = usb_pipe_endpoint(usb_dev, pipe);
237 	if (!ep || len < 0)
238 		return -EINVAL;
239 
240 	urb = usb_alloc_urb(0, GFP_KERNEL);
241 	if (!urb)
242 		return -ENOMEM;
243 
244 	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
245 			USB_ENDPOINT_XFER_INT) {
246 		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
247 		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
248 				usb_api_blocking_completion, NULL,
249 				ep->desc.bInterval);
250 	} else
251 		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
252 				usb_api_blocking_completion, NULL);
253 
254 	return usb_start_wait_urb(urb, timeout, actual_length);
255 }
256 EXPORT_SYMBOL_GPL(usb_bulk_msg);
257 
258 /*-------------------------------------------------------------------*/
259 
260 static void sg_clean(struct usb_sg_request *io)
261 {
262 	if (io->urbs) {
263 		while (io->entries--)
264 			usb_free_urb(io->urbs[io->entries]);
265 		kfree(io->urbs);
266 		io->urbs = NULL;
267 	}
268 	io->dev = NULL;
269 }
270 
271 static void sg_complete(struct urb *urb)
272 {
273 	unsigned long flags;
274 	struct usb_sg_request *io = urb->context;
275 	int status = urb->status;
276 
277 	spin_lock_irqsave(&io->lock, flags);
278 
279 	/* In 2.5 we require hcds' endpoint queues not to progress after fault
280 	 * reports, until the completion callback (this!) returns.  That lets
281 	 * device driver code (like this routine) unlink queued urbs first,
282 	 * if it needs to, since the HC won't work on them at all.  So it's
283 	 * not possible for page N+1 to overwrite page N, and so on.
284 	 *
285 	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
286 	 * complete before the HCD can get requests away from hardware,
287 	 * though never during cleanup after a hard fault.
288 	 */
289 	if (io->status
290 			&& (io->status != -ECONNRESET
291 				|| status != -ECONNRESET)
292 			&& urb->actual_length) {
293 		dev_err(io->dev->bus->controller,
294 			"dev %s ep%d%s scatterlist error %d/%d\n",
295 			io->dev->devpath,
296 			usb_endpoint_num(&urb->ep->desc),
297 			usb_urb_dir_in(urb) ? "in" : "out",
298 			status, io->status);
299 		/* BUG (); */
300 	}
301 
302 	if (io->status == 0 && status && status != -ECONNRESET) {
303 		int i, found, retval;
304 
305 		io->status = status;
306 
307 		/* the previous urbs, and this one, completed already.
308 		 * unlink pending urbs so they won't rx/tx bad data.
309 		 * careful: unlink can sometimes be synchronous...
310 		 */
311 		spin_unlock_irqrestore(&io->lock, flags);
312 		for (i = 0, found = 0; i < io->entries; i++) {
313 			if (!io->urbs[i])
314 				continue;
315 			if (found) {
316 				usb_block_urb(io->urbs[i]);
317 				retval = usb_unlink_urb(io->urbs[i]);
318 				if (retval != -EINPROGRESS &&
319 				    retval != -ENODEV &&
320 				    retval != -EBUSY &&
321 				    retval != -EIDRM)
322 					dev_err(&io->dev->dev,
323 						"%s, unlink --> %d\n",
324 						__func__, retval);
325 			} else if (urb == io->urbs[i])
326 				found = 1;
327 		}
328 		spin_lock_irqsave(&io->lock, flags);
329 	}
330 
331 	/* on the last completion, signal usb_sg_wait() */
332 	io->bytes += urb->actual_length;
333 	io->count--;
334 	if (!io->count)
335 		complete(&io->complete);
336 
337 	spin_unlock_irqrestore(&io->lock, flags);
338 }
339 
340 
341 /**
342  * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
343  * @io: request block being initialized.  until usb_sg_wait() returns,
344  *	treat this as a pointer to an opaque block of memory,
345  * @dev: the usb device that will send or receive the data
346  * @pipe: endpoint "pipe" used to transfer the data
347  * @period: polling rate for interrupt endpoints, in frames or
348  * 	(for high speed endpoints) microframes; ignored for bulk
349  * @sg: scatterlist entries
350  * @nents: how many entries in the scatterlist
351  * @length: how many bytes to send from the scatterlist, or zero to
352  * 	send every byte identified in the list.
353  * @mem_flags: SLAB_* flags affecting memory allocations in this call
354  *
355  * This initializes a scatter/gather request, allocating resources such as
356  * I/O mappings and urb memory (except maybe memory used by USB controller
357  * drivers).
358  *
359  * The request must be issued using usb_sg_wait(), which waits for the I/O to
360  * complete (or to be canceled) and then cleans up all resources allocated by
361  * usb_sg_init().
362  *
363  * The request may be canceled with usb_sg_cancel(), either before or after
364  * usb_sg_wait() is called.
365  *
366  * Return: Zero for success, else a negative errno value.
367  */
368 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
369 		unsigned pipe, unsigned	period, struct scatterlist *sg,
370 		int nents, size_t length, gfp_t mem_flags)
371 {
372 	int i;
373 	int urb_flags;
374 	int use_sg;
375 
376 	if (!io || !dev || !sg
377 			|| usb_pipecontrol(pipe)
378 			|| usb_pipeisoc(pipe)
379 			|| nents <= 0)
380 		return -EINVAL;
381 
382 	spin_lock_init(&io->lock);
383 	io->dev = dev;
384 	io->pipe = pipe;
385 
386 	if (dev->bus->sg_tablesize > 0) {
387 		use_sg = true;
388 		io->entries = 1;
389 	} else {
390 		use_sg = false;
391 		io->entries = nents;
392 	}
393 
394 	/* initialize all the urbs we'll use */
395 	io->urbs = kmalloc_array(io->entries, sizeof(*io->urbs), mem_flags);
396 	if (!io->urbs)
397 		goto nomem;
398 
399 	urb_flags = URB_NO_INTERRUPT;
400 	if (usb_pipein(pipe))
401 		urb_flags |= URB_SHORT_NOT_OK;
402 
403 	for_each_sg(sg, sg, io->entries, i) {
404 		struct urb *urb;
405 		unsigned len;
406 
407 		urb = usb_alloc_urb(0, mem_flags);
408 		if (!urb) {
409 			io->entries = i;
410 			goto nomem;
411 		}
412 		io->urbs[i] = urb;
413 
414 		urb->dev = NULL;
415 		urb->pipe = pipe;
416 		urb->interval = period;
417 		urb->transfer_flags = urb_flags;
418 		urb->complete = sg_complete;
419 		urb->context = io;
420 		urb->sg = sg;
421 
422 		if (use_sg) {
423 			/* There is no single transfer buffer */
424 			urb->transfer_buffer = NULL;
425 			urb->num_sgs = nents;
426 
427 			/* A length of zero means transfer the whole sg list */
428 			len = length;
429 			if (len == 0) {
430 				struct scatterlist	*sg2;
431 				int			j;
432 
433 				for_each_sg(sg, sg2, nents, j)
434 					len += sg2->length;
435 			}
436 		} else {
437 			/*
438 			 * Some systems can't use DMA; they use PIO instead.
439 			 * For their sakes, transfer_buffer is set whenever
440 			 * possible.
441 			 */
442 			if (!PageHighMem(sg_page(sg)))
443 				urb->transfer_buffer = sg_virt(sg);
444 			else
445 				urb->transfer_buffer = NULL;
446 
447 			len = sg->length;
448 			if (length) {
449 				len = min_t(size_t, len, length);
450 				length -= len;
451 				if (length == 0)
452 					io->entries = i + 1;
453 			}
454 		}
455 		urb->transfer_buffer_length = len;
456 	}
457 	io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
458 
459 	/* transaction state */
460 	io->count = io->entries;
461 	io->status = 0;
462 	io->bytes = 0;
463 	init_completion(&io->complete);
464 	return 0;
465 
466 nomem:
467 	sg_clean(io);
468 	return -ENOMEM;
469 }
470 EXPORT_SYMBOL_GPL(usb_sg_init);
471 
472 /**
473  * usb_sg_wait - synchronously execute scatter/gather request
474  * @io: request block handle, as initialized with usb_sg_init().
475  * 	some fields become accessible when this call returns.
476  * Context: !in_interrupt ()
477  *
478  * This function blocks until the specified I/O operation completes.  It
479  * leverages the grouping of the related I/O requests to get good transfer
480  * rates, by queueing the requests.  At higher speeds, such queuing can
481  * significantly improve USB throughput.
482  *
483  * There are three kinds of completion for this function.
484  *
485  * (1) success, where io->status is zero.  The number of io->bytes
486  *     transferred is as requested.
487  * (2) error, where io->status is a negative errno value.  The number
488  *     of io->bytes transferred before the error is usually less
489  *     than requested, and can be nonzero.
490  * (3) cancellation, a type of error with status -ECONNRESET that
491  *     is initiated by usb_sg_cancel().
492  *
493  * When this function returns, all memory allocated through usb_sg_init() or
494  * this call will have been freed.  The request block parameter may still be
495  * passed to usb_sg_cancel(), or it may be freed.  It could also be
496  * reinitialized and then reused.
497  *
498  * Data Transfer Rates:
499  *
500  * Bulk transfers are valid for full or high speed endpoints.
501  * The best full speed data rate is 19 packets of 64 bytes each
502  * per frame, or 1216 bytes per millisecond.
