1 /* 2 * message.c - synchronous message handling 3 * 4 * Released under the GPLv2 only. 5 * SPDX-License-Identifier: GPL-2.0 6 */ 7 8 #include <linux/pci.h> /* for scatterlist macros */ 9 #include <linux/usb.h> 10 #include <linux/module.h> 11 #include <linux/slab.h> 12 #include <linux/mm.h> 13 #include <linux/timer.h> 14 #include <linux/ctype.h> 15 #include <linux/nls.h> 16 #include <linux/device.h> 17 #include <linux/scatterlist.h> 18 #include <linux/usb/cdc.h> 19 #include <linux/usb/quirks.h> 20 #include <linux/usb/hcd.h> /* for usbcore internals */ 21 #include <asm/byteorder.h> 22 23 #include "usb.h" 24 25 static void cancel_async_set_config(struct usb_device *udev); 26 27 struct api_context { 28 struct completion done; 29 int status; 30 }; 31 32 static void usb_api_blocking_completion(struct urb *urb) 33 { 34 struct api_context *ctx = urb->context; 35 36 ctx->status = urb->status; 37 complete(&ctx->done); 38 } 39 40 41 /* 42 * Starts urb and waits for completion or timeout. Note that this call 43 * is NOT interruptible. Many device driver i/o requests should be 44 * interruptible and therefore these drivers should implement their 45 * own interruptible routines. 46 */ 47 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length) 48 { 49 struct api_context ctx; 50 unsigned long expire; 51 int retval; 52 53 init_completion(&ctx.done); 54 urb->context = &ctx; 55 urb->actual_length = 0; 56 retval = usb_submit_urb(urb, GFP_NOIO); 57 if (unlikely(retval)) 58 goto out; 59 60 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT; 61 if (!wait_for_completion_timeout(&ctx.done, expire)) { 62 usb_kill_urb(urb); 63 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status); 64 65 dev_dbg(&urb->dev->dev, 66 "%s timed out on ep%d%s len=%u/%u\n", 67 current->comm, 68 usb_endpoint_num(&urb->ep->desc), 69 usb_urb_dir_in(urb) ? "in" : "out", 70 urb->actual_length, 71 urb->transfer_buffer_length); 72 } else 73 retval = ctx.status; 74 out: 75 if (actual_length) 76 *actual_length = urb->actual_length; 77 78 usb_free_urb(urb); 79 return retval; 80 } 81 82 /*-------------------------------------------------------------------*/ 83 /* returns status (negative) or length (positive) */ 84 static int usb_internal_control_msg(struct usb_device *usb_dev, 85 unsigned int pipe, 86 struct usb_ctrlrequest *cmd, 87 void *data, int len, int timeout) 88 { 89 struct urb *urb; 90 int retv; 91 int length; 92 93 urb = usb_alloc_urb(0, GFP_NOIO); 94 if (!urb) 95 return -ENOMEM; 96 97 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data, 98 len, usb_api_blocking_completion, NULL); 99 100 retv = usb_start_wait_urb(urb, timeout, &length); 101 if (retv < 0) 102 return retv; 103 else 104 return length; 105 } 106 107 /** 108 * usb_control_msg - Builds a control urb, sends it off and waits for completion 109 * @dev: pointer to the usb device to send the message to 110 * @pipe: endpoint "pipe" to send the message to 111 * @request: USB message request value 112 * @requesttype: USB message request type value 113 * @value: USB message value 114 * @index: USB message index value 115 * @data: pointer to the data to send 116 * @size: length in bytes of the data to send 117 * @timeout: time in msecs to wait for the message to complete before timing 118 * out (if 0 the wait is forever) 119 * 120 * Context: !in_interrupt () 121 * 122 * This function sends a simple control message to a specified endpoint and 123 * waits for the message to complete, or timeout. 124 * 125 * Don't use this function from within an interrupt context. If you need 126 * an asynchronous message, or need to send a message from within interrupt 127 * context, use usb_submit_urb(). If a thread in your driver uses this call, 128 * make sure your disconnect() method can wait for it to complete. Since you 129 * don't have a handle on the URB used, you can't cancel the request. 130 * 131 * Return: If successful, the number of bytes transferred. Otherwise, a negative 132 * error number. 133 */ 134 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, 135 __u8 requesttype, __u16 value, __u16 index, void *data, 136 __u16 size, int timeout) 137 { 138 struct usb_ctrlrequest *dr; 139 int ret; 140 141 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO); 142 if (!dr) 143 return -ENOMEM; 144 145 dr->bRequestType = requesttype; 146 dr->bRequest = request; 147 dr->wValue = cpu_to_le16(value); 148 dr->wIndex = cpu_to_le16(index); 149 dr->wLength = cpu_to_le16(size); 150 151 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout); 152 153 kfree(dr); 154 155 return ret; 156 } 157 EXPORT_SYMBOL_GPL(usb_control_msg); 158 159 /** 160 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion 161 * @usb_dev: pointer to the usb device to send the message to 162 * @pipe: endpoint "pipe" to send the message to 163 * @data: pointer to the data to send 164 * @len: length in bytes of the data to send 165 * @actual_length: pointer to a location to put the actual length transferred 166 * in bytes 167 * @timeout: time in msecs to wait for the message to complete before 168 * timing out (if 0 the wait is forever) 169 * 170 * Context: !in_interrupt () 171 * 172 * This function sends a simple interrupt message to a specified endpoint and 173 * waits for the message to complete, or timeout. 174 * 175 * Don't use this function from within an interrupt context. If you need 176 * an asynchronous message, or need to send a message from within interrupt 177 * context, use usb_submit_urb() If a thread in your driver uses this call, 178 * make sure your disconnect() method can wait for it to complete. Since you 179 * don't have a handle on the URB used, you can't cancel the request. 180 * 181 * Return: 182 * If successful, 0. Otherwise a negative error number. The number of actual 183 * bytes transferred will be stored in the @actual_length parameter. 184 */ 185 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 186 void *data, int len, int *actual_length, int timeout) 187 { 188 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout); 189 } 190 EXPORT_SYMBOL_GPL(usb_interrupt_msg); 191 192 /** 193 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion 194 * @usb_dev: pointer to the usb device to send the message to 195 * @pipe: endpoint "pipe" to send the message to 196 * @data: pointer to the data to send 197 * @len: length in bytes of the data to send 198 * @actual_length: pointer to a location to put the actual length transferred 199 * in bytes 200 * @timeout: time in msecs to wait for the message to complete before 201 * timing out (if 0 the wait is forever) 202 * 203 * Context: !in_interrupt () 204 * 205 * This function sends a simple bulk message to a specified endpoint 206 * and waits for the message to complete, or timeout. 207 * 208 * Don't use this function from within an interrupt context. If you need 209 * an asynchronous message, or need to send a message from within interrupt 210 * context, use usb_submit_urb() If a thread in your driver uses this call, 211 * make sure your disconnect() method can wait for it to complete. Since you 212 * don't have a handle on the URB used, you can't cancel the request. 213 * 214 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl, 215 * users are forced to abuse this routine by using it to submit URBs for 216 * interrupt endpoints. We will take the liberty of creating an interrupt URB 217 * (with the default interval) if the target is an interrupt endpoint. 218 * 219 * Return: 220 * If successful, 0. Otherwise a negative error number. The number of actual 221 * bytes transferred will be stored in the @actual_length parameter. 222 * 223 */ 224 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 225 void *data, int len, int *actual_length, int timeout) 226 { 227 struct urb *urb; 228 struct usb_host_endpoint *ep; 229 230 ep = usb_pipe_endpoint(usb_dev, pipe); 231 if (!ep || len < 0) 232 return -EINVAL; 233 234 urb = usb_alloc_urb(0, GFP_KERNEL); 235 if (!urb) 236 return -ENOMEM; 237 238 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 239 USB_ENDPOINT_XFER_INT) { 240 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30); 241 usb_fill_int_urb(urb, usb_dev, pipe, data, len, 242 usb_api_blocking_completion, NULL, 243 ep->desc.bInterval); 244 } else 245 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len, 246 usb_api_blocking_completion, NULL); 247 248 return usb_start_wait_urb(urb, timeout, actual_length); 249 } 250 EXPORT_SYMBOL_GPL(usb_bulk_msg); 251 252 /*-------------------------------------------------------------------*/ 253 254 static void sg_clean(struct usb_sg_request *io) 255 { 256 if (io->urbs) { 257 while (io->entries--) 258 usb_free_urb(io->urbs[io->entries]); 259 kfree(io->urbs); 260 io->urbs = NULL; 261 } 262 io->dev = NULL; 263 } 264 265 static void sg_complete(struct urb *urb) 266 { 267 struct usb_sg_request *io = urb->context; 268 int status = urb->status; 269 270 spin_lock(&io->lock); 271 272 /* In 2.5 we require hcds' endpoint queues not to progress after fault 273 * reports, until the completion callback (this!) returns. That lets 274 * device driver code (like this routine) unlink queued urbs first, 275 * if it needs to, since the HC won't work on them at all. So it's 276 * not possible for page N+1 to overwrite page N, and so on. 277 * 278 * That's only for "hard" faults; "soft" faults (unlinks) sometimes 279 * complete before the HCD can get requests away from hardware, 280 * though never during cleanup after a hard fault. 