xref: /openbmc/linux/drivers/usb/core/message.c (revision f79e4d5f92a129a1159c973735007d4ddc8541f3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * message.c - synchronous message handling
4  *
5  * Released under the GPLv2 only.
6  */
7 
8 #include <linux/pci.h>	/* for scatterlist macros */
9 #include <linux/usb.h>
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 #include <linux/mm.h>
13 #include <linux/timer.h>
14 #include <linux/ctype.h>
15 #include <linux/nls.h>
16 #include <linux/device.h>
17 #include <linux/scatterlist.h>
18 #include <linux/usb/cdc.h>
19 #include <linux/usb/quirks.h>
20 #include <linux/usb/hcd.h>	/* for usbcore internals */
21 #include <linux/usb/of.h>
22 #include <asm/byteorder.h>
23 
24 #include "usb.h"
25 
26 static void cancel_async_set_config(struct usb_device *udev);
27 
28 struct api_context {
29 	struct completion	done;
30 	int			status;
31 };
32 
33 static void usb_api_blocking_completion(struct urb *urb)
34 {
35 	struct api_context *ctx = urb->context;
36 
37 	ctx->status = urb->status;
38 	complete(&ctx->done);
39 }
40 
41 
42 /*
43  * Starts urb and waits for completion or timeout. Note that this call
44  * is NOT interruptible. Many device driver i/o requests should be
45  * interruptible and therefore these drivers should implement their
46  * own interruptible routines.
47  */
48 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
49 {
50 	struct api_context ctx;
51 	unsigned long expire;
52 	int retval;
53 
54 	init_completion(&ctx.done);
55 	urb->context = &ctx;
56 	urb->actual_length = 0;
57 	retval = usb_submit_urb(urb, GFP_NOIO);
58 	if (unlikely(retval))
59 		goto out;
60 
61 	expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
62 	if (!wait_for_completion_timeout(&ctx.done, expire)) {
63 		usb_kill_urb(urb);
64 		retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
65 
66 		dev_dbg(&urb->dev->dev,
67 			"%s timed out on ep%d%s len=%u/%u\n",
68 			current->comm,
69 			usb_endpoint_num(&urb->ep->desc),
70 			usb_urb_dir_in(urb) ? "in" : "out",
71 			urb->actual_length,
72 			urb->transfer_buffer_length);
73 	} else
74 		retval = ctx.status;
75 out:
76 	if (actual_length)
77 		*actual_length = urb->actual_length;
78 
79 	usb_free_urb(urb);
80 	return retval;
81 }
82 
83 /*-------------------------------------------------------------------*/
84 /* returns status (negative) or length (positive) */
85 static int usb_internal_control_msg(struct usb_device *usb_dev,
86 				    unsigned int pipe,
87 				    struct usb_ctrlrequest *cmd,
88 				    void *data, int len, int timeout)
89 {
90 	struct urb *urb;
91 	int retv;
92 	int length;
93 
94 	urb = usb_alloc_urb(0, GFP_NOIO);
95 	if (!urb)
96 		return -ENOMEM;
97 
98 	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
99 			     len, usb_api_blocking_completion, NULL);
100 
101 	retv = usb_start_wait_urb(urb, timeout, &length);
102 	if (retv < 0)
103 		return retv;
104 	else
105 		return length;
106 }
107 
108 /**
109  * usb_control_msg - Builds a control urb, sends it off and waits for completion
110  * @dev: pointer to the usb device to send the message to
111  * @pipe: endpoint "pipe" to send the message to
112  * @request: USB message request value
113  * @requesttype: USB message request type value
114  * @value: USB message value
115  * @index: USB message index value
116  * @data: pointer to the data to send
117  * @size: length in bytes of the data to send
118  * @timeout: time in msecs to wait for the message to complete before timing
119  *	out (if 0 the wait is forever)
120  *
121  * Context: !in_interrupt ()
122  *
123  * This function sends a simple control message to a specified endpoint and
124  * waits for the message to complete, or timeout.
125  *
126  * Don't use this function from within an interrupt context. If you need
127  * an asynchronous message, or need to send a message from within interrupt
128  * context, use usb_submit_urb(). If a thread in your driver uses this call,
129  * make sure your disconnect() method can wait for it to complete. Since you
130  * don't have a handle on the URB used, you can't cancel the request.
131  *
132  * Return: If successful, the number of bytes transferred. Otherwise, a negative
133  * error number.
134  */
135 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
136 		    __u8 requesttype, __u16 value, __u16 index, void *data,
137 		    __u16 size, int timeout)
138 {
139 	struct usb_ctrlrequest *dr;
140 	int ret;
141 
142 	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
143 	if (!dr)
144 		return -ENOMEM;
145 
146 	dr->bRequestType = requesttype;
147 	dr->bRequest = request;
148 	dr->wValue = cpu_to_le16(value);
149 	dr->wIndex = cpu_to_le16(index);
150 	dr->wLength = cpu_to_le16(size);
151 
152 	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
153 
154 	/* Linger a bit, prior to the next control message. */
155 	if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG)
156 		msleep(200);
157 
158 	kfree(dr);
159 
160 	return ret;
161 }
162 EXPORT_SYMBOL_GPL(usb_control_msg);
163 
164 /**
165  * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
166  * @usb_dev: pointer to the usb device to send the message to
167  * @pipe: endpoint "pipe" to send the message to
168  * @data: pointer to the data to send
169  * @len: length in bytes of the data to send
170  * @actual_length: pointer to a location to put the actual length transferred
171  *	in bytes
172  * @timeout: time in msecs to wait for the message to complete before
173  *	timing out (if 0 the wait is forever)
174  *
175  * Context: !in_interrupt ()
176  *
177  * This function sends a simple interrupt message to a specified endpoint and
178  * waits for the message to complete, or timeout.
179  *
180  * Don't use this function from within an interrupt context. If you need
181  * an asynchronous message, or need to send a message from within interrupt
182  * context, use usb_submit_urb() If a thread in your driver uses this call,
183  * make sure your disconnect() method can wait for it to complete. Since you
184  * don't have a handle on the URB used, you can't cancel the request.
185  *
186  * Return:
187  * If successful, 0. Otherwise a negative error number. The number of actual
188  * bytes transferred will be stored in the @actual_length parameter.
189  */
190 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
191 		      void *data, int len, int *actual_length, int timeout)
192 {
193 	return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
194 }
195 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
196 
197 /**
198  * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
199  * @usb_dev: pointer to the usb device to send the message to
200  * @pipe: endpoint "pipe" to send the message to
201  * @data: pointer to the data to send
202  * @len: length in bytes of the data to send
203  * @actual_length: pointer to a location to put the actual length transferred
204  *	in bytes
205  * @timeout: time in msecs to wait for the message to complete before
206  *	timing out (if 0 the wait is forever)
207  *
208  * Context: !in_interrupt ()
209  *
210  * This function sends a simple bulk message to a specified endpoint
211  * and waits for the message to complete, or timeout.
212  *
213  * Don't use this function from within an interrupt context. If you need
214  * an asynchronous message, or need to send a message from within interrupt
215  * context, use usb_submit_urb() If a thread in your driver uses this call,
216  * make sure your disconnect() method can wait for it to complete. Since you
217  * don't have a handle on the URB used, you can't cancel the request.
218  *
219  * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
220  * users are forced to abuse this routine by using it to submit URBs for
221  * interrupt endpoints.  We will take the liberty of creating an interrupt URB
222  * (with the default interval) if the target is an interrupt endpoint.
223  *
224  * Return:
225  * If successful, 0. Otherwise a negative error number. The number of actual
226  * bytes transferred will be stored in the @actual_length parameter.
227  *
228  */
229 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
230 		 void *data, int len, int *actual_length, int timeout)
231 {
232 	struct urb *urb;
233 	struct usb_host_endpoint *ep;
234 
235 	ep = usb_pipe_endpoint(usb_dev, pipe);
236 	if (!ep || len < 0)
237 		return -EINVAL;
238 
239 	urb = usb_alloc_urb(0, GFP_KERNEL);
240 	if (!urb)
241 		return -ENOMEM;
242 
243 	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
244 			USB_ENDPOINT_XFER_INT) {
245 		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
246 		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
247 				usb_api_blocking_completion, NULL,
248 				ep->desc.bInterval);
249 	} else
250 		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
251 				usb_api_blocking_completion, NULL);
252 
253 	return usb_start_wait_urb(urb, timeout, actual_length);
254 }
255 EXPORT_SYMBOL_GPL(usb_bulk_msg);
256 
257 /*-------------------------------------------------------------------*/
258 
259 static void sg_clean(struct usb_sg_request *io)
260 {
261 	if (io->urbs) {
262 		while (io->entries--)
263 			usb_free_urb(io->urbs[io->entries]);
264 		kfree(io->urbs);
265 		io->urbs = NULL;
266 	}
267 	io->dev = NULL;
268 }
269 
270 static void sg_complete(struct urb *urb)
271 {
272 	struct usb_sg_request *io = urb->context;
273 	int status = urb->status;
274 
275 	spin_lock(&io->lock);
276 
277 	/* In 2.5 we require hcds' endpoint queues not to progress after fault
278 	 * reports, until the completion callback (this!) returns.  That lets
279 	 * device driver code (like this routine) unlink queued urbs first,
280 	 * if it needs to, since the HC won't work on them at all.  So it's
281 	 * not possible for page N+1 to overwrite page N, and so on.
282 	 *
283 	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
284 	 * complete before the HCD can get requests away from hardware,
285 	 * though never during cleanup after a hard fault.
286 	 */
287 	if (io->status
288 			&& (io->status != -ECONNRESET
289 				|| status != -ECONNRESET)
290 			&& urb->actual_length) {
291 		dev_err(io->dev->bus->controller,
292 			"dev %s ep%d%s scatterlist error %d/%d\n",
293 			io->dev->devpath,
294 			usb_endpoint_num(&urb->ep->desc),
295 			usb_urb_dir_in(urb) ? "in" : "out",
296 			status, io->status);
297 		/* BUG (); */
298 	}
299 
300 	if (io->status == 0 && status && status != -ECONNRESET) {
301 		int i, found, retval;
302 
303 		io->status = status;
304 
305 		/* the previous urbs, and this one, completed already.
