1 /* 2 * message.c - synchronous message handling 3 */ 4 5 #include <linux/pci.h> /* for scatterlist macros */ 6 #include <linux/usb.h> 7 #include <linux/module.h> 8 #include <linux/slab.h> 9 #include <linux/init.h> 10 #include <linux/mm.h> 11 #include <linux/timer.h> 12 #include <linux/ctype.h> 13 #include <linux/device.h> 14 #include <linux/usb/quirks.h> 15 #include <asm/byteorder.h> 16 #include <asm/scatterlist.h> 17 18 #include "hcd.h" /* for usbcore internals */ 19 #include "usb.h" 20 21 struct api_context { 22 struct completion done; 23 int status; 24 }; 25 26 static void usb_api_blocking_completion(struct urb *urb) 27 { 28 struct api_context *ctx = urb->context; 29 30 ctx->status = urb->status; 31 complete(&ctx->done); 32 } 33 34 35 /* 36 * Starts urb and waits for completion or timeout. Note that this call 37 * is NOT interruptible. Many device driver i/o requests should be 38 * interruptible and therefore these drivers should implement their 39 * own interruptible routines. 40 */ 41 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length) 42 { 43 struct api_context ctx; 44 unsigned long expire; 45 int retval; 46 47 init_completion(&ctx.done); 48 urb->context = &ctx; 49 urb->actual_length = 0; 50 retval = usb_submit_urb(urb, GFP_NOIO); 51 if (unlikely(retval)) 52 goto out; 53 54 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT; 55 if (!wait_for_completion_timeout(&ctx.done, expire)) { 56 usb_kill_urb(urb); 57 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status); 58 59 dev_dbg(&urb->dev->dev, 60 "%s timed out on ep%d%s len=%d/%d\n", 61 current->comm, 62 usb_pipeendpoint(urb->pipe), 63 usb_pipein(urb->pipe) ? "in" : "out", 64 urb->actual_length, 65 urb->transfer_buffer_length); 66 } else 67 retval = ctx.status; 68 out: 69 if (actual_length) 70 *actual_length = urb->actual_length; 71 72 usb_free_urb(urb); 73 return retval; 74 } 75 76 /*-------------------------------------------------------------------*/ 77 // returns status (negative) or length (positive) 78 static int usb_internal_control_msg(struct usb_device *usb_dev, 79 unsigned int pipe, 80 struct usb_ctrlrequest *cmd, 81 void *data, int len, int timeout) 82 { 83 struct urb *urb; 84 int retv; 85 int length; 86 87 urb = usb_alloc_urb(0, GFP_NOIO); 88 if (!urb) 89 return -ENOMEM; 90 91 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data, 92 len, usb_api_blocking_completion, NULL); 93 94 retv = usb_start_wait_urb(urb, timeout, &length); 95 if (retv < 0) 96 return retv; 97 else 98 return length; 99 } 100 101 /** 102 * usb_control_msg - Builds a control urb, sends it off and waits for completion 103 * @dev: pointer to the usb device to send the message to 104 * @pipe: endpoint "pipe" to send the message to 105 * @request: USB message request value 106 * @requesttype: USB message request type value 107 * @value: USB message value 108 * @index: USB message index value 109 * @data: pointer to the data to send 110 * @size: length in bytes of the data to send 111 * @timeout: time in msecs to wait for the message to complete before 112 * timing out (if 0 the wait is forever) 113 * Context: !in_interrupt () 114 * 115 * This function sends a simple control message to a specified endpoint 116 * and waits for the message to complete, or timeout. 117 * 118 * If successful, it returns the number of bytes transferred, otherwise a negative error number. 119 * 120 * Don't use this function from within an interrupt context, like a 121 * bottom half handler. If you need an asynchronous message, or need to send 122 * a message from within interrupt context, use usb_submit_urb() 123 * If a thread in your driver uses this call, make sure your disconnect() 124 * method can wait for it to complete. Since you don't have a handle on 125 * the URB used, you can't cancel the request. 126 */ 127 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, __u8 requesttype, 128 __u16 value, __u16 index, void *data, __u16 size, int timeout) 129 { 130 struct usb_ctrlrequest *dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO); 131 int ret; 132 133 if (!dr) 134 return -ENOMEM; 135 136 dr->bRequestType= requesttype; 137 dr->bRequest = request; 138 dr->wValue = cpu_to_le16p(&value); 139 dr->wIndex = cpu_to_le16p(&index); 140 dr->wLength = cpu_to_le16p(&size); 141 142 //dbg("usb_control_msg"); 143 144 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout); 145 146 kfree(dr); 147 148 return ret; 149 } 150 151 152 /** 153 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion 154 * @usb_dev: pointer to the usb device to send the message to 155 * @pipe: endpoint "pipe" to send the message to 156 * @data: pointer to the data to send 157 * @len: length in bytes of the data to send 158 * @actual_length: pointer to a location to put the actual length transferred in bytes 159 * @timeout: time in msecs to wait for the message to complete before 160 * timing out (if 0 the wait is forever) 161 * Context: !in_interrupt () 162 * 163 * This function sends a simple interrupt message to a specified endpoint and 164 * waits for the message to complete, or timeout. 165 * 166 * If successful, it returns 0, otherwise a negative error number. The number 167 * of actual bytes transferred will be stored in the actual_length paramater. 168 * 169 * Don't use this function from within an interrupt context, like a bottom half 170 * handler. If you need an asynchronous message, or need to send a message 171 * from within interrupt context, use usb_submit_urb() If a thread in your 172 * driver uses this call, make sure your disconnect() method can wait for it to 173 * complete. Since you don't have a handle on the URB used, you can't cancel 174 * the request. 175 */ 176 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 177 void *data, int len, int *actual_length, int timeout) 178 { 179 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout); 180 } 181 EXPORT_SYMBOL_GPL(usb_interrupt_msg); 182 183 /** 184 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion 185 * @usb_dev: pointer to the usb device to send the message to 186 * @pipe: endpoint "pipe" to send the message to 187 * @data: pointer to the data to send 188 * @len: length in bytes of the data to send 189 * @actual_length: pointer to a location to put the actual length transferred in bytes 190 * @timeout: time in msecs to wait for the message to complete before 191 * timing out (if 0 the wait is forever) 192 * Context: !in_interrupt () 193 * 194 * This function sends a simple bulk message to a specified endpoint 195 * and waits for the message to complete, or timeout. 196 * 197 * If successful, it returns 0, otherwise a negative error number. 198 * The number of actual bytes transferred will be stored in the 199 * actual_length paramater. 200 * 201 * Don't use this function from within an interrupt context, like a 202 * bottom half handler. If you need an asynchronous message, or need to 203 * send a message from within interrupt context, use usb_submit_urb() 204 * If a thread in your driver uses this call, make sure your disconnect() 205 * method can wait for it to complete. Since you don't have a handle on 206 * the URB used, you can't cancel the request. 