xref: /openbmc/linux/drivers/usb/core/message.c (revision e8e0929d)
1 /*
2  * message.c - synchronous message handling
3  */
4 
5 #include <linux/pci.h>	/* for scatterlist macros */
6 #include <linux/usb.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/timer.h>
12 #include <linux/ctype.h>
13 #include <linux/nls.h>
14 #include <linux/device.h>
15 #include <linux/scatterlist.h>
16 #include <linux/usb/quirks.h>
17 #include <asm/byteorder.h>
18 
19 #include "hcd.h"	/* for usbcore internals */
20 #include "usb.h"
21 
22 static void cancel_async_set_config(struct usb_device *udev);
23 
24 struct api_context {
25 	struct completion	done;
26 	int			status;
27 };
28 
29 static void usb_api_blocking_completion(struct urb *urb)
30 {
31 	struct api_context *ctx = urb->context;
32 
33 	ctx->status = urb->status;
34 	complete(&ctx->done);
35 }
36 
37 
38 /*
39  * Starts urb and waits for completion or timeout. Note that this call
40  * is NOT interruptible. Many device driver i/o requests should be
41  * interruptible and therefore these drivers should implement their
42  * own interruptible routines.
43  */
44 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
45 {
46 	struct api_context ctx;
47 	unsigned long expire;
48 	int retval;
49 
50 	init_completion(&ctx.done);
51 	urb->context = &ctx;
52 	urb->actual_length = 0;
53 	retval = usb_submit_urb(urb, GFP_NOIO);
54 	if (unlikely(retval))
55 		goto out;
56 
57 	expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
58 	if (!wait_for_completion_timeout(&ctx.done, expire)) {
59 		usb_kill_urb(urb);
60 		retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
61 
62 		dev_dbg(&urb->dev->dev,
63 			"%s timed out on ep%d%s len=%u/%u\n",
64 			current->comm,
65 			usb_endpoint_num(&urb->ep->desc),
66 			usb_urb_dir_in(urb) ? "in" : "out",
67 			urb->actual_length,
68 			urb->transfer_buffer_length);
69 	} else
70 		retval = ctx.status;
71 out:
72 	if (actual_length)
73 		*actual_length = urb->actual_length;
74 
75 	usb_free_urb(urb);
76 	return retval;
77 }
78 
79 /*-------------------------------------------------------------------*/
80 /* returns status (negative) or length (positive) */
81 static int usb_internal_control_msg(struct usb_device *usb_dev,
82 				    unsigned int pipe,
83 				    struct usb_ctrlrequest *cmd,
84 				    void *data, int len, int timeout)
85 {
86 	struct urb *urb;
87 	int retv;
88 	int length;
89 
90 	urb = usb_alloc_urb(0, GFP_NOIO);
91 	if (!urb)
92 		return -ENOMEM;
93 
94 	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
95 			     len, usb_api_blocking_completion, NULL);
96 
97 	retv = usb_start_wait_urb(urb, timeout, &length);
98 	if (retv < 0)
99 		return retv;
100 	else
101 		return length;
102 }
103 
104 /**
105  * usb_control_msg - Builds a control urb, sends it off and waits for completion
106  * @dev: pointer to the usb device to send the message to
107  * @pipe: endpoint "pipe" to send the message to
108  * @request: USB message request value
109  * @requesttype: USB message request type value
110  * @value: USB message value
111  * @index: USB message index value
112  * @data: pointer to the data to send
113  * @size: length in bytes of the data to send
114  * @timeout: time in msecs to wait for the message to complete before timing
115  *	out (if 0 the wait is forever)
116  *
117  * Context: !in_interrupt ()
118  *
119  * This function sends a simple control message to a specified endpoint and
120  * waits for the message to complete, or timeout.
121  *
122  * If successful, it returns the number of bytes transferred, otherwise a
123  * negative error number.
124  *
125  * Don't use this function from within an interrupt context, like a bottom half
126  * handler.  If you need an asynchronous message, or need to send a message
127  * from within interrupt context, use usb_submit_urb().
128  * If a thread in your driver uses this call, make sure your disconnect()
129  * method can wait for it to complete.  Since you don't have a handle on the
130  * URB used, you can't cancel the request.
131  */
132 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
133 		    __u8 requesttype, __u16 value, __u16 index, void *data,
134 		    __u16 size, int timeout)
135 {
136 	struct usb_ctrlrequest *dr;
137 	int ret;
138 
139 	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
140 	if (!dr)
141 		return -ENOMEM;
142 
143 	dr->bRequestType = requesttype;
144 	dr->bRequest = request;
145 	dr->wValue = cpu_to_le16(value);
146 	dr->wIndex = cpu_to_le16(index);
147 	dr->wLength = cpu_to_le16(size);
148 
149 	/* dbg("usb_control_msg"); */
150 
151 	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
152 
153 	kfree(dr);
154 
155 	return ret;
156 }
157 EXPORT_SYMBOL_GPL(usb_control_msg);
158 
159 /**
160  * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
161  * @usb_dev: pointer to the usb device to send the message to
162  * @pipe: endpoint "pipe" to send the message to
163  * @data: pointer to the data to send
164  * @len: length in bytes of the data to send
165  * @actual_length: pointer to a location to put the actual length transferred
166  *	in bytes
167  * @timeout: time in msecs to wait for the message to complete before
168  *	timing out (if 0 the wait is forever)
169  *
170  * Context: !in_interrupt ()
171  *
172  * This function sends a simple interrupt message to a specified endpoint and
173  * waits for the message to complete, or timeout.
174  *
175  * If successful, it returns 0, otherwise a negative error number.  The number
176  * of actual bytes transferred will be stored in the actual_length paramater.
177  *
178  * Don't use this function from within an interrupt context, like a bottom half
179  * handler.  If you need an asynchronous message, or need to send a message
180  * from within interrupt context, use usb_submit_urb() If a thread in your
181  * driver uses this call, make sure your disconnect() method can wait for it to
182  * complete.  Since you don't have a handle on the URB used, you can't cancel
183  * the request.
184  */
185 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
186 		      void *data, int len, int *actual_length, int timeout)
187 {
188 	return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
189 }
190 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
191 
192 /**
193  * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
194  * @usb_dev: pointer to the usb device to send the message to
195  * @pipe: endpoint "pipe" to send the message to
196  * @data: pointer to the data to send
197  * @len: length in bytes of the data to send
198  * @actual_length: pointer to a location to put the actual length transferred
199  *	in bytes
200  * @timeout: time in msecs to wait for the message to complete before
201  *	timing out (if 0 the wait is forever)
202  *
203  * Context: !in_interrupt ()
204  *
205  * This function sends a simple bulk message to a specified endpoint
206  * and waits for the message to complete, or timeout.
207  *
208  * If successful, it returns 0, otherwise a negative error number.  The number
209  * of actual bytes transferred will be stored in the actual_length paramater.
210  *
211  * Don't use this function from within an interrupt context, like a bottom half
212  * handler.  If you need an asynchronous message, or need to send a message
213  * from within interrupt context, use usb_submit_urb() If a thread in your
214  * driver uses this call, make sure your disconnect() method can wait for it to
215  * complete.  Since you don't have a handle on the URB used, you can't cancel
216  * the request.
217  *
218  * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
219  * users are forced to abuse this routine by using it to submit URBs for
220  * interrupt endpoints.  We will take the liberty of creating an interrupt URB
221  * (with the default interval) if the target is an interrupt endpoint.
222  */
223 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
224 		 void *data, int len, int *actual_length, int timeout)
225 {
226 	struct urb *urb;
227 	struct usb_host_endpoint *ep;
228 
229 	ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out)
230 			[usb_pipeendpoint(pipe)];
231 	if (!ep || len < 0)
232 		return -EINVAL;
233 
234 	urb = usb_alloc_urb(0, GFP_KERNEL);
235 	if (!urb)
236 		return -ENOMEM;
237 
238 	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
239 			USB_ENDPOINT_XFER_INT) {
240 		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
241 		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
242 				usb_api_blocking_completion, NULL,
243 				ep->desc.bInterval);
244 	} else
245 		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
246 				usb_api_blocking_completion, NULL);
247 
248 	return usb_start_wait_urb(urb, timeout, actual_length);
249 }
250 EXPORT_SYMBOL_GPL(usb_bulk_msg);
251 
252 /*-------------------------------------------------------------------*/
253 
254 static void sg_clean(struct usb_sg_request *io)
255 {
256 	if (io->urbs) {
257 		while (io->entries--)
258 			usb_free_urb(io->urbs [io->entries]);
259 		kfree(io->urbs);
260 		io->urbs = NULL;
261 	}
262 	if (io->dev->dev.dma_mask != NULL)
263 		usb_buffer_unmap_sg(io->dev, usb_pipein(io->pipe),
264 				    io->sg, io->nents);
265 	io->dev = NULL;
266 }
267 
268 static void sg_complete(struct urb *urb)
269 {
270 	struct usb_sg_request *io = urb->context;
271 	int status = urb->status;
272 
273 	spin_lock(&io->lock);
274 
275 	/* In 2.5 we require hcds' endpoint queues not to progress after fault
276 	 * reports, until the completion callback (this!) returns.  That lets
277 	 * device driver code (like this routine) unlink queued urbs first,
278 	 * if it needs to, since the HC won't work on them at all.  So it's
279 	 * not possible for page N+1 to overwrite page N, and so on.