306 		 * unlink pending urbs so they won't rx/tx bad data.
307 		 * careful: unlink can sometimes be synchronous...
308 		 */
309 		spin_unlock(&io->lock);
310 		for (i = 0, found = 0; i < io->entries; i++) {
311 			if (!io->urbs[i])
312 				continue;
313 			if (found) {
314 				usb_block_urb(io->urbs[i]);
315 				retval = usb_unlink_urb(io->urbs[i]);
316 				if (retval != -EINPROGRESS &&
317 				    retval != -ENODEV &&
318 				    retval != -EBUSY &&
319 				    retval != -EIDRM)
320 					dev_err(&io->dev->dev,
321 						"%s, unlink --> %d\n",
322 						__func__, retval);
323 			} else if (urb == io->urbs[i])
324 				found = 1;
325 		}
326 		spin_lock(&io->lock);
327 	}
328 
329 	/* on the last completion, signal usb_sg_wait() */
330 	io->bytes += urb->actual_length;
331 	io->count--;
332 	if (!io->count)
333 		complete(&io->complete);
334 
335 	spin_unlock(&io->lock);
336 }
337 
338 
339 /**
340  * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
341  * @io: request block being initialized.  until usb_sg_wait() returns,
342  *	treat this as a pointer to an opaque block of memory,
343  * @dev: the usb device that will send or receive the data
344  * @pipe: endpoint "pipe" used to transfer the data
345  * @period: polling rate for interrupt endpoints, in frames or
346  * 	(for high speed endpoints) microframes; ignored for bulk
347  * @sg: scatterlist entries
348  * @nents: how many entries in the scatterlist
349  * @length: how many bytes to send from the scatterlist, or zero to
350  * 	send every byte identified in the list.
351  * @mem_flags: SLAB_* flags affecting memory allocations in this call
352  *
353  * This initializes a scatter/gather request, allocating resources such as
354  * I/O mappings and urb memory (except maybe memory used by USB controller
355  * drivers).
356  *
357  * The request must be issued using usb_sg_wait(), which waits for the I/O to
358  * complete (or to be canceled) and then cleans up all resources allocated by
359  * usb_sg_init().
360  *
361  * The request may be canceled with usb_sg_cancel(), either before or after
362  * usb_sg_wait() is called.
363  *
364  * Return: Zero for success, else a negative errno value.
365  */
366 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
367 		unsigned pipe, unsigned	period, struct scatterlist *sg,
368 		int nents, size_t length, gfp_t mem_flags)
369 {
370 	int i;
371 	int urb_flags;
372 	int use_sg;
373 
374 	if (!io || !dev || !sg
375 			|| usb_pipecontrol(pipe)
376 			|| usb_pipeisoc(pipe)
377 			|| nents <= 0)
378 		return -EINVAL;
379 
380 	spin_lock_init(&io->lock);
381 	io->dev = dev;
382 	io->pipe = pipe;
383 
384 	if (dev->bus->sg_tablesize > 0) {
385 		use_sg = true;
386 		io->entries = 1;
387 	} else {
388 		use_sg = false;
389 		io->entries = nents;
390 	}
391 
392 	/* initialize all the urbs we'll use */
393 	io->urbs = kmalloc_array(io->entries, sizeof(*io->urbs), mem_flags);
394 	if (!io->urbs)
395 		goto nomem;
396 
397 	urb_flags = URB_NO_INTERRUPT;
398 	if (usb_pipein(pipe))
399 		urb_flags |= URB_SHORT_NOT_OK;
400 
401 	for_each_sg(sg, sg, io->entries, i) {
402 		struct urb *urb;
403 		unsigned len;
404 
405 		urb = usb_alloc_urb(0, mem_flags);
406 		if (!urb) {
407 			io->entries = i;
408 			goto nomem;
409 		}
410 		io->urbs[i] = urb;
411 
412 		urb->dev = NULL;
413 		urb->pipe = pipe;
414 		urb->interval = period;
415 		urb->transfer_flags = urb_flags;
416 		urb->complete = sg_complete;
417 		urb->context = io;
418 		urb->sg = sg;
419 
420 		if (use_sg) {
421 			/* There is no single transfer buffer */
422 			urb->transfer_buffer = NULL;
423 			urb->num_sgs = nents;
424 
425 			/* A length of zero means transfer the whole sg list */
426 			len = length;
427 			if (len == 0) {
428 				struct scatterlist	*sg2;
429 				int			j;
430 
431 				for_each_sg(sg, sg2, nents, j)
432 					len += sg2->length;
433 			}
434 		} else {
435 			/*
436 			 * Some systems can't use DMA; they use PIO instead.
437 			 * For their sakes, transfer_buffer is set whenever
438 			 * possible.
439 			 */
440 			if (!PageHighMem(sg_page(sg)))
441 				urb->transfer_buffer = sg_virt(sg);
442 			else
443 				urb->transfer_buffer = NULL;
444 
445 			len = sg->length;
446 			if (length) {
447 				len = min_t(size_t, len, length);
448 				length -= len;
449 				if (length == 0)
450 					io->entries = i + 1;
451 			}
452 		}
453 		urb->transfer_buffer_length = len;
454 	}
455 	io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
456 
457 	/* transaction state */
458 	io->count = io->entries;
459 	io->status = 0;
460 	io->bytes = 0;
461 	init_completion(&io->complete);
462 	return 0;
463 
464 nomem:
465 	sg_clean(io);
466 	return -ENOMEM;
467 }
468 EXPORT_SYMBOL_GPL(usb_sg_init);
469 
470 /**
471  * usb_sg_wait - synchronously execute scatter/gather request
472  * @io: request block handle, as initialized with usb_sg_init().
473  * 	some fields become accessible when this call returns.
474  * Context: !in_interrupt ()
475  *
476  * This function blocks until the specified I/O operation completes.  It
477  * leverages the grouping of the related I/O requests to get good transfer
478  * rates, by queueing the requests.  At higher speeds, such queuing can
479  * significantly improve USB throughput.
480  *
481  * There are three kinds of completion for this function.
482  *
483  * (1) success, where io->status is zero.  The number of io->bytes
484  *     transferred is as requested.
485  * (2) error, where io->status is a negative errno value.  The number
486  *     of io->bytes transferred before the error is usually less
487  *     than requested, and can be nonzero.
488  * (3) cancellation, a type of error with status -ECONNRESET that
489  *     is initiated by usb_sg_cancel().
490  *
491  * When this function returns, all memory allocated through usb_sg_init() or
492  * this call will have been freed.  The request block parameter may still be
493  * passed to usb_sg_cancel(), or it may be freed.  It could also be
494  * reinitialized and then reused.
495  *
496  * Data Transfer Rates:
497  *
498  * Bulk transfers are valid for full or high speed endpoints.
499  * The best full speed data rate is 19 packets of 64 bytes each
500  * per frame, or 1216 bytes per millisecond.
501  * The best high speed data rate is 13 packets of 512 bytes each
502  * per microframe, or 52 KBytes per millisecond.
503  *
504  * The reason to use interrupt transfers through this API would most likely
505  * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
506  * could be transferred.  That capability is less useful for low or full
507  * speed interrupt endpoints, which allow at most one packet per millisecond,
508  * of at most 8 or 64 bytes (respectively).
509  *
510  * It is not necessary to call this function to reserve bandwidth for devices
511  * under an xHCI host controller, as the bandwidth is reserved when the
512  * configuration or interface alt setting is selected.
513  */
514 void usb_sg_wait(struct usb_sg_request *io)
515 {
516 	int i;
517 	int entries = io->entries;
518 
519 	/* queue the urbs.  */
520 	spin_lock_irq(&io->lock);
521 	i = 0;
522 	while (i < entries && !io->status) {
523 		int retval;
524 
525 		io->urbs[i]->dev = io->dev;
526 		spin_unlock_irq(&io->lock);
527 
528 		retval = usb_submit_urb(io->urbs[i], GFP_NOIO);
529 
530 		switch (retval) {
531 			/* maybe we retrying will recover */
532 		case -ENXIO:	/* hc didn't queue this one */
533 		case -EAGAIN:
534 		case -ENOMEM:
535 			retval = 0;
536 			yield();
537 			break;
538 
539 			/* no error? continue immediately.
540 			 *
541 			 * NOTE: to work better with UHCI (4K I/O buffer may
542 			 * need 3K of TDs) it may be good to limit how many
543 			 * URBs are queued at once; N milliseconds?
544 			 */
545 		case 0:
546 			++i;
547 			cpu_relax();
548 			break;
549 
550 			/* fail any uncompleted urbs */
551 		default:
552 			io->urbs[i]->status = retval;
553 			dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
554 				__func__, retval);
555 			usb_sg_cancel(io);
556 		}
557 		spin_lock_irq(&io->lock);
558 		if (retval && (io->status == 0 || io->status == -ECONNRESET))
559 			io->status = retval;
560 	}
561 	io->count -= entries - i;
562 	if (io->count == 0)
563 		complete(&io->complete);
564 	spin_unlock_irq(&io->lock);
565 
566 	/* OK, yes, this could be packaged as non-blocking.
567 	 * So could the submit loop above ... but it's easier to
568 	 * solve neither problem than to solve both!
569 	 */
570 	wait_for_completion(&io->complete);
571 
572 	sg_clean(io);
573 }
574 EXPORT_SYMBOL_GPL(usb_sg_wait);
575 
576 /**
577  * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
578  * @io: request block, initialized with usb_sg_init()
579  *
580  * This stops a request after it has been started by usb_sg_wait().
581  * It can also prevents one initialized by usb_sg_init() from starting,
582  * so that call just frees resources allocated to the request.
583  */
584 void usb_sg_cancel(struct usb_sg_request *io)
585 {
586 	unsigned long flags;
587 	int i, retval;
588 
589 	spin_lock_irqsave(&io->lock, flags);
590 	if (io->status) {
591 		spin_unlock_irqrestore(&io->lock, flags);
592 		return;
593 	}
594 	/* shut everything down */
595 	io->status = -ECONNRESET;
596 	spin_unlock_irqrestore(&io->lock, flags);
597 
598 	for (i = io->entries - 1; i >= 0; --i) {
599 		usb_block_urb(io->urbs[i]);
600 
601 		retval = usb_unlink_urb(io->urbs[i]);
602 		if (retval != -EINPROGRESS
603 		    && retval != -ENODEV
604 		    && retval != -EBUSY
605 		    && retval != -EIDRM)
606 			dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
607 				 __func__, retval);
608 	}
609 }
610 EXPORT_SYMBOL_GPL(usb_sg_cancel);
611 
612 /*-------------------------------------------------------------------*/
613 
614 /**
615  * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
616  * @dev: the device whose descriptor is being retrieved
617  * @type: the descriptor type (USB_DT_*)
618  * @index: the number of the descriptor
619  * @buf: where to put the descriptor
620  * @size: how big is "buf"?