503  * The best high speed data rate is 13 packets of 512 bytes each
504  * per microframe, or 52 KBytes per millisecond.
505  *
506  * The reason to use interrupt transfers through this API would most likely
507  * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
508  * could be transferred.  That capability is less useful for low or full
509  * speed interrupt endpoints, which allow at most one packet per millisecond,
510  * of at most 8 or 64 bytes (respectively).
511  *
512  * It is not necessary to call this function to reserve bandwidth for devices
513  * under an xHCI host controller, as the bandwidth is reserved when the
514  * configuration or interface alt setting is selected.
515  */
516 void usb_sg_wait(struct usb_sg_request *io)
517 {
518 	int i;
519 	int entries = io->entries;
520 
521 	/* queue the urbs.  */
522 	spin_lock_irq(&io->lock);
523 	i = 0;
524 	while (i < entries && !io->status) {
525 		int retval;
526 
527 		io->urbs[i]->dev = io->dev;
528 		spin_unlock_irq(&io->lock);
529 
530 		retval = usb_submit_urb(io->urbs[i], GFP_NOIO);
531 
532 		switch (retval) {
533 			/* maybe we retrying will recover */
534 		case -ENXIO:	/* hc didn't queue this one */
535 		case -EAGAIN:
536 		case -ENOMEM:
537 			retval = 0;
538 			yield();
539 			break;
540 
541 			/* no error? continue immediately.
542 			 *
543 			 * NOTE: to work better with UHCI (4K I/O buffer may
544 			 * need 3K of TDs) it may be good to limit how many
545 			 * URBs are queued at once; N milliseconds?
546 			 */
547 		case 0:
548 			++i;
549 			cpu_relax();
550 			break;
551 
552 			/* fail any uncompleted urbs */
553 		default:
554 			io->urbs[i]->status = retval;
555 			dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
556 				__func__, retval);
557 			usb_sg_cancel(io);
558 		}
559 		spin_lock_irq(&io->lock);
560 		if (retval && (io->status == 0 || io->status == -ECONNRESET))
561 			io->status = retval;
562 	}
563 	io->count -= entries - i;
564 	if (io->count == 0)
565 		complete(&io->complete);
566 	spin_unlock_irq(&io->lock);
567 
568 	/* OK, yes, this could be packaged as non-blocking.
569 	 * So could the submit loop above ... but it's easier to
570 	 * solve neither problem than to solve both!
571 	 */
572 	wait_for_completion(&io->complete);
573 
574 	sg_clean(io);
575 }
576 EXPORT_SYMBOL_GPL(usb_sg_wait);
577 
578 /**
579  * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
580  * @io: request block, initialized with usb_sg_init()
581  *
582  * This stops a request after it has been started by usb_sg_wait().
583  * It can also prevents one initialized by usb_sg_init() from starting,
584  * so that call just frees resources allocated to the request.
585  */
586 void usb_sg_cancel(struct usb_sg_request *io)
587 {
588 	unsigned long flags;
589 	int i, retval;
590 
591 	spin_lock_irqsave(&io->lock, flags);
592 	if (io->status || io->count == 0) {
593 		spin_unlock_irqrestore(&io->lock, flags);
594 		return;
595 	}
596 	/* shut everything down */
597 	io->status = -ECONNRESET;
598 	io->count++;		/* Keep the request alive until we're done */
599 	spin_unlock_irqrestore(&io->lock, flags);
600 
601 	for (i = io->entries - 1; i >= 0; --i) {
602 		usb_block_urb(io->urbs[i]);
603 
604 		retval = usb_unlink_urb(io->urbs[i]);
605 		if (retval != -EINPROGRESS
606 		    && retval != -ENODEV
607 		    && retval != -EBUSY
608 		    && retval != -EIDRM)
609 			dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
610 				 __func__, retval);
611 	}
612 
613 	spin_lock_irqsave(&io->lock, flags);
614 	io->count--;
615 	if (!io->count)
616 		complete(&io->complete);
617 	spin_unlock_irqrestore(&io->lock, flags);
618 }
619 EXPORT_SYMBOL_GPL(usb_sg_cancel);
620 
621 /*-------------------------------------------------------------------*/
622 
623 /**
624  * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
625  * @dev: the device whose descriptor is being retrieved
626  * @type: the descriptor type (USB_DT_*)
627  * @index: the number of the descriptor
628  * @buf: where to put the descriptor
629  * @size: how big is "buf"?
630  * Context: !in_interrupt ()
631  *
632  * Gets a USB descriptor.  Convenience functions exist to simplify
633  * getting some types of descriptors.  Use
634  * usb_get_string() or usb_string() for USB_DT_STRING.
635  * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
636  * are part of the device structure.
637  * In addition to a number of USB-standard descriptors, some
638  * devices also use class-specific or vendor-specific descriptors.
639  *
640  * This call is synchronous, and may not be used in an interrupt context.
641  *
642  * Return: The number of bytes received on success, or else the status code
643  * returned by the underlying usb_control_msg() call.
644  */
645 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
646 		       unsigned char index, void *buf, int size)
647 {
648 	int i;
649 	int result;
650 
651 	memset(buf, 0, size);	/* Make sure we parse really received data */
652 
653 	for (i = 0; i < 3; ++i) {
654 		/* retry on length 0 or error; some devices are flakey */
655 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
656 				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
657 				(type << 8) + index, 0, buf, size,
658 				USB_CTRL_GET_TIMEOUT);
659 		if (result <= 0 && result != -ETIMEDOUT)
660 			continue;
661 		if (result > 1 && ((u8 *)buf)[1] != type) {
662 			result = -ENODATA;
663 			continue;
664 		}
665 		break;
666 	}
667 	return result;
668 }
669 EXPORT_SYMBOL_GPL(usb_get_descriptor);
670 
671 /**
672  * usb_get_string - gets a string descriptor
673  * @dev: the device whose string descriptor is being retrieved
674  * @langid: code for language chosen (from string descriptor zero)
675  * @index: the number of the descriptor
676  * @buf: where to put the string
677  * @size: how big is "buf"?
678  * Context: !in_interrupt ()
679  *
680  * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
681  * in little-endian byte order).
682  * The usb_string() function will often be a convenient way to turn
683  * these strings into kernel-printable form.
684  *
685  * Strings may be referenced in device, configuration, interface, or other
686  * descriptors, and could also be used in vendor-specific ways.
687  *
688  * This call is synchronous, and may not be used in an interrupt context.
689  *
690  * Return: The number of bytes received on success, or else the status code
691  * returned by the underlying usb_control_msg() call.
692  */
693 static int usb_get_string(struct usb_device *dev, unsigned short langid,
694 			  unsigned char index, void *buf, int size)
695 {
696 	int i;
697 	int result;
698 
699 	for (i = 0; i < 3; ++i) {
700 		/* retry on length 0 or stall; some devices are flakey */
701 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
702 			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
703 			(USB_DT_STRING << 8) + index, langid, buf, size,
704 			USB_CTRL_GET_TIMEOUT);
705 		if (result == 0 || result == -EPIPE)
706 			continue;
707 		if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
708 			result = -ENODATA;
709 			continue;
710 		}
711 		break;
712 	}
713 	return result;
714 }
715 
716 static void usb_try_string_workarounds(unsigned char *buf, int *length)
717 {
718 	int newlength, oldlength = *length;
719 
720 	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
721 		if (!isprint(buf[newlength]) || buf[newlength + 1])
722 			break;
723 
724 	if (newlength > 2) {
725 		buf[0] = newlength;
726 		*length = newlength;
727 	}
728 }
729 
730 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
731 			  unsigned int index, unsigned char *buf)
732 {
733 	int rc;
734 
735 	/* Try to read the string descriptor by asking for the maximum
736 	 * possible number of bytes */
737 	if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
738 		rc = -EIO;
739 	else
740 		rc = usb_get_string(dev, langid, index, buf, 255);
741 
742 	/* If that failed try to read the descriptor length, then
743 	 * ask for just that many bytes */
744 	if (rc < 2) {
745 		rc = usb_get_string(dev, langid, index, buf, 2);
746 		if (rc == 2)
747 			rc = usb_get_string(dev, langid, index, buf, buf[0]);
748 	}
749 
750 	if (rc >= 2) {
751 		if (!buf[0] && !buf[1])
752 			usb_try_string_workarounds(buf, &rc);
753 
754 		/* There might be extra junk at the end of the descriptor */
755 		if (buf[0] < rc)
756 			rc = buf[0];
757 
758 		rc = rc - (rc & 1); /* force a multiple of two */
759 	}
760 
761 	if (rc < 2)
762 		rc = (rc < 0 ? rc : -EINVAL);
763 
764 	return rc;
765 }
766 
767 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
768 {
769 	int err;
770 
771 	if (dev->have_langid)
772 		return 0;
773 
774 	if (dev->string_langid < 0)
775 		return -EPIPE;
776 
777 	err = usb_string_sub(dev, 0, 0, tbuf);
778 
779 	/* If the string was reported but is malformed, default to english
780 	 * (0x0409) */
781 	if (err == -ENODATA || (err > 0 && err < 4)) {
782 		dev->string_langid = 0x0409;
783 		dev->have_langid = 1;
784 		dev_err(&dev->dev,
785 			"language id specifier not provided by device, defaulting to English\n");
786 		return 0;
787 	}
788 
789 	/* In case of all other errors, we assume the device is not able to
790 	 * deal with strings at all. Set string_langid to -1 in order to
791 	 * prevent any string to be retrieved from the device */
792 	if (err < 0) {
793 		dev_info(&dev->dev, "string descriptor 0 read error: %d\n",
794 					err);
795 		dev->string_langid = -1;
796 		return -EPIPE;
797 	}
798 
799 	/* always use the first langid listed */
800 	dev->string_langid = tbuf[2] | (tbuf[3] << 8);
801 	dev->have_langid = 1;
802 	dev_dbg(&dev->dev, "default language 0x%04x\n",
803 				dev->string_langid);
804 	return 0;
805 }
806 
807 /**
808  * usb_string - returns UTF-8 version of a string descriptor
809  * @dev: the device whose string descriptor is being retrieved
810  * @index: the number of the descriptor
811  * @buf: where to put the string
812  * @size: how big is "buf"?