280 	 *
281 	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
282 	 * complete before the HCD can get requests away from hardware,
283 	 * though never during cleanup after a hard fault.
284 	 */
285 	if (io->status
286 			&& (io->status != -ECONNRESET
287 				|| status != -ECONNRESET)
288 			&& urb->actual_length) {
289 		dev_err(io->dev->bus->controller,
290 			"dev %s ep%d%s scatterlist error %d/%d\n",
291 			io->dev->devpath,
292 			usb_endpoint_num(&urb->ep->desc),
293 			usb_urb_dir_in(urb) ? "in" : "out",
294 			status, io->status);
295 		/* BUG (); */
296 	}
297 
298 	if (io->status == 0 && status && status != -ECONNRESET) {
299 		int i, found, retval;
300 
301 		io->status = status;
302 
303 		/* the previous urbs, and this one, completed already.
304 		 * unlink pending urbs so they won't rx/tx bad data.
305 		 * careful: unlink can sometimes be synchronous...
306 		 */
307 		spin_unlock(&io->lock);
308 		for (i = 0, found = 0; i < io->entries; i++) {
309 			if (!io->urbs [i] || !io->urbs [i]->dev)
310 				continue;
311 			if (found) {
312 				retval = usb_unlink_urb(io->urbs [i]);
313 				if (retval != -EINPROGRESS &&
314 				    retval != -ENODEV &&
315 				    retval != -EBUSY)
316 					dev_err(&io->dev->dev,
317 						"%s, unlink --> %d\n",
318 						__func__, retval);
319 			} else if (urb == io->urbs [i])
320 				found = 1;
321 		}
322 		spin_lock(&io->lock);
323 	}
324 	urb->dev = NULL;
325 
326 	/* on the last completion, signal usb_sg_wait() */
327 	io->bytes += urb->actual_length;
328 	io->count--;
329 	if (!io->count)
330 		complete(&io->complete);
331 
332 	spin_unlock(&io->lock);
333 }
334 
335 
336 /**
337  * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
338  * @io: request block being initialized.  until usb_sg_wait() returns,
339  *	treat this as a pointer to an opaque block of memory,
340  * @dev: the usb device that will send or receive the data
341  * @pipe: endpoint "pipe" used to transfer the data
342  * @period: polling rate for interrupt endpoints, in frames or
343  * 	(for high speed endpoints) microframes; ignored for bulk
344  * @sg: scatterlist entries
345  * @nents: how many entries in the scatterlist
346  * @length: how many bytes to send from the scatterlist, or zero to
347  * 	send every byte identified in the list.
348  * @mem_flags: SLAB_* flags affecting memory allocations in this call
349  *
350  * Returns zero for success, else a negative errno value.  This initializes a
351  * scatter/gather request, allocating resources such as I/O mappings and urb
352  * memory (except maybe memory used by USB controller drivers).
353  *
354  * The request must be issued using usb_sg_wait(), which waits for the I/O to
355  * complete (or to be canceled) and then cleans up all resources allocated by
356  * usb_sg_init().
357  *
358  * The request may be canceled with usb_sg_cancel(), either before or after
359  * usb_sg_wait() is called.
360  */
361 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
362 		unsigned pipe, unsigned	period, struct scatterlist *sg,
363 		int nents, size_t length, gfp_t mem_flags)
364 {
365 	int i;
366 	int urb_flags;
367 	int dma;
368 	int use_sg;
369 
370 	if (!io || !dev || !sg
371 			|| usb_pipecontrol(pipe)
372 			|| usb_pipeisoc(pipe)
373 			|| nents <= 0)
374 		return -EINVAL;
375 
376 	spin_lock_init(&io->lock);
377 	io->dev = dev;
378 	io->pipe = pipe;
379 	io->sg = sg;
380 	io->nents = nents;
381 
382 	/* not all host controllers use DMA (like the mainstream pci ones);
383 	 * they can use PIO (sl811) or be software over another transport.
384 	 */
385 	dma = (dev->dev.dma_mask != NULL);
386 	if (dma)
387 		io->entries = usb_buffer_map_sg(dev, usb_pipein(pipe),
388 						sg, nents);
389 	else
390 		io->entries = nents;
391 
392 	/* initialize all the urbs we'll use */
393 	if (io->entries <= 0)
394 		return io->entries;
395 
396 	/* If we're running on an xHCI host controller, queue the whole scatter
397 	 * gather list with one call to urb_enqueue().  This is only for bulk,
398 	 * as that endpoint type does not care how the data gets broken up
399 	 * across frames.
400 	 */
401 	if (usb_pipebulk(pipe) &&
402 			bus_to_hcd(dev->bus)->driver->flags & HCD_USB3) {
403 		io->urbs = kmalloc(sizeof *io->urbs, mem_flags);
404 		use_sg = true;
405 	} else {
406 		io->urbs = kmalloc(io->entries * sizeof *io->urbs, mem_flags);
407 		use_sg = false;
408 	}
409 	if (!io->urbs)
410 		goto nomem;
411 
412 	urb_flags = URB_NO_INTERRUPT;
413 	if (dma)
414 		urb_flags |= URB_NO_TRANSFER_DMA_MAP;
415 	if (usb_pipein(pipe))
416 		urb_flags |= URB_SHORT_NOT_OK;
417 
418 	if (use_sg) {
419 		io->urbs[0] = usb_alloc_urb(0, mem_flags);
420 		if (!io->urbs[0]) {
421 			io->entries = 0;
422 			goto nomem;
423 		}
424 
425 		io->urbs[0]->dev = NULL;
426 		io->urbs[0]->pipe = pipe;
427 		io->urbs[0]->interval = period;
428 		io->urbs[0]->transfer_flags = urb_flags;
429 
430 		io->urbs[0]->complete = sg_complete;
431 		io->urbs[0]->context = io;
432 		/* A length of zero means transfer the whole sg list */
433 		io->urbs[0]->transfer_buffer_length = length;
434 		if (length == 0) {
435 			for_each_sg(sg, sg, io->entries, i) {
436 				io->urbs[0]->transfer_buffer_length +=
437 					sg_dma_len(sg);
438 			}
439 		}
440 		io->urbs[0]->sg = io;
441 		io->urbs[0]->num_sgs = io->entries;
442 		io->entries = 1;
443 	} else {
444 		for_each_sg(sg, sg, io->entries, i) {
445 			unsigned len;
446 
447 			io->urbs[i] = usb_alloc_urb(0, mem_flags);
448 			if (!io->urbs[i]) {
449 				io->entries = i;
450 				goto nomem;
451 			}
452 
453 			io->urbs[i]->dev = NULL;
454 			io->urbs[i]->pipe = pipe;
455 			io->urbs[i]->interval = period;
456 			io->urbs[i]->transfer_flags = urb_flags;
457 
458 			io->urbs[i]->complete = sg_complete;
459 			io->urbs[i]->context = io;
460 
461 			/*
462 			 * Some systems need to revert to PIO when DMA is temporarily
463 			 * unavailable.  For their sakes, both transfer_buffer and
464 			 * transfer_dma are set when possible.
465 			 *
466 			 * Note that if IOMMU coalescing occurred, we cannot
467 			 * trust sg_page anymore, so check if S/G list shrunk.
468 			 */
469 			if (io->nents == io->entries && !PageHighMem(sg_page(sg)))
470 				io->urbs[i]->transfer_buffer = sg_virt(sg);
471 			else
472 				io->urbs[i]->transfer_buffer = NULL;
473 
474 			if (dma) {
475 				io->urbs[i]->transfer_dma = sg_dma_address(sg);
476 				len = sg_dma_len(sg);
477 			} else {
478 				/* hc may use _only_ transfer_buffer */
479 				len = sg->length;
480 			}
481 
482 			if (length) {
483 				len = min_t(unsigned, len, length);
484 				length -= len;
485 				if (length == 0)
486 					io->entries = i + 1;
487 			}
488 			io->urbs[i]->transfer_buffer_length = len;
489 		}
490 		io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
491 	}
492 
493 	/* transaction state */
494 	io->count = io->entries;
495 	io->status = 0;
496 	io->bytes = 0;
497 	init_completion(&io->complete);
498 	return 0;
499 
500 nomem:
501 	sg_clean(io);
502 	return -ENOMEM;
503 }
504 EXPORT_SYMBOL_GPL(usb_sg_init);
505 
506 /**
507  * usb_sg_wait - synchronously execute scatter/gather request
508  * @io: request block handle, as initialized with usb_sg_init().
