xref: /openbmc/linux/drivers/usb/core/message.c (revision ca79522c)
1 /*
2  * message.c - synchronous message handling
3  */
4 
5 #include <linux/pci.h>	/* for scatterlist macros */
6 #include <linux/usb.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/timer.h>
12 #include <linux/ctype.h>
13 #include <linux/nls.h>
14 #include <linux/device.h>
15 #include <linux/scatterlist.h>
16 #include <linux/usb/quirks.h>
17 #include <linux/usb/hcd.h>	/* for usbcore internals */
18 #include <asm/byteorder.h>
19 
20 #include "usb.h"
21 
22 static void cancel_async_set_config(struct usb_device *udev);
23 
24 struct api_context {
25 	struct completion	done;
26 	int			status;
27 };
28 
29 static void usb_api_blocking_completion(struct urb *urb)
30 {
31 	struct api_context *ctx = urb->context;
32 
33 	ctx->status = urb->status;
34 	complete(&ctx->done);
35 }
36 
37 
38 /*
39  * Starts urb and waits for completion or timeout. Note that this call
40  * is NOT interruptible. Many device driver i/o requests should be
41  * interruptible and therefore these drivers should implement their
42  * own interruptible routines.
43  */
44 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
45 {
46 	struct api_context ctx;
47 	unsigned long expire;
48 	int retval;
49 
50 	init_completion(&ctx.done);
51 	urb->context = &ctx;
52 	urb->actual_length = 0;
53 	retval = usb_submit_urb(urb, GFP_NOIO);
54 	if (unlikely(retval))
55 		goto out;
56 
57 	expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
58 	if (!wait_for_completion_timeout(&ctx.done, expire)) {
59 		usb_kill_urb(urb);
60 		retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
61 
62 		dev_dbg(&urb->dev->dev,
63 			"%s timed out on ep%d%s len=%u/%u\n",
64 			current->comm,
65 			usb_endpoint_num(&urb->ep->desc),
66 			usb_urb_dir_in(urb) ? "in" : "out",
67 			urb->actual_length,
68 			urb->transfer_buffer_length);
69 	} else
70 		retval = ctx.status;
71 out:
72 	if (actual_length)
73 		*actual_length = urb->actual_length;
74 
75 	usb_free_urb(urb);
76 	return retval;
77 }
78 
79 /*-------------------------------------------------------------------*/
80 /* returns status (negative) or length (positive) */
81 static int usb_internal_control_msg(struct usb_device *usb_dev,
82 				    unsigned int pipe,
83 				    struct usb_ctrlrequest *cmd,
84 				    void *data, int len, int timeout)
85 {
86 	struct urb *urb;
87 	int retv;
88 	int length;
89 
90 	urb = usb_alloc_urb(0, GFP_NOIO);
91 	if (!urb)
92 		return -ENOMEM;
93 
94 	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
95 			     len, usb_api_blocking_completion, NULL);
96 
97 	retv = usb_start_wait_urb(urb, timeout, &length);
98 	if (retv < 0)
99 		return retv;
100 	else
101 		return length;
102 }
103 
104 /**
105  * usb_control_msg - Builds a control urb, sends it off and waits for completion
106  * @dev: pointer to the usb device to send the message to
107  * @pipe: endpoint "pipe" to send the message to
108  * @request: USB message request value
109  * @requesttype: USB message request type value
110  * @value: USB message value
111  * @index: USB message index value
112  * @data: pointer to the data to send
113  * @size: length in bytes of the data to send
114  * @timeout: time in msecs to wait for the message to complete before timing
115  *	out (if 0 the wait is forever)
116  *
117  * Context: !in_interrupt ()
118  *
119  * This function sends a simple control message to a specified endpoint and
120  * waits for the message to complete, or timeout.
121  *
122  * If successful, it returns the number of bytes transferred, otherwise a
123  * negative error number.
124  *
125  * Don't use this function from within an interrupt context, like a bottom half
126  * handler.  If you need an asynchronous message, or need to send a message
127  * from within interrupt context, use usb_submit_urb().
128  * If a thread in your driver uses this call, make sure your disconnect()
129  * method can wait for it to complete.  Since you don't have a handle on the
130  * URB used, you can't cancel the request.
131  */
132 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
133 		    __u8 requesttype, __u16 value, __u16 index, void *data,
134 		    __u16 size, int timeout)
135 {
136 	struct usb_ctrlrequest *dr;
137 	int ret;
138 
139 	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
140 	if (!dr)
141 		return -ENOMEM;
142 
143 	dr->bRequestType = requesttype;
144 	dr->bRequest = request;
145 	dr->wValue = cpu_to_le16(value);
146 	dr->wIndex = cpu_to_le16(index);
147 	dr->wLength = cpu_to_le16(size);
148 
149 	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
150 
151 	kfree(dr);
152 
153 	return ret;
154 }
155 EXPORT_SYMBOL_GPL(usb_control_msg);
156 
157 /**
158  * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
159  * @usb_dev: pointer to the usb device to send the message to
160  * @pipe: endpoint "pipe" to send the message to
161  * @data: pointer to the data to send
162  * @len: length in bytes of the data to send
163  * @actual_length: pointer to a location to put the actual length transferred
164  *	in bytes
165  * @timeout: time in msecs to wait for the message to complete before
166  *	timing out (if 0 the wait is forever)
167  *
168  * Context: !in_interrupt ()
169  *
170  * This function sends a simple interrupt message to a specified endpoint and
171  * waits for the message to complete, or timeout.
172  *
173  * If successful, it returns 0, otherwise a negative error number.  The number
174  * of actual bytes transferred will be stored in the actual_length paramater.
175  *
176  * Don't use this function from within an interrupt context, like a bottom half
177  * handler.  If you need an asynchronous message, or need to send a message
178  * from within interrupt context, use usb_submit_urb() If a thread in your
179  * driver uses this call, make sure your disconnect() method can wait for it to
180  * complete.  Since you don't have a handle on the URB used, you can't cancel
181  * the request.
182  */
183 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
184 		      void *data, int len, int *actual_length, int timeout)
185 {
186 	return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
187 }
188 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
189 
190 /**
191  * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
192  * @usb_dev: pointer to the usb device to send the message to
193  * @pipe: endpoint "pipe" to send the message to
194  * @data: pointer to the data to send
195  * @len: length in bytes of the data to send
196  * @actual_length: pointer to a location to put the actual length transferred
197  *	in bytes
198  * @timeout: time in msecs to wait for the message to complete before
199  *	timing out (if 0 the wait is forever)
200  *
201  * Context: !in_interrupt ()
202  *
203  * This function sends a simple bulk message to a specified endpoint
204  * and waits for the message to complete, or timeout.
205  *
206  * If successful, it returns 0, otherwise a negative error number.  The number
207  * of actual bytes transferred will be stored in the actual_length paramater.
208  *
209  * Don't use this function from within an interrupt context, like a bottom half
210  * handler.  If you need an asynchronous message, or need to send a message
211  * from within interrupt context, use usb_submit_urb() If a thread in your
212  * driver uses this call, make sure your disconnect() method can wait for it to
213  * complete.  Since you don't have a handle on the URB used, you can't cancel
214  * the request.
215  *
216  * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
217  * users are forced to abuse this routine by using it to submit URBs for
218  * interrupt endpoints.  We will take the liberty of creating an interrupt URB
219  * (with the default interval) if the target is an interrupt endpoint.
220  */
221 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
222 		 void *data, int len, int *actual_length, int timeout)
223 {
224 	struct urb *urb;
225 	struct usb_host_endpoint *ep;
226 
227 	ep = usb_pipe_endpoint(usb_dev, pipe);
228 	if (!ep || len < 0)
229 		return -EINVAL;
230 
231 	urb = usb_alloc_urb(0, GFP_KERNEL);
232 	if (!urb)
233 		return -ENOMEM;
234 
235 	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
236 			USB_ENDPOINT_XFER_INT) {
237 		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
238 		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
239 				usb_api_blocking_completion, NULL,
240 				ep->desc.bInterval);
241 	} else
242 		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
243 				usb_api_blocking_completion, NULL);
244 
245 	return usb_start_wait_urb(urb, timeout, actual_length);
246 }
247 EXPORT_SYMBOL_GPL(usb_bulk_msg);
248 
249 /*-------------------------------------------------------------------*/
250 
251 static void sg_clean(struct usb_sg_request *io)
252 {
253 	if (io->urbs) {
254 		while (io->entries--)
255 			usb_free_urb(io->urbs [io->entries]);
256 		kfree(io->urbs);
257 		io->urbs = NULL;
258 	}
259 	io->dev = NULL;
260 }
261 
262 static void sg_complete(struct urb *urb)
263 {
264 	struct usb_sg_request *io = urb->context;
265 	int status = urb->status;
266 
267 	spin_lock(&io->lock);
268 
269 	/* In 2.5 we require hcds' endpoint queues not to progress after fault
270 	 * reports, until the completion callback (this!) returns.  That lets
271 	 * device driver code (like this routine) unlink queued urbs first,
272 	 * if it needs to, since the HC won't work on them at all.  So it's
273 	 * not possible for page N+1 to overwrite page N, and so on.
