1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * message.c - synchronous message handling 4 * 5 * Released under the GPLv2 only. 6 */ 7 8 #include <linux/acpi.h> 9 #include <linux/pci.h> /* for scatterlist macros */ 10 #include <linux/usb.h> 11 #include <linux/module.h> 12 #include <linux/slab.h> 13 #include <linux/mm.h> 14 #include <linux/timer.h> 15 #include <linux/ctype.h> 16 #include <linux/nls.h> 17 #include <linux/device.h> 18 #include <linux/scatterlist.h> 19 #include <linux/usb/cdc.h> 20 #include <linux/usb/quirks.h> 21 #include <linux/usb/hcd.h> /* for usbcore internals */ 22 #include <linux/usb/of.h> 23 #include <asm/byteorder.h> 24 25 #include "usb.h" 26 27 static void cancel_async_set_config(struct usb_device *udev); 28 29 struct api_context { 30 struct completion done; 31 int status; 32 }; 33 34 static void usb_api_blocking_completion(struct urb *urb) 35 { 36 struct api_context *ctx = urb->context; 37 38 ctx->status = urb->status; 39 complete(&ctx->done); 40 } 41 42 43 /* 44 * Starts urb and waits for completion or timeout. Note that this call 45 * is NOT interruptible. Many device driver i/o requests should be 46 * interruptible and therefore these drivers should implement their 47 * own interruptible routines. 48 */ 49 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length) 50 { 51 struct api_context ctx; 52 unsigned long expire; 53 int retval; 54 55 init_completion(&ctx.done); 56 urb->context = &ctx; 57 urb->actual_length = 0; 58 retval = usb_submit_urb(urb, GFP_NOIO); 59 if (unlikely(retval)) 60 goto out; 61 62 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT; 63 if (!wait_for_completion_timeout(&ctx.done, expire)) { 64 usb_kill_urb(urb); 65 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status); 66 67 dev_dbg(&urb->dev->dev, 68 "%s timed out on ep%d%s len=%u/%u\n", 69 current->comm, 70 usb_endpoint_num(&urb->ep->desc), 71 usb_urb_dir_in(urb) ? "in" : "out", 72 urb->actual_length, 73 urb->transfer_buffer_length); 74 } else 75 retval = ctx.status; 76 out: 77 if (actual_length) 78 *actual_length = urb->actual_length; 79 80 usb_free_urb(urb); 81 return retval; 82 } 83 84 /*-------------------------------------------------------------------*/ 85 /* returns status (negative) or length (positive) */ 86 static int usb_internal_control_msg(struct usb_device *usb_dev, 87 unsigned int pipe, 88 struct usb_ctrlrequest *cmd, 89 void *data, int len, int timeout) 90 { 91 struct urb *urb; 92 int retv; 93 int length; 94 95 urb = usb_alloc_urb(0, GFP_NOIO); 96 if (!urb) 97 return -ENOMEM; 98 99 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data, 100 len, usb_api_blocking_completion, NULL); 101 102 retv = usb_start_wait_urb(urb, timeout, &length); 103 if (retv < 0) 104 return retv; 105 else 106 return length; 107 } 108 109 /** 110 * usb_control_msg - Builds a control urb, sends it off and waits for completion 111 * @dev: pointer to the usb device to send the message to 112 * @pipe: endpoint "pipe" to send the message to 113 * @request: USB message request value 114 * @requesttype: USB message request type value 115 * @value: USB message value 116 * @index: USB message index value 117 * @data: pointer to the data to send 118 * @size: length in bytes of the data to send 119 * @timeout: time in msecs to wait for the message to complete before timing 120 * out (if 0 the wait is forever) 121 * 122 * Context: task context, might sleep. 123 * 124 * This function sends a simple control message to a specified endpoint and 125 * waits for the message to complete, or timeout. 126 * 127 * Don't use this function from within an interrupt context. If you need 128 * an asynchronous message, or need to send a message from within interrupt 129 * context, use usb_submit_urb(). If a thread in your driver uses this call, 130 * make sure your disconnect() method can wait for it to complete. Since you 131 * don't have a handle on the URB used, you can't cancel the request. 132 * 133 * Return: If successful, the number of bytes transferred. Otherwise, a negative 134 * error number. 135 */ 136 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, 137 __u8 requesttype, __u16 value, __u16 index, void *data, 138 __u16 size, int timeout) 139 { 140 struct usb_ctrlrequest *dr; 141 int ret; 142 143 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO); 144 if (!dr) 145 return -ENOMEM; 146 147 dr->bRequestType = requesttype; 148 dr->bRequest = request; 149 dr->wValue = cpu_to_le16(value); 150 dr->wIndex = cpu_to_le16(index); 151 dr->wLength = cpu_to_le16(size); 152 153 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout); 154 155 /* Linger a bit, prior to the next control message. */ 156 if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG) 157 msleep(200); 158 159 kfree(dr); 160 161 return ret; 162 } 163 EXPORT_SYMBOL_GPL(usb_control_msg); 164 165 /** 166 * usb_control_msg_send - Builds a control "send" message, sends it off and waits for completion 167 * @dev: pointer to the usb device to send the message to 168 * @endpoint: endpoint to send the message to 169 * @request: USB message request value 170 * @requesttype: USB message request type value 171 * @value: USB message value 172 * @index: USB message index value 173 * @driver_data: pointer to the data to send 174 * @size: length in bytes of the data to send 175 * @timeout: time in msecs to wait for the message to complete before timing 176 * out (if 0 the wait is forever) 177 * @memflags: the flags for memory allocation for buffers 178 * 179 * Context: !in_interrupt () 180 * 181 * This function sends a control message to a specified endpoint that is not 182 * expected to fill in a response (i.e. a "send message") and waits for the 183 * message to complete, or timeout. 184 * 185 * Do not use this function from within an interrupt context. If you need 186 * an asynchronous message, or need to send a message from within interrupt 187 * context, use usb_submit_urb(). If a thread in your driver uses this call, 188 * make sure your disconnect() method can wait for it to complete. Since you 189 * don't have a handle on the URB used, you can't cancel the request. 190 * 191 * The data pointer can be made to a reference on the stack, or anywhere else, 192 * as it will not be modified at all. This does not have the restriction that 193 * usb_control_msg() has where the data pointer must be to dynamically allocated 194 * memory (i.e. memory that can be successfully DMAed to a device). 195 * 196 * Return: If successful, 0 is returned, Otherwise, a negative error number. 197 */ 198 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request, 199 __u8 requesttype, __u16 value, __u16 index, 200 const void *driver_data, __u16 size, int timeout, 201 gfp_t memflags) 202 { 203 unsigned int pipe = usb_sndctrlpipe(dev, endpoint); 204 int ret; 205 u8 *data = NULL; 206 207 if (size) { 208 data = kmemdup(driver_data, size, memflags); 209 if (!data) 210 return -ENOMEM; 211 } 212 213 ret = usb_control_msg(dev, pipe, request, requesttype, value, index, 214 data, size, timeout); 215 kfree(data); 216 217 if (ret < 0) 218 return ret; 219 220 return 0; 221 } 222 EXPORT_SYMBOL_GPL(usb_control_msg_send); 223 224 /** 225 * usb_control_msg_recv - Builds a control "receive" message, sends it off and waits for completion 226 * @dev: pointer to the usb device to send the message to 227 * @endpoint: endpoint to send the message to 228 * @request: USB message request value 229 * @requesttype: USB message request type value 230 * @value: USB message value 231 * @index: USB message index value 232 * @driver_data: pointer to the data to be filled in by the message 233 * @size: length in bytes of the data to be received 234 * @timeout: time in msecs to wait for the message to complete before timing 235 * out (if 0 the wait is forever) 236 * @memflags: the flags for memory allocation for buffers 237 * 238 * Context: !in_interrupt () 239 * 240 * This function sends a control message to a specified endpoint that is 241 * expected to fill in a response (i.e. a "receive message") and waits for the 242 * message to complete, or timeout. 243 * 244 * Do not use this function from within an interrupt context. If you need 245 * an asynchronous message, or need to send a message from within interrupt 246 * context, use usb_submit_urb(). If a thread in your driver uses this call, 247 * make sure your disconnect() method can wait for it to complete. Since you 248 * don't have a handle on the URB used, you can't cancel the request. 249 * 250 * The data pointer can be made to a reference on the stack, or anywhere else 251 * that can be successfully written to. This function does not have the 252 * restriction that usb_control_msg() has where the data pointer must be to 253 * dynamically allocated memory (i.e. memory that can be successfully DMAed to a 254 * device). 255 * 256 * The "whole" message must be properly received from the device in order for 257 * this function to be successful. If a device returns less than the expected 258 * amount of data, then the function will fail. Do not use this for messages 259 * where a variable amount of data might be returned. 260 * 261 * Return: If successful, 0 is returned, Otherwise, a negative error number. 262 */ 263 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request, 264 __u8 requesttype, __u16 value, __u16 index, 265 void *driver_data, __u16 size, int timeout, 266 gfp_t memflags) 267 { 268 unsigned int pipe = usb_rcvctrlpipe(dev, endpoint); 269 int ret; 270 u8 *data; 271 272 if (!size || !driver_data) 273 return -EINVAL; 274 275 data = kmalloc(size, memflags); 276 if (!data) 277 return -ENOMEM; 278 279 ret = usb_control_msg(dev, pipe, request, requesttype, value, index, 280 data, size, timeout); 281 282 if (ret < 0) 283 goto exit; 284 285 if (ret == size) { 286 memcpy(driver_data, data, size); 287 ret = 0; 288 } else { 289 ret = -EREMOTEIO; 290 } 291 292 exit: 293 kfree(data); 294 return ret; 295 } 296 EXPORT_SYMBOL_GPL(usb_control_msg_recv); 297 298 /** 299 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion 300 * @usb_dev: pointer to the usb device to send the message to 301 * @pipe: endpoint "pipe" to send the message to 302 * @data: pointer to the data to send 303 * @len: length in bytes of the data to send 304 * @actual_length: pointer to a location to put the actual length transferred 305 * in bytes 306 * @timeout: time in msecs to wait for the message to complete before 307 * timing out (if 0 the wait is forever) 308 * 309 * Context: task context, might sleep. 