621  * Context: !in_interrupt ()
622  *
623  * Gets a USB descriptor.  Convenience functions exist to simplify
624  * getting some types of descriptors.  Use
625  * usb_get_string() or usb_string() for USB_DT_STRING.
626  * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
627  * are part of the device structure.
628  * In addition to a number of USB-standard descriptors, some
629  * devices also use class-specific or vendor-specific descriptors.
630  *
631  * This call is synchronous, and may not be used in an interrupt context.
632  *
633  * Return: The number of bytes received on success, or else the status code
634  * returned by the underlying usb_control_msg() call.
635  */
636 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
637 		       unsigned char index, void *buf, int size)
638 {
639 	int i;
640 	int result;
641 
642 	memset(buf, 0, size);	/* Make sure we parse really received data */
643 
644 	for (i = 0; i < 3; ++i) {
645 		/* retry on length 0 or error; some devices are flakey */
646 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
647 				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
648 				(type << 8) + index, 0, buf, size,
649 				USB_CTRL_GET_TIMEOUT);
650 		if (result <= 0 && result != -ETIMEDOUT)
651 			continue;
652 		if (result > 1 && ((u8 *)buf)[1] != type) {
653 			result = -ENODATA;
654 			continue;
655 		}
656 		break;
657 	}
658 	return result;
659 }
660 EXPORT_SYMBOL_GPL(usb_get_descriptor);
661 
662 /**
663  * usb_get_string - gets a string descriptor
664  * @dev: the device whose string descriptor is being retrieved
665  * @langid: code for language chosen (from string descriptor zero)
666  * @index: the number of the descriptor
667  * @buf: where to put the string
668  * @size: how big is "buf"?
669  * Context: !in_interrupt ()
670  *
671  * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
672  * in little-endian byte order).
673  * The usb_string() function will often be a convenient way to turn
674  * these strings into kernel-printable form.
675  *
676  * Strings may be referenced in device, configuration, interface, or other
677  * descriptors, and could also be used in vendor-specific ways.
678  *
679  * This call is synchronous, and may not be used in an interrupt context.
680  *
681  * Return: The number of bytes received on success, or else the status code
682  * returned by the underlying usb_control_msg() call.
683  */
684 static int usb_get_string(struct usb_device *dev, unsigned short langid,
685 			  unsigned char index, void *buf, int size)
686 {
687 	int i;
688 	int result;
689 
690 	for (i = 0; i < 3; ++i) {
691 		/* retry on length 0 or stall; some devices are flakey */
692 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
693 			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
694 			(USB_DT_STRING << 8) + index, langid, buf, size,
695 			USB_CTRL_GET_TIMEOUT);
696 		if (result == 0 || result == -EPIPE)
697 			continue;
698 		if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
699 			result = -ENODATA;
700 			continue;
701 		}
702 		break;
703 	}
704 	return result;
705 }
706 
707 static void usb_try_string_workarounds(unsigned char *buf, int *length)
708 {
709 	int newlength, oldlength = *length;
710 
711 	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
712 		if (!isprint(buf[newlength]) || buf[newlength + 1])
713 			break;
714 
715 	if (newlength > 2) {
716 		buf[0] = newlength;
717 		*length = newlength;
718 	}
719 }
720 
721 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
722 			  unsigned int index, unsigned char *buf)
723 {
724 	int rc;
725 
726 	/* Try to read the string descriptor by asking for the maximum
727 	 * possible number of bytes */
728 	if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
729 		rc = -EIO;
730 	else
731 		rc = usb_get_string(dev, langid, index, buf, 255);
732 
733 	/* If that failed try to read the descriptor length, then
734 	 * ask for just that many bytes */
735 	if (rc < 2) {
736 		rc = usb_get_string(dev, langid, index, buf, 2);
737 		if (rc == 2)
738 			rc = usb_get_string(dev, langid, index, buf, buf[0]);
739 	}
740 
741 	if (rc >= 2) {
742 		if (!buf[0] && !buf[1])
743 			usb_try_string_workarounds(buf, &rc);
744 
745 		/* There might be extra junk at the end of the descriptor */
746 		if (buf[0] < rc)
747 			rc = buf[0];
748 
749 		rc = rc - (rc & 1); /* force a multiple of two */
750 	}
751 
752 	if (rc < 2)
753 		rc = (rc < 0 ? rc : -EINVAL);
754 
755 	return rc;
756 }
757 
758 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
759 {
760 	int err;
761 
762 	if (dev->have_langid)
763 		return 0;
764 
765 	if (dev->string_langid < 0)
766 		return -EPIPE;
767 
768 	err = usb_string_sub(dev, 0, 0, tbuf);
769 
770 	/* If the string was reported but is malformed, default to english
771 	 * (0x0409) */
772 	if (err == -ENODATA || (err > 0 && err < 4)) {
773 		dev->string_langid = 0x0409;
774 		dev->have_langid = 1;
775 		dev_err(&dev->dev,
776 			"language id specifier not provided by device, defaulting to English\n");
777 		return 0;
778 	}
779 
780 	/* In case of all other errors, we assume the device is not able to
781 	 * deal with strings at all. Set string_langid to -1 in order to
782 	 * prevent any string to be retrieved from the device */
783 	if (err < 0) {
784 		dev_info(&dev->dev, "string descriptor 0 read error: %d\n",
785 					err);
786 		dev->string_langid = -1;
787 		return -EPIPE;
788 	}
789 
790 	/* always use the first langid listed */
791 	dev->string_langid = tbuf[2] | (tbuf[3] << 8);
792 	dev->have_langid = 1;
793 	dev_dbg(&dev->dev, "default language 0x%04x\n",
794 				dev->string_langid);
795 	return 0;
796 }
797 
798 /**
799  * usb_string - returns UTF-8 version of a string descriptor
800  * @dev: the device whose string descriptor is being retrieved
801  * @index: the number of the descriptor
802  * @buf: where to put the string
803  * @size: how big is "buf"?
804  * Context: !in_interrupt ()
805  *
806  * This converts the UTF-16LE encoded strings returned by devices, from
807  * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
808  * that are more usable in most kernel contexts.  Note that this function
809  * chooses strings in the first language supported by the device.
810  *
811  * This call is synchronous, and may not be used in an interrupt context.
812  *
813  * Return: length of the string (>= 0) or usb_control_msg status (< 0).
814  */
815 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
816 {
817 	unsigned char *tbuf;
818 	int err;
819 
820 	if (dev->state == USB_STATE_SUSPENDED)
821 		return -EHOSTUNREACH;
822 	if (size <= 0 || !buf || !index)
823 		return -EINVAL;
824 	buf[0] = 0;
825 	tbuf = kmalloc(256, GFP_NOIO);
826 	if (!tbuf)
827 		return -ENOMEM;
828 
829 	err = usb_get_langid(dev, tbuf);
830 	if (err < 0)
831 		goto errout;
832 
833 	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
834 	if (err < 0)
835 		goto errout;
836 
837 	size--;		/* leave room for trailing NULL char in output buffer */
838 	err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
839 			UTF16_LITTLE_ENDIAN, buf, size);
840 	buf[err] = 0;
841 
842 	if (tbuf[1] != USB_DT_STRING)
843 		dev_dbg(&dev->dev,
844 			"wrong descriptor type %02x for string %d (\"%s\")\n",
845 			tbuf[1], index, buf);
846 
847  errout:
848 	kfree(tbuf);
849 	return err;
850 }
851 EXPORT_SYMBOL_GPL(usb_string);
852 
853 /* one UTF-8-encoded 16-bit character has at most three bytes */
854 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
855 
856 /**
857  * usb_cache_string - read a string descriptor and cache it for later use
858  * @udev: the device whose string descriptor is being read
859  * @index: the descriptor index
860  *
861  * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
862  * or %NULL if the index is 0 or the string could not be read.
863  */
864 char *usb_cache_string(struct usb_device *udev, int index)
865 {
866 	char *buf;
867 	char *smallbuf = NULL;
868 	int len;
869 
870 	if (index <= 0)
871 		return NULL;
872 
873 	buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
874 	if (buf) {
875 		len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
876 		if (len > 0) {
877 			smallbuf = kmalloc(++len, GFP_NOIO);
878 			if (!smallbuf)
879 				return buf;
880 			memcpy(smallbuf, buf, len);
881 		}
882 		kfree(buf);
883 	}
884 	return smallbuf;
885 }
886 
887 /*
888  * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
889  * @dev: the device whose device descriptor is being updated
890  * @size: how much of the descriptor to read
891  * Context: !in_interrupt ()
892  *
893  * Updates the copy of the device descriptor stored in the device structure,
894  * which dedicates space for this purpose.
895  *
896  * Not exported, only for use by the core.  If drivers really want to read
897  * the device descriptor directly, they can call usb_get_descriptor() with
898  * type = USB_DT_DEVICE and index = 0.
899  *
900  * This call is synchronous, and may not be used in an interrupt context.
901  *
902  * Return: The number of bytes received on success, or else the status code
903  * returned by the underlying usb_control_msg() call.
904  */
905 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
906 {
907 	struct usb_device_descriptor *desc;
908 	int ret;
909 
910 	if (size > sizeof(*desc))
911 		return -EINVAL;
912 	desc = kmalloc(sizeof(*desc), GFP_NOIO);
913 	if (!desc)
914 		return -ENOMEM;
915 
916 	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
917 	if (ret >= 0)
918 		memcpy(&dev->descriptor, desc, size);
919 	kfree(desc);
920 	return ret;
921 }
922 
923 /*
924  * usb_set_isoch_delay - informs the device of the packet transmit delay
925  * @dev: the device whose delay is to be informed
926  * Context: !in_interrupt()
927  *
928  * Since this is an optional request, we don't bother if it fails.
