1 /* 2 * message.c - synchronous message handling 3 */ 4 5 #include <linux/pci.h> /* for scatterlist macros */ 6 #include <linux/usb.h> 7 #include <linux/module.h> 8 #include <linux/slab.h> 9 #include <linux/init.h> 10 #include <linux/mm.h> 11 #include <linux/timer.h> 12 #include <linux/ctype.h> 13 #include <linux/nls.h> 14 #include <linux/device.h> 15 #include <linux/scatterlist.h> 16 #include <linux/usb/quirks.h> 17 #include <asm/byteorder.h> 18 19 #include "hcd.h" /* for usbcore internals */ 20 #include "usb.h" 21 22 static void cancel_async_set_config(struct usb_device *udev); 23 24 struct api_context { 25 struct completion done; 26 int status; 27 }; 28 29 static void usb_api_blocking_completion(struct urb *urb) 30 { 31 struct api_context *ctx = urb->context; 32 33 ctx->status = urb->status; 34 complete(&ctx->done); 35 } 36 37 38 /* 39 * Starts urb and waits for completion or timeout. Note that this call 40 * is NOT interruptible. Many device driver i/o requests should be 41 * interruptible and therefore these drivers should implement their 42 * own interruptible routines. 43 */ 44 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length) 45 { 46 struct api_context ctx; 47 unsigned long expire; 48 int retval; 49 50 init_completion(&ctx.done); 51 urb->context = &ctx; 52 urb->actual_length = 0; 53 retval = usb_submit_urb(urb, GFP_NOIO); 54 if (unlikely(retval)) 55 goto out; 56 57 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT; 58 if (!wait_for_completion_timeout(&ctx.done, expire)) { 59 usb_kill_urb(urb); 60 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status); 61 62 dev_dbg(&urb->dev->dev, 63 "%s timed out on ep%d%s len=%u/%u\n", 64 current->comm, 65 usb_endpoint_num(&urb->ep->desc), 66 usb_urb_dir_in(urb) ? "in" : "out", 67 urb->actual_length, 68 urb->transfer_buffer_length); 69 } else 70 retval = ctx.status; 71 out: 72 if (actual_length) 73 *actual_length = urb->actual_length; 74 75 usb_free_urb(urb); 76 return retval; 77 } 78 79 /*-------------------------------------------------------------------*/ 80 /* returns status (negative) or length (positive) */ 81 static int usb_internal_control_msg(struct usb_device *usb_dev, 82 unsigned int pipe, 83 struct usb_ctrlrequest *cmd, 84 void *data, int len, int timeout) 85 { 86 struct urb *urb; 87 int retv; 88 int length; 89 90 urb = usb_alloc_urb(0, GFP_NOIO); 91 if (!urb) 92 return -ENOMEM; 93 94 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data, 95 len, usb_api_blocking_completion, NULL); 96 97 retv = usb_start_wait_urb(urb, timeout, &length); 98 if (retv < 0) 99 return retv; 100 else 101 return length; 102 } 103 104 /** 105 * usb_control_msg - Builds a control urb, sends it off and waits for completion 106 * @dev: pointer to the usb device to send the message to 107 * @pipe: endpoint "pipe" to send the message to 108 * @request: USB message request value 109 * @requesttype: USB message request type value 110 * @value: USB message value 111 * @index: USB message index value 112 * @data: pointer to the data to send 113 * @size: length in bytes of the data to send 114 * @timeout: time in msecs to wait for the message to complete before timing 115 * out (if 0 the wait is forever) 116 * 117 * Context: !in_interrupt () 118 * 119 * This function sends a simple control message to a specified endpoint and 120 * waits for the message to complete, or timeout. 121 * 122 * If successful, it returns the number of bytes transferred, otherwise a 123 * negative error number. 124 * 125 * Don't use this function from within an interrupt context, like a bottom half 126 * handler. If you need an asynchronous message, or need to send a message 127 * from within interrupt context, use usb_submit_urb(). 128 * If a thread in your driver uses this call, make sure your disconnect() 129 * method can wait for it to complete. Since you don't have a handle on the 130 * URB used, you can't cancel the request. 131 */ 132 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, 133 __u8 requesttype, __u16 value, __u16 index, void *data, 134 __u16 size, int timeout) 135 { 136 struct usb_ctrlrequest *dr; 137 int ret; 138 139 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO); 140 if (!dr) 141 return -ENOMEM; 142 143 dr->bRequestType = requesttype; 144 dr->bRequest = request; 145 dr->wValue = cpu_to_le16(value); 146 dr->wIndex = cpu_to_le16(index); 147 dr->wLength = cpu_to_le16(size); 148 149 /* dbg("usb_control_msg"); */ 150 151 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout); 152 153 kfree(dr); 154 155 return ret; 156 } 157 EXPORT_SYMBOL_GPL(usb_control_msg); 158 159 /** 160 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion 161 * @usb_dev: pointer to the usb device to send the message to 162 * @pipe: endpoint "pipe" to send the message to 163 * @data: pointer to the data to send 164 * @len: length in bytes of the data to send 165 * @actual_length: pointer to a location to put the actual length transferred 166 * in bytes 167 * @timeout: time in msecs to wait for the message to complete before 168 * timing out (if 0 the wait is forever) 169 * 170 * Context: !in_interrupt () 171 * 172 * This function sends a simple interrupt message to a specified endpoint and 173 * waits for the message to complete, or timeout. 174 * 175 * If successful, it returns 0, otherwise a negative error number. The number 176 * of actual bytes transferred will be stored in the actual_length paramater. 177 * 178 * Don't use this function from within an interrupt context, like a bottom half 179 * handler. If you need an asynchronous message, or need to send a message 180 * from within interrupt context, use usb_submit_urb() If a thread in your 181 * driver uses this call, make sure your disconnect() method can wait for it to 182 * complete. Since you don't have a handle on the URB used, you can't cancel 183 * the request. 184 */ 185 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 186 void *data, int len, int *actual_length, int timeout) 187 { 188 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout); 189 } 190 EXPORT_SYMBOL_GPL(usb_interrupt_msg); 191 192 /** 193 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion 194 * @usb_dev: pointer to the usb device to send the message to 195 * @pipe: endpoint "pipe" to send the message to 196 * @data: pointer to the data to send 197 * @len: length in bytes of the data to send 198 * @actual_length: pointer to a location to put the actual length transferred 199 * in bytes 200 * @timeout: time in msecs to wait for the message to complete before 201 * timing out (if 0 the wait is forever) 202 * 203 * Context: !in_interrupt () 204 * 205 * This function sends a simple bulk message to a specified endpoint 206 * and waits for the message to complete, or timeout. 207 * 208 * If successful, it returns 0, otherwise a negative error number. The number 209 * of actual bytes transferred will be stored in the actual_length paramater. 210 * 211 * Don't use this function from within an interrupt context, like a bottom half 212 * handler. If you need an asynchronous message, or need to send a message 213 * from within interrupt context, use usb_submit_urb() If a thread in your 214 * driver uses this call, make sure your disconnect() method can wait for it to 215 * complete. Since you don't have a handle on the URB used, you can't cancel 216 * the request. 217 * 218 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl, 219 * users are forced to abuse this routine by using it to submit URBs for 220 * interrupt endpoints. We will take the liberty of creating an interrupt URB 221 * (with the default interval) if the target is an interrupt endpoint. 