274 	 *
275 	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
276 	 * complete before the HCD can get requests away from hardware,
277 	 * though never during cleanup after a hard fault.
278 	 */
279 	if (io->status
280 			&& (io->status != -ECONNRESET
281 				|| status != -ECONNRESET)
282 			&& urb->actual_length) {
283 		dev_err(io->dev->bus->controller,
284 			"dev %s ep%d%s scatterlist error %d/%d\n",
285 			io->dev->devpath,
286 			usb_endpoint_num(&urb->ep->desc),
287 			usb_urb_dir_in(urb) ? "in" : "out",
288 			status, io->status);
289 		/* BUG (); */
290 	}
291 
292 	if (io->status == 0 && status && status != -ECONNRESET) {
293 		int i, found, retval;
294 
295 		io->status = status;
296 
297 		/* the previous urbs, and this one, completed already.
298 		 * unlink pending urbs so they won't rx/tx bad data.
299 		 * careful: unlink can sometimes be synchronous...
300 		 */
301 		spin_unlock(&io->lock);
302 		for (i = 0, found = 0; i < io->entries; i++) {
303 			if (!io->urbs [i] || !io->urbs [i]->dev)
304 				continue;
305 			if (found) {
306 				retval = usb_unlink_urb(io->urbs [i]);
307 				if (retval != -EINPROGRESS &&
308 				    retval != -ENODEV &&
309 				    retval != -EBUSY &&
310 				    retval != -EIDRM)
311 					dev_err(&io->dev->dev,
312 						"%s, unlink --> %d\n",
313 						__func__, retval);
314 			} else if (urb == io->urbs [i])
315 				found = 1;
316 		}
317 		spin_lock(&io->lock);
318 	}
319 
320 	/* on the last completion, signal usb_sg_wait() */
321 	io->bytes += urb->actual_length;
322 	io->count--;
323 	if (!io->count)
324 		complete(&io->complete);
325 
326 	spin_unlock(&io->lock);
327 }
328 
329 
330 /**
331  * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
332  * @io: request block being initialized.  until usb_sg_wait() returns,
333  *	treat this as a pointer to an opaque block of memory,
334  * @dev: the usb device that will send or receive the data
335  * @pipe: endpoint "pipe" used to transfer the data
336  * @period: polling rate for interrupt endpoints, in frames or
337  * 	(for high speed endpoints) microframes; ignored for bulk
338  * @sg: scatterlist entries
339  * @nents: how many entries in the scatterlist
340  * @length: how many bytes to send from the scatterlist, or zero to
341  * 	send every byte identified in the list.
342  * @mem_flags: SLAB_* flags affecting memory allocations in this call
343  *
344  * Returns zero for success, else a negative errno value.  This initializes a
345  * scatter/gather request, allocating resources such as I/O mappings and urb
346  * memory (except maybe memory used by USB controller drivers).
347  *
348  * The request must be issued using usb_sg_wait(), which waits for the I/O to
349  * complete (or to be canceled) and then cleans up all resources allocated by
350  * usb_sg_init().
351  *
352  * The request may be canceled with usb_sg_cancel(), either before or after
353  * usb_sg_wait() is called.
354  */
355 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
356 		unsigned pipe, unsigned	period, struct scatterlist *sg,
357 		int nents, size_t length, gfp_t mem_flags)
358 {
359 	int i;
360 	int urb_flags;
361 	int use_sg;
362 
363 	if (!io || !dev || !sg
364 			|| usb_pipecontrol(pipe)
365 			|| usb_pipeisoc(pipe)
366 			|| nents <= 0)
367 		return -EINVAL;
368 
369 	spin_lock_init(&io->lock);
370 	io->dev = dev;
371 	io->pipe = pipe;
372 
373 	if (dev->bus->sg_tablesize > 0) {
374 		use_sg = true;
375 		io->entries = 1;
376 	} else {
377 		use_sg = false;
378 		io->entries = nents;
379 	}
380 
381 	/* initialize all the urbs we'll use */
382 	io->urbs = kmalloc(io->entries * sizeof *io->urbs, mem_flags);
383 	if (!io->urbs)
384 		goto nomem;
385 
386 	urb_flags = URB_NO_INTERRUPT;
387 	if (usb_pipein(pipe))
388 		urb_flags |= URB_SHORT_NOT_OK;
389 
390 	for_each_sg(sg, sg, io->entries, i) {
391 		struct urb *urb;
392 		unsigned len;
393 
394 		urb = usb_alloc_urb(0, mem_flags);
395 		if (!urb) {
396 			io->entries = i;
397 			goto nomem;
398 		}
399 		io->urbs[i] = urb;
400 
401 		urb->dev = NULL;
402 		urb->pipe = pipe;
403 		urb->interval = period;
404 		urb->transfer_flags = urb_flags;
405 		urb->complete = sg_complete;
406 		urb->context = io;
407 		urb->sg = sg;
408 
409 		if (use_sg) {
410 			/* There is no single transfer buffer */
411 			urb->transfer_buffer = NULL;
412 			urb->num_sgs = nents;
413 
414 			/* A length of zero means transfer the whole sg list */
415 			len = length;
416 			if (len == 0) {
417 				struct scatterlist	*sg2;
418 				int			j;
419 
420 				for_each_sg(sg, sg2, nents, j)
421 					len += sg2->length;
422 			}
423 		} else {
424 			/*
425 			 * Some systems can't use DMA; they use PIO instead.
426 			 * For their sakes, transfer_buffer is set whenever
427 			 * possible.
428 			 */
429 			if (!PageHighMem(sg_page(sg)))
430 				urb->transfer_buffer = sg_virt(sg);
431 			else
432 				urb->transfer_buffer = NULL;
433 
434 			len = sg->length;
435 			if (length) {
436 				len = min_t(size_t, len, length);
437 				length -= len;
438 				if (length == 0)
439 					io->entries = i + 1;
440 			}
441 		}
442 		urb->transfer_buffer_length = len;
443 	}
444 	io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
445 
446 	/* transaction state */
447 	io->count = io->entries;
448 	io->status = 0;
449 	io->bytes = 0;
450 	init_completion(&io->complete);
451 	return 0;
452 
453 nomem:
454 	sg_clean(io);
455 	return -ENOMEM;
456 }
457 EXPORT_SYMBOL_GPL(usb_sg_init);
458 
459 /**
460  * usb_sg_wait - synchronously execute scatter/gather request
461  * @io: request block handle, as initialized with usb_sg_init().
462  * 	some fields become accessible when this call returns.
463  * Context: !in_interrupt ()
464  *
465  * This function blocks until the specified I/O operation completes.  It
466  * leverages the grouping of the related I/O requests to get good transfer
467  * rates, by queueing the requests.  At higher speeds, such queuing can
468  * significantly improve USB throughput.
469  *
470  * There are three kinds of completion for this function.
471  * (1) success, where io->status is zero.  The number of io->bytes
472  *     transferred is as requested.
473  * (2) error, where io->status is a negative errno value.  The number
474  *     of io->bytes transferred before the error is usually less
475  *     than requested, and can be nonzero.
476  * (3) cancellation, a type of error with status -ECONNRESET that
477  *     is initiated by usb_sg_cancel().
478  *
479  * When this function returns, all memory allocated through usb_sg_init() or
480  * this call will have been freed.  The request block parameter may still be
481  * passed to usb_sg_cancel(), or it may be freed.  It could also be
482  * reinitialized and then reused.
483  *
484  * Data Transfer Rates:
485  *
486  * Bulk transfers are valid for full or high speed endpoints.
487  * The best full speed data rate is 19 packets of 64 bytes each
488  * per frame, or 1216 bytes per millisecond.
489  * The best high speed data rate is 13 packets of 512 bytes each
490  * per microframe, or 52 KBytes per millisecond.
491  *
492  * The reason to use interrupt transfers through this API would most likely
493  * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
494  * could be transferred.  That capability is less useful for low or full
495  * speed interrupt endpoints, which allow at most one packet per millisecond,
496  * of at most 8 or 64 bytes (respectively).
497  *
498  * It is not necessary to call this function to reserve bandwidth for devices
499  * under an xHCI host controller, as the bandwidth is reserved when the
500  * configuration or interface alt setting is selected.
501  */
502 void usb_sg_wait(struct usb_sg_request *io)
503 {
504 	int i;
505 	int entries = io->entries;
506 
507 	/* queue the urbs.  */
508 	spin_lock_irq(&io->lock);
509 	i = 0;
510 	while (i < entries && !io->status) {
511 		int retval;
512 
513 		io->urbs[i]->dev = io->dev;
514 		retval = usb_submit_urb(io->urbs [i], GFP_ATOMIC);
515 
516 		/* after we submit, let completions or cancelations fire;
517 		 * we handshake using io->status.