509  * 	some fields become accessible when this call returns.
510  * Context: !in_interrupt ()
511  *
512  * This function blocks until the specified I/O operation completes.  It
513  * leverages the grouping of the related I/O requests to get good transfer
514  * rates, by queueing the requests.  At higher speeds, such queuing can
515  * significantly improve USB throughput.
516  *
517  * There are three kinds of completion for this function.
518  * (1) success, where io->status is zero.  The number of io->bytes
519  *     transferred is as requested.
520  * (2) error, where io->status is a negative errno value.  The number
521  *     of io->bytes transferred before the error is usually less
522  *     than requested, and can be nonzero.
523  * (3) cancellation, a type of error with status -ECONNRESET that
524  *     is initiated by usb_sg_cancel().
525  *
526  * When this function returns, all memory allocated through usb_sg_init() or
527  * this call will have been freed.  The request block parameter may still be
528  * passed to usb_sg_cancel(), or it may be freed.  It could also be
529  * reinitialized and then reused.
530  *
531  * Data Transfer Rates:
532  *
533  * Bulk transfers are valid for full or high speed endpoints.
534  * The best full speed data rate is 19 packets of 64 bytes each
535  * per frame, or 1216 bytes per millisecond.
536  * The best high speed data rate is 13 packets of 512 bytes each
537  * per microframe, or 52 KBytes per millisecond.
538  *
539  * The reason to use interrupt transfers through this API would most likely
540  * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
541  * could be transferred.  That capability is less useful for low or full
542  * speed interrupt endpoints, which allow at most one packet per millisecond,
543  * of at most 8 or 64 bytes (respectively).
544  *
545  * It is not necessary to call this function to reserve bandwidth for devices
546  * under an xHCI host controller, as the bandwidth is reserved when the
547  * configuration or interface alt setting is selected.
548  */
549 void usb_sg_wait(struct usb_sg_request *io)
550 {
551 	int i;
552 	int entries = io->entries;
553 
554 	/* queue the urbs.  */
555 	spin_lock_irq(&io->lock);
556 	i = 0;
557 	while (i < entries && !io->status) {
558 		int retval;
559 
560 		io->urbs[i]->dev = io->dev;
561 		retval = usb_submit_urb(io->urbs [i], GFP_ATOMIC);
562 
563 		/* after we submit, let completions or cancelations fire;
564 		 * we handshake using io->status.
565 		 */
566 		spin_unlock_irq(&io->lock);
567 		switch (retval) {
568 			/* maybe we retrying will recover */
569 		case -ENXIO:	/* hc didn't queue this one */
570 		case -EAGAIN:
571 		case -ENOMEM:
572 			io->urbs[i]->dev = NULL;
573 			retval = 0;
574 			yield();
575 			break;
576 
577 			/* no error? continue immediately.
578 			 *
579 			 * NOTE: to work better with UHCI (4K I/O buffer may
580 			 * need 3K of TDs) it may be good to limit how many
581 			 * URBs are queued at once; N milliseconds?
582 			 */
583 		case 0:
584 			++i;
585 			cpu_relax();
586 			break;
587 
588 			/* fail any uncompleted urbs */
589 		default:
590 			io->urbs[i]->dev = NULL;
591 			io->urbs[i]->status = retval;
592 			dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
593 				__func__, retval);
594 			usb_sg_cancel(io);
595 		}
596 		spin_lock_irq(&io->lock);
597 		if (retval && (io->status == 0 || io->status == -ECONNRESET))
598 			io->status = retval;
599 	}
600 	io->count -= entries - i;
601 	if (io->count == 0)
602 		complete(&io->complete);
603 	spin_unlock_irq(&io->lock);
604 
605 	/* OK, yes, this could be packaged as non-blocking.
606 	 * So could the submit loop above ... but it's easier to
607 	 * solve neither problem than to solve both!
608 	 */
609 	wait_for_completion(&io->complete);
610 
611 	sg_clean(io);
612 }
613 EXPORT_SYMBOL_GPL(usb_sg_wait);
614 
615 /**
616  * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
617  * @io: request block, initialized with usb_sg_init()
618  *
619  * This stops a request after it has been started by usb_sg_wait().
620  * It can also prevents one initialized by usb_sg_init() from starting,
621  * so that call just frees resources allocated to the request.
622  */
623 void usb_sg_cancel(struct usb_sg_request *io)
624 {
625 	unsigned long flags;
626 
627 	spin_lock_irqsave(&io->lock, flags);
628 
629 	/* shut everything down, if it didn't already */
630 	if (!io->status) {
631 		int i;
632 
633 		io->status = -ECONNRESET;
634 		spin_unlock(&io->lock);
635 		for (i = 0; i < io->entries; i++) {
636 			int retval;
637 
638 			if (!io->urbs [i]->dev)
639 				continue;
640 			retval = usb_unlink_urb(io->urbs [i]);
641 			if (retval != -EINPROGRESS && retval != -EBUSY)
642 				dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
643 					__func__, retval);
644 		}
645 		spin_lock(&io->lock);
646 	}
647 	spin_unlock_irqrestore(&io->lock, flags);
648 }
649 EXPORT_SYMBOL_GPL(usb_sg_cancel);
650 
651 /*-------------------------------------------------------------------*/
652 
653 /**
654  * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
655  * @dev: the device whose descriptor is being retrieved
656  * @type: the descriptor type (USB_DT_*)
657  * @index: the number of the descriptor
658  * @buf: where to put the descriptor
659  * @size: how big is "buf"?
660  * Context: !in_interrupt ()
661  *
662  * Gets a USB descriptor.  Convenience functions exist to simplify
663  * getting some types of descriptors.  Use
664  * usb_get_string() or usb_string() for USB_DT_STRING.
665  * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
666  * are part of the device structure.
667  * In addition to a number of USB-standard descriptors, some
668  * devices also use class-specific or vendor-specific descriptors.
669  *
670  * This call is synchronous, and may not be used in an interrupt context.
671  *
672  * Returns the number of bytes received on success, or else the status code
673  * returned by the underlying usb_control_msg() call.
674  */
675 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
676 		       unsigned char index, void *buf, int size)
677 {
678 	int i;
679 	int result;
680 
681 	memset(buf, 0, size);	/* Make sure we parse really received data */
682 
683 	for (i = 0; i < 3; ++i) {
684 		/* retry on length 0 or error; some devices are flakey */
685 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
686 				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
687 				(type << 8) + index, 0, buf, size,
688 				USB_CTRL_GET_TIMEOUT);
689 		if (result <= 0 && result != -ETIMEDOUT)
690 			continue;
691 		if (result > 1 && ((u8 *)buf)[1] != type) {
692 			result = -ENODATA;
693 			continue;
694 		}
695 		break;
696 	}
697 	return result;
698 }
699 EXPORT_SYMBOL_GPL(usb_get_descriptor);
700 
701 /**
702  * usb_get_string - gets a string descriptor
703  * @dev: the device whose string descriptor is being retrieved
704  * @langid: code for language chosen (from string descriptor zero)
705  * @index: the number of the descriptor
706  * @buf: where to put the string
707  * @size: how big is "buf"?
708  * Context: !in_interrupt ()
709  *
710  * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
711  * in little-endian byte order).
712  * The usb_string() function will often be a convenient way to turn
713  * these strings into kernel-printable form.
714  *
715  * Strings may be referenced in device, configuration, interface, or other
716  * descriptors, and could also be used in vendor-specific ways.
717  *
718  * This call is synchronous, and may not be used in an interrupt context.
719  *
720  * Returns the number of bytes received on success, or else the status code
721  * returned by the underlying usb_control_msg() call.