281 */ 282 if (io->status 283 && (io->status != -ECONNRESET 284 || status != -ECONNRESET) 285 && urb->actual_length) { 286 dev_err(io->dev->bus->controller, 287 "dev %s ep%d%s scatterlist error %d/%d\n", 288 io->dev->devpath, 289 usb_endpoint_num(&urb->ep->desc), 290 usb_urb_dir_in(urb) ? "in" : "out", 291 status, io->status); 292 /* BUG (); */ 293 } 294 295 if (io->status == 0 && status && status != -ECONNRESET) { 296 int i, found, retval; 297 298 io->status = status; 299 300 /* the previous urbs, and this one, completed already. 301 * unlink pending urbs so they won't rx/tx bad data. 302 * careful: unlink can sometimes be synchronous... 303 */ 304 spin_unlock(&io->lock); 305 for (i = 0, found = 0; i < io->entries; i++) { 306 if (!io->urbs[i]) 307 continue; 308 if (found) { 309 usb_block_urb(io->urbs[i]); 310 retval = usb_unlink_urb(io->urbs[i]); 311 if (retval != -EINPROGRESS && 312 retval != -ENODEV && 313 retval != -EBUSY && 314 retval != -EIDRM) 315 dev_err(&io->dev->dev, 316 "%s, unlink --> %d\n", 317 __func__, retval); 318 } else if (urb == io->urbs[i]) 319 found = 1; 320 } 321 spin_lock(&io->lock); 322 } 323 324 /* on the last completion, signal usb_sg_wait() */ 325 io->bytes += urb->actual_length; 326 io->count--; 327 if (!io->count) 328 complete(&io->complete); 329 330 spin_unlock(&io->lock); 331 } 332 333 334 /** 335 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request 336 * @io: request block being initialized. until usb_sg_wait() returns, 337 * treat this as a pointer to an opaque block of memory, 338 * @dev: the usb device that will send or receive the data 339 * @pipe: endpoint "pipe" used to transfer the data 340 * @period: polling rate for interrupt endpoints, in frames or 341 * (for high speed endpoints) microframes; ignored for bulk 342 * @sg: scatterlist entries 343 * @nents: how many entries in the scatterlist 344 * @length: how many bytes to send from the scatterlist, or zero to 345 * send every byte identified in the list. 346 * @mem_flags: SLAB_* flags affecting memory allocations in this call 347 * 348 * This initializes a scatter/gather request, allocating resources such as 349 * I/O mappings and urb memory (except maybe memory used by USB controller 350 * drivers). 351 * 352 * The request must be issued using usb_sg_wait(), which waits for the I/O to 353 * complete (or to be canceled) and then cleans up all resources allocated by 354 * usb_sg_init(). 355 * 356 * The request may be canceled with usb_sg_cancel(), either before or after 357 * usb_sg_wait() is called. 358 * 359 * Return: Zero for success, else a negative errno value. 360 */ 361 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev, 362 unsigned pipe, unsigned period, struct scatterlist *sg, 363 int nents, size_t length, gfp_t mem_flags) 364 { 365 int i; 366 int urb_flags; 367 int use_sg; 368 369 if (!io || !dev || !sg 370 || usb_pipecontrol(pipe) 371 || usb_pipeisoc(pipe) 372 || nents <= 0) 373 return -EINVAL; 374 375 spin_lock_init(&io->lock); 376 io->dev = dev; 377 io->pipe = pipe; 378 379 if (dev->bus->sg_tablesize > 0) { 380 use_sg = true; 381 io->entries = 1; 382 } else { 383 use_sg = false; 384 io->entries = nents; 385 } 386 387 /* initialize all the urbs we'll use */ 388 io->urbs = kmalloc(io->entries * sizeof(*io->urbs), mem_flags); 389 if (!io->urbs) 390 goto nomem; 391 392 urb_flags = URB_NO_INTERRUPT; 393 if (usb_pipein(pipe)) 394 urb_flags |= URB_SHORT_NOT_OK; 395 396 for_each_sg(sg, sg, io->entries, i) { 397 struct urb *urb; 398 unsigned len; 399 400 urb = usb_alloc_urb(0, mem_flags); 401 if (!urb) { 402 io->entries = i; 403 goto nomem; 404 } 405 io->urbs[i] = urb; 406 407 urb->dev = NULL; 408 urb->pipe = pipe; 409 urb->interval = period; 410 urb->transfer_flags = urb_flags; 411 urb->complete = sg_complete; 412 urb->context = io; 413 urb->sg = sg; 414 415 if (use_sg) { 416 /* There is no single transfer buffer */ 417 urb->transfer_buffer = NULL; 418 urb->num_sgs = nents; 419 420 /* A length of zero means transfer the whole sg list */ 421 len = length; 422 if (len == 0) { 423 struct scatterlist *sg2; 424 int j; 425 426 for_each_sg(sg, sg2, nents, j) 427 len += sg2->length; 428 } 429 } else { 430 /* 431 * Some systems can't use DMA; they use PIO instead. 432 * For their sakes, transfer_buffer is set whenever 433 * possible. 434 */ 435 if (!PageHighMem(sg_page(sg))) 436 urb->transfer_buffer = sg_virt(sg); 437 else 438 urb->transfer_buffer = NULL; 439 440 len = sg->length; 441 if (length) { 442 len = min_t(size_t, len, length); 443 length -= len; 444 if (length == 0) 445 io->entries = i + 1; 446 } 447 } 448 urb->transfer_buffer_length = len; 449 } 450 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT; 451 452 /* transaction state */ 453 io->count = io->entries; 454 io->status = 0; 455 io->bytes = 0; 456 init_completion(&io->complete); 457 return 0; 458 459 nomem: 460 sg_clean(io); 461 return -ENOMEM; 462 } 463 EXPORT_SYMBOL_GPL(usb_sg_init); 464 465 /** 466 * usb_sg_wait - synchronously execute scatter/gather request 467 * @io: request block handle, as initialized with usb_sg_init(). 468 * some fields become accessible when this call returns. 469 * Context: !in_interrupt () 470 * 471 * This function blocks until the specified I/O operation completes. It 472 * leverages the grouping of the related I/O requests to get good transfer 473 * rates, by queueing the requests. At higher speeds, such queuing can 474 * significantly improve USB throughput. 475 * 476 * There are three kinds of completion for this function. 477 * 478 * (1) success, where io->status is zero. The number of io->bytes 479 * transferred is as requested. 480 * (2) error, where io->status is a negative errno value. The number 481 * of io->bytes transferred before the error is usually less 482 * than requested, and can be nonzero. 483 * (3) cancellation, a type of error with status -ECONNRESET that 484 * is initiated by usb_sg_cancel(). 485 * 486 * When this function returns, all memory allocated through usb_sg_init() or 487 * this call will have been freed. The request block parameter may still be 488 * passed to usb_sg_cancel(), or it may be freed. It could also be 489 * reinitialized and then reused. 490 * 491 * Data Transfer Rates: 492 * 493 * Bulk transfers are valid for full or high speed endpoints. 494 * The best full speed data rate is 19 packets of 64 bytes each 495 * per frame, or 1216 bytes per millisecond. 496 * The best high speed data rate is 13 packets of 512 bytes each 497 * per microframe, or 52 KBytes per millisecond. 498 * 499 * The reason to use interrupt transfers through this API would most likely 500 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond 501 * could be transferred. That capability is less useful for low or full 502 * speed interrupt endpoints, which allow at most one packet per millisecond, 503 * of at most 8 or 64 bytes (respectively). 504 * 505 * It is not necessary to call this function to reserve bandwidth for devices 506 * under an xHCI host controller, as the bandwidth is reserved when the 507 * configuration or interface alt setting is selected. 508 */ 509 void usb_sg_wait(struct usb_sg_request *io) 510 { 511 int i; 512 int entries = io->entries; 513 514 /* queue the urbs. */ 515 spin_lock_irq(&io->lock); 516 i = 0; 517 while (i < entries && !io->status) { 518 int retval; 519 520 io->urbs[i]->dev = io->dev; 521 spin_unlock_irq(&io->lock); 522 523 retval = usb_submit_urb(io->urbs[i], GFP_NOIO); 524 525 switch (retval) { 526 /* maybe we retrying will recover */ 527 case -ENXIO: /* hc didn't queue this one */ 528 case -EAGAIN: 529 case -ENOMEM: 530 retval = 0; 531 yield(); 532 break; 533 534 /* no error? continue immediately. 535 * 536 * NOTE: to work better with UHCI (4K I/O buffer may 537 * need 3K of TDs) it may be good to limit how many 538 * URBs are queued at once; N milliseconds? 539 */ 540 case 0: 541 ++i; 542 cpu_relax(); 543 break; 544 545 /* fail any uncompleted urbs */ 546 default: 547 io->urbs[i]->status = retval; 548 dev_dbg(&io->dev->dev, "%s, submit --> %d\n", 549 __func__, retval); 550 usb_sg_cancel(io); 551 } 552 spin_lock_irq(&io->lock); 553 if (retval && (io->status == 0 || io->status == -ECONNRESET)) 554 io->status = retval; 555 } 556 io->count -= entries - i; 557 if (io->count == 0) 558 complete(&io->complete); 559 spin_unlock_irq(&io->lock); 560 561 /* OK, yes, this could be packaged as non-blocking. 562 * So could the submit loop above ... but it's easier to 563 * solve neither problem than to solve both! 564 */ 565 wait_for_completion(&io->complete); 566 567 sg_clean(io); 568 } 569 EXPORT_SYMBOL_GPL(usb_sg_wait); 570 571 /** 572 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait() 573 * @io: request block, initialized with usb_sg_init() 574 * 575 * This stops a request after it has been started by usb_sg_wait(). 