518 		 */
519 		spin_unlock_irq(&io->lock);
520 		switch (retval) {
521 			/* maybe we retrying will recover */
522 		case -ENXIO:	/* hc didn't queue this one */
523 		case -EAGAIN:
524 		case -ENOMEM:
525 			retval = 0;
526 			yield();
527 			break;
528 
529 			/* no error? continue immediately.
530 			 *
531 			 * NOTE: to work better with UHCI (4K I/O buffer may
532 			 * need 3K of TDs) it may be good to limit how many
533 			 * URBs are queued at once; N milliseconds?
534 			 */
535 		case 0:
536 			++i;
537 			cpu_relax();
538 			break;
539 
540 			/* fail any uncompleted urbs */
541 		default:
542 			io->urbs[i]->status = retval;
543 			dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
544 				__func__, retval);
545 			usb_sg_cancel(io);
546 		}
547 		spin_lock_irq(&io->lock);
548 		if (retval && (io->status == 0 || io->status == -ECONNRESET))
549 			io->status = retval;
550 	}
551 	io->count -= entries - i;
552 	if (io->count == 0)
553 		complete(&io->complete);
554 	spin_unlock_irq(&io->lock);
555 
556 	/* OK, yes, this could be packaged as non-blocking.
557 	 * So could the submit loop above ... but it's easier to
558 	 * solve neither problem than to solve both!
559 	 */
560 	wait_for_completion(&io->complete);
561 
562 	sg_clean(io);
563 }
564 EXPORT_SYMBOL_GPL(usb_sg_wait);
565 
566 /**
567  * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
568  * @io: request block, initialized with usb_sg_init()
569  *
570  * This stops a request after it has been started by usb_sg_wait().
571  * It can also prevents one initialized by usb_sg_init() from starting,
572  * so that call just frees resources allocated to the request.
573  */
574 void usb_sg_cancel(struct usb_sg_request *io)
575 {
576 	unsigned long flags;
577 
578 	spin_lock_irqsave(&io->lock, flags);
579 
580 	/* shut everything down, if it didn't already */
581 	if (!io->status) {
582 		int i;
583 
584 		io->status = -ECONNRESET;
585 		spin_unlock(&io->lock);
586 		for (i = 0; i < io->entries; i++) {
587 			int retval;
588 
589 			if (!io->urbs [i]->dev)
590 				continue;
591 			retval = usb_unlink_urb(io->urbs [i]);
592 			if (retval != -EINPROGRESS
593 					&& retval != -ENODEV
594 					&& retval != -EBUSY
595 					&& retval != -EIDRM)
596 				dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
597 					__func__, retval);
598 		}
599 		spin_lock(&io->lock);
600 	}
601 	spin_unlock_irqrestore(&io->lock, flags);
602 }
603 EXPORT_SYMBOL_GPL(usb_sg_cancel);
604 
605 /*-------------------------------------------------------------------*/
606 
607 /**
608  * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
609  * @dev: the device whose descriptor is being retrieved
610  * @type: the descriptor type (USB_DT_*)
611  * @index: the number of the descriptor
612  * @buf: where to put the descriptor
613  * @size: how big is "buf"?
614  * Context: !in_interrupt ()
615  *
616  * Gets a USB descriptor.  Convenience functions exist to simplify
617  * getting some types of descriptors.  Use
618  * usb_get_string() or usb_string() for USB_DT_STRING.
619  * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
620  * are part of the device structure.
621  * In addition to a number of USB-standard descriptors, some
622  * devices also use class-specific or vendor-specific descriptors.
623  *
624  * This call is synchronous, and may not be used in an interrupt context.
625  *
626  * Returns the number of bytes received on success, or else the status code
627  * returned by the underlying usb_control_msg() call.
628  */
629 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
630 		       unsigned char index, void *buf, int size)
631 {
632 	int i;
633 	int result;
634 
635 	memset(buf, 0, size);	/* Make sure we parse really received data */
636 
637 	for (i = 0; i < 3; ++i) {
638 		/* retry on length 0 or error; some devices are flakey */
639 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
640 				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
641 				(type << 8) + index, 0, buf, size,
642 				USB_CTRL_GET_TIMEOUT);
643 		if (result <= 0 && result != -ETIMEDOUT)
644 			continue;
645 		if (result > 1 && ((u8 *)buf)[1] != type) {
646 			result = -ENODATA;
647 			continue;
648 		}
649 		break;
650 	}
651 	return result;
652 }
653 EXPORT_SYMBOL_GPL(usb_get_descriptor);
654 
655 /**
656  * usb_get_string - gets a string descriptor
657  * @dev: the device whose string descriptor is being retrieved
658  * @langid: code for language chosen (from string descriptor zero)
659  * @index: the number of the descriptor
660  * @buf: where to put the string
661  * @size: how big is "buf"?
662  * Context: !in_interrupt ()
663  *
664  * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
665  * in little-endian byte order).
666  * The usb_string() function will often be a convenient way to turn
667  * these strings into kernel-printable form.
668  *
669  * Strings may be referenced in device, configuration, interface, or other
670  * descriptors, and could also be used in vendor-specific ways.
671  *
672  * This call is synchronous, and may not be used in an interrupt context.
673  *
674  * Returns the number of bytes received on success, or else the status code
675  * returned by the underlying usb_control_msg() call.
676  */
677 static int usb_get_string(struct usb_device *dev, unsigned short langid,
678 			  unsigned char index, void *buf, int size)
679 {
680 	int i;
681 	int result;
682 
683 	for (i = 0; i < 3; ++i) {
684 		/* retry on length 0 or stall; some devices are flakey */
685 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
686 			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
687 			(USB_DT_STRING << 8) + index, langid, buf, size,
688 			USB_CTRL_GET_TIMEOUT);
689 		if (result == 0 || result == -EPIPE)
690 			continue;
691 		if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
692 			result = -ENODATA;
693 			continue;
694 		}
695 		break;
696 	}
697 	return result;
698 }
699 
700 static void usb_try_string_workarounds(unsigned char *buf, int *length)
701 {
702 	int newlength, oldlength = *length;
703 
704 	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
705 		if (!isprint(buf[newlength]) || buf[newlength + 1])
706 			break;
707 
708 	if (newlength > 2) {
709 		buf[0] = newlength;
710 		*length = newlength;
711 	}
712 }
713 
714 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
715 			  unsigned int index, unsigned char *buf)
716 {
717 	int rc;
718 
719 	/* Try to read the string descriptor by asking for the maximum
720 	 * possible number of bytes */
721 	if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
722 		rc = -EIO;
723 	else
724 		rc = usb_get_string(dev, langid, index, buf, 255);
725 
726 	/* If that failed try to read the descriptor length, then
727 	 * ask for just that many bytes */
728 	if (rc < 2) {
729 		rc = usb_get_string(dev, langid, index, buf, 2);
730 		if (rc == 2)
731 			rc = usb_get_string(dev, langid, index, buf, buf[0]);
732 	}
733 
734 	if (rc >= 2) {
735 		if (!buf[0] && !buf[1])
736 			usb_try_string_workarounds(buf, &rc);
737 
738 		/* There might be extra junk at the end of the descriptor */
739 		if (buf[0] < rc)
740 			rc = buf[0];
741 
742 		rc = rc - (rc & 1); /* force a multiple of two */
743 	}
744 
745 	if (rc < 2)
746 		rc = (rc < 0 ? rc : -EINVAL);
747 
748 	return rc;
749 }
750 
751 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
752 {
753 	int err;
754 
755 	if (dev->have_langid)
756 		return 0;
757 
758 	if (dev->string_langid < 0)
759 		return -EPIPE;
760 
761 	err = usb_string_sub(dev, 0, 0, tbuf);
762 
763 	/* If the string was reported but is malformed, default to english
764 	 * (0x0409) */
765 	if (err == -ENODATA || (err > 0 && err < 4)) {
766 		dev->string_langid = 0x0409;
767 		dev->have_langid = 1;
768 		dev_err(&dev->dev,
769 			"string descriptor 0 malformed (err = %d), "
770 			"defaulting to 0x%04x\n",
771 				err, dev->string_langid);
772 		return 0;
773 	}
774 
775 	/* In case of all other errors, we assume the device is not able to
776 	 * deal with strings at all. Set string_langid to -1 in order to
777 	 * prevent any string to be retrieved from the device */
778 	if (err < 0) {
779 		dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
780 					err);
781 		dev->string_langid = -1;
782 		return -EPIPE;
783 	}
784 
785 	/* always use the first langid listed */
786 	dev->string_langid = tbuf[2] | (tbuf[3] << 8);
787 	dev->have_langid = 1;
788 	dev_dbg(&dev->dev, "default language 0x%04x\n",
789 				dev->string_langid);
790 	return 0;
791 }
792 
793 /**
794  * usb_string - returns UTF-8 version of a string descriptor
795  * @dev: the device whose string descriptor is being retrieved
796  * @index: the number of the descriptor
797  * @buf: where to put the string
798  * @size: how big is "buf"?