813  * Context: !in_interrupt ()
814  *
815  * This converts the UTF-16LE encoded strings returned by devices, from
816  * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
817  * that are more usable in most kernel contexts.  Note that this function
818  * chooses strings in the first language supported by the device.
819  *
820  * This call is synchronous, and may not be used in an interrupt context.
821  *
822  * Return: length of the string (>= 0) or usb_control_msg status (< 0).
823  */
824 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
825 {
826 	unsigned char *tbuf;
827 	int err;
828 
829 	if (dev->state == USB_STATE_SUSPENDED)
830 		return -EHOSTUNREACH;
831 	if (size <= 0 || !buf)
832 		return -EINVAL;
833 	buf[0] = 0;
834 	if (index <= 0 || index >= 256)
835 		return -EINVAL;
836 	tbuf = kmalloc(256, GFP_NOIO);
837 	if (!tbuf)
838 		return -ENOMEM;
839 
840 	err = usb_get_langid(dev, tbuf);
841 	if (err < 0)
842 		goto errout;
843 
844 	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
845 	if (err < 0)
846 		goto errout;
847 
848 	size--;		/* leave room for trailing NULL char in output buffer */
849 	err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
850 			UTF16_LITTLE_ENDIAN, buf, size);
851 	buf[err] = 0;
852 
853 	if (tbuf[1] != USB_DT_STRING)
854 		dev_dbg(&dev->dev,
855 			"wrong descriptor type %02x for string %d (\"%s\")\n",
856 			tbuf[1], index, buf);
857 
858  errout:
859 	kfree(tbuf);
860 	return err;
861 }
862 EXPORT_SYMBOL_GPL(usb_string);
863 
864 /* one UTF-8-encoded 16-bit character has at most three bytes */
865 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
866 
867 /**
868  * usb_cache_string - read a string descriptor and cache it for later use
869  * @udev: the device whose string descriptor is being read
870  * @index: the descriptor index
871  *
872  * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
873  * or %NULL if the index is 0 or the string could not be read.
874  */
875 char *usb_cache_string(struct usb_device *udev, int index)
876 {
877 	char *buf;
878 	char *smallbuf = NULL;
879 	int len;
880 
881 	if (index <= 0)
882 		return NULL;
883 
884 	buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
885 	if (buf) {
886 		len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
887 		if (len > 0) {
888 			smallbuf = kmalloc(++len, GFP_NOIO);
889 			if (!smallbuf)
890 				return buf;
891 			memcpy(smallbuf, buf, len);
892 		}
893 		kfree(buf);
894 	}
895 	return smallbuf;
896 }
897 
898 /*
899  * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
900  * @dev: the device whose device descriptor is being updated
901  * @size: how much of the descriptor to read
902  * Context: !in_interrupt ()
903  *
904  * Updates the copy of the device descriptor stored in the device structure,
905  * which dedicates space for this purpose.
906  *
907  * Not exported, only for use by the core.  If drivers really want to read
908  * the device descriptor directly, they can call usb_get_descriptor() with
909  * type = USB_DT_DEVICE and index = 0.
910  *
911  * This call is synchronous, and may not be used in an interrupt context.
912  *
913  * Return: The number of bytes received on success, or else the status code
914  * returned by the underlying usb_control_msg() call.
915  */
916 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
917 {
918 	struct usb_device_descriptor *desc;
919 	int ret;
920 
921 	if (size > sizeof(*desc))
922 		return -EINVAL;
923 	desc = kmalloc(sizeof(*desc), GFP_NOIO);
924 	if (!desc)
925 		return -ENOMEM;
926 
927 	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
928 	if (ret >= 0)
929 		memcpy(&dev->descriptor, desc, size);
930 	kfree(desc);
931 	return ret;
932 }
933 
934 /*
935  * usb_set_isoch_delay - informs the device of the packet transmit delay
936  * @dev: the device whose delay is to be informed
937  * Context: !in_interrupt()
938  *
939  * Since this is an optional request, we don't bother if it fails.
940  */
941 int usb_set_isoch_delay(struct usb_device *dev)
942 {
943 	/* skip hub devices */
944 	if (dev->descriptor.bDeviceClass == USB_CLASS_HUB)
945 		return 0;
946 
947 	/* skip non-SS/non-SSP devices */
948 	if (dev->speed < USB_SPEED_SUPER)
949 		return 0;
950 
951 	return usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
952 			USB_REQ_SET_ISOCH_DELAY,
953 			USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE,
954 			dev->hub_delay, 0, NULL, 0,
955 			USB_CTRL_SET_TIMEOUT);
956 }
957 
958 /**
959  * usb_get_status - issues a GET_STATUS call
960  * @dev: the device whose status is being checked
961  * @recip: USB_RECIP_*; for device, interface, or endpoint
962  * @type: USB_STATUS_TYPE_*; for standard or PTM status types
963  * @target: zero (for device), else interface or endpoint number
964  * @data: pointer to two bytes of bitmap data
965  * Context: !in_interrupt ()
966  *
967  * Returns device, interface, or endpoint status.  Normally only of
968  * interest to see if the device is self powered, or has enabled the
969  * remote wakeup facility; or whether a bulk or interrupt endpoint
970  * is halted ("stalled").
971  *
972  * Bits in these status bitmaps are set using the SET_FEATURE request,
973  * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
974  * function should be used to clear halt ("stall") status.
975  *
976  * This call is synchronous, and may not be used in an interrupt context.
977  *
978  * Returns 0 and the status value in *@data (in host byte order) on success,
979  * or else the status code from the underlying usb_control_msg() call.
980  */
981 int usb_get_status(struct usb_device *dev, int recip, int type, int target,
982 		void *data)
983 {
984 	int ret;
985 	void *status;
986 	int length;
987 
988 	switch (type) {
989 	case USB_STATUS_TYPE_STANDARD:
990 		length = 2;
991 		break;
992 	case USB_STATUS_TYPE_PTM:
993 		if (recip != USB_RECIP_DEVICE)
994 			return -EINVAL;
995 
996 		length = 4;
997 		break;
998 	default:
999 		return -EINVAL;
1000 	}
1001 
1002 	status =  kmalloc(length, GFP_KERNEL);
1003 	if (!status)
1004 		return -ENOMEM;
1005 
1006 	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
1007 		USB_REQ_GET_STATUS, USB_DIR_IN | recip, USB_STATUS_TYPE_STANDARD,
1008 		target, status, length, USB_CTRL_GET_TIMEOUT);
1009 
1010 	switch (ret) {
1011 	case 4:
1012 		if (type != USB_STATUS_TYPE_PTM) {
1013 			ret = -EIO;
1014 			break;
1015 		}
1016 
1017 		*(u32 *) data = le32_to_cpu(*(__le32 *) status);
1018 		ret = 0;
1019 		break;
1020 	case 2:
1021 		if (type != USB_STATUS_TYPE_STANDARD) {
1022 			ret = -EIO;
1023 			break;
1024 		}
1025 
1026 		*(u16 *) data = le16_to_cpu(*(__le16 *) status);
1027 		ret = 0;
1028 		break;
1029 	default:
1030 		ret = -EIO;
1031 	}
1032 
1033 	kfree(status);
1034 	return ret;
1035 }
1036 EXPORT_SYMBOL_GPL(usb_get_status);
1037 
1038 /**
1039  * usb_clear_halt - tells device to clear endpoint halt/stall condition
1040  * @dev: device whose endpoint is halted
1041  * @pipe: endpoint "pipe" being cleared
1042  * Context: !in_interrupt ()
1043  *
1044  * This is used to clear halt conditions for bulk and interrupt endpoints,
1045  * as reported by URB completion status.  Endpoints that are halted are
1046  * sometimes referred to as being "stalled".  Such endpoints are unable
1047  * to transmit or receive data until the halt status is cleared.  Any URBs
1048  * queued for such an endpoint should normally be unlinked by the driver
1049  * before clearing the halt condition, as described in sections 5.7.5
1050  * and 5.8.5 of the USB 2.0 spec.
1051  *
1052  * Note that control and isochronous endpoints don't halt, although control
1053  * endpoints report "protocol stall" (for unsupported requests) using the
1054  * same status code used to report a true stall.
1055  *
1056  * This call is synchronous, and may not be used in an interrupt context.
1057  *
1058  * Return: Zero on success, or else the status code returned by the
1059  * underlying usb_control_msg() call.
1060  */
1061 int usb_clear_halt(struct usb_device *dev, int pipe)
1062 {
1063 	int result;
1064 	int endp = usb_pipeendpoint(pipe);
1065 
1066 	if (usb_pipein(pipe))
1067 		endp |= USB_DIR_IN;
1068 
1069 	/* we don't care if it wasn't halted first. in fact some devices
1070 	 * (like some ibmcam model 1 units) seem to expect hosts to make
1071 	 * this request for iso endpoints, which can't halt!
