xref: /openbmc/linux/drivers/usb/core/message.c (revision bd329f028f1cd51c7623c326147af07c6d832193)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * message.c - synchronous message handling
4  *
5  * Released under the GPLv2 only.
6  */
7 
8 #include <linux/pci.h>	/* for scatterlist macros */
9 #include <linux/usb.h>
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 #include <linux/mm.h>
13 #include <linux/timer.h>
14 #include <linux/ctype.h>
15 #include <linux/nls.h>
16 #include <linux/device.h>
17 #include <linux/scatterlist.h>
18 #include <linux/usb/cdc.h>
19 #include <linux/usb/quirks.h>
20 #include <linux/usb/hcd.h>	/* for usbcore internals */
21 #include <linux/usb/of.h>
22 #include <asm/byteorder.h>
23 
24 #include "usb.h"
25 
26 static void cancel_async_set_config(struct usb_device *udev);
27 
28 struct api_context {
29 	struct completion	done;
30 	int			status;
31 };
32 
33 static void usb_api_blocking_completion(struct urb *urb)
34 {
35 	struct api_context *ctx = urb->context;
36 
37 	ctx->status = urb->status;
38 	complete(&ctx->done);
39 }
40 
41 
42 /*
43  * Starts urb and waits for completion or timeout. Note that this call
44  * is NOT interruptible. Many device driver i/o requests should be
45  * interruptible and therefore these drivers should implement their
46  * own interruptible routines.
47  */
48 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
49 {
50 	struct api_context ctx;
51 	unsigned long expire;
52 	int retval;
53 
54 	init_completion(&ctx.done);
55 	urb->context = &ctx;
56 	urb->actual_length = 0;
57 	retval = usb_submit_urb(urb, GFP_NOIO);
58 	if (unlikely(retval))
59 		goto out;
60 
61 	expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
62 	if (!wait_for_completion_timeout(&ctx.done, expire)) {
63 		usb_kill_urb(urb);
64 		retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
65 
66 		dev_dbg(&urb->dev->dev,
67 			"%s timed out on ep%d%s len=%u/%u\n",
68 			current->comm,
69 			usb_endpoint_num(&urb->ep->desc),
70 			usb_urb_dir_in(urb) ? "in" : "out",
71 			urb->actual_length,
72 			urb->transfer_buffer_length);
73 	} else
74 		retval = ctx.status;
75 out:
76 	if (actual_length)
77 		*actual_length = urb->actual_length;
78 
79 	usb_free_urb(urb);
80 	return retval;
81 }
82 
83 /*-------------------------------------------------------------------*/
84 /* returns status (negative) or length (positive) */
85 static int usb_internal_control_msg(struct usb_device *usb_dev,
86 				    unsigned int pipe,
87 				    struct usb_ctrlrequest *cmd,
88 				    void *data, int len, int timeout)
89 {
90 	struct urb *urb;
91 	int retv;
92 	int length;
93 
94 	urb = usb_alloc_urb(0, GFP_NOIO);
95 	if (!urb)
96 		return -ENOMEM;
97 
98 	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
99 			     len, usb_api_blocking_completion, NULL);
100 
101 	retv = usb_start_wait_urb(urb, timeout, &length);
102 	if (retv < 0)
103 		return retv;
104 	else
105 		return length;
106 }
107 
108 /**
109  * usb_control_msg - Builds a control urb, sends it off and waits for completion
110  * @dev: pointer to the usb device to send the message to
111  * @pipe: endpoint "pipe" to send the message to
112  * @request: USB message request value
113  * @requesttype: USB message request type value
114  * @value: USB message value
115  * @index: USB message index value
116  * @data: pointer to the data to send
117  * @size: length in bytes of the data to send
118  * @timeout: time in msecs to wait for the message to complete before timing
119  *	out (if 0 the wait is forever)
120  *
121  * Context: !in_interrupt ()
122  *
123  * This function sends a simple control message to a specified endpoint and
124  * waits for the message to complete, or timeout.
125  *
126  * Don't use this function from within an interrupt context. If you need
127  * an asynchronous message, or need to send a message from within interrupt
128  * context, use usb_submit_urb(). If a thread in your driver uses this call,
129  * make sure your disconnect() method can wait for it to complete. Since you
130  * don't have a handle on the URB used, you can't cancel the request.
131  *
132  * Return: If successful, the number of bytes transferred. Otherwise, a negative
133  * error number.
134  */
135 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
136 		    __u8 requesttype, __u16 value, __u16 index, void *data,
137 		    __u16 size, int timeout)
138 {
139 	struct usb_ctrlrequest *dr;
140 	int ret;
141 
142 	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
143 	if (!dr)
144 		return -ENOMEM;
145 
146 	dr->bRequestType = requesttype;
147 	dr->bRequest = request;
148 	dr->wValue = cpu_to_le16(value);
149 	dr->wIndex = cpu_to_le16(index);
150 	dr->wLength = cpu_to_le16(size);
151 
152 	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
153 
154 	kfree(dr);
155 
156 	return ret;
157 }
158 EXPORT_SYMBOL_GPL(usb_control_msg);
159 
160 /**
161  * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
162  * @usb_dev: pointer to the usb device to send the message to
163  * @pipe: endpoint "pipe" to send the message to
164  * @data: pointer to the data to send
165  * @len: length in bytes of the data to send
166  * @actual_length: pointer to a location to put the actual length transferred
167  *	in bytes
168  * @timeout: time in msecs to wait for the message to complete before
169  *	timing out (if 0 the wait is forever)
170  *
171  * Context: !in_interrupt ()
172  *
173  * This function sends a simple interrupt message to a specified endpoint and
174  * waits for the message to complete, or timeout.
175  *
176  * Don't use this function from within an interrupt context. If you need
177  * an asynchronous message, or need to send a message from within interrupt
178  * context, use usb_submit_urb() If a thread in your driver uses this call,
179  * make sure your disconnect() method can wait for it to complete. Since you
180  * don't have a handle on the URB used, you can't cancel the request.
181  *
182  * Return:
183  * If successful, 0. Otherwise a negative error number. The number of actual
184  * bytes transferred will be stored in the @actual_length parameter.
185  */
186 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
187 		      void *data, int len, int *actual_length, int timeout)
188 {
189 	return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
190 }
191 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
192 
193 /**
194  * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
195  * @usb_dev: pointer to the usb device to send the message to
196  * @pipe: endpoint "pipe" to send the message to
197  * @data: pointer to the data to send
198  * @len: length in bytes of the data to send
199  * @actual_length: pointer to a location to put the actual length transferred
200  *	in bytes
201  * @timeout: time in msecs to wait for the message to complete before
202  *	timing out (if 0 the wait is forever)
203  *
204  * Context: !in_interrupt ()
205  *
206  * This function sends a simple bulk message to a specified endpoint
207  * and waits for the message to complete, or timeout.