799  * Context: !in_interrupt ()
800  *
801  * This converts the UTF-16LE encoded strings returned by devices, from
802  * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
803  * that are more usable in most kernel contexts.  Note that this function
804  * chooses strings in the first language supported by the device.
805  *
806  * This call is synchronous, and may not be used in an interrupt context.
807  *
808  * Returns length of the string (>= 0) or usb_control_msg status (< 0).
809  */
810 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
811 {
812 	unsigned char *tbuf;
813 	int err;
814 
815 	if (dev->state == USB_STATE_SUSPENDED)
816 		return -EHOSTUNREACH;
817 	if (size <= 0 || !buf || !index)
818 		return -EINVAL;
819 	buf[0] = 0;
820 	tbuf = kmalloc(256, GFP_NOIO);
821 	if (!tbuf)
822 		return -ENOMEM;
823 
824 	err = usb_get_langid(dev, tbuf);
825 	if (err < 0)
826 		goto errout;
827 
828 	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
829 	if (err < 0)
830 		goto errout;
831 
832 	size--;		/* leave room for trailing NULL char in output buffer */
833 	err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
834 			UTF16_LITTLE_ENDIAN, buf, size);
835 	buf[err] = 0;
836 
837 	if (tbuf[1] != USB_DT_STRING)
838 		dev_dbg(&dev->dev,
839 			"wrong descriptor type %02x for string %d (\"%s\")\n",
840 			tbuf[1], index, buf);
841 
842  errout:
843 	kfree(tbuf);
844 	return err;
845 }
846 EXPORT_SYMBOL_GPL(usb_string);
847 
848 /* one UTF-8-encoded 16-bit character has at most three bytes */
849 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
850 
851 /**
852  * usb_cache_string - read a string descriptor and cache it for later use
853  * @udev: the device whose string descriptor is being read
854  * @index: the descriptor index
855  *
856  * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
857  * or NULL if the index is 0 or the string could not be read.
858  */
859 char *usb_cache_string(struct usb_device *udev, int index)
860 {
861 	char *buf;
862 	char *smallbuf = NULL;
863 	int len;
864 
865 	if (index <= 0)
866 		return NULL;
867 
868 	buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
869 	if (buf) {
870 		len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
871 		if (len > 0) {
872 			smallbuf = kmalloc(++len, GFP_NOIO);
873 			if (!smallbuf)
874 				return buf;
875 			memcpy(smallbuf, buf, len);
876 		}
877 		kfree(buf);
878 	}
879 	return smallbuf;
880 }
881 
882 /*
883  * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
884  * @dev: the device whose device descriptor is being updated
885  * @size: how much of the descriptor to read
886  * Context: !in_interrupt ()
887  *
888  * Updates the copy of the device descriptor stored in the device structure,
889  * which dedicates space for this purpose.
890  *
891  * Not exported, only for use by the core.  If drivers really want to read
892  * the device descriptor directly, they can call usb_get_descriptor() with
893  * type = USB_DT_DEVICE and index = 0.
894  *
895  * This call is synchronous, and may not be used in an interrupt context.
896  *
897  * Returns the number of bytes received on success, or else the status code
898  * returned by the underlying usb_control_msg() call.
899  */
900 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
901 {
902 	struct usb_device_descriptor *desc;
903 	int ret;
904 
905 	if (size > sizeof(*desc))
906 		return -EINVAL;
907 	desc = kmalloc(sizeof(*desc), GFP_NOIO);
908 	if (!desc)
909 		return -ENOMEM;
910 
911 	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
912 	if (ret >= 0)
913 		memcpy(&dev->descriptor, desc, size);
914 	kfree(desc);
915 	return ret;
916 }
917 
918 /**
919  * usb_get_status - issues a GET_STATUS call
920  * @dev: the device whose status is being checked
921  * @type: USB_RECIP_*; for device, interface, or endpoint
922  * @target: zero (for device), else interface or endpoint number
923  * @data: pointer to two bytes of bitmap data
924  * Context: !in_interrupt ()
925  *
926  * Returns device, interface, or endpoint status.  Normally only of
927  * interest to see if the device is self powered, or has enabled the
928  * remote wakeup facility; or whether a bulk or interrupt endpoint
929  * is halted ("stalled").
930  *
931  * Bits in these status bitmaps are set using the SET_FEATURE request,
932  * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
933  * function should be used to clear halt ("stall") status.
934  *
935  * This call is synchronous, and may not be used in an interrupt context.
936  *
937  * Returns the number of bytes received on success, or else the status code
938  * returned by the underlying usb_control_msg() call.
939  */
940 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
941 {
942 	int ret;
943 	u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
944 
945 	if (!status)
946 		return -ENOMEM;
947 
948 	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
949 		USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
950 		sizeof(*status), USB_CTRL_GET_TIMEOUT);
951 
952 	*(u16 *)data = *status;
953 	kfree(status);
954 	return ret;
955 }
956 EXPORT_SYMBOL_GPL(usb_get_status);
957 
958 /**
959  * usb_clear_halt - tells device to clear endpoint halt/stall condition
960  * @dev: device whose endpoint is halted
961  * @pipe: endpoint "pipe" being cleared
962  * Context: !in_interrupt ()
963  *
964  * This is used to clear halt conditions for bulk and interrupt endpoints,
965  * as reported by URB completion status.  Endpoints that are halted are
966  * sometimes referred to as being "stalled".  Such endpoints are unable
967  * to transmit or receive data until the halt status is cleared.  Any URBs
968  * queued for such an endpoint should normally be unlinked by the driver
969  * before clearing the halt condition, as described in sections 5.7.5
970  * and 5.8.5 of the USB 2.0 spec.
971  *
972  * Note that control and isochronous endpoints don't halt, although control
973  * endpoints report "protocol stall" (for unsupported requests) using the
974  * same status code used to report a true stall.
975  *
976  * This call is synchronous, and may not be used in an interrupt context.
977  *
978  * Returns zero on success, or else the status code returned by the
979  * underlying usb_control_msg() call.
980  */
981 int usb_clear_halt(struct usb_device *dev, int pipe)
982 {
983 	int result;
984 	int endp = usb_pipeendpoint(pipe);
985 
986 	if (usb_pipein(pipe))
987 		endp |= USB_DIR_IN;
988 
989 	/* we don't care if it wasn't halted first. in fact some devices
990 	 * (like some ibmcam model 1 units) seem to expect hosts to make
991 	 * this request for iso endpoints, which can't halt!
992 	 */
993 	result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
994 		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
995 		USB_ENDPOINT_HALT, endp, NULL, 0,
996 		USB_CTRL_SET_TIMEOUT);
997 
998 	/* don't un-halt or force to DATA0 except on success */
999 	if (result < 0)
1000 		return result;
1001 
1002 	/* NOTE:  seems like Microsoft and Apple don't bother verifying
1003 	 * the clear "took", so some devices could lock up if you check...
1004 	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
1005 	 *
1006 	 * NOTE:  make sure the logic here doesn't diverge much from
1007 	 * the copy in usb-storage, for as long as we need two copies.
1008 	 */
1009 
1010 	usb_reset_endpoint(dev, endp);
1011 
1012 	return 0;
1013 }
1014 EXPORT_SYMBOL_GPL(usb_clear_halt);
1015 
1016 static int create_intf_ep_devs(struct usb_interface *intf)
1017 {
1018 	struct usb_device *udev = interface_to_usbdev(intf);
1019 	struct usb_host_interface *alt = intf->cur_altsetting;
1020 	int i;
1021 
1022 	if (intf->ep_devs_created || intf->unregistering)
1023 		return 0;
1024 
1025 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1026 		(void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1027 	intf->ep_devs_created = 1;
1028 	return 0;
1029 }
1030 
1031 static void remove_intf_ep_devs(struct usb_interface *intf)
1032 {
1033 	struct usb_host_interface *alt = intf->cur_altsetting;
1034 	int i;
1035 
1036 	if (!intf->ep_devs_created)
1037 		return;
1038 
1039 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1040 		usb_remove_ep_devs(&alt->endpoint[i]);
1041 	intf->ep_devs_created = 0;
1042 }
1043 
1044 /**
1045  * usb_disable_endpoint -- Disable an endpoint by address
1046  * @dev: the device whose endpoint is being disabled
1047  * @epaddr: the endpoint's address.  Endpoint number for output,
1048  *	endpoint number + USB_DIR_IN for input
1049  * @reset_hardware: flag to erase any endpoint state stored in the
1050  *	controller hardware
1051  *
1052  * Disables the endpoint for URB submission and nukes all pending URBs.
1053  * If @reset_hardware is set then also deallocates hcd/hardware state
1054  * for the endpoint.