310 * 311 * This function sends a simple interrupt message to a specified endpoint and 312 * waits for the message to complete, or timeout. 313 * 314 * Don't use this function from within an interrupt context. If you need 315 * an asynchronous message, or need to send a message from within interrupt 316 * context, use usb_submit_urb() If a thread in your driver uses this call, 317 * make sure your disconnect() method can wait for it to complete. Since you 318 * don't have a handle on the URB used, you can't cancel the request. 319 * 320 * Return: 321 * If successful, 0. Otherwise a negative error number. The number of actual 322 * bytes transferred will be stored in the @actual_length parameter. 323 */ 324 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 325 void *data, int len, int *actual_length, int timeout) 326 { 327 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout); 328 } 329 EXPORT_SYMBOL_GPL(usb_interrupt_msg); 330 331 /** 332 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion 333 * @usb_dev: pointer to the usb device to send the message to 334 * @pipe: endpoint "pipe" to send the message to 335 * @data: pointer to the data to send 336 * @len: length in bytes of the data to send 337 * @actual_length: pointer to a location to put the actual length transferred 338 * in bytes 339 * @timeout: time in msecs to wait for the message to complete before 340 * timing out (if 0 the wait is forever) 341 * 342 * Context: task context, might sleep. 343 * 344 * This function sends a simple bulk message to a specified endpoint 345 * and waits for the message to complete, or timeout. 346 * 347 * Don't use this function from within an interrupt context. If you need 348 * an asynchronous message, or need to send a message from within interrupt 349 * context, use usb_submit_urb() If a thread in your driver uses this call, 350 * make sure your disconnect() method can wait for it to complete. Since you 351 * don't have a handle on the URB used, you can't cancel the request. 352 * 353 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl, 354 * users are forced to abuse this routine by using it to submit URBs for 355 * interrupt endpoints. We will take the liberty of creating an interrupt URB 356 * (with the default interval) if the target is an interrupt endpoint. 357 * 358 * Return: 359 * If successful, 0. Otherwise a negative error number. The number of actual 360 * bytes transferred will be stored in the @actual_length parameter. 361 * 362 */ 363 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 364 void *data, int len, int *actual_length, int timeout) 365 { 366 struct urb *urb; 367 struct usb_host_endpoint *ep; 368 369 ep = usb_pipe_endpoint(usb_dev, pipe); 370 if (!ep || len < 0) 371 return -EINVAL; 372 373 urb = usb_alloc_urb(0, GFP_KERNEL); 374 if (!urb) 375 return -ENOMEM; 376 377 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 378 USB_ENDPOINT_XFER_INT) { 379 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30); 380 usb_fill_int_urb(urb, usb_dev, pipe, data, len, 381 usb_api_blocking_completion, NULL, 382 ep->desc.bInterval); 383 } else 384 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len, 385 usb_api_blocking_completion, NULL); 386 387 return usb_start_wait_urb(urb, timeout, actual_length); 388 } 389 EXPORT_SYMBOL_GPL(usb_bulk_msg); 390 391 /*-------------------------------------------------------------------*/ 392 393 static void sg_clean(struct usb_sg_request *io) 394 { 395 if (io->urbs) { 396 while (io->entries--) 397 usb_free_urb(io->urbs[io->entries]); 398 kfree(io->urbs); 399 io->urbs = NULL; 400 } 401 io->dev = NULL; 402 } 403 404 static void sg_complete(struct urb *urb) 405 { 406 unsigned long flags; 407 struct usb_sg_request *io = urb->context; 408 int status = urb->status; 409 410 spin_lock_irqsave(&io->lock, flags); 411 412 /* In 2.5 we require hcds' endpoint queues not to progress after fault 413 * reports, until the completion callback (this!) returns. That lets 414 * device driver code (like this routine) unlink queued urbs first, 415 * if it needs to, since the HC won't work on them at all. So it's 416 * not possible for page N+1 to overwrite page N, and so on. 417 * 418 * That's only for "hard" faults; "soft" faults (unlinks) sometimes 419 * complete before the HCD can get requests away from hardware, 420 * though never during cleanup after a hard fault. 421 */ 422 if (io->status 423 && (io->status != -ECONNRESET 424 || status != -ECONNRESET) 425 && urb->actual_length) { 426 dev_err(io->dev->bus->controller, 427 "dev %s ep%d%s scatterlist error %d/%d\n", 428 io->dev->devpath, 429 usb_endpoint_num(&urb->ep->desc), 430 usb_urb_dir_in(urb) ? "in" : "out", 431 status, io->status); 432 /* BUG (); */ 433 } 434 435 if (io->status == 0 && status && status != -ECONNRESET) { 436 int i, found, retval; 437 438 io->status = status; 439 440 /* the previous urbs, and this one, completed already. 441 * unlink pending urbs so they won't rx/tx bad data. 442 * careful: unlink can sometimes be synchronous... 443 */ 444 spin_unlock_irqrestore(&io->lock, flags); 445 for (i = 0, found = 0; i < io->entries; i++) { 446 if (!io->urbs[i]) 447 continue; 448 if (found) { 449 usb_block_urb(io->urbs[i]); 450 retval = usb_unlink_urb(io->urbs[i]); 451 if (retval != -EINPROGRESS && 452 retval != -ENODEV && 453 retval != -EBUSY && 454 retval != -EIDRM) 455 dev_err(&io->dev->dev, 456 "%s, unlink --> %d\n", 457 __func__, retval); 458 } else if (urb == io->urbs[i]) 459 found = 1; 460 } 461 spin_lock_irqsave(&io->lock, flags); 462 } 463 464 /* on the last completion, signal usb_sg_wait() */ 465 io->bytes += urb->actual_length; 466 io->count--; 467 if (!io->count) 468 complete(&io->complete); 469 470 spin_unlock_irqrestore(&io->lock, flags); 471 } 472 473 474 /** 475 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request 476 * @io: request block being initialized. until usb_sg_wait() returns, 477 * treat this as a pointer to an opaque block of memory, 478 * @dev: the usb device that will send or receive the data 479 * @pipe: endpoint "pipe" used to transfer the data 480 * @period: polling rate for interrupt endpoints, in frames or 481 * (for high speed endpoints) microframes; ignored for bulk 482 * @sg: scatterlist entries 483 * @nents: how many entries in the scatterlist 484 * @length: how many bytes to send from the scatterlist, or zero to 485 * send every byte identified in the list. 486 * @mem_flags: SLAB_* flags affecting memory allocations in this call 487 * 488 * This initializes a scatter/gather request, allocating resources such as 489 * I/O mappings and urb memory (except maybe memory used by USB controller 490 * drivers). 491 * 492 * The request must be issued using usb_sg_wait(), which waits for the I/O to 493 * complete (or to be canceled) and then cleans up all resources allocated by 494 * usb_sg_init(). 495 * 496 * The request may be canceled with usb_sg_cancel(), either before or after 497 * usb_sg_wait() is called. 498 * 499 * Return: Zero for success, else a negative errno value. 500 */ 501 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev, 502 unsigned pipe, unsigned period, struct scatterlist *sg, 503 int nents, size_t length, gfp_t mem_flags) 504 { 505 int i; 506 int urb_flags; 507 int use_sg; 508 509 if (!io || !dev || !sg 510 || usb_pipecontrol(pipe) 511 || usb_pipeisoc(pipe) 512 || nents <= 0) 513 return -EINVAL; 514 515 spin_lock_init(&io->lock); 516 io->dev = dev; 517 io->pipe = pipe; 518 519 if (dev->bus->sg_tablesize > 0) { 520 use_sg = true; 521 io->entries = 1; 522 } else { 523 use_sg = false; 524 io->entries = nents; 525 } 526 527 /* initialize all the urbs we'll use */ 528 io->urbs = kmalloc_array(io->entries, sizeof(*io->urbs), mem_flags); 529 if (!io->urbs) 530 goto nomem; 531 532 urb_flags = URB_NO_INTERRUPT; 533 if (usb_pipein(pipe)) 534 urb_flags |= URB_SHORT_NOT_OK; 535 536 for_each_sg(sg, sg, io->entries, i) { 537 struct urb *urb; 538 unsigned len; 539 540 urb = usb_alloc_urb(0, mem_flags); 541 if (!urb) { 542 io->entries = i; 543 goto nomem; 544 } 545 io->urbs[i] = urb; 546 547 urb->dev = NULL; 548 urb->pipe = pipe; 549 urb->interval = period; 550 urb->transfer_flags = urb_flags; 551 urb->complete = sg_complete; 552 urb->context = io; 553 urb->sg = sg; 554 555 if (use_sg) { 556 /* There is no single transfer buffer */ 557 urb->transfer_buffer = NULL; 558 urb->num_sgs = nents; 559 560 /* A length of zero means transfer the whole sg list */ 561 len = length; 562 if (len == 0) { 563 struct scatterlist *sg2; 564 int j; 565 566 for_each_sg(sg, sg2, nents, j) 567 len += sg2->length; 568 } 569 } else { 570 /* 571 * Some systems can't use DMA; they use PIO instead. 572 * For their sakes, transfer_buffer is set whenever 573 * possible. 574 */ 575 if (!PageHighMem(sg_page(sg))) 576 urb->transfer_buffer = sg_virt(sg); 577 else 578 urb->transfer_buffer = NULL; 579 580 len = sg->length; 581 if (length) { 582 len = min_t(size_t, len, length); 583 length -= len; 584 if (length == 0) 585 io->entries = i + 1; 586 } 587 } 588 urb->transfer_buffer_length = len; 589 } 590 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT; 591 592 /* transaction state */ 593 io->count = io->entries; 594 io->status = 0; 595 io->bytes = 0; 596 init_completion(&io->complete); 597 return 0; 598 599 nomem: 600 sg_clean(io); 601 return -ENOMEM; 602 } 603 EXPORT_SYMBOL_GPL(usb_sg_init); 604 605 /** 606 * usb_sg_wait - synchronously execute scatter/gather request 607 * @io: request block handle, as initialized with usb_sg_init(). 608 * some fields become accessible when this call returns. 609 * 610 * Context: task context, might sleep. 