722  */
723 static int usb_get_string(struct usb_device *dev, unsigned short langid,
724 			  unsigned char index, void *buf, int size)
725 {
726 	int i;
727 	int result;
728 
729 	for (i = 0; i < 3; ++i) {
730 		/* retry on length 0 or stall; some devices are flakey */
731 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
732 			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
733 			(USB_DT_STRING << 8) + index, langid, buf, size,
734 			USB_CTRL_GET_TIMEOUT);
735 		if (result == 0 || result == -EPIPE)
736 			continue;
737 		if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
738 			result = -ENODATA;
739 			continue;
740 		}
741 		break;
742 	}
743 	return result;
744 }
745 
746 static void usb_try_string_workarounds(unsigned char *buf, int *length)
747 {
748 	int newlength, oldlength = *length;
749 
750 	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
751 		if (!isprint(buf[newlength]) || buf[newlength + 1])
752 			break;
753 
754 	if (newlength > 2) {
755 		buf[0] = newlength;
756 		*length = newlength;
757 	}
758 }
759 
760 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
761 			  unsigned int index, unsigned char *buf)
762 {
763 	int rc;
764 
765 	/* Try to read the string descriptor by asking for the maximum
766 	 * possible number of bytes */
767 	if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
768 		rc = -EIO;
769 	else
770 		rc = usb_get_string(dev, langid, index, buf, 255);
771 
772 	/* If that failed try to read the descriptor length, then
773 	 * ask for just that many bytes */
774 	if (rc < 2) {
775 		rc = usb_get_string(dev, langid, index, buf, 2);
776 		if (rc == 2)
777 			rc = usb_get_string(dev, langid, index, buf, buf[0]);
778 	}
779 
780 	if (rc >= 2) {
781 		if (!buf[0] && !buf[1])
782 			usb_try_string_workarounds(buf, &rc);
783 
784 		/* There might be extra junk at the end of the descriptor */
785 		if (buf[0] < rc)
786 			rc = buf[0];
787 
788 		rc = rc - (rc & 1); /* force a multiple of two */
789 	}
790 
791 	if (rc < 2)
792 		rc = (rc < 0 ? rc : -EINVAL);
793 
794 	return rc;
795 }
796 
797 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
798 {
799 	int err;
800 
801 	if (dev->have_langid)
802 		return 0;
803 
804 	if (dev->string_langid < 0)
805 		return -EPIPE;
806 
807 	err = usb_string_sub(dev, 0, 0, tbuf);
808 
809 	/* If the string was reported but is malformed, default to english
810 	 * (0x0409) */
811 	if (err == -ENODATA || (err > 0 && err < 4)) {
812 		dev->string_langid = 0x0409;
813 		dev->have_langid = 1;
814 		dev_err(&dev->dev,
815 			"string descriptor 0 malformed (err = %d), "
816 			"defaulting to 0x%04x\n",
817 				err, dev->string_langid);
818 		return 0;
819 	}
820 
821 	/* In case of all other errors, we assume the device is not able to
822 	 * deal with strings at all. Set string_langid to -1 in order to
823 	 * prevent any string to be retrieved from the device */
824 	if (err < 0) {
825 		dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
826 					err);
827 		dev->string_langid = -1;
828 		return -EPIPE;
829 	}
830 
831 	/* always use the first langid listed */
832 	dev->string_langid = tbuf[2] | (tbuf[3] << 8);
833 	dev->have_langid = 1;
834 	dev_dbg(&dev->dev, "default language 0x%04x\n",
835 				dev->string_langid);
836 	return 0;
837 }
838 
839 /**
840  * usb_string - returns UTF-8 version of a string descriptor
841  * @dev: the device whose string descriptor is being retrieved
842  * @index: the number of the descriptor
843  * @buf: where to put the string
844  * @size: how big is "buf"?
845  * Context: !in_interrupt ()
846  *
847  * This converts the UTF-16LE encoded strings returned by devices, from
848  * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
849  * that are more usable in most kernel contexts.  Note that this function
850  * chooses strings in the first language supported by the device.
851  *
852  * This call is synchronous, and may not be used in an interrupt context.
853  *
854  * Returns length of the string (>= 0) or usb_control_msg status (< 0).
855  */
856 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
857 {
858 	unsigned char *tbuf;
859 	int err;
860 
861 	if (dev->state == USB_STATE_SUSPENDED)
862 		return -EHOSTUNREACH;
863 	if (size <= 0 || !buf || !index)
864 		return -EINVAL;
865 	buf[0] = 0;
866 	tbuf = kmalloc(256, GFP_NOIO);
867 	if (!tbuf)
868 		return -ENOMEM;
869 
870 	err = usb_get_langid(dev, tbuf);
871 	if (err < 0)
872 		goto errout;
873 
874 	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
875 	if (err < 0)
876 		goto errout;
877 
878 	size--;		/* leave room for trailing NULL char in output buffer */
879 	err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
880 			UTF16_LITTLE_ENDIAN, buf, size);
881 	buf[err] = 0;
882 
883 	if (tbuf[1] != USB_DT_STRING)
884 		dev_dbg(&dev->dev,
885 			"wrong descriptor type %02x for string %d (\"%s\")\n",
886 			tbuf[1], index, buf);
887 
888  errout:
889 	kfree(tbuf);
890 	return err;
891 }
892 EXPORT_SYMBOL_GPL(usb_string);
893 
894 /* one UTF-8-encoded 16-bit character has at most three bytes */
895 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
896 
897 /**
898  * usb_cache_string - read a string descriptor and cache it for later use
899  * @udev: the device whose string descriptor is being read
900  * @index: the descriptor index
901  *
902  * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
903  * or NULL if the index is 0 or the string could not be read.
904  */
905 char *usb_cache_string(struct usb_device *udev, int index)
906 {
907 	char *buf;
908 	char *smallbuf = NULL;
909 	int len;
910 
911 	if (index <= 0)
912 		return NULL;
913 
914 	buf = kmalloc(MAX_USB_STRING_SIZE, GFP_KERNEL);
915 	if (buf) {
916 		len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
917 		if (len > 0) {
918 			smallbuf = kmalloc(++len, GFP_KERNEL);
919 			if (!smallbuf)
920 				return buf;
921 			memcpy(smallbuf, buf, len);
922 		}
923 		kfree(buf);
924 	}
925 	return smallbuf;
926 }
927 
928 /*
929  * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
930  * @dev: the device whose device descriptor is being updated
931  * @size: how much of the descriptor to read
932  * Context: !in_interrupt ()
933  *
934  * Updates the copy of the device descriptor stored in the device structure,
935  * which dedicates space for this purpose.
936  *
937  * Not exported, only for use by the core.  If drivers really want to read
938  * the device descriptor directly, they can call usb_get_descriptor() with
939  * type = USB_DT_DEVICE and index = 0.
940  *
941  * This call is synchronous, and may not be used in an interrupt context.
942  *
943  * Returns the number of bytes received on success, or else the status code
944  * returned by the underlying usb_control_msg() call.
945  */
946 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
947 {
948 	struct usb_device_descriptor *desc;
949 	int ret;
950 
951 	if (size > sizeof(*desc))
952 		return -EINVAL;
953 	desc = kmalloc(sizeof(*desc), GFP_NOIO);
954 	if (!desc)
955 		return -ENOMEM;
956 
957 	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
958 	if (ret >= 0)
959 		memcpy(&dev->descriptor, desc, size);
960 	kfree(desc);
961 	return ret;
962 }
963 
964 /**
965  * usb_get_status - issues a GET_STATUS call
966  * @dev: the device whose status is being checked
967  * @type: USB_RECIP_*; for device, interface, or endpoint
968  * @target: zero (for device), else interface or endpoint number
969  * @data: pointer to two bytes of bitmap data
970  * Context: !in_interrupt ()
971  *
972  * Returns device, interface, or endpoint status.  Normally only of
973  * interest to see if the device is self powered, or has enabled the
974  * remote wakeup facility; or whether a bulk or interrupt endpoint
975  * is halted ("stalled").
976  *
977  * Bits in these status bitmaps are set using the SET_FEATURE request,
978  * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
979  * function should be used to clear halt ("stall") status.
980  *
981  * This call is synchronous, and may not be used in an interrupt context.
982  *
983  * Returns the number of bytes received on success, or else the status code
984  * returned by the underlying usb_control_msg() call.
985  */
986 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
987 {
988 	int ret;
989 	u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
990 
991 	if (!status)
992 		return -ENOMEM;
993 
994 	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
995 		USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
996 		sizeof(*status), USB_CTRL_GET_TIMEOUT);
997 
998 	*(u16 *)data = *status;
999 	kfree(status);
1000 	return ret;
1001 }
1002 EXPORT_SYMBOL_GPL(usb_get_status);
1003 
1004 /**
1005  * usb_clear_halt - tells device to clear endpoint halt/stall condition
1006  * @dev: device whose endpoint is halted
1007  * @pipe: endpoint "pipe" being cleared
1008  * Context: !in_interrupt ()
1009  *
1010  * This is used to clear halt conditions for bulk and interrupt endpoints,
1011  * as reported by URB completion status.  Endpoints that are halted are
1012  * sometimes referred to as being "stalled".  Such endpoints are unable
1013  * to transmit or receive data until the halt status is cleared.  Any URBs
1014  * queued for such an endpoint should normally be unlinked by the driver
1015  * before clearing the halt condition, as described in sections 5.7.5
1016  * and 5.8.5 of the USB 2.0 spec.