1055  */
1056 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1057 		bool reset_hardware)
1058 {
1059 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1060 	struct usb_host_endpoint *ep;
1061 
1062 	if (!dev)
1063 		return;
1064 
1065 	if (usb_endpoint_out(epaddr)) {
1066 		ep = dev->ep_out[epnum];
1067 		if (reset_hardware)
1068 			dev->ep_out[epnum] = NULL;
1069 	} else {
1070 		ep = dev->ep_in[epnum];
1071 		if (reset_hardware)
1072 			dev->ep_in[epnum] = NULL;
1073 	}
1074 	if (ep) {
1075 		ep->enabled = 0;
1076 		usb_hcd_flush_endpoint(dev, ep);
1077 		if (reset_hardware)
1078 			usb_hcd_disable_endpoint(dev, ep);
1079 	}
1080 }
1081 
1082 /**
1083  * usb_reset_endpoint - Reset an endpoint's state.
1084  * @dev: the device whose endpoint is to be reset
1085  * @epaddr: the endpoint's address.  Endpoint number for output,
1086  *	endpoint number + USB_DIR_IN for input
1087  *
1088  * Resets any host-side endpoint state such as the toggle bit,
1089  * sequence number or current window.
1090  */
1091 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1092 {
1093 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1094 	struct usb_host_endpoint *ep;
1095 
1096 	if (usb_endpoint_out(epaddr))
1097 		ep = dev->ep_out[epnum];
1098 	else
1099 		ep = dev->ep_in[epnum];
1100 	if (ep)
1101 		usb_hcd_reset_endpoint(dev, ep);
1102 }
1103 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1104 
1105 
1106 /**
1107  * usb_disable_interface -- Disable all endpoints for an interface
1108  * @dev: the device whose interface is being disabled
1109  * @intf: pointer to the interface descriptor
1110  * @reset_hardware: flag to erase any endpoint state stored in the
1111  *	controller hardware
1112  *
1113  * Disables all the endpoints for the interface's current altsetting.
1114  */
1115 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1116 		bool reset_hardware)
1117 {
1118 	struct usb_host_interface *alt = intf->cur_altsetting;
1119 	int i;
1120 
1121 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1122 		usb_disable_endpoint(dev,
1123 				alt->endpoint[i].desc.bEndpointAddress,
1124 				reset_hardware);
1125 	}
1126 }
1127 
1128 /**
1129  * usb_disable_device - Disable all the endpoints for a USB device
1130  * @dev: the device whose endpoints are being disabled
1131  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1132  *
1133  * Disables all the device's endpoints, potentially including endpoint 0.
1134  * Deallocates hcd/hardware state for the endpoints (nuking all or most
1135  * pending urbs) and usbcore state for the interfaces, so that usbcore
1136  * must usb_set_configuration() before any interfaces could be used.
1137  */
1138 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1139 {
1140 	int i;
1141 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1142 
1143 	/* getting rid of interfaces will disconnect
1144 	 * any drivers bound to them (a key side effect)
1145 	 */
1146 	if (dev->actconfig) {
1147 		/*
1148 		 * FIXME: In order to avoid self-deadlock involving the
1149 		 * bandwidth_mutex, we have to mark all the interfaces
1150 		 * before unregistering any of them.
1151 		 */
1152 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1153 			dev->actconfig->interface[i]->unregistering = 1;
1154 
1155 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1156 			struct usb_interface	*interface;
1157 
1158 			/* remove this interface if it has been registered */
1159 			interface = dev->actconfig->interface[i];
1160 			if (!device_is_registered(&interface->dev))
1161 				continue;
1162 			dev_dbg(&dev->dev, "unregistering interface %s\n",
1163 				dev_name(&interface->dev));
1164 			remove_intf_ep_devs(interface);
1165 			device_del(&interface->dev);
1166 		}
1167 
1168 		/* Now that the interfaces are unbound, nobody should
1169 		 * try to access them.
1170 		 */
1171 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1172 			put_device(&dev->actconfig->interface[i]->dev);
1173 			dev->actconfig->interface[i] = NULL;
1174 		}
1175 		usb_unlocked_disable_lpm(dev);
1176 		usb_disable_ltm(dev);
1177 		dev->actconfig = NULL;
1178 		if (dev->state == USB_STATE_CONFIGURED)
1179 			usb_set_device_state(dev, USB_STATE_ADDRESS);
1180 	}
1181 
1182 	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1183 		skip_ep0 ? "non-ep0" : "all");
1184 	if (hcd->driver->check_bandwidth) {
1185 		/* First pass: Cancel URBs, leave endpoint pointers intact. */
1186 		for (i = skip_ep0; i < 16; ++i) {
1187 			usb_disable_endpoint(dev, i, false);
1188 			usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1189 		}
1190 		/* Remove endpoints from the host controller internal state */
1191 		mutex_lock(hcd->bandwidth_mutex);
1192 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1193 		mutex_unlock(hcd->bandwidth_mutex);
1194 		/* Second pass: remove endpoint pointers */
1195 	}
1196 	for (i = skip_ep0; i < 16; ++i) {
1197 		usb_disable_endpoint(dev, i, true);
1198 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1199 	}
1200 }
1201 
1202 /**
1203  * usb_enable_endpoint - Enable an endpoint for USB communications
1204  * @dev: the device whose interface is being enabled
1205  * @ep: the endpoint
1206  * @reset_ep: flag to reset the endpoint state
1207  *
1208  * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1209  * For control endpoints, both the input and output sides are handled.
1210  */
1211 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1212 		bool reset_ep)
1213 {
1214 	int epnum = usb_endpoint_num(&ep->desc);
1215 	int is_out = usb_endpoint_dir_out(&ep->desc);
1216 	int is_control = usb_endpoint_xfer_control(&ep->desc);
1217 
1218 	if (reset_ep)
1219 		usb_hcd_reset_endpoint(dev, ep);
1220 	if (is_out || is_control)
1221 		dev->ep_out[epnum] = ep;
1222 	if (!is_out || is_control)
1223 		dev->ep_in[epnum] = ep;
1224 	ep->enabled = 1;
1225 }
1226 
1227 /**
1228  * usb_enable_interface - Enable all the endpoints for an interface
1229  * @dev: the device whose interface is being enabled
1230  * @intf: pointer to the interface descriptor
1231  * @reset_eps: flag to reset the endpoints' state
1232  *
1233  * Enables all the endpoints for the interface's current altsetting.
1234  */
1235 void usb_enable_interface(struct usb_device *dev,
1236 		struct usb_interface *intf, bool reset_eps)
1237 {
1238 	struct usb_host_interface *alt = intf->cur_altsetting;
1239 	int i;
1240 
1241 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1242 		usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1243 }
1244 
1245 /**
1246  * usb_set_interface - Makes a particular alternate setting be current
1247  * @dev: the device whose interface is being updated
1248  * @interface: the interface being updated
1249  * @alternate: the setting being chosen.
1250  * Context: !in_interrupt ()
1251  *
1252  * This is used to enable data transfers on interfaces that may not
1253  * be enabled by default.  Not all devices support such configurability.
1254  * Only the driver bound to an interface may change its setting.
1255  *
1256  * Within any given configuration, each interface may have several
1257  * alternative settings.  These are often used to control levels of
1258  * bandwidth consumption.  For example, the default setting for a high
1259  * speed interrupt endpoint may not send more than 64 bytes per microframe,
1260  * while interrupt transfers of up to 3KBytes per microframe are legal.
1261  * Also, isochronous endpoints may never be part of an
1262  * interface's default setting.  To access such bandwidth, alternate
1263  * interface settings must be made current.
1264  *
1265  * Note that in the Linux USB subsystem, bandwidth associated with
1266  * an endpoint in a given alternate setting is not reserved until an URB
1267  * is submitted that needs that bandwidth.  Some other operating systems
1268  * allocate bandwidth early, when a configuration is chosen.
1269  *
1270  * This call is synchronous, and may not be used in an interrupt context.
1271  * Also, drivers must not change altsettings while urbs are scheduled for
1272  * endpoints in that interface; all such urbs must first be completed
1273  * (perhaps forced by unlinking).
1274  *
1275  * Returns zero on success, or else the status code returned by the
1276  * underlying usb_control_msg() call.
1277  */
1278 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1279 {
1280 	struct usb_interface *iface;
1281 	struct usb_host_interface *alt;
1282 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1283 	int ret;
1284 	int manual = 0;
1285 	unsigned int epaddr;
1286 	unsigned int pipe;
1287 
1288 	if (dev->state == USB_STATE_SUSPENDED)
1289 		return -EHOSTUNREACH;
1290 
1291 	iface = usb_ifnum_to_if(dev, interface);
1292 	if (!iface) {
1293 		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1294 			interface);
1295 		return -EINVAL;
1296 	}
1297 	if (iface->unregistering)
1298 		return -ENODEV;
1299 
1300 	alt = usb_altnum_to_altsetting(iface, alternate);
1301 	if (!alt) {
1302 		dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1303 			 alternate);
1304 		return -EINVAL;
1305 	}
1306 
1307 	/* Make sure we have enough bandwidth for this alternate interface.
1308 	 * Remove the current alt setting and add the new alt setting.