611 * 612 * This function blocks until the specified I/O operation completes. It 613 * leverages the grouping of the related I/O requests to get good transfer 614 * rates, by queueing the requests. At higher speeds, such queuing can 615 * significantly improve USB throughput. 616 * 617 * There are three kinds of completion for this function. 618 * 619 * (1) success, where io->status is zero. The number of io->bytes 620 * transferred is as requested. 621 * (2) error, where io->status is a negative errno value. The number 622 * of io->bytes transferred before the error is usually less 623 * than requested, and can be nonzero. 624 * (3) cancellation, a type of error with status -ECONNRESET that 625 * is initiated by usb_sg_cancel(). 626 * 627 * When this function returns, all memory allocated through usb_sg_init() or 628 * this call will have been freed. The request block parameter may still be 629 * passed to usb_sg_cancel(), or it may be freed. It could also be 630 * reinitialized and then reused. 631 * 632 * Data Transfer Rates: 633 * 634 * Bulk transfers are valid for full or high speed endpoints. 635 * The best full speed data rate is 19 packets of 64 bytes each 636 * per frame, or 1216 bytes per millisecond. 637 * The best high speed data rate is 13 packets of 512 bytes each 638 * per microframe, or 52 KBytes per millisecond. 639 * 640 * The reason to use interrupt transfers through this API would most likely 641 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond 642 * could be transferred. That capability is less useful for low or full 643 * speed interrupt endpoints, which allow at most one packet per millisecond, 644 * of at most 8 or 64 bytes (respectively). 645 * 646 * It is not necessary to call this function to reserve bandwidth for devices 647 * under an xHCI host controller, as the bandwidth is reserved when the 648 * configuration or interface alt setting is selected. 649 */ 650 void usb_sg_wait(struct usb_sg_request *io) 651 { 652 int i; 653 int entries = io->entries; 654 655 /* queue the urbs. */ 656 spin_lock_irq(&io->lock); 657 i = 0; 658 while (i < entries && !io->status) { 659 int retval; 660 661 io->urbs[i]->dev = io->dev; 662 spin_unlock_irq(&io->lock); 663 664 retval = usb_submit_urb(io->urbs[i], GFP_NOIO); 665 666 switch (retval) { 667 /* maybe we retrying will recover */ 668 case -ENXIO: /* hc didn't queue this one */ 669 case -EAGAIN: 670 case -ENOMEM: 671 retval = 0; 672 yield(); 673 break; 674 675 /* no error? continue immediately. 676 * 677 * NOTE: to work better with UHCI (4K I/O buffer may 678 * need 3K of TDs) it may be good to limit how many 679 * URBs are queued at once; N milliseconds? 680 */ 681 case 0: 682 ++i; 683 cpu_relax(); 684 break; 685 686 /* fail any uncompleted urbs */ 687 default: 688 io->urbs[i]->status = retval; 689 dev_dbg(&io->dev->dev, "%s, submit --> %d\n", 690 __func__, retval); 691 usb_sg_cancel(io); 692 } 693 spin_lock_irq(&io->lock); 694 if (retval && (io->status == 0 || io->status == -ECONNRESET)) 695 io->status = retval; 696 } 697 io->count -= entries - i; 698 if (io->count == 0) 699 complete(&io->complete); 700 spin_unlock_irq(&io->lock); 701 702 /* OK, yes, this could be packaged as non-blocking. 703 * So could the submit loop above ... but it's easier to 704 * solve neither problem than to solve both! 705 */ 706 wait_for_completion(&io->complete); 707 708 sg_clean(io); 709 } 710 EXPORT_SYMBOL_GPL(usb_sg_wait); 711 712 /** 713 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait() 714 * @io: request block, initialized with usb_sg_init() 715 * 716 * This stops a request after it has been started by usb_sg_wait(). 717 * It can also prevents one initialized by usb_sg_init() from starting, 718 * so that call just frees resources allocated to the request. 719 */ 720 void usb_sg_cancel(struct usb_sg_request *io) 721 { 722 unsigned long flags; 723 int i, retval; 724 725 spin_lock_irqsave(&io->lock, flags); 726 if (io->status || io->count == 0) { 727 spin_unlock_irqrestore(&io->lock, flags); 728 return; 729 } 730 /* shut everything down */ 731 io->status = -ECONNRESET; 732 io->count++; /* Keep the request alive until we're done */ 733 spin_unlock_irqrestore(&io->lock, flags); 734 735 for (i = io->entries - 1; i >= 0; --i) { 736 usb_block_urb(io->urbs[i]); 737 738 retval = usb_unlink_urb(io->urbs[i]); 739 if (retval != -EINPROGRESS 740 && retval != -ENODEV 741 && retval != -EBUSY 742 && retval != -EIDRM) 743 dev_warn(&io->dev->dev, "%s, unlink --> %d\n", 744 __func__, retval); 745 } 746 747 spin_lock_irqsave(&io->lock, flags); 748 io->count--; 749 if (!io->count) 750 complete(&io->complete); 751 spin_unlock_irqrestore(&io->lock, flags); 752 } 753 EXPORT_SYMBOL_GPL(usb_sg_cancel); 754 755 /*-------------------------------------------------------------------*/ 756 757 /** 758 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request 759 * @dev: the device whose descriptor is being retrieved 760 * @type: the descriptor type (USB_DT_*) 761 * @index: the number of the descriptor 762 * @buf: where to put the descriptor 763 * @size: how big is "buf"? 764 * 765 * Context: task context, might sleep. 766 * 767 * Gets a USB descriptor. Convenience functions exist to simplify 768 * getting some types of descriptors. Use 769 * usb_get_string() or usb_string() for USB_DT_STRING. 770 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG) 771 * are part of the device structure. 772 * In addition to a number of USB-standard descriptors, some 773 * devices also use class-specific or vendor-specific descriptors. 774 * 775 * This call is synchronous, and may not be used in an interrupt context. 776 * 777 * Return: The number of bytes received on success, or else the status code 778 * returned by the underlying usb_control_msg() call. 779 */ 780 int usb_get_descriptor(struct usb_device *dev, unsigned char type, 781 unsigned char index, void *buf, int size) 782 { 783 int i; 784 int result; 785 786 memset(buf, 0, size); /* Make sure we parse really received data */ 787 788 for (i = 0; i < 3; ++i) { 789 /* retry on length 0 or error; some devices are flakey */ 790 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 791 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 792 (type << 8) + index, 0, buf, size, 793 USB_CTRL_GET_TIMEOUT); 794 if (result <= 0 && result != -ETIMEDOUT) 795 continue; 796 if (result > 1 && ((u8 *)buf)[1] != type) { 797 result = -ENODATA; 798 continue; 799 } 800 break; 801 } 802 return result; 803 } 804 EXPORT_SYMBOL_GPL(usb_get_descriptor); 805 806 /** 807 * usb_get_string - gets a string descriptor 808 * @dev: the device whose string descriptor is being retrieved 809 * @langid: code for language chosen (from string descriptor zero) 810 * @index: the number of the descriptor 811 * @buf: where to put the string 812 * @size: how big is "buf"? 813 * 814 * Context: task context, might sleep. 815 * 816 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character, 817 * in little-endian byte order). 818 * The usb_string() function will often be a convenient way to turn 819 * these strings into kernel-printable form. 820 * 821 * Strings may be referenced in device, configuration, interface, or other 822 * descriptors, and could also be used in vendor-specific ways. 823 * 824 * This call is synchronous, and may not be used in an interrupt context. 825 * 826 * Return: The number of bytes received on success, or else the status code 827 * returned by the underlying usb_control_msg() call. 828 */ 829 static int usb_get_string(struct usb_device *dev, unsigned short langid, 830 unsigned char index, void *buf, int size) 831 { 832 int i; 833 int result; 834 835 for (i = 0; i < 3; ++i) { 836 /* retry on length 0 or stall; some devices are flakey */ 837 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 838 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 839 (USB_DT_STRING << 8) + index, langid, buf, size, 840 USB_CTRL_GET_TIMEOUT); 841 if (result == 0 || result == -EPIPE) 842 continue; 843 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) { 844 result = -ENODATA; 845 continue; 846 } 847 break; 848 } 849 return result; 850 } 851 852 static void usb_try_string_workarounds(unsigned char *buf, int *length) 853 { 854 int newlength, oldlength = *length; 855 856 for (newlength = 2; newlength + 1 < oldlength; newlength += 2) 857 if (!isprint(buf[newlength]) || buf[newlength + 1]) 858 break; 859 860 if (newlength > 2) { 861 buf[0] = newlength; 862 *length = newlength; 863 } 864 } 865 866 static int usb_string_sub(struct usb_device *dev, unsigned int langid, 867 unsigned int index, unsigned char *buf) 868 { 869 int rc; 870 871 /* Try to read the string descriptor by asking for the maximum 872 * possible number of bytes */ 873 if (dev->quirks & USB_QUIRK_STRING_FETCH_255) 874 rc = -EIO; 875 else 876 rc = usb_get_string(dev, langid, index, buf, 255); 877 878 /* If that failed try to read the descriptor length, then 879 * ask for just that many bytes */ 880 if (rc < 2) { 881 rc = usb_get_string(dev, langid, index, buf, 2); 882 if (rc == 2) 883 rc = usb_get_string(dev, langid, index, buf, buf[0]); 884 } 885 886 if (rc >= 2) { 887 if (!buf[0] && !buf[1]) 888 usb_try_string_workarounds(buf, &rc); 889 890 /* There might be extra junk at the end of the descriptor */ 891 if (buf[0] < rc) 892 rc = buf[0]; 893 894 rc = rc - (rc & 1); /* force a multiple of two */ 895 } 896 897 if (rc < 2) 898 rc = (rc < 0 ? rc : -EINVAL); 899 900 return rc; 901 } 902 903 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf) 904 { 905 int err; 906 907 if (dev->have_langid) 908 return 0; 909 910 if (dev->string_langid < 0) 911 return -EPIPE; 912 913 err = usb_string_sub(dev, 0, 0, tbuf); 914 915 /* If the string was reported but is malformed, default to english 916 * (0x0409) */ 917 if (err == -ENODATA || (err > 0 && err < 4)) { 918 dev->string_langid = 0x0409; 919 dev->have_langid = 1; 920 dev_err(&dev->dev, 921 "language id specifier not provided by device, defaulting to English\n"); 922 return 0; 923 } 924 925 /* In case of all other errors, we assume the device is not able to 926 * deal with strings at all. Set string_langid to -1 in order to 927 * prevent any string to be retrieved from the device */ 928 if (err < 0) { 929 dev_info(&dev->dev, "string descriptor 0 read error: %d\n", 930 err); 931 dev->string_langid = -1; 932 return -EPIPE; 933 } 934 935 /* always use the first langid listed */ 936 dev->string_langid = tbuf[2] | (tbuf[3] << 8); 937 dev->have_langid = 1; 938 dev_dbg(&dev->dev, "default language 0x%04x\n", 939 dev->string_langid); 940 return 0; 941 } 942 943 /** 944 * usb_string - returns UTF-8 version of a string descriptor 945 * @dev: the device whose string descriptor is being retrieved 946 * @index: the number of the descriptor 947 * @buf: where to put the string 948 * @size: how big is "buf"? 