929  */
930 int usb_set_isoch_delay(struct usb_device *dev)
931 {
932 	/* skip hub devices */
933 	if (dev->descriptor.bDeviceClass == USB_CLASS_HUB)
934 		return 0;
935 
936 	/* skip non-SS/non-SSP devices */
937 	if (dev->speed < USB_SPEED_SUPER)
938 		return 0;
939 
940 	return usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
941 			USB_REQ_SET_ISOCH_DELAY,
942 			USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE,
943 			dev->hub_delay, 0, NULL, 0,
944 			USB_CTRL_SET_TIMEOUT);
945 }
946 
947 /**
948  * usb_get_status - issues a GET_STATUS call
949  * @dev: the device whose status is being checked
950  * @recip: USB_RECIP_*; for device, interface, or endpoint
951  * @type: USB_STATUS_TYPE_*; for standard or PTM status types
952  * @target: zero (for device), else interface or endpoint number
953  * @data: pointer to two bytes of bitmap data
954  * Context: !in_interrupt ()
955  *
956  * Returns device, interface, or endpoint status.  Normally only of
957  * interest to see if the device is self powered, or has enabled the
958  * remote wakeup facility; or whether a bulk or interrupt endpoint
959  * is halted ("stalled").
960  *
961  * Bits in these status bitmaps are set using the SET_FEATURE request,
962  * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
963  * function should be used to clear halt ("stall") status.
964  *
965  * This call is synchronous, and may not be used in an interrupt context.
966  *
967  * Returns 0 and the status value in *@data (in host byte order) on success,
968  * or else the status code from the underlying usb_control_msg() call.
969  */
970 int usb_get_status(struct usb_device *dev, int recip, int type, int target,
971 		void *data)
972 {
973 	int ret;
974 	void *status;
975 	int length;
976 
977 	switch (type) {
978 	case USB_STATUS_TYPE_STANDARD:
979 		length = 2;
980 		break;
981 	case USB_STATUS_TYPE_PTM:
982 		if (recip != USB_RECIP_DEVICE)
983 			return -EINVAL;
984 
985 		length = 4;
986 		break;
987 	default:
988 		return -EINVAL;
989 	}
990 
991 	status =  kmalloc(length, GFP_KERNEL);
992 	if (!status)
993 		return -ENOMEM;
994 
995 	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
996 		USB_REQ_GET_STATUS, USB_DIR_IN | recip, USB_STATUS_TYPE_STANDARD,
997 		target, status, length, USB_CTRL_GET_TIMEOUT);
998 
999 	switch (ret) {
1000 	case 4:
1001 		if (type != USB_STATUS_TYPE_PTM) {
1002 			ret = -EIO;
1003 			break;
1004 		}
1005 
1006 		*(u32 *) data = le32_to_cpu(*(__le32 *) status);
1007 		ret = 0;
1008 		break;
1009 	case 2:
1010 		if (type != USB_STATUS_TYPE_STANDARD) {
1011 			ret = -EIO;
1012 			break;
1013 		}
1014 
1015 		*(u16 *) data = le16_to_cpu(*(__le16 *) status);
1016 		ret = 0;
1017 		break;
1018 	default:
1019 		ret = -EIO;
1020 	}
1021 
1022 	kfree(status);
1023 	return ret;
1024 }
1025 EXPORT_SYMBOL_GPL(usb_get_status);
1026 
1027 /**
1028  * usb_clear_halt - tells device to clear endpoint halt/stall condition
1029  * @dev: device whose endpoint is halted
1030  * @pipe: endpoint "pipe" being cleared
1031  * Context: !in_interrupt ()
1032  *
1033  * This is used to clear halt conditions for bulk and interrupt endpoints,
1034  * as reported by URB completion status.  Endpoints that are halted are
1035  * sometimes referred to as being "stalled".  Such endpoints are unable
1036  * to transmit or receive data until the halt status is cleared.  Any URBs
1037  * queued for such an endpoint should normally be unlinked by the driver
1038  * before clearing the halt condition, as described in sections 5.7.5
1039  * and 5.8.5 of the USB 2.0 spec.
1040  *
1041  * Note that control and isochronous endpoints don't halt, although control
1042  * endpoints report "protocol stall" (for unsupported requests) using the
1043  * same status code used to report a true stall.
1044  *
1045  * This call is synchronous, and may not be used in an interrupt context.
1046  *
1047  * Return: Zero on success, or else the status code returned by the
1048  * underlying usb_control_msg() call.
1049  */
1050 int usb_clear_halt(struct usb_device *dev, int pipe)
1051 {
1052 	int result;
1053 	int endp = usb_pipeendpoint(pipe);
1054 
1055 	if (usb_pipein(pipe))
1056 		endp |= USB_DIR_IN;
1057 
1058 	/* we don't care if it wasn't halted first. in fact some devices
1059 	 * (like some ibmcam model 1 units) seem to expect hosts to make
1060 	 * this request for iso endpoints, which can't halt!
1061 	 */
1062 	result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1063 		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1064 		USB_ENDPOINT_HALT, endp, NULL, 0,
1065 		USB_CTRL_SET_TIMEOUT);
1066 
1067 	/* don't un-halt or force to DATA0 except on success */
1068 	if (result < 0)
1069 		return result;
1070 
1071 	/* NOTE:  seems like Microsoft and Apple don't bother verifying
1072 	 * the clear "took", so some devices could lock up if you check...
1073 	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
1074 	 *
1075 	 * NOTE:  make sure the logic here doesn't diverge much from
1076 	 * the copy in usb-storage, for as long as we need two copies.
1077 	 */
1078 
1079 	usb_reset_endpoint(dev, endp);
1080 
1081 	return 0;
1082 }
1083 EXPORT_SYMBOL_GPL(usb_clear_halt);
1084 
1085 static int create_intf_ep_devs(struct usb_interface *intf)
1086 {
1087 	struct usb_device *udev = interface_to_usbdev(intf);
1088 	struct usb_host_interface *alt = intf->cur_altsetting;
1089 	int i;
1090 
1091 	if (intf->ep_devs_created || intf->unregistering)
1092 		return 0;
1093 
1094 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1095 		(void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1096 	intf->ep_devs_created = 1;
1097 	return 0;
1098 }
1099 
1100 static void remove_intf_ep_devs(struct usb_interface *intf)
1101 {
1102 	struct usb_host_interface *alt = intf->cur_altsetting;
1103 	int i;
1104 
1105 	if (!intf->ep_devs_created)
1106 		return;
1107 
1108 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1109 		usb_remove_ep_devs(&alt->endpoint[i]);
1110 	intf->ep_devs_created = 0;
1111 }
1112 
1113 /**
1114  * usb_disable_endpoint -- Disable an endpoint by address
1115  * @dev: the device whose endpoint is being disabled
1116  * @epaddr: the endpoint's address.  Endpoint number for output,
1117  *	endpoint number + USB_DIR_IN for input
1118  * @reset_hardware: flag to erase any endpoint state stored in the
1119  *	controller hardware
1120  *
1121  * Disables the endpoint for URB submission and nukes all pending URBs.
1122  * If @reset_hardware is set then also deallocates hcd/hardware state
1123  * for the endpoint.
1124  */
1125 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1126 		bool reset_hardware)
1127 {
1128 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1129 	struct usb_host_endpoint *ep;
1130 
1131 	if (!dev)
1132 		return;
1133 
1134 	if (usb_endpoint_out(epaddr)) {
1135 		ep = dev->ep_out[epnum];
1136 		if (reset_hardware)
1137 			dev->ep_out[epnum] = NULL;
1138 	} else {
1139 		ep = dev->ep_in[epnum];
1140 		if (reset_hardware)
1141 			dev->ep_in[epnum] = NULL;
1142 	}
1143 	if (ep) {
1144 		ep->enabled = 0;
1145 		usb_hcd_flush_endpoint(dev, ep);
1146 		if (reset_hardware)
1147 			usb_hcd_disable_endpoint(dev, ep);
1148 	}
1149 }
1150 
1151 /**
1152  * usb_reset_endpoint - Reset an endpoint's state.
1153  * @dev: the device whose endpoint is to be reset
1154  * @epaddr: the endpoint's address.  Endpoint number for output,
1155  *	endpoint number + USB_DIR_IN for input
1156  *
1157  * Resets any host-side endpoint state such as the toggle bit,
1158  * sequence number or current window.
1159  */
1160 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1161 {
1162 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1163 	struct usb_host_endpoint *ep;
1164 
1165 	if (usb_endpoint_out(epaddr))
1166 		ep = dev->ep_out[epnum];
1167 	else
1168 		ep = dev->ep_in[epnum];
1169 	if (ep)
1170 		usb_hcd_reset_endpoint(dev, ep);
1171 }
1172 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1173 
1174 
1175 /**
1176  * usb_disable_interface -- Disable all endpoints for an interface
1177  * @dev: the device whose interface is being disabled
1178  * @intf: pointer to the interface descriptor
1179  * @reset_hardware: flag to erase any endpoint state stored in the
1180  *	controller hardware
1181  *
1182  * Disables all the endpoints for the interface's current altsetting.
1183  */
1184 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1185 		bool reset_hardware)
1186 {
1187 	struct usb_host_interface *alt = intf->cur_altsetting;
1188 	int i;
1189 
1190 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1191 		usb_disable_endpoint(dev,
1192 				alt->endpoint[i].desc.bEndpointAddress,
1193 				reset_hardware);
1194 	}
1195 }
1196 
1197 /**
1198  * usb_disable_device - Disable all the endpoints for a USB device
1199  * @dev: the device whose endpoints are being disabled
1200  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1201  *
1202  * Disables all the device's endpoints, potentially including endpoint 0.
1203  * Deallocates hcd/hardware state for the endpoints (nuking all or most
1204  * pending urbs) and usbcore state for the interfaces, so that usbcore
1205  * must usb_set_configuration() before any interfaces could be used.
1206  */
1207 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1208 {
1209 	int i;
1210 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1211 
1212 	/* getting rid of interfaces will disconnect
1213 	 * any drivers bound to them (a key side effect)
1214 	 */
1215 	if (dev->actconfig) {
1216 		/*
1217 		 * FIXME: In order to avoid self-deadlock involving the
1218 		 * bandwidth_mutex, we have to mark all the interfaces
1219 		 * before unregistering any of them.