1309 	 */
1310 	mutex_lock(hcd->bandwidth_mutex);
1311 	/* Disable LPM, and re-enable it once the new alt setting is installed,
1312 	 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1313 	 */
1314 	if (usb_disable_lpm(dev)) {
1315 		dev_err(&iface->dev, "%s Failed to disable LPM\n.", __func__);
1316 		mutex_unlock(hcd->bandwidth_mutex);
1317 		return -ENOMEM;
1318 	}
1319 	ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1320 	if (ret < 0) {
1321 		dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1322 				alternate);
1323 		usb_enable_lpm(dev);
1324 		mutex_unlock(hcd->bandwidth_mutex);
1325 		return ret;
1326 	}
1327 
1328 	if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1329 		ret = -EPIPE;
1330 	else
1331 		ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1332 				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1333 				   alternate, interface, NULL, 0, 5000);
1334 
1335 	/* 9.4.10 says devices don't need this and are free to STALL the
1336 	 * request if the interface only has one alternate setting.
1337 	 */
1338 	if (ret == -EPIPE && iface->num_altsetting == 1) {
1339 		dev_dbg(&dev->dev,
1340 			"manual set_interface for iface %d, alt %d\n",
1341 			interface, alternate);
1342 		manual = 1;
1343 	} else if (ret < 0) {
1344 		/* Re-instate the old alt setting */
1345 		usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1346 		usb_enable_lpm(dev);
1347 		mutex_unlock(hcd->bandwidth_mutex);
1348 		return ret;
1349 	}
1350 	mutex_unlock(hcd->bandwidth_mutex);
1351 
1352 	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1353 	 * when they implement async or easily-killable versions of this or
1354 	 * other "should-be-internal" functions (like clear_halt).
1355 	 * should hcd+usbcore postprocess control requests?
1356 	 */
1357 
1358 	/* prevent submissions using previous endpoint settings */
1359 	if (iface->cur_altsetting != alt) {
1360 		remove_intf_ep_devs(iface);
1361 		usb_remove_sysfs_intf_files(iface);
1362 	}
1363 	usb_disable_interface(dev, iface, true);
1364 
1365 	iface->cur_altsetting = alt;
1366 
1367 	/* Now that the interface is installed, re-enable LPM. */
1368 	usb_unlocked_enable_lpm(dev);
1369 
1370 	/* If the interface only has one altsetting and the device didn't
1371 	 * accept the request, we attempt to carry out the equivalent action
1372 	 * by manually clearing the HALT feature for each endpoint in the
1373 	 * new altsetting.
1374 	 */
1375 	if (manual) {
1376 		int i;
1377 
1378 		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1379 			epaddr = alt->endpoint[i].desc.bEndpointAddress;
1380 			pipe = __create_pipe(dev,
1381 					USB_ENDPOINT_NUMBER_MASK & epaddr) |
1382 					(usb_endpoint_out(epaddr) ?
1383 					USB_DIR_OUT : USB_DIR_IN);
1384 
1385 			usb_clear_halt(dev, pipe);
1386 		}
1387 	}
1388 
1389 	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1390 	 *
1391 	 * Note:
1392 	 * Despite EP0 is always present in all interfaces/AS, the list of
1393 	 * endpoints from the descriptor does not contain EP0. Due to its
1394 	 * omnipresence one might expect EP0 being considered "affected" by
1395 	 * any SetInterface request and hence assume toggles need to be reset.
1396 	 * However, EP0 toggles are re-synced for every individual transfer
1397 	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1398 	 * (Likewise, EP0 never "halts" on well designed devices.)
1399 	 */
1400 	usb_enable_interface(dev, iface, true);
1401 	if (device_is_registered(&iface->dev)) {
1402 		usb_create_sysfs_intf_files(iface);
1403 		create_intf_ep_devs(iface);
1404 	}
1405 	return 0;
1406 }
1407 EXPORT_SYMBOL_GPL(usb_set_interface);
1408 
1409 /**
1410  * usb_reset_configuration - lightweight device reset
1411  * @dev: the device whose configuration is being reset
1412  *
1413  * This issues a standard SET_CONFIGURATION request to the device using
1414  * the current configuration.  The effect is to reset most USB-related
1415  * state in the device, including interface altsettings (reset to zero),
1416  * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1417  * endpoints).  Other usbcore state is unchanged, including bindings of
1418  * usb device drivers to interfaces.
1419  *
1420  * Because this affects multiple interfaces, avoid using this with composite
1421  * (multi-interface) devices.  Instead, the driver for each interface may
1422  * use usb_set_interface() on the interfaces it claims.  Be careful though;
1423  * some devices don't support the SET_INTERFACE request, and others won't
1424  * reset all the interface state (notably endpoint state).  Resetting the whole
1425  * configuration would affect other drivers' interfaces.
1426  *
1427  * The caller must own the device lock.
1428  *
1429  * Returns zero on success, else a negative error code.
1430  */
1431 int usb_reset_configuration(struct usb_device *dev)
1432 {
1433 	int			i, retval;
1434 	struct usb_host_config	*config;
1435 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1436 
1437 	if (dev->state == USB_STATE_SUSPENDED)
1438 		return -EHOSTUNREACH;
1439 
1440 	/* caller must have locked the device and must own
1441 	 * the usb bus readlock (so driver bindings are stable);
1442 	 * calls during probe() are fine
1443 	 */
1444 
1445 	for (i = 1; i < 16; ++i) {
1446 		usb_disable_endpoint(dev, i, true);
1447 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1448 	}
1449 
1450 	config = dev->actconfig;
1451 	retval = 0;
1452 	mutex_lock(hcd->bandwidth_mutex);
1453 	/* Disable LPM, and re-enable it once the configuration is reset, so
1454 	 * that the xHCI driver can recalculate the U1/U2 timeouts.
1455 	 */
1456 	if (usb_disable_lpm(dev)) {
1457 		dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1458 		mutex_unlock(hcd->bandwidth_mutex);
1459 		return -ENOMEM;
1460 	}
1461 	/* Make sure we have enough bandwidth for each alternate setting 0 */
1462 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1463 		struct usb_interface *intf = config->interface[i];
1464 		struct usb_host_interface *alt;
1465 
1466 		alt = usb_altnum_to_altsetting(intf, 0);
1467 		if (!alt)
1468 			alt = &intf->altsetting[0];
1469 		if (alt != intf->cur_altsetting)
1470 			retval = usb_hcd_alloc_bandwidth(dev, NULL,
1471 					intf->cur_altsetting, alt);
1472 		if (retval < 0)
1473 			break;
1474 	}
1475 	/* If not, reinstate the old alternate settings */
1476 	if (retval < 0) {
1477 reset_old_alts:
1478 		for (i--; i >= 0; i--) {
1479 			struct usb_interface *intf = config->interface[i];
1480 			struct usb_host_interface *alt;
1481 
1482 			alt = usb_altnum_to_altsetting(intf, 0);
1483 			if (!alt)
1484 				alt = &intf->altsetting[0];
1485 			if (alt != intf->cur_altsetting)
1486 				usb_hcd_alloc_bandwidth(dev, NULL,
1487 						alt, intf->cur_altsetting);
1488 		}
1489 		usb_enable_lpm(dev);
1490 		mutex_unlock(hcd->bandwidth_mutex);
1491 		return retval;
1492 	}
1493 	retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1494 			USB_REQ_SET_CONFIGURATION, 0,
1495 			config->desc.bConfigurationValue, 0,
1496 			NULL, 0, USB_CTRL_SET_TIMEOUT);
1497 	if (retval < 0)
1498 		goto reset_old_alts;
1499 	mutex_unlock(hcd->bandwidth_mutex);
1500 
1501 	/* re-init hc/hcd interface/endpoint state */
1502 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1503 		struct usb_interface *intf = config->interface[i];
1504 		struct usb_host_interface *alt;
1505 
1506 		alt = usb_altnum_to_altsetting(intf, 0);
1507 
1508 		/* No altsetting 0?  We'll assume the first altsetting.
1509 		 * We could use a GetInterface call, but if a device is
1510 		 * so non-compliant that it doesn't have altsetting 0
1511 		 * then I wouldn't trust its reply anyway.