576 * It can also prevents one initialized by usb_sg_init() from starting, 577 * so that call just frees resources allocated to the request. 578 */ 579 void usb_sg_cancel(struct usb_sg_request *io) 580 { 581 unsigned long flags; 582 int i, retval; 583 584 spin_lock_irqsave(&io->lock, flags); 585 if (io->status) { 586 spin_unlock_irqrestore(&io->lock, flags); 587 return; 588 } 589 /* shut everything down */ 590 io->status = -ECONNRESET; 591 spin_unlock_irqrestore(&io->lock, flags); 592 593 for (i = io->entries - 1; i >= 0; --i) { 594 usb_block_urb(io->urbs[i]); 595 596 retval = usb_unlink_urb(io->urbs[i]); 597 if (retval != -EINPROGRESS 598 && retval != -ENODEV 599 && retval != -EBUSY 600 && retval != -EIDRM) 601 dev_warn(&io->dev->dev, "%s, unlink --> %d\n", 602 __func__, retval); 603 } 604 } 605 EXPORT_SYMBOL_GPL(usb_sg_cancel); 606 607 /*-------------------------------------------------------------------*/ 608 609 /** 610 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request 611 * @dev: the device whose descriptor is being retrieved 612 * @type: the descriptor type (USB_DT_*) 613 * @index: the number of the descriptor 614 * @buf: where to put the descriptor 615 * @size: how big is "buf"? 616 * Context: !in_interrupt () 617 * 618 * Gets a USB descriptor. Convenience functions exist to simplify 619 * getting some types of descriptors. Use 620 * usb_get_string() or usb_string() for USB_DT_STRING. 621 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG) 622 * are part of the device structure. 623 * In addition to a number of USB-standard descriptors, some 624 * devices also use class-specific or vendor-specific descriptors. 625 * 626 * This call is synchronous, and may not be used in an interrupt context. 627 * 628 * Return: The number of bytes received on success, or else the status code 629 * returned by the underlying usb_control_msg() call. 630 */ 631 int usb_get_descriptor(struct usb_device *dev, unsigned char type, 632 unsigned char index, void *buf, int size) 633 { 634 int i; 635 int result; 636 637 memset(buf, 0, size); /* Make sure we parse really received data */ 638 639 for (i = 0; i < 3; ++i) { 640 /* retry on length 0 or error; some devices are flakey */ 641 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 642 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 643 (type << 8) + index, 0, buf, size, 644 USB_CTRL_GET_TIMEOUT); 645 if (result <= 0 && result != -ETIMEDOUT) 646 continue; 647 if (result > 1 && ((u8 *)buf)[1] != type) { 648 result = -ENODATA; 649 continue; 650 } 651 break; 652 } 653 return result; 654 } 655 EXPORT_SYMBOL_GPL(usb_get_descriptor); 656 657 /** 658 * usb_get_string - gets a string descriptor 659 * @dev: the device whose string descriptor is being retrieved 660 * @langid: code for language chosen (from string descriptor zero) 661 * @index: the number of the descriptor 662 * @buf: where to put the string 663 * @size: how big is "buf"? 664 * Context: !in_interrupt () 665 * 666 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character, 667 * in little-endian byte order). 668 * The usb_string() function will often be a convenient way to turn 669 * these strings into kernel-printable form. 670 * 671 * Strings may be referenced in device, configuration, interface, or other 672 * descriptors, and could also be used in vendor-specific ways. 673 * 674 * This call is synchronous, and may not be used in an interrupt context. 675 * 676 * Return: The number of bytes received on success, or else the status code 677 * returned by the underlying usb_control_msg() call. 678 */ 679 static int usb_get_string(struct usb_device *dev, unsigned short langid, 680 unsigned char index, void *buf, int size) 681 { 682 int i; 683 int result; 684 685 for (i = 0; i < 3; ++i) { 686 /* retry on length 0 or stall; some devices are flakey */ 687 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 688 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 689 (USB_DT_STRING << 8) + index, langid, buf, size, 690 USB_CTRL_GET_TIMEOUT); 691 if (result == 0 || result == -EPIPE) 692 continue; 693 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) { 694 result = -ENODATA; 695 continue; 696 } 697 break; 698 } 699 return result; 700 } 701 702 static void usb_try_string_workarounds(unsigned char *buf, int *length) 703 { 704 int newlength, oldlength = *length; 705 706 for (newlength = 2; newlength + 1 < oldlength; newlength += 2) 707 if (!isprint(buf[newlength]) || buf[newlength + 1]) 708 break; 709 710 if (newlength > 2) { 711 buf[0] = newlength; 712 *length = newlength; 713 } 714 } 715 716 static int usb_string_sub(struct usb_device *dev, unsigned int langid, 717 unsigned int index, unsigned char *buf) 718 { 719 int rc; 720 721 /* Try to read the string descriptor by asking for the maximum 722 * possible number of bytes */ 723 if (dev->quirks & USB_QUIRK_STRING_FETCH_255) 724 rc = -EIO; 725 else 726 rc = usb_get_string(dev, langid, index, buf, 255); 727 728 /* If that failed try to read the descriptor length, then 729 * ask for just that many bytes */ 730 if (rc < 2) { 731 rc = usb_get_string(dev, langid, index, buf, 2); 732 if (rc == 2) 733 rc = usb_get_string(dev, langid, index, buf, buf[0]); 734 } 735 736 if (rc >= 2) { 737 if (!buf[0] && !buf[1]) 738 usb_try_string_workarounds(buf, &rc); 739 740 /* There might be extra junk at the end of the descriptor */ 741 if (buf[0] < rc) 742 rc = buf[0]; 743 744 rc = rc - (rc & 1); /* force a multiple of two */ 745 } 746 747 if (rc < 2) 748 rc = (rc < 0 ? rc : -EINVAL); 749 750 return rc; 751 } 752 753 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf) 754 { 755 int err; 756 757 if (dev->have_langid) 758 return 0; 759 760 if (dev->string_langid < 0) 761 return -EPIPE; 762 763 err = usb_string_sub(dev, 0, 0, tbuf); 764 765 /* If the string was reported but is malformed, default to english 766 * (0x0409) */ 767 if (err == -ENODATA || (err > 0 && err < 4)) { 768 dev->string_langid = 0x0409; 769 dev->have_langid = 1; 770 dev_err(&dev->dev, 771 "language id specifier not provided by device, defaulting to English\n"); 772 return 0; 773 } 774 775 /* In case of all other errors, we assume the device is not able to 776 * deal with strings at all. Set string_langid to -1 in order to 777 * prevent any string to be retrieved from the device */ 778 if (err < 0) { 779 dev_err(&dev->dev, "string descriptor 0 read error: %d\n", 780 err); 781 dev->string_langid = -1; 782 return -EPIPE; 783 } 784 785 /* always use the first langid listed */ 786 dev->string_langid = tbuf[2] | (tbuf[3] << 8); 787 dev->have_langid = 1; 788 dev_dbg(&dev->dev, "default language 0x%04x\n", 789 dev->string_langid); 790 return 0; 791 } 792 793 /** 794 * usb_string - returns UTF-8 version of a string descriptor 795 * @dev: the device whose string descriptor is being retrieved 796 * @index: the number of the descriptor 797 * @buf: where to put the string 798 * @size: how big is "buf"? 799 * Context: !in_interrupt () 800 * 801 * This converts the UTF-16LE encoded strings returned by devices, from 802 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones 803 * that are more usable in most kernel contexts. Note that this function 804 * chooses strings in the first language supported by the device. 805 * 806 * This call is synchronous, and may not be used in an interrupt context. 807 * 808 * Return: length of the string (>= 0) or usb_control_msg status (< 0). 809 */ 810 int usb_string(struct usb_device *dev, int index, char *buf, size_t size) 811 { 812 unsigned char *tbuf; 813 int err; 814 815 if (dev->state == USB_STATE_SUSPENDED) 816 return -EHOSTUNREACH; 817 if (size <= 0 || !buf || !index) 818 return -EINVAL; 819 buf[0] = 0; 820 tbuf = kmalloc(256, GFP_NOIO); 821 if (!tbuf) 822 return -ENOMEM; 823 824 err = usb_get_langid(dev, tbuf); 825 if (err < 0) 826 goto errout; 827 828 err = usb_string_sub(dev, dev->string_langid, index, tbuf); 829 if (err < 0) 830 goto errout; 831 832 size--; /* leave room for trailing NULL char in output buffer */ 833 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2, 834 UTF16_LITTLE_ENDIAN, buf, size); 835 buf[err] = 0; 836 837 if (tbuf[1] != USB_DT_STRING) 838 dev_dbg(&dev->dev, 839 "wrong descriptor type %02x for string %d (\"%s\")\n", 840 tbuf[1], index, buf); 841 842 errout: 843 kfree(tbuf); 844 return err; 845 } 846 EXPORT_SYMBOL_GPL(usb_string); 847 848 /* one UTF-8-encoded 16-bit character has at most three bytes */ 849 #define MAX_USB_STRING_SIZE (127 * 3 + 1) 850 851 /** 852 * usb_cache_string - read a string descriptor and cache it for later use 853 * @udev: the device whose string descriptor is being read 854 * @index: the descriptor index 855 * 856 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string, 857 * or %NULL if the index is 0 or the string could not be read. 858 */ 859 char *usb_cache_string(struct usb_device *udev, int index) 860 { 861 char *buf; 862 char *smallbuf = NULL; 863 int len; 864 865 if (index <= 0) 866 return NULL; 867 868 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO); 869 if (buf) { 870 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE); 871 if (len > 0) { 872 smallbuf = kmalloc(++len, GFP_NOIO); 873 if (!smallbuf) 874 return buf; 875 memcpy(smallbuf, buf, len); 876 } 877 kfree(buf); 878 } 879 return smallbuf; 880 } 881 882 /* 883 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore) 884 * @dev: the device whose device descriptor is being updated 885 * @size: how much of the descriptor to read 886 * Context: !in_interrupt () 887 * 888 * Updates the copy of the device descriptor stored in the device structure, 889 * which dedicates space for this purpose. 