207 * 208 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT 209 * ioctl, users are forced to abuse this routine by using it to submit 210 * URBs for interrupt endpoints. We will take the liberty of creating 211 * an interrupt URB (with the default interval) if the target is an 212 * interrupt endpoint. 213 */ 214 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 215 void *data, int len, int *actual_length, int timeout) 216 { 217 struct urb *urb; 218 struct usb_host_endpoint *ep; 219 220 ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out) 221 [usb_pipeendpoint(pipe)]; 222 if (!ep || len < 0) 223 return -EINVAL; 224 225 urb = usb_alloc_urb(0, GFP_KERNEL); 226 if (!urb) 227 return -ENOMEM; 228 229 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 230 USB_ENDPOINT_XFER_INT) { 231 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30); 232 usb_fill_int_urb(urb, usb_dev, pipe, data, len, 233 usb_api_blocking_completion, NULL, 234 ep->desc.bInterval); 235 } else 236 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len, 237 usb_api_blocking_completion, NULL); 238 239 return usb_start_wait_urb(urb, timeout, actual_length); 240 } 241 242 /*-------------------------------------------------------------------*/ 243 244 static void sg_clean (struct usb_sg_request *io) 245 { 246 if (io->urbs) { 247 while (io->entries--) 248 usb_free_urb (io->urbs [io->entries]); 249 kfree (io->urbs); 250 io->urbs = NULL; 251 } 252 if (io->dev->dev.dma_mask != NULL) 253 usb_buffer_unmap_sg (io->dev, io->pipe, io->sg, io->nents); 254 io->dev = NULL; 255 } 256 257 static void sg_complete (struct urb *urb) 258 { 259 struct usb_sg_request *io = urb->context; 260 int status = urb->status; 261 262 spin_lock (&io->lock); 263 264 /* In 2.5 we require hcds' endpoint queues not to progress after fault 265 * reports, until the completion callback (this!) returns. That lets 266 * device driver code (like this routine) unlink queued urbs first, 267 * if it needs to, since the HC won't work on them at all. So it's 268 * not possible for page N+1 to overwrite page N, and so on. 269 * 270 * That's only for "hard" faults; "soft" faults (unlinks) sometimes 271 * complete before the HCD can get requests away from hardware, 272 * though never during cleanup after a hard fault. 273 */ 274 if (io->status 275 && (io->status != -ECONNRESET 276 || status != -ECONNRESET) 277 && urb->actual_length) { 278 dev_err (io->dev->bus->controller, 279 "dev %s ep%d%s scatterlist error %d/%d\n", 280 io->dev->devpath, 281 usb_pipeendpoint (urb->pipe), 282 usb_pipein (urb->pipe) ? "in" : "out", 283 status, io->status); 284 // BUG (); 285 } 286 287 if (io->status == 0 && status && status != -ECONNRESET) { 288 int i, found, retval; 289 290 io->status = status; 291 292 /* the previous urbs, and this one, completed already. 293 * unlink pending urbs so they won't rx/tx bad data. 294 * careful: unlink can sometimes be synchronous... 295 */ 296 spin_unlock (&io->lock); 297 for (i = 0, found = 0; i < io->entries; i++) { 298 if (!io->urbs [i] || !io->urbs [i]->dev) 299 continue; 300 if (found) { 301 retval = usb_unlink_urb (io->urbs [i]); 302 if (retval != -EINPROGRESS && 303 retval != -ENODEV && 304 retval != -EBUSY) 305 dev_err (&io->dev->dev, 306 "%s, unlink --> %d\n", 307 __FUNCTION__, retval); 308 } else if (urb == io->urbs [i]) 309 found = 1; 310 } 311 spin_lock (&io->lock); 312 } 313 urb->dev = NULL; 314 315 /* on the last completion, signal usb_sg_wait() */ 316 io->bytes += urb->actual_length; 317 io->count--; 318 if (!io->count) 319 complete (&io->complete); 320 321 spin_unlock (&io->lock); 322 } 323 324 325 /** 326 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request 327 * @io: request block being initialized. until usb_sg_wait() returns, 328 * treat this as a pointer to an opaque block of memory, 329 * @dev: the usb device that will send or receive the data 330 * @pipe: endpoint "pipe" used to transfer the data 331 * @period: polling rate for interrupt endpoints, in frames or 332 * (for high speed endpoints) microframes; ignored for bulk 333 * @sg: scatterlist entries 334 * @nents: how many entries in the scatterlist 335 * @length: how many bytes to send from the scatterlist, or zero to 336 * send every byte identified in the list. 337 * @mem_flags: SLAB_* flags affecting memory allocations in this call 338 * 339 * Returns zero for success, else a negative errno value. This initializes a 340 * scatter/gather request, allocating resources such as I/O mappings and urb 341 * memory (except maybe memory used by USB controller drivers). 342 * 343 * The request must be issued using usb_sg_wait(), which waits for the I/O to 344 * complete (or to be canceled) and then cleans up all resources allocated by 345 * usb_sg_init(). 346 * 347 * The request may be canceled with usb_sg_cancel(), either before or after 348 * usb_sg_wait() is called. 349 */ 350 int usb_sg_init ( 351 struct usb_sg_request *io, 352 struct usb_device *dev, 353 unsigned pipe, 354 unsigned period, 355 struct scatterlist *sg, 356 int nents, 357 size_t length, 358 gfp_t mem_flags 359 ) 360 { 361 int i; 362 int urb_flags; 363 int dma; 364 365 if (!io || !dev || !sg 366 || usb_pipecontrol (pipe) 367 || usb_pipeisoc (pipe) 368 || nents <= 0) 369 return -EINVAL; 370 371 spin_lock_init (&io->lock); 372 io->dev = dev; 373 io->pipe = pipe; 374 io->sg = sg; 375 io->nents = nents; 376 377 /* not all host controllers use DMA (like the mainstream pci ones); 378 * they can use PIO (sl811) or be software over another transport. 379 */ 380 dma = (dev->dev.dma_mask != NULL); 381 if (dma) 382 io->entries = usb_buffer_map_sg (dev, pipe, sg, nents); 383 else 384 io->entries = nents; 385 386 /* initialize all the urbs we'll use */ 387 if (io->entries <= 0) 388 return io->entries; 389 390 io->count = io->entries; 391 io->urbs = kmalloc (io->entries * sizeof *io->urbs, mem_flags); 392 if (!io->urbs) 393 goto nomem; 394 395 urb_flags = URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT; 396 if (usb_pipein (pipe)) 397 urb_flags |= URB_SHORT_NOT_OK; 398 399 for (i = 0; i < io->entries; i++) { 400 unsigned len; 401 402 io->urbs [i] = usb_alloc_urb (0, mem_flags); 403 if (!io->urbs [i]) { 404 io->entries = i; 405 goto nomem; 406 } 407 408 io->urbs [i]->dev = NULL; 409 io->urbs [i]->pipe = pipe; 410 io->urbs [i]->interval = period; 411 io->urbs [i]->transfer_flags = urb_flags; 412 413 io->urbs [i]->complete = sg_complete; 414 io->urbs [i]->context = io; 415 416 /* 417 * Some systems need to revert to PIO when DMA is temporarily 418 * unavailable. For their sakes, both transfer_buffer and 419 * transfer_dma are set when possible. However this can only 420 * work on systems without: 421 * 422 * - HIGHMEM, since DMA buffers located in high memory are 423 * not directly addressable by the CPU for PIO; 424 * 425 * - IOMMU, since dma_map_sg() is allowed to use an IOMMU to 426 * make virtually discontiguous buffers be "dma-contiguous" 427 * so that PIO and DMA need diferent numbers of URBs. 428 * 429 * So when HIGHMEM or IOMMU are in use, transfer_buffer is NULL 430 * to prevent stale pointers and to help spot bugs. 431 */ 432 if (dma) { 433 io->urbs [i]->transfer_dma = sg_dma_address (sg + i); 434 len = sg_dma_len (sg + i); 435 #if defined(CONFIG_HIGHMEM) || defined(CONFIG_IOMMU) 436 io->urbs[i]->transfer_buffer = NULL; 437 #else 438 io->urbs[i]->transfer_buffer = 439 page_address(sg[i].page) + sg[i].offset; 440 #endif 441 } else { 442 /* hc may use _only_ transfer_buffer */ 443 io->urbs [i]->transfer_buffer = 444 page_address (sg [i].page) + sg [i].offset; 445 len = sg [i].length; 446 } 447 448 if (length) { 449 len = min_t (unsigned, len, length); 450 length -= len; 451 if (length == 0) 452 io->entries = i + 1; 453 } 454 io->urbs [i]->transfer_buffer_length = len; 455 } 456 io->urbs [--i]->transfer_flags &= ~URB_NO_INTERRUPT; 457 458 /* transaction state */ 459 io->status = 0; 460 io->bytes = 0; 461 init_completion (&io->complete); 462 return 0; 463 464 nomem: 465 sg_clean (io); 466 return -ENOMEM; 467 } 468 469 470 /** 471 * usb_sg_wait - synchronously execute scatter/gather request 472 * @io: request block handle, as initialized with usb_sg_init(). 