1017  *
1018  * Note that control and isochronous endpoints don't halt, although control
1019  * endpoints report "protocol stall" (for unsupported requests) using the
1020  * same status code used to report a true stall.
1021  *
1022  * This call is synchronous, and may not be used in an interrupt context.
1023  *
1024  * Returns zero on success, or else the status code returned by the
1025  * underlying usb_control_msg() call.
1026  */
1027 int usb_clear_halt(struct usb_device *dev, int pipe)
1028 {
1029 	int result;
1030 	int endp = usb_pipeendpoint(pipe);
1031 
1032 	if (usb_pipein(pipe))
1033 		endp |= USB_DIR_IN;
1034 
1035 	/* we don't care if it wasn't halted first. in fact some devices
1036 	 * (like some ibmcam model 1 units) seem to expect hosts to make
1037 	 * this request for iso endpoints, which can't halt!
1038 	 */
1039 	result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1040 		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1041 		USB_ENDPOINT_HALT, endp, NULL, 0,
1042 		USB_CTRL_SET_TIMEOUT);
1043 
1044 	/* don't un-halt or force to DATA0 except on success */
1045 	if (result < 0)
1046 		return result;
1047 
1048 	/* NOTE:  seems like Microsoft and Apple don't bother verifying
1049 	 * the clear "took", so some devices could lock up if you check...
1050 	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
1051 	 *
1052 	 * NOTE:  make sure the logic here doesn't diverge much from
1053 	 * the copy in usb-storage, for as long as we need two copies.
1054 	 */
1055 
1056 	usb_reset_endpoint(dev, endp);
1057 
1058 	return 0;
1059 }
1060 EXPORT_SYMBOL_GPL(usb_clear_halt);
1061 
1062 static int create_intf_ep_devs(struct usb_interface *intf)
1063 {
1064 	struct usb_device *udev = interface_to_usbdev(intf);
1065 	struct usb_host_interface *alt = intf->cur_altsetting;
1066 	int i;
1067 
1068 	if (intf->ep_devs_created || intf->unregistering)
1069 		return 0;
1070 
1071 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1072 		(void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1073 	intf->ep_devs_created = 1;
1074 	return 0;
1075 }
1076 
1077 static void remove_intf_ep_devs(struct usb_interface *intf)
1078 {
1079 	struct usb_host_interface *alt = intf->cur_altsetting;
1080 	int i;
1081 
1082 	if (!intf->ep_devs_created)
1083 		return;
1084 
1085 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1086 		usb_remove_ep_devs(&alt->endpoint[i]);
1087 	intf->ep_devs_created = 0;
1088 }
1089 
1090 /**
1091  * usb_disable_endpoint -- Disable an endpoint by address
1092  * @dev: the device whose endpoint is being disabled
1093  * @epaddr: the endpoint's address.  Endpoint number for output,
1094  *	endpoint number + USB_DIR_IN for input
1095  * @reset_hardware: flag to erase any endpoint state stored in the
1096  *	controller hardware
1097  *
1098  * Disables the endpoint for URB submission and nukes all pending URBs.
1099  * If @reset_hardware is set then also deallocates hcd/hardware state
1100  * for the endpoint.
1101  */
1102 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1103 		bool reset_hardware)
1104 {
1105 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1106 	struct usb_host_endpoint *ep;
1107 
1108 	if (!dev)
1109 		return;
1110 
1111 	if (usb_endpoint_out(epaddr)) {
1112 		ep = dev->ep_out[epnum];
1113 		if (reset_hardware)
1114 			dev->ep_out[epnum] = NULL;
1115 	} else {
1116 		ep = dev->ep_in[epnum];
1117 		if (reset_hardware)
1118 			dev->ep_in[epnum] = NULL;
1119 	}
1120 	if (ep) {
1121 		ep->enabled = 0;
1122 		usb_hcd_flush_endpoint(dev, ep);
1123 		if (reset_hardware)
1124 			usb_hcd_disable_endpoint(dev, ep);
1125 	}
1126 }
1127 
1128 /**
1129  * usb_reset_endpoint - Reset an endpoint's state.
1130  * @dev: the device whose endpoint is to be reset
1131  * @epaddr: the endpoint's address.  Endpoint number for output,
1132  *	endpoint number + USB_DIR_IN for input
1133  *
1134  * Resets any host-side endpoint state such as the toggle bit,
1135  * sequence number or current window.
1136  */
1137 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1138 {
1139 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1140 	struct usb_host_endpoint *ep;
1141 
1142 	if (usb_endpoint_out(epaddr))
1143 		ep = dev->ep_out[epnum];
1144 	else
1145 		ep = dev->ep_in[epnum];
1146 	if (ep)
1147 		usb_hcd_reset_endpoint(dev, ep);
1148 }
1149 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1150 
1151 
1152 /**
1153  * usb_disable_interface -- Disable all endpoints for an interface
1154  * @dev: the device whose interface is being disabled
1155  * @intf: pointer to the interface descriptor
1156  * @reset_hardware: flag to erase any endpoint state stored in the
1157  *	controller hardware
1158  *
1159  * Disables all the endpoints for the interface's current altsetting.
1160  */
1161 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1162 		bool reset_hardware)
1163 {
1164 	struct usb_host_interface *alt = intf->cur_altsetting;
1165 	int i;
1166 
1167 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1168 		usb_disable_endpoint(dev,
1169 				alt->endpoint[i].desc.bEndpointAddress,
1170 				reset_hardware);
1171 	}
1172 }
1173 
1174 /**
1175  * usb_disable_device - Disable all the endpoints for a USB device
1176  * @dev: the device whose endpoints are being disabled
1177  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1178  *
1179  * Disables all the device's endpoints, potentially including endpoint 0.
1180  * Deallocates hcd/hardware state for the endpoints (nuking all or most
1181  * pending urbs) and usbcore state for the interfaces, so that usbcore
1182  * must usb_set_configuration() before any interfaces could be used.
1183  */
1184 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1185 {
1186 	int i;
1187 
1188 	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1189 		skip_ep0 ? "non-ep0" : "all");
1190 	for (i = skip_ep0; i < 16; ++i) {
1191 		usb_disable_endpoint(dev, i, true);
1192 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1193 	}
1194 
1195 	/* getting rid of interfaces will disconnect
1196 	 * any drivers bound to them (a key side effect)
1197 	 */
1198 	if (dev->actconfig) {
1199 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1200 			struct usb_interface	*interface;
1201 
1202 			/* remove this interface if it has been registered */
1203 			interface = dev->actconfig->interface[i];
1204 			if (!device_is_registered(&interface->dev))
1205 				continue;
1206 			dev_dbg(&dev->dev, "unregistering interface %s\n",
1207 				dev_name(&interface->dev));
1208 			interface->unregistering = 1;
1209 			remove_intf_ep_devs(interface);
1210 			device_del(&interface->dev);
1211 		}
1212 
1213 		/* Now that the interfaces are unbound, nobody should
1214 		 * try to access them.
1215 		 */
1216 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1217 			put_device(&dev->actconfig->interface[i]->dev);
1218 			dev->actconfig->interface[i] = NULL;
1219 		}
1220 		dev->actconfig = NULL;
1221 		if (dev->state == USB_STATE_CONFIGURED)
1222 			usb_set_device_state(dev, USB_STATE_ADDRESS);
1223 	}
1224 }
1225 
1226 /**
1227  * usb_enable_endpoint - Enable an endpoint for USB communications
1228  * @dev: the device whose interface is being enabled
1229  * @ep: the endpoint
1230  * @reset_ep: flag to reset the endpoint state
1231  *
1232  * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1233  * For control endpoints, both the input and output sides are handled.
1234  */
1235 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1236 		bool reset_ep)
1237 {
1238 	int epnum = usb_endpoint_num(&ep->desc);
1239 	int is_out = usb_endpoint_dir_out(&ep->desc);
1240 	int is_control = usb_endpoint_xfer_control(&ep->desc);
1241 
1242 	if (reset_ep)
1243 		usb_hcd_reset_endpoint(dev, ep);
1244 	if (is_out || is_control)
1245 		dev->ep_out[epnum] = ep;
1246 	if (!is_out || is_control)
1247 		dev->ep_in[epnum] = ep;
1248 	ep->enabled = 1;
1249 }
1250 
1251 /**
1252  * usb_enable_interface - Enable all the endpoints for an interface
1253  * @dev: the device whose interface is being enabled
1254  * @intf: pointer to the interface descriptor
1255  * @reset_eps: flag to reset the endpoints' state
1256  *
1257  * Enables all the endpoints for the interface's current altsetting.