1220 		 */
1221 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1222 			dev->actconfig->interface[i]->unregistering = 1;
1223 
1224 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1225 			struct usb_interface	*interface;
1226 
1227 			/* remove this interface if it has been registered */
1228 			interface = dev->actconfig->interface[i];
1229 			if (!device_is_registered(&interface->dev))
1230 				continue;
1231 			dev_dbg(&dev->dev, "unregistering interface %s\n",
1232 				dev_name(&interface->dev));
1233 			remove_intf_ep_devs(interface);
1234 			device_del(&interface->dev);
1235 		}
1236 
1237 		/* Now that the interfaces are unbound, nobody should
1238 		 * try to access them.
1239 		 */
1240 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1241 			put_device(&dev->actconfig->interface[i]->dev);
1242 			dev->actconfig->interface[i] = NULL;
1243 		}
1244 
1245 		if (dev->usb2_hw_lpm_enabled == 1)
1246 			usb_set_usb2_hardware_lpm(dev, 0);
1247 		usb_unlocked_disable_lpm(dev);
1248 		usb_disable_ltm(dev);
1249 
1250 		dev->actconfig = NULL;
1251 		if (dev->state == USB_STATE_CONFIGURED)
1252 			usb_set_device_state(dev, USB_STATE_ADDRESS);
1253 	}
1254 
1255 	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1256 		skip_ep0 ? "non-ep0" : "all");
1257 	if (hcd->driver->check_bandwidth) {
1258 		/* First pass: Cancel URBs, leave endpoint pointers intact. */
1259 		for (i = skip_ep0; i < 16; ++i) {
1260 			usb_disable_endpoint(dev, i, false);
1261 			usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1262 		}
1263 		/* Remove endpoints from the host controller internal state */
1264 		mutex_lock(hcd->bandwidth_mutex);
1265 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1266 		mutex_unlock(hcd->bandwidth_mutex);
1267 		/* Second pass: remove endpoint pointers */
1268 	}
1269 	for (i = skip_ep0; i < 16; ++i) {
1270 		usb_disable_endpoint(dev, i, true);
1271 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1272 	}
1273 }
1274 
1275 /**
1276  * usb_enable_endpoint - Enable an endpoint for USB communications
1277  * @dev: the device whose interface is being enabled
1278  * @ep: the endpoint
1279  * @reset_ep: flag to reset the endpoint state
1280  *
1281  * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1282  * For control endpoints, both the input and output sides are handled.
1283  */
1284 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1285 		bool reset_ep)
1286 {
1287 	int epnum = usb_endpoint_num(&ep->desc);
1288 	int is_out = usb_endpoint_dir_out(&ep->desc);
1289 	int is_control = usb_endpoint_xfer_control(&ep->desc);
1290 
1291 	if (reset_ep)
1292 		usb_hcd_reset_endpoint(dev, ep);
1293 	if (is_out || is_control)
1294 		dev->ep_out[epnum] = ep;
1295 	if (!is_out || is_control)
1296 		dev->ep_in[epnum] = ep;
1297 	ep->enabled = 1;
1298 }
1299 
1300 /**
1301  * usb_enable_interface - Enable all the endpoints for an interface
1302  * @dev: the device whose interface is being enabled
1303  * @intf: pointer to the interface descriptor
1304  * @reset_eps: flag to reset the endpoints' state
1305  *
1306  * Enables all the endpoints for the interface's current altsetting.
1307  */
1308 void usb_enable_interface(struct usb_device *dev,
1309 		struct usb_interface *intf, bool reset_eps)
1310 {
1311 	struct usb_host_interface *alt = intf->cur_altsetting;
1312 	int i;
1313 
1314 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1315 		usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1316 }
1317 
1318 /**
1319  * usb_set_interface - Makes a particular alternate setting be current
1320  * @dev: the device whose interface is being updated
1321  * @interface: the interface being updated
1322  * @alternate: the setting being chosen.
1323  * Context: !in_interrupt ()
1324  *
1325  * This is used to enable data transfers on interfaces that may not
1326  * be enabled by default.  Not all devices support such configurability.
1327  * Only the driver bound to an interface may change its setting.
1328  *
1329  * Within any given configuration, each interface may have several
1330  * alternative settings.  These are often used to control levels of
1331  * bandwidth consumption.  For example, the default setting for a high
1332  * speed interrupt endpoint may not send more than 64 bytes per microframe,
1333  * while interrupt transfers of up to 3KBytes per microframe are legal.
1334  * Also, isochronous endpoints may never be part of an
1335  * interface's default setting.  To access such bandwidth, alternate
1336  * interface settings must be made current.
1337  *
1338  * Note that in the Linux USB subsystem, bandwidth associated with
1339  * an endpoint in a given alternate setting is not reserved until an URB
1340  * is submitted that needs that bandwidth.  Some other operating systems
1341  * allocate bandwidth early, when a configuration is chosen.
1342  *
1343  * This call is synchronous, and may not be used in an interrupt context.
1344  * Also, drivers must not change altsettings while urbs are scheduled for
1345  * endpoints in that interface; all such urbs must first be completed
1346  * (perhaps forced by unlinking).
1347  *
1348  * Return: Zero on success, or else the status code returned by the
1349  * underlying usb_control_msg() call.
1350  */
1351 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1352 {
1353 	struct usb_interface *iface;
1354 	struct usb_host_interface *alt;
1355 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1356 	int i, ret, manual = 0;
1357 	unsigned int epaddr;
1358 	unsigned int pipe;
1359 
1360 	if (dev->state == USB_STATE_SUSPENDED)
1361 		return -EHOSTUNREACH;
1362 
1363 	iface = usb_ifnum_to_if(dev, interface);
1364 	if (!iface) {
1365 		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1366 			interface);
1367 		return -EINVAL;
1368 	}
1369 	if (iface->unregistering)
1370 		return -ENODEV;
1371 
1372 	alt = usb_altnum_to_altsetting(iface, alternate);
1373 	if (!alt) {
1374 		dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1375 			 alternate);
1376 		return -EINVAL;
1377 	}
1378 
1379 	/* Make sure we have enough bandwidth for this alternate interface.
1380 	 * Remove the current alt setting and add the new alt setting.
1381 	 */
1382 	mutex_lock(hcd->bandwidth_mutex);
1383 	/* Disable LPM, and re-enable it once the new alt setting is installed,
1384 	 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1385 	 */
1386 	if (usb_disable_lpm(dev)) {
1387 		dev_err(&iface->dev, "%s Failed to disable LPM\n", __func__);
1388 		mutex_unlock(hcd->bandwidth_mutex);
1389 		return -ENOMEM;
1390 	}
1391 	/* Changing alt-setting also frees any allocated streams */
1392 	for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1393 		iface->cur_altsetting->endpoint[i].streams = 0;
1394 
1395 	ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1396 	if (ret < 0) {
1397 		dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1398 				alternate);
1399 		usb_enable_lpm(dev);
1400 		mutex_unlock(hcd->bandwidth_mutex);
1401 		return ret;
1402 	}
1403 
1404 	if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1405 		ret = -EPIPE;
1406 	else
1407 		ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1408 				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1409 				   alternate, interface, NULL, 0, 5000);
1410 
1411 	/* 9.4.10 says devices don't need this and are free to STALL the
1412 	 * request if the interface only has one alternate setting.
1413 	 */
1414 	if (ret == -EPIPE && iface->num_altsetting == 1) {
1415 		dev_dbg(&dev->dev,
1416 			"manual set_interface for iface %d, alt %d\n",
1417 			interface, alternate);
1418 		manual = 1;
1419 	} else if (ret < 0) {
1420 		/* Re-instate the old alt setting */
1421 		usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1422 		usb_enable_lpm(dev);
1423 		mutex_unlock(hcd->bandwidth_mutex);
1424 		return ret;
1425 	}
1426 	mutex_unlock(hcd->bandwidth_mutex);
1427 
1428 	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1429 	 * when they implement async or easily-killable versions of this or
1430 	 * other "should-be-internal" functions (like clear_halt).
1431 	 * should hcd+usbcore postprocess control requests?
1432 	 */
1433 
1434 	/* prevent submissions using previous endpoint settings */
1435 	if (iface->cur_altsetting != alt) {
1436 		remove_intf_ep_devs(iface);
1437 		usb_remove_sysfs_intf_files(iface);
1438 	}
1439 	usb_disable_interface(dev, iface, true);
1440 
1441 	iface->cur_altsetting = alt;
1442 
1443 	/* Now that the interface is installed, re-enable LPM. */
1444 	usb_unlocked_enable_lpm(dev);
1445 
1446 	/* If the interface only has one altsetting and the device didn't
1447 	 * accept the request, we attempt to carry out the equivalent action
1448 	 * by manually clearing the HALT feature for each endpoint in the
1449 	 * new altsetting.
1450 	 */
1451 	if (manual) {
1452 		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1453 			epaddr = alt->endpoint[i].desc.bEndpointAddress;
1454 			pipe = __create_pipe(dev,
1455 					USB_ENDPOINT_NUMBER_MASK & epaddr) |
1456 					(usb_endpoint_out(epaddr) ?
1457 					USB_DIR_OUT : USB_DIR_IN);
1458 
1459 			usb_clear_halt(dev, pipe);
1460 		}
1461 	}
1462 
1463 	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1464 	 *
1465 	 * Note:
1466 	 * Despite EP0 is always present in all interfaces/AS, the list of
1467 	 * endpoints from the descriptor does not contain EP0. Due to its
1468 	 * omnipresence one might expect EP0 being considered "affected" by
1469 	 * any SetInterface request and hence assume toggles need to be reset.
1470 	 * However, EP0 toggles are re-synced for every individual transfer
1471 	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1472 	 * (Likewise, EP0 never "halts" on well designed devices.)