1072 	 */
1073 	result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1074 		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1075 		USB_ENDPOINT_HALT, endp, NULL, 0,
1076 		USB_CTRL_SET_TIMEOUT);
1077 
1078 	/* don't un-halt or force to DATA0 except on success */
1079 	if (result < 0)
1080 		return result;
1081 
1082 	/* NOTE:  seems like Microsoft and Apple don't bother verifying
1083 	 * the clear "took", so some devices could lock up if you check...
1084 	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
1085 	 *
1086 	 * NOTE:  make sure the logic here doesn't diverge much from
1087 	 * the copy in usb-storage, for as long as we need two copies.
1088 	 */
1089 
1090 	usb_reset_endpoint(dev, endp);
1091 
1092 	return 0;
1093 }
1094 EXPORT_SYMBOL_GPL(usb_clear_halt);
1095 
1096 static int create_intf_ep_devs(struct usb_interface *intf)
1097 {
1098 	struct usb_device *udev = interface_to_usbdev(intf);
1099 	struct usb_host_interface *alt = intf->cur_altsetting;
1100 	int i;
1101 
1102 	if (intf->ep_devs_created || intf->unregistering)
1103 		return 0;
1104 
1105 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1106 		(void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1107 	intf->ep_devs_created = 1;
1108 	return 0;
1109 }
1110 
1111 static void remove_intf_ep_devs(struct usb_interface *intf)
1112 {
1113 	struct usb_host_interface *alt = intf->cur_altsetting;
1114 	int i;
1115 
1116 	if (!intf->ep_devs_created)
1117 		return;
1118 
1119 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1120 		usb_remove_ep_devs(&alt->endpoint[i]);
1121 	intf->ep_devs_created = 0;
1122 }
1123 
1124 /**
1125  * usb_disable_endpoint -- Disable an endpoint by address
1126  * @dev: the device whose endpoint is being disabled
1127  * @epaddr: the endpoint's address.  Endpoint number for output,
1128  *	endpoint number + USB_DIR_IN for input
1129  * @reset_hardware: flag to erase any endpoint state stored in the
1130  *	controller hardware
1131  *
1132  * Disables the endpoint for URB submission and nukes all pending URBs.
1133  * If @reset_hardware is set then also deallocates hcd/hardware state
1134  * for the endpoint.
1135  */
1136 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1137 		bool reset_hardware)
1138 {
1139 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1140 	struct usb_host_endpoint *ep;
1141 
1142 	if (!dev)
1143 		return;
1144 
1145 	if (usb_endpoint_out(epaddr)) {
1146 		ep = dev->ep_out[epnum];
1147 		if (reset_hardware && epnum != 0)
1148 			dev->ep_out[epnum] = NULL;
1149 	} else {
1150 		ep = dev->ep_in[epnum];
1151 		if (reset_hardware && epnum != 0)
1152 			dev->ep_in[epnum] = NULL;
1153 	}
1154 	if (ep) {
1155 		ep->enabled = 0;
1156 		usb_hcd_flush_endpoint(dev, ep);
1157 		if (reset_hardware)
1158 			usb_hcd_disable_endpoint(dev, ep);
1159 	}
1160 }
1161 
1162 /**
1163  * usb_reset_endpoint - Reset an endpoint's state.
1164  * @dev: the device whose endpoint is to be reset
1165  * @epaddr: the endpoint's address.  Endpoint number for output,
1166  *	endpoint number + USB_DIR_IN for input
1167  *
1168  * Resets any host-side endpoint state such as the toggle bit,
1169  * sequence number or current window.
1170  */
1171 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1172 {
1173 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1174 	struct usb_host_endpoint *ep;
1175 
1176 	if (usb_endpoint_out(epaddr))
1177 		ep = dev->ep_out[epnum];
1178 	else
1179 		ep = dev->ep_in[epnum];
1180 	if (ep)
1181 		usb_hcd_reset_endpoint(dev, ep);
1182 }
1183 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1184 
1185 
1186 /**
1187  * usb_disable_interface -- Disable all endpoints for an interface
1188  * @dev: the device whose interface is being disabled
1189  * @intf: pointer to the interface descriptor
1190  * @reset_hardware: flag to erase any endpoint state stored in the
1191  *	controller hardware
1192  *
1193  * Disables all the endpoints for the interface's current altsetting.
1194  */
1195 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1196 		bool reset_hardware)
1197 {
1198 	struct usb_host_interface *alt = intf->cur_altsetting;
1199 	int i;
1200 
1201 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1202 		usb_disable_endpoint(dev,
1203 				alt->endpoint[i].desc.bEndpointAddress,
1204 				reset_hardware);
1205 	}
1206 }
1207 
1208 /*
1209  * usb_disable_device_endpoints -- Disable all endpoints for a device
1210  * @dev: the device whose endpoints are being disabled
1211  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1212  */
1213 static void usb_disable_device_endpoints(struct usb_device *dev, int skip_ep0)
1214 {
1215 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1216 	int i;
1217 
1218 	if (hcd->driver->check_bandwidth) {
1219 		/* First pass: Cancel URBs, leave endpoint pointers intact. */
1220 		for (i = skip_ep0; i < 16; ++i) {
1221 			usb_disable_endpoint(dev, i, false);
1222 			usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1223 		}
1224 		/* Remove endpoints from the host controller internal state */
1225 		mutex_lock(hcd->bandwidth_mutex);
1226 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1227 		mutex_unlock(hcd->bandwidth_mutex);
1228 	}
1229 	/* Second pass: remove endpoint pointers */
1230 	for (i = skip_ep0; i < 16; ++i) {
1231 		usb_disable_endpoint(dev, i, true);
1232 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1233 	}
1234 }
1235 
1236 /**
1237  * usb_disable_device - Disable all the endpoints for a USB device
1238  * @dev: the device whose endpoints are being disabled
1239  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1240  *
1241  * Disables all the device's endpoints, potentially including endpoint 0.
1242  * Deallocates hcd/hardware state for the endpoints (nuking all or most
1243  * pending urbs) and usbcore state for the interfaces, so that usbcore
1244  * must usb_set_configuration() before any interfaces could be used.
1245  */
1246 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1247 {
1248 	int i;
1249 
1250 	/* getting rid of interfaces will disconnect
1251 	 * any drivers bound to them (a key side effect)
1252 	 */
1253 	if (dev->actconfig) {
1254 		/*
1255 		 * FIXME: In order to avoid self-deadlock involving the
1256 		 * bandwidth_mutex, we have to mark all the interfaces
1257 		 * before unregistering any of them.
1258 		 */
1259 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1260 			dev->actconfig->interface[i]->unregistering = 1;
1261 
1262 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1263 			struct usb_interface	*interface;
1264 
1265 			/* remove this interface if it has been registered */
1266 			interface = dev->actconfig->interface[i];
1267 			if (!device_is_registered(&interface->dev))
1268 				continue;
1269 			dev_dbg(&dev->dev, "unregistering interface %s\n",
1270 				dev_name(&interface->dev));
1271 			remove_intf_ep_devs(interface);
1272 			device_del(&interface->dev);
1273 		}
1274 
1275 		/* Now that the interfaces are unbound, nobody should
1276 		 * try to access them.
1277 		 */
1278 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1279 			put_device(&dev->actconfig->interface[i]->dev);
1280 			dev->actconfig->interface[i] = NULL;
1281 		}
1282 
1283 		usb_disable_usb2_hardware_lpm(dev);
1284 		usb_unlocked_disable_lpm(dev);
1285 		usb_disable_ltm(dev);
1286 
1287 		dev->actconfig = NULL;
1288 		if (dev->state == USB_STATE_CONFIGURED)
1289 			usb_set_device_state(dev, USB_STATE_ADDRESS);
1290 	}
1291 
1292 	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1293 		skip_ep0 ? "non-ep0" : "all");
1294 
1295 	usb_disable_device_endpoints(dev, skip_ep0);
1296 }
1297 
1298 /**
1299  * usb_enable_endpoint - Enable an endpoint for USB communications
1300  * @dev: the device whose interface is being enabled
1301  * @ep: the endpoint
1302  * @reset_ep: flag to reset the endpoint state
1303  *
1304  * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1305  * For control endpoints, both the input and output sides are handled.
1306  */
1307 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1308 		bool reset_ep)
1309 {
1310 	int epnum = usb_endpoint_num(&ep->desc);
1311 	int is_out = usb_endpoint_dir_out(&ep->desc);
1312 	int is_control = usb_endpoint_xfer_control(&ep->desc);
1313 
1314 	if (reset_ep)
1315 		usb_hcd_reset_endpoint(dev, ep);
1316 	if (is_out || is_control)
1317 		dev->ep_out[epnum] = ep;
1318 	if (!is_out || is_control)
1319 		dev->ep_in[epnum] = ep;
1320 	ep->enabled = 1;
1321 }
1322 
1323 /**
1324  * usb_enable_interface - Enable all the endpoints for an interface
1325  * @dev: the device whose interface is being enabled
1326  * @intf: pointer to the interface descriptor
1327  * @reset_eps: flag to reset the endpoints' state
1328  *
1329  * Enables all the endpoints for the interface's current altsetting.