949 * 950 * Context: task context, might sleep. 951 * 952 * This converts the UTF-16LE encoded strings returned by devices, from 953 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones 954 * that are more usable in most kernel contexts. Note that this function 955 * chooses strings in the first language supported by the device. 956 * 957 * This call is synchronous, and may not be used in an interrupt context. 958 * 959 * Return: length of the string (>= 0) or usb_control_msg status (< 0). 960 */ 961 int usb_string(struct usb_device *dev, int index, char *buf, size_t size) 962 { 963 unsigned char *tbuf; 964 int err; 965 966 if (dev->state == USB_STATE_SUSPENDED) 967 return -EHOSTUNREACH; 968 if (size <= 0 || !buf) 969 return -EINVAL; 970 buf[0] = 0; 971 if (index <= 0 || index >= 256) 972 return -EINVAL; 973 tbuf = kmalloc(256, GFP_NOIO); 974 if (!tbuf) 975 return -ENOMEM; 976 977 err = usb_get_langid(dev, tbuf); 978 if (err < 0) 979 goto errout; 980 981 err = usb_string_sub(dev, dev->string_langid, index, tbuf); 982 if (err < 0) 983 goto errout; 984 985 size--; /* leave room for trailing NULL char in output buffer */ 986 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2, 987 UTF16_LITTLE_ENDIAN, buf, size); 988 buf[err] = 0; 989 990 if (tbuf[1] != USB_DT_STRING) 991 dev_dbg(&dev->dev, 992 "wrong descriptor type %02x for string %d (\"%s\")\n", 993 tbuf[1], index, buf); 994 995 errout: 996 kfree(tbuf); 997 return err; 998 } 999 EXPORT_SYMBOL_GPL(usb_string); 1000 1001 /* one UTF-8-encoded 16-bit character has at most three bytes */ 1002 #define MAX_USB_STRING_SIZE (127 * 3 + 1) 1003 1004 /** 1005 * usb_cache_string - read a string descriptor and cache it for later use 1006 * @udev: the device whose string descriptor is being read 1007 * @index: the descriptor index 1008 * 1009 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string, 1010 * or %NULL if the index is 0 or the string could not be read. 1011 */ 1012 char *usb_cache_string(struct usb_device *udev, int index) 1013 { 1014 char *buf; 1015 char *smallbuf = NULL; 1016 int len; 1017 1018 if (index <= 0) 1019 return NULL; 1020 1021 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO); 1022 if (buf) { 1023 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE); 1024 if (len > 0) { 1025 smallbuf = kmalloc(++len, GFP_NOIO); 1026 if (!smallbuf) 1027 return buf; 1028 memcpy(smallbuf, buf, len); 1029 } 1030 kfree(buf); 1031 } 1032 return smallbuf; 1033 } 1034 1035 /* 1036 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore) 1037 * @dev: the device whose device descriptor is being updated 1038 * @size: how much of the descriptor to read 1039 * 1040 * Context: task context, might sleep. 1041 * 1042 * Updates the copy of the device descriptor stored in the device structure, 1043 * which dedicates space for this purpose. 1044 * 1045 * Not exported, only for use by the core. If drivers really want to read 1046 * the device descriptor directly, they can call usb_get_descriptor() with 1047 * type = USB_DT_DEVICE and index = 0. 1048 * 1049 * This call is synchronous, and may not be used in an interrupt context. 1050 * 1051 * Return: The number of bytes received on success, or else the status code 1052 * returned by the underlying usb_control_msg() call. 1053 */ 1054 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size) 1055 { 1056 struct usb_device_descriptor *desc; 1057 int ret; 1058 1059 if (size > sizeof(*desc)) 1060 return -EINVAL; 1061 desc = kmalloc(sizeof(*desc), GFP_NOIO); 1062 if (!desc) 1063 return -ENOMEM; 1064 1065 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size); 1066 if (ret >= 0) 1067 memcpy(&dev->descriptor, desc, size); 1068 kfree(desc); 1069 return ret; 1070 } 1071 1072 /* 1073 * usb_set_isoch_delay - informs the device of the packet transmit delay 1074 * @dev: the device whose delay is to be informed 1075 * Context: task context, might sleep 1076 * 1077 * Since this is an optional request, we don't bother if it fails. 1078 */ 1079 int usb_set_isoch_delay(struct usb_device *dev) 1080 { 1081 /* skip hub devices */ 1082 if (dev->descriptor.bDeviceClass == USB_CLASS_HUB) 1083 return 0; 1084 1085 /* skip non-SS/non-SSP devices */ 1086 if (dev->speed < USB_SPEED_SUPER) 1087 return 0; 1088 1089 return usb_control_msg_send(dev, 0, 1090 USB_REQ_SET_ISOCH_DELAY, 1091 USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE, 1092 dev->hub_delay, 0, NULL, 0, 1093 USB_CTRL_SET_TIMEOUT, 1094 GFP_NOIO); 1095 } 1096 1097 /** 1098 * usb_get_status - issues a GET_STATUS call 1099 * @dev: the device whose status is being checked 1100 * @recip: USB_RECIP_*; for device, interface, or endpoint 1101 * @type: USB_STATUS_TYPE_*; for standard or PTM status types 1102 * @target: zero (for device), else interface or endpoint number 1103 * @data: pointer to two bytes of bitmap data 1104 * 1105 * Context: task context, might sleep. 1106 * 1107 * Returns device, interface, or endpoint status. Normally only of 1108 * interest to see if the device is self powered, or has enabled the 1109 * remote wakeup facility; or whether a bulk or interrupt endpoint 1110 * is halted ("stalled"). 1111 * 1112 * Bits in these status bitmaps are set using the SET_FEATURE request, 1113 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt() 1114 * function should be used to clear halt ("stall") status. 1115 * 1116 * This call is synchronous, and may not be used in an interrupt context. 1117 * 1118 * Returns 0 and the status value in *@data (in host byte order) on success, 1119 * or else the status code from the underlying usb_control_msg() call. 1120 */ 1121 int usb_get_status(struct usb_device *dev, int recip, int type, int target, 1122 void *data) 1123 { 1124 int ret; 1125 void *status; 1126 int length; 1127 1128 switch (type) { 1129 case USB_STATUS_TYPE_STANDARD: 1130 length = 2; 1131 break; 1132 case USB_STATUS_TYPE_PTM: 1133 if (recip != USB_RECIP_DEVICE) 1134 return -EINVAL; 1135 1136 length = 4; 1137 break; 1138 default: 1139 return -EINVAL; 1140 } 1141 1142 status = kmalloc(length, GFP_KERNEL); 1143 if (!status) 1144 return -ENOMEM; 1145 1146 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 1147 USB_REQ_GET_STATUS, USB_DIR_IN | recip, USB_STATUS_TYPE_STANDARD, 1148 target, status, length, USB_CTRL_GET_TIMEOUT); 1149 1150 switch (ret) { 1151 case 4: 1152 if (type != USB_STATUS_TYPE_PTM) { 1153 ret = -EIO; 1154 break; 1155 } 1156 1157 *(u32 *) data = le32_to_cpu(*(__le32 *) status); 1158 ret = 0; 1159 break; 1160 case 2: 1161 if (type != USB_STATUS_TYPE_STANDARD) { 1162 ret = -EIO; 1163 break; 1164 } 1165 1166 *(u16 *) data = le16_to_cpu(*(__le16 *) status); 1167 ret = 0; 1168 break; 1169 default: 1170 ret = -EIO; 1171 } 1172 1173 kfree(status); 1174 return ret; 1175 } 1176 EXPORT_SYMBOL_GPL(usb_get_status); 1177 1178 /** 1179 * usb_clear_halt - tells device to clear endpoint halt/stall condition 1180 * @dev: device whose endpoint is halted 1181 * @pipe: endpoint "pipe" being cleared 1182 * 1183 * Context: task context, might sleep. 1184 * 1185 * This is used to clear halt conditions for bulk and interrupt endpoints, 1186 * as reported by URB completion status. Endpoints that are halted are 1187 * sometimes referred to as being "stalled". Such endpoints are unable 1188 * to transmit or receive data until the halt status is cleared. Any URBs 1189 * queued for such an endpoint should normally be unlinked by the driver 1190 * before clearing the halt condition, as described in sections 5.7.5 1191 * and 5.8.5 of the USB 2.0 spec. 1192 * 1193 * Note that control and isochronous endpoints don't halt, although control 1194 * endpoints report "protocol stall" (for unsupported requests) using the 1195 * same status code used to report a true stall. 1196 * 1197 * This call is synchronous, and may not be used in an interrupt context. 1198 * 1199 * Return: Zero on success, or else the status code returned by the 1200 * underlying usb_control_msg() call. 1201 */ 1202 int usb_clear_halt(struct usb_device *dev, int pipe) 1203 { 1204 int result; 1205 int endp = usb_pipeendpoint(pipe); 1206 1207 if (usb_pipein(pipe)) 1208 endp |= USB_DIR_IN; 1209 1210 /* we don't care if it wasn't halted first. in fact some devices 1211 * (like some ibmcam model 1 units) seem to expect hosts to make 1212 * this request for iso endpoints, which can't halt! 1213 */ 1214 result = usb_control_msg_send(dev, 0, 1215 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 1216 USB_ENDPOINT_HALT, endp, NULL, 0, 1217 USB_CTRL_SET_TIMEOUT, GFP_NOIO); 1218 1219 /* don't un-halt or force to DATA0 except on success */ 1220 if (result) 1221 return result; 1222 1223 /* NOTE: seems like Microsoft and Apple don't bother verifying 1224 * the clear "took", so some devices could lock up if you check... 1225 * such as the Hagiwara FlashGate DUAL. So we won't bother. 1226 * 1227 * NOTE: make sure the logic here doesn't diverge much from 1228 * the copy in usb-storage, for as long as we need two copies. 