1473 	 */
1474 	usb_enable_interface(dev, iface, true);
1475 	if (device_is_registered(&iface->dev)) {
1476 		usb_create_sysfs_intf_files(iface);
1477 		create_intf_ep_devs(iface);
1478 	}
1479 	return 0;
1480 }
1481 EXPORT_SYMBOL_GPL(usb_set_interface);
1482 
1483 /**
1484  * usb_reset_configuration - lightweight device reset
1485  * @dev: the device whose configuration is being reset
1486  *
1487  * This issues a standard SET_CONFIGURATION request to the device using
1488  * the current configuration.  The effect is to reset most USB-related
1489  * state in the device, including interface altsettings (reset to zero),
1490  * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1491  * endpoints).  Other usbcore state is unchanged, including bindings of
1492  * usb device drivers to interfaces.
1493  *
1494  * Because this affects multiple interfaces, avoid using this with composite
1495  * (multi-interface) devices.  Instead, the driver for each interface may
1496  * use usb_set_interface() on the interfaces it claims.  Be careful though;
1497  * some devices don't support the SET_INTERFACE request, and others won't
1498  * reset all the interface state (notably endpoint state).  Resetting the whole
1499  * configuration would affect other drivers' interfaces.
1500  *
1501  * The caller must own the device lock.
1502  *
1503  * Return: Zero on success, else a negative error code.
1504  */
1505 int usb_reset_configuration(struct usb_device *dev)
1506 {
1507 	int			i, retval;
1508 	struct usb_host_config	*config;
1509 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1510 
1511 	if (dev->state == USB_STATE_SUSPENDED)
1512 		return -EHOSTUNREACH;
1513 
1514 	/* caller must have locked the device and must own
1515 	 * the usb bus readlock (so driver bindings are stable);
1516 	 * calls during probe() are fine
1517 	 */
1518 
1519 	for (i = 1; i < 16; ++i) {
1520 		usb_disable_endpoint(dev, i, true);
1521 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1522 	}
1523 
1524 	config = dev->actconfig;
1525 	retval = 0;
1526 	mutex_lock(hcd->bandwidth_mutex);
1527 	/* Disable LPM, and re-enable it once the configuration is reset, so
1528 	 * that the xHCI driver can recalculate the U1/U2 timeouts.
1529 	 */
1530 	if (usb_disable_lpm(dev)) {
1531 		dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1532 		mutex_unlock(hcd->bandwidth_mutex);
1533 		return -ENOMEM;
1534 	}
1535 	/* Make sure we have enough bandwidth for each alternate setting 0 */
1536 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1537 		struct usb_interface *intf = config->interface[i];
1538 		struct usb_host_interface *alt;
1539 
1540 		alt = usb_altnum_to_altsetting(intf, 0);
1541 		if (!alt)
1542 			alt = &intf->altsetting[0];
1543 		if (alt != intf->cur_altsetting)
1544 			retval = usb_hcd_alloc_bandwidth(dev, NULL,
1545 					intf->cur_altsetting, alt);
1546 		if (retval < 0)
1547 			break;
1548 	}
1549 	/* If not, reinstate the old alternate settings */
1550 	if (retval < 0) {
1551 reset_old_alts:
1552 		for (i--; i >= 0; i--) {
1553 			struct usb_interface *intf = config->interface[i];
1554 			struct usb_host_interface *alt;
1555 
1556 			alt = usb_altnum_to_altsetting(intf, 0);
1557 			if (!alt)
1558 				alt = &intf->altsetting[0];
1559 			if (alt != intf->cur_altsetting)
1560 				usb_hcd_alloc_bandwidth(dev, NULL,
1561 						alt, intf->cur_altsetting);
1562 		}
1563 		usb_enable_lpm(dev);
1564 		mutex_unlock(hcd->bandwidth_mutex);
1565 		return retval;
1566 	}
1567 	retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1568 			USB_REQ_SET_CONFIGURATION, 0,
1569 			config->desc.bConfigurationValue, 0,
1570 			NULL, 0, USB_CTRL_SET_TIMEOUT);
1571 	if (retval < 0)
1572 		goto reset_old_alts;
1573 	mutex_unlock(hcd->bandwidth_mutex);
1574 
1575 	/* re-init hc/hcd interface/endpoint state */
1576 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1577 		struct usb_interface *intf = config->interface[i];
1578 		struct usb_host_interface *alt;
1579 
1580 		alt = usb_altnum_to_altsetting(intf, 0);
1581 
1582 		/* No altsetting 0?  We'll assume the first altsetting.
1583 		 * We could use a GetInterface call, but if a device is
1584 		 * so non-compliant that it doesn't have altsetting 0
1585 		 * then I wouldn't trust its reply anyway.
1586 		 */
1587 		if (!alt)
1588 			alt = &intf->altsetting[0];
1589 
1590 		if (alt != intf->cur_altsetting) {
1591 			remove_intf_ep_devs(intf);
1592 			usb_remove_sysfs_intf_files(intf);
1593 		}
1594 		intf->cur_altsetting = alt;
1595 		usb_enable_interface(dev, intf, true);
1596 		if (device_is_registered(&intf->dev)) {
1597 			usb_create_sysfs_intf_files(intf);
1598 			create_intf_ep_devs(intf);
1599 		}
1600 	}
1601 	/* Now that the interfaces are installed, re-enable LPM. */
1602 	usb_unlocked_enable_lpm(dev);
1603 	return 0;
1604 }
1605 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1606 
1607 static void usb_release_interface(struct device *dev)
1608 {
1609 	struct usb_interface *intf = to_usb_interface(dev);
1610 	struct usb_interface_cache *intfc =
1611 			altsetting_to_usb_interface_cache(intf->altsetting);
1612 
1613 	kref_put(&intfc->ref, usb_release_interface_cache);
1614 	usb_put_dev(interface_to_usbdev(intf));
1615 	of_node_put(dev->of_node);
1616 	kfree(intf);
1617 }
1618 
1619 /*
1620  * usb_deauthorize_interface - deauthorize an USB interface
1621  *
1622  * @intf: USB interface structure
1623  */
1624 void usb_deauthorize_interface(struct usb_interface *intf)
1625 {
1626 	struct device *dev = &intf->dev;
1627 
1628 	device_lock(dev->parent);
1629 
1630 	if (intf->authorized) {
1631 		device_lock(dev);
1632 		intf->authorized = 0;
1633 		device_unlock(dev);
1634 
1635 		usb_forced_unbind_intf(intf);
1636 	}
1637 
1638 	device_unlock(dev->parent);
1639 }
1640 
1641 /*
1642  * usb_authorize_interface - authorize an USB interface
1643  *
1644  * @intf: USB interface structure
1645  */
1646 void usb_authorize_interface(struct usb_interface *intf)
1647 {
1648 	struct device *dev = &intf->dev;
1649 
1650 	if (!intf->authorized) {
1651 		device_lock(dev);
1652 		intf->authorized = 1; /* authorize interface */
1653 		device_unlock(dev);
1654 	}
1655 }
1656 
1657 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1658 {
1659 	struct usb_device *usb_dev;
1660 	struct usb_interface *intf;
1661 	struct usb_host_interface *alt;
1662 
1663 	intf = to_usb_interface(dev);
1664 	usb_dev = interface_to_usbdev(intf);
1665 	alt = intf->cur_altsetting;
1666 
1667 	if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1668 		   alt->desc.bInterfaceClass,
1669 		   alt->desc.bInterfaceSubClass,
1670 		   alt->desc.bInterfaceProtocol))
1671 		return -ENOMEM;
1672 
1673 	if (add_uevent_var(env,
1674 		   "MODALIAS=usb:"
1675 		   "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1676 		   le16_to_cpu(usb_dev->descriptor.idVendor),
1677 		   le16_to_cpu(usb_dev->descriptor.idProduct),
1678 		   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1679 		   usb_dev->descriptor.bDeviceClass,
1680 		   usb_dev->descriptor.bDeviceSubClass,
1681 		   usb_dev->descriptor.bDeviceProtocol,
1682 		   alt->desc.bInterfaceClass,
1683 		   alt->desc.bInterfaceSubClass,
1684 		   alt->desc.bInterfaceProtocol,
1685 		   alt->desc.bInterfaceNumber))
1686 		return -ENOMEM;
1687 
1688 	return 0;
1689 }
1690 
1691 struct device_type usb_if_device_type = {
1692 	.name =		"usb_interface",
1693 	.release =	usb_release_interface,
1694 	.uevent =	usb_if_uevent,
1695 };
1696 
1697 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1698 						struct usb_host_config *config,
1699 						u8 inum)
1700 {
1701 	struct usb_interface_assoc_descriptor *retval = NULL;
1702 	struct usb_interface_assoc_descriptor *intf_assoc;
1703 	int first_intf;
1704 	int last_intf;
1705 	int i;
1706 
1707 	for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1708 		intf_assoc = config->intf_assoc[i];
1709 		if (intf_assoc->bInterfaceCount == 0)
1710 			continue;
1711 
1712 		first_intf = intf_assoc->bFirstInterface;
1713 		last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1714 		if (inum >= first_intf && inum <= last_intf) {
1715 			if (!retval)
1716 				retval = intf_assoc;
1717 			else
1718 				dev_err(&dev->dev, "Interface #%d referenced"
1719 					" by multiple IADs\n", inum);
1720 		}
1721 	}
1722 
1723 	return retval;
1724 }
1725 
1726 
1727 /*
1728  * Internal function to queue a device reset
1729  * See usb_queue_reset_device() for more details
1730  */
1731 static void __usb_queue_reset_device(struct work_struct *ws)
1732 {
1733 	int rc;
1734 	struct usb_interface *iface =
1735 		container_of(ws, struct usb_interface, reset_ws);
1736 	struct usb_device *udev = interface_to_usbdev(iface);
1737 
1738 	rc = usb_lock_device_for_reset(udev, iface);
1739 	if (rc >= 0) {
1740 		usb_reset_device(udev);
1741 		usb_unlock_device(udev);
1742 	}
1743 	usb_put_intf(iface);	/* Undo _get_ in usb_queue_reset_device() */
1744 }
1745 
1746 
1747 /*
1748  * usb_set_configuration - Makes a particular device setting be current
1749  * @dev: the device whose configuration is being updated
1750  * @configuration: the configuration being chosen.
1751  * Context: !in_interrupt(), caller owns the device lock
1752  *
1753  * This is used to enable non-default device modes.  Not all devices
1754  * use this kind of configurability; many devices only have one
1755  * configuration.
1756  *
1757  * @configuration is the value of the configuration to be installed.