222 */ 223 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 224 void *data, int len, int *actual_length, int timeout) 225 { 226 struct urb *urb; 227 struct usb_host_endpoint *ep; 228 229 ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out) 230 [usb_pipeendpoint(pipe)]; 231 if (!ep || len < 0) 232 return -EINVAL; 233 234 urb = usb_alloc_urb(0, GFP_KERNEL); 235 if (!urb) 236 return -ENOMEM; 237 238 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 239 USB_ENDPOINT_XFER_INT) { 240 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30); 241 usb_fill_int_urb(urb, usb_dev, pipe, data, len, 242 usb_api_blocking_completion, NULL, 243 ep->desc.bInterval); 244 } else 245 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len, 246 usb_api_blocking_completion, NULL); 247 248 return usb_start_wait_urb(urb, timeout, actual_length); 249 } 250 EXPORT_SYMBOL_GPL(usb_bulk_msg); 251 252 /*-------------------------------------------------------------------*/ 253 254 static void sg_clean(struct usb_sg_request *io) 255 { 256 if (io->urbs) { 257 while (io->entries--) 258 usb_free_urb(io->urbs [io->entries]); 259 kfree(io->urbs); 260 io->urbs = NULL; 261 } 262 if (io->dev->dev.dma_mask != NULL) 263 usb_buffer_unmap_sg(io->dev, usb_pipein(io->pipe), 264 io->sg, io->nents); 265 io->dev = NULL; 266 } 267 268 static void sg_complete(struct urb *urb) 269 { 270 struct usb_sg_request *io = urb->context; 271 int status = urb->status; 272 273 spin_lock(&io->lock); 274 275 /* In 2.5 we require hcds' endpoint queues not to progress after fault 276 * reports, until the completion callback (this!) returns. That lets 277 * device driver code (like this routine) unlink queued urbs first, 278 * if it needs to, since the HC won't work on them at all. So it's 279 * not possible for page N+1 to overwrite page N, and so on. 280 * 281 * That's only for "hard" faults; "soft" faults (unlinks) sometimes 282 * complete before the HCD can get requests away from hardware, 283 * though never during cleanup after a hard fault. 284 */ 285 if (io->status 286 && (io->status != -ECONNRESET 287 || status != -ECONNRESET) 288 && urb->actual_length) { 289 dev_err(io->dev->bus->controller, 290 "dev %s ep%d%s scatterlist error %d/%d\n", 291 io->dev->devpath, 292 usb_endpoint_num(&urb->ep->desc), 293 usb_urb_dir_in(urb) ? "in" : "out", 294 status, io->status); 295 /* BUG (); */ 296 } 297 298 if (io->status == 0 && status && status != -ECONNRESET) { 299 int i, found, retval; 300 301 io->status = status; 302 303 /* the previous urbs, and this one, completed already. 304 * unlink pending urbs so they won't rx/tx bad data. 305 * careful: unlink can sometimes be synchronous... 306 */ 307 spin_unlock(&io->lock); 308 for (i = 0, found = 0; i < io->entries; i++) { 309 if (!io->urbs [i] || !io->urbs [i]->dev) 310 continue; 311 if (found) { 312 retval = usb_unlink_urb(io->urbs [i]); 313 if (retval != -EINPROGRESS && 314 retval != -ENODEV && 315 retval != -EBUSY) 316 dev_err(&io->dev->dev, 317 "%s, unlink --> %d\n", 318 __func__, retval); 319 } else if (urb == io->urbs [i]) 320 found = 1; 321 } 322 spin_lock(&io->lock); 323 } 324 urb->dev = NULL; 325 326 /* on the last completion, signal usb_sg_wait() */ 327 io->bytes += urb->actual_length; 328 io->count--; 329 if (!io->count) 330 complete(&io->complete); 331 332 spin_unlock(&io->lock); 333 } 334 335 336 /** 337 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request 338 * @io: request block being initialized. until usb_sg_wait() returns, 339 * treat this as a pointer to an opaque block of memory, 340 * @dev: the usb device that will send or receive the data 341 * @pipe: endpoint "pipe" used to transfer the data 342 * @period: polling rate for interrupt endpoints, in frames or 343 * (for high speed endpoints) microframes; ignored for bulk 344 * @sg: scatterlist entries 345 * @nents: how many entries in the scatterlist 346 * @length: how many bytes to send from the scatterlist, or zero to 347 * send every byte identified in the list. 348 * @mem_flags: SLAB_* flags affecting memory allocations in this call 349 * 350 * Returns zero for success, else a negative errno value. This initializes a 351 * scatter/gather request, allocating resources such as I/O mappings and urb 352 * memory (except maybe memory used by USB controller drivers). 353 * 354 * The request must be issued using usb_sg_wait(), which waits for the I/O to 355 * complete (or to be canceled) and then cleans up all resources allocated by 356 * usb_sg_init(). 357 * 358 * The request may be canceled with usb_sg_cancel(), either before or after 359 * usb_sg_wait() is called. 360 */ 361 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev, 362 unsigned pipe, unsigned period, struct scatterlist *sg, 363 int nents, size_t length, gfp_t mem_flags) 364 { 365 int i; 366 int urb_flags; 367 int dma; 368 int use_sg; 369 370 if (!io || !dev || !sg 371 || usb_pipecontrol(pipe) 372 || usb_pipeisoc(pipe) 373 || nents <= 0) 374 return -EINVAL; 375 376 spin_lock_init(&io->lock); 377 io->dev = dev; 378 io->pipe = pipe; 379 io->sg = sg; 380 io->nents = nents; 381 382 /* not all host controllers use DMA (like the mainstream pci ones); 383 * they can use PIO (sl811) or be software over another transport. 384 */ 385 dma = (dev->dev.dma_mask != NULL); 386 if (dma) 387 io->entries = usb_buffer_map_sg(dev, usb_pipein(pipe), 388 sg, nents); 389 else 390 io->entries = nents; 391 392 /* initialize all the urbs we'll use */ 393 if (io->entries <= 0) 394 return io->entries; 395 396 /* If we're running on an xHCI host controller, queue the whole scatter 397 * gather list with one call to urb_enqueue(). This is only for bulk, 398 * as that endpoint type does not care how the data gets broken up 399 * across frames. 400 */ 401 if (usb_pipebulk(pipe) && 402 bus_to_hcd(dev->bus)->driver->flags & HCD_USB3) { 403 io->urbs = kmalloc(sizeof *io->urbs, mem_flags); 404 use_sg = true; 405 } else { 406 io->urbs = kmalloc(io->entries * sizeof *io->urbs, mem_flags); 407 use_sg = false; 408 } 409 if (!io->urbs) 410 goto nomem; 411 412 urb_flags = URB_NO_INTERRUPT; 413 if (dma) 414 urb_flags |= URB_NO_TRANSFER_DMA_MAP; 415 if (usb_pipein(pipe)) 416 urb_flags |= URB_SHORT_NOT_OK; 417 418 if (use_sg) { 419 io->urbs[0] = usb_alloc_urb(0, mem_flags); 420 if (!io->urbs[0]) { 421 io->entries = 0; 422 goto nomem; 423 } 424 425 io->urbs[0]->dev = NULL; 426 io->urbs[0]->pipe = pipe; 427 io->urbs[0]->interval = period; 428 io->urbs[0]->transfer_flags = urb_flags; 429 430 io->urbs[0]->complete = sg_complete; 431 io->urbs[0]->context = io; 432 /* A length of zero means transfer the whole sg list */ 433 io->urbs[0]->transfer_buffer_length = length; 434 if (length == 0) { 435 for_each_sg(sg, sg, io->entries, i) { 436 io->urbs[0]->transfer_buffer_length += 437 sg_dma_len(sg); 438 } 439 } 440 io->urbs[0]->sg = io; 441 io->urbs[0]->num_sgs = io->entries; 442 io->entries = 1; 443 } else { 444 for_each_sg(sg, sg, io->entries, i) { 445 unsigned len; 446 447 io->urbs[i] = usb_alloc_urb(0, mem_flags); 448 if (!io->urbs[i]) { 449 io->entries = i; 450 goto nomem; 451 } 452 453 io->urbs[i]->dev = NULL; 454 io->urbs[i]->pipe = pipe; 455 io->urbs[i]->interval = period; 456 io->urbs[i]->transfer_flags = urb_flags; 457 458 io->urbs[i]->complete = sg_complete; 459 io->urbs[i]->context = io; 460 461 /* 462 * Some systems need to revert to PIO when DMA is temporarily 463 * unavailable. For their sakes, both transfer_buffer and 464 * transfer_dma are set when possible. 465 * 466 * Note that if IOMMU coalescing occurred, we cannot 467 * trust sg_page anymore, so check if S/G list shrunk. 468 */ 469 if (io->nents == io->entries && !PageHighMem(sg_page(sg))) 470 io->urbs[i]->transfer_buffer = sg_virt(sg); 471 else 472 io->urbs[i]->transfer_buffer = NULL; 473 474 if (dma) { 475 io->urbs[i]->transfer_dma = sg_dma_address(sg); 476 len = sg_dma_len(sg); 477 } else { 478 /* hc may use _only_ transfer_buffer */ 479 len = sg->length; 480 } 481 482 if (length) { 483 len = min_t(unsigned, len, length); 484 length -= len; 485 if (length == 0) 486 io->entries = i + 1; 487 } 488 io->urbs[i]->transfer_buffer_length = len; 489 } 490 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT; 491 } 492 493 /* transaction state */ 494 io->count = io->entries; 495 io->status = 0; 496 io->bytes = 0; 497 init_completion(&io->complete); 498 return 0; 499 500 nomem: 501 sg_clean(io); 502 return -ENOMEM; 503 } 504 EXPORT_SYMBOL_GPL(usb_sg_init); 505 506 /** 507 * usb_sg_wait - synchronously execute scatter/gather request 508 * @io: request block handle, as initialized with usb_sg_init(). 