473 * some fields become accessible when this call returns. 474 * Context: !in_interrupt () 475 * 476 * This function blocks until the specified I/O operation completes. It 477 * leverages the grouping of the related I/O requests to get good transfer 478 * rates, by queueing the requests. At higher speeds, such queuing can 479 * significantly improve USB throughput. 480 * 481 * There are three kinds of completion for this function. 482 * (1) success, where io->status is zero. The number of io->bytes 483 * transferred is as requested. 484 * (2) error, where io->status is a negative errno value. The number 485 * of io->bytes transferred before the error is usually less 486 * than requested, and can be nonzero. 487 * (3) cancellation, a type of error with status -ECONNRESET that 488 * is initiated by usb_sg_cancel(). 489 * 490 * When this function returns, all memory allocated through usb_sg_init() or 491 * this call will have been freed. The request block parameter may still be 492 * passed to usb_sg_cancel(), or it may be freed. It could also be 493 * reinitialized and then reused. 494 * 495 * Data Transfer Rates: 496 * 497 * Bulk transfers are valid for full or high speed endpoints. 498 * The best full speed data rate is 19 packets of 64 bytes each 499 * per frame, or 1216 bytes per millisecond. 500 * The best high speed data rate is 13 packets of 512 bytes each 501 * per microframe, or 52 KBytes per millisecond. 502 * 503 * The reason to use interrupt transfers through this API would most likely 504 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond 505 * could be transferred. That capability is less useful for low or full 506 * speed interrupt endpoints, which allow at most one packet per millisecond, 507 * of at most 8 or 64 bytes (respectively). 508 */ 509 void usb_sg_wait (struct usb_sg_request *io) 510 { 511 int i, entries = io->entries; 512 513 /* queue the urbs. */ 514 spin_lock_irq (&io->lock); 515 i = 0; 516 while (i < entries && !io->status) { 517 int retval; 518 519 io->urbs [i]->dev = io->dev; 520 retval = usb_submit_urb (io->urbs [i], GFP_ATOMIC); 521 522 /* after we submit, let completions or cancelations fire; 523 * we handshake using io->status. 524 */ 525 spin_unlock_irq (&io->lock); 526 switch (retval) { 527 /* maybe we retrying will recover */ 528 case -ENXIO: // hc didn't queue this one 529 case -EAGAIN: 530 case -ENOMEM: 531 io->urbs[i]->dev = NULL; 532 retval = 0; 533 yield (); 534 break; 535 536 /* no error? continue immediately. 537 * 538 * NOTE: to work better with UHCI (4K I/O buffer may 539 * need 3K of TDs) it may be good to limit how many 540 * URBs are queued at once; N milliseconds? 541 */ 542 case 0: 543 ++i; 544 cpu_relax (); 545 break; 546 547 /* fail any uncompleted urbs */ 548 default: 549 io->urbs [i]->dev = NULL; 550 io->urbs [i]->status = retval; 551 dev_dbg (&io->dev->dev, "%s, submit --> %d\n", 552 __FUNCTION__, retval); 553 usb_sg_cancel (io); 554 } 555 spin_lock_irq (&io->lock); 556 if (retval && (io->status == 0 || io->status == -ECONNRESET)) 557 io->status = retval; 558 } 559 io->count -= entries - i; 560 if (io->count == 0) 561 complete (&io->complete); 562 spin_unlock_irq (&io->lock); 563 564 /* OK, yes, this could be packaged as non-blocking. 565 * So could the submit loop above ... but it's easier to 566 * solve neither problem than to solve both! 567 */ 568 wait_for_completion (&io->complete); 569 570 sg_clean (io); 571 } 572 573 /** 574 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait() 575 * @io: request block, initialized with usb_sg_init() 576 * 577 * This stops a request after it has been started by usb_sg_wait(). 578 * It can also prevents one initialized by usb_sg_init() from starting, 579 * so that call just frees resources allocated to the request. 580 */ 581 void usb_sg_cancel (struct usb_sg_request *io) 582 { 583 unsigned long flags; 584 585 spin_lock_irqsave (&io->lock, flags); 586 587 /* shut everything down, if it didn't already */ 588 if (!io->status) { 589 int i; 590 591 io->status = -ECONNRESET; 592 spin_unlock (&io->lock); 593 for (i = 0; i < io->entries; i++) { 594 int retval; 595 596 if (!io->urbs [i]->dev) 597 continue; 598 retval = usb_unlink_urb (io->urbs [i]); 599 if (retval != -EINPROGRESS && retval != -EBUSY) 600 dev_warn (&io->dev->dev, "%s, unlink --> %d\n", 601 __FUNCTION__, retval); 602 } 603 spin_lock (&io->lock); 604 } 605 spin_unlock_irqrestore (&io->lock, flags); 606 } 607 608 /*-------------------------------------------------------------------*/ 609 610 /** 611 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request 612 * @dev: the device whose descriptor is being retrieved 613 * @type: the descriptor type (USB_DT_*) 614 * @index: the number of the descriptor 615 * @buf: where to put the descriptor 616 * @size: how big is "buf"? 617 * Context: !in_interrupt () 618 * 619 * Gets a USB descriptor. Convenience functions exist to simplify 620 * getting some types of descriptors. Use 621 * usb_get_string() or usb_string() for USB_DT_STRING. 622 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG) 623 * are part of the device structure. 624 * In addition to a number of USB-standard descriptors, some 625 * devices also use class-specific or vendor-specific descriptors. 626 * 627 * This call is synchronous, and may not be used in an interrupt context. 628 * 629 * Returns the number of bytes received on success, or else the status code 630 * returned by the underlying usb_control_msg() call. 631 */ 632 int usb_get_descriptor(struct usb_device *dev, unsigned char type, unsigned char index, void *buf, int size) 633 { 634 int i; 635 int result; 636 637 memset(buf,0,size); // Make sure we parse really received data 638 639 for (i = 0; i < 3; ++i) { 640 /* retry on length 0 or stall; some devices are flakey */ 641 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 642 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 643 (type << 8) + index, 0, buf, size, 644 USB_CTRL_GET_TIMEOUT); 645 if (result == 0 || result == -EPIPE) 646 continue; 647 if (result > 1 && ((u8 *)buf)[1] != type) { 648 result = -EPROTO; 649 continue; 650 } 651 break; 652 } 653 return result; 654 } 655 656 /** 657 * usb_get_string - gets a string descriptor 658 * @dev: the device whose string descriptor is being retrieved 659 * @langid: code for language chosen (from string descriptor zero) 660 * @index: the number of the descriptor 661 * @buf: where to put the string 662 * @size: how big is "buf"? 