208  *
209  * Don't use this function from within an interrupt context. If you need
210  * an asynchronous message, or need to send a message from within interrupt
211  * context, use usb_submit_urb() If a thread in your driver uses this call,
212  * make sure your disconnect() method can wait for it to complete. Since you
213  * don't have a handle on the URB used, you can't cancel the request.
214  *
215  * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
216  * users are forced to abuse this routine by using it to submit URBs for
217  * interrupt endpoints.  We will take the liberty of creating an interrupt URB
218  * (with the default interval) if the target is an interrupt endpoint.
219  *
220  * Return:
221  * If successful, 0. Otherwise a negative error number. The number of actual
222  * bytes transferred will be stored in the @actual_length parameter.
223  *
224  */
225 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
226 		 void *data, int len, int *actual_length, int timeout)
227 {
228 	struct urb *urb;
229 	struct usb_host_endpoint *ep;
230 
231 	ep = usb_pipe_endpoint(usb_dev, pipe);
232 	if (!ep || len < 0)
233 		return -EINVAL;
234 
235 	urb = usb_alloc_urb(0, GFP_KERNEL);
236 	if (!urb)
237 		return -ENOMEM;
238 
239 	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
240 			USB_ENDPOINT_XFER_INT) {
241 		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
242 		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
243 				usb_api_blocking_completion, NULL,
244 				ep->desc.bInterval);
245 	} else
246 		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
247 				usb_api_blocking_completion, NULL);
248 
249 	return usb_start_wait_urb(urb, timeout, actual_length);
250 }
251 EXPORT_SYMBOL_GPL(usb_bulk_msg);
252 
253 /*-------------------------------------------------------------------*/
254 
255 static void sg_clean(struct usb_sg_request *io)
256 {
257 	if (io->urbs) {
258 		while (io->entries--)
259 			usb_free_urb(io->urbs[io->entries]);
260 		kfree(io->urbs);
261 		io->urbs = NULL;
262 	}
263 	io->dev = NULL;
264 }
265 
266 static void sg_complete(struct urb *urb)
267 {
268 	struct usb_sg_request *io = urb->context;
269 	int status = urb->status;
270 
271 	spin_lock(&io->lock);
272 
273 	/* In 2.5 we require hcds' endpoint queues not to progress after fault
274 	 * reports, until the completion callback (this!) returns.  That lets
275 	 * device driver code (like this routine) unlink queued urbs first,
276 	 * if it needs to, since the HC won't work on them at all.  So it's
277 	 * not possible for page N+1 to overwrite page N, and so on.
278 	 *
279 	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
280 	 * complete before the HCD can get requests away from hardware,
281 	 * though never during cleanup after a hard fault.
282 	 */
283 	if (io->status
284 			&& (io->status != -ECONNRESET
285 				|| status != -ECONNRESET)
286 			&& urb->actual_length) {
287 		dev_err(io->dev->bus->controller,
288 			"dev %s ep%d%s scatterlist error %d/%d\n",
289 			io->dev->devpath,
290 			usb_endpoint_num(&urb->ep->desc),
291 			usb_urb_dir_in(urb) ? "in" : "out",
292 			status, io->status);
293 		/* BUG (); */
294 	}
295 
296 	if (io->status == 0 && status && status != -ECONNRESET) {
297 		int i, found, retval;
298 
299 		io->status = status;
300 
301 		/* the previous urbs, and this one, completed already.
302 		 * unlink pending urbs so they won't rx/tx bad data.
303 		 * careful: unlink can sometimes be synchronous...
304 		 */
305 		spin_unlock(&io->lock);
306 		for (i = 0, found = 0; i < io->entries; i++) {
307 			if (!io->urbs[i])
308 				continue;
309 			if (found) {
310 				usb_block_urb(io->urbs[i]);
311 				retval = usb_unlink_urb(io->urbs[i]);
312 				if (retval != -EINPROGRESS &&
313 				    retval != -ENODEV &&
314 				    retval != -EBUSY &&
315 				    retval != -EIDRM)
316 					dev_err(&io->dev->dev,
317 						"%s, unlink --> %d\n",
318 						__func__, retval);
319 			} else if (urb == io->urbs[i])
320 				found = 1;
321 		}
322 		spin_lock(&io->lock);
323 	}
324 
325 	/* on the last completion, signal usb_sg_wait() */
326 	io->bytes += urb->actual_length;
327 	io->count--;
328 	if (!io->count)
329 		complete(&io->complete);
330 
331 	spin_unlock(&io->lock);
332 }
333 
334 
335 /**
336  * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
337  * @io: request block being initialized.  until usb_sg_wait() returns,
338  *	treat this as a pointer to an opaque block of memory,
339  * @dev: the usb device that will send or receive the data
340  * @pipe: endpoint "pipe" used to transfer the data
341  * @period: polling rate for interrupt endpoints, in frames or
342  * 	(for high speed endpoints) microframes; ignored for bulk
343  * @sg: scatterlist entries
344  * @nents: how many entries in the scatterlist
345  * @length: how many bytes to send from the scatterlist, or zero to
346  * 	send every byte identified in the list.
347  * @mem_flags: SLAB_* flags affecting memory allocations in this call
348  *
349  * This initializes a scatter/gather request, allocating resources such as
350  * I/O mappings and urb memory (except maybe memory used by USB controller
351  * drivers).
352  *
353  * The request must be issued using usb_sg_wait(), which waits for the I/O to
354  * complete (or to be canceled) and then cleans up all resources allocated by
355  * usb_sg_init().
356  *
357  * The request may be canceled with usb_sg_cancel(), either before or after
358  * usb_sg_wait() is called.
359  *
360  * Return: Zero for success, else a negative errno value.
361  */
362 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
363 		unsigned pipe, unsigned	period, struct scatterlist *sg,
364 		int nents, size_t length, gfp_t mem_flags)
365 {
366 	int i;
367 	int urb_flags;
368 	int use_sg;
369 
370 	if (!io || !dev || !sg
371 			|| usb_pipecontrol(pipe)
372 			|| usb_pipeisoc(pipe)
373 			|| nents <= 0)
374 		return -EINVAL;
375 
376 	spin_lock_init(&io->lock);
377 	io->dev = dev;
378 	io->pipe = pipe;
379 
380 	if (dev->bus->sg_tablesize > 0) {
381 		use_sg = true;
382 		io->entries = 1;
383 	} else {
384 		use_sg = false;
385 		io->entries = nents;
386 	}
387 
388 	/* initialize all the urbs we'll use */
389 	io->urbs = kmalloc(io->entries * sizeof(*io->urbs), mem_flags);
390 	if (!io->urbs)
391 		goto nomem;
392 
393 	urb_flags = URB_NO_INTERRUPT;
394 	if (usb_pipein(pipe))
395 		urb_flags |= URB_SHORT_NOT_OK;
396 
397 	for_each_sg(sg, sg, io->entries, i) {
398 		struct urb *urb;
399 		unsigned len;
400 
401 		urb = usb_alloc_urb(0, mem_flags);
402 		if (!urb) {
403 			io->entries = i;
404 			goto nomem;
405 		}
406 		io->urbs[i] = urb;
407 
408 		urb->dev = NULL;
409 		urb->pipe = pipe;
410 		urb->interval = period;
411 		urb->transfer_flags = urb_flags;
412 		urb->complete = sg_complete;
413 		urb->context = io;
414 		urb->sg = sg;
415 
416 		if (use_sg) {
417 			/* There is no single transfer buffer */
418 			urb->transfer_buffer = NULL;
419 			urb->num_sgs = nents;
420 
421 			/* A length of zero means transfer the whole sg list */
422 			len = length;
423 			if (len == 0) {
424 				struct scatterlist	*sg2;
425 				int			j;
426 
427 				for_each_sg(sg, sg2, nents, j)
428 					len += sg2->length;
429 			}
430 		} else {
431 			/*
432 			 * Some systems can't use DMA; they use PIO instead.