509 * some fields become accessible when this call returns. 510 * Context: !in_interrupt () 511 * 512 * This function blocks until the specified I/O operation completes. It 513 * leverages the grouping of the related I/O requests to get good transfer 514 * rates, by queueing the requests. At higher speeds, such queuing can 515 * significantly improve USB throughput. 516 * 517 * There are three kinds of completion for this function. 518 * (1) success, where io->status is zero. The number of io->bytes 519 * transferred is as requested. 520 * (2) error, where io->status is a negative errno value. The number 521 * of io->bytes transferred before the error is usually less 522 * than requested, and can be nonzero. 523 * (3) cancellation, a type of error with status -ECONNRESET that 524 * is initiated by usb_sg_cancel(). 525 * 526 * When this function returns, all memory allocated through usb_sg_init() or 527 * this call will have been freed. The request block parameter may still be 528 * passed to usb_sg_cancel(), or it may be freed. It could also be 529 * reinitialized and then reused. 530 * 531 * Data Transfer Rates: 532 * 533 * Bulk transfers are valid for full or high speed endpoints. 534 * The best full speed data rate is 19 packets of 64 bytes each 535 * per frame, or 1216 bytes per millisecond. 536 * The best high speed data rate is 13 packets of 512 bytes each 537 * per microframe, or 52 KBytes per millisecond. 538 * 539 * The reason to use interrupt transfers through this API would most likely 540 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond 541 * could be transferred. That capability is less useful for low or full 542 * speed interrupt endpoints, which allow at most one packet per millisecond, 543 * of at most 8 or 64 bytes (respectively). 544 * 545 * It is not necessary to call this function to reserve bandwidth for devices 546 * under an xHCI host controller, as the bandwidth is reserved when the 547 * configuration or interface alt setting is selected. 548 */ 549 void usb_sg_wait(struct usb_sg_request *io) 550 { 551 int i; 552 int entries = io->entries; 553 554 /* queue the urbs. */ 555 spin_lock_irq(&io->lock); 556 i = 0; 557 while (i < entries && !io->status) { 558 int retval; 559 560 io->urbs[i]->dev = io->dev; 561 retval = usb_submit_urb(io->urbs [i], GFP_ATOMIC); 562 563 /* after we submit, let completions or cancelations fire; 564 * we handshake using io->status. 565 */ 566 spin_unlock_irq(&io->lock); 567 switch (retval) { 568 /* maybe we retrying will recover */ 569 case -ENXIO: /* hc didn't queue this one */ 570 case -EAGAIN: 571 case -ENOMEM: 572 io->urbs[i]->dev = NULL; 573 retval = 0; 574 yield(); 575 break; 576 577 /* no error? continue immediately. 578 * 579 * NOTE: to work better with UHCI (4K I/O buffer may 580 * need 3K of TDs) it may be good to limit how many 581 * URBs are queued at once; N milliseconds? 582 */ 583 case 0: 584 ++i; 585 cpu_relax(); 586 break; 587 588 /* fail any uncompleted urbs */ 589 default: 590 io->urbs[i]->dev = NULL; 591 io->urbs[i]->status = retval; 592 dev_dbg(&io->dev->dev, "%s, submit --> %d\n", 593 __func__, retval); 594 usb_sg_cancel(io); 595 } 596 spin_lock_irq(&io->lock); 597 if (retval && (io->status == 0 || io->status == -ECONNRESET)) 598 io->status = retval; 599 } 600 io->count -= entries - i; 601 if (io->count == 0) 602 complete(&io->complete); 603 spin_unlock_irq(&io->lock); 604 605 /* OK, yes, this could be packaged as non-blocking. 606 * So could the submit loop above ... but it's easier to 607 * solve neither problem than to solve both! 608 */ 609 wait_for_completion(&io->complete); 610 611 sg_clean(io); 612 } 613 EXPORT_SYMBOL_GPL(usb_sg_wait); 614 615 /** 616 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait() 617 * @io: request block, initialized with usb_sg_init() 618 * 619 * This stops a request after it has been started by usb_sg_wait(). 620 * It can also prevents one initialized by usb_sg_init() from starting, 621 * so that call just frees resources allocated to the request. 622 */ 623 void usb_sg_cancel(struct usb_sg_request *io) 624 { 625 unsigned long flags; 626 627 spin_lock_irqsave(&io->lock, flags); 628 629 /* shut everything down, if it didn't already */ 630 if (!io->status) { 631 int i; 632 633 io->status = -ECONNRESET; 634 spin_unlock(&io->lock); 635 for (i = 0; i < io->entries; i++) { 636 int retval; 637 638 if (!io->urbs [i]->dev) 639 continue; 640 retval = usb_unlink_urb(io->urbs [i]); 641 if (retval != -EINPROGRESS && retval != -EBUSY) 642 dev_warn(&io->dev->dev, "%s, unlink --> %d\n", 643 __func__, retval); 644 } 645 spin_lock(&io->lock); 646 } 647 spin_unlock_irqrestore(&io->lock, flags); 648 } 649 EXPORT_SYMBOL_GPL(usb_sg_cancel); 650 651 /*-------------------------------------------------------------------*/ 652 653 /** 654 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request 655 * @dev: the device whose descriptor is being retrieved 656 * @type: the descriptor type (USB_DT_*) 657 * @index: the number of the descriptor 658 * @buf: where to put the descriptor 659 * @size: how big is "buf"? 660 * Context: !in_interrupt () 661 * 662 * Gets a USB descriptor. Convenience functions exist to simplify 663 * getting some types of descriptors. Use 664 * usb_get_string() or usb_string() for USB_DT_STRING. 665 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG) 666 * are part of the device structure. 667 * In addition to a number of USB-standard descriptors, some 668 * devices also use class-specific or vendor-specific descriptors. 669 * 670 * This call is synchronous, and may not be used in an interrupt context. 671 * 672 * Returns the number of bytes received on success, or else the status code 673 * returned by the underlying usb_control_msg() call. 674 */ 675 int usb_get_descriptor(struct usb_device *dev, unsigned char type, 676 unsigned char index, void *buf, int size) 677 { 678 int i; 679 int result; 680 681 memset(buf, 0, size); /* Make sure we parse really received data */ 682 683 for (i = 0; i < 3; ++i) { 684 /* retry on length 0 or error; some devices are flakey */ 685 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 686 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 687 (type << 8) + index, 0, buf, size, 688 USB_CTRL_GET_TIMEOUT); 689 if (result <= 0 && result != -ETIMEDOUT) 690 continue; 691 if (result > 1 && ((u8 *)buf)[1] != type) { 692 result = -ENODATA; 693 continue; 694 } 695 break; 696 } 697 return result; 698 } 699 EXPORT_SYMBOL_GPL(usb_get_descriptor); 700 701 /** 702 * usb_get_string - gets a string descriptor 703 * @dev: the device whose string descriptor is being retrieved 704 * @langid: code for language chosen (from string descriptor zero) 705 * @index: the number of the descriptor 706 * @buf: where to put the string 707 * @size: how big is "buf"? 708 * Context: !in_interrupt () 709 * 710 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character, 711 * in little-endian byte order). 712 * The usb_string() function will often be a convenient way to turn 713 * these strings into kernel-printable form. 714 * 715 * Strings may be referenced in device, configuration, interface, or other 716 * descriptors, and could also be used in vendor-specific ways. 717 * 718 * This call is synchronous, and may not be used in an interrupt context. 