1758  * According to the USB spec (e.g. section 9.1.1.5), configuration values
1759  * must be non-zero; a value of zero indicates that the device in
1760  * unconfigured.  However some devices erroneously use 0 as one of their
1761  * configuration values.  To help manage such devices, this routine will
1762  * accept @configuration = -1 as indicating the device should be put in
1763  * an unconfigured state.
1764  *
1765  * USB device configurations may affect Linux interoperability,
1766  * power consumption and the functionality available.  For example,
1767  * the default configuration is limited to using 100mA of bus power,
1768  * so that when certain device functionality requires more power,
1769  * and the device is bus powered, that functionality should be in some
1770  * non-default device configuration.  Other device modes may also be
1771  * reflected as configuration options, such as whether two ISDN
1772  * channels are available independently; and choosing between open
1773  * standard device protocols (like CDC) or proprietary ones.
1774  *
1775  * Note that a non-authorized device (dev->authorized == 0) will only
1776  * be put in unconfigured mode.
1777  *
1778  * Note that USB has an additional level of device configurability,
1779  * associated with interfaces.  That configurability is accessed using
1780  * usb_set_interface().
1781  *
1782  * This call is synchronous. The calling context must be able to sleep,
1783  * must own the device lock, and must not hold the driver model's USB
1784  * bus mutex; usb interface driver probe() methods cannot use this routine.
1785  *
1786  * Returns zero on success, or else the status code returned by the
1787  * underlying call that failed.  On successful completion, each interface
1788  * in the original device configuration has been destroyed, and each one
1789  * in the new configuration has been probed by all relevant usb device
1790  * drivers currently known to the kernel.
1791  */
1792 int usb_set_configuration(struct usb_device *dev, int configuration)
1793 {
1794 	int i, ret;
1795 	struct usb_host_config *cp = NULL;
1796 	struct usb_interface **new_interfaces = NULL;
1797 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1798 	int n, nintf;
1799 
1800 	if (dev->authorized == 0 || configuration == -1)
1801 		configuration = 0;
1802 	else {
1803 		for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1804 			if (dev->config[i].desc.bConfigurationValue ==
1805 					configuration) {
1806 				cp = &dev->config[i];
1807 				break;
1808 			}
1809 		}
1810 	}
1811 	if ((!cp && configuration != 0))
1812 		return -EINVAL;
1813 
1814 	/* The USB spec says configuration 0 means unconfigured.
1815 	 * But if a device includes a configuration numbered 0,
1816 	 * we will accept it as a correctly configured state.
1817 	 * Use -1 if you really want to unconfigure the device.
1818 	 */
1819 	if (cp && configuration == 0)
1820 		dev_warn(&dev->dev, "config 0 descriptor??\n");
1821 
1822 	/* Allocate memory for new interfaces before doing anything else,
1823 	 * so that if we run out then nothing will have changed. */
1824 	n = nintf = 0;
1825 	if (cp) {
1826 		nintf = cp->desc.bNumInterfaces;
1827 		new_interfaces = kmalloc_array(nintf, sizeof(*new_interfaces),
1828 					       GFP_NOIO);
1829 		if (!new_interfaces)
1830 			return -ENOMEM;
1831 
1832 		for (; n < nintf; ++n) {
1833 			new_interfaces[n] = kzalloc(
1834 					sizeof(struct usb_interface),
1835 					GFP_NOIO);
1836 			if (!new_interfaces[n]) {
1837 				ret = -ENOMEM;
1838 free_interfaces:
1839 				while (--n >= 0)
1840 					kfree(new_interfaces[n]);
1841 				kfree(new_interfaces);
1842 				return ret;
1843 			}
1844 		}
1845 
1846 		i = dev->bus_mA - usb_get_max_power(dev, cp);
1847 		if (i < 0)
1848 			dev_warn(&dev->dev, "new config #%d exceeds power "
1849 					"limit by %dmA\n",
1850 					configuration, -i);
1851 	}
1852 
1853 	/* Wake up the device so we can send it the Set-Config request */
1854 	ret = usb_autoresume_device(dev);
1855 	if (ret)
1856 		goto free_interfaces;
1857 
1858 	/* if it's already configured, clear out old state first.
1859 	 * getting rid of old interfaces means unbinding their drivers.
1860 	 */
1861 	if (dev->state != USB_STATE_ADDRESS)
1862 		usb_disable_device(dev, 1);	/* Skip ep0 */
1863 
1864 	/* Get rid of pending async Set-Config requests for this device */
1865 	cancel_async_set_config(dev);
1866 
1867 	/* Make sure we have bandwidth (and available HCD resources) for this
1868 	 * configuration.  Remove endpoints from the schedule if we're dropping
1869 	 * this configuration to set configuration 0.  After this point, the
1870 	 * host controller will not allow submissions to dropped endpoints.  If
1871 	 * this call fails, the device state is unchanged.
1872 	 */
1873 	mutex_lock(hcd->bandwidth_mutex);
1874 	/* Disable LPM, and re-enable it once the new configuration is
1875 	 * installed, so that the xHCI driver can recalculate the U1/U2
1876 	 * timeouts.
1877 	 */
1878 	if (dev->actconfig && usb_disable_lpm(dev)) {
1879 		dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1880 		mutex_unlock(hcd->bandwidth_mutex);
1881 		ret = -ENOMEM;
1882 		goto free_interfaces;
1883 	}
1884 	ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1885 	if (ret < 0) {
1886 		if (dev->actconfig)
1887 			usb_enable_lpm(dev);
1888 		mutex_unlock(hcd->bandwidth_mutex);
1889 		usb_autosuspend_device(dev);
1890 		goto free_interfaces;
1891 	}
1892 
1893 	/*
1894 	 * Initialize the new interface structures and the
1895 	 * hc/hcd/usbcore interface/endpoint state.
1896 	 */
1897 	for (i = 0; i < nintf; ++i) {
1898 		struct usb_interface_cache *intfc;
1899 		struct usb_interface *intf;
1900 		struct usb_host_interface *alt;
1901 		u8 ifnum;
1902 
1903 		cp->interface[i] = intf = new_interfaces[i];
1904 		intfc = cp->intf_cache[i];
1905 		intf->altsetting = intfc->altsetting;
1906 		intf->num_altsetting = intfc->num_altsetting;
1907 		intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
1908 		kref_get(&intfc->ref);
1909 
1910 		alt = usb_altnum_to_altsetting(intf, 0);
1911 
1912 		/* No altsetting 0?  We'll assume the first altsetting.
1913 		 * We could use a GetInterface call, but if a device is
1914 		 * so non-compliant that it doesn't have altsetting 0
1915 		 * then I wouldn't trust its reply anyway.
1916 		 */
1917 		if (!alt)
1918 			alt = &intf->altsetting[0];
1919 
1920 		ifnum = alt->desc.bInterfaceNumber;
1921 		intf->intf_assoc = find_iad(dev, cp, ifnum);
1922 		intf->cur_altsetting = alt;
1923 		usb_enable_interface(dev, intf, true);
1924 		intf->dev.parent = &dev->dev;
1925 		if (usb_of_has_combined_node(dev)) {
1926 			device_set_of_node_from_dev(&intf->dev, &dev->dev);
1927 		} else {
1928 			intf->dev.of_node = usb_of_get_interface_node(dev,
1929 					configuration, ifnum);
1930 		}
1931 		intf->dev.driver = NULL;
1932 		intf->dev.bus = &usb_bus_type;
1933 		intf->dev.type = &usb_if_device_type;
1934 		intf->dev.groups = usb_interface_groups;
1935 		/*
1936 		 * Please refer to usb_alloc_dev() to see why we set
1937 		 * dma_mask and dma_pfn_offset.
1938 		 */
1939 		intf->dev.dma_mask = dev->dev.dma_mask;
1940 		intf->dev.dma_pfn_offset = dev->dev.dma_pfn_offset;
1941 		INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1942 		intf->minor = -1;
1943 		device_initialize(&intf->dev);
1944 		pm_runtime_no_callbacks(&intf->dev);
1945 		dev_set_name(&intf->dev, "%d-%s:%d.%d", dev->bus->busnum,
1946 				dev->devpath, configuration, ifnum);
1947 		usb_get_dev(dev);
1948 	}
1949 	kfree(new_interfaces);
1950 
1951 	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1952 			      USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1953 			      NULL, 0, USB_CTRL_SET_TIMEOUT);
1954 	if (ret < 0 && cp) {
1955 		/*
1956 		 * All the old state is gone, so what else can we do?
1957 		 * The device is probably useless now anyway.
1958 		 */
1959 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1960 		for (i = 0; i < nintf; ++i) {
1961 			usb_disable_interface(dev, cp->interface[i], true);
1962 			put_device(&cp->interface[i]->dev);
1963 			cp->interface[i] = NULL;
1964 		}
1965 		cp = NULL;
1966 	}
1967 
1968 	dev->actconfig = cp;
1969 	mutex_unlock(hcd->bandwidth_mutex);
1970 
1971 	if (!cp) {
1972 		usb_set_device_state(dev, USB_STATE_ADDRESS);
1973 
1974 		/* Leave LPM disabled while the device is unconfigured. */
1975 		usb_autosuspend_device(dev);
1976 		return ret;
1977 	}
1978 	usb_set_device_state(dev, USB_STATE_CONFIGURED);
1979 
1980 	if (cp->string == NULL &&
1981 			!(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1982 		cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1983 
1984 	/* Now that the interfaces are installed, re-enable LPM. */
1985 	usb_unlocked_enable_lpm(dev);
1986 	/* Enable LTM if it was turned off by usb_disable_device. */
1987 	usb_enable_ltm(dev);
1988 
1989 	/* Now that all the interfaces are set up, register them
1990 	 * to trigger binding of drivers to interfaces.  probe()
1991 	 * routines may install different altsettings and may
1992 	 * claim() any interfaces not yet bound.  Many class drivers
1993 	 * need that: CDC, audio, video, etc.