433 			 * For their sakes, transfer_buffer is set whenever
434 			 * possible.
435 			 */
436 			if (!PageHighMem(sg_page(sg)))
437 				urb->transfer_buffer = sg_virt(sg);
438 			else
439 				urb->transfer_buffer = NULL;
440 
441 			len = sg->length;
442 			if (length) {
443 				len = min_t(size_t, len, length);
444 				length -= len;
445 				if (length == 0)
446 					io->entries = i + 1;
447 			}
448 		}
449 		urb->transfer_buffer_length = len;
450 	}
451 	io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
452 
453 	/* transaction state */
454 	io->count = io->entries;
455 	io->status = 0;
456 	io->bytes = 0;
457 	init_completion(&io->complete);
458 	return 0;
459 
460 nomem:
461 	sg_clean(io);
462 	return -ENOMEM;
463 }
464 EXPORT_SYMBOL_GPL(usb_sg_init);
465 
466 /**
467  * usb_sg_wait - synchronously execute scatter/gather request
468  * @io: request block handle, as initialized with usb_sg_init().
469  * 	some fields become accessible when this call returns.
470  * Context: !in_interrupt ()
471  *
472  * This function blocks until the specified I/O operation completes.  It
473  * leverages the grouping of the related I/O requests to get good transfer
474  * rates, by queueing the requests.  At higher speeds, such queuing can
475  * significantly improve USB throughput.
476  *
477  * There are three kinds of completion for this function.
478  *
479  * (1) success, where io->status is zero.  The number of io->bytes
480  *     transferred is as requested.
481  * (2) error, where io->status is a negative errno value.  The number
482  *     of io->bytes transferred before the error is usually less
483  *     than requested, and can be nonzero.
484  * (3) cancellation, a type of error with status -ECONNRESET that
485  *     is initiated by usb_sg_cancel().
486  *
487  * When this function returns, all memory allocated through usb_sg_init() or
488  * this call will have been freed.  The request block parameter may still be
489  * passed to usb_sg_cancel(), or it may be freed.  It could also be
490  * reinitialized and then reused.
491  *
492  * Data Transfer Rates:
493  *
494  * Bulk transfers are valid for full or high speed endpoints.
495  * The best full speed data rate is 19 packets of 64 bytes each
496  * per frame, or 1216 bytes per millisecond.
497  * The best high speed data rate is 13 packets of 512 bytes each
498  * per microframe, or 52 KBytes per millisecond.
499  *
500  * The reason to use interrupt transfers through this API would most likely
501  * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
502  * could be transferred.  That capability is less useful for low or full
503  * speed interrupt endpoints, which allow at most one packet per millisecond,
504  * of at most 8 or 64 bytes (respectively).
505  *
506  * It is not necessary to call this function to reserve bandwidth for devices
507  * under an xHCI host controller, as the bandwidth is reserved when the
508  * configuration or interface alt setting is selected.
509  */
510 void usb_sg_wait(struct usb_sg_request *io)
511 {
512 	int i;
513 	int entries = io->entries;
514 
515 	/* queue the urbs.  */
516 	spin_lock_irq(&io->lock);
517 	i = 0;
518 	while (i < entries && !io->status) {
519 		int retval;
520 
521 		io->urbs[i]->dev = io->dev;
522 		spin_unlock_irq(&io->lock);
523 
524 		retval = usb_submit_urb(io->urbs[i], GFP_NOIO);
525 
526 		switch (retval) {
527 			/* maybe we retrying will recover */
528 		case -ENXIO:	/* hc didn't queue this one */
529 		case -EAGAIN:
530 		case -ENOMEM:
531 			retval = 0;
532 			yield();
533 			break;
534 
535 			/* no error? continue immediately.
536 			 *
537 			 * NOTE: to work better with UHCI (4K I/O buffer may
538 			 * need 3K of TDs) it may be good to limit how many
539 			 * URBs are queued at once; N milliseconds?
540 			 */
541 		case 0:
542 			++i;
543 			cpu_relax();
544 			break;
545 
546 			/* fail any uncompleted urbs */
547 		default:
548 			io->urbs[i]->status = retval;
549 			dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
550 				__func__, retval);
551 			usb_sg_cancel(io);
552 		}
553 		spin_lock_irq(&io->lock);
554 		if (retval && (io->status == 0 || io->status == -ECONNRESET))
555 			io->status = retval;
556 	}
557 	io->count -= entries - i;
558 	if (io->count == 0)
559 		complete(&io->complete);
560 	spin_unlock_irq(&io->lock);
561 
562 	/* OK, yes, this could be packaged as non-blocking.
563 	 * So could the submit loop above ... but it's easier to
564 	 * solve neither problem than to solve both!
565 	 */
566 	wait_for_completion(&io->complete);
567 
568 	sg_clean(io);
569 }
570 EXPORT_SYMBOL_GPL(usb_sg_wait);
571 
572 /**
573  * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
574  * @io: request block, initialized with usb_sg_init()
575  *
576  * This stops a request after it has been started by usb_sg_wait().
577  * It can also prevents one initialized by usb_sg_init() from starting,
578  * so that call just frees resources allocated to the request.
579  */
580 void usb_sg_cancel(struct usb_sg_request *io)
581 {
582 	unsigned long flags;
583 	int i, retval;
584 
585 	spin_lock_irqsave(&io->lock, flags);
586 	if (io->status) {
587 		spin_unlock_irqrestore(&io->lock, flags);
588 		return;
589 	}
590 	/* shut everything down */
591 	io->status = -ECONNRESET;
592 	spin_unlock_irqrestore(&io->lock, flags);
593 
594 	for (i = io->entries - 1; i >= 0; --i) {
595 		usb_block_urb(io->urbs[i]);
596 
597 		retval = usb_unlink_urb(io->urbs[i]);
598 		if (retval != -EINPROGRESS
599 		    && retval != -ENODEV
600 		    && retval != -EBUSY
601 		    && retval != -EIDRM)
602 			dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
603 				 __func__, retval);
604 	}
605 }
606 EXPORT_SYMBOL_GPL(usb_sg_cancel);
607 
608 /*-------------------------------------------------------------------*/
609 
610 /**
611  * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
612  * @dev: the device whose descriptor is being retrieved
613  * @type: the descriptor type (USB_DT_*)
614  * @index: the number of the descriptor
615  * @buf: where to put the descriptor
616  * @size: how big is "buf"?