719 * 720 * Returns the number of bytes received on success, or else the status code 721 * returned by the underlying usb_control_msg() call. 722 */ 723 static int usb_get_string(struct usb_device *dev, unsigned short langid, 724 unsigned char index, void *buf, int size) 725 { 726 int i; 727 int result; 728 729 for (i = 0; i < 3; ++i) { 730 /* retry on length 0 or stall; some devices are flakey */ 731 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 732 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 733 (USB_DT_STRING << 8) + index, langid, buf, size, 734 USB_CTRL_GET_TIMEOUT); 735 if (result == 0 || result == -EPIPE) 736 continue; 737 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) { 738 result = -ENODATA; 739 continue; 740 } 741 break; 742 } 743 return result; 744 } 745 746 static void usb_try_string_workarounds(unsigned char *buf, int *length) 747 { 748 int newlength, oldlength = *length; 749 750 for (newlength = 2; newlength + 1 < oldlength; newlength += 2) 751 if (!isprint(buf[newlength]) || buf[newlength + 1]) 752 break; 753 754 if (newlength > 2) { 755 buf[0] = newlength; 756 *length = newlength; 757 } 758 } 759 760 static int usb_string_sub(struct usb_device *dev, unsigned int langid, 761 unsigned int index, unsigned char *buf) 762 { 763 int rc; 764 765 /* Try to read the string descriptor by asking for the maximum 766 * possible number of bytes */ 767 if (dev->quirks & USB_QUIRK_STRING_FETCH_255) 768 rc = -EIO; 769 else 770 rc = usb_get_string(dev, langid, index, buf, 255); 771 772 /* If that failed try to read the descriptor length, then 773 * ask for just that many bytes */ 774 if (rc < 2) { 775 rc = usb_get_string(dev, langid, index, buf, 2); 776 if (rc == 2) 777 rc = usb_get_string(dev, langid, index, buf, buf[0]); 778 } 779 780 if (rc >= 2) { 781 if (!buf[0] && !buf[1]) 782 usb_try_string_workarounds(buf, &rc); 783 784 /* There might be extra junk at the end of the descriptor */ 785 if (buf[0] < rc) 786 rc = buf[0]; 787 788 rc = rc - (rc & 1); /* force a multiple of two */ 789 } 790 791 if (rc < 2) 792 rc = (rc < 0 ? rc : -EINVAL); 793 794 return rc; 795 } 796 797 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf) 798 { 799 int err; 800 801 if (dev->have_langid) 802 return 0; 803 804 if (dev->string_langid < 0) 805 return -EPIPE; 806 807 err = usb_string_sub(dev, 0, 0, tbuf); 808 809 /* If the string was reported but is malformed, default to english 810 * (0x0409) */ 811 if (err == -ENODATA || (err > 0 && err < 4)) { 812 dev->string_langid = 0x0409; 813 dev->have_langid = 1; 814 dev_err(&dev->dev, 815 "string descriptor 0 malformed (err = %d), " 816 "defaulting to 0x%04x\n", 817 err, dev->string_langid); 818 return 0; 819 } 820 821 /* In case of all other errors, we assume the device is not able to 822 * deal with strings at all. Set string_langid to -1 in order to 823 * prevent any string to be retrieved from the device */ 824 if (err < 0) { 825 dev_err(&dev->dev, "string descriptor 0 read error: %d\n", 826 err); 827 dev->string_langid = -1; 828 return -EPIPE; 829 } 830 831 /* always use the first langid listed */ 832 dev->string_langid = tbuf[2] | (tbuf[3] << 8); 833 dev->have_langid = 1; 834 dev_dbg(&dev->dev, "default language 0x%04x\n", 835 dev->string_langid); 836 return 0; 837 } 838 839 /** 840 * usb_string - returns UTF-8 version of a string descriptor 841 * @dev: the device whose string descriptor is being retrieved 842 * @index: the number of the descriptor 843 * @buf: where to put the string 844 * @size: how big is "buf"? 845 * Context: !in_interrupt () 846 * 847 * This converts the UTF-16LE encoded strings returned by devices, from 848 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones 849 * that are more usable in most kernel contexts. Note that this function 850 * chooses strings in the first language supported by the device. 851 * 852 * This call is synchronous, and may not be used in an interrupt context. 853 * 854 * Returns length of the string (>= 0) or usb_control_msg status (< 0). 855 */ 856 int usb_string(struct usb_device *dev, int index, char *buf, size_t size) 857 { 858 unsigned char *tbuf; 859 int err; 860 861 if (dev->state == USB_STATE_SUSPENDED) 862 return -EHOSTUNREACH; 863 if (size <= 0 || !buf || !index) 864 return -EINVAL; 865 buf[0] = 0; 866 tbuf = kmalloc(256, GFP_NOIO); 867 if (!tbuf) 868 return -ENOMEM; 869 870 err = usb_get_langid(dev, tbuf); 871 if (err < 0) 872 goto errout; 873 874 err = usb_string_sub(dev, dev->string_langid, index, tbuf); 875 if (err < 0) 876 goto errout; 877 878 size--; /* leave room for trailing NULL char in output buffer */ 879 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2, 880 UTF16_LITTLE_ENDIAN, buf, size); 881 buf[err] = 0; 882 883 if (tbuf[1] != USB_DT_STRING) 884 dev_dbg(&dev->dev, 885 "wrong descriptor type %02x for string %d (\"%s\")\n", 886 tbuf[1], index, buf); 887 888 errout: 889 kfree(tbuf); 890 return err; 891 } 892 EXPORT_SYMBOL_GPL(usb_string); 893 894 /* one UTF-8-encoded 16-bit character has at most three bytes */ 895 #define MAX_USB_STRING_SIZE (127 * 3 + 1) 896 897 /** 898 * usb_cache_string - read a string descriptor and cache it for later use 899 * @udev: the device whose string descriptor is being read 900 * @index: the descriptor index 901 * 902 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string, 903 * or NULL if the index is 0 or the string could not be read. 904 */ 905 char *usb_cache_string(struct usb_device *udev, int index) 906 { 907 char *buf; 908 char *smallbuf = NULL; 909 int len; 910 911 if (index <= 0) 912 return NULL; 913 914 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_KERNEL); 915 if (buf) { 916 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE); 917 if (len > 0) { 918 smallbuf = kmalloc(++len, GFP_KERNEL); 919 if (!smallbuf) 920 return buf; 921 memcpy(smallbuf, buf, len); 922 } 923 kfree(buf); 924 } 925 return smallbuf; 926 } 927 928 /* 929 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore) 930 * @dev: the device whose device descriptor is being updated 931 * @size: how much of the descriptor to read 932 * Context: !in_interrupt () 933 * 934 * Updates the copy of the device descriptor stored in the device structure, 935 * which dedicates space for this purpose. 936 * 937 * Not exported, only for use by the core. If drivers really want to read 938 * the device descriptor directly, they can call usb_get_descriptor() with 939 * type = USB_DT_DEVICE and index = 0. 940 * 941 * This call is synchronous, and may not be used in an interrupt context. 942 * 943 * Returns the number of bytes received on success, or else the status code 944 * returned by the underlying usb_control_msg() call. 945 */ 946 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size) 947 { 948 struct usb_device_descriptor *desc; 949 int ret; 950 951 if (size > sizeof(*desc)) 952 return -EINVAL; 953 desc = kmalloc(sizeof(*desc), GFP_NOIO); 954 if (!desc) 955 return -ENOMEM; 956 957 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size); 958 if (ret >= 0) 959 memcpy(&dev->descriptor, desc, size); 960 kfree(desc); 961 return ret; 962 } 963 964 /** 965 * usb_get_status - issues a GET_STATUS call 966 * @dev: the device whose status is being checked 967 * @type: USB_RECIP_*; for device, interface, or endpoint 968 * @target: zero (for device), else interface or endpoint number 969 * @data: pointer to two bytes of bitmap data 970 * Context: !in_interrupt () 971 * 972 * Returns device, interface, or endpoint status. Normally only of 973 * interest to see if the device is self powered, or has enabled the 974 * remote wakeup facility; or whether a bulk or interrupt endpoint 975 * is halted ("stalled"). 976 * 977 * Bits in these status bitmaps are set using the SET_FEATURE request, 978 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt() 979 * function should be used to clear halt ("stall") status. 980 * 981 * This call is synchronous, and may not be used in an interrupt context. 