1512 		 */
1513 		if (!alt)
1514 			alt = &intf->altsetting[0];
1515 
1516 		if (alt != intf->cur_altsetting) {
1517 			remove_intf_ep_devs(intf);
1518 			usb_remove_sysfs_intf_files(intf);
1519 		}
1520 		intf->cur_altsetting = alt;
1521 		usb_enable_interface(dev, intf, true);
1522 		if (device_is_registered(&intf->dev)) {
1523 			usb_create_sysfs_intf_files(intf);
1524 			create_intf_ep_devs(intf);
1525 		}
1526 	}
1527 	/* Now that the interfaces are installed, re-enable LPM. */
1528 	usb_unlocked_enable_lpm(dev);
1529 	return 0;
1530 }
1531 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1532 
1533 static void usb_release_interface(struct device *dev)
1534 {
1535 	struct usb_interface *intf = to_usb_interface(dev);
1536 	struct usb_interface_cache *intfc =
1537 			altsetting_to_usb_interface_cache(intf->altsetting);
1538 
1539 	kref_put(&intfc->ref, usb_release_interface_cache);
1540 	kfree(intf);
1541 }
1542 
1543 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1544 {
1545 	struct usb_device *usb_dev;
1546 	struct usb_interface *intf;
1547 	struct usb_host_interface *alt;
1548 
1549 	intf = to_usb_interface(dev);
1550 	usb_dev = interface_to_usbdev(intf);
1551 	alt = intf->cur_altsetting;
1552 
1553 	if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1554 		   alt->desc.bInterfaceClass,
1555 		   alt->desc.bInterfaceSubClass,
1556 		   alt->desc.bInterfaceProtocol))
1557 		return -ENOMEM;
1558 
1559 	if (add_uevent_var(env,
1560 		   "MODALIAS=usb:"
1561 		   "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1562 		   le16_to_cpu(usb_dev->descriptor.idVendor),
1563 		   le16_to_cpu(usb_dev->descriptor.idProduct),
1564 		   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1565 		   usb_dev->descriptor.bDeviceClass,
1566 		   usb_dev->descriptor.bDeviceSubClass,
1567 		   usb_dev->descriptor.bDeviceProtocol,
1568 		   alt->desc.bInterfaceClass,
1569 		   alt->desc.bInterfaceSubClass,
1570 		   alt->desc.bInterfaceProtocol,
1571 		   alt->desc.bInterfaceNumber))
1572 		return -ENOMEM;
1573 
1574 	return 0;
1575 }
1576 
1577 struct device_type usb_if_device_type = {
1578 	.name =		"usb_interface",
1579 	.release =	usb_release_interface,
1580 	.uevent =	usb_if_uevent,
1581 };
1582 
1583 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1584 						struct usb_host_config *config,
1585 						u8 inum)
1586 {
1587 	struct usb_interface_assoc_descriptor *retval = NULL;
1588 	struct usb_interface_assoc_descriptor *intf_assoc;
1589 	int first_intf;
1590 	int last_intf;
1591 	int i;
1592 
1593 	for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1594 		intf_assoc = config->intf_assoc[i];
1595 		if (intf_assoc->bInterfaceCount == 0)
1596 			continue;
1597 
1598 		first_intf = intf_assoc->bFirstInterface;
1599 		last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1600 		if (inum >= first_intf && inum <= last_intf) {
1601 			if (!retval)
1602 				retval = intf_assoc;
1603 			else
1604 				dev_err(&dev->dev, "Interface #%d referenced"
1605 					" by multiple IADs\n", inum);
1606 		}
1607 	}
1608 
1609 	return retval;
1610 }
1611 
1612 
1613 /*
1614  * Internal function to queue a device reset
1615  *
1616  * This is initialized into the workstruct in 'struct
1617  * usb_device->reset_ws' that is launched by
1618  * message.c:usb_set_configuration() when initializing each 'struct
1619  * usb_interface'.
1620  *
1621  * It is safe to get the USB device without reference counts because
1622  * the life cycle of @iface is bound to the life cycle of @udev. Then,
1623  * this function will be ran only if @iface is alive (and before
1624  * freeing it any scheduled instances of it will have been cancelled).
1625  *
1626  * We need to set a flag (usb_dev->reset_running) because when we call
1627  * the reset, the interfaces might be unbound. The current interface
1628  * cannot try to remove the queued work as it would cause a deadlock
1629  * (you cannot remove your work from within your executing
1630  * workqueue). This flag lets it know, so that
1631  * usb_cancel_queued_reset() doesn't try to do it.
1632  *
1633  * See usb_queue_reset_device() for more details
1634  */
1635 static void __usb_queue_reset_device(struct work_struct *ws)
1636 {
1637 	int rc;
1638 	struct usb_interface *iface =
1639 		container_of(ws, struct usb_interface, reset_ws);
1640 	struct usb_device *udev = interface_to_usbdev(iface);
1641 
1642 	rc = usb_lock_device_for_reset(udev, iface);
1643 	if (rc >= 0) {
1644 		iface->reset_running = 1;
1645 		usb_reset_device(udev);
1646 		iface->reset_running = 0;
1647 		usb_unlock_device(udev);
1648 	}
1649 }
1650 
1651 
1652 /*
1653  * usb_set_configuration - Makes a particular device setting be current
1654  * @dev: the device whose configuration is being updated
1655  * @configuration: the configuration being chosen.
1656  * Context: !in_interrupt(), caller owns the device lock
1657  *
1658  * This is used to enable non-default device modes.  Not all devices
1659  * use this kind of configurability; many devices only have one
1660  * configuration.
1661  *
1662  * @configuration is the value of the configuration to be installed.
1663  * According to the USB spec (e.g. section 9.1.1.5), configuration values
1664  * must be non-zero; a value of zero indicates that the device in
1665  * unconfigured.  However some devices erroneously use 0 as one of their
1666  * configuration values.  To help manage such devices, this routine will
1667  * accept @configuration = -1 as indicating the device should be put in
1668  * an unconfigured state.
1669  *
1670  * USB device configurations may affect Linux interoperability,
1671  * power consumption and the functionality available.  For example,
1672  * the default configuration is limited to using 100mA of bus power,
1673  * so that when certain device functionality requires more power,
1674  * and the device is bus powered, that functionality should be in some
1675  * non-default device configuration.  Other device modes may also be
1676  * reflected as configuration options, such as whether two ISDN
1677  * channels are available independently; and choosing between open
1678  * standard device protocols (like CDC) or proprietary ones.
1679  *
1680  * Note that a non-authorized device (dev->authorized == 0) will only
1681  * be put in unconfigured mode.
1682  *
1683  * Note that USB has an additional level of device configurability,
1684  * associated with interfaces.  That configurability is accessed using
1685  * usb_set_interface().
1686  *
1687  * This call is synchronous. The calling context must be able to sleep,
1688  * must own the device lock, and must not hold the driver model's USB
1689  * bus mutex; usb interface driver probe() methods cannot use this routine.
1690  *
1691  * Returns zero on success, or else the status code returned by the
1692  * underlying call that failed.  On successful completion, each interface
1693  * in the original device configuration has been destroyed, and each one
1694  * in the new configuration has been probed by all relevant usb device
1695  * drivers currently known to the kernel.
1696  */
1697 int usb_set_configuration(struct usb_device *dev, int configuration)
1698 {
1699 	int i, ret;
1700 	struct usb_host_config *cp = NULL;
1701 	struct usb_interface **new_interfaces = NULL;
1702 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1703 	int n, nintf;
1704 
1705 	if (dev->authorized == 0 || configuration == -1)
1706 		configuration = 0;
1707 	else {
1708 		for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1709 			if (dev->config[i].desc.bConfigurationValue ==
1710 					configuration) {
1711 				cp = &dev->config[i];
1712 				break;
1713 			}
1714 		}
1715 	}
1716 	if ((!cp && configuration != 0))
1717 		return -EINVAL;
1718 
1719 	/* The USB spec says configuration 0 means unconfigured.
1720 	 * But if a device includes a configuration numbered 0,
1721 	 * we will accept it as a correctly configured state.
1722 	 * Use -1 if you really want to unconfigure the device.
1723 	 */
1724 	if (cp && configuration == 0)
1725 		dev_warn(&dev->dev, "config 0 descriptor??\n");
1726 
1727 	/* Allocate memory for new interfaces before doing anything else,
1728 	 * so that if we run out then nothing will have changed. */
1729 	n = nintf = 0;
1730 	if (cp) {
1731 		nintf = cp->desc.bNumInterfaces;
1732 		new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1733 				GFP_NOIO);
1734 		if (!new_interfaces) {
1735 			dev_err(&dev->dev, "Out of memory\n");
1736 			return -ENOMEM;
1737 		}
1738 
1739 		for (; n < nintf; ++n) {
1740 			new_interfaces[n] = kzalloc(
1741 					sizeof(struct usb_interface),
1742 					GFP_NOIO);
1743 			if (!new_interfaces[n]) {
1744 				dev_err(&dev->dev, "Out of memory\n");
1745 				ret = -ENOMEM;
1746 free_interfaces:
1747 				while (--n >= 0)
1748 					kfree(new_interfaces[n]);
1749 				kfree(new_interfaces);
1750 				return ret;
1751 			}
1752 		}
1753 
1754 		i = dev->bus_mA - usb_get_max_power(dev, cp);
1755 		if (i < 0)
1756 			dev_warn(&dev->dev, "new config #%d exceeds power "
1757 					"limit by %dmA\n",
1758 					configuration, -i);
1759 	}
1760 
1761 	/* Wake up the device so we can send it the Set-Config request */
1762 	ret = usb_autoresume_device(dev);
1763 	if (ret)
1764 		goto free_interfaces;
1765 
1766 	/* if it's already configured, clear out old state first.
1767 	 * getting rid of old interfaces means unbinding their drivers.