663 * Context: !in_interrupt () 664 * 665 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character, 666 * in little-endian byte order). 667 * The usb_string() function will often be a convenient way to turn 668 * these strings into kernel-printable form. 669 * 670 * Strings may be referenced in device, configuration, interface, or other 671 * descriptors, and could also be used in vendor-specific ways. 672 * 673 * This call is synchronous, and may not be used in an interrupt context. 674 * 675 * Returns the number of bytes received on success, or else the status code 676 * returned by the underlying usb_control_msg() call. 677 */ 678 static int usb_get_string(struct usb_device *dev, unsigned short langid, 679 unsigned char index, void *buf, int size) 680 { 681 int i; 682 int result; 683 684 for (i = 0; i < 3; ++i) { 685 /* retry on length 0 or stall; some devices are flakey */ 686 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 687 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 688 (USB_DT_STRING << 8) + index, langid, buf, size, 689 USB_CTRL_GET_TIMEOUT); 690 if (!(result == 0 || result == -EPIPE)) 691 break; 692 } 693 return result; 694 } 695 696 static void usb_try_string_workarounds(unsigned char *buf, int *length) 697 { 698 int newlength, oldlength = *length; 699 700 for (newlength = 2; newlength + 1 < oldlength; newlength += 2) 701 if (!isprint(buf[newlength]) || buf[newlength + 1]) 702 break; 703 704 if (newlength > 2) { 705 buf[0] = newlength; 706 *length = newlength; 707 } 708 } 709 710 static int usb_string_sub(struct usb_device *dev, unsigned int langid, 711 unsigned int index, unsigned char *buf) 712 { 713 int rc; 714 715 /* Try to read the string descriptor by asking for the maximum 716 * possible number of bytes */ 717 if (dev->quirks & USB_QUIRK_STRING_FETCH_255) 718 rc = -EIO; 719 else 720 rc = usb_get_string(dev, langid, index, buf, 255); 721 722 /* If that failed try to read the descriptor length, then 723 * ask for just that many bytes */ 724 if (rc < 2) { 725 rc = usb_get_string(dev, langid, index, buf, 2); 726 if (rc == 2) 727 rc = usb_get_string(dev, langid, index, buf, buf[0]); 728 } 729 730 if (rc >= 2) { 731 if (!buf[0] && !buf[1]) 732 usb_try_string_workarounds(buf, &rc); 733 734 /* There might be extra junk at the end of the descriptor */ 735 if (buf[0] < rc) 736 rc = buf[0]; 737 738 rc = rc - (rc & 1); /* force a multiple of two */ 739 } 740 741 if (rc < 2) 742 rc = (rc < 0 ? rc : -EINVAL); 743 744 return rc; 745 } 746 747 /** 748 * usb_string - returns ISO 8859-1 version of a string descriptor 749 * @dev: the device whose string descriptor is being retrieved 750 * @index: the number of the descriptor 751 * @buf: where to put the string 752 * @size: how big is "buf"? 753 * Context: !in_interrupt () 754 * 755 * This converts the UTF-16LE encoded strings returned by devices, from 756 * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones 757 * that are more usable in most kernel contexts. Note that all characters 758 * in the chosen descriptor that can't be encoded using ISO-8859-1 759 * are converted to the question mark ("?") character, and this function 760 * chooses strings in the first language supported by the device. 761 * 762 * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit 763 * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode, 764 * and is appropriate for use many uses of English and several other 765 * Western European languages. (But it doesn't include the "Euro" symbol.) 766 * 767 * This call is synchronous, and may not be used in an interrupt context. 768 * 769 * Returns length of the string (>= 0) or usb_control_msg status (< 0). 770 */ 771 int usb_string(struct usb_device *dev, int index, char *buf, size_t size) 772 { 773 unsigned char *tbuf; 774 int err; 775 unsigned int u, idx; 776 777 if (dev->state == USB_STATE_SUSPENDED) 778 return -EHOSTUNREACH; 779 if (size <= 0 || !buf || !index) 780 return -EINVAL; 781 buf[0] = 0; 782 tbuf = kmalloc(256, GFP_KERNEL); 783 if (!tbuf) 784 return -ENOMEM; 785 786 /* get langid for strings if it's not yet known */ 787 if (!dev->have_langid) { 788 err = usb_string_sub(dev, 0, 0, tbuf); 789 if (err < 0) { 790 dev_err (&dev->dev, 791 "string descriptor 0 read error: %d\n", 792 err); 793 goto errout; 794 } else if (err < 4) { 795 dev_err (&dev->dev, "string descriptor 0 too short\n"); 796 err = -EINVAL; 797 goto errout; 798 } else { 799 dev->have_langid = 1; 800 dev->string_langid = tbuf[2] | (tbuf[3]<< 8); 801 /* always use the first langid listed */ 802 dev_dbg (&dev->dev, "default language 0x%04x\n", 803 dev->string_langid); 804 } 805 } 806 807 err = usb_string_sub(dev, dev->string_langid, index, tbuf); 808 if (err < 0) 809 goto errout; 810 811 size--; /* leave room for trailing NULL char in output buffer */ 812 for (idx = 0, u = 2; u < err; u += 2) { 813 if (idx >= size) 814 break; 815 if (tbuf[u+1]) /* high byte */ 816 buf[idx++] = '?'; /* non ISO-8859-1 character */ 817 else 818 buf[idx++] = tbuf[u]; 819 } 820 buf[idx] = 0; 821 err = idx; 822 823 if (tbuf[1] != USB_DT_STRING) 824 dev_dbg(&dev->dev, "wrong descriptor type %02x for string %d (\"%s\")\n", tbuf[1], index, buf); 825 826 errout: 827 kfree(tbuf); 828 return err; 829 } 830 831 /** 832 * usb_cache_string - read a string descriptor and cache it for later use 833 * @udev: the device whose string descriptor is being read 834 * @index: the descriptor index 835 * 836 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string, 837 * or NULL if the index is 0 or the string could not be read. 838 */ 839 char *usb_cache_string(struct usb_device *udev, int index) 840 { 841 char *buf; 842 char *smallbuf = NULL; 843 int len; 844 845 if (index > 0 && (buf = kmalloc(256, GFP_KERNEL)) != NULL) { 846 if ((len = usb_string(udev, index, buf, 256)) > 0) { 847 if ((smallbuf = kmalloc(++len, GFP_KERNEL)) == NULL) 848 return buf; 849 memcpy(smallbuf, buf, len); 850 } 851 kfree(buf); 852 } 853 return smallbuf; 854 } 855 856 /* 857 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore) 858 * @dev: the device whose device descriptor is being updated 859 * @size: how much of the descriptor to read 860 * Context: !in_interrupt () 861 * 862 * Updates the copy of the device descriptor stored in the device structure, 863 * which dedicates space for this purpose. 864 * 865 * Not exported, only for use by the core. If drivers really want to read 866 * the device descriptor directly, they can call usb_get_descriptor() with 867 * type = USB_DT_DEVICE and index = 0. 868 * 869 * This call is synchronous, and may not be used in an interrupt context. 