890 * 891 * Not exported, only for use by the core. If drivers really want to read 892 * the device descriptor directly, they can call usb_get_descriptor() with 893 * type = USB_DT_DEVICE and index = 0. 894 * 895 * This call is synchronous, and may not be used in an interrupt context. 896 * 897 * Return: The number of bytes received on success, or else the status code 898 * returned by the underlying usb_control_msg() call. 899 */ 900 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size) 901 { 902 struct usb_device_descriptor *desc; 903 int ret; 904 905 if (size > sizeof(*desc)) 906 return -EINVAL; 907 desc = kmalloc(sizeof(*desc), GFP_NOIO); 908 if (!desc) 909 return -ENOMEM; 910 911 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size); 912 if (ret >= 0) 913 memcpy(&dev->descriptor, desc, size); 914 kfree(desc); 915 return ret; 916 } 917 918 /** 919 * usb_get_status - issues a GET_STATUS call 920 * @dev: the device whose status is being checked 921 * @type: USB_RECIP_*; for device, interface, or endpoint 922 * @target: zero (for device), else interface or endpoint number 923 * @data: pointer to two bytes of bitmap data 924 * Context: !in_interrupt () 925 * 926 * Returns device, interface, or endpoint status. Normally only of 927 * interest to see if the device is self powered, or has enabled the 928 * remote wakeup facility; or whether a bulk or interrupt endpoint 929 * is halted ("stalled"). 930 * 931 * Bits in these status bitmaps are set using the SET_FEATURE request, 932 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt() 933 * function should be used to clear halt ("stall") status. 934 * 935 * This call is synchronous, and may not be used in an interrupt context. 936 * 937 * Returns 0 and the status value in *@data (in host byte order) on success, 938 * or else the status code from the underlying usb_control_msg() call. 939 */ 940 int usb_get_status(struct usb_device *dev, int type, int target, void *data) 941 { 942 int ret; 943 __le16 *status = kmalloc(sizeof(*status), GFP_KERNEL); 944 945 if (!status) 946 return -ENOMEM; 947 948 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 949 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status, 950 sizeof(*status), USB_CTRL_GET_TIMEOUT); 951 952 if (ret == 2) { 953 *(u16 *) data = le16_to_cpu(*status); 954 ret = 0; 955 } else if (ret >= 0) { 956 ret = -EIO; 957 } 958 kfree(status); 959 return ret; 960 } 961 EXPORT_SYMBOL_GPL(usb_get_status); 962 963 /** 964 * usb_clear_halt - tells device to clear endpoint halt/stall condition 965 * @dev: device whose endpoint is halted 966 * @pipe: endpoint "pipe" being cleared 967 * Context: !in_interrupt () 968 * 969 * This is used to clear halt conditions for bulk and interrupt endpoints, 970 * as reported by URB completion status. Endpoints that are halted are 971 * sometimes referred to as being "stalled". Such endpoints are unable 972 * to transmit or receive data until the halt status is cleared. Any URBs 973 * queued for such an endpoint should normally be unlinked by the driver 974 * before clearing the halt condition, as described in sections 5.7.5 975 * and 5.8.5 of the USB 2.0 spec. 976 * 977 * Note that control and isochronous endpoints don't halt, although control 978 * endpoints report "protocol stall" (for unsupported requests) using the 979 * same status code used to report a true stall. 980 * 981 * This call is synchronous, and may not be used in an interrupt context. 982 * 983 * Return: Zero on success, or else the status code returned by the 984 * underlying usb_control_msg() call. 985 */ 986 int usb_clear_halt(struct usb_device *dev, int pipe) 987 { 988 int result; 989 int endp = usb_pipeendpoint(pipe); 990 991 if (usb_pipein(pipe)) 992 endp |= USB_DIR_IN; 993 994 /* we don't care if it wasn't halted first. in fact some devices 995 * (like some ibmcam model 1 units) seem to expect hosts to make 996 * this request for iso endpoints, which can't halt! 997 */ 998 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 999 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 1000 USB_ENDPOINT_HALT, endp, NULL, 0, 1001 USB_CTRL_SET_TIMEOUT); 1002 1003 /* don't un-halt or force to DATA0 except on success */ 1004 if (result < 0) 1005 return result; 1006 1007 /* NOTE: seems like Microsoft and Apple don't bother verifying 1008 * the clear "took", so some devices could lock up if you check... 1009 * such as the Hagiwara FlashGate DUAL. So we won't bother. 1010 * 1011 * NOTE: make sure the logic here doesn't diverge much from 1012 * the copy in usb-storage, for as long as we need two copies. 1013 */ 1014 1015 usb_reset_endpoint(dev, endp); 1016 1017 return 0; 1018 } 1019 EXPORT_SYMBOL_GPL(usb_clear_halt); 1020 1021 static int create_intf_ep_devs(struct usb_interface *intf) 1022 { 1023 struct usb_device *udev = interface_to_usbdev(intf); 1024 struct usb_host_interface *alt = intf->cur_altsetting; 1025 int i; 1026 1027 if (intf->ep_devs_created || intf->unregistering) 1028 return 0; 1029 1030 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1031 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev); 1032 intf->ep_devs_created = 1; 1033 return 0; 1034 } 1035 1036 static void remove_intf_ep_devs(struct usb_interface *intf) 1037 { 1038 struct usb_host_interface *alt = intf->cur_altsetting; 1039 int i; 1040 1041 if (!intf->ep_devs_created) 1042 return; 1043 1044 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1045 usb_remove_ep_devs(&alt->endpoint[i]); 1046 intf->ep_devs_created = 0; 1047 } 1048 1049 /** 1050 * usb_disable_endpoint -- Disable an endpoint by address 1051 * @dev: the device whose endpoint is being disabled 1052 * @epaddr: the endpoint's address. Endpoint number for output, 1053 * endpoint number + USB_DIR_IN for input 1054 * @reset_hardware: flag to erase any endpoint state stored in the 1055 * controller hardware 1056 * 1057 * Disables the endpoint for URB submission and nukes all pending URBs. 1058 * If @reset_hardware is set then also deallocates hcd/hardware state 1059 * for the endpoint. 1060 */ 1061 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr, 1062 bool reset_hardware) 1063 { 1064 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1065 struct usb_host_endpoint *ep; 1066 1067 if (!dev) 1068 return; 1069 1070 if (usb_endpoint_out(epaddr)) { 1071 ep = dev->ep_out[epnum]; 1072 if (reset_hardware) 1073 dev->ep_out[epnum] = NULL; 1074 } else { 1075 ep = dev->ep_in[epnum]; 1076 if (reset_hardware) 1077 dev->ep_in[epnum] = NULL; 1078 } 1079 if (ep) { 1080 ep->enabled = 0; 1081 usb_hcd_flush_endpoint(dev, ep); 1082 if (reset_hardware) 1083 usb_hcd_disable_endpoint(dev, ep); 1084 } 1085 } 1086 1087 /** 1088 * usb_reset_endpoint - Reset an endpoint's state. 1089 * @dev: the device whose endpoint is to be reset 1090 * @epaddr: the endpoint's address. Endpoint number for output, 1091 * endpoint number + USB_DIR_IN for input 1092 * 1093 * Resets any host-side endpoint state such as the toggle bit, 1094 * sequence number or current window. 1095 */ 1096 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr) 1097 { 1098 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1099 struct usb_host_endpoint *ep; 1100 1101 if (usb_endpoint_out(epaddr)) 1102 ep = dev->ep_out[epnum]; 1103 else 1104 ep = dev->ep_in[epnum]; 1105 if (ep) 1106 usb_hcd_reset_endpoint(dev, ep); 1107 } 1108 EXPORT_SYMBOL_GPL(usb_reset_endpoint); 1109 1110 1111 /** 1112 * usb_disable_interface -- Disable all endpoints for an interface 1113 * @dev: the device whose interface is being disabled 1114 * @intf: pointer to the interface descriptor 1115 * @reset_hardware: flag to erase any endpoint state stored in the 1116 * controller hardware 1117 * 1118 * Disables all the endpoints for the interface's current altsetting. 1119 */ 1120 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf, 1121 bool reset_hardware) 1122 { 1123 struct usb_host_interface *alt = intf->cur_altsetting; 1124 int i; 1125 1126 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 1127 usb_disable_endpoint(dev, 1128 alt->endpoint[i].desc.bEndpointAddress, 1129 reset_hardware); 1130 } 1131 } 1132 1133 /** 1134 * usb_disable_device - Disable all the endpoints for a USB device 1135 * @dev: the device whose endpoints are being disabled 1136 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. 