982 * 983 * Returns the number of bytes received on success, or else the status code 984 * returned by the underlying usb_control_msg() call. 985 */ 986 int usb_get_status(struct usb_device *dev, int type, int target, void *data) 987 { 988 int ret; 989 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL); 990 991 if (!status) 992 return -ENOMEM; 993 994 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 995 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status, 996 sizeof(*status), USB_CTRL_GET_TIMEOUT); 997 998 *(u16 *)data = *status; 999 kfree(status); 1000 return ret; 1001 } 1002 EXPORT_SYMBOL_GPL(usb_get_status); 1003 1004 /** 1005 * usb_clear_halt - tells device to clear endpoint halt/stall condition 1006 * @dev: device whose endpoint is halted 1007 * @pipe: endpoint "pipe" being cleared 1008 * Context: !in_interrupt () 1009 * 1010 * This is used to clear halt conditions for bulk and interrupt endpoints, 1011 * as reported by URB completion status. Endpoints that are halted are 1012 * sometimes referred to as being "stalled". Such endpoints are unable 1013 * to transmit or receive data until the halt status is cleared. Any URBs 1014 * queued for such an endpoint should normally be unlinked by the driver 1015 * before clearing the halt condition, as described in sections 5.7.5 1016 * and 5.8.5 of the USB 2.0 spec. 1017 * 1018 * Note that control and isochronous endpoints don't halt, although control 1019 * endpoints report "protocol stall" (for unsupported requests) using the 1020 * same status code used to report a true stall. 1021 * 1022 * This call is synchronous, and may not be used in an interrupt context. 1023 * 1024 * Returns zero on success, or else the status code returned by the 1025 * underlying usb_control_msg() call. 1026 */ 1027 int usb_clear_halt(struct usb_device *dev, int pipe) 1028 { 1029 int result; 1030 int endp = usb_pipeendpoint(pipe); 1031 1032 if (usb_pipein(pipe)) 1033 endp |= USB_DIR_IN; 1034 1035 /* we don't care if it wasn't halted first. in fact some devices 1036 * (like some ibmcam model 1 units) seem to expect hosts to make 1037 * this request for iso endpoints, which can't halt! 1038 */ 1039 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1040 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 1041 USB_ENDPOINT_HALT, endp, NULL, 0, 1042 USB_CTRL_SET_TIMEOUT); 1043 1044 /* don't un-halt or force to DATA0 except on success */ 1045 if (result < 0) 1046 return result; 1047 1048 /* NOTE: seems like Microsoft and Apple don't bother verifying 1049 * the clear "took", so some devices could lock up if you check... 1050 * such as the Hagiwara FlashGate DUAL. So we won't bother. 1051 * 1052 * NOTE: make sure the logic here doesn't diverge much from 1053 * the copy in usb-storage, for as long as we need two copies. 1054 */ 1055 1056 usb_reset_endpoint(dev, endp); 1057 1058 return 0; 1059 } 1060 EXPORT_SYMBOL_GPL(usb_clear_halt); 1061 1062 static int create_intf_ep_devs(struct usb_interface *intf) 1063 { 1064 struct usb_device *udev = interface_to_usbdev(intf); 1065 struct usb_host_interface *alt = intf->cur_altsetting; 1066 int i; 1067 1068 if (intf->ep_devs_created || intf->unregistering) 1069 return 0; 1070 1071 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1072 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev); 1073 intf->ep_devs_created = 1; 1074 return 0; 1075 } 1076 1077 static void remove_intf_ep_devs(struct usb_interface *intf) 1078 { 1079 struct usb_host_interface *alt = intf->cur_altsetting; 1080 int i; 1081 1082 if (!intf->ep_devs_created) 1083 return; 1084 1085 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1086 usb_remove_ep_devs(&alt->endpoint[i]); 1087 intf->ep_devs_created = 0; 1088 } 1089 1090 /** 1091 * usb_disable_endpoint -- Disable an endpoint by address 1092 * @dev: the device whose endpoint is being disabled 1093 * @epaddr: the endpoint's address. Endpoint number for output, 1094 * endpoint number + USB_DIR_IN for input 1095 * @reset_hardware: flag to erase any endpoint state stored in the 1096 * controller hardware 1097 * 1098 * Disables the endpoint for URB submission and nukes all pending URBs. 1099 * If @reset_hardware is set then also deallocates hcd/hardware state 1100 * for the endpoint. 1101 */ 1102 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr, 1103 bool reset_hardware) 1104 { 1105 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1106 struct usb_host_endpoint *ep; 1107 1108 if (!dev) 1109 return; 1110 1111 if (usb_endpoint_out(epaddr)) { 1112 ep = dev->ep_out[epnum]; 1113 if (reset_hardware) 1114 dev->ep_out[epnum] = NULL; 1115 } else { 1116 ep = dev->ep_in[epnum]; 1117 if (reset_hardware) 1118 dev->ep_in[epnum] = NULL; 1119 } 1120 if (ep) { 1121 ep->enabled = 0; 1122 usb_hcd_flush_endpoint(dev, ep); 1123 if (reset_hardware) 1124 usb_hcd_disable_endpoint(dev, ep); 1125 } 1126 } 1127 1128 /** 1129 * usb_reset_endpoint - Reset an endpoint's state. 1130 * @dev: the device whose endpoint is to be reset 1131 * @epaddr: the endpoint's address. Endpoint number for output, 1132 * endpoint number + USB_DIR_IN for input 1133 * 1134 * Resets any host-side endpoint state such as the toggle bit, 1135 * sequence number or current window. 1136 */ 1137 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr) 1138 { 1139 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1140 struct usb_host_endpoint *ep; 1141 1142 if (usb_endpoint_out(epaddr)) 1143 ep = dev->ep_out[epnum]; 1144 else 1145 ep = dev->ep_in[epnum]; 1146 if (ep) 1147 usb_hcd_reset_endpoint(dev, ep); 1148 } 1149 EXPORT_SYMBOL_GPL(usb_reset_endpoint); 1150 1151 1152 /** 1153 * usb_disable_interface -- Disable all endpoints for an interface 1154 * @dev: the device whose interface is being disabled 1155 * @intf: pointer to the interface descriptor 1156 * @reset_hardware: flag to erase any endpoint state stored in the 1157 * controller hardware 1158 * 1159 * Disables all the endpoints for the interface's current altsetting. 1160 */ 1161 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf, 1162 bool reset_hardware) 1163 { 1164 struct usb_host_interface *alt = intf->cur_altsetting; 1165 int i; 1166 1167 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 1168 usb_disable_endpoint(dev, 1169 alt->endpoint[i].desc.bEndpointAddress, 1170 reset_hardware); 1171 } 1172 } 1173 1174 /** 1175 * usb_disable_device - Disable all the endpoints for a USB device 1176 * @dev: the device whose endpoints are being disabled 1177 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. 1178 * 1179 * Disables all the device's endpoints, potentially including endpoint 0. 1180 * Deallocates hcd/hardware state for the endpoints (nuking all or most 1181 * pending urbs) and usbcore state for the interfaces, so that usbcore 1182 * must usb_set_configuration() before any interfaces could be used. 1183 */ 1184 void usb_disable_device(struct usb_device *dev, int skip_ep0) 1185 { 1186 int i; 1187 1188 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__, 1189 skip_ep0 ? "non-ep0" : "all"); 1190 for (i = skip_ep0; i < 16; ++i) { 1191 usb_disable_endpoint(dev, i, true); 1192 usb_disable_endpoint(dev, i + USB_DIR_IN, true); 1193 } 1194 1195 /* getting rid of interfaces will disconnect 1196 * any drivers bound to them (a key side effect) 1197 */ 1198 if (dev->actconfig) { 1199 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1200 struct usb_interface *interface; 1201 1202 /* remove this interface if it has been registered */ 1203 interface = dev->actconfig->interface[i]; 1204 if (!device_is_registered(&interface->dev)) 1205 continue; 1206 dev_dbg(&dev->dev, "unregistering interface %s\n", 1207 dev_name(&interface->dev)); 1208 interface->unregistering = 1; 1209 remove_intf_ep_devs(interface); 1210 device_del(&interface->dev); 1211 } 1212 1213 /* Now that the interfaces are unbound, nobody should 1214 * try to access them. 1215 */ 1216 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1217 put_device(&dev->actconfig->interface[i]->dev); 1218 dev->actconfig->interface[i] = NULL; 1219 } 1220 dev->actconfig = NULL; 1221 if (dev->state == USB_STATE_CONFIGURED) 1222 usb_set_device_state(dev, USB_STATE_ADDRESS); 1223 } 1224 } 1225 1226 /** 1227 * usb_enable_endpoint - Enable an endpoint for USB communications 1228 * @dev: the device whose interface is being enabled 1229 * @ep: the endpoint 1230 * @reset_ep: flag to reset the endpoint state 1231 * 1232 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers. 1233 * For control endpoints, both the input and output sides are handled. 