1258  */
1259 void usb_enable_interface(struct usb_device *dev,
1260 		struct usb_interface *intf, bool reset_eps)
1261 {
1262 	struct usb_host_interface *alt = intf->cur_altsetting;
1263 	int i;
1264 
1265 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1266 		usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1267 }
1268 
1269 /**
1270  * usb_set_interface - Makes a particular alternate setting be current
1271  * @dev: the device whose interface is being updated
1272  * @interface: the interface being updated
1273  * @alternate: the setting being chosen.
1274  * Context: !in_interrupt ()
1275  *
1276  * This is used to enable data transfers on interfaces that may not
1277  * be enabled by default.  Not all devices support such configurability.
1278  * Only the driver bound to an interface may change its setting.
1279  *
1280  * Within any given configuration, each interface may have several
1281  * alternative settings.  These are often used to control levels of
1282  * bandwidth consumption.  For example, the default setting for a high
1283  * speed interrupt endpoint may not send more than 64 bytes per microframe,
1284  * while interrupt transfers of up to 3KBytes per microframe are legal.
1285  * Also, isochronous endpoints may never be part of an
1286  * interface's default setting.  To access such bandwidth, alternate
1287  * interface settings must be made current.
1288  *
1289  * Note that in the Linux USB subsystem, bandwidth associated with
1290  * an endpoint in a given alternate setting is not reserved until an URB
1291  * is submitted that needs that bandwidth.  Some other operating systems
1292  * allocate bandwidth early, when a configuration is chosen.
1293  *
1294  * This call is synchronous, and may not be used in an interrupt context.
1295  * Also, drivers must not change altsettings while urbs are scheduled for
1296  * endpoints in that interface; all such urbs must first be completed
1297  * (perhaps forced by unlinking).
1298  *
1299  * Returns zero on success, or else the status code returned by the
1300  * underlying usb_control_msg() call.
1301  */
1302 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1303 {
1304 	struct usb_interface *iface;
1305 	struct usb_host_interface *alt;
1306 	int ret;
1307 	int manual = 0;
1308 	unsigned int epaddr;
1309 	unsigned int pipe;
1310 
1311 	if (dev->state == USB_STATE_SUSPENDED)
1312 		return -EHOSTUNREACH;
1313 
1314 	iface = usb_ifnum_to_if(dev, interface);
1315 	if (!iface) {
1316 		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1317 			interface);
1318 		return -EINVAL;
1319 	}
1320 
1321 	alt = usb_altnum_to_altsetting(iface, alternate);
1322 	if (!alt) {
1323 		dev_warn(&dev->dev, "selecting invalid altsetting %d",
1324 			 alternate);
1325 		return -EINVAL;
1326 	}
1327 
1328 	if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1329 		ret = -EPIPE;
1330 	else
1331 		ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1332 				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1333 				   alternate, interface, NULL, 0, 5000);
1334 
1335 	/* 9.4.10 says devices don't need this and are free to STALL the
1336 	 * request if the interface only has one alternate setting.
1337 	 */
1338 	if (ret == -EPIPE && iface->num_altsetting == 1) {
1339 		dev_dbg(&dev->dev,
1340 			"manual set_interface for iface %d, alt %d\n",
1341 			interface, alternate);
1342 		manual = 1;
1343 	} else if (ret < 0)
1344 		return ret;
1345 
1346 	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1347 	 * when they implement async or easily-killable versions of this or
1348 	 * other "should-be-internal" functions (like clear_halt).
1349 	 * should hcd+usbcore postprocess control requests?
1350 	 */
1351 
1352 	/* prevent submissions using previous endpoint settings */
1353 	if (iface->cur_altsetting != alt) {
1354 		remove_intf_ep_devs(iface);
1355 		usb_remove_sysfs_intf_files(iface);
1356 	}
1357 	usb_disable_interface(dev, iface, true);
1358 
1359 	iface->cur_altsetting = alt;
1360 
1361 	/* If the interface only has one altsetting and the device didn't
1362 	 * accept the request, we attempt to carry out the equivalent action
1363 	 * by manually clearing the HALT feature for each endpoint in the
1364 	 * new altsetting.
1365 	 */
1366 	if (manual) {
1367 		int i;
1368 
1369 		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1370 			epaddr = alt->endpoint[i].desc.bEndpointAddress;
1371 			pipe = __create_pipe(dev,
1372 					USB_ENDPOINT_NUMBER_MASK & epaddr) |
1373 					(usb_endpoint_out(epaddr) ?
1374 					USB_DIR_OUT : USB_DIR_IN);
1375 
1376 			usb_clear_halt(dev, pipe);
1377 		}
1378 	}
1379 
1380 	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1381 	 *
1382 	 * Note:
1383 	 * Despite EP0 is always present in all interfaces/AS, the list of
1384 	 * endpoints from the descriptor does not contain EP0. Due to its
1385 	 * omnipresence one might expect EP0 being considered "affected" by
1386 	 * any SetInterface request and hence assume toggles need to be reset.
1387 	 * However, EP0 toggles are re-synced for every individual transfer
1388 	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1389 	 * (Likewise, EP0 never "halts" on well designed devices.)
1390 	 */
1391 	usb_enable_interface(dev, iface, true);
1392 	if (device_is_registered(&iface->dev)) {
1393 		usb_create_sysfs_intf_files(iface);
1394 		create_intf_ep_devs(iface);
1395 	}
1396 	return 0;
1397 }
1398 EXPORT_SYMBOL_GPL(usb_set_interface);
1399 
1400 /**
1401  * usb_reset_configuration - lightweight device reset
1402  * @dev: the device whose configuration is being reset
1403  *
1404  * This issues a standard SET_CONFIGURATION request to the device using
1405  * the current configuration.  The effect is to reset most USB-related
1406  * state in the device, including interface altsettings (reset to zero),
1407  * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1408  * endpoints).  Other usbcore state is unchanged, including bindings of
1409  * usb device drivers to interfaces.
1410  *
1411  * Because this affects multiple interfaces, avoid using this with composite
1412  * (multi-interface) devices.  Instead, the driver for each interface may
1413  * use usb_set_interface() on the interfaces it claims.  Be careful though;
1414  * some devices don't support the SET_INTERFACE request, and others won't
1415  * reset all the interface state (notably endpoint state).  Resetting the whole
1416  * configuration would affect other drivers' interfaces.
1417  *
1418  * The caller must own the device lock.
1419  *
1420  * Returns zero on success, else a negative error code.
1421  */
1422 int usb_reset_configuration(struct usb_device *dev)
1423 {
1424 	int			i, retval;
1425 	struct usb_host_config	*config;
1426 
1427 	if (dev->state == USB_STATE_SUSPENDED)
1428 		return -EHOSTUNREACH;
1429 
1430 	/* caller must have locked the device and must own
1431 	 * the usb bus readlock (so driver bindings are stable);
1432 	 * calls during probe() are fine
1433 	 */
1434 
1435 	for (i = 1; i < 16; ++i) {
1436 		usb_disable_endpoint(dev, i, true);
1437 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1438 	}
1439 
1440 	config = dev->actconfig;
1441 	retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1442 			USB_REQ_SET_CONFIGURATION, 0,
1443 			config->desc.bConfigurationValue, 0,
1444 			NULL, 0, USB_CTRL_SET_TIMEOUT);
1445 	if (retval < 0)
1446 		return retval;
1447 
1448 	/* re-init hc/hcd interface/endpoint state */
1449 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1450 		struct usb_interface *intf = config->interface[i];
1451 		struct usb_host_interface *alt;
1452 
1453 		alt = usb_altnum_to_altsetting(intf, 0);
1454 
1455 		/* No altsetting 0?  We'll assume the first altsetting.
1456 		 * We could use a GetInterface call, but if a device is
1457 		 * so non-compliant that it doesn't have altsetting 0
1458 		 * then I wouldn't trust its reply anyway.