1330  */
1331 void usb_enable_interface(struct usb_device *dev,
1332 		struct usb_interface *intf, bool reset_eps)
1333 {
1334 	struct usb_host_interface *alt = intf->cur_altsetting;
1335 	int i;
1336 
1337 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1338 		usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1339 }
1340 
1341 /**
1342  * usb_set_interface - Makes a particular alternate setting be current
1343  * @dev: the device whose interface is being updated
1344  * @interface: the interface being updated
1345  * @alternate: the setting being chosen.
1346  * Context: !in_interrupt ()
1347  *
1348  * This is used to enable data transfers on interfaces that may not
1349  * be enabled by default.  Not all devices support such configurability.
1350  * Only the driver bound to an interface may change its setting.
1351  *
1352  * Within any given configuration, each interface may have several
1353  * alternative settings.  These are often used to control levels of
1354  * bandwidth consumption.  For example, the default setting for a high
1355  * speed interrupt endpoint may not send more than 64 bytes per microframe,
1356  * while interrupt transfers of up to 3KBytes per microframe are legal.
1357  * Also, isochronous endpoints may never be part of an
1358  * interface's default setting.  To access such bandwidth, alternate
1359  * interface settings must be made current.
1360  *
1361  * Note that in the Linux USB subsystem, bandwidth associated with
1362  * an endpoint in a given alternate setting is not reserved until an URB
1363  * is submitted that needs that bandwidth.  Some other operating systems
1364  * allocate bandwidth early, when a configuration is chosen.
1365  *
1366  * xHCI reserves bandwidth and configures the alternate setting in
1367  * usb_hcd_alloc_bandwidth(). If it fails the original interface altsetting
1368  * may be disabled. Drivers cannot rely on any particular alternate
1369  * setting being in effect after a failure.
1370  *
1371  * This call is synchronous, and may not be used in an interrupt context.
1372  * Also, drivers must not change altsettings while urbs are scheduled for
1373  * endpoints in that interface; all such urbs must first be completed
1374  * (perhaps forced by unlinking).
1375  *
1376  * Return: Zero on success, or else the status code returned by the
1377  * underlying usb_control_msg() call.
1378  */
1379 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1380 {
1381 	struct usb_interface *iface;
1382 	struct usb_host_interface *alt;
1383 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1384 	int i, ret, manual = 0;
1385 	unsigned int epaddr;
1386 	unsigned int pipe;
1387 
1388 	if (dev->state == USB_STATE_SUSPENDED)
1389 		return -EHOSTUNREACH;
1390 
1391 	iface = usb_ifnum_to_if(dev, interface);
1392 	if (!iface) {
1393 		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1394 			interface);
1395 		return -EINVAL;
1396 	}
1397 	if (iface->unregistering)
1398 		return -ENODEV;
1399 
1400 	alt = usb_altnum_to_altsetting(iface, alternate);
1401 	if (!alt) {
1402 		dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1403 			 alternate);
1404 		return -EINVAL;
1405 	}
1406 	/*
1407 	 * usb3 hosts configure the interface in usb_hcd_alloc_bandwidth,
1408 	 * including freeing dropped endpoint ring buffers.
1409 	 * Make sure the interface endpoints are flushed before that
1410 	 */
1411 	usb_disable_interface(dev, iface, false);
1412 
1413 	/* Make sure we have enough bandwidth for this alternate interface.
1414 	 * Remove the current alt setting and add the new alt setting.
1415 	 */
1416 	mutex_lock(hcd->bandwidth_mutex);
1417 	/* Disable LPM, and re-enable it once the new alt setting is installed,
1418 	 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1419 	 */
1420 	if (usb_disable_lpm(dev)) {
1421 		dev_err(&iface->dev, "%s Failed to disable LPM\n", __func__);
1422 		mutex_unlock(hcd->bandwidth_mutex);
1423 		return -ENOMEM;
1424 	}
1425 	/* Changing alt-setting also frees any allocated streams */
1426 	for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1427 		iface->cur_altsetting->endpoint[i].streams = 0;
1428 
1429 	ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1430 	if (ret < 0) {
1431 		dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1432 				alternate);
1433 		usb_enable_lpm(dev);
1434 		mutex_unlock(hcd->bandwidth_mutex);
1435 		return ret;
1436 	}
1437 
1438 	if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1439 		ret = -EPIPE;
1440 	else
1441 		ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1442 				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1443 				   alternate, interface, NULL, 0, 5000);
1444 
1445 	/* 9.4.10 says devices don't need this and are free to STALL the
1446 	 * request if the interface only has one alternate setting.
1447 	 */
1448 	if (ret == -EPIPE && iface->num_altsetting == 1) {
1449 		dev_dbg(&dev->dev,
1450 			"manual set_interface for iface %d, alt %d\n",
1451 			interface, alternate);
1452 		manual = 1;
1453 	} else if (ret < 0) {
1454 		/* Re-instate the old alt setting */
1455 		usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1456 		usb_enable_lpm(dev);
1457 		mutex_unlock(hcd->bandwidth_mutex);
1458 		return ret;
1459 	}
1460 	mutex_unlock(hcd->bandwidth_mutex);
1461 
1462 	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1463 	 * when they implement async or easily-killable versions of this or
1464 	 * other "should-be-internal" functions (like clear_halt).
1465 	 * should hcd+usbcore postprocess control requests?
1466 	 */
1467 
1468 	/* prevent submissions using previous endpoint settings */
1469 	if (iface->cur_altsetting != alt) {
1470 		remove_intf_ep_devs(iface);
1471 		usb_remove_sysfs_intf_files(iface);
1472 	}
1473 	usb_disable_interface(dev, iface, true);
1474 
1475 	iface->cur_altsetting = alt;
1476 
1477 	/* Now that the interface is installed, re-enable LPM. */
1478 	usb_unlocked_enable_lpm(dev);
1479 
1480 	/* If the interface only has one altsetting and the device didn't
1481 	 * accept the request, we attempt to carry out the equivalent action
1482 	 * by manually clearing the HALT feature for each endpoint in the
1483 	 * new altsetting.
1484 	 */
1485 	if (manual) {
1486 		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1487 			epaddr = alt->endpoint[i].desc.bEndpointAddress;
1488 			pipe = __create_pipe(dev,
1489 					USB_ENDPOINT_NUMBER_MASK & epaddr) |
1490 					(usb_endpoint_out(epaddr) ?
1491 					USB_DIR_OUT : USB_DIR_IN);
1492 
1493 			usb_clear_halt(dev, pipe);
1494 		}
1495 	}
1496 
1497 	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1498 	 *
1499 	 * Note:
1500 	 * Despite EP0 is always present in all interfaces/AS, the list of
1501 	 * endpoints from the descriptor does not contain EP0. Due to its
1502 	 * omnipresence one might expect EP0 being considered "affected" by
1503 	 * any SetInterface request and hence assume toggles need to be reset.
1504 	 * However, EP0 toggles are re-synced for every individual transfer
1505 	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1506 	 * (Likewise, EP0 never "halts" on well designed devices.)
1507 	 */
1508 	usb_enable_interface(dev, iface, true);
1509 	if (device_is_registered(&iface->dev)) {
1510 		usb_create_sysfs_intf_files(iface);
1511 		create_intf_ep_devs(iface);
1512 	}
1513 	return 0;
1514 }
1515 EXPORT_SYMBOL_GPL(usb_set_interface);
1516 
1517 /**
1518  * usb_reset_configuration - lightweight device reset
1519  * @dev: the device whose configuration is being reset
1520  *
1521  * This issues a standard SET_CONFIGURATION request to the device using
1522  * the current configuration.  The effect is to reset most USB-related
1523  * state in the device, including interface altsettings (reset to zero),
1524  * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1525  * endpoints).  Other usbcore state is unchanged, including bindings of
1526  * usb device drivers to interfaces.
1527  *
1528  * Because this affects multiple interfaces, avoid using this with composite
1529  * (multi-interface) devices.  Instead, the driver for each interface may
1530  * use usb_set_interface() on the interfaces it claims.  Be careful though;
1531  * some devices don't support the SET_INTERFACE request, and others won't
1532  * reset all the interface state (notably endpoint state).  Resetting the whole
1533  * configuration would affect other drivers' interfaces.
1534  *
1535  * The caller must own the device lock.
1536  *
1537  * Return: Zero on success, else a negative error code.
1538  *
1539  * If this routine fails the device will probably be in an unusable state
1540  * with endpoints disabled, and interfaces only partially enabled.
1541  */
1542 int usb_reset_configuration(struct usb_device *dev)
1543 {
1544 	int			i, retval;
1545 	struct usb_host_config	*config;
1546 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1547 
1548 	if (dev->state == USB_STATE_SUSPENDED)
1549 		return -EHOSTUNREACH;
1550 
1551 	/* caller must have locked the device and must own
1552 	 * the usb bus readlock (so driver bindings are stable);
1553 	 * calls during probe() are fine
1554 	 */
1555 
1556 	usb_disable_device_endpoints(dev, 1); /* skip ep0*/
1557 
1558 	config = dev->actconfig;
1559 	retval = 0;
1560 	mutex_lock(hcd->bandwidth_mutex);
1561 	/* Disable LPM, and re-enable it once the configuration is reset, so
1562 	 * that the xHCI driver can recalculate the U1/U2 timeouts.