1234 */ 1235 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep, 1236 bool reset_ep) 1237 { 1238 int epnum = usb_endpoint_num(&ep->desc); 1239 int is_out = usb_endpoint_dir_out(&ep->desc); 1240 int is_control = usb_endpoint_xfer_control(&ep->desc); 1241 1242 if (reset_ep) 1243 usb_hcd_reset_endpoint(dev, ep); 1244 if (is_out || is_control) 1245 dev->ep_out[epnum] = ep; 1246 if (!is_out || is_control) 1247 dev->ep_in[epnum] = ep; 1248 ep->enabled = 1; 1249 } 1250 1251 /** 1252 * usb_enable_interface - Enable all the endpoints for an interface 1253 * @dev: the device whose interface is being enabled 1254 * @intf: pointer to the interface descriptor 1255 * @reset_eps: flag to reset the endpoints' state 1256 * 1257 * Enables all the endpoints for the interface's current altsetting. 1258 */ 1259 void usb_enable_interface(struct usb_device *dev, 1260 struct usb_interface *intf, bool reset_eps) 1261 { 1262 struct usb_host_interface *alt = intf->cur_altsetting; 1263 int i; 1264 1265 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1266 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps); 1267 } 1268 1269 /** 1270 * usb_set_interface - Makes a particular alternate setting be current 1271 * @dev: the device whose interface is being updated 1272 * @interface: the interface being updated 1273 * @alternate: the setting being chosen. 1274 * Context: !in_interrupt () 1275 * 1276 * This is used to enable data transfers on interfaces that may not 1277 * be enabled by default. Not all devices support such configurability. 1278 * Only the driver bound to an interface may change its setting. 1279 * 1280 * Within any given configuration, each interface may have several 1281 * alternative settings. These are often used to control levels of 1282 * bandwidth consumption. For example, the default setting for a high 1283 * speed interrupt endpoint may not send more than 64 bytes per microframe, 1284 * while interrupt transfers of up to 3KBytes per microframe are legal. 1285 * Also, isochronous endpoints may never be part of an 1286 * interface's default setting. To access such bandwidth, alternate 1287 * interface settings must be made current. 1288 * 1289 * Note that in the Linux USB subsystem, bandwidth associated with 1290 * an endpoint in a given alternate setting is not reserved until an URB 1291 * is submitted that needs that bandwidth. Some other operating systems 1292 * allocate bandwidth early, when a configuration is chosen. 1293 * 1294 * This call is synchronous, and may not be used in an interrupt context. 1295 * Also, drivers must not change altsettings while urbs are scheduled for 1296 * endpoints in that interface; all such urbs must first be completed 1297 * (perhaps forced by unlinking). 1298 * 1299 * Returns zero on success, or else the status code returned by the 1300 * underlying usb_control_msg() call. 1301 */ 1302 int usb_set_interface(struct usb_device *dev, int interface, int alternate) 1303 { 1304 struct usb_interface *iface; 1305 struct usb_host_interface *alt; 1306 int ret; 1307 int manual = 0; 1308 unsigned int epaddr; 1309 unsigned int pipe; 1310 1311 if (dev->state == USB_STATE_SUSPENDED) 1312 return -EHOSTUNREACH; 1313 1314 iface = usb_ifnum_to_if(dev, interface); 1315 if (!iface) { 1316 dev_dbg(&dev->dev, "selecting invalid interface %d\n", 1317 interface); 1318 return -EINVAL; 1319 } 1320 1321 alt = usb_altnum_to_altsetting(iface, alternate); 1322 if (!alt) { 1323 dev_warn(&dev->dev, "selecting invalid altsetting %d", 1324 alternate); 1325 return -EINVAL; 1326 } 1327 1328 if (dev->quirks & USB_QUIRK_NO_SET_INTF) 1329 ret = -EPIPE; 1330 else 1331 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1332 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE, 1333 alternate, interface, NULL, 0, 5000); 1334 1335 /* 9.4.10 says devices don't need this and are free to STALL the 1336 * request if the interface only has one alternate setting. 1337 */ 1338 if (ret == -EPIPE && iface->num_altsetting == 1) { 1339 dev_dbg(&dev->dev, 1340 "manual set_interface for iface %d, alt %d\n", 1341 interface, alternate); 1342 manual = 1; 1343 } else if (ret < 0) 1344 return ret; 1345 1346 /* FIXME drivers shouldn't need to replicate/bugfix the logic here 1347 * when they implement async or easily-killable versions of this or 1348 * other "should-be-internal" functions (like clear_halt). 1349 * should hcd+usbcore postprocess control requests? 1350 */ 1351 1352 /* prevent submissions using previous endpoint settings */ 1353 if (iface->cur_altsetting != alt) { 1354 remove_intf_ep_devs(iface); 1355 usb_remove_sysfs_intf_files(iface); 1356 } 1357 usb_disable_interface(dev, iface, true); 1358 1359 iface->cur_altsetting = alt; 1360 1361 /* If the interface only has one altsetting and the device didn't 1362 * accept the request, we attempt to carry out the equivalent action 1363 * by manually clearing the HALT feature for each endpoint in the 1364 * new altsetting. 1365 */ 1366 if (manual) { 1367 int i; 1368 1369 for (i = 0; i < alt->desc.bNumEndpoints; i++) { 1370 epaddr = alt->endpoint[i].desc.bEndpointAddress; 1371 pipe = __create_pipe(dev, 1372 USB_ENDPOINT_NUMBER_MASK & epaddr) | 1373 (usb_endpoint_out(epaddr) ? 1374 USB_DIR_OUT : USB_DIR_IN); 1375 1376 usb_clear_halt(dev, pipe); 1377 } 1378 } 1379 1380 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting 1381 * 1382 * Note: 1383 * Despite EP0 is always present in all interfaces/AS, the list of 1384 * endpoints from the descriptor does not contain EP0. Due to its 1385 * omnipresence one might expect EP0 being considered "affected" by 1386 * any SetInterface request and hence assume toggles need to be reset. 1387 * However, EP0 toggles are re-synced for every individual transfer 1388 * during the SETUP stage - hence EP0 toggles are "don't care" here. 1389 * (Likewise, EP0 never "halts" on well designed devices.) 1390 */ 1391 usb_enable_interface(dev, iface, true); 1392 if (device_is_registered(&iface->dev)) { 1393 usb_create_sysfs_intf_files(iface); 1394 create_intf_ep_devs(iface); 1395 } 1396 return 0; 1397 } 1398 EXPORT_SYMBOL_GPL(usb_set_interface); 1399 1400 /** 1401 * usb_reset_configuration - lightweight device reset 1402 * @dev: the device whose configuration is being reset 1403 * 1404 * This issues a standard SET_CONFIGURATION request to the device using 1405 * the current configuration. The effect is to reset most USB-related 1406 * state in the device, including interface altsettings (reset to zero), 1407 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt 1408 * endpoints). Other usbcore state is unchanged, including bindings of 1409 * usb device drivers to interfaces. 1410 * 1411 * Because this affects multiple interfaces, avoid using this with composite 1412 * (multi-interface) devices. Instead, the driver for each interface may 1413 * use usb_set_interface() on the interfaces it claims. Be careful though; 1414 * some devices don't support the SET_INTERFACE request, and others won't 1415 * reset all the interface state (notably endpoint state). Resetting the whole 1416 * configuration would affect other drivers' interfaces. 1417 * 1418 * The caller must own the device lock. 1419 * 1420 * Returns zero on success, else a negative error code. 1421 */ 1422 int usb_reset_configuration(struct usb_device *dev) 1423 { 1424 int i, retval; 1425 struct usb_host_config *config; 1426 1427 if (dev->state == USB_STATE_SUSPENDED) 1428 return -EHOSTUNREACH; 1429 1430 /* caller must have locked the device and must own 1431 * the usb bus readlock (so driver bindings are stable); 1432 * calls during probe() are fine 1433 */ 1434 1435 for (i = 1; i < 16; ++i) { 1436 usb_disable_endpoint(dev, i, true); 1437 usb_disable_endpoint(dev, i + USB_DIR_IN, true); 1438 } 1439 1440 config = dev->actconfig; 1441 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1442 USB_REQ_SET_CONFIGURATION, 0, 1443 config->desc.bConfigurationValue, 0, 1444 NULL, 0, USB_CTRL_SET_TIMEOUT); 1445 if (retval < 0) 1446 return retval; 1447 1448 /* re-init hc/hcd interface/endpoint state */ 1449 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1450 struct usb_interface *intf = config->interface[i]; 1451 struct usb_host_interface *alt; 1452 1453 alt = usb_altnum_to_altsetting(intf, 0); 1454 1455 /* No altsetting 0? We'll assume the first altsetting. 