1229 */ 1230 1231 usb_reset_endpoint(dev, endp); 1232 1233 return 0; 1234 } 1235 EXPORT_SYMBOL_GPL(usb_clear_halt); 1236 1237 static int create_intf_ep_devs(struct usb_interface *intf) 1238 { 1239 struct usb_device *udev = interface_to_usbdev(intf); 1240 struct usb_host_interface *alt = intf->cur_altsetting; 1241 int i; 1242 1243 if (intf->ep_devs_created || intf->unregistering) 1244 return 0; 1245 1246 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1247 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev); 1248 intf->ep_devs_created = 1; 1249 return 0; 1250 } 1251 1252 static void remove_intf_ep_devs(struct usb_interface *intf) 1253 { 1254 struct usb_host_interface *alt = intf->cur_altsetting; 1255 int i; 1256 1257 if (!intf->ep_devs_created) 1258 return; 1259 1260 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1261 usb_remove_ep_devs(&alt->endpoint[i]); 1262 intf->ep_devs_created = 0; 1263 } 1264 1265 /** 1266 * usb_disable_endpoint -- Disable an endpoint by address 1267 * @dev: the device whose endpoint is being disabled 1268 * @epaddr: the endpoint's address. Endpoint number for output, 1269 * endpoint number + USB_DIR_IN for input 1270 * @reset_hardware: flag to erase any endpoint state stored in the 1271 * controller hardware 1272 * 1273 * Disables the endpoint for URB submission and nukes all pending URBs. 1274 * If @reset_hardware is set then also deallocates hcd/hardware state 1275 * for the endpoint. 1276 */ 1277 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr, 1278 bool reset_hardware) 1279 { 1280 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1281 struct usb_host_endpoint *ep; 1282 1283 if (!dev) 1284 return; 1285 1286 if (usb_endpoint_out(epaddr)) { 1287 ep = dev->ep_out[epnum]; 1288 if (reset_hardware && epnum != 0) 1289 dev->ep_out[epnum] = NULL; 1290 } else { 1291 ep = dev->ep_in[epnum]; 1292 if (reset_hardware && epnum != 0) 1293 dev->ep_in[epnum] = NULL; 1294 } 1295 if (ep) { 1296 ep->enabled = 0; 1297 usb_hcd_flush_endpoint(dev, ep); 1298 if (reset_hardware) 1299 usb_hcd_disable_endpoint(dev, ep); 1300 } 1301 } 1302 1303 /** 1304 * usb_reset_endpoint - Reset an endpoint's state. 1305 * @dev: the device whose endpoint is to be reset 1306 * @epaddr: the endpoint's address. Endpoint number for output, 1307 * endpoint number + USB_DIR_IN for input 1308 * 1309 * Resets any host-side endpoint state such as the toggle bit, 1310 * sequence number or current window. 1311 */ 1312 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr) 1313 { 1314 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1315 struct usb_host_endpoint *ep; 1316 1317 if (usb_endpoint_out(epaddr)) 1318 ep = dev->ep_out[epnum]; 1319 else 1320 ep = dev->ep_in[epnum]; 1321 if (ep) 1322 usb_hcd_reset_endpoint(dev, ep); 1323 } 1324 EXPORT_SYMBOL_GPL(usb_reset_endpoint); 1325 1326 1327 /** 1328 * usb_disable_interface -- Disable all endpoints for an interface 1329 * @dev: the device whose interface is being disabled 1330 * @intf: pointer to the interface descriptor 1331 * @reset_hardware: flag to erase any endpoint state stored in the 1332 * controller hardware 1333 * 1334 * Disables all the endpoints for the interface's current altsetting. 1335 */ 1336 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf, 1337 bool reset_hardware) 1338 { 1339 struct usb_host_interface *alt = intf->cur_altsetting; 1340 int i; 1341 1342 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 1343 usb_disable_endpoint(dev, 1344 alt->endpoint[i].desc.bEndpointAddress, 1345 reset_hardware); 1346 } 1347 } 1348 1349 /* 1350 * usb_disable_device_endpoints -- Disable all endpoints for a device 1351 * @dev: the device whose endpoints are being disabled 1352 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. 1353 */ 1354 static void usb_disable_device_endpoints(struct usb_device *dev, int skip_ep0) 1355 { 1356 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1357 int i; 1358 1359 if (hcd->driver->check_bandwidth) { 1360 /* First pass: Cancel URBs, leave endpoint pointers intact. */ 1361 for (i = skip_ep0; i < 16; ++i) { 1362 usb_disable_endpoint(dev, i, false); 1363 usb_disable_endpoint(dev, i + USB_DIR_IN, false); 1364 } 1365 /* Remove endpoints from the host controller internal state */ 1366 mutex_lock(hcd->bandwidth_mutex); 1367 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); 1368 mutex_unlock(hcd->bandwidth_mutex); 1369 } 1370 /* Second pass: remove endpoint pointers */ 1371 for (i = skip_ep0; i < 16; ++i) { 1372 usb_disable_endpoint(dev, i, true); 1373 usb_disable_endpoint(dev, i + USB_DIR_IN, true); 1374 } 1375 } 1376 1377 /** 1378 * usb_disable_device - Disable all the endpoints for a USB device 1379 * @dev: the device whose endpoints are being disabled 1380 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. 1381 * 1382 * Disables all the device's endpoints, potentially including endpoint 0. 1383 * Deallocates hcd/hardware state for the endpoints (nuking all or most 1384 * pending urbs) and usbcore state for the interfaces, so that usbcore 1385 * must usb_set_configuration() before any interfaces could be used. 1386 */ 1387 void usb_disable_device(struct usb_device *dev, int skip_ep0) 1388 { 1389 int i; 1390 1391 /* getting rid of interfaces will disconnect 1392 * any drivers bound to them (a key side effect) 1393 */ 1394 if (dev->actconfig) { 1395 /* 1396 * FIXME: In order to avoid self-deadlock involving the 1397 * bandwidth_mutex, we have to mark all the interfaces 1398 * before unregistering any of them. 1399 */ 1400 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) 1401 dev->actconfig->interface[i]->unregistering = 1; 1402 1403 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1404 struct usb_interface *interface; 1405 1406 /* remove this interface if it has been registered */ 1407 interface = dev->actconfig->interface[i]; 1408 if (!device_is_registered(&interface->dev)) 1409 continue; 1410 dev_dbg(&dev->dev, "unregistering interface %s\n", 1411 dev_name(&interface->dev)); 1412 remove_intf_ep_devs(interface); 1413 device_del(&interface->dev); 1414 } 1415 1416 /* Now that the interfaces are unbound, nobody should 1417 * try to access them. 1418 */ 1419 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1420 put_device(&dev->actconfig->interface[i]->dev); 1421 dev->actconfig->interface[i] = NULL; 1422 } 1423 1424 usb_disable_usb2_hardware_lpm(dev); 1425 usb_unlocked_disable_lpm(dev); 1426 usb_disable_ltm(dev); 1427 1428 dev->actconfig = NULL; 1429 if (dev->state == USB_STATE_CONFIGURED) 1430 usb_set_device_state(dev, USB_STATE_ADDRESS); 1431 } 1432 1433 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__, 1434 skip_ep0 ? "non-ep0" : "all"); 1435 1436 usb_disable_device_endpoints(dev, skip_ep0); 1437 } 1438 1439 /** 1440 * usb_enable_endpoint - Enable an endpoint for USB communications 1441 * @dev: the device whose interface is being enabled 1442 * @ep: the endpoint 1443 * @reset_ep: flag to reset the endpoint state 1444 * 1445 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers. 1446 * For control endpoints, both the input and output sides are handled. 1447 */ 1448 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep, 1449 bool reset_ep) 1450 { 1451 int epnum = usb_endpoint_num(&ep->desc); 1452 int is_out = usb_endpoint_dir_out(&ep->desc); 1453 int is_control = usb_endpoint_xfer_control(&ep->desc); 1454 1455 if (reset_ep) 1456 usb_hcd_reset_endpoint(dev, ep); 1457 if (is_out || is_control) 1458 dev->ep_out[epnum] = ep; 1459 if (!is_out || is_control) 1460 dev->ep_in[epnum] = ep; 1461 ep->enabled = 1; 1462 } 1463 1464 /** 1465 * usb_enable_interface - Enable all the endpoints for an interface 1466 * @dev: the device whose interface is being enabled 1467 * @intf: pointer to the interface descriptor 1468 * @reset_eps: flag to reset the endpoints' state 1469 * 1470 * Enables all the endpoints for the interface's current altsetting. 1471 */ 1472 void usb_enable_interface(struct usb_device *dev, 1473 struct usb_interface *intf, bool reset_eps) 1474 { 1475 struct usb_host_interface *alt = intf->cur_altsetting; 1476 int i; 1477 1478 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1479 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps); 1480 } 1481 1482 /** 1483 * usb_set_interface - Makes a particular alternate setting be current 1484 * @dev: the device whose interface is being updated 1485 * @interface: the interface being updated 1486 * @alternate: the setting being chosen. 1487 * 1488 * Context: task context, might sleep. 1489 * 1490 * This is used to enable data transfers on interfaces that may not 1491 * be enabled by default. Not all devices support such configurability. 1492 * Only the driver bound to an interface may change its setting. 1493 * 1494 * Within any given configuration, each interface may have several 1495 * alternative settings. These are often used to control levels of 1496 * bandwidth consumption. For example, the default setting for a high 1497 * speed interrupt endpoint may not send more than 64 bytes per microframe, 1498 * while interrupt transfers of up to 3KBytes per microframe are legal. 1499 * Also, isochronous endpoints may never be part of an 1500 * interface's default setting. To access such bandwidth, alternate 1501 * interface settings must be made current. 1502 * 1503 * Note that in the Linux USB subsystem, bandwidth associated with 1504 * an endpoint in a given alternate setting is not reserved until an URB 1505 * is submitted that needs that bandwidth. Some other operating systems 1506 * allocate bandwidth early, when a configuration is chosen. 1507 * 1508 * xHCI reserves bandwidth and configures the alternate setting in 1509 * usb_hcd_alloc_bandwidth(). If it fails the original interface altsetting 1510 * may be disabled. Drivers cannot rely on any particular alternate 1511 * setting being in effect after a failure. 1512 * 1513 * This call is synchronous, and may not be used in an interrupt context. 1514 * Also, drivers must not change altsettings while urbs are scheduled for 1515 * endpoints in that interface; all such urbs must first be completed 1516 * (perhaps forced by unlinking). 