617  * Context: !in_interrupt ()
618  *
619  * Gets a USB descriptor.  Convenience functions exist to simplify
620  * getting some types of descriptors.  Use
621  * usb_get_string() or usb_string() for USB_DT_STRING.
622  * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
623  * are part of the device structure.
624  * In addition to a number of USB-standard descriptors, some
625  * devices also use class-specific or vendor-specific descriptors.
626  *
627  * This call is synchronous, and may not be used in an interrupt context.
628  *
629  * Return: The number of bytes received on success, or else the status code
630  * returned by the underlying usb_control_msg() call.
631  */
632 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
633 		       unsigned char index, void *buf, int size)
634 {
635 	int i;
636 	int result;
637 
638 	memset(buf, 0, size);	/* Make sure we parse really received data */
639 
640 	for (i = 0; i < 3; ++i) {
641 		/* retry on length 0 or error; some devices are flakey */
642 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
643 				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
644 				(type << 8) + index, 0, buf, size,
645 				USB_CTRL_GET_TIMEOUT);
646 		if (result <= 0 && result != -ETIMEDOUT)
647 			continue;
648 		if (result > 1 && ((u8 *)buf)[1] != type) {
649 			result = -ENODATA;
650 			continue;
651 		}
652 		break;
653 	}
654 	return result;
655 }
656 EXPORT_SYMBOL_GPL(usb_get_descriptor);
657 
658 /**
659  * usb_get_string - gets a string descriptor
660  * @dev: the device whose string descriptor is being retrieved
661  * @langid: code for language chosen (from string descriptor zero)
662  * @index: the number of the descriptor
663  * @buf: where to put the string
664  * @size: how big is "buf"?
665  * Context: !in_interrupt ()
666  *
667  * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
668  * in little-endian byte order).
669  * The usb_string() function will often be a convenient way to turn
670  * these strings into kernel-printable form.
671  *
672  * Strings may be referenced in device, configuration, interface, or other
673  * descriptors, and could also be used in vendor-specific ways.
674  *
675  * This call is synchronous, and may not be used in an interrupt context.
676  *
677  * Return: The number of bytes received on success, or else the status code
678  * returned by the underlying usb_control_msg() call.
679  */
680 static int usb_get_string(struct usb_device *dev, unsigned short langid,
681 			  unsigned char index, void *buf, int size)
682 {
683 	int i;
684 	int result;
685 
686 	for (i = 0; i < 3; ++i) {
687 		/* retry on length 0 or stall; some devices are flakey */
688 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
689 			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
690 			(USB_DT_STRING << 8) + index, langid, buf, size,
691 			USB_CTRL_GET_TIMEOUT);
692 		if (result == 0 || result == -EPIPE)
693 			continue;
694 		if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
695 			result = -ENODATA;
696 			continue;
697 		}
698 		break;
699 	}
700 	return result;
701 }
702 
703 static void usb_try_string_workarounds(unsigned char *buf, int *length)
704 {
705 	int newlength, oldlength = *length;
706 
707 	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
708 		if (!isprint(buf[newlength]) || buf[newlength + 1])
709 			break;
710 
711 	if (newlength > 2) {
712 		buf[0] = newlength;
713 		*length = newlength;
714 	}
715 }
716 
717 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
718 			  unsigned int index, unsigned char *buf)
719 {
720 	int rc;
721 
722 	/* Try to read the string descriptor by asking for the maximum
723 	 * possible number of bytes */
724 	if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
725 		rc = -EIO;
726 	else
727 		rc = usb_get_string(dev, langid, index, buf, 255);
728 
729 	/* If that failed try to read the descriptor length, then
730 	 * ask for just that many bytes */
731 	if (rc < 2) {
732 		rc = usb_get_string(dev, langid, index, buf, 2);
733 		if (rc == 2)
734 			rc = usb_get_string(dev, langid, index, buf, buf[0]);
735 	}
736 
737 	if (rc >= 2) {
738 		if (!buf[0] && !buf[1])
739 			usb_try_string_workarounds(buf, &rc);
740 
741 		/* There might be extra junk at the end of the descriptor */
742 		if (buf[0] < rc)
743 			rc = buf[0];
744 
745 		rc = rc - (rc & 1); /* force a multiple of two */
746 	}
747 
748 	if (rc < 2)
749 		rc = (rc < 0 ? rc : -EINVAL);
750 
751 	return rc;
752 }
753 
754 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
755 {
756 	int err;
757 
758 	if (dev->have_langid)
759 		return 0;
760 
761 	if (dev->string_langid < 0)
762 		return -EPIPE;
763 
764 	err = usb_string_sub(dev, 0, 0, tbuf);
765 
766 	/* If the string was reported but is malformed, default to english
767 	 * (0x0409) */
768 	if (err == -ENODATA || (err > 0 && err < 4)) {
769 		dev->string_langid = 0x0409;
770 		dev->have_langid = 1;
771 		dev_err(&dev->dev,
772 			"language id specifier not provided by device, defaulting to English\n");
773 		return 0;
774 	}
775 
776 	/* In case of all other errors, we assume the device is not able to
777 	 * deal with strings at all. Set string_langid to -1 in order to
778 	 * prevent any string to be retrieved from the device */
779 	if (err < 0) {
780 		dev_info(&dev->dev, "string descriptor 0 read error: %d\n",
781 					err);
782 		dev->string_langid = -1;
783 		return -EPIPE;
784 	}
785 
786 	/* always use the first langid listed */
787 	dev->string_langid = tbuf[2] | (tbuf[3] << 8);
788 	dev->have_langid = 1;
789 	dev_dbg(&dev->dev, "default language 0x%04x\n",
790 				dev->string_langid);
791 	return 0;
792 }
793 
794 /**
795  * usb_string - returns UTF-8 version of a string descriptor
796  * @dev: the device whose string descriptor is being retrieved
797  * @index: the number of the descriptor
798  * @buf: where to put the string
799  * @size: how big is "buf"?
800  * Context: !in_interrupt ()
801  *
802  * This converts the UTF-16LE encoded strings returned by devices, from
803  * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
804  * that are more usable in most kernel contexts.  Note that this function
805  * chooses strings in the first language supported by the device.
806  *
807  * This call is synchronous, and may not be used in an interrupt context.
808  *
809  * Return: length of the string (>= 0) or usb_control_msg status (< 0).