1456 * We could use a GetInterface call, but if a device is 1457 * so non-compliant that it doesn't have altsetting 0 1458 * then I wouldn't trust its reply anyway. 1459 */ 1460 if (!alt) 1461 alt = &intf->altsetting[0]; 1462 1463 if (alt != intf->cur_altsetting) { 1464 remove_intf_ep_devs(intf); 1465 usb_remove_sysfs_intf_files(intf); 1466 } 1467 intf->cur_altsetting = alt; 1468 usb_enable_interface(dev, intf, true); 1469 if (device_is_registered(&intf->dev)) { 1470 usb_create_sysfs_intf_files(intf); 1471 create_intf_ep_devs(intf); 1472 } 1473 } 1474 return 0; 1475 } 1476 EXPORT_SYMBOL_GPL(usb_reset_configuration); 1477 1478 static void usb_release_interface(struct device *dev) 1479 { 1480 struct usb_interface *intf = to_usb_interface(dev); 1481 struct usb_interface_cache *intfc = 1482 altsetting_to_usb_interface_cache(intf->altsetting); 1483 1484 kref_put(&intfc->ref, usb_release_interface_cache); 1485 kfree(intf); 1486 } 1487 1488 #ifdef CONFIG_HOTPLUG 1489 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env) 1490 { 1491 struct usb_device *usb_dev; 1492 struct usb_interface *intf; 1493 struct usb_host_interface *alt; 1494 1495 intf = to_usb_interface(dev); 1496 usb_dev = interface_to_usbdev(intf); 1497 alt = intf->cur_altsetting; 1498 1499 if (add_uevent_var(env, "INTERFACE=%d/%d/%d", 1500 alt->desc.bInterfaceClass, 1501 alt->desc.bInterfaceSubClass, 1502 alt->desc.bInterfaceProtocol)) 1503 return -ENOMEM; 1504 1505 if (add_uevent_var(env, 1506 "MODALIAS=usb:" 1507 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X", 1508 le16_to_cpu(usb_dev->descriptor.idVendor), 1509 le16_to_cpu(usb_dev->descriptor.idProduct), 1510 le16_to_cpu(usb_dev->descriptor.bcdDevice), 1511 usb_dev->descriptor.bDeviceClass, 1512 usb_dev->descriptor.bDeviceSubClass, 1513 usb_dev->descriptor.bDeviceProtocol, 1514 alt->desc.bInterfaceClass, 1515 alt->desc.bInterfaceSubClass, 1516 alt->desc.bInterfaceProtocol)) 1517 return -ENOMEM; 1518 1519 return 0; 1520 } 1521 1522 #else 1523 1524 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env) 1525 { 1526 return -ENODEV; 1527 } 1528 #endif /* CONFIG_HOTPLUG */ 1529 1530 struct device_type usb_if_device_type = { 1531 .name = "usb_interface", 1532 .release = usb_release_interface, 1533 .uevent = usb_if_uevent, 1534 }; 1535 1536 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev, 1537 struct usb_host_config *config, 1538 u8 inum) 1539 { 1540 struct usb_interface_assoc_descriptor *retval = NULL; 1541 struct usb_interface_assoc_descriptor *intf_assoc; 1542 int first_intf; 1543 int last_intf; 1544 int i; 1545 1546 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) { 1547 intf_assoc = config->intf_assoc[i]; 1548 if (intf_assoc->bInterfaceCount == 0) 1549 continue; 1550 1551 first_intf = intf_assoc->bFirstInterface; 1552 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1); 1553 if (inum >= first_intf && inum <= last_intf) { 1554 if (!retval) 1555 retval = intf_assoc; 1556 else 1557 dev_err(&dev->dev, "Interface #%d referenced" 1558 " by multiple IADs\n", inum); 1559 } 1560 } 1561 1562 return retval; 1563 } 1564 1565 1566 /* 1567 * Internal function to queue a device reset 1568 * 1569 * This is initialized into the workstruct in 'struct 1570 * usb_device->reset_ws' that is launched by 1571 * message.c:usb_set_configuration() when initializing each 'struct 1572 * usb_interface'. 1573 * 1574 * It is safe to get the USB device without reference counts because 1575 * the life cycle of @iface is bound to the life cycle of @udev. Then, 1576 * this function will be ran only if @iface is alive (and before 1577 * freeing it any scheduled instances of it will have been cancelled). 1578 * 1579 * We need to set a flag (usb_dev->reset_running) because when we call 1580 * the reset, the interfaces might be unbound. The current interface 1581 * cannot try to remove the queued work as it would cause a deadlock 1582 * (you cannot remove your work from within your executing 1583 * workqueue). This flag lets it know, so that 1584 * usb_cancel_queued_reset() doesn't try to do it. 1585 * 1586 * See usb_queue_reset_device() for more details 1587 */ 1588 void __usb_queue_reset_device(struct work_struct *ws) 1589 { 1590 int rc; 1591 struct usb_interface *iface = 1592 container_of(ws, struct usb_interface, reset_ws); 1593 struct usb_device *udev = interface_to_usbdev(iface); 1594 1595 rc = usb_lock_device_for_reset(udev, iface); 1596 if (rc >= 0) { 1597 iface->reset_running = 1; 1598 usb_reset_device(udev); 1599 iface->reset_running = 0; 1600 usb_unlock_device(udev); 1601 } 1602 } 1603 1604 1605 /* 1606 * usb_set_configuration - Makes a particular device setting be current 1607 * @dev: the device whose configuration is being updated 1608 * @configuration: the configuration being chosen. 1609 * Context: !in_interrupt(), caller owns the device lock 1610 * 1611 * This is used to enable non-default device modes. Not all devices 1612 * use this kind of configurability; many devices only have one 1613 * configuration. 1614 * 1615 * @configuration is the value of the configuration to be installed. 1616 * According to the USB spec (e.g. section 9.1.1.5), configuration values 1617 * must be non-zero; a value of zero indicates that the device in 1618 * unconfigured. However some devices erroneously use 0 as one of their 1619 * configuration values. To help manage such devices, this routine will 1620 * accept @configuration = -1 as indicating the device should be put in 1621 * an unconfigured state. 1622 * 1623 * USB device configurations may affect Linux interoperability, 1624 * power consumption and the functionality available. For example, 1625 * the default configuration is limited to using 100mA of bus power, 1626 * so that when certain device functionality requires more power, 1627 * and the device is bus powered, that functionality should be in some 1628 * non-default device configuration. Other device modes may also be 1629 * reflected as configuration options, such as whether two ISDN 1630 * channels are available independently; and choosing between open 1631 * standard device protocols (like CDC) or proprietary ones. 1632 * 1633 * Note that a non-authorized device (dev->authorized == 0) will only 1634 * be put in unconfigured mode. 1635 * 1636 * Note that USB has an additional level of device configurability, 1637 * associated with interfaces. That configurability is accessed using 1638 * usb_set_interface(). 1639 * 1640 * This call is synchronous. The calling context must be able to sleep, 1641 * must own the device lock, and must not hold the driver model's USB 1642 * bus mutex; usb interface driver probe() methods cannot use this routine. 1643 * 1644 * Returns zero on success, or else the status code returned by the 1645 * underlying call that failed. On successful completion, each interface 1646 * in the original device configuration has been destroyed, and each one 1647 * in the new configuration has been probed by all relevant usb device 1648 * drivers currently known to the kernel. 1649 */ 1650 int usb_set_configuration(struct usb_device *dev, int configuration) 1651 { 1652 int i, ret; 1653 struct usb_host_config *cp = NULL; 1654 struct usb_interface **new_interfaces = NULL; 1655 int n, nintf; 1656 1657 if (dev->authorized == 0 || configuration == -1) 1658 configuration = 0; 1659 else { 1660 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) { 1661 if (dev->config[i].desc.bConfigurationValue == 1662 configuration) { 1663 cp = &dev->config[i]; 1664 break; 1665 } 1666 } 1667 } 1668 if ((!cp && configuration != 0)) 1669 return -EINVAL; 1670 1671 /* The USB spec says configuration 0 means unconfigured. 1672 * But if a device includes a configuration numbered 0, 1673 * we will accept it as a correctly configured state. 