870 * 871 * Returns the number of bytes received on success, or else the status code 872 * returned by the underlying usb_control_msg() call. 873 */ 874 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size) 875 { 876 struct usb_device_descriptor *desc; 877 int ret; 878 879 if (size > sizeof(*desc)) 880 return -EINVAL; 881 desc = kmalloc(sizeof(*desc), GFP_NOIO); 882 if (!desc) 883 return -ENOMEM; 884 885 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size); 886 if (ret >= 0) 887 memcpy(&dev->descriptor, desc, size); 888 kfree(desc); 889 return ret; 890 } 891 892 /** 893 * usb_get_status - issues a GET_STATUS call 894 * @dev: the device whose status is being checked 895 * @type: USB_RECIP_*; for device, interface, or endpoint 896 * @target: zero (for device), else interface or endpoint number 897 * @data: pointer to two bytes of bitmap data 898 * Context: !in_interrupt () 899 * 900 * Returns device, interface, or endpoint status. Normally only of 901 * interest to see if the device is self powered, or has enabled the 902 * remote wakeup facility; or whether a bulk or interrupt endpoint 903 * is halted ("stalled"). 904 * 905 * Bits in these status bitmaps are set using the SET_FEATURE request, 906 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt() 907 * function should be used to clear halt ("stall") status. 908 * 909 * This call is synchronous, and may not be used in an interrupt context. 910 * 911 * Returns the number of bytes received on success, or else the status code 912 * returned by the underlying usb_control_msg() call. 913 */ 914 int usb_get_status(struct usb_device *dev, int type, int target, void *data) 915 { 916 int ret; 917 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL); 918 919 if (!status) 920 return -ENOMEM; 921 922 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 923 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status, 924 sizeof(*status), USB_CTRL_GET_TIMEOUT); 925 926 *(u16 *)data = *status; 927 kfree(status); 928 return ret; 929 } 930 931 /** 932 * usb_clear_halt - tells device to clear endpoint halt/stall condition 933 * @dev: device whose endpoint is halted 934 * @pipe: endpoint "pipe" being cleared 935 * Context: !in_interrupt () 936 * 937 * This is used to clear halt conditions for bulk and interrupt endpoints, 938 * as reported by URB completion status. Endpoints that are halted are 939 * sometimes referred to as being "stalled". Such endpoints are unable 940 * to transmit or receive data until the halt status is cleared. Any URBs 941 * queued for such an endpoint should normally be unlinked by the driver 942 * before clearing the halt condition, as described in sections 5.7.5 943 * and 5.8.5 of the USB 2.0 spec. 944 * 945 * Note that control and isochronous endpoints don't halt, although control 946 * endpoints report "protocol stall" (for unsupported requests) using the 947 * same status code used to report a true stall. 948 * 949 * This call is synchronous, and may not be used in an interrupt context. 950 * 951 * Returns zero on success, or else the status code returned by the 952 * underlying usb_control_msg() call. 953 */ 954 int usb_clear_halt(struct usb_device *dev, int pipe) 955 { 956 int result; 957 int endp = usb_pipeendpoint(pipe); 958 959 if (usb_pipein (pipe)) 960 endp |= USB_DIR_IN; 961 962 /* we don't care if it wasn't halted first. in fact some devices 963 * (like some ibmcam model 1 units) seem to expect hosts to make 964 * this request for iso endpoints, which can't halt! 965 */ 966 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 967 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 968 USB_ENDPOINT_HALT, endp, NULL, 0, 969 USB_CTRL_SET_TIMEOUT); 970 971 /* don't un-halt or force to DATA0 except on success */ 972 if (result < 0) 973 return result; 974 975 /* NOTE: seems like Microsoft and Apple don't bother verifying 976 * the clear "took", so some devices could lock up if you check... 977 * such as the Hagiwara FlashGate DUAL. So we won't bother. 978 * 979 * NOTE: make sure the logic here doesn't diverge much from 980 * the copy in usb-storage, for as long as we need two copies. 981 */ 982 983 /* toggle was reset by the clear */ 984 usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0); 985 986 return 0; 987 } 988 989 /** 990 * usb_disable_endpoint -- Disable an endpoint by address 991 * @dev: the device whose endpoint is being disabled 992 * @epaddr: the endpoint's address. Endpoint number for output, 993 * endpoint number + USB_DIR_IN for input 994 * 995 * Deallocates hcd/hardware state for this endpoint ... and nukes all 996 * pending urbs. 997 * 998 * If the HCD hasn't registered a disable() function, this sets the 999 * endpoint's maxpacket size to 0 to prevent further submissions. 1000 */ 1001 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr) 1002 { 1003 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1004 struct usb_host_endpoint *ep; 1005 1006 if (!dev) 1007 return; 1008 1009 if (usb_endpoint_out(epaddr)) { 1010 ep = dev->ep_out[epnum]; 1011 dev->ep_out[epnum] = NULL; 1012 } else { 1013 ep = dev->ep_in[epnum]; 1014 dev->ep_in[epnum] = NULL; 1015 } 1016 if (ep && dev->bus) 1017 usb_hcd_endpoint_disable(dev, ep); 1018 } 1019 1020 /** 1021 * usb_disable_interface -- Disable all endpoints for an interface 1022 * @dev: the device whose interface is being disabled 1023 * @intf: pointer to the interface descriptor 1024 * 1025 * Disables all the endpoints for the interface's current altsetting. 1026 */ 1027 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf) 1028 { 1029 struct usb_host_interface *alt = intf->cur_altsetting; 1030 int i; 1031 1032 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 1033 usb_disable_endpoint(dev, 1034 alt->endpoint[i].desc.bEndpointAddress); 1035 } 1036 } 1037 1038 /* 1039 * usb_disable_device - Disable all the endpoints for a USB device 1040 * @dev: the device whose endpoints are being disabled 1041 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. 1042 * 1043 * Disables all the device's endpoints, potentially including endpoint 0. 1044 * Deallocates hcd/hardware state for the endpoints (nuking all or most 1045 * pending urbs) and usbcore state for the interfaces, so that usbcore 1046 * must usb_set_configuration() before any interfaces could be used. 1047 */ 1048 void usb_disable_device(struct usb_device *dev, int skip_ep0) 1049 { 1050 int i; 1051 1052 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __FUNCTION__, 1053 skip_ep0 ? "non-ep0" : "all"); 1054 for (i = skip_ep0; i < 16; ++i) { 1055 usb_disable_endpoint(dev, i); 1056 usb_disable_endpoint(dev, i + USB_DIR_IN); 1057 } 1058 dev->toggle[0] = dev->toggle[1] = 0; 1059 1060 /* getting rid of interfaces will disconnect 1061 * any drivers bound to them (a key side effect) 1062 */ 1063 if (dev->actconfig) { 1064 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1065 struct usb_interface *interface; 1066 1067 /* remove this interface if it has been registered */ 1068 interface = dev->actconfig->interface[i]; 1069 if (!device_is_registered(&interface->dev)) 1070 continue; 1071 dev_dbg (&dev->dev, "unregistering interface %s\n", 1072 interface->dev.bus_id); 1073 usb_remove_sysfs_intf_files(interface); 1074 device_del (&interface->dev); 1075 } 1076 1077 /* Now that the interfaces are unbound, nobody should 1078 * try to access them. 1079 */ 1080 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1081 put_device (&dev->actconfig->interface[i]->dev); 1082 dev->actconfig->interface[i] = NULL; 1083 } 1084 dev->actconfig = NULL; 1085 if (dev->state == USB_STATE_CONFIGURED) 1086 usb_set_device_state(dev, USB_STATE_ADDRESS); 1087 } 1088 } 1089 1090 1091 /* 1092 * usb_enable_endpoint - Enable an endpoint for USB communications 1093 * @dev: the device whose interface is being enabled 1094 * @ep: the endpoint 1095 * 1096 * Resets the endpoint toggle, and sets dev->ep_{in,out} pointers. 