810  */
811 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
812 {
813 	unsigned char *tbuf;
814 	int err;
815 
816 	if (dev->state == USB_STATE_SUSPENDED)
817 		return -EHOSTUNREACH;
818 	if (size <= 0 || !buf || !index)
819 		return -EINVAL;
820 	buf[0] = 0;
821 	tbuf = kmalloc(256, GFP_NOIO);
822 	if (!tbuf)
823 		return -ENOMEM;
824 
825 	err = usb_get_langid(dev, tbuf);
826 	if (err < 0)
827 		goto errout;
828 
829 	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
830 	if (err < 0)
831 		goto errout;
832 
833 	size--;		/* leave room for trailing NULL char in output buffer */
834 	err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
835 			UTF16_LITTLE_ENDIAN, buf, size);
836 	buf[err] = 0;
837 
838 	if (tbuf[1] != USB_DT_STRING)
839 		dev_dbg(&dev->dev,
840 			"wrong descriptor type %02x for string %d (\"%s\")\n",
841 			tbuf[1], index, buf);
842 
843  errout:
844 	kfree(tbuf);
845 	return err;
846 }
847 EXPORT_SYMBOL_GPL(usb_string);
848 
849 /* one UTF-8-encoded 16-bit character has at most three bytes */
850 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
851 
852 /**
853  * usb_cache_string - read a string descriptor and cache it for later use
854  * @udev: the device whose string descriptor is being read
855  * @index: the descriptor index
856  *
857  * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
858  * or %NULL if the index is 0 or the string could not be read.
859  */
860 char *usb_cache_string(struct usb_device *udev, int index)
861 {
862 	char *buf;
863 	char *smallbuf = NULL;
864 	int len;
865 
866 	if (index <= 0)
867 		return NULL;
868 
869 	buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
870 	if (buf) {
871 		len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
872 		if (len > 0) {
873 			smallbuf = kmalloc(++len, GFP_NOIO);
874 			if (!smallbuf)
875 				return buf;
876 			memcpy(smallbuf, buf, len);
877 		}
878 		kfree(buf);
879 	}
880 	return smallbuf;
881 }
882 
883 /*
884  * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
885  * @dev: the device whose device descriptor is being updated
886  * @size: how much of the descriptor to read
887  * Context: !in_interrupt ()
888  *
889  * Updates the copy of the device descriptor stored in the device structure,
890  * which dedicates space for this purpose.
891  *
892  * Not exported, only for use by the core.  If drivers really want to read
893  * the device descriptor directly, they can call usb_get_descriptor() with
894  * type = USB_DT_DEVICE and index = 0.
895  *
896  * This call is synchronous, and may not be used in an interrupt context.
897  *
898  * Return: The number of bytes received on success, or else the status code
899  * returned by the underlying usb_control_msg() call.
900  */
901 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
902 {
903 	struct usb_device_descriptor *desc;
904 	int ret;
905 
906 	if (size > sizeof(*desc))
907 		return -EINVAL;
908 	desc = kmalloc(sizeof(*desc), GFP_NOIO);
909 	if (!desc)
910 		return -ENOMEM;
911 
912 	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
913 	if (ret >= 0)
914 		memcpy(&dev->descriptor, desc, size);
915 	kfree(desc);
916 	return ret;
917 }
918 
919 /*
920  * usb_set_isoch_delay - informs the device of the packet transmit delay
921  * @dev: the device whose delay is to be informed
922  * Context: !in_interrupt()
923  *
924  * Since this is an optional request, we don't bother if it fails.
925  */
926 int usb_set_isoch_delay(struct usb_device *dev)
927 {
928 	/* skip hub devices */
929 	if (dev->descriptor.bDeviceClass == USB_CLASS_HUB)
930 		return 0;
931 
932 	/* skip non-SS/non-SSP devices */
933 	if (dev->speed < USB_SPEED_SUPER)
934 		return 0;
935 
936 	return usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
937 			USB_REQ_SET_ISOCH_DELAY,
938 			USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE,
939 			cpu_to_le16(dev->hub_delay), 0, NULL, 0,
940 			USB_CTRL_SET_TIMEOUT);
941 }
942 
943 /**
944  * usb_get_status - issues a GET_STATUS call
945  * @dev: the device whose status is being checked
946  * @recip: USB_RECIP_*; for device, interface, or endpoint
947  * @type: USB_STATUS_TYPE_*; for standard or PTM status types
948  * @target: zero (for device), else interface or endpoint number
949  * @data: pointer to two bytes of bitmap data
950  * Context: !in_interrupt ()
951  *
952  * Returns device, interface, or endpoint status.  Normally only of
953  * interest to see if the device is self powered, or has enabled the
954  * remote wakeup facility; or whether a bulk or interrupt endpoint
955  * is halted ("stalled").
956  *
957  * Bits in these status bitmaps are set using the SET_FEATURE request,
958  * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
959  * function should be used to clear halt ("stall") status.
960  *
961  * This call is synchronous, and may not be used in an interrupt context.
962  *
963  * Returns 0 and the status value in *@data (in host byte order) on success,
964  * or else the status code from the underlying usb_control_msg() call.
965  */
966 int usb_get_status(struct usb_device *dev, int recip, int type, int target,
967 		void *data)
968 {
969 	int ret;
970 	void *status;
971 	int length;
972 
973 	switch (type) {
974 	case USB_STATUS_TYPE_STANDARD:
975 		length = 2;
976 		break;
977 	case USB_STATUS_TYPE_PTM:
978 		if (recip != USB_RECIP_DEVICE)
979 			return -EINVAL;
980 
981 		length = 4;
982 		break;
983 	default:
984 		return -EINVAL;
985 	}
986 
987 	status =  kmalloc(length, GFP_KERNEL);
988 	if (!status)
989 		return -ENOMEM;
990 
991 	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
992 		USB_REQ_GET_STATUS, USB_DIR_IN | recip, USB_STATUS_TYPE_STANDARD,
993 		target, status, length, USB_CTRL_GET_TIMEOUT);
994 
995 	switch (ret) {
996 	case 4:
997 		if (type != USB_STATUS_TYPE_PTM) {
998 			ret = -EIO;
999 			break;
1000 		}
1001 
1002 		*(u32 *) data = le32_to_cpu(*(__le32 *) status);
1003 		ret = 0;
1004 		break;
1005 	case 2:
1006 		if (type != USB_STATUS_TYPE_STANDARD) {
1007 			ret = -EIO;
1008 			break;
1009 		}
1010 
1011 		*(u16 *) data = le16_to_cpu(*(__le16 *) status);
1012 		ret = 0;
1013 		break;
1014 	default:
1015 		ret = -EIO;
1016 	}
1017 
1018 	kfree(status);
1019 	return ret;
1020 }
1021 EXPORT_SYMBOL_GPL(usb_get_status);
1022 
1023 /**
1024  * usb_clear_halt - tells device to clear endpoint halt/stall condition
1025  * @dev: device whose endpoint is halted
1026  * @pipe: endpoint "pipe" being cleared
1027  * Context: !in_interrupt ()
1028  *
1029  * This is used to clear halt conditions for bulk and interrupt endpoints,
1030  * as reported by URB completion status.  Endpoints that are halted are
1031  * sometimes referred to as being "stalled".  Such endpoints are unable
1032  * to transmit or receive data until the halt status is cleared.  Any URBs
1033  * queued for such an endpoint should normally be unlinked by the driver
1034  * before clearing the halt condition, as described in sections 5.7.5
1035  * and 5.8.5 of the USB 2.0 spec.