1137 * 1138 * Disables all the device's endpoints, potentially including endpoint 0. 1139 * Deallocates hcd/hardware state for the endpoints (nuking all or most 1140 * pending urbs) and usbcore state for the interfaces, so that usbcore 1141 * must usb_set_configuration() before any interfaces could be used. 1142 */ 1143 void usb_disable_device(struct usb_device *dev, int skip_ep0) 1144 { 1145 int i; 1146 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1147 1148 /* getting rid of interfaces will disconnect 1149 * any drivers bound to them (a key side effect) 1150 */ 1151 if (dev->actconfig) { 1152 /* 1153 * FIXME: In order to avoid self-deadlock involving the 1154 * bandwidth_mutex, we have to mark all the interfaces 1155 * before unregistering any of them. 1156 */ 1157 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) 1158 dev->actconfig->interface[i]->unregistering = 1; 1159 1160 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1161 struct usb_interface *interface; 1162 1163 /* remove this interface if it has been registered */ 1164 interface = dev->actconfig->interface[i]; 1165 if (!device_is_registered(&interface->dev)) 1166 continue; 1167 dev_dbg(&dev->dev, "unregistering interface %s\n", 1168 dev_name(&interface->dev)); 1169 remove_intf_ep_devs(interface); 1170 device_del(&interface->dev); 1171 } 1172 1173 /* Now that the interfaces are unbound, nobody should 1174 * try to access them. 1175 */ 1176 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1177 put_device(&dev->actconfig->interface[i]->dev); 1178 dev->actconfig->interface[i] = NULL; 1179 } 1180 1181 if (dev->usb2_hw_lpm_enabled == 1) 1182 usb_set_usb2_hardware_lpm(dev, 0); 1183 usb_unlocked_disable_lpm(dev); 1184 usb_disable_ltm(dev); 1185 1186 dev->actconfig = NULL; 1187 if (dev->state == USB_STATE_CONFIGURED) 1188 usb_set_device_state(dev, USB_STATE_ADDRESS); 1189 } 1190 1191 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__, 1192 skip_ep0 ? "non-ep0" : "all"); 1193 if (hcd->driver->check_bandwidth) { 1194 /* First pass: Cancel URBs, leave endpoint pointers intact. */ 1195 for (i = skip_ep0; i < 16; ++i) { 1196 usb_disable_endpoint(dev, i, false); 1197 usb_disable_endpoint(dev, i + USB_DIR_IN, false); 1198 } 1199 /* Remove endpoints from the host controller internal state */ 1200 mutex_lock(hcd->bandwidth_mutex); 1201 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); 1202 mutex_unlock(hcd->bandwidth_mutex); 1203 /* Second pass: remove endpoint pointers */ 1204 } 1205 for (i = skip_ep0; i < 16; ++i) { 1206 usb_disable_endpoint(dev, i, true); 1207 usb_disable_endpoint(dev, i + USB_DIR_IN, true); 1208 } 1209 } 1210 1211 /** 1212 * usb_enable_endpoint - Enable an endpoint for USB communications 1213 * @dev: the device whose interface is being enabled 1214 * @ep: the endpoint 1215 * @reset_ep: flag to reset the endpoint state 1216 * 1217 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers. 1218 * For control endpoints, both the input and output sides are handled. 1219 */ 1220 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep, 1221 bool reset_ep) 1222 { 1223 int epnum = usb_endpoint_num(&ep->desc); 1224 int is_out = usb_endpoint_dir_out(&ep->desc); 1225 int is_control = usb_endpoint_xfer_control(&ep->desc); 1226 1227 if (reset_ep) 1228 usb_hcd_reset_endpoint(dev, ep); 1229 if (is_out || is_control) 1230 dev->ep_out[epnum] = ep; 1231 if (!is_out || is_control) 1232 dev->ep_in[epnum] = ep; 1233 ep->enabled = 1; 1234 } 1235 1236 /** 1237 * usb_enable_interface - Enable all the endpoints for an interface 1238 * @dev: the device whose interface is being enabled 1239 * @intf: pointer to the interface descriptor 1240 * @reset_eps: flag to reset the endpoints' state 1241 * 1242 * Enables all the endpoints for the interface's current altsetting. 1243 */ 1244 void usb_enable_interface(struct usb_device *dev, 1245 struct usb_interface *intf, bool reset_eps) 1246 { 1247 struct usb_host_interface *alt = intf->cur_altsetting; 1248 int i; 1249 1250 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1251 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps); 1252 } 1253 1254 /** 1255 * usb_set_interface - Makes a particular alternate setting be current 1256 * @dev: the device whose interface is being updated 1257 * @interface: the interface being updated 1258 * @alternate: the setting being chosen. 1259 * Context: !in_interrupt () 1260 * 1261 * This is used to enable data transfers on interfaces that may not 1262 * be enabled by default. Not all devices support such configurability. 1263 * Only the driver bound to an interface may change its setting. 1264 * 1265 * Within any given configuration, each interface may have several 1266 * alternative settings. These are often used to control levels of 1267 * bandwidth consumption. For example, the default setting for a high 1268 * speed interrupt endpoint may not send more than 64 bytes per microframe, 1269 * while interrupt transfers of up to 3KBytes per microframe are legal. 1270 * Also, isochronous endpoints may never be part of an 1271 * interface's default setting. To access such bandwidth, alternate 1272 * interface settings must be made current. 1273 * 1274 * Note that in the Linux USB subsystem, bandwidth associated with 1275 * an endpoint in a given alternate setting is not reserved until an URB 1276 * is submitted that needs that bandwidth. Some other operating systems 1277 * allocate bandwidth early, when a configuration is chosen. 1278 * 1279 * This call is synchronous, and may not be used in an interrupt context. 1280 * Also, drivers must not change altsettings while urbs are scheduled for 1281 * endpoints in that interface; all such urbs must first be completed 1282 * (perhaps forced by unlinking). 1283 * 1284 * Return: Zero on success, or else the status code returned by the 1285 * underlying usb_control_msg() call. 1286 */ 1287 int usb_set_interface(struct usb_device *dev, int interface, int alternate) 1288 { 1289 struct usb_interface *iface; 1290 struct usb_host_interface *alt; 1291 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1292 int i, ret, manual = 0; 1293 unsigned int epaddr; 1294 unsigned int pipe; 1295 1296 if (dev->state == USB_STATE_SUSPENDED) 1297 return -EHOSTUNREACH; 1298 1299 iface = usb_ifnum_to_if(dev, interface); 1300 if (!iface) { 1301 dev_dbg(&dev->dev, "selecting invalid interface %d\n", 1302 interface); 1303 return -EINVAL; 1304 } 1305 if (iface->unregistering) 1306 return -ENODEV; 1307 1308 alt = usb_altnum_to_altsetting(iface, alternate); 1309 if (!alt) { 1310 dev_warn(&dev->dev, "selecting invalid altsetting %d\n", 1311 alternate); 1312 return -EINVAL; 1313 } 1314 1315 /* Make sure we have enough bandwidth for this alternate interface. 1316 * Remove the current alt setting and add the new alt setting. 1317 */ 1318 mutex_lock(hcd->bandwidth_mutex); 1319 /* Disable LPM, and re-enable it once the new alt setting is installed, 1320 * so that the xHCI driver can recalculate the U1/U2 timeouts. 1321 */ 1322 if (usb_disable_lpm(dev)) { 1323 dev_err(&iface->dev, "%s Failed to disable LPM\n.", __func__); 1324 mutex_unlock(hcd->bandwidth_mutex); 1325 return -ENOMEM; 1326 } 1327 /* Changing alt-setting also frees any allocated streams */ 1328 for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++) 1329 iface->cur_altsetting->endpoint[i].streams = 0; 1330 1331 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt); 1332 if (ret < 0) { 1333 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n", 1334 alternate); 1335 usb_enable_lpm(dev); 1336 mutex_unlock(hcd->bandwidth_mutex); 1337 return ret; 1338 } 1339 1340 if (dev->quirks & USB_QUIRK_NO_SET_INTF) 1341 ret = -EPIPE; 1342 else 1343 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1344 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE, 1345 alternate, interface, NULL, 0, 5000); 1346 1347 /* 9.4.10 says devices don't need this and are free to STALL the 1348 * request if the interface only has one alternate setting. 1349 */ 1350 if (ret == -EPIPE && iface->num_altsetting == 1) { 1351 dev_dbg(&dev->dev, 1352 "manual set_interface for iface %d, alt %d\n", 1353 interface, alternate); 1354 manual = 1; 1355 } else if (ret < 0) { 1356 /* Re-instate the old alt setting */ 1357 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting); 1358 usb_enable_lpm(dev); 1359 mutex_unlock(hcd->bandwidth_mutex); 1360 return ret; 1361 } 1362 mutex_unlock(hcd->bandwidth_mutex); 1363 1364 /* FIXME drivers shouldn't need to replicate/bugfix the logic here 1365 * when they implement async or easily-killable versions of this or 1366 * other "should-be-internal" functions (like clear_halt). 1367 * should hcd+usbcore postprocess control requests? 