1994 	 */
1995 	for (i = 0; i < nintf; ++i) {
1996 		struct usb_interface *intf = cp->interface[i];
1997 
1998 		dev_dbg(&dev->dev,
1999 			"adding %s (config #%d, interface %d)\n",
2000 			dev_name(&intf->dev), configuration,
2001 			intf->cur_altsetting->desc.bInterfaceNumber);
2002 		device_enable_async_suspend(&intf->dev);
2003 		ret = device_add(&intf->dev);
2004 		if (ret != 0) {
2005 			dev_err(&dev->dev, "device_add(%s) --> %d\n",
2006 				dev_name(&intf->dev), ret);
2007 			continue;
2008 		}
2009 		create_intf_ep_devs(intf);
2010 	}
2011 
2012 	usb_autosuspend_device(dev);
2013 	return 0;
2014 }
2015 EXPORT_SYMBOL_GPL(usb_set_configuration);
2016 
2017 static LIST_HEAD(set_config_list);
2018 static DEFINE_SPINLOCK(set_config_lock);
2019 
2020 struct set_config_request {
2021 	struct usb_device	*udev;
2022 	int			config;
2023 	struct work_struct	work;
2024 	struct list_head	node;
2025 };
2026 
2027 /* Worker routine for usb_driver_set_configuration() */
2028 static void driver_set_config_work(struct work_struct *work)
2029 {
2030 	struct set_config_request *req =
2031 		container_of(work, struct set_config_request, work);
2032 	struct usb_device *udev = req->udev;
2033 
2034 	usb_lock_device(udev);
2035 	spin_lock(&set_config_lock);
2036 	list_del(&req->node);
2037 	spin_unlock(&set_config_lock);
2038 
2039 	if (req->config >= -1)		/* Is req still valid? */
2040 		usb_set_configuration(udev, req->config);
2041 	usb_unlock_device(udev);
2042 	usb_put_dev(udev);
2043 	kfree(req);
2044 }
2045 
2046 /* Cancel pending Set-Config requests for a device whose configuration
2047  * was just changed
2048  */
2049 static void cancel_async_set_config(struct usb_device *udev)
2050 {
2051 	struct set_config_request *req;
2052 
2053 	spin_lock(&set_config_lock);
2054 	list_for_each_entry(req, &set_config_list, node) {
2055 		if (req->udev == udev)
2056 			req->config = -999;	/* Mark as cancelled */
2057 	}
2058 	spin_unlock(&set_config_lock);
2059 }
2060 
2061 /**
2062  * usb_driver_set_configuration - Provide a way for drivers to change device configurations
2063  * @udev: the device whose configuration is being updated
2064  * @config: the configuration being chosen.
2065  * Context: In process context, must be able to sleep
2066  *
2067  * Device interface drivers are not allowed to change device configurations.
2068  * This is because changing configurations will destroy the interface the
2069  * driver is bound to and create new ones; it would be like a floppy-disk
2070  * driver telling the computer to replace the floppy-disk drive with a
2071  * tape drive!
2072  *
2073  * Still, in certain specialized circumstances the need may arise.  This
2074  * routine gets around the normal restrictions by using a work thread to
2075  * submit the change-config request.
2076  *
2077  * Return: 0 if the request was successfully queued, error code otherwise.
2078  * The caller has no way to know whether the queued request will eventually
2079  * succeed.
2080  */
2081 int usb_driver_set_configuration(struct usb_device *udev, int config)
2082 {
2083 	struct set_config_request *req;
2084 
2085 	req = kmalloc(sizeof(*req), GFP_KERNEL);
2086 	if (!req)
2087 		return -ENOMEM;
2088 	req->udev = udev;
2089 	req->config = config;
2090 	INIT_WORK(&req->work, driver_set_config_work);
2091 
2092 	spin_lock(&set_config_lock);
2093 	list_add(&req->node, &set_config_list);
2094 	spin_unlock(&set_config_lock);
2095 
2096 	usb_get_dev(udev);
2097 	schedule_work(&req->work);
2098 	return 0;
2099 }
2100 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2101 
2102 /**
2103  * cdc_parse_cdc_header - parse the extra headers present in CDC devices
2104  * @hdr: the place to put the results of the parsing
2105  * @intf: the interface for which parsing is requested
2106  * @buffer: pointer to the extra headers to be parsed
2107  * @buflen: length of the extra headers
2108  *
2109  * This evaluates the extra headers present in CDC devices which
2110  * bind the interfaces for data and control and provide details
2111  * about the capabilities of the device.
2112  *
2113  * Return: number of descriptors parsed or -EINVAL
2114  * if the header is contradictory beyond salvage
2115  */
2116 
2117 int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr,
2118 				struct usb_interface *intf,
2119 				u8 *buffer,
2120 				int buflen)
2121 {
2122 	/* duplicates are ignored */
2123 	struct usb_cdc_union_desc *union_header = NULL;
2124 
2125 	/* duplicates are not tolerated */
2126 	struct usb_cdc_header_desc *header = NULL;
2127 	struct usb_cdc_ether_desc *ether = NULL;
2128 	struct usb_cdc_mdlm_detail_desc *detail = NULL;
2129 	struct usb_cdc_mdlm_desc *desc = NULL;
2130 
2131 	unsigned int elength;
2132 	int cnt = 0;
2133 
2134 	memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header));
2135 	hdr->phonet_magic_present = false;
2136 	while (buflen > 0) {
2137 		elength = buffer[0];
2138 		if (!elength) {
2139 			dev_err(&intf->dev, "skipping garbage byte\n");
2140 			elength = 1;
2141 			goto next_desc;
2142 		}
2143 		if ((buflen < elength) || (elength < 3)) {
2144 			dev_err(&intf->dev, "invalid descriptor buffer length\n");
2145 			break;
2146 		}
2147 		if (buffer[1] != USB_DT_CS_INTERFACE) {
2148 			dev_err(&intf->dev, "skipping garbage\n");
2149 			goto next_desc;
2150 		}
2151 
2152 		switch (buffer[2]) {
2153 		case USB_CDC_UNION_TYPE: /* we've found it */
2154 			if (elength < sizeof(struct usb_cdc_union_desc))
2155 				goto next_desc;
2156 			if (union_header) {
2157 				dev_err(&intf->dev, "More than one union descriptor, skipping ...\n");
2158 				goto next_desc;
2159 			}
2160 			union_header = (struct usb_cdc_union_desc *)buffer;
2161 			break;
2162 		case USB_CDC_COUNTRY_TYPE:
2163 			if (elength < sizeof(struct usb_cdc_country_functional_desc))
2164 				goto next_desc;
2165 			hdr->usb_cdc_country_functional_desc =
2166 				(struct usb_cdc_country_functional_desc *)buffer;
2167 			break;
2168 		case USB_CDC_HEADER_TYPE:
2169 			if (elength != sizeof(struct usb_cdc_header_desc))
2170 				goto next_desc;
2171 			if (header)
2172 				return -EINVAL;
2173 			header = (struct usb_cdc_header_desc *)buffer;
2174 			break;
2175 		case USB_CDC_ACM_TYPE:
2176 			if (elength < sizeof(struct usb_cdc_acm_descriptor))
2177 				goto next_desc;
2178 			hdr->usb_cdc_acm_descriptor =
2179 				(struct usb_cdc_acm_descriptor *)buffer;
2180 			break;
2181 		case USB_CDC_ETHERNET_TYPE:
2182 			if (elength != sizeof(struct usb_cdc_ether_desc))
2183 				goto next_desc;
2184 			if (ether)
2185 				return -EINVAL;
2186 			ether = (struct usb_cdc_ether_desc *)buffer;
2187 			break;
2188 		case USB_CDC_CALL_MANAGEMENT_TYPE:
2189 			if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor))
2190 				goto next_desc;
2191 			hdr->usb_cdc_call_mgmt_descriptor =
2192 				(struct usb_cdc_call_mgmt_descriptor *)buffer;
2193 			break;
2194 		case USB_CDC_DMM_TYPE:
2195 			if (elength < sizeof(struct usb_cdc_dmm_desc))
2196 				goto next_desc;
2197 			hdr->usb_cdc_dmm_desc =
2198 				(struct usb_cdc_dmm_desc *)buffer;
2199 			break;
2200 		case USB_CDC_MDLM_TYPE:
2201 			if (elength < sizeof(struct usb_cdc_mdlm_desc *))
2202 				goto next_desc;
2203 			if (desc)
2204 				return -EINVAL;
2205 			desc = (struct usb_cdc_mdlm_desc *)buffer;
2206 			break;
2207 		case USB_CDC_MDLM_DETAIL_TYPE:
2208 			if (elength < sizeof(struct usb_cdc_mdlm_detail_desc *))
2209 				goto next_desc;
2210 			if (detail)
2211 				return -EINVAL;
2212 			detail = (struct usb_cdc_mdlm_detail_desc *)buffer;
2213 			break;
2214 		case USB_CDC_NCM_TYPE:
2215 			if (elength < sizeof(struct usb_cdc_ncm_desc))
2216 				goto next_desc;
2217 			hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer;
2218 			break;
2219 		case USB_CDC_MBIM_TYPE:
2220 			if (elength < sizeof(struct usb_cdc_mbim_desc))
2221 				goto next_desc;
2222 
2223 			hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer;
2224 			break;
2225 		case USB_CDC_MBIM_EXTENDED_TYPE:
2226 			if (elength < sizeof(struct usb_cdc_mbim_extended_desc))
2227 				break;
2228 			hdr->usb_cdc_mbim_extended_desc =
2229 				(struct usb_cdc_mbim_extended_desc *)buffer;
2230 			break;
2231 		case CDC_PHONET_MAGIC_NUMBER:
2232 			hdr->phonet_magic_present = true;
2233 			break;
2234 		default:
2235 			/*
2236 			 * there are LOTS more CDC descriptors that
2237 			 * could legitimately be found here.
2238 			 */
2239 			dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n",
2240 					buffer[2], elength);
2241 			goto next_desc;
2242 		}
2243 		cnt++;
2244 next_desc:
2245 		buflen -= elength;
2246 		buffer += elength;
2247 	}
2248 	hdr->usb_cdc_union_desc = union_header;
2249 	hdr->usb_cdc_header_desc = header;
2250 	hdr->usb_cdc_mdlm_detail_desc = detail;
2251 	hdr->usb_cdc_mdlm_desc = desc;
2252 	hdr->usb_cdc_ether_desc = ether;
2253 	return cnt;
2254 }
2255 
2256 EXPORT_SYMBOL(cdc_parse_cdc_header);
2257