1036  *
1037  * Note that control and isochronous endpoints don't halt, although control
1038  * endpoints report "protocol stall" (for unsupported requests) using the
1039  * same status code used to report a true stall.
1040  *
1041  * This call is synchronous, and may not be used in an interrupt context.
1042  *
1043  * Return: Zero on success, or else the status code returned by the
1044  * underlying usb_control_msg() call.
1045  */
1046 int usb_clear_halt(struct usb_device *dev, int pipe)
1047 {
1048 	int result;
1049 	int endp = usb_pipeendpoint(pipe);
1050 
1051 	if (usb_pipein(pipe))
1052 		endp |= USB_DIR_IN;
1053 
1054 	/* we don't care if it wasn't halted first. in fact some devices
1055 	 * (like some ibmcam model 1 units) seem to expect hosts to make
1056 	 * this request for iso endpoints, which can't halt!
1057 	 */
1058 	result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1059 		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1060 		USB_ENDPOINT_HALT, endp, NULL, 0,
1061 		USB_CTRL_SET_TIMEOUT);
1062 
1063 	/* don't un-halt or force to DATA0 except on success */
1064 	if (result < 0)
1065 		return result;
1066 
1067 	/* NOTE:  seems like Microsoft and Apple don't bother verifying
1068 	 * the clear "took", so some devices could lock up if you check...
1069 	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
1070 	 *
1071 	 * NOTE:  make sure the logic here doesn't diverge much from
1072 	 * the copy in usb-storage, for as long as we need two copies.
1073 	 */
1074 
1075 	usb_reset_endpoint(dev, endp);
1076 
1077 	return 0;
1078 }
1079 EXPORT_SYMBOL_GPL(usb_clear_halt);
1080 
1081 static int create_intf_ep_devs(struct usb_interface *intf)
1082 {
1083 	struct usb_device *udev = interface_to_usbdev(intf);
1084 	struct usb_host_interface *alt = intf->cur_altsetting;
1085 	int i;
1086 
1087 	if (intf->ep_devs_created || intf->unregistering)
1088 		return 0;
1089 
1090 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1091 		(void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1092 	intf->ep_devs_created = 1;
1093 	return 0;
1094 }
1095 
1096 static void remove_intf_ep_devs(struct usb_interface *intf)
1097 {
1098 	struct usb_host_interface *alt = intf->cur_altsetting;
1099 	int i;
1100 
1101 	if (!intf->ep_devs_created)
1102 		return;
1103 
1104 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1105 		usb_remove_ep_devs(&alt->endpoint[i]);
1106 	intf->ep_devs_created = 0;
1107 }
1108 
1109 /**
1110  * usb_disable_endpoint -- Disable an endpoint by address
1111  * @dev: the device whose endpoint is being disabled
1112  * @epaddr: the endpoint's address.  Endpoint number for output,
1113  *	endpoint number + USB_DIR_IN for input
1114  * @reset_hardware: flag to erase any endpoint state stored in the
1115  *	controller hardware
1116  *
1117  * Disables the endpoint for URB submission and nukes all pending URBs.
1118  * If @reset_hardware is set then also deallocates hcd/hardware state
1119  * for the endpoint.
1120  */
1121 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1122 		bool reset_hardware)
1123 {
1124 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1125 	struct usb_host_endpoint *ep;
1126 
1127 	if (!dev)
1128 		return;
1129 
1130 	if (usb_endpoint_out(epaddr)) {
1131 		ep = dev->ep_out[epnum];
1132 		if (reset_hardware)
1133 			dev->ep_out[epnum] = NULL;
1134 	} else {
1135 		ep = dev->ep_in[epnum];
1136 		if (reset_hardware)
1137 			dev->ep_in[epnum] = NULL;
1138 	}
1139 	if (ep) {
1140 		ep->enabled = 0;
1141 		usb_hcd_flush_endpoint(dev, ep);
1142 		if (reset_hardware)
1143 			usb_hcd_disable_endpoint(dev, ep);
1144 	}
1145 }
1146 
1147 /**
1148  * usb_reset_endpoint - Reset an endpoint's state.
1149  * @dev: the device whose endpoint is to be reset
1150  * @epaddr: the endpoint's address.  Endpoint number for output,
1151  *	endpoint number + USB_DIR_IN for input
1152  *
1153  * Resets any host-side endpoint state such as the toggle bit,
1154  * sequence number or current window.
1155  */
1156 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1157 {
1158 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1159 	struct usb_host_endpoint *ep;
1160 
1161 	if (usb_endpoint_out(epaddr))
1162 		ep = dev->ep_out[epnum];
1163 	else
1164 		ep = dev->ep_in[epnum];
1165 	if (ep)
1166 		usb_hcd_reset_endpoint(dev, ep);
1167 }
1168 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1169 
1170 
1171 /**
1172  * usb_disable_interface -- Disable all endpoints for an interface
1173  * @dev: the device whose interface is being disabled
1174  * @intf: pointer to the interface descriptor
1175  * @reset_hardware: flag to erase any endpoint state stored in the
1176  *	controller hardware
1177  *
1178  * Disables all the endpoints for the interface's current altsetting.
1179  */
1180 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1181 		bool reset_hardware)
1182 {
1183 	struct usb_host_interface *alt = intf->cur_altsetting;
1184 	int i;
1185 
1186 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1187 		usb_disable_endpoint(dev,
1188 				alt->endpoint[i].desc.bEndpointAddress,
1189 				reset_hardware);
1190 	}
1191 }
1192 
1193 /**
1194  * usb_disable_device - Disable all the endpoints for a USB device
1195  * @dev: the device whose endpoints are being disabled
1196  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1197  *
1198  * Disables all the device's endpoints, potentially including endpoint 0.
1199  * Deallocates hcd/hardware state for the endpoints (nuking all or most
1200  * pending urbs) and usbcore state for the interfaces, so that usbcore
1201  * must usb_set_configuration() before any interfaces could be used.
1202  */
1203 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1204 {
1205 	int i;
1206 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1207 
1208 	/* getting rid of interfaces will disconnect
1209 	 * any drivers bound to them (a key side effect)
1210 	 */
1211 	if (dev->actconfig) {
1212 		/*
1213 		 * FIXME: In order to avoid self-deadlock involving the
1214 		 * bandwidth_mutex, we have to mark all the interfaces
1215 		 * before unregistering any of them.
1216 		 */
1217 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1218 			dev->actconfig->interface[i]->unregistering = 1;
1219 
1220 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1221 			struct usb_interface	*interface;
1222 
1223 			/* remove this interface if it has been registered */
1224 			interface = dev->actconfig->interface[i];
1225 			if (!device_is_registered(&interface->dev))
1226 				continue;
1227 			dev_dbg(&dev->dev, "unregistering interface %s\n",
1228 				dev_name(&interface->dev));
1229 			remove_intf_ep_devs(interface);
1230 			device_del(&interface->dev);
1231 		}
1232 
1233 		/* Now that the interfaces are unbound, nobody should
1234 		 * try to access them.