1368 */ 1369 1370 /* prevent submissions using previous endpoint settings */ 1371 if (iface->cur_altsetting != alt) { 1372 remove_intf_ep_devs(iface); 1373 usb_remove_sysfs_intf_files(iface); 1374 } 1375 usb_disable_interface(dev, iface, true); 1376 1377 iface->cur_altsetting = alt; 1378 1379 /* Now that the interface is installed, re-enable LPM. */ 1380 usb_unlocked_enable_lpm(dev); 1381 1382 /* If the interface only has one altsetting and the device didn't 1383 * accept the request, we attempt to carry out the equivalent action 1384 * by manually clearing the HALT feature for each endpoint in the 1385 * new altsetting. 1386 */ 1387 if (manual) { 1388 for (i = 0; i < alt->desc.bNumEndpoints; i++) { 1389 epaddr = alt->endpoint[i].desc.bEndpointAddress; 1390 pipe = __create_pipe(dev, 1391 USB_ENDPOINT_NUMBER_MASK & epaddr) | 1392 (usb_endpoint_out(epaddr) ? 1393 USB_DIR_OUT : USB_DIR_IN); 1394 1395 usb_clear_halt(dev, pipe); 1396 } 1397 } 1398 1399 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting 1400 * 1401 * Note: 1402 * Despite EP0 is always present in all interfaces/AS, the list of 1403 * endpoints from the descriptor does not contain EP0. Due to its 1404 * omnipresence one might expect EP0 being considered "affected" by 1405 * any SetInterface request and hence assume toggles need to be reset. 1406 * However, EP0 toggles are re-synced for every individual transfer 1407 * during the SETUP stage - hence EP0 toggles are "don't care" here. 1408 * (Likewise, EP0 never "halts" on well designed devices.) 1409 */ 1410 usb_enable_interface(dev, iface, true); 1411 if (device_is_registered(&iface->dev)) { 1412 usb_create_sysfs_intf_files(iface); 1413 create_intf_ep_devs(iface); 1414 } 1415 return 0; 1416 } 1417 EXPORT_SYMBOL_GPL(usb_set_interface); 1418 1419 /** 1420 * usb_reset_configuration - lightweight device reset 1421 * @dev: the device whose configuration is being reset 1422 * 1423 * This issues a standard SET_CONFIGURATION request to the device using 1424 * the current configuration. The effect is to reset most USB-related 1425 * state in the device, including interface altsettings (reset to zero), 1426 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt 1427 * endpoints). Other usbcore state is unchanged, including bindings of 1428 * usb device drivers to interfaces. 1429 * 1430 * Because this affects multiple interfaces, avoid using this with composite 1431 * (multi-interface) devices. Instead, the driver for each interface may 1432 * use usb_set_interface() on the interfaces it claims. Be careful though; 1433 * some devices don't support the SET_INTERFACE request, and others won't 1434 * reset all the interface state (notably endpoint state). Resetting the whole 1435 * configuration would affect other drivers' interfaces. 1436 * 1437 * The caller must own the device lock. 1438 * 1439 * Return: Zero on success, else a negative error code. 1440 */ 1441 int usb_reset_configuration(struct usb_device *dev) 1442 { 1443 int i, retval; 1444 struct usb_host_config *config; 1445 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1446 1447 if (dev->state == USB_STATE_SUSPENDED) 1448 return -EHOSTUNREACH; 1449 1450 /* caller must have locked the device and must own 1451 * the usb bus readlock (so driver bindings are stable); 1452 * calls during probe() are fine 1453 */ 1454 1455 for (i = 1; i < 16; ++i) { 1456 usb_disable_endpoint(dev, i, true); 1457 usb_disable_endpoint(dev, i + USB_DIR_IN, true); 1458 } 1459 1460 config = dev->actconfig; 1461 retval = 0; 1462 mutex_lock(hcd->bandwidth_mutex); 1463 /* Disable LPM, and re-enable it once the configuration is reset, so 1464 * that the xHCI driver can recalculate the U1/U2 timeouts. 1465 */ 1466 if (usb_disable_lpm(dev)) { 1467 dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__); 1468 mutex_unlock(hcd->bandwidth_mutex); 1469 return -ENOMEM; 1470 } 1471 /* Make sure we have enough bandwidth for each alternate setting 0 */ 1472 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1473 struct usb_interface *intf = config->interface[i]; 1474 struct usb_host_interface *alt; 1475 1476 alt = usb_altnum_to_altsetting(intf, 0); 1477 if (!alt) 1478 alt = &intf->altsetting[0]; 1479 if (alt != intf->cur_altsetting) 1480 retval = usb_hcd_alloc_bandwidth(dev, NULL, 1481 intf->cur_altsetting, alt); 1482 if (retval < 0) 1483 break; 1484 } 1485 /* If not, reinstate the old alternate settings */ 1486 if (retval < 0) { 1487 reset_old_alts: 1488 for (i--; i >= 0; i--) { 1489 struct usb_interface *intf = config->interface[i]; 1490 struct usb_host_interface *alt; 1491 1492 alt = usb_altnum_to_altsetting(intf, 0); 1493 if (!alt) 1494 alt = &intf->altsetting[0]; 1495 if (alt != intf->cur_altsetting) 1496 usb_hcd_alloc_bandwidth(dev, NULL, 1497 alt, intf->cur_altsetting); 1498 } 1499 usb_enable_lpm(dev); 1500 mutex_unlock(hcd->bandwidth_mutex); 1501 return retval; 1502 } 1503 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1504 USB_REQ_SET_CONFIGURATION, 0, 1505 config->desc.bConfigurationValue, 0, 1506 NULL, 0, USB_CTRL_SET_TIMEOUT); 1507 if (retval < 0) 1508 goto reset_old_alts; 1509 mutex_unlock(hcd->bandwidth_mutex); 1510 1511 /* re-init hc/hcd interface/endpoint state */ 1512 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1513 struct usb_interface *intf = config->interface[i]; 1514 struct usb_host_interface *alt; 1515 1516 alt = usb_altnum_to_altsetting(intf, 0); 1517 1518 /* No altsetting 0? We'll assume the first altsetting. 1519 * We could use a GetInterface call, but if a device is 1520 * so non-compliant that it doesn't have altsetting 0 1521 * then I wouldn't trust its reply anyway. 1522 */ 1523 if (!alt) 1524 alt = &intf->altsetting[0]; 1525 1526 if (alt != intf->cur_altsetting) { 1527 remove_intf_ep_devs(intf); 1528 usb_remove_sysfs_intf_files(intf); 1529 } 1530 intf->cur_altsetting = alt; 1531 usb_enable_interface(dev, intf, true); 1532 if (device_is_registered(&intf->dev)) { 1533 usb_create_sysfs_intf_files(intf); 1534 create_intf_ep_devs(intf); 1535 } 1536 } 1537 /* Now that the interfaces are installed, re-enable LPM. */ 1538 usb_unlocked_enable_lpm(dev); 1539 return 0; 1540 } 1541 EXPORT_SYMBOL_GPL(usb_reset_configuration); 1542 1543 static void usb_release_interface(struct device *dev) 1544 { 1545 struct usb_interface *intf = to_usb_interface(dev); 1546 struct usb_interface_cache *intfc = 1547 altsetting_to_usb_interface_cache(intf->altsetting); 1548 1549 kref_put(&intfc->ref, usb_release_interface_cache); 1550 usb_put_dev(interface_to_usbdev(intf)); 1551 kfree(intf); 1552 } 1553 1554 /* 1555 * usb_deauthorize_interface - deauthorize an USB interface 1556 * 1557 * @intf: USB interface structure 1558 */ 1559 void usb_deauthorize_interface(struct usb_interface *intf) 1560 { 1561 struct device *dev = &intf->dev; 1562 1563 device_lock(dev->parent); 1564 1565 if (intf->authorized) { 1566 device_lock(dev); 1567 intf->authorized = 0; 1568 device_unlock(dev); 1569 1570 usb_forced_unbind_intf(intf); 1571 } 1572 1573 device_unlock(dev->parent); 1574 } 1575 1576 /* 1577 * usb_authorize_interface - authorize an USB interface 1578 * 1579 * @intf: USB interface structure 1580 */ 1581 void usb_authorize_interface(struct usb_interface *intf) 1582 { 1583 struct device *dev = &intf->dev; 1584 1585 if (!intf->authorized) { 1586 device_lock(dev); 1587 intf->authorized = 1; /* authorize interface */ 1588 device_unlock(dev); 1589 } 1590 } 1591 1592 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env) 1593 { 1594 struct usb_device *usb_dev; 1595 struct usb_interface *intf; 1596 struct usb_host_interface *alt; 1597 1598 intf = to_usb_interface(dev); 1599 usb_dev = interface_to_usbdev(intf); 1600 alt = intf->cur_altsetting; 1601 1602 if (add_uevent_var(env, "INTERFACE=%d/%d/%d", 1603 alt->desc.bInterfaceClass, 1604 alt->desc.bInterfaceSubClass, 1605 alt->desc.bInterfaceProtocol)) 1606 return -ENOMEM; 1607 1608 if (add_uevent_var(env, 1609 "MODALIAS=usb:" 1610 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X", 1611 le16_to_cpu(usb_dev->descriptor.idVendor), 1612 le16_to_cpu(usb_dev->descriptor.idProduct), 1613 le16_to_cpu(usb_dev->descriptor.bcdDevice), 1614 usb_dev->descriptor.bDeviceClass, 1615 usb_dev->descriptor.bDeviceSubClass, 1616 usb_dev->descriptor.bDeviceProtocol, 1617 alt->desc.bInterfaceClass, 1618 alt->desc.bInterfaceSubClass, 1619 alt->desc.bInterfaceProtocol, 1620 alt->desc.bInterfaceNumber)) 1621 return -ENOMEM; 1622 1623 return 0; 1624 } 1625 1626 struct device_type usb_if_device_type = { 1627 .name = "usb_interface", 1628 .release = usb_release_interface, 1629 .uevent = usb_if_uevent, 1630 }; 1631 1632 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev, 1633 struct usb_host_config *config, 1634 u8 inum) 1635 { 1636 struct usb_interface_assoc_descriptor *retval = NULL; 1637 struct usb_interface_assoc_descriptor *intf_assoc; 1638 int first_intf; 1639 int last_intf; 1640 int i; 1641 1642 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) { 1643 intf_assoc = config->intf_assoc[i]; 1644 if (intf_assoc->bInterfaceCount == 0) 1645 continue; 1646 1647 first_intf = intf_assoc->bFirstInterface; 1648 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1); 1649 if (inum >= first_intf && inum <= last_intf) { 1650 if (!retval) 1651 retval = intf_assoc; 1652 else 1653 dev_err(&dev->dev, "Interface #%d referenced" 1654 " by multiple IADs\n", inum); 1655 } 1656 } 1657 1658 return retval; 1659 } 1660 1661 1662 /* 1663 * Internal function to queue a device reset 1664 * See usb_queue_reset_device() for more details 1665 */ 1666 static void __usb_queue_reset_device(struct work_struct *ws) 1667 { 1668 int rc; 1669 struct usb_interface *iface = 1670 container_of(ws, struct usb_interface, reset_ws); 1671 struct usb_device *udev = interface_to_usbdev(iface); 1672 1673 rc = usb_lock_device_for_reset(udev, iface); 1674 if (rc >= 0) { 1675 usb_reset_device(udev); 1676 usb_unlock_device(udev); 1677 } 1678 usb_put_intf(iface); /* Undo _get_ in usb_queue_reset_device() */ 1679 } 1680 1681 1682 /* 1683 * usb_set_configuration - Makes a particular device setting be current 1684 * @dev: the device whose configuration is being updated 1685 * @configuration: the configuration being chosen. 