1563 	 */
1564 	if (usb_disable_lpm(dev)) {
1565 		dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1566 		mutex_unlock(hcd->bandwidth_mutex);
1567 		return -ENOMEM;
1568 	}
1569 
1570 	/* xHCI adds all endpoints in usb_hcd_alloc_bandwidth */
1571 	retval = usb_hcd_alloc_bandwidth(dev, config, NULL, NULL);
1572 	if (retval < 0) {
1573 		usb_enable_lpm(dev);
1574 		mutex_unlock(hcd->bandwidth_mutex);
1575 		return retval;
1576 	}
1577 	retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1578 			USB_REQ_SET_CONFIGURATION, 0,
1579 			config->desc.bConfigurationValue, 0,
1580 			NULL, 0, USB_CTRL_SET_TIMEOUT);
1581 	if (retval < 0) {
1582 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1583 		usb_enable_lpm(dev);
1584 		mutex_unlock(hcd->bandwidth_mutex);
1585 		return retval;
1586 	}
1587 	mutex_unlock(hcd->bandwidth_mutex);
1588 
1589 	/* re-init hc/hcd interface/endpoint state */
1590 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1591 		struct usb_interface *intf = config->interface[i];
1592 		struct usb_host_interface *alt;
1593 
1594 		alt = usb_altnum_to_altsetting(intf, 0);
1595 
1596 		/* No altsetting 0?  We'll assume the first altsetting.
1597 		 * We could use a GetInterface call, but if a device is
1598 		 * so non-compliant that it doesn't have altsetting 0
1599 		 * then I wouldn't trust its reply anyway.
1600 		 */
1601 		if (!alt)
1602 			alt = &intf->altsetting[0];
1603 
1604 		if (alt != intf->cur_altsetting) {
1605 			remove_intf_ep_devs(intf);
1606 			usb_remove_sysfs_intf_files(intf);
1607 		}
1608 		intf->cur_altsetting = alt;
1609 		usb_enable_interface(dev, intf, true);
1610 		if (device_is_registered(&intf->dev)) {
1611 			usb_create_sysfs_intf_files(intf);
1612 			create_intf_ep_devs(intf);
1613 		}
1614 	}
1615 	/* Now that the interfaces are installed, re-enable LPM. */
1616 	usb_unlocked_enable_lpm(dev);
1617 	return 0;
1618 }
1619 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1620 
1621 static void usb_release_interface(struct device *dev)
1622 {
1623 	struct usb_interface *intf = to_usb_interface(dev);
1624 	struct usb_interface_cache *intfc =
1625 			altsetting_to_usb_interface_cache(intf->altsetting);
1626 
1627 	kref_put(&intfc->ref, usb_release_interface_cache);
1628 	usb_put_dev(interface_to_usbdev(intf));
1629 	of_node_put(dev->of_node);
1630 	kfree(intf);
1631 }
1632 
1633 /*
1634  * usb_deauthorize_interface - deauthorize an USB interface
1635  *
1636  * @intf: USB interface structure
1637  */
1638 void usb_deauthorize_interface(struct usb_interface *intf)
1639 {
1640 	struct device *dev = &intf->dev;
1641 
1642 	device_lock(dev->parent);
1643 
1644 	if (intf->authorized) {
1645 		device_lock(dev);
1646 		intf->authorized = 0;
1647 		device_unlock(dev);
1648 
1649 		usb_forced_unbind_intf(intf);
1650 	}
1651 
1652 	device_unlock(dev->parent);
1653 }
1654 
1655 /*
1656  * usb_authorize_interface - authorize an USB interface
1657  *
1658  * @intf: USB interface structure
1659  */
1660 void usb_authorize_interface(struct usb_interface *intf)
1661 {
1662 	struct device *dev = &intf->dev;
1663 
1664 	if (!intf->authorized) {
1665 		device_lock(dev);
1666 		intf->authorized = 1; /* authorize interface */
1667 		device_unlock(dev);
1668 	}
1669 }
1670 
1671 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1672 {
1673 	struct usb_device *usb_dev;
1674 	struct usb_interface *intf;
1675 	struct usb_host_interface *alt;
1676 
1677 	intf = to_usb_interface(dev);
1678 	usb_dev = interface_to_usbdev(intf);
1679 	alt = intf->cur_altsetting;
1680 
1681 	if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1682 		   alt->desc.bInterfaceClass,
1683 		   alt->desc.bInterfaceSubClass,
1684 		   alt->desc.bInterfaceProtocol))
1685 		return -ENOMEM;
1686 
1687 	if (add_uevent_var(env,
1688 		   "MODALIAS=usb:"
1689 		   "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1690 		   le16_to_cpu(usb_dev->descriptor.idVendor),
1691 		   le16_to_cpu(usb_dev->descriptor.idProduct),
1692 		   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1693 		   usb_dev->descriptor.bDeviceClass,
1694 		   usb_dev->descriptor.bDeviceSubClass,
1695 		   usb_dev->descriptor.bDeviceProtocol,
1696 		   alt->desc.bInterfaceClass,
1697 		   alt->desc.bInterfaceSubClass,
1698 		   alt->desc.bInterfaceProtocol,
1699 		   alt->desc.bInterfaceNumber))
1700 		return -ENOMEM;
1701 
1702 	return 0;
1703 }
1704 
1705 struct device_type usb_if_device_type = {
1706 	.name =		"usb_interface",
1707 	.release =	usb_release_interface,
1708 	.uevent =	usb_if_uevent,
1709 };
1710 
1711 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1712 						struct usb_host_config *config,
1713 						u8 inum)
1714 {
1715 	struct usb_interface_assoc_descriptor *retval = NULL;
1716 	struct usb_interface_assoc_descriptor *intf_assoc;
1717 	int first_intf;
1718 	int last_intf;
1719 	int i;
1720 
1721 	for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1722 		intf_assoc = config->intf_assoc[i];
1723 		if (intf_assoc->bInterfaceCount == 0)
1724 			continue;
1725 
1726 		first_intf = intf_assoc->bFirstInterface;
1727 		last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1728 		if (inum >= first_intf && inum <= last_intf) {
1729 			if (!retval)
1730 				retval = intf_assoc;
1731 			else
1732 				dev_err(&dev->dev, "Interface #%d referenced"
1733 					" by multiple IADs\n", inum);
1734 		}
1735 	}
1736 
1737 	return retval;
1738 }
1739 
1740 
1741 /*
1742  * Internal function to queue a device reset
1743  * See usb_queue_reset_device() for more details
1744  */
1745 static void __usb_queue_reset_device(struct work_struct *ws)
1746 {
1747 	int rc;
1748 	struct usb_interface *iface =
1749 		container_of(ws, struct usb_interface, reset_ws);
1750 	struct usb_device *udev = interface_to_usbdev(iface);
1751 
1752 	rc = usb_lock_device_for_reset(udev, iface);
1753 	if (rc >= 0) {
1754 		usb_reset_device(udev);
1755 		usb_unlock_device(udev);
1756 	}
1757 	usb_put_intf(iface);	/* Undo _get_ in usb_queue_reset_device() */
1758 }
1759 
1760 
1761 /*
1762  * usb_set_configuration - Makes a particular device setting be current
1763  * @dev: the device whose configuration is being updated
1764  * @configuration: the configuration being chosen.
1765  * Context: !in_interrupt(), caller owns the device lock
1766  *
1767  * This is used to enable non-default device modes.  Not all devices
1768  * use this kind of configurability; many devices only have one
1769  * configuration.
1770  *
1771  * @configuration is the value of the configuration to be installed.
1772  * According to the USB spec (e.g. section 9.1.1.5), configuration values
1773  * must be non-zero; a value of zero indicates that the device in
1774  * unconfigured.  However some devices erroneously use 0 as one of their
1775  * configuration values.  To help manage such devices, this routine will
1776  * accept @configuration = -1 as indicating the device should be put in
1777  * an unconfigured state.
1778  *
1779  * USB device configurations may affect Linux interoperability,
1780  * power consumption and the functionality available.  For example,
1781  * the default configuration is limited to using 100mA of bus power,
1782  * so that when certain device functionality requires more power,
1783  * and the device is bus powered, that functionality should be in some
1784  * non-default device configuration.  Other device modes may also be
1785  * reflected as configuration options, such as whether two ISDN
1786  * channels are available independently; and choosing between open
1787  * standard device protocols (like CDC) or proprietary ones.
1788  *
1789  * Note that a non-authorized device (dev->authorized == 0) will only
1790  * be put in unconfigured mode.
1791  *
1792  * Note that USB has an additional level of device configurability,
1793  * associated with interfaces.  That configurability is accessed using
1794  * usb_set_interface().
1795  *
1796  * This call is synchronous. The calling context must be able to sleep,
1797  * must own the device lock, and must not hold the driver model's USB
1798  * bus mutex; usb interface driver probe() methods cannot use this routine.
1799  *
1800  * Returns zero on success, or else the status code returned by the
1801  * underlying call that failed.  On successful completion, each interface
1802  * in the original device configuration has been destroyed, and each one
1803  * in the new configuration has been probed by all relevant usb device
1804  * drivers currently known to the kernel.
1805  */
1806 int usb_set_configuration(struct usb_device *dev, int configuration)
1807 {
1808 	int i, ret;
1809 	struct usb_host_config *cp = NULL;
1810 	struct usb_interface **new_interfaces = NULL;
1811 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1812 	int n, nintf;
1813 
1814 	if (dev->authorized == 0 || configuration == -1)
1815 		configuration = 0;
1816 	else {
1817 		for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1818 			if (dev->config[i].desc.bConfigurationValue ==
1819 					configuration) {
1820 				cp = &dev->config[i];
1821 				break;
1822 			}
1823 		}
1824 	}
1825 	if ((!cp && configuration != 0))
1826 		return -EINVAL;
1827 
1828 	/* The USB spec says configuration 0 means unconfigured.