1459 		 */
1460 		if (!alt)
1461 			alt = &intf->altsetting[0];
1462 
1463 		if (alt != intf->cur_altsetting) {
1464 			remove_intf_ep_devs(intf);
1465 			usb_remove_sysfs_intf_files(intf);
1466 		}
1467 		intf->cur_altsetting = alt;
1468 		usb_enable_interface(dev, intf, true);
1469 		if (device_is_registered(&intf->dev)) {
1470 			usb_create_sysfs_intf_files(intf);
1471 			create_intf_ep_devs(intf);
1472 		}
1473 	}
1474 	return 0;
1475 }
1476 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1477 
1478 static void usb_release_interface(struct device *dev)
1479 {
1480 	struct usb_interface *intf = to_usb_interface(dev);
1481 	struct usb_interface_cache *intfc =
1482 			altsetting_to_usb_interface_cache(intf->altsetting);
1483 
1484 	kref_put(&intfc->ref, usb_release_interface_cache);
1485 	kfree(intf);
1486 }
1487 
1488 #ifdef	CONFIG_HOTPLUG
1489 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1490 {
1491 	struct usb_device *usb_dev;
1492 	struct usb_interface *intf;
1493 	struct usb_host_interface *alt;
1494 
1495 	intf = to_usb_interface(dev);
1496 	usb_dev = interface_to_usbdev(intf);
1497 	alt = intf->cur_altsetting;
1498 
1499 	if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1500 		   alt->desc.bInterfaceClass,
1501 		   alt->desc.bInterfaceSubClass,
1502 		   alt->desc.bInterfaceProtocol))
1503 		return -ENOMEM;
1504 
1505 	if (add_uevent_var(env,
1506 		   "MODALIAS=usb:"
1507 		   "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
1508 		   le16_to_cpu(usb_dev->descriptor.idVendor),
1509 		   le16_to_cpu(usb_dev->descriptor.idProduct),
1510 		   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1511 		   usb_dev->descriptor.bDeviceClass,
1512 		   usb_dev->descriptor.bDeviceSubClass,
1513 		   usb_dev->descriptor.bDeviceProtocol,
1514 		   alt->desc.bInterfaceClass,
1515 		   alt->desc.bInterfaceSubClass,
1516 		   alt->desc.bInterfaceProtocol))
1517 		return -ENOMEM;
1518 
1519 	return 0;
1520 }
1521 
1522 #else
1523 
1524 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1525 {
1526 	return -ENODEV;
1527 }
1528 #endif	/* CONFIG_HOTPLUG */
1529 
1530 struct device_type usb_if_device_type = {
1531 	.name =		"usb_interface",
1532 	.release =	usb_release_interface,
1533 	.uevent =	usb_if_uevent,
1534 };
1535 
1536 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1537 						struct usb_host_config *config,
1538 						u8 inum)
1539 {
1540 	struct usb_interface_assoc_descriptor *retval = NULL;
1541 	struct usb_interface_assoc_descriptor *intf_assoc;
1542 	int first_intf;
1543 	int last_intf;
1544 	int i;
1545 
1546 	for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1547 		intf_assoc = config->intf_assoc[i];
1548 		if (intf_assoc->bInterfaceCount == 0)
1549 			continue;
1550 
1551 		first_intf = intf_assoc->bFirstInterface;
1552 		last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1553 		if (inum >= first_intf && inum <= last_intf) {
1554 			if (!retval)
1555 				retval = intf_assoc;
1556 			else
1557 				dev_err(&dev->dev, "Interface #%d referenced"
1558 					" by multiple IADs\n", inum);
1559 		}
1560 	}
1561 
1562 	return retval;
1563 }
1564 
1565 
1566 /*
1567  * Internal function to queue a device reset
1568  *
1569  * This is initialized into the workstruct in 'struct
1570  * usb_device->reset_ws' that is launched by
1571  * message.c:usb_set_configuration() when initializing each 'struct
1572  * usb_interface'.
1573  *
1574  * It is safe to get the USB device without reference counts because
1575  * the life cycle of @iface is bound to the life cycle of @udev. Then,
1576  * this function will be ran only if @iface is alive (and before
1577  * freeing it any scheduled instances of it will have been cancelled).
1578  *
1579  * We need to set a flag (usb_dev->reset_running) because when we call
1580  * the reset, the interfaces might be unbound. The current interface
1581  * cannot try to remove the queued work as it would cause a deadlock
1582  * (you cannot remove your work from within your executing
1583  * workqueue). This flag lets it know, so that
1584  * usb_cancel_queued_reset() doesn't try to do it.
1585  *
1586  * See usb_queue_reset_device() for more details
1587  */
1588 void __usb_queue_reset_device(struct work_struct *ws)
1589 {
1590 	int rc;
1591 	struct usb_interface *iface =
1592 		container_of(ws, struct usb_interface, reset_ws);
1593 	struct usb_device *udev = interface_to_usbdev(iface);
1594 
1595 	rc = usb_lock_device_for_reset(udev, iface);
1596 	if (rc >= 0) {
1597 		iface->reset_running = 1;
1598 		usb_reset_device(udev);
1599 		iface->reset_running = 0;
1600 		usb_unlock_device(udev);
1601 	}
1602 }
1603 
1604 
1605 /*
1606  * usb_set_configuration - Makes a particular device setting be current
1607  * @dev: the device whose configuration is being updated
1608  * @configuration: the configuration being chosen.
1609  * Context: !in_interrupt(), caller owns the device lock
1610  *
1611  * This is used to enable non-default device modes.  Not all devices
1612  * use this kind of configurability; many devices only have one
1613  * configuration.
1614  *
1615  * @configuration is the value of the configuration to be installed.
1616  * According to the USB spec (e.g. section 9.1.1.5), configuration values
1617  * must be non-zero; a value of zero indicates that the device in
1618  * unconfigured.  However some devices erroneously use 0 as one of their
1619  * configuration values.  To help manage such devices, this routine will
1620  * accept @configuration = -1 as indicating the device should be put in
1621  * an unconfigured state.
1622  *
1623  * USB device configurations may affect Linux interoperability,
1624  * power consumption and the functionality available.  For example,
1625  * the default configuration is limited to using 100mA of bus power,
1626  * so that when certain device functionality requires more power,
1627  * and the device is bus powered, that functionality should be in some
1628  * non-default device configuration.  Other device modes may also be
1629  * reflected as configuration options, such as whether two ISDN
1630  * channels are available independently; and choosing between open
1631  * standard device protocols (like CDC) or proprietary ones.
1632  *
1633  * Note that a non-authorized device (dev->authorized == 0) will only
1634  * be put in unconfigured mode.
1635  *
1636  * Note that USB has an additional level of device configurability,
1637  * associated with interfaces.  That configurability is accessed using
1638  * usb_set_interface().
1639  *
1640  * This call is synchronous. The calling context must be able to sleep,
1641  * must own the device lock, and must not hold the driver model's USB
1642  * bus mutex; usb interface driver probe() methods cannot use this routine.
1643  *
1644  * Returns zero on success, or else the status code returned by the
1645  * underlying call that failed.  On successful completion, each interface
1646  * in the original device configuration has been destroyed, and each one
1647  * in the new configuration has been probed by all relevant usb device
1648  * drivers currently known to the kernel.
1649  */
1650 int usb_set_configuration(struct usb_device *dev, int configuration)
1651 {
1652 	int i, ret;
1653 	struct usb_host_config *cp = NULL;
1654 	struct usb_interface **new_interfaces = NULL;
1655 	int n, nintf;
1656 
1657 	if (dev->authorized == 0 || configuration == -1)
1658 		configuration = 0;
1659 	else {
1660 		for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1661 			if (dev->config[i].desc.bConfigurationValue ==
1662 					configuration) {
1663 				cp = &dev->config[i];
1664 				break;
1665 			}
1666 		}
1667 	}
1668 	if ((!cp && configuration != 0))
1669 		return -EINVAL;
1670 
1671 	/* The USB spec says configuration 0 means unconfigured.
1672 	 * But if a device includes a configuration numbered 0,
1673 	 * we will accept it as a correctly configured state.
1674 	 * Use -1 if you really want to unconfigure the device.