1686 * Context: !in_interrupt(), caller owns the device lock 1687 * 1688 * This is used to enable non-default device modes. Not all devices 1689 * use this kind of configurability; many devices only have one 1690 * configuration. 1691 * 1692 * @configuration is the value of the configuration to be installed. 1693 * According to the USB spec (e.g. section 9.1.1.5), configuration values 1694 * must be non-zero; a value of zero indicates that the device in 1695 * unconfigured. However some devices erroneously use 0 as one of their 1696 * configuration values. To help manage such devices, this routine will 1697 * accept @configuration = -1 as indicating the device should be put in 1698 * an unconfigured state. 1699 * 1700 * USB device configurations may affect Linux interoperability, 1701 * power consumption and the functionality available. For example, 1702 * the default configuration is limited to using 100mA of bus power, 1703 * so that when certain device functionality requires more power, 1704 * and the device is bus powered, that functionality should be in some 1705 * non-default device configuration. Other device modes may also be 1706 * reflected as configuration options, such as whether two ISDN 1707 * channels are available independently; and choosing between open 1708 * standard device protocols (like CDC) or proprietary ones. 1709 * 1710 * Note that a non-authorized device (dev->authorized == 0) will only 1711 * be put in unconfigured mode. 1712 * 1713 * Note that USB has an additional level of device configurability, 1714 * associated with interfaces. That configurability is accessed using 1715 * usb_set_interface(). 1716 * 1717 * This call is synchronous. The calling context must be able to sleep, 1718 * must own the device lock, and must not hold the driver model's USB 1719 * bus mutex; usb interface driver probe() methods cannot use this routine. 1720 * 1721 * Returns zero on success, or else the status code returned by the 1722 * underlying call that failed. On successful completion, each interface 1723 * in the original device configuration has been destroyed, and each one 1724 * in the new configuration has been probed by all relevant usb device 1725 * drivers currently known to the kernel. 1726 */ 1727 int usb_set_configuration(struct usb_device *dev, int configuration) 1728 { 1729 int i, ret; 1730 struct usb_host_config *cp = NULL; 1731 struct usb_interface **new_interfaces = NULL; 1732 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1733 int n, nintf; 1734 1735 if (dev->authorized == 0 || configuration == -1) 1736 configuration = 0; 1737 else { 1738 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) { 1739 if (dev->config[i].desc.bConfigurationValue == 1740 configuration) { 1741 cp = &dev->config[i]; 1742 break; 1743 } 1744 } 1745 } 1746 if ((!cp && configuration != 0)) 1747 return -EINVAL; 1748 1749 /* The USB spec says configuration 0 means unconfigured. 1750 * But if a device includes a configuration numbered 0, 1751 * we will accept it as a correctly configured state. 1752 * Use -1 if you really want to unconfigure the device. 1753 */ 1754 if (cp && configuration == 0) 1755 dev_warn(&dev->dev, "config 0 descriptor??\n"); 1756 1757 /* Allocate memory for new interfaces before doing anything else, 1758 * so that if we run out then nothing will have changed. */ 1759 n = nintf = 0; 1760 if (cp) { 1761 nintf = cp->desc.bNumInterfaces; 1762 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces), 1763 GFP_NOIO); 1764 if (!new_interfaces) 1765 return -ENOMEM; 1766 1767 for (; n < nintf; ++n) { 1768 new_interfaces[n] = kzalloc( 1769 sizeof(struct usb_interface), 1770 GFP_NOIO); 1771 if (!new_interfaces[n]) { 1772 ret = -ENOMEM; 1773 free_interfaces: 1774 while (--n >= 0) 1775 kfree(new_interfaces[n]); 1776 kfree(new_interfaces); 1777 return ret; 1778 } 1779 } 1780 1781 i = dev->bus_mA - usb_get_max_power(dev, cp); 1782 if (i < 0) 1783 dev_warn(&dev->dev, "new config #%d exceeds power " 1784 "limit by %dmA\n", 1785 configuration, -i); 1786 } 1787 1788 /* Wake up the device so we can send it the Set-Config request */ 1789 ret = usb_autoresume_device(dev); 1790 if (ret) 1791 goto free_interfaces; 1792 1793 /* if it's already configured, clear out old state first. 1794 * getting rid of old interfaces means unbinding their drivers. 1795 */ 1796 if (dev->state != USB_STATE_ADDRESS) 1797 usb_disable_device(dev, 1); /* Skip ep0 */ 1798 1799 /* Get rid of pending async Set-Config requests for this device */ 1800 cancel_async_set_config(dev); 1801 1802 /* Make sure we have bandwidth (and available HCD resources) for this 1803 * configuration. Remove endpoints from the schedule if we're dropping 1804 * this configuration to set configuration 0. After this point, the 1805 * host controller will not allow submissions to dropped endpoints. If 1806 * this call fails, the device state is unchanged. 1807 */ 1808 mutex_lock(hcd->bandwidth_mutex); 1809 /* Disable LPM, and re-enable it once the new configuration is 1810 * installed, so that the xHCI driver can recalculate the U1/U2 1811 * timeouts. 1812 */ 1813 if (dev->actconfig && usb_disable_lpm(dev)) { 1814 dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__); 1815 mutex_unlock(hcd->bandwidth_mutex); 1816 ret = -ENOMEM; 1817 goto free_interfaces; 1818 } 1819 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL); 1820 if (ret < 0) { 1821 if (dev->actconfig) 1822 usb_enable_lpm(dev); 1823 mutex_unlock(hcd->bandwidth_mutex); 1824 usb_autosuspend_device(dev); 1825 goto free_interfaces; 1826 } 1827 1828 /* 1829 * Initialize the new interface structures and the 1830 * hc/hcd/usbcore interface/endpoint state. 1831 */ 1832 for (i = 0; i < nintf; ++i) { 1833 struct usb_interface_cache *intfc; 1834 struct usb_interface *intf; 1835 struct usb_host_interface *alt; 1836 1837 cp->interface[i] = intf = new_interfaces[i]; 1838 intfc = cp->intf_cache[i]; 1839 intf->altsetting = intfc->altsetting; 1840 intf->num_altsetting = intfc->num_altsetting; 1841 intf->authorized = !!HCD_INTF_AUTHORIZED(hcd); 1842 kref_get(&intfc->ref); 1843 1844 alt = usb_altnum_to_altsetting(intf, 0); 1845 1846 /* No altsetting 0? We'll assume the first altsetting. 1847 * We could use a GetInterface call, but if a device is 1848 * so non-compliant that it doesn't have altsetting 0 1849 * then I wouldn't trust its reply anyway. 1850 */ 1851 if (!alt) 1852 alt = &intf->altsetting[0]; 1853 1854 intf->intf_assoc = 1855 find_iad(dev, cp, alt->desc.bInterfaceNumber); 1856 intf->cur_altsetting = alt; 1857 usb_enable_interface(dev, intf, true); 1858 intf->dev.parent = &dev->dev; 1859 intf->dev.driver = NULL; 1860 intf->dev.bus = &usb_bus_type; 1861 intf->dev.type = &usb_if_device_type; 1862 intf->dev.groups = usb_interface_groups; 1863 /* 1864 * Please refer to usb_alloc_dev() to see why we set 1865 * dma_mask and dma_pfn_offset. 1866 */ 1867 intf->dev.dma_mask = dev->dev.dma_mask; 1868 intf->dev.dma_pfn_offset = dev->dev.dma_pfn_offset; 1869 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device); 1870 intf->minor = -1; 1871 device_initialize(&intf->dev); 1872 pm_runtime_no_callbacks(&intf->dev); 1873 dev_set_name(&intf->dev, "%d-%s:%d.%d", 1874 dev->bus->busnum, dev->devpath, 1875 configuration, alt->desc.bInterfaceNumber); 1876 usb_get_dev(dev); 1877 } 1878 kfree(new_interfaces); 1879 1880 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1881 USB_REQ_SET_CONFIGURATION, 0, configuration, 0, 1882 NULL, 0, USB_CTRL_SET_TIMEOUT); 1883 if (ret < 0 && cp) { 1884 /* 1885 * All the old state is gone, so what else can we do? 1886 * The device is probably useless now anyway. 