1829 	 * But if a device includes a configuration numbered 0,
1830 	 * we will accept it as a correctly configured state.
1831 	 * Use -1 if you really want to unconfigure the device.
1832 	 */
1833 	if (cp && configuration == 0)
1834 		dev_warn(&dev->dev, "config 0 descriptor??\n");
1835 
1836 	/* Allocate memory for new interfaces before doing anything else,
1837 	 * so that if we run out then nothing will have changed. */
1838 	n = nintf = 0;
1839 	if (cp) {
1840 		nintf = cp->desc.bNumInterfaces;
1841 		new_interfaces = kmalloc_array(nintf, sizeof(*new_interfaces),
1842 					       GFP_NOIO);
1843 		if (!new_interfaces)
1844 			return -ENOMEM;
1845 
1846 		for (; n < nintf; ++n) {
1847 			new_interfaces[n] = kzalloc(
1848 					sizeof(struct usb_interface),
1849 					GFP_NOIO);
1850 			if (!new_interfaces[n]) {
1851 				ret = -ENOMEM;
1852 free_interfaces:
1853 				while (--n >= 0)
1854 					kfree(new_interfaces[n]);
1855 				kfree(new_interfaces);
1856 				return ret;
1857 			}
1858 		}
1859 
1860 		i = dev->bus_mA - usb_get_max_power(dev, cp);
1861 		if (i < 0)
1862 			dev_warn(&dev->dev, "new config #%d exceeds power "
1863 					"limit by %dmA\n",
1864 					configuration, -i);
1865 	}
1866 
1867 	/* Wake up the device so we can send it the Set-Config request */
1868 	ret = usb_autoresume_device(dev);
1869 	if (ret)
1870 		goto free_interfaces;
1871 
1872 	/* if it's already configured, clear out old state first.
1873 	 * getting rid of old interfaces means unbinding their drivers.
1874 	 */
1875 	if (dev->state != USB_STATE_ADDRESS)
1876 		usb_disable_device(dev, 1);	/* Skip ep0 */
1877 
1878 	/* Get rid of pending async Set-Config requests for this device */
1879 	cancel_async_set_config(dev);
1880 
1881 	/* Make sure we have bandwidth (and available HCD resources) for this
1882 	 * configuration.  Remove endpoints from the schedule if we're dropping
1883 	 * this configuration to set configuration 0.  After this point, the
1884 	 * host controller will not allow submissions to dropped endpoints.  If
1885 	 * this call fails, the device state is unchanged.
1886 	 */
1887 	mutex_lock(hcd->bandwidth_mutex);
1888 	/* Disable LPM, and re-enable it once the new configuration is
1889 	 * installed, so that the xHCI driver can recalculate the U1/U2
1890 	 * timeouts.
1891 	 */
1892 	if (dev->actconfig && usb_disable_lpm(dev)) {
1893 		dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1894 		mutex_unlock(hcd->bandwidth_mutex);
1895 		ret = -ENOMEM;
1896 		goto free_interfaces;
1897 	}
1898 	ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1899 	if (ret < 0) {
1900 		if (dev->actconfig)
1901 			usb_enable_lpm(dev);
1902 		mutex_unlock(hcd->bandwidth_mutex);
1903 		usb_autosuspend_device(dev);
1904 		goto free_interfaces;
1905 	}
1906 
1907 	/*
1908 	 * Initialize the new interface structures and the
1909 	 * hc/hcd/usbcore interface/endpoint state.
1910 	 */
1911 	for (i = 0; i < nintf; ++i) {
1912 		struct usb_interface_cache *intfc;
1913 		struct usb_interface *intf;
1914 		struct usb_host_interface *alt;
1915 		u8 ifnum;
1916 
1917 		cp->interface[i] = intf = new_interfaces[i];
1918 		intfc = cp->intf_cache[i];
1919 		intf->altsetting = intfc->altsetting;
1920 		intf->num_altsetting = intfc->num_altsetting;
1921 		intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
1922 		kref_get(&intfc->ref);
1923 
1924 		alt = usb_altnum_to_altsetting(intf, 0);
1925 
1926 		/* No altsetting 0?  We'll assume the first altsetting.
1927 		 * We could use a GetInterface call, but if a device is
1928 		 * so non-compliant that it doesn't have altsetting 0
1929 		 * then I wouldn't trust its reply anyway.
1930 		 */
1931 		if (!alt)
1932 			alt = &intf->altsetting[0];
1933 
1934 		ifnum = alt->desc.bInterfaceNumber;
1935 		intf->intf_assoc = find_iad(dev, cp, ifnum);
1936 		intf->cur_altsetting = alt;
1937 		usb_enable_interface(dev, intf, true);
1938 		intf->dev.parent = &dev->dev;
1939 		if (usb_of_has_combined_node(dev)) {
1940 			device_set_of_node_from_dev(&intf->dev, &dev->dev);
1941 		} else {
1942 			intf->dev.of_node = usb_of_get_interface_node(dev,
1943 					configuration, ifnum);
1944 		}
1945 		ACPI_COMPANION_SET(&intf->dev, ACPI_COMPANION(&dev->dev));
1946 		intf->dev.driver = NULL;
1947 		intf->dev.bus = &usb_bus_type;
1948 		intf->dev.type = &usb_if_device_type;
1949 		intf->dev.groups = usb_interface_groups;
1950 		/*
1951 		 * Please refer to usb_alloc_dev() to see why we set
1952 		 * dma_mask and dma_pfn_offset.
1953 		 */
1954 		intf->dev.dma_mask = dev->dev.dma_mask;
1955 		intf->dev.dma_pfn_offset = dev->dev.dma_pfn_offset;
1956 		INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1957 		intf->minor = -1;
1958 		device_initialize(&intf->dev);
1959 		pm_runtime_no_callbacks(&intf->dev);
1960 		dev_set_name(&intf->dev, "%d-%s:%d.%d", dev->bus->busnum,
1961 				dev->devpath, configuration, ifnum);
1962 		usb_get_dev(dev);
1963 	}
1964 	kfree(new_interfaces);
1965 
1966 	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1967 			      USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1968 			      NULL, 0, USB_CTRL_SET_TIMEOUT);
1969 	if (ret < 0 && cp) {
1970 		/*
1971 		 * All the old state is gone, so what else can we do?
1972 		 * The device is probably useless now anyway.
1973 		 */
1974 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1975 		for (i = 0; i < nintf; ++i) {
1976 			usb_disable_interface(dev, cp->interface[i], true);
1977 			put_device(&cp->interface[i]->dev);
1978 			cp->interface[i] = NULL;
1979 		}
1980 		cp = NULL;
1981 	}
1982 
1983 	dev->actconfig = cp;
1984 	mutex_unlock(hcd->bandwidth_mutex);
1985 
1986 	if (!cp) {
1987 		usb_set_device_state(dev, USB_STATE_ADDRESS);
1988 
1989 		/* Leave LPM disabled while the device is unconfigured. */
1990 		usb_autosuspend_device(dev);
1991 		return ret;
1992 	}
1993 	usb_set_device_state(dev, USB_STATE_CONFIGURED);
1994 
1995 	if (cp->string == NULL &&
1996 			!(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1997 		cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1998 
1999 	/* Now that the interfaces are installed, re-enable LPM. */
2000 	usb_unlocked_enable_lpm(dev);
2001 	/* Enable LTM if it was turned off by usb_disable_device. */
2002 	usb_enable_ltm(dev);
2003 
2004 	/* Now that all the interfaces are set up, register them
2005 	 * to trigger binding of drivers to interfaces.  probe()
2006 	 * routines may install different altsettings and may
2007 	 * claim() any interfaces not yet bound.  Many class drivers
2008 	 * need that: CDC, audio, video, etc.