1235 		 */
1236 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1237 			put_device(&dev->actconfig->interface[i]->dev);
1238 			dev->actconfig->interface[i] = NULL;
1239 		}
1240 
1241 		if (dev->usb2_hw_lpm_enabled == 1)
1242 			usb_set_usb2_hardware_lpm(dev, 0);
1243 		usb_unlocked_disable_lpm(dev);
1244 		usb_disable_ltm(dev);
1245 
1246 		dev->actconfig = NULL;
1247 		if (dev->state == USB_STATE_CONFIGURED)
1248 			usb_set_device_state(dev, USB_STATE_ADDRESS);
1249 	}
1250 
1251 	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1252 		skip_ep0 ? "non-ep0" : "all");
1253 	if (hcd->driver->check_bandwidth) {
1254 		/* First pass: Cancel URBs, leave endpoint pointers intact. */
1255 		for (i = skip_ep0; i < 16; ++i) {
1256 			usb_disable_endpoint(dev, i, false);
1257 			usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1258 		}
1259 		/* Remove endpoints from the host controller internal state */
1260 		mutex_lock(hcd->bandwidth_mutex);
1261 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1262 		mutex_unlock(hcd->bandwidth_mutex);
1263 		/* Second pass: remove endpoint pointers */
1264 	}
1265 	for (i = skip_ep0; i < 16; ++i) {
1266 		usb_disable_endpoint(dev, i, true);
1267 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1268 	}
1269 }
1270 
1271 /**
1272  * usb_enable_endpoint - Enable an endpoint for USB communications
1273  * @dev: the device whose interface is being enabled
1274  * @ep: the endpoint
1275  * @reset_ep: flag to reset the endpoint state
1276  *
1277  * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1278  * For control endpoints, both the input and output sides are handled.
1279  */
1280 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1281 		bool reset_ep)
1282 {
1283 	int epnum = usb_endpoint_num(&ep->desc);
1284 	int is_out = usb_endpoint_dir_out(&ep->desc);
1285 	int is_control = usb_endpoint_xfer_control(&ep->desc);
1286 
1287 	if (reset_ep)
1288 		usb_hcd_reset_endpoint(dev, ep);
1289 	if (is_out || is_control)
1290 		dev->ep_out[epnum] = ep;
1291 	if (!is_out || is_control)
1292 		dev->ep_in[epnum] = ep;
1293 	ep->enabled = 1;
1294 }
1295 
1296 /**
1297  * usb_enable_interface - Enable all the endpoints for an interface
1298  * @dev: the device whose interface is being enabled
1299  * @intf: pointer to the interface descriptor
1300  * @reset_eps: flag to reset the endpoints' state
1301  *
1302  * Enables all the endpoints for the interface's current altsetting.
1303  */
1304 void usb_enable_interface(struct usb_device *dev,
1305 		struct usb_interface *intf, bool reset_eps)
1306 {
1307 	struct usb_host_interface *alt = intf->cur_altsetting;
1308 	int i;
1309 
1310 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1311 		usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1312 }
1313 
1314 /**
1315  * usb_set_interface - Makes a particular alternate setting be current
1316  * @dev: the device whose interface is being updated
1317  * @interface: the interface being updated
1318  * @alternate: the setting being chosen.
1319  * Context: !in_interrupt ()
1320  *
1321  * This is used to enable data transfers on interfaces that may not
1322  * be enabled by default.  Not all devices support such configurability.
1323  * Only the driver bound to an interface may change its setting.
1324  *
1325  * Within any given configuration, each interface may have several
1326  * alternative settings.  These are often used to control levels of
1327  * bandwidth consumption.  For example, the default setting for a high
1328  * speed interrupt endpoint may not send more than 64 bytes per microframe,
1329  * while interrupt transfers of up to 3KBytes per microframe are legal.
1330  * Also, isochronous endpoints may never be part of an
1331  * interface's default setting.  To access such bandwidth, alternate
1332  * interface settings must be made current.
1333  *
1334  * Note that in the Linux USB subsystem, bandwidth associated with
1335  * an endpoint in a given alternate setting is not reserved until an URB
1336  * is submitted that needs that bandwidth.  Some other operating systems
1337  * allocate bandwidth early, when a configuration is chosen.
1338  *
1339  * This call is synchronous, and may not be used in an interrupt context.
1340  * Also, drivers must not change altsettings while urbs are scheduled for
1341  * endpoints in that interface; all such urbs must first be completed
1342  * (perhaps forced by unlinking).
1343  *
1344  * Return: Zero on success, or else the status code returned by the
1345  * underlying usb_control_msg() call.
1346  */
1347 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1348 {
1349 	struct usb_interface *iface;
1350 	struct usb_host_interface *alt;
1351 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1352 	int i, ret, manual = 0;
1353 	unsigned int epaddr;
1354 	unsigned int pipe;
1355 
1356 	if (dev->state == USB_STATE_SUSPENDED)
1357 		return -EHOSTUNREACH;
1358 
1359 	iface = usb_ifnum_to_if(dev, interface);
1360 	if (!iface) {
1361 		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1362 			interface);
1363 		return -EINVAL;
1364 	}
1365 	if (iface->unregistering)
1366 		return -ENODEV;
1367 
1368 	alt = usb_altnum_to_altsetting(iface, alternate);
1369 	if (!alt) {
1370 		dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1371 			 alternate);
1372 		return -EINVAL;
1373 	}
1374 
1375 	/* Make sure we have enough bandwidth for this alternate interface.
1376 	 * Remove the current alt setting and add the new alt setting.
1377 	 */
1378 	mutex_lock(hcd->bandwidth_mutex);
1379 	/* Disable LPM, and re-enable it once the new alt setting is installed,
1380 	 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1381 	 */
1382 	if (usb_disable_lpm(dev)) {
1383 		dev_err(&iface->dev, "%s Failed to disable LPM\n", __func__);
1384 		mutex_unlock(hcd->bandwidth_mutex);
1385 		return -ENOMEM;
1386 	}
1387 	/* Changing alt-setting also frees any allocated streams */
1388 	for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1389 		iface->cur_altsetting->endpoint[i].streams = 0;
1390 
1391 	ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1392 	if (ret < 0) {
1393 		dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1394 				alternate);
1395 		usb_enable_lpm(dev);
1396 		mutex_unlock(hcd->bandwidth_mutex);
1397 		return ret;
1398 	}
1399 
1400 	if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1401 		ret = -EPIPE;
1402 	else
1403 		ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1404 				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1405 				   alternate, interface, NULL, 0, 5000);
1406 
1407 	/* 9.4.10 says devices don't need this and are free to STALL the
1408 	 * request if the interface only has one alternate setting.
1409 	 */
1410 	if (ret == -EPIPE && iface->num_altsetting == 1) {
1411 		dev_dbg(&dev->dev,
1412 			"manual set_interface for iface %d, alt %d\n",
1413 			interface, alternate);
1414 		manual = 1;
1415 	} else if (ret < 0) {
1416 		/* Re-instate the old alt setting */
1417 		usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1418 		usb_enable_lpm(dev);
1419 		mutex_unlock(hcd->bandwidth_mutex);
1420 		return ret;
1421 	}
1422 	mutex_unlock(hcd->bandwidth_mutex);
1423 
1424 	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1425 	 * when they implement async or easily-killable versions of this or
1426 	 * other "should-be-internal" functions (like clear_halt).