1097 * For control endpoints, both the input and output sides are handled. 1098 */ 1099 static void 1100 usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep) 1101 { 1102 unsigned int epaddr = ep->desc.bEndpointAddress; 1103 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1104 int is_control; 1105 1106 is_control = ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) 1107 == USB_ENDPOINT_XFER_CONTROL); 1108 if (usb_endpoint_out(epaddr) || is_control) { 1109 usb_settoggle(dev, epnum, 1, 0); 1110 dev->ep_out[epnum] = ep; 1111 } 1112 if (!usb_endpoint_out(epaddr) || is_control) { 1113 usb_settoggle(dev, epnum, 0, 0); 1114 dev->ep_in[epnum] = ep; 1115 } 1116 } 1117 1118 /* 1119 * usb_enable_interface - Enable all the endpoints for an interface 1120 * @dev: the device whose interface is being enabled 1121 * @intf: pointer to the interface descriptor 1122 * 1123 * Enables all the endpoints for the interface's current altsetting. 1124 */ 1125 static void usb_enable_interface(struct usb_device *dev, 1126 struct usb_interface *intf) 1127 { 1128 struct usb_host_interface *alt = intf->cur_altsetting; 1129 int i; 1130 1131 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1132 usb_enable_endpoint(dev, &alt->endpoint[i]); 1133 } 1134 1135 /** 1136 * usb_set_interface - Makes a particular alternate setting be current 1137 * @dev: the device whose interface is being updated 1138 * @interface: the interface being updated 1139 * @alternate: the setting being chosen. 1140 * Context: !in_interrupt () 1141 * 1142 * This is used to enable data transfers on interfaces that may not 1143 * be enabled by default. Not all devices support such configurability. 1144 * Only the driver bound to an interface may change its setting. 1145 * 1146 * Within any given configuration, each interface may have several 1147 * alternative settings. These are often used to control levels of 1148 * bandwidth consumption. For example, the default setting for a high 1149 * speed interrupt endpoint may not send more than 64 bytes per microframe, 1150 * while interrupt transfers of up to 3KBytes per microframe are legal. 1151 * Also, isochronous endpoints may never be part of an 1152 * interface's default setting. To access such bandwidth, alternate 1153 * interface settings must be made current. 1154 * 1155 * Note that in the Linux USB subsystem, bandwidth associated with 1156 * an endpoint in a given alternate setting is not reserved until an URB 1157 * is submitted that needs that bandwidth. Some other operating systems 1158 * allocate bandwidth early, when a configuration is chosen. 1159 * 1160 * This call is synchronous, and may not be used in an interrupt context. 1161 * Also, drivers must not change altsettings while urbs are scheduled for 1162 * endpoints in that interface; all such urbs must first be completed 1163 * (perhaps forced by unlinking). 1164 * 1165 * Returns zero on success, or else the status code returned by the 1166 * underlying usb_control_msg() call. 1167 */ 1168 int usb_set_interface(struct usb_device *dev, int interface, int alternate) 1169 { 1170 struct usb_interface *iface; 1171 struct usb_host_interface *alt; 1172 int ret; 1173 int manual = 0; 1174 1175 if (dev->state == USB_STATE_SUSPENDED) 1176 return -EHOSTUNREACH; 1177 1178 iface = usb_ifnum_to_if(dev, interface); 1179 if (!iface) { 1180 dev_dbg(&dev->dev, "selecting invalid interface %d\n", 1181 interface); 1182 return -EINVAL; 1183 } 1184 1185 alt = usb_altnum_to_altsetting(iface, alternate); 1186 if (!alt) { 1187 warn("selecting invalid altsetting %d", alternate); 1188 return -EINVAL; 1189 } 1190 1191 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1192 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE, 1193 alternate, interface, NULL, 0, 5000); 1194 1195 /* 9.4.10 says devices don't need this and are free to STALL the 1196 * request if the interface only has one alternate setting. 1197 */ 1198 if (ret == -EPIPE && iface->num_altsetting == 1) { 1199 dev_dbg(&dev->dev, 1200 "manual set_interface for iface %d, alt %d\n", 1201 interface, alternate); 1202 manual = 1; 1203 } else if (ret < 0) 1204 return ret; 1205 1206 /* FIXME drivers shouldn't need to replicate/bugfix the logic here 1207 * when they implement async or easily-killable versions of this or 1208 * other "should-be-internal" functions (like clear_halt). 1209 * should hcd+usbcore postprocess control requests? 1210 */ 1211 1212 /* prevent submissions using previous endpoint settings */ 1213 if (device_is_registered(&iface->dev)) 1214 usb_remove_sysfs_intf_files(iface); 1215 usb_disable_interface(dev, iface); 1216 1217 iface->cur_altsetting = alt; 1218 1219 /* If the interface only has one altsetting and the device didn't 1220 * accept the request, we attempt to carry out the equivalent action 1221 * by manually clearing the HALT feature for each endpoint in the 1222 * new altsetting. 1223 */ 1224 if (manual) { 1225 int i; 1226 1227 for (i = 0; i < alt->desc.bNumEndpoints; i++) { 1228 unsigned int epaddr = 1229 alt->endpoint[i].desc.bEndpointAddress; 1230 unsigned int pipe = 1231 __create_pipe(dev, USB_ENDPOINT_NUMBER_MASK & epaddr) 1232 | (usb_endpoint_out(epaddr) ? USB_DIR_OUT : USB_DIR_IN); 1233 1234 usb_clear_halt(dev, pipe); 1235 } 1236 } 1237 1238 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting 1239 * 1240 * Note: 1241 * Despite EP0 is always present in all interfaces/AS, the list of 1242 * endpoints from the descriptor does not contain EP0. Due to its 1243 * omnipresence one might expect EP0 being considered "affected" by 1244 * any SetInterface request and hence assume toggles need to be reset. 1245 * However, EP0 toggles are re-synced for every individual transfer 1246 * during the SETUP stage - hence EP0 toggles are "don't care" here. 1247 * (Likewise, EP0 never "halts" on well designed devices.) 1248 */ 1249 usb_enable_interface(dev, iface); 1250 if (device_is_registered(&iface->dev)) 1251 usb_create_sysfs_intf_files(iface); 1252 1253 return 0; 1254 } 1255 1256 /** 1257 * usb_reset_configuration - lightweight device reset 1258 * @dev: the device whose configuration is being reset 1259 * 1260 * This issues a standard SET_CONFIGURATION request to the device using 1261 * the current configuration. The effect is to reset most USB-related 1262 * state in the device, including interface altsettings (reset to zero), 1263 * endpoint halts (cleared), and data toggle (only for bulk and interrupt 1264 * endpoints). Other usbcore state is unchanged, including bindings of 1265 * usb device drivers to interfaces. 1266 * 1267 * Because this affects multiple interfaces, avoid using this with composite 1268 * (multi-interface) devices. Instead, the driver for each interface may 1269 * use usb_set_interface() on the interfaces it claims. Be careful though; 1270 * some devices don't support the SET_INTERFACE request, and others won't 1271 * reset all the interface state (notably data toggles). Resetting the whole 1272 * configuration would affect other drivers' interfaces. 