1517 * 1518 * Return: Zero on success, or else the status code returned by the 1519 * underlying usb_control_msg() call. 1520 */ 1521 int usb_set_interface(struct usb_device *dev, int interface, int alternate) 1522 { 1523 struct usb_interface *iface; 1524 struct usb_host_interface *alt; 1525 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1526 int i, ret, manual = 0; 1527 unsigned int epaddr; 1528 unsigned int pipe; 1529 1530 if (dev->state == USB_STATE_SUSPENDED) 1531 return -EHOSTUNREACH; 1532 1533 iface = usb_ifnum_to_if(dev, interface); 1534 if (!iface) { 1535 dev_dbg(&dev->dev, "selecting invalid interface %d\n", 1536 interface); 1537 return -EINVAL; 1538 } 1539 if (iface->unregistering) 1540 return -ENODEV; 1541 1542 alt = usb_altnum_to_altsetting(iface, alternate); 1543 if (!alt) { 1544 dev_warn(&dev->dev, "selecting invalid altsetting %d\n", 1545 alternate); 1546 return -EINVAL; 1547 } 1548 /* 1549 * usb3 hosts configure the interface in usb_hcd_alloc_bandwidth, 1550 * including freeing dropped endpoint ring buffers. 1551 * Make sure the interface endpoints are flushed before that 1552 */ 1553 usb_disable_interface(dev, iface, false); 1554 1555 /* Make sure we have enough bandwidth for this alternate interface. 1556 * Remove the current alt setting and add the new alt setting. 1557 */ 1558 mutex_lock(hcd->bandwidth_mutex); 1559 /* Disable LPM, and re-enable it once the new alt setting is installed, 1560 * so that the xHCI driver can recalculate the U1/U2 timeouts. 1561 */ 1562 if (usb_disable_lpm(dev)) { 1563 dev_err(&iface->dev, "%s Failed to disable LPM\n", __func__); 1564 mutex_unlock(hcd->bandwidth_mutex); 1565 return -ENOMEM; 1566 } 1567 /* Changing alt-setting also frees any allocated streams */ 1568 for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++) 1569 iface->cur_altsetting->endpoint[i].streams = 0; 1570 1571 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt); 1572 if (ret < 0) { 1573 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n", 1574 alternate); 1575 usb_enable_lpm(dev); 1576 mutex_unlock(hcd->bandwidth_mutex); 1577 return ret; 1578 } 1579 1580 if (dev->quirks & USB_QUIRK_NO_SET_INTF) 1581 ret = -EPIPE; 1582 else 1583 ret = usb_control_msg_send(dev, 0, 1584 USB_REQ_SET_INTERFACE, 1585 USB_RECIP_INTERFACE, alternate, 1586 interface, NULL, 0, 5000, 1587 GFP_NOIO); 1588 1589 /* 9.4.10 says devices don't need this and are free to STALL the 1590 * request if the interface only has one alternate setting. 1591 */ 1592 if (ret == -EPIPE && iface->num_altsetting == 1) { 1593 dev_dbg(&dev->dev, 1594 "manual set_interface for iface %d, alt %d\n", 1595 interface, alternate); 1596 manual = 1; 1597 } else if (ret) { 1598 /* Re-instate the old alt setting */ 1599 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting); 1600 usb_enable_lpm(dev); 1601 mutex_unlock(hcd->bandwidth_mutex); 1602 return ret; 1603 } 1604 mutex_unlock(hcd->bandwidth_mutex); 1605 1606 /* FIXME drivers shouldn't need to replicate/bugfix the logic here 1607 * when they implement async or easily-killable versions of this or 1608 * other "should-be-internal" functions (like clear_halt). 1609 * should hcd+usbcore postprocess control requests? 1610 */ 1611 1612 /* prevent submissions using previous endpoint settings */ 1613 if (iface->cur_altsetting != alt) { 1614 remove_intf_ep_devs(iface); 1615 usb_remove_sysfs_intf_files(iface); 1616 } 1617 usb_disable_interface(dev, iface, true); 1618 1619 iface->cur_altsetting = alt; 1620 1621 /* Now that the interface is installed, re-enable LPM. */ 1622 usb_unlocked_enable_lpm(dev); 1623 1624 /* If the interface only has one altsetting and the device didn't 1625 * accept the request, we attempt to carry out the equivalent action 1626 * by manually clearing the HALT feature for each endpoint in the 1627 * new altsetting. 1628 */ 1629 if (manual) { 1630 for (i = 0; i < alt->desc.bNumEndpoints; i++) { 1631 epaddr = alt->endpoint[i].desc.bEndpointAddress; 1632 pipe = __create_pipe(dev, 1633 USB_ENDPOINT_NUMBER_MASK & epaddr) | 1634 (usb_endpoint_out(epaddr) ? 1635 USB_DIR_OUT : USB_DIR_IN); 1636 1637 usb_clear_halt(dev, pipe); 1638 } 1639 } 1640 1641 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting 1642 * 1643 * Note: 1644 * Despite EP0 is always present in all interfaces/AS, the list of 1645 * endpoints from the descriptor does not contain EP0. Due to its 1646 * omnipresence one might expect EP0 being considered "affected" by 1647 * any SetInterface request and hence assume toggles need to be reset. 1648 * However, EP0 toggles are re-synced for every individual transfer 1649 * during the SETUP stage - hence EP0 toggles are "don't care" here. 1650 * (Likewise, EP0 never "halts" on well designed devices.) 1651 */ 1652 usb_enable_interface(dev, iface, true); 1653 if (device_is_registered(&iface->dev)) { 1654 usb_create_sysfs_intf_files(iface); 1655 create_intf_ep_devs(iface); 1656 } 1657 return 0; 1658 } 1659 EXPORT_SYMBOL_GPL(usb_set_interface); 1660 1661 /** 1662 * usb_reset_configuration - lightweight device reset 1663 * @dev: the device whose configuration is being reset 1664 * 1665 * This issues a standard SET_CONFIGURATION request to the device using 1666 * the current configuration. The effect is to reset most USB-related 1667 * state in the device, including interface altsettings (reset to zero), 1668 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt 1669 * endpoints). Other usbcore state is unchanged, including bindings of 1670 * usb device drivers to interfaces. 1671 * 1672 * Because this affects multiple interfaces, avoid using this with composite 1673 * (multi-interface) devices. Instead, the driver for each interface may 1674 * use usb_set_interface() on the interfaces it claims. Be careful though; 1675 * some devices don't support the SET_INTERFACE request, and others won't 1676 * reset all the interface state (notably endpoint state). Resetting the whole 1677 * configuration would affect other drivers' interfaces. 1678 * 1679 * The caller must own the device lock. 1680 * 1681 * Return: Zero on success, else a negative error code. 1682 * 1683 * If this routine fails the device will probably be in an unusable state 1684 * with endpoints disabled, and interfaces only partially enabled. 1685 */ 1686 int usb_reset_configuration(struct usb_device *dev) 1687 { 1688 int i, retval; 1689 struct usb_host_config *config; 1690 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1691 1692 if (dev->state == USB_STATE_SUSPENDED) 1693 return -EHOSTUNREACH; 1694 1695 /* caller must have locked the device and must own 1696 * the usb bus readlock (so driver bindings are stable); 1697 * calls during probe() are fine 1698 */ 1699 1700 usb_disable_device_endpoints(dev, 1); /* skip ep0*/ 1701 1702 config = dev->actconfig; 1703 retval = 0; 1704 mutex_lock(hcd->bandwidth_mutex); 1705 /* Disable LPM, and re-enable it once the configuration is reset, so 1706 * that the xHCI driver can recalculate the U1/U2 timeouts. 1707 */ 1708 if (usb_disable_lpm(dev)) { 1709 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__); 1710 mutex_unlock(hcd->bandwidth_mutex); 1711 return -ENOMEM; 1712 } 1713 1714 /* xHCI adds all endpoints in usb_hcd_alloc_bandwidth */ 1715 retval = usb_hcd_alloc_bandwidth(dev, config, NULL, NULL); 1716 if (retval < 0) { 1717 usb_enable_lpm(dev); 1718 mutex_unlock(hcd->bandwidth_mutex); 1719 return retval; 1720 } 1721 retval = usb_control_msg_send(dev, 0, USB_REQ_SET_CONFIGURATION, 0, 1722 config->desc.bConfigurationValue, 0, 1723 NULL, 0, USB_CTRL_SET_TIMEOUT, 1724 GFP_NOIO); 1725 if (retval) { 1726 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); 1727 usb_enable_lpm(dev); 1728 mutex_unlock(hcd->bandwidth_mutex); 1729 return retval; 1730 } 1731 mutex_unlock(hcd->bandwidth_mutex); 1732 1733 /* re-init hc/hcd interface/endpoint state */ 1734 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1735 struct usb_interface *intf = config->interface[i]; 1736 struct usb_host_interface *alt; 1737 1738 alt = usb_altnum_to_altsetting(intf, 0); 1739 1740 /* No altsetting 0? We'll assume the first altsetting. 1741 * We could use a GetInterface call, but if a device is 1742 * so non-compliant that it doesn't have altsetting 0 1743 * then I wouldn't trust its reply anyway. 1744 */ 1745 if (!alt) 1746 alt = &intf->altsetting[0]; 1747 1748 if (alt != intf->cur_altsetting) { 1749 remove_intf_ep_devs(intf); 1750 usb_remove_sysfs_intf_files(intf); 1751 } 1752 intf->cur_altsetting = alt; 1753 usb_enable_interface(dev, intf, true); 1754 if (device_is_registered(&intf->dev)) { 1755 usb_create_sysfs_intf_files(intf); 1756 create_intf_ep_devs(intf); 1757 } 1758 } 1759 /* Now that the interfaces are installed, re-enable LPM. */ 1760 usb_unlocked_enable_lpm(dev); 1761 return 0; 1762 } 1763 EXPORT_SYMBOL_GPL(usb_reset_configuration); 1764 1765 static void usb_release_interface(struct device *dev) 1766 { 1767 struct usb_interface *intf = to_usb_interface(dev); 1768 struct usb_interface_cache *intfc = 1769 altsetting_to_usb_interface_cache(intf->altsetting); 1770 1771 kref_put(&intfc->ref, usb_release_interface_cache); 1772 usb_put_dev(interface_to_usbdev(intf)); 1773 of_node_put(dev->of_node); 1774 kfree(intf); 1775 } 1776 1777 /* 1778 * usb_deauthorize_interface - deauthorize an USB interface 1779 * 1780 * @intf: USB interface structure 1781 */ 1782 void usb_deauthorize_interface(struct usb_interface *intf) 1783 { 1784 struct device *dev = &intf->dev; 1785 1786 device_lock(dev->parent); 1787 1788 if (intf->authorized) { 1789 device_lock(dev); 1790 intf->authorized = 0; 1791 device_unlock(dev); 1792 1793 usb_forced_unbind_intf(intf); 1794 } 1795 1796 device_unlock(dev->parent); 1797 } 1798 1799 /* 1800 * usb_authorize_interface - authorize an USB interface 1801 * 1802 * @intf: USB interface structure 1803 */ 1804 void usb_authorize_interface(struct usb_interface *intf) 1805 { 1806 struct device *dev = &intf->dev; 1807 1808 if (!intf->authorized) { 1809 device_lock(dev); 1810 intf->authorized = 1; /* authorize interface */ 1811 device_unlock(dev); 1812 } 1813 } 1814 1815 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env) 1816 { 1817 struct usb_device *usb_dev; 1818 struct usb_interface *intf; 1819 struct usb_host_interface *alt; 1820 1821 intf = to_usb_interface(dev); 1822 usb_dev = interface_to_usbdev(intf); 1823 alt = intf->cur_altsetting; 1824 1825 if (add_uevent_var(env, "INTERFACE=%d/%d/%d", 1826 alt->desc.bInterfaceClass, 1827 alt->desc.bInterfaceSubClass, 1828 alt->desc.bInterfaceProtocol)) 1829 return -ENOMEM; 1830 1831 if (add_uevent_var(env, 1832 "MODALIAS=usb:" 1833 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X", 1834 le16_to_cpu(usb_dev->descriptor.idVendor), 1835 le16_to_cpu(usb_dev->descriptor.idProduct), 1836 le16_to_cpu(usb_dev->descriptor.bcdDevice), 1837 usb_dev->descriptor.bDeviceClass, 1838 usb_dev->descriptor.bDeviceSubClass, 1839 usb_dev->descriptor.bDeviceProtocol, 1840 alt->desc.bInterfaceClass, 1841 alt->desc.bInterfaceSubClass, 1842 alt->desc.bInterfaceProtocol, 1843 alt->desc.bInterfaceNumber)) 1844 return -ENOMEM; 1845 1846 return 0; 1847 } 1848 1849 struct device_type usb_if_device_type = { 1850 .name = "usb_interface", 1851 .release = usb_release_interface, 1852 .uevent = usb_if_uevent, 1853 }; 1854 1855 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev, 1856 struct usb_host_config *config, 1857 u8 inum) 1858 { 1859 struct usb_interface_assoc_descriptor *retval = NULL; 1860 struct usb_interface_assoc_descriptor *intf_assoc; 1861 int first_intf; 1862 int last_intf; 1863 int i; 1864 1865 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) { 1866 intf_assoc = config->intf_assoc[i]; 1867 if (intf_assoc->bInterfaceCount == 0) 1868 continue; 1869 1870 first_intf = intf_assoc->bFirstInterface; 1871 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1); 1872 if (inum >= first_intf && inum <= last_intf) { 1873 if (!retval) 1874 retval = intf_assoc; 1875 else 1876 dev_err(&dev->dev, "Interface #%d referenced" 1877 " by multiple IADs\n", inum); 1878 } 1879 } 1880 1881 return retval; 1882 } 1883 1884 1885 /* 1886 * Internal function to queue a device reset 1887 * See usb_queue_reset_device() for more details 1888 */ 1889 static void __usb_queue_reset_device(struct work_struct *ws) 1890 { 1891 int rc; 1892 struct usb_interface *iface = 1893 container_of(ws, struct usb_interface, reset_ws); 1894 struct usb_device *udev = interface_to_usbdev(iface); 1895 1896 rc = usb_lock_device_for_reset(udev, iface); 1897 if (rc >= 0) { 1898 usb_reset_device(udev); 1899 usb_unlock_device(udev); 1900 } 1901 usb_put_intf(iface); /* Undo _get_ in usb_queue_reset_device() */ 1902 } 1903 1904 1905 /* 1906 * usb_set_configuration - Makes a particular device setting be current 1907 * @dev: the device whose configuration is being updated 1908 * @configuration: the configuration being chosen. 1909 * 1910 * Context: task context, might sleep. Caller holds device lock. 1911 * 1912 * This is used to enable non-default device modes. Not all devices 1913 * use this kind of configurability; many devices only have one 1914 * configuration. 1915 * 1916 * @configuration is the value of the configuration to be installed. 1917 * According to the USB spec (e.g. section 9.1.1.5), configuration values 1918 * must be non-zero; a value of zero indicates that the device in 1919 * unconfigured. However some devices erroneously use 0 as one of their 1920 * configuration values. To help manage such devices, this routine will 1921 * accept @configuration = -1 as indicating the device should be put in 1922 * an unconfigured state. 1923 * 1924 * USB device configurations may affect Linux interoperability, 1925 * power consumption and the functionality available. For example, 1926 * the default configuration is limited to using 100mA of bus power, 1927 * so that when certain device functionality requires more power, 1928 * and the device is bus powered, that functionality should be in some 1929 * non-default device configuration. Other device modes may also be 1930 * reflected as configuration options, such as whether two ISDN 1931 * channels are available independently; and choosing between open 1932 * standard device protocols (like CDC) or proprietary ones. 1933 * 1934 * Note that a non-authorized device (dev->authorized == 0) will only 1935 * be put in unconfigured mode. 1936 * 1937 * Note that USB has an additional level of device configurability, 1938 * associated with interfaces. That configurability is accessed using 1939 * usb_set_interface(). 1940 * 1941 * This call is synchronous. The calling context must be able to sleep, 1942 * must own the device lock, and must not hold the driver model's USB 1943 * bus mutex; usb interface driver probe() methods cannot use this routine. 1944 * 1945 * Returns zero on success, or else the status code returned by the 1946 * underlying call that failed. On successful completion, each interface 1947 * in the original device configuration has been destroyed, and each one 1948 * in the new configuration has been probed by all relevant usb device 1949 * drivers currently known to the kernel. 1950 */ 1951 int usb_set_configuration(struct usb_device *dev, int configuration) 1952 { 1953 int i, ret; 1954 struct usb_host_config *cp = NULL; 1955 struct usb_interface **new_interfaces = NULL; 1956 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1957 int n, nintf; 1958 1959 if (dev->authorized == 0 || configuration == -1) 1960 configuration = 0; 1961 else { 1962 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) { 1963 if (dev->config[i].desc.bConfigurationValue == 1964 configuration) { 1965 cp = &dev->config[i]; 1966 break; 1967 } 1968 } 1969 } 1970 if ((!cp && configuration != 0)) 1971 return -EINVAL; 1972 1973 /* The USB spec says configuration 0 means unconfigured. 1974 * But if a device includes a configuration numbered 0, 1975 * we will accept it as a correctly configured state. 1976 * Use -1 if you really want to unconfigure the device. 1977 */ 1978 if (cp && configuration == 0) 1979 dev_warn(&dev->dev, "config 0 descriptor??\n"); 1980 1981 /* Allocate memory for new interfaces before doing anything else, 1982 * so that if we run out then nothing will have changed. */ 1983 n = nintf = 0; 1984 if (cp) { 1985 nintf = cp->desc.bNumInterfaces; 1986 new_interfaces = kmalloc_array(nintf, sizeof(*new_interfaces), 1987 GFP_NOIO); 1988 if (!new_interfaces) 1989 return -ENOMEM; 1990 1991 for (; n < nintf; ++n) { 1992 new_interfaces[n] = kzalloc( 1993 sizeof(struct usb_interface), 1994 GFP_NOIO); 1995 if (!new_interfaces[n]) { 1996 ret = -ENOMEM; 1997 free_interfaces: 1998 while (--n >= 0) 1999 kfree(new_interfaces[n]); 2000 kfree(new_interfaces); 2001 return ret; 2002 } 2003 } 2004 2005 i = dev->bus_mA - usb_get_max_power(dev, cp); 2006 if (i < 0) 2007 dev_warn(&dev->dev, "new config #%d exceeds power " 2008 "limit by %dmA\n", 2009 configuration, -i); 2010 } 2011 2012 /* Wake up the device so we can send it the Set-Config request */ 2013 ret = usb_autoresume_device(dev); 2014 if (ret) 2015 goto free_interfaces; 2016 2017 /* if it's already configured, clear out old state first. 2018 * getting rid of old interfaces means unbinding their drivers. 2019 */ 2020 if (dev->state != USB_STATE_ADDRESS) 2021 usb_disable_device(dev, 1); /* Skip ep0 */ 2022 2023 /* Get rid of pending async Set-Config requests for this device */ 2024 cancel_async_set_config(dev); 2025 2026 /* Make sure we have bandwidth (and available HCD resources) for this 2027 * configuration. Remove endpoints from the schedule if we're dropping 2028 * this configuration to set configuration 0. After this point, the 2029 * host controller will not allow submissions to dropped endpoints. If 2030 * this call fails, the device state is unchanged. 2031 */ 2032 mutex_lock(hcd->bandwidth_mutex); 2033 /* Disable LPM, and re-enable it once the new configuration is 2034 * installed, so that the xHCI driver can recalculate the U1/U2 2035 * timeouts. 2036 */ 2037 if (dev->actconfig && usb_disable_lpm(dev)) { 2038 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__); 2039 mutex_unlock(hcd->bandwidth_mutex); 2040 ret = -ENOMEM; 2041 goto free_interfaces; 2042 } 2043 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL); 2044 if (ret < 0) { 2045 if (dev->actconfig) 2046 usb_enable_lpm(dev); 2047 mutex_unlock(hcd->bandwidth_mutex); 2048 usb_autosuspend_device(dev); 2049 goto free_interfaces; 2050 } 2051 2052 /* 2053 * Initialize the new interface structures and the 2054 * hc/hcd/usbcore interface/endpoint state. 2055 */ 2056 for (i = 0; i < nintf; ++i) { 2057 struct usb_interface_cache *intfc; 2058 struct usb_interface *intf; 2059 struct usb_host_interface *alt; 2060 u8 ifnum; 2061 2062 cp->interface[i] = intf = new_interfaces[i]; 2063 intfc = cp->intf_cache[i]; 2064 intf->altsetting = intfc->altsetting; 2065 intf->num_altsetting = intfc->num_altsetting; 2066 intf->authorized = !!HCD_INTF_AUTHORIZED(hcd); 2067 kref_get(&intfc->ref); 2068 2069 alt = usb_altnum_to_altsetting(intf, 0); 2070 2071 /* No altsetting 0? We'll assume the first altsetting. 2072 * We could use a GetInterface call, but if a device is 2073 * so non-compliant that it doesn't have altsetting 0 2074 * then I wouldn't trust its reply anyway. 2075 */ 2076 if (!alt) 2077 alt = &intf->altsetting[0]; 2078 2079 ifnum = alt->desc.bInterfaceNumber; 2080 intf->intf_assoc = find_iad(dev, cp, ifnum); 2081 intf->cur_altsetting = alt; 2082 usb_enable_interface(dev, intf, true); 2083 intf->dev.parent = &dev->dev; 2084 if (usb_of_has_combined_node(dev)) { 2085 device_set_of_node_from_dev(&intf->dev, &dev->dev); 2086 } else { 2087 intf->dev.of_node = usb_of_get_interface_node(dev, 2088 configuration, ifnum); 2089 } 2090 ACPI_COMPANION_SET(&intf->dev, ACPI_COMPANION(&dev->dev)); 2091 intf->dev.driver = NULL; 2092 intf->dev.bus = &usb_bus_type; 2093 intf->dev.type = &usb_if_device_type; 2094 intf->dev.groups = usb_interface_groups; 2095 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device); 2096 intf->minor = -1; 2097 device_initialize(&intf->dev); 2098 pm_runtime_no_callbacks(&intf->dev); 2099 dev_set_name(&intf->dev, "%d-%s:%d.%d", dev->bus->busnum, 2100 dev->devpath, configuration, ifnum); 2101 usb_get_dev(dev); 2102 } 2103 kfree(new_interfaces); 2104 2105 ret = usb_control_msg_send(dev, 0, USB_REQ_SET_CONFIGURATION, 0, 2106 configuration, 0, NULL, 0, 2107 USB_CTRL_SET_TIMEOUT, GFP_NOIO); 2108 if (ret && cp) { 2109 /* 2110 * All the old state is gone, so what else can we do? 2111 * The device is probably useless now anyway. 