1674 * Use -1 if you really want to unconfigure the device. 1675 */ 1676 if (cp && configuration == 0) 1677 dev_warn(&dev->dev, "config 0 descriptor??\n"); 1678 1679 /* Allocate memory for new interfaces before doing anything else, 1680 * so that if we run out then nothing will have changed. */ 1681 n = nintf = 0; 1682 if (cp) { 1683 nintf = cp->desc.bNumInterfaces; 1684 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces), 1685 GFP_KERNEL); 1686 if (!new_interfaces) { 1687 dev_err(&dev->dev, "Out of memory\n"); 1688 return -ENOMEM; 1689 } 1690 1691 for (; n < nintf; ++n) { 1692 new_interfaces[n] = kzalloc( 1693 sizeof(struct usb_interface), 1694 GFP_KERNEL); 1695 if (!new_interfaces[n]) { 1696 dev_err(&dev->dev, "Out of memory\n"); 1697 ret = -ENOMEM; 1698 free_interfaces: 1699 while (--n >= 0) 1700 kfree(new_interfaces[n]); 1701 kfree(new_interfaces); 1702 return ret; 1703 } 1704 } 1705 1706 i = dev->bus_mA - cp->desc.bMaxPower * 2; 1707 if (i < 0) 1708 dev_warn(&dev->dev, "new config #%d exceeds power " 1709 "limit by %dmA\n", 1710 configuration, -i); 1711 } 1712 1713 /* Wake up the device so we can send it the Set-Config request */ 1714 ret = usb_autoresume_device(dev); 1715 if (ret) 1716 goto free_interfaces; 1717 1718 /* Make sure we have bandwidth (and available HCD resources) for this 1719 * configuration. Remove endpoints from the schedule if we're dropping 1720 * this configuration to set configuration 0. After this point, the 1721 * host controller will not allow submissions to dropped endpoints. If 1722 * this call fails, the device state is unchanged. 1723 */ 1724 if (cp) 1725 ret = usb_hcd_check_bandwidth(dev, cp, NULL); 1726 else 1727 ret = usb_hcd_check_bandwidth(dev, NULL, NULL); 1728 if (ret < 0) { 1729 usb_autosuspend_device(dev); 1730 goto free_interfaces; 1731 } 1732 1733 /* if it's already configured, clear out old state first. 1734 * getting rid of old interfaces means unbinding their drivers. 1735 */ 1736 if (dev->state != USB_STATE_ADDRESS) 1737 usb_disable_device(dev, 1); /* Skip ep0 */ 1738 1739 /* Get rid of pending async Set-Config requests for this device */ 1740 cancel_async_set_config(dev); 1741 1742 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1743 USB_REQ_SET_CONFIGURATION, 0, configuration, 0, 1744 NULL, 0, USB_CTRL_SET_TIMEOUT); 1745 if (ret < 0) { 1746 /* All the old state is gone, so what else can we do? 1747 * The device is probably useless now anyway. 1748 */ 1749 cp = NULL; 1750 } 1751 1752 dev->actconfig = cp; 1753 if (!cp) { 1754 usb_set_device_state(dev, USB_STATE_ADDRESS); 1755 usb_hcd_check_bandwidth(dev, NULL, NULL); 1756 usb_autosuspend_device(dev); 1757 goto free_interfaces; 1758 } 1759 usb_set_device_state(dev, USB_STATE_CONFIGURED); 1760 1761 /* Initialize the new interface structures and the 1762 * hc/hcd/usbcore interface/endpoint state. 1763 */ 1764 for (i = 0; i < nintf; ++i) { 1765 struct usb_interface_cache *intfc; 1766 struct usb_interface *intf; 1767 struct usb_host_interface *alt; 1768 1769 cp->interface[i] = intf = new_interfaces[i]; 1770 intfc = cp->intf_cache[i]; 1771 intf->altsetting = intfc->altsetting; 1772 intf->num_altsetting = intfc->num_altsetting; 1773 intf->intf_assoc = find_iad(dev, cp, i); 1774 kref_get(&intfc->ref); 1775 1776 alt = usb_altnum_to_altsetting(intf, 0); 1777 1778 /* No altsetting 0? We'll assume the first altsetting. 1779 * We could use a GetInterface call, but if a device is 1780 * so non-compliant that it doesn't have altsetting 0 1781 * then I wouldn't trust its reply anyway. 1782 */ 1783 if (!alt) 1784 alt = &intf->altsetting[0]; 1785 1786 intf->cur_altsetting = alt; 1787 usb_enable_interface(dev, intf, true); 1788 intf->dev.parent = &dev->dev; 1789 intf->dev.driver = NULL; 1790 intf->dev.bus = &usb_bus_type; 1791 intf->dev.type = &usb_if_device_type; 1792 intf->dev.groups = usb_interface_groups; 1793 intf->dev.dma_mask = dev->dev.dma_mask; 1794 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device); 1795 device_initialize(&intf->dev); 1796 mark_quiesced(intf); 1797 dev_set_name(&intf->dev, "%d-%s:%d.%d", 1798 dev->bus->busnum, dev->devpath, 1799 configuration, alt->desc.bInterfaceNumber); 1800 } 1801 kfree(new_interfaces); 1802 1803 if (cp->string == NULL && 1804 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS)) 1805 cp->string = usb_cache_string(dev, cp->desc.iConfiguration); 1806 1807 /* Now that all the interfaces are set up, register them 1808 * to trigger binding of drivers to interfaces. probe() 1809 * routines may install different altsettings and may 1810 * claim() any interfaces not yet bound. Many class drivers 1811 * need that: CDC, audio, video, etc. 1812 */ 1813 for (i = 0; i < nintf; ++i) { 1814 struct usb_interface *intf = cp->interface[i]; 1815 1816 dev_dbg(&dev->dev, 1817 "adding %s (config #%d, interface %d)\n", 1818 dev_name(&intf->dev), configuration, 1819 intf->cur_altsetting->desc.bInterfaceNumber); 1820 ret = device_add(&intf->dev); 1821 if (ret != 0) { 1822 dev_err(&dev->dev, "device_add(%s) --> %d\n", 1823 dev_name(&intf->dev), ret); 1824 continue; 1825 } 1826 create_intf_ep_devs(intf); 1827 } 1828 1829 usb_autosuspend_device(dev); 1830 return 0; 1831 } 1832 1833 static LIST_HEAD(set_config_list); 1834 static DEFINE_SPINLOCK(set_config_lock); 1835 1836 struct set_config_request { 1837 struct usb_device *udev; 1838 int config; 1839 struct work_struct work; 1840 struct list_head node; 1841 }; 1842 1843 /* Worker routine for usb_driver_set_configuration() */ 1844 static void driver_set_config_work(struct work_struct *work) 1845 { 1846 struct set_config_request *req = 1847 container_of(work, struct set_config_request, work); 1848 struct usb_device *udev = req->udev; 1849 1850 usb_lock_device(udev); 1851 spin_lock(&set_config_lock); 1852 list_del(&req->node); 1853 spin_unlock(&set_config_lock); 1854 1855 if (req->config >= -1) /* Is req still valid? */ 1856 usb_set_configuration(udev, req->config); 1857 usb_unlock_device(udev); 1858 usb_put_dev(udev); 1859 kfree(req); 1860 } 1861 1862 /* Cancel pending Set-Config requests for a device whose configuration 1863 * was just changed 1864 */ 1865 static void cancel_async_set_config(struct usb_device *udev) 1866 { 1867 struct set_config_request *req; 1868 1869 spin_lock(&set_config_lock); 1870 list_for_each_entry(req, &set_config_list, node) { 1871 if (req->udev == udev) 1872 req->config = -999; /* Mark as cancelled */ 1873 } 1874 spin_unlock(&set_config_lock); 1875 } 1876 1877 /** 1878 * usb_driver_set_configuration - Provide a way for drivers to change device configurations 1879 * @udev: the device whose configuration is being updated 1880 * @config: the configuration being chosen. 1881 * Context: In process context, must be able to sleep 1882 * 1883 * Device interface drivers are not allowed to change device configurations. 1884 * This is because changing configurations will destroy the interface the 1885 * driver is bound to and create new ones; it would be like a floppy-disk 1886 * driver telling the computer to replace the floppy-disk drive with a 1887 * tape drive! 1888 * 1889 * Still, in certain specialized circumstances the need may arise. This 1890 * routine gets around the normal restrictions by using a work thread to 1891 * submit the change-config request. 1892 * 1893 * Returns 0 if the request was succesfully queued, error code otherwise. 1894 * The caller has no way to know whether the queued request will eventually 1895 * succeed. 1896 */ 1897 int usb_driver_set_configuration(struct usb_device *udev, int config) 1898 { 1899 struct set_config_request *req; 1900 1901 req = kmalloc(sizeof(*req), GFP_KERNEL); 1902 if (!req) 1903 return -ENOMEM; 1904 req->udev = udev; 1905 req->config = config; 1906 INIT_WORK(&req->work, driver_set_config_work); 1907 1908 spin_lock(&set_config_lock); 1909 list_add(&req->node, &set_config_list); 1910 spin_unlock(&set_config_lock); 1911 1912 usb_get_dev(udev); 1913 schedule_work(&req->work); 1914 return 0; 1915 } 1916 EXPORT_SYMBOL_GPL(usb_driver_set_configuration); 1917