1273 * 1274 * The caller must own the device lock. 1275 * 1276 * Returns zero on success, else a negative error code. 1277 */ 1278 int usb_reset_configuration(struct usb_device *dev) 1279 { 1280 int i, retval; 1281 struct usb_host_config *config; 1282 1283 if (dev->state == USB_STATE_SUSPENDED) 1284 return -EHOSTUNREACH; 1285 1286 /* caller must have locked the device and must own 1287 * the usb bus readlock (so driver bindings are stable); 1288 * calls during probe() are fine 1289 */ 1290 1291 for (i = 1; i < 16; ++i) { 1292 usb_disable_endpoint(dev, i); 1293 usb_disable_endpoint(dev, i + USB_DIR_IN); 1294 } 1295 1296 config = dev->actconfig; 1297 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1298 USB_REQ_SET_CONFIGURATION, 0, 1299 config->desc.bConfigurationValue, 0, 1300 NULL, 0, USB_CTRL_SET_TIMEOUT); 1301 if (retval < 0) 1302 return retval; 1303 1304 dev->toggle[0] = dev->toggle[1] = 0; 1305 1306 /* re-init hc/hcd interface/endpoint state */ 1307 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1308 struct usb_interface *intf = config->interface[i]; 1309 struct usb_host_interface *alt; 1310 1311 if (device_is_registered(&intf->dev)) 1312 usb_remove_sysfs_intf_files(intf); 1313 alt = usb_altnum_to_altsetting(intf, 0); 1314 1315 /* No altsetting 0? We'll assume the first altsetting. 1316 * We could use a GetInterface call, but if a device is 1317 * so non-compliant that it doesn't have altsetting 0 1318 * then I wouldn't trust its reply anyway. 1319 */ 1320 if (!alt) 1321 alt = &intf->altsetting[0]; 1322 1323 intf->cur_altsetting = alt; 1324 usb_enable_interface(dev, intf); 1325 if (device_is_registered(&intf->dev)) 1326 usb_create_sysfs_intf_files(intf); 1327 } 1328 return 0; 1329 } 1330 1331 void usb_release_interface(struct device *dev) 1332 { 1333 struct usb_interface *intf = to_usb_interface(dev); 1334 struct usb_interface_cache *intfc = 1335 altsetting_to_usb_interface_cache(intf->altsetting); 1336 1337 kref_put(&intfc->ref, usb_release_interface_cache); 1338 kfree(intf); 1339 } 1340 1341 #ifdef CONFIG_HOTPLUG 1342 static int usb_if_uevent(struct device *dev, char **envp, int num_envp, 1343 char *buffer, int buffer_size) 1344 { 1345 struct usb_device *usb_dev; 1346 struct usb_interface *intf; 1347 struct usb_host_interface *alt; 1348 int i = 0; 1349 int length = 0; 1350 1351 if (!dev) 1352 return -ENODEV; 1353 1354 /* driver is often null here; dev_dbg() would oops */ 1355 pr_debug ("usb %s: uevent\n", dev->bus_id); 1356 1357 intf = to_usb_interface(dev); 1358 usb_dev = interface_to_usbdev(intf); 1359 alt = intf->cur_altsetting; 1360 1361 if (add_uevent_var(envp, num_envp, &i, 1362 buffer, buffer_size, &length, 1363 "INTERFACE=%d/%d/%d", 1364 alt->desc.bInterfaceClass, 1365 alt->desc.bInterfaceSubClass, 1366 alt->desc.bInterfaceProtocol)) 1367 return -ENOMEM; 1368 1369 if (add_uevent_var(envp, num_envp, &i, 1370 buffer, buffer_size, &length, 1371 "MODALIAS=usb:v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X", 1372 le16_to_cpu(usb_dev->descriptor.idVendor), 1373 le16_to_cpu(usb_dev->descriptor.idProduct), 1374 le16_to_cpu(usb_dev->descriptor.bcdDevice), 1375 usb_dev->descriptor.bDeviceClass, 1376 usb_dev->descriptor.bDeviceSubClass, 1377 usb_dev->descriptor.bDeviceProtocol, 1378 alt->desc.bInterfaceClass, 1379 alt->desc.bInterfaceSubClass, 1380 alt->desc.bInterfaceProtocol)) 1381 return -ENOMEM; 1382 1383 envp[i] = NULL; 1384 return 0; 1385 } 1386 1387 #else 1388 1389 static int usb_if_uevent(struct device *dev, char **envp, 1390 int num_envp, char *buffer, int buffer_size) 1391 { 1392 return -ENODEV; 1393 } 1394 #endif /* CONFIG_HOTPLUG */ 1395 1396 struct device_type usb_if_device_type = { 1397 .name = "usb_interface", 1398 .release = usb_release_interface, 1399 .uevent = usb_if_uevent, 1400 }; 1401 1402 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev, 1403 struct usb_host_config *config, 1404 u8 inum) 1405 { 1406 struct usb_interface_assoc_descriptor *retval = NULL; 1407 struct usb_interface_assoc_descriptor *intf_assoc; 1408 int first_intf; 1409 int last_intf; 1410 int i; 1411 1412 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) { 1413 intf_assoc = config->intf_assoc[i]; 1414 if (intf_assoc->bInterfaceCount == 0) 1415 continue; 1416 1417 first_intf = intf_assoc->bFirstInterface; 1418 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1); 1419 if (inum >= first_intf && inum <= last_intf) { 1420 if (!retval) 1421 retval = intf_assoc; 1422 else 1423 dev_err(&dev->dev, "Interface #%d referenced" 1424 " by multiple IADs\n", inum); 1425 } 1426 } 1427 1428 return retval; 1429 } 1430 1431 1432 /* 1433 * usb_set_configuration - Makes a particular device setting be current 1434 * @dev: the device whose configuration is being updated 1435 * @configuration: the configuration being chosen. 1436 * Context: !in_interrupt(), caller owns the device lock 1437 * 1438 * This is used to enable non-default device modes. Not all devices 1439 * use this kind of configurability; many devices only have one 1440 * configuration. 1441 * 1442 * @configuration is the value of the configuration to be installed. 1443 * According to the USB spec (e.g. section 9.1.1.5), configuration values 1444 * must be non-zero; a value of zero indicates that the device in 1445 * unconfigured. However some devices erroneously use 0 as one of their 1446 * configuration values. To help manage such devices, this routine will 1447 * accept @configuration = -1 as indicating the device should be put in 1448 * an unconfigured state. 1449 * 1450 * USB device configurations may affect Linux interoperability, 1451 * power consumption and the functionality available. For example, 1452 * the default configuration is limited to using 100mA of bus power, 1453 * so that when certain device functionality requires more power, 1454 * and the device is bus powered, that functionality should be in some 1455 * non-default device configuration. Other device modes may also be 1456 * reflected as configuration options, such as whether two ISDN 1457 * channels are available independently; and choosing between open 1458 * standard device protocols (like CDC) or proprietary ones. 1459 * 1460 * Note that USB has an additional level of device configurability, 1461 * associated with interfaces. That configurability is accessed using 1462 * usb_set_interface(). 1463 * 1464 * This call is synchronous. The calling context must be able to sleep, 1465 * must own the device lock, and must not hold the driver model's USB 1466 * bus mutex; usb device driver probe() methods cannot use this routine. 1467 * 1468 * Returns zero on success, or else the status code returned by the 1469 * underlying call that failed. On successful completion, each interface 1470 * in the original device configuration has been destroyed, and each one 1471 * in the new configuration has been probed by all relevant usb device 1472 * drivers currently known to the kernel. 1473 */ 1474 int usb_set_configuration(struct usb_device *dev, int configuration) 1475 { 1476 int i, ret; 1477 struct usb_host_config *cp = NULL; 1478 struct usb_interface **new_interfaces = NULL; 1479 int n, nintf; 1480 1481 if (configuration == -1) 1482 configuration = 0; 1483 else { 1484 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) { 1485 if (dev->config[i].desc.bConfigurationValue == 1486 configuration) { 1487 cp = &dev->config[i]; 1488 break; 1489 } 1490 } 1491 } 1492 if ((!cp && configuration != 0)) 1493 return -EINVAL; 1494 1495 /* The USB spec says configuration 0 means unconfigured. 