1768 	 */
1769 	if (dev->state != USB_STATE_ADDRESS)
1770 		usb_disable_device(dev, 1);	/* Skip ep0 */
1771 
1772 	/* Get rid of pending async Set-Config requests for this device */
1773 	cancel_async_set_config(dev);
1774 
1775 	/* Make sure we have bandwidth (and available HCD resources) for this
1776 	 * configuration.  Remove endpoints from the schedule if we're dropping
1777 	 * this configuration to set configuration 0.  After this point, the
1778 	 * host controller will not allow submissions to dropped endpoints.  If
1779 	 * this call fails, the device state is unchanged.
1780 	 */
1781 	mutex_lock(hcd->bandwidth_mutex);
1782 	/* Disable LPM, and re-enable it once the new configuration is
1783 	 * installed, so that the xHCI driver can recalculate the U1/U2
1784 	 * timeouts.
1785 	 */
1786 	if (dev->actconfig && usb_disable_lpm(dev)) {
1787 		dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1788 		mutex_unlock(hcd->bandwidth_mutex);
1789 		ret = -ENOMEM;
1790 		goto free_interfaces;
1791 	}
1792 	ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1793 	if (ret < 0) {
1794 		if (dev->actconfig)
1795 			usb_enable_lpm(dev);
1796 		mutex_unlock(hcd->bandwidth_mutex);
1797 		usb_autosuspend_device(dev);
1798 		goto free_interfaces;
1799 	}
1800 
1801 	/*
1802 	 * Initialize the new interface structures and the
1803 	 * hc/hcd/usbcore interface/endpoint state.
1804 	 */
1805 	for (i = 0; i < nintf; ++i) {
1806 		struct usb_interface_cache *intfc;
1807 		struct usb_interface *intf;
1808 		struct usb_host_interface *alt;
1809 
1810 		cp->interface[i] = intf = new_interfaces[i];
1811 		intfc = cp->intf_cache[i];
1812 		intf->altsetting = intfc->altsetting;
1813 		intf->num_altsetting = intfc->num_altsetting;
1814 		kref_get(&intfc->ref);
1815 
1816 		alt = usb_altnum_to_altsetting(intf, 0);
1817 
1818 		/* No altsetting 0?  We'll assume the first altsetting.
1819 		 * We could use a GetInterface call, but if a device is
1820 		 * so non-compliant that it doesn't have altsetting 0
1821 		 * then I wouldn't trust its reply anyway.
1822 		 */
1823 		if (!alt)
1824 			alt = &intf->altsetting[0];
1825 
1826 		intf->intf_assoc =
1827 			find_iad(dev, cp, alt->desc.bInterfaceNumber);
1828 		intf->cur_altsetting = alt;
1829 		usb_enable_interface(dev, intf, true);
1830 		intf->dev.parent = &dev->dev;
1831 		intf->dev.driver = NULL;
1832 		intf->dev.bus = &usb_bus_type;
1833 		intf->dev.type = &usb_if_device_type;
1834 		intf->dev.groups = usb_interface_groups;
1835 		intf->dev.dma_mask = dev->dev.dma_mask;
1836 		INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1837 		intf->minor = -1;
1838 		device_initialize(&intf->dev);
1839 		pm_runtime_no_callbacks(&intf->dev);
1840 		dev_set_name(&intf->dev, "%d-%s:%d.%d",
1841 			dev->bus->busnum, dev->devpath,
1842 			configuration, alt->desc.bInterfaceNumber);
1843 	}
1844 	kfree(new_interfaces);
1845 
1846 	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1847 			      USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1848 			      NULL, 0, USB_CTRL_SET_TIMEOUT);
1849 	if (ret < 0 && cp) {
1850 		/*
1851 		 * All the old state is gone, so what else can we do?
1852 		 * The device is probably useless now anyway.
1853 		 */
1854 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1855 		for (i = 0; i < nintf; ++i) {
1856 			usb_disable_interface(dev, cp->interface[i], true);
1857 			put_device(&cp->interface[i]->dev);
1858 			cp->interface[i] = NULL;
1859 		}
1860 		cp = NULL;
1861 	}
1862 
1863 	dev->actconfig = cp;
1864 	mutex_unlock(hcd->bandwidth_mutex);
1865 
1866 	if (!cp) {
1867 		usb_set_device_state(dev, USB_STATE_ADDRESS);
1868 
1869 		/* Leave LPM disabled while the device is unconfigured. */
1870 		usb_autosuspend_device(dev);
1871 		return ret;
1872 	}
1873 	usb_set_device_state(dev, USB_STATE_CONFIGURED);
1874 
1875 	if (cp->string == NULL &&
1876 			!(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1877 		cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1878 
1879 	/* Now that the interfaces are installed, re-enable LPM. */
1880 	usb_unlocked_enable_lpm(dev);
1881 	/* Enable LTM if it was turned off by usb_disable_device. */
1882 	usb_enable_ltm(dev);
1883 
1884 	/* Now that all the interfaces are set up, register them
1885 	 * to trigger binding of drivers to interfaces.  probe()
1886 	 * routines may install different altsettings and may
1887 	 * claim() any interfaces not yet bound.  Many class drivers
1888 	 * need that: CDC, audio, video, etc.
1889 	 */
1890 	for (i = 0; i < nintf; ++i) {
1891 		struct usb_interface *intf = cp->interface[i];
1892 
1893 		dev_dbg(&dev->dev,
1894 			"adding %s (config #%d, interface %d)\n",
1895 			dev_name(&intf->dev), configuration,
1896 			intf->cur_altsetting->desc.bInterfaceNumber);
1897 		device_enable_async_suspend(&intf->dev);
1898 		ret = device_add(&intf->dev);
1899 		if (ret != 0) {
1900 			dev_err(&dev->dev, "device_add(%s) --> %d\n",
1901 				dev_name(&intf->dev), ret);
1902 			continue;
1903 		}
1904 		create_intf_ep_devs(intf);
1905 	}
1906 
1907 	usb_autosuspend_device(dev);
1908 	return 0;
1909 }
1910 
1911 static LIST_HEAD(set_config_list);
1912 static DEFINE_SPINLOCK(set_config_lock);
1913 
1914 struct set_config_request {
1915 	struct usb_device	*udev;
1916 	int			config;
1917 	struct work_struct	work;
1918 	struct list_head	node;
1919 };
1920 
1921 /* Worker routine for usb_driver_set_configuration() */
1922 static void driver_set_config_work(struct work_struct *work)
1923 {
1924 	struct set_config_request *req =
1925 		container_of(work, struct set_config_request, work);
1926 	struct usb_device *udev = req->udev;
1927 
1928 	usb_lock_device(udev);
1929 	spin_lock(&set_config_lock);
1930 	list_del(&req->node);
1931 	spin_unlock(&set_config_lock);
1932 
1933 	if (req->config >= -1)		/* Is req still valid? */
1934 		usb_set_configuration(udev, req->config);
1935 	usb_unlock_device(udev);
1936 	usb_put_dev(udev);
1937 	kfree(req);
1938 }
1939 
1940 /* Cancel pending Set-Config requests for a device whose configuration
1941  * was just changed
1942  */
1943 static void cancel_async_set_config(struct usb_device *udev)
1944 {
1945 	struct set_config_request *req;
1946 
1947 	spin_lock(&set_config_lock);
1948 	list_for_each_entry(req, &set_config_list, node) {
1949 		if (req->udev == udev)
1950 			req->config = -999;	/* Mark as cancelled */
1951 	}
1952 	spin_unlock(&set_config_lock);
1953 }
1954 
1955 /**
1956  * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1957  * @udev: the device whose configuration is being updated
1958  * @config: the configuration being chosen.
1959  * Context: In process context, must be able to sleep
1960  *
1961  * Device interface drivers are not allowed to change device configurations.
1962  * This is because changing configurations will destroy the interface the
1963  * driver is bound to and create new ones; it would be like a floppy-disk
1964  * driver telling the computer to replace the floppy-disk drive with a
1965  * tape drive!
1966  *
1967  * Still, in certain specialized circumstances the need may arise.  This
1968  * routine gets around the normal restrictions by using a work thread to
1969  * submit the change-config request.
1970  *
1971  * Returns 0 if the request was successfully queued, error code otherwise.
1972  * The caller has no way to know whether the queued request will eventually
1973  * succeed.
1974  */
1975 int usb_driver_set_configuration(struct usb_device *udev, int config)
1976 {
1977 	struct set_config_request *req;
1978 
1979 	req = kmalloc(sizeof(*req), GFP_KERNEL);
1980 	if (!req)
1981 		return -ENOMEM;
1982 	req->udev = udev;
1983 	req->config = config;
1984 	INIT_WORK(&req->work, driver_set_config_work);
1985 
1986 	spin_lock(&set_config_lock);
1987 	list_add(&req->node, &set_config_list);
1988 	spin_unlock(&set_config_lock);
1989 
1990 	usb_get_dev(udev);
1991 	schedule_work(&req->work);
1992 	return 0;
1993 }
1994 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
1995