1887 */ 1888 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); 1889 for (i = 0; i < nintf; ++i) { 1890 usb_disable_interface(dev, cp->interface[i], true); 1891 put_device(&cp->interface[i]->dev); 1892 cp->interface[i] = NULL; 1893 } 1894 cp = NULL; 1895 } 1896 1897 dev->actconfig = cp; 1898 mutex_unlock(hcd->bandwidth_mutex); 1899 1900 if (!cp) { 1901 usb_set_device_state(dev, USB_STATE_ADDRESS); 1902 1903 /* Leave LPM disabled while the device is unconfigured. */ 1904 usb_autosuspend_device(dev); 1905 return ret; 1906 } 1907 usb_set_device_state(dev, USB_STATE_CONFIGURED); 1908 1909 if (cp->string == NULL && 1910 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS)) 1911 cp->string = usb_cache_string(dev, cp->desc.iConfiguration); 1912 1913 /* Now that the interfaces are installed, re-enable LPM. */ 1914 usb_unlocked_enable_lpm(dev); 1915 /* Enable LTM if it was turned off by usb_disable_device. */ 1916 usb_enable_ltm(dev); 1917 1918 /* Now that all the interfaces are set up, register them 1919 * to trigger binding of drivers to interfaces. probe() 1920 * routines may install different altsettings and may 1921 * claim() any interfaces not yet bound. Many class drivers 1922 * need that: CDC, audio, video, etc. 1923 */ 1924 for (i = 0; i < nintf; ++i) { 1925 struct usb_interface *intf = cp->interface[i]; 1926 1927 dev_dbg(&dev->dev, 1928 "adding %s (config #%d, interface %d)\n", 1929 dev_name(&intf->dev), configuration, 1930 intf->cur_altsetting->desc.bInterfaceNumber); 1931 device_enable_async_suspend(&intf->dev); 1932 ret = device_add(&intf->dev); 1933 if (ret != 0) { 1934 dev_err(&dev->dev, "device_add(%s) --> %d\n", 1935 dev_name(&intf->dev), ret); 1936 continue; 1937 } 1938 create_intf_ep_devs(intf); 1939 } 1940 1941 usb_autosuspend_device(dev); 1942 return 0; 1943 } 1944 EXPORT_SYMBOL_GPL(usb_set_configuration); 1945 1946 static LIST_HEAD(set_config_list); 1947 static DEFINE_SPINLOCK(set_config_lock); 1948 1949 struct set_config_request { 1950 struct usb_device *udev; 1951 int config; 1952 struct work_struct work; 1953 struct list_head node; 1954 }; 1955 1956 /* Worker routine for usb_driver_set_configuration() */ 1957 static void driver_set_config_work(struct work_struct *work) 1958 { 1959 struct set_config_request *req = 1960 container_of(work, struct set_config_request, work); 1961 struct usb_device *udev = req->udev; 1962 1963 usb_lock_device(udev); 1964 spin_lock(&set_config_lock); 1965 list_del(&req->node); 1966 spin_unlock(&set_config_lock); 1967 1968 if (req->config >= -1) /* Is req still valid? */ 1969 usb_set_configuration(udev, req->config); 1970 usb_unlock_device(udev); 1971 usb_put_dev(udev); 1972 kfree(req); 1973 } 1974 1975 /* Cancel pending Set-Config requests for a device whose configuration 1976 * was just changed 1977 */ 1978 static void cancel_async_set_config(struct usb_device *udev) 1979 { 1980 struct set_config_request *req; 1981 1982 spin_lock(&set_config_lock); 1983 list_for_each_entry(req, &set_config_list, node) { 1984 if (req->udev == udev) 1985 req->config = -999; /* Mark as cancelled */ 1986 } 1987 spin_unlock(&set_config_lock); 1988 } 1989 1990 /** 1991 * usb_driver_set_configuration - Provide a way for drivers to change device configurations 1992 * @udev: the device whose configuration is being updated 1993 * @config: the configuration being chosen. 1994 * Context: In process context, must be able to sleep 1995 * 1996 * Device interface drivers are not allowed to change device configurations. 1997 * This is because changing configurations will destroy the interface the 1998 * driver is bound to and create new ones; it would be like a floppy-disk 1999 * driver telling the computer to replace the floppy-disk drive with a 2000 * tape drive! 2001 * 2002 * Still, in certain specialized circumstances the need may arise. This 2003 * routine gets around the normal restrictions by using a work thread to 2004 * submit the change-config request. 2005 * 2006 * Return: 0 if the request was successfully queued, error code otherwise. 2007 * The caller has no way to know whether the queued request will eventually 2008 * succeed. 2009 */ 2010 int usb_driver_set_configuration(struct usb_device *udev, int config) 2011 { 2012 struct set_config_request *req; 2013 2014 req = kmalloc(sizeof(*req), GFP_KERNEL); 2015 if (!req) 2016 return -ENOMEM; 2017 req->udev = udev; 2018 req->config = config; 2019 INIT_WORK(&req->work, driver_set_config_work); 2020 2021 spin_lock(&set_config_lock); 2022 list_add(&req->node, &set_config_list); 2023 spin_unlock(&set_config_lock); 2024 2025 usb_get_dev(udev); 2026 schedule_work(&req->work); 2027 return 0; 2028 } 2029 EXPORT_SYMBOL_GPL(usb_driver_set_configuration); 2030 2031 /** 2032 * cdc_parse_cdc_header - parse the extra headers present in CDC devices 2033 * @hdr: the place to put the results of the parsing 2034 * @intf: the interface for which parsing is requested 2035 * @buffer: pointer to the extra headers to be parsed 2036 * @buflen: length of the extra headers 2037 * 2038 * This evaluates the extra headers present in CDC devices which 2039 * bind the interfaces for data and control and provide details 2040 * about the capabilities of the device. 2041 * 2042 * Return: number of descriptors parsed or -EINVAL 2043 * if the header is contradictory beyond salvage 2044 */ 2045 2046 int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr, 2047 struct usb_interface *intf, 2048 u8 *buffer, 2049 int buflen) 2050 { 2051 /* duplicates are ignored */ 2052 struct usb_cdc_union_desc *union_header = NULL; 2053 2054 /* duplicates are not tolerated */ 2055 struct usb_cdc_header_desc *header = NULL; 2056 struct usb_cdc_ether_desc *ether = NULL; 2057 struct usb_cdc_mdlm_detail_desc *detail = NULL; 2058 struct usb_cdc_mdlm_desc *desc = NULL; 2059 2060 unsigned int elength; 2061 int cnt = 0; 2062 2063 memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header)); 2064 hdr->phonet_magic_present = false; 2065 while (buflen > 0) { 2066 elength = buffer[0]; 2067 if (!elength) { 2068 dev_err(&intf->dev, "skipping garbage byte\n"); 2069 elength = 1; 2070 goto next_desc; 2071 } 2072 if (buffer[1] != USB_DT_CS_INTERFACE) { 2073 dev_err(&intf->dev, "skipping garbage\n"); 2074 goto next_desc; 2075 } 2076 2077 switch (buffer[2]) { 2078 case USB_CDC_UNION_TYPE: /* we've found it */ 2079 if (elength < sizeof(struct usb_cdc_union_desc)) 2080 goto next_desc; 2081 if (union_header) { 2082 dev_err(&intf->dev, "More than one union descriptor, skipping ...\n"); 2083 goto next_desc; 2084 } 2085 union_header = (struct usb_cdc_union_desc *)buffer; 2086 break; 2087 case USB_CDC_COUNTRY_TYPE: 2088 if (elength < sizeof(struct usb_cdc_country_functional_desc)) 2089 goto next_desc; 2090 hdr->usb_cdc_country_functional_desc = 2091 (struct usb_cdc_country_functional_desc *)buffer; 2092 break; 2093 case USB_CDC_HEADER_TYPE: 2094 if (elength != sizeof(struct usb_cdc_header_desc)) 2095 goto next_desc; 2096 if (header) 2097 return -EINVAL; 2098 header = (struct usb_cdc_header_desc *)buffer; 2099 break; 2100 case USB_CDC_ACM_TYPE: 2101 if (elength < sizeof(struct usb_cdc_acm_descriptor)) 2102 goto next_desc; 2103 hdr->usb_cdc_acm_descriptor = 2104 (struct usb_cdc_acm_descriptor *)buffer; 2105 break; 2106 case USB_CDC_ETHERNET_TYPE: 2107 if (elength != sizeof(struct usb_cdc_ether_desc)) 2108 goto next_desc; 2109 if (ether) 2110 return -EINVAL; 2111 ether = (struct usb_cdc_ether_desc *)buffer; 2112 break; 2113 case USB_CDC_CALL_MANAGEMENT_TYPE: 2114 if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor)) 2115 goto next_desc; 2116 hdr->usb_cdc_call_mgmt_descriptor = 2117 (struct usb_cdc_call_mgmt_descriptor *)buffer; 2118 break; 2119 case USB_CDC_DMM_TYPE: 2120 if (elength < sizeof(struct usb_cdc_dmm_desc)) 2121 goto next_desc; 2122 hdr->usb_cdc_dmm_desc = 2123 (struct usb_cdc_dmm_desc *)buffer; 2124 break; 2125 case USB_CDC_MDLM_TYPE: 2126 if (elength < sizeof(struct usb_cdc_mdlm_desc *)) 2127 goto next_desc; 2128 if (desc) 2129 return -EINVAL; 2130 desc = (struct usb_cdc_mdlm_desc *)buffer; 2131 break; 2132 case USB_CDC_MDLM_DETAIL_TYPE: 2133 if (elength < sizeof(struct usb_cdc_mdlm_detail_desc *)) 2134 goto next_desc; 2135 if (detail) 2136 return -EINVAL; 2137 detail = (struct usb_cdc_mdlm_detail_desc *)buffer; 2138 break; 2139 case USB_CDC_NCM_TYPE: 2140 if (elength < sizeof(struct usb_cdc_ncm_desc)) 2141 goto next_desc; 2142 hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer; 2143 break; 2144 case USB_CDC_MBIM_TYPE: 2145 if (elength < sizeof(struct usb_cdc_mbim_desc)) 2146 goto next_desc; 2147 2148 hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer; 2149 break; 2150 case USB_CDC_MBIM_EXTENDED_TYPE: 2151 if (elength < sizeof(struct usb_cdc_mbim_extended_desc)) 2152 break; 2153 hdr->usb_cdc_mbim_extended_desc = 2154 (struct usb_cdc_mbim_extended_desc *)buffer; 2155 break; 2156 case CDC_PHONET_MAGIC_NUMBER: 2157 hdr->phonet_magic_present = true; 2158 break; 2159 default: 2160 /* 2161 * there are LOTS more CDC descriptors that 2162 * could legitimately be found here. 2163 */ 2164 dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n", 2165 buffer[2], elength); 2166 goto next_desc; 2167 } 2168 cnt++; 2169 next_desc: 2170 buflen -= elength; 2171 buffer += elength; 2172 } 2173 hdr->usb_cdc_union_desc = union_header; 2174 hdr->usb_cdc_header_desc = header; 2175 hdr->usb_cdc_mdlm_detail_desc = detail; 2176 hdr->usb_cdc_mdlm_desc = desc; 2177 hdr->usb_cdc_ether_desc = ether; 2178 return cnt; 2179 } 2180 2181 EXPORT_SYMBOL(cdc_parse_cdc_header); 2182