1675 	 */
1676 	if (cp && configuration == 0)
1677 		dev_warn(&dev->dev, "config 0 descriptor??\n");
1678 
1679 	/* Allocate memory for new interfaces before doing anything else,
1680 	 * so that if we run out then nothing will have changed. */
1681 	n = nintf = 0;
1682 	if (cp) {
1683 		nintf = cp->desc.bNumInterfaces;
1684 		new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1685 				GFP_KERNEL);
1686 		if (!new_interfaces) {
1687 			dev_err(&dev->dev, "Out of memory\n");
1688 			return -ENOMEM;
1689 		}
1690 
1691 		for (; n < nintf; ++n) {
1692 			new_interfaces[n] = kzalloc(
1693 					sizeof(struct usb_interface),
1694 					GFP_KERNEL);
1695 			if (!new_interfaces[n]) {
1696 				dev_err(&dev->dev, "Out of memory\n");
1697 				ret = -ENOMEM;
1698 free_interfaces:
1699 				while (--n >= 0)
1700 					kfree(new_interfaces[n]);
1701 				kfree(new_interfaces);
1702 				return ret;
1703 			}
1704 		}
1705 
1706 		i = dev->bus_mA - cp->desc.bMaxPower * 2;
1707 		if (i < 0)
1708 			dev_warn(&dev->dev, "new config #%d exceeds power "
1709 					"limit by %dmA\n",
1710 					configuration, -i);
1711 	}
1712 
1713 	/* Wake up the device so we can send it the Set-Config request */
1714 	ret = usb_autoresume_device(dev);
1715 	if (ret)
1716 		goto free_interfaces;
1717 
1718 	/* Make sure we have bandwidth (and available HCD resources) for this
1719 	 * configuration.  Remove endpoints from the schedule if we're dropping
1720 	 * this configuration to set configuration 0.  After this point, the
1721 	 * host controller will not allow submissions to dropped endpoints.  If
1722 	 * this call fails, the device state is unchanged.
1723 	 */
1724 	if (cp)
1725 		ret = usb_hcd_check_bandwidth(dev, cp, NULL);
1726 	else
1727 		ret = usb_hcd_check_bandwidth(dev, NULL, NULL);
1728 	if (ret < 0) {
1729 		usb_autosuspend_device(dev);
1730 		goto free_interfaces;
1731 	}
1732 
1733 	/* if it's already configured, clear out old state first.
1734 	 * getting rid of old interfaces means unbinding their drivers.
1735 	 */
1736 	if (dev->state != USB_STATE_ADDRESS)
1737 		usb_disable_device(dev, 1);	/* Skip ep0 */
1738 
1739 	/* Get rid of pending async Set-Config requests for this device */
1740 	cancel_async_set_config(dev);
1741 
1742 	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1743 			      USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1744 			      NULL, 0, USB_CTRL_SET_TIMEOUT);
1745 	if (ret < 0) {
1746 		/* All the old state is gone, so what else can we do?
1747 		 * The device is probably useless now anyway.
1748 		 */
1749 		cp = NULL;
1750 	}
1751 
1752 	dev->actconfig = cp;
1753 	if (!cp) {
1754 		usb_set_device_state(dev, USB_STATE_ADDRESS);
1755 		usb_hcd_check_bandwidth(dev, NULL, NULL);
1756 		usb_autosuspend_device(dev);
1757 		goto free_interfaces;
1758 	}
1759 	usb_set_device_state(dev, USB_STATE_CONFIGURED);
1760 
1761 	/* Initialize the new interface structures and the
1762 	 * hc/hcd/usbcore interface/endpoint state.
1763 	 */
1764 	for (i = 0; i < nintf; ++i) {
1765 		struct usb_interface_cache *intfc;
1766 		struct usb_interface *intf;
1767 		struct usb_host_interface *alt;
1768 
1769 		cp->interface[i] = intf = new_interfaces[i];
1770 		intfc = cp->intf_cache[i];
1771 		intf->altsetting = intfc->altsetting;
1772 		intf->num_altsetting = intfc->num_altsetting;
1773 		intf->intf_assoc = find_iad(dev, cp, i);
1774 		kref_get(&intfc->ref);
1775 
1776 		alt = usb_altnum_to_altsetting(intf, 0);
1777 
1778 		/* No altsetting 0?  We'll assume the first altsetting.
1779 		 * We could use a GetInterface call, but if a device is
1780 		 * so non-compliant that it doesn't have altsetting 0
1781 		 * then I wouldn't trust its reply anyway.
1782 		 */
1783 		if (!alt)
1784 			alt = &intf->altsetting[0];
1785 
1786 		intf->cur_altsetting = alt;
1787 		usb_enable_interface(dev, intf, true);
1788 		intf->dev.parent = &dev->dev;
1789 		intf->dev.driver = NULL;
1790 		intf->dev.bus = &usb_bus_type;
1791 		intf->dev.type = &usb_if_device_type;
1792 		intf->dev.groups = usb_interface_groups;
1793 		intf->dev.dma_mask = dev->dev.dma_mask;
1794 		INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1795 		device_initialize(&intf->dev);
1796 		mark_quiesced(intf);
1797 		dev_set_name(&intf->dev, "%d-%s:%d.%d",
1798 			dev->bus->busnum, dev->devpath,
1799 			configuration, alt->desc.bInterfaceNumber);
1800 	}
1801 	kfree(new_interfaces);
1802 
1803 	if (cp->string == NULL &&
1804 			!(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1805 		cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1806 
1807 	/* Now that all the interfaces are set up, register them
1808 	 * to trigger binding of drivers to interfaces.  probe()
1809 	 * routines may install different altsettings and may
1810 	 * claim() any interfaces not yet bound.  Many class drivers
1811 	 * need that: CDC, audio, video, etc.
1812 	 */
1813 	for (i = 0; i < nintf; ++i) {
1814 		struct usb_interface *intf = cp->interface[i];
1815 
1816 		dev_dbg(&dev->dev,
1817 			"adding %s (config #%d, interface %d)\n",
1818 			dev_name(&intf->dev), configuration,
1819 			intf->cur_altsetting->desc.bInterfaceNumber);
1820 		ret = device_add(&intf->dev);
1821 		if (ret != 0) {
1822 			dev_err(&dev->dev, "device_add(%s) --> %d\n",
1823 				dev_name(&intf->dev), ret);
1824 			continue;
1825 		}
1826 		create_intf_ep_devs(intf);
1827 	}
1828 
1829 	usb_autosuspend_device(dev);
1830 	return 0;
1831 }
1832 
1833 static LIST_HEAD(set_config_list);
1834 static DEFINE_SPINLOCK(set_config_lock);
1835 
1836 struct set_config_request {
1837 	struct usb_device	*udev;
1838 	int			config;
1839 	struct work_struct	work;
1840 	struct list_head	node;
1841 };
1842 
1843 /* Worker routine for usb_driver_set_configuration() */
1844 static void driver_set_config_work(struct work_struct *work)
1845 {
1846 	struct set_config_request *req =
1847 		container_of(work, struct set_config_request, work);
1848 	struct usb_device *udev = req->udev;
1849 
1850 	usb_lock_device(udev);
1851 	spin_lock(&set_config_lock);
1852 	list_del(&req->node);
1853 	spin_unlock(&set_config_lock);
1854 
1855 	if (req->config >= -1)		/* Is req still valid? */
1856 		usb_set_configuration(udev, req->config);
1857 	usb_unlock_device(udev);
1858 	usb_put_dev(udev);
1859 	kfree(req);
1860 }
1861 
1862 /* Cancel pending Set-Config requests for a device whose configuration
1863  * was just changed
1864  */
1865 static void cancel_async_set_config(struct usb_device *udev)
1866 {
1867 	struct set_config_request *req;
1868 
1869 	spin_lock(&set_config_lock);
1870 	list_for_each_entry(req, &set_config_list, node) {
1871 		if (req->udev == udev)
1872 			req->config = -999;	/* Mark as cancelled */
1873 	}
1874 	spin_unlock(&set_config_lock);
1875 }
1876 
1877 /**
1878  * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1879  * @udev: the device whose configuration is being updated
1880  * @config: the configuration being chosen.
1881  * Context: In process context, must be able to sleep
1882  *
1883  * Device interface drivers are not allowed to change device configurations.
1884  * This is because changing configurations will destroy the interface the
1885  * driver is bound to and create new ones; it would be like a floppy-disk
1886  * driver telling the computer to replace the floppy-disk drive with a
1887  * tape drive!
1888  *
1889  * Still, in certain specialized circumstances the need may arise.  This
1890  * routine gets around the normal restrictions by using a work thread to
1891  * submit the change-config request.
1892  *
1893  * Returns 0 if the request was succesfully queued, error code otherwise.
1894  * The caller has no way to know whether the queued request will eventually
1895  * succeed.
1896  */
1897 int usb_driver_set_configuration(struct usb_device *udev, int config)
1898 {
1899 	struct set_config_request *req;
1900 
1901 	req = kmalloc(sizeof(*req), GFP_KERNEL);
1902 	if (!req)
1903 		return -ENOMEM;
1904 	req->udev = udev;
1905 	req->config = config;
1906 	INIT_WORK(&req->work, driver_set_config_work);
1907 
1908 	spin_lock(&set_config_lock);
1909 	list_add(&req->node, &set_config_list);
1910 	spin_unlock(&set_config_lock);
1911 
1912 	usb_get_dev(udev);
1913 	schedule_work(&req->work);
1914 	return 0;
1915 }
1916 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
1917