2112 */ 2113 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); 2114 for (i = 0; i < nintf; ++i) { 2115 usb_disable_interface(dev, cp->interface[i], true); 2116 put_device(&cp->interface[i]->dev); 2117 cp->interface[i] = NULL; 2118 } 2119 cp = NULL; 2120 } 2121 2122 dev->actconfig = cp; 2123 mutex_unlock(hcd->bandwidth_mutex); 2124 2125 if (!cp) { 2126 usb_set_device_state(dev, USB_STATE_ADDRESS); 2127 2128 /* Leave LPM disabled while the device is unconfigured. */ 2129 usb_autosuspend_device(dev); 2130 return ret; 2131 } 2132 usb_set_device_state(dev, USB_STATE_CONFIGURED); 2133 2134 if (cp->string == NULL && 2135 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS)) 2136 cp->string = usb_cache_string(dev, cp->desc.iConfiguration); 2137 2138 /* Now that the interfaces are installed, re-enable LPM. */ 2139 usb_unlocked_enable_lpm(dev); 2140 /* Enable LTM if it was turned off by usb_disable_device. */ 2141 usb_enable_ltm(dev); 2142 2143 /* Now that all the interfaces are set up, register them 2144 * to trigger binding of drivers to interfaces. probe() 2145 * routines may install different altsettings and may 2146 * claim() any interfaces not yet bound. Many class drivers 2147 * need that: CDC, audio, video, etc. 2148 */ 2149 for (i = 0; i < nintf; ++i) { 2150 struct usb_interface *intf = cp->interface[i]; 2151 2152 if (intf->dev.of_node && 2153 !of_device_is_available(intf->dev.of_node)) { 2154 dev_info(&dev->dev, "skipping disabled interface %d\n", 2155 intf->cur_altsetting->desc.bInterfaceNumber); 2156 continue; 2157 } 2158 2159 dev_dbg(&dev->dev, 2160 "adding %s (config #%d, interface %d)\n", 2161 dev_name(&intf->dev), configuration, 2162 intf->cur_altsetting->desc.bInterfaceNumber); 2163 device_enable_async_suspend(&intf->dev); 2164 ret = device_add(&intf->dev); 2165 if (ret != 0) { 2166 dev_err(&dev->dev, "device_add(%s) --> %d\n", 2167 dev_name(&intf->dev), ret); 2168 continue; 2169 } 2170 create_intf_ep_devs(intf); 2171 } 2172 2173 usb_autosuspend_device(dev); 2174 return 0; 2175 } 2176 EXPORT_SYMBOL_GPL(usb_set_configuration); 2177 2178 static LIST_HEAD(set_config_list); 2179 static DEFINE_SPINLOCK(set_config_lock); 2180 2181 struct set_config_request { 2182 struct usb_device *udev; 2183 int config; 2184 struct work_struct work; 2185 struct list_head node; 2186 }; 2187 2188 /* Worker routine for usb_driver_set_configuration() */ 2189 static void driver_set_config_work(struct work_struct *work) 2190 { 2191 struct set_config_request *req = 2192 container_of(work, struct set_config_request, work); 2193 struct usb_device *udev = req->udev; 2194 2195 usb_lock_device(udev); 2196 spin_lock(&set_config_lock); 2197 list_del(&req->node); 2198 spin_unlock(&set_config_lock); 2199 2200 if (req->config >= -1) /* Is req still valid? */ 2201 usb_set_configuration(udev, req->config); 2202 usb_unlock_device(udev); 2203 usb_put_dev(udev); 2204 kfree(req); 2205 } 2206 2207 /* Cancel pending Set-Config requests for a device whose configuration 2208 * was just changed 2209 */ 2210 static void cancel_async_set_config(struct usb_device *udev) 2211 { 2212 struct set_config_request *req; 2213 2214 spin_lock(&set_config_lock); 2215 list_for_each_entry(req, &set_config_list, node) { 2216 if (req->udev == udev) 2217 req->config = -999; /* Mark as cancelled */ 2218 } 2219 spin_unlock(&set_config_lock); 2220 } 2221 2222 /** 2223 * usb_driver_set_configuration - Provide a way for drivers to change device configurations 2224 * @udev: the device whose configuration is being updated 2225 * @config: the configuration being chosen. 2226 * Context: In process context, must be able to sleep 2227 * 2228 * Device interface drivers are not allowed to change device configurations. 2229 * This is because changing configurations will destroy the interface the 2230 * driver is bound to and create new ones; it would be like a floppy-disk 2231 * driver telling the computer to replace the floppy-disk drive with a 2232 * tape drive! 2233 * 2234 * Still, in certain specialized circumstances the need may arise. This 2235 * routine gets around the normal restrictions by using a work thread to 2236 * submit the change-config request. 2237 * 2238 * Return: 0 if the request was successfully queued, error code otherwise. 2239 * The caller has no way to know whether the queued request will eventually 2240 * succeed. 2241 */ 2242 int usb_driver_set_configuration(struct usb_device *udev, int config) 2243 { 2244 struct set_config_request *req; 2245 2246 req = kmalloc(sizeof(*req), GFP_KERNEL); 2247 if (!req) 2248 return -ENOMEM; 2249 req->udev = udev; 2250 req->config = config; 2251 INIT_WORK(&req->work, driver_set_config_work); 2252 2253 spin_lock(&set_config_lock); 2254 list_add(&req->node, &set_config_list); 2255 spin_unlock(&set_config_lock); 2256 2257 usb_get_dev(udev); 2258 schedule_work(&req->work); 2259 return 0; 2260 } 2261 EXPORT_SYMBOL_GPL(usb_driver_set_configuration); 2262 2263 /** 2264 * cdc_parse_cdc_header - parse the extra headers present in CDC devices 2265 * @hdr: the place to put the results of the parsing 2266 * @intf: the interface for which parsing is requested 2267 * @buffer: pointer to the extra headers to be parsed 2268 * @buflen: length of the extra headers 2269 * 2270 * This evaluates the extra headers present in CDC devices which 2271 * bind the interfaces for data and control and provide details 2272 * about the capabilities of the device. 2273 * 2274 * Return: number of descriptors parsed or -EINVAL 2275 * if the header is contradictory beyond salvage 2276 */ 2277 2278 int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr, 2279 struct usb_interface *intf, 2280 u8 *buffer, 2281 int buflen) 2282 { 2283 /* duplicates are ignored */ 2284 struct usb_cdc_union_desc *union_header = NULL; 2285 2286 /* duplicates are not tolerated */ 2287 struct usb_cdc_header_desc *header = NULL; 2288 struct usb_cdc_ether_desc *ether = NULL; 2289 struct usb_cdc_mdlm_detail_desc *detail = NULL; 2290 struct usb_cdc_mdlm_desc *desc = NULL; 2291 2292 unsigned int elength; 2293 int cnt = 0; 2294 2295 memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header)); 2296 hdr->phonet_magic_present = false; 2297 while (buflen > 0) { 2298 elength = buffer[0]; 2299 if (!elength) { 2300 dev_err(&intf->dev, "skipping garbage byte\n"); 2301 elength = 1; 2302 goto next_desc; 2303 } 2304 if ((buflen < elength) || (elength < 3)) { 2305 dev_err(&intf->dev, "invalid descriptor buffer length\n"); 2306 break; 2307 } 2308 if (buffer[1] != USB_DT_CS_INTERFACE) { 2309 dev_err(&intf->dev, "skipping garbage\n"); 2310 goto next_desc; 2311 } 2312 2313 switch (buffer[2]) { 2314 case USB_CDC_UNION_TYPE: /* we've found it */ 2315 if (elength < sizeof(struct usb_cdc_union_desc)) 2316 goto next_desc; 2317 if (union_header) { 2318 dev_err(&intf->dev, "More than one union descriptor, skipping ...\n"); 2319 goto next_desc; 2320 } 2321 union_header = (struct usb_cdc_union_desc *)buffer; 2322 break; 2323 case USB_CDC_COUNTRY_TYPE: 2324 if (elength < sizeof(struct usb_cdc_country_functional_desc)) 2325 goto next_desc; 2326 hdr->usb_cdc_country_functional_desc = 2327 (struct usb_cdc_country_functional_desc *)buffer; 2328 break; 2329 case USB_CDC_HEADER_TYPE: 2330 if (elength != sizeof(struct usb_cdc_header_desc)) 2331 goto next_desc; 2332 if (header) 2333 return -EINVAL; 2334 header = (struct usb_cdc_header_desc *)buffer; 2335 break; 2336 case USB_CDC_ACM_TYPE: 2337 if (elength < sizeof(struct usb_cdc_acm_descriptor)) 2338 goto next_desc; 2339 hdr->usb_cdc_acm_descriptor = 2340 (struct usb_cdc_acm_descriptor *)buffer; 2341 break; 2342 case USB_CDC_ETHERNET_TYPE: 2343 if (elength != sizeof(struct usb_cdc_ether_desc)) 2344 goto next_desc; 2345 if (ether) 2346 return -EINVAL; 2347 ether = (struct usb_cdc_ether_desc *)buffer; 2348 break; 2349 case USB_CDC_CALL_MANAGEMENT_TYPE: 2350 if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor)) 2351 goto next_desc; 2352 hdr->usb_cdc_call_mgmt_descriptor = 2353 (struct usb_cdc_call_mgmt_descriptor *)buffer; 2354 break; 2355 case USB_CDC_DMM_TYPE: 2356 if (elength < sizeof(struct usb_cdc_dmm_desc)) 2357 goto next_desc; 2358 hdr->usb_cdc_dmm_desc = 2359 (struct usb_cdc_dmm_desc *)buffer; 2360 break; 2361 case USB_CDC_MDLM_TYPE: 2362 if (elength < sizeof(struct usb_cdc_mdlm_desc)) 2363 goto next_desc; 2364 if (desc) 2365 return -EINVAL; 2366 desc = (struct usb_cdc_mdlm_desc *)buffer; 2367 break; 2368 case USB_CDC_MDLM_DETAIL_TYPE: 2369 if (elength < sizeof(struct usb_cdc_mdlm_detail_desc)) 2370 goto next_desc; 2371 if (detail) 2372 return -EINVAL; 2373 detail = (struct usb_cdc_mdlm_detail_desc *)buffer; 2374 break; 2375 case USB_CDC_NCM_TYPE: 2376 if (elength < sizeof(struct usb_cdc_ncm_desc)) 2377 goto next_desc; 2378 hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer; 2379 break; 2380 case USB_CDC_MBIM_TYPE: 2381 if (elength < sizeof(struct usb_cdc_mbim_desc)) 2382 goto next_desc; 2383 2384 hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer; 2385 break; 2386 case USB_CDC_MBIM_EXTENDED_TYPE: 2387 if (elength < sizeof(struct usb_cdc_mbim_extended_desc)) 2388 break; 2389 hdr->usb_cdc_mbim_extended_desc = 2390 (struct usb_cdc_mbim_extended_desc *)buffer; 2391 break; 2392 case CDC_PHONET_MAGIC_NUMBER: 2393 hdr->phonet_magic_present = true; 2394 break; 2395 default: 2396 /* 2397 * there are LOTS more CDC descriptors that 2398 * could legitimately be found here. 2399 */ 2400 dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n", 2401 buffer[2], elength); 2402 goto next_desc; 2403 } 2404 cnt++; 2405 next_desc: 2406 buflen -= elength; 2407 buffer += elength; 2408 } 2409 hdr->usb_cdc_union_desc = union_header; 2410 hdr->usb_cdc_header_desc = header; 2411 hdr->usb_cdc_mdlm_detail_desc = detail; 2412 hdr->usb_cdc_mdlm_desc = desc; 2413 hdr->usb_cdc_ether_desc = ether; 2414 return cnt; 2415 } 2416 2417 EXPORT_SYMBOL(cdc_parse_cdc_header); 2418