2009 	 */
2010 	for (i = 0; i < nintf; ++i) {
2011 		struct usb_interface *intf = cp->interface[i];
2012 
2013 		if (intf->dev.of_node &&
2014 		    !of_device_is_available(intf->dev.of_node)) {
2015 			dev_info(&dev->dev, "skipping disabled interface %d\n",
2016 				 intf->cur_altsetting->desc.bInterfaceNumber);
2017 			continue;
2018 		}
2019 
2020 		dev_dbg(&dev->dev,
2021 			"adding %s (config #%d, interface %d)\n",
2022 			dev_name(&intf->dev), configuration,
2023 			intf->cur_altsetting->desc.bInterfaceNumber);
2024 		device_enable_async_suspend(&intf->dev);
2025 		ret = device_add(&intf->dev);
2026 		if (ret != 0) {
2027 			dev_err(&dev->dev, "device_add(%s) --> %d\n",
2028 				dev_name(&intf->dev), ret);
2029 			continue;
2030 		}
2031 		create_intf_ep_devs(intf);
2032 	}
2033 
2034 	usb_autosuspend_device(dev);
2035 	return 0;
2036 }
2037 EXPORT_SYMBOL_GPL(usb_set_configuration);
2038 
2039 static LIST_HEAD(set_config_list);
2040 static DEFINE_SPINLOCK(set_config_lock);
2041 
2042 struct set_config_request {
2043 	struct usb_device	*udev;
2044 	int			config;
2045 	struct work_struct	work;
2046 	struct list_head	node;
2047 };
2048 
2049 /* Worker routine for usb_driver_set_configuration() */
2050 static void driver_set_config_work(struct work_struct *work)
2051 {
2052 	struct set_config_request *req =
2053 		container_of(work, struct set_config_request, work);
2054 	struct usb_device *udev = req->udev;
2055 
2056 	usb_lock_device(udev);
2057 	spin_lock(&set_config_lock);
2058 	list_del(&req->node);
2059 	spin_unlock(&set_config_lock);
2060 
2061 	if (req->config >= -1)		/* Is req still valid? */
2062 		usb_set_configuration(udev, req->config);
2063 	usb_unlock_device(udev);
2064 	usb_put_dev(udev);
2065 	kfree(req);
2066 }
2067 
2068 /* Cancel pending Set-Config requests for a device whose configuration
2069  * was just changed
2070  */
2071 static void cancel_async_set_config(struct usb_device *udev)
2072 {
2073 	struct set_config_request *req;
2074 
2075 	spin_lock(&set_config_lock);
2076 	list_for_each_entry(req, &set_config_list, node) {
2077 		if (req->udev == udev)
2078 			req->config = -999;	/* Mark as cancelled */
2079 	}
2080 	spin_unlock(&set_config_lock);
2081 }
2082 
2083 /**
2084  * usb_driver_set_configuration - Provide a way for drivers to change device configurations
2085  * @udev: the device whose configuration is being updated
2086  * @config: the configuration being chosen.
2087  * Context: In process context, must be able to sleep
2088  *
2089  * Device interface drivers are not allowed to change device configurations.
2090  * This is because changing configurations will destroy the interface the
2091  * driver is bound to and create new ones; it would be like a floppy-disk
2092  * driver telling the computer to replace the floppy-disk drive with a
2093  * tape drive!
2094  *
2095  * Still, in certain specialized circumstances the need may arise.  This
2096  * routine gets around the normal restrictions by using a work thread to
2097  * submit the change-config request.
2098  *
2099  * Return: 0 if the request was successfully queued, error code otherwise.
2100  * The caller has no way to know whether the queued request will eventually
2101  * succeed.
2102  */
2103 int usb_driver_set_configuration(struct usb_device *udev, int config)
2104 {
2105 	struct set_config_request *req;
2106 
2107 	req = kmalloc(sizeof(*req), GFP_KERNEL);
2108 	if (!req)
2109 		return -ENOMEM;
2110 	req->udev = udev;
2111 	req->config = config;
2112 	INIT_WORK(&req->work, driver_set_config_work);
2113 
2114 	spin_lock(&set_config_lock);
2115 	list_add(&req->node, &set_config_list);
2116 	spin_unlock(&set_config_lock);
2117 
2118 	usb_get_dev(udev);
2119 	schedule_work(&req->work);
2120 	return 0;
2121 }
2122 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2123 
2124 /**
2125  * cdc_parse_cdc_header - parse the extra headers present in CDC devices
2126  * @hdr: the place to put the results of the parsing
2127  * @intf: the interface for which parsing is requested
2128  * @buffer: pointer to the extra headers to be parsed
2129  * @buflen: length of the extra headers
2130  *
2131  * This evaluates the extra headers present in CDC devices which
2132  * bind the interfaces for data and control and provide details
2133  * about the capabilities of the device.
2134  *
2135  * Return: number of descriptors parsed or -EINVAL
2136  * if the header is contradictory beyond salvage
2137  */
2138 
2139 int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr,
2140 				struct usb_interface *intf,
2141 				u8 *buffer,
2142 				int buflen)
2143 {
2144 	/* duplicates are ignored */
2145 	struct usb_cdc_union_desc *union_header = NULL;
2146 
2147 	/* duplicates are not tolerated */
2148 	struct usb_cdc_header_desc *header = NULL;
2149 	struct usb_cdc_ether_desc *ether = NULL;
2150 	struct usb_cdc_mdlm_detail_desc *detail = NULL;
2151 	struct usb_cdc_mdlm_desc *desc = NULL;
2152 
2153 	unsigned int elength;
2154 	int cnt = 0;
2155 
2156 	memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header));
2157 	hdr->phonet_magic_present = false;
2158 	while (buflen > 0) {
2159 		elength = buffer[0];
2160 		if (!elength) {
2161 			dev_err(&intf->dev, "skipping garbage byte\n");
2162 			elength = 1;
2163 			goto next_desc;
2164 		}
2165 		if ((buflen < elength) || (elength < 3)) {
2166 			dev_err(&intf->dev, "invalid descriptor buffer length\n");
2167 			break;
2168 		}
2169 		if (buffer[1] != USB_DT_CS_INTERFACE) {
2170 			dev_err(&intf->dev, "skipping garbage\n");
2171 			goto next_desc;
2172 		}
2173 
2174 		switch (buffer[2]) {
2175 		case USB_CDC_UNION_TYPE: /* we've found it */
2176 			if (elength < sizeof(struct usb_cdc_union_desc))
2177 				goto next_desc;
2178 			if (union_header) {
2179 				dev_err(&intf->dev, "More than one union descriptor, skipping ...\n");
2180 				goto next_desc;
2181 			}
2182 			union_header = (struct usb_cdc_union_desc *)buffer;
2183 			break;
2184 		case USB_CDC_COUNTRY_TYPE:
2185 			if (elength < sizeof(struct usb_cdc_country_functional_desc))
2186 				goto next_desc;
2187 			hdr->usb_cdc_country_functional_desc =
2188 				(struct usb_cdc_country_functional_desc *)buffer;
2189 			break;
2190 		case USB_CDC_HEADER_TYPE:
2191 			if (elength != sizeof(struct usb_cdc_header_desc))
2192 				goto next_desc;
2193 			if (header)
2194 				return -EINVAL;
2195 			header = (struct usb_cdc_header_desc *)buffer;
2196 			break;
2197 		case USB_CDC_ACM_TYPE:
2198 			if (elength < sizeof(struct usb_cdc_acm_descriptor))
2199 				goto next_desc;
2200 			hdr->usb_cdc_acm_descriptor =
2201 				(struct usb_cdc_acm_descriptor *)buffer;
2202 			break;
2203 		case USB_CDC_ETHERNET_TYPE:
2204 			if (elength != sizeof(struct usb_cdc_ether_desc))
2205 				goto next_desc;
2206 			if (ether)
2207 				return -EINVAL;
2208 			ether = (struct usb_cdc_ether_desc *)buffer;
2209 			break;
2210 		case USB_CDC_CALL_MANAGEMENT_TYPE:
2211 			if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor))
2212 				goto next_desc;
2213 			hdr->usb_cdc_call_mgmt_descriptor =
2214 				(struct usb_cdc_call_mgmt_descriptor *)buffer;
2215 			break;
2216 		case USB_CDC_DMM_TYPE:
2217 			if (elength < sizeof(struct usb_cdc_dmm_desc))
2218 				goto next_desc;
2219 			hdr->usb_cdc_dmm_desc =
2220 				(struct usb_cdc_dmm_desc *)buffer;
2221 			break;
2222 		case USB_CDC_MDLM_TYPE:
2223 			if (elength < sizeof(struct usb_cdc_mdlm_desc))
2224 				goto next_desc;
2225 			if (desc)
2226 				return -EINVAL;
2227 			desc = (struct usb_cdc_mdlm_desc *)buffer;
2228 			break;
2229 		case USB_CDC_MDLM_DETAIL_TYPE:
2230 			if (elength < sizeof(struct usb_cdc_mdlm_detail_desc))
2231 				goto next_desc;
2232 			if (detail)
2233 				return -EINVAL;
2234 			detail = (struct usb_cdc_mdlm_detail_desc *)buffer;
2235 			break;
2236 		case USB_CDC_NCM_TYPE:
2237 			if (elength < sizeof(struct usb_cdc_ncm_desc))
2238 				goto next_desc;
2239 			hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer;
2240 			break;
2241 		case USB_CDC_MBIM_TYPE:
2242 			if (elength < sizeof(struct usb_cdc_mbim_desc))
2243 				goto next_desc;
2244 
2245 			hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer;
2246 			break;
2247 		case USB_CDC_MBIM_EXTENDED_TYPE:
2248 			if (elength < sizeof(struct usb_cdc_mbim_extended_desc))
2249 				break;
2250 			hdr->usb_cdc_mbim_extended_desc =
2251 				(struct usb_cdc_mbim_extended_desc *)buffer;
2252 			break;
2253 		case CDC_PHONET_MAGIC_NUMBER:
2254 			hdr->phonet_magic_present = true;
2255 			break;
2256 		default:
2257 			/*
2258 			 * there are LOTS more CDC descriptors that
2259 			 * could legitimately be found here.
2260 			 */
2261 			dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n",
2262 					buffer[2], elength);
2263 			goto next_desc;
2264 		}
2265 		cnt++;
2266 next_desc:
2267 		buflen -= elength;
2268 		buffer += elength;
2269 	}
2270 	hdr->usb_cdc_union_desc = union_header;
2271 	hdr->usb_cdc_header_desc = header;
2272 	hdr->usb_cdc_mdlm_detail_desc = detail;
2273 	hdr->usb_cdc_mdlm_desc = desc;
2274 	hdr->usb_cdc_ether_desc = ether;
2275 	return cnt;
2276 }
2277 
2278 EXPORT_SYMBOL(cdc_parse_cdc_header);
2279