1496 * But if a device includes a configuration numbered 0, 1497 * we will accept it as a correctly configured state. 1498 * Use -1 if you really want to unconfigure the device. 1499 */ 1500 if (cp && configuration == 0) 1501 dev_warn(&dev->dev, "config 0 descriptor??\n"); 1502 1503 /* Allocate memory for new interfaces before doing anything else, 1504 * so that if we run out then nothing will have changed. */ 1505 n = nintf = 0; 1506 if (cp) { 1507 nintf = cp->desc.bNumInterfaces; 1508 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces), 1509 GFP_KERNEL); 1510 if (!new_interfaces) { 1511 dev_err(&dev->dev, "Out of memory"); 1512 return -ENOMEM; 1513 } 1514 1515 for (; n < nintf; ++n) { 1516 new_interfaces[n] = kzalloc( 1517 sizeof(struct usb_interface), 1518 GFP_KERNEL); 1519 if (!new_interfaces[n]) { 1520 dev_err(&dev->dev, "Out of memory"); 1521 ret = -ENOMEM; 1522 free_interfaces: 1523 while (--n >= 0) 1524 kfree(new_interfaces[n]); 1525 kfree(new_interfaces); 1526 return ret; 1527 } 1528 } 1529 1530 i = dev->bus_mA - cp->desc.bMaxPower * 2; 1531 if (i < 0) 1532 dev_warn(&dev->dev, "new config #%d exceeds power " 1533 "limit by %dmA\n", 1534 configuration, -i); 1535 } 1536 1537 /* Wake up the device so we can send it the Set-Config request */ 1538 ret = usb_autoresume_device(dev); 1539 if (ret) 1540 goto free_interfaces; 1541 1542 /* if it's already configured, clear out old state first. 1543 * getting rid of old interfaces means unbinding their drivers. 1544 */ 1545 if (dev->state != USB_STATE_ADDRESS) 1546 usb_disable_device (dev, 1); // Skip ep0 1547 1548 if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1549 USB_REQ_SET_CONFIGURATION, 0, configuration, 0, 1550 NULL, 0, USB_CTRL_SET_TIMEOUT)) < 0) { 1551 1552 /* All the old state is gone, so what else can we do? 1553 * The device is probably useless now anyway. 1554 */ 1555 cp = NULL; 1556 } 1557 1558 dev->actconfig = cp; 1559 if (!cp) { 1560 usb_set_device_state(dev, USB_STATE_ADDRESS); 1561 usb_autosuspend_device(dev); 1562 goto free_interfaces; 1563 } 1564 usb_set_device_state(dev, USB_STATE_CONFIGURED); 1565 1566 /* Initialize the new interface structures and the 1567 * hc/hcd/usbcore interface/endpoint state. 1568 */ 1569 for (i = 0; i < nintf; ++i) { 1570 struct usb_interface_cache *intfc; 1571 struct usb_interface *intf; 1572 struct usb_host_interface *alt; 1573 1574 cp->interface[i] = intf = new_interfaces[i]; 1575 intfc = cp->intf_cache[i]; 1576 intf->altsetting = intfc->altsetting; 1577 intf->num_altsetting = intfc->num_altsetting; 1578 intf->intf_assoc = find_iad(dev, cp, i); 1579 kref_get(&intfc->ref); 1580 1581 alt = usb_altnum_to_altsetting(intf, 0); 1582 1583 /* No altsetting 0? We'll assume the first altsetting. 1584 * We could use a GetInterface call, but if a device is 1585 * so non-compliant that it doesn't have altsetting 0 1586 * then I wouldn't trust its reply anyway. 1587 */ 1588 if (!alt) 1589 alt = &intf->altsetting[0]; 1590 1591 intf->cur_altsetting = alt; 1592 usb_enable_interface(dev, intf); 1593 intf->dev.parent = &dev->dev; 1594 intf->dev.driver = NULL; 1595 intf->dev.bus = &usb_bus_type; 1596 intf->dev.type = &usb_if_device_type; 1597 intf->dev.dma_mask = dev->dev.dma_mask; 1598 device_initialize (&intf->dev); 1599 mark_quiesced(intf); 1600 sprintf (&intf->dev.bus_id[0], "%d-%s:%d.%d", 1601 dev->bus->busnum, dev->devpath, 1602 configuration, alt->desc.bInterfaceNumber); 1603 } 1604 kfree(new_interfaces); 1605 1606 if (cp->string == NULL) 1607 cp->string = usb_cache_string(dev, cp->desc.iConfiguration); 1608 1609 /* Now that all the interfaces are set up, register them 1610 * to trigger binding of drivers to interfaces. probe() 1611 * routines may install different altsettings and may 1612 * claim() any interfaces not yet bound. Many class drivers 1613 * need that: CDC, audio, video, etc. 1614 */ 1615 for (i = 0; i < nintf; ++i) { 1616 struct usb_interface *intf = cp->interface[i]; 1617 1618 dev_dbg (&dev->dev, 1619 "adding %s (config #%d, interface %d)\n", 1620 intf->dev.bus_id, configuration, 1621 intf->cur_altsetting->desc.bInterfaceNumber); 1622 ret = device_add (&intf->dev); 1623 if (ret != 0) { 1624 dev_err(&dev->dev, "device_add(%s) --> %d\n", 1625 intf->dev.bus_id, ret); 1626 continue; 1627 } 1628 usb_create_sysfs_intf_files (intf); 1629 } 1630 1631 usb_autosuspend_device(dev); 1632 return 0; 1633 } 1634 1635 struct set_config_request { 1636 struct usb_device *udev; 1637 int config; 1638 struct work_struct work; 1639 }; 1640 1641 /* Worker routine for usb_driver_set_configuration() */ 1642 static void driver_set_config_work(struct work_struct *work) 1643 { 1644 struct set_config_request *req = 1645 container_of(work, struct set_config_request, work); 1646 1647 usb_lock_device(req->udev); 1648 usb_set_configuration(req->udev, req->config); 1649 usb_unlock_device(req->udev); 1650 usb_put_dev(req->udev); 1651 kfree(req); 1652 } 1653 1654 /** 1655 * usb_driver_set_configuration - Provide a way for drivers to change device configurations 1656 * @udev: the device whose configuration is being updated 1657 * @config: the configuration being chosen. 1658 * Context: In process context, must be able to sleep 1659 * 1660 * Device interface drivers are not allowed to change device configurations. 1661 * This is because changing configurations will destroy the interface the 1662 * driver is bound to and create new ones; it would be like a floppy-disk 1663 * driver telling the computer to replace the floppy-disk drive with a 1664 * tape drive! 1665 * 1666 * Still, in certain specialized circumstances the need may arise. This 1667 * routine gets around the normal restrictions by using a work thread to 1668 * submit the change-config request. 1669 * 1670 * Returns 0 if the request was succesfully queued, error code otherwise. 1671 * The caller has no way to know whether the queued request will eventually 1672 * succeed. 1673 */ 1674 int usb_driver_set_configuration(struct usb_device *udev, int config) 1675 { 1676 struct set_config_request *req; 1677 1678 req = kmalloc(sizeof(*req), GFP_KERNEL); 1679 if (!req) 1680 return -ENOMEM; 1681 req->udev = udev; 1682 req->config = config; 1683 INIT_WORK(&req->work, driver_set_config_work); 1684 1685 usb_get_dev(udev); 1686 schedule_work(&req->work); 1687 return 0; 1688 } 1689 EXPORT_SYMBOL_GPL(usb_driver_set_configuration); 1690 1691 // synchronous request completion model 1692 EXPORT_SYMBOL(usb_control_msg); 1693 EXPORT_SYMBOL(usb_bulk_msg); 1694 1695 EXPORT_SYMBOL(usb_sg_init); 1696 EXPORT_SYMBOL(usb_sg_cancel); 1697 EXPORT_SYMBOL(usb_sg_wait); 1698 1699 // synchronous control message convenience routines 1700 EXPORT_SYMBOL(usb_get_descriptor); 1701 EXPORT_SYMBOL(usb_get_status); 1702 EXPORT_SYMBOL(usb_string); 1703 1704 // synchronous calls that also maintain usbcore state 1705 EXPORT_SYMBOL(usb_clear_halt); 1706 EXPORT_SYMBOL(usb_reset_configuration); 1707 EXPORT_SYMBOL(usb_set_interface); 1708 1709