1427 	 * should hcd+usbcore postprocess control requests?
1428 	 */
1429 
1430 	/* prevent submissions using previous endpoint settings */
1431 	if (iface->cur_altsetting != alt) {
1432 		remove_intf_ep_devs(iface);
1433 		usb_remove_sysfs_intf_files(iface);
1434 	}
1435 	usb_disable_interface(dev, iface, true);
1436 
1437 	iface->cur_altsetting = alt;
1438 
1439 	/* Now that the interface is installed, re-enable LPM. */
1440 	usb_unlocked_enable_lpm(dev);
1441 
1442 	/* If the interface only has one altsetting and the device didn't
1443 	 * accept the request, we attempt to carry out the equivalent action
1444 	 * by manually clearing the HALT feature for each endpoint in the
1445 	 * new altsetting.
1446 	 */
1447 	if (manual) {
1448 		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1449 			epaddr = alt->endpoint[i].desc.bEndpointAddress;
1450 			pipe = __create_pipe(dev,
1451 					USB_ENDPOINT_NUMBER_MASK & epaddr) |
1452 					(usb_endpoint_out(epaddr) ?
1453 					USB_DIR_OUT : USB_DIR_IN);
1454 
1455 			usb_clear_halt(dev, pipe);
1456 		}
1457 	}
1458 
1459 	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1460 	 *
1461 	 * Note:
1462 	 * Despite EP0 is always present in all interfaces/AS, the list of
1463 	 * endpoints from the descriptor does not contain EP0. Due to its
1464 	 * omnipresence one might expect EP0 being considered "affected" by
1465 	 * any SetInterface request and hence assume toggles need to be reset.
1466 	 * However, EP0 toggles are re-synced for every individual transfer
1467 	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1468 	 * (Likewise, EP0 never "halts" on well designed devices.)
1469 	 */
1470 	usb_enable_interface(dev, iface, true);
1471 	if (device_is_registered(&iface->dev)) {
1472 		usb_create_sysfs_intf_files(iface);
1473 		create_intf_ep_devs(iface);
1474 	}
1475 	return 0;
1476 }
1477 EXPORT_SYMBOL_GPL(usb_set_interface);
1478 
1479 /**
1480  * usb_reset_configuration - lightweight device reset
1481  * @dev: the device whose configuration is being reset
1482  *
1483  * This issues a standard SET_CONFIGURATION request to the device using
1484  * the current configuration.  The effect is to reset most USB-related
1485  * state in the device, including interface altsettings (reset to zero),
1486  * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1487  * endpoints).  Other usbcore state is unchanged, including bindings of
1488  * usb device drivers to interfaces.
1489  *
1490  * Because this affects multiple interfaces, avoid using this with composite
1491  * (multi-interface) devices.  Instead, the driver for each interface may
1492  * use usb_set_interface() on the interfaces it claims.  Be careful though;
1493  * some devices don't support the SET_INTERFACE request, and others won't
1494  * reset all the interface state (notably endpoint state).  Resetting the whole
1495  * configuration would affect other drivers' interfaces.
1496  *
1497  * The caller must own the device lock.
1498  *
1499  * Return: Zero on success, else a negative error code.
1500  */
1501 int usb_reset_configuration(struct usb_device *dev)
1502 {
1503 	int			i, retval;
1504 	struct usb_host_config	*config;
1505 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1506 
1507 	if (dev->state == USB_STATE_SUSPENDED)
1508 		return -EHOSTUNREACH;
1509 
1510 	/* caller must have locked the device and must own
1511 	 * the usb bus readlock (so driver bindings are stable);
1512 	 * calls during probe() are fine
1513 	 */
1514 
1515 	for (i = 1; i < 16; ++i) {
1516 		usb_disable_endpoint(dev, i, true);
1517 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1518 	}
1519 
1520 	config = dev->actconfig;
1521 	retval = 0;
1522 	mutex_lock(hcd->bandwidth_mutex);
1523 	/* Disable LPM, and re-enable it once the configuration is reset, so
1524 	 * that the xHCI driver can recalculate the U1/U2 timeouts.
1525 	 */
1526 	if (usb_disable_lpm(dev)) {
1527 		dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1528 		mutex_unlock(hcd->bandwidth_mutex);
1529 		return -ENOMEM;
1530 	}
1531 	/* Make sure we have enough bandwidth for each alternate setting 0 */
1532 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1533 		struct usb_interface *intf = config->interface[i];
1534 		struct usb_host_interface *alt;
1535 
1536 		alt = usb_altnum_to_altsetting(intf, 0);
1537 		if (!alt)
1538 			alt = &intf->altsetting[0];
1539 		if (alt != intf->cur_altsetting)
1540 			retval = usb_hcd_alloc_bandwidth(dev, NULL,
1541 					intf->cur_altsetting, alt);
1542 		if (retval < 0)
1543 			break;
1544 	}
1545 	/* If not, reinstate the old alternate settings */
1546 	if (retval < 0) {
1547 reset_old_alts:
1548 		for (i--; i >= 0; i--) {
1549 			struct usb_interface *intf = config->interface[i];
1550 			struct usb_host_interface *alt;
1551 
1552 			alt = usb_altnum_to_altsetting(intf, 0);
1553 			if (!alt)
1554 				alt = &intf->altsetting[0];
1555 			if (alt != intf->cur_altsetting)
1556 				usb_hcd_alloc_bandwidth(dev, NULL,
1557 						alt, intf->cur_altsetting);
1558 		}
1559 		usb_enable_lpm(dev);
1560 		mutex_unlock(hcd->bandwidth_mutex);
1561 		return retval;
1562 	}
1563 	retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1564 			USB_REQ_SET_CONFIGURATION, 0,
1565 			config->desc.bConfigurationValue, 0,
1566 			NULL, 0, USB_CTRL_SET_TIMEOUT);
1567 	if (retval < 0)
1568 		goto reset_old_alts;
1569 	mutex_unlock(hcd->bandwidth_mutex);
1570 
1571 	/* re-init hc/hcd interface/endpoint state */
1572 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1573 		struct usb_interface *intf = config->interface[i];
1574 		struct usb_host_interface *alt;
1575 
1576 		alt = usb_altnum_to_altsetting(intf, 0);
1577 
1578 		/* No altsetting 0?  We'll assume the first altsetting.
1579 		 * We could use a GetInterface call, but if a device is
1580 		 * so non-compliant that it doesn't have altsetting 0
1581 		 * then I wouldn't trust its reply anyway.
1582 		 */
1583 		if (!alt)
1584 			alt = &intf->altsetting[0];
1585 
1586 		if (alt != intf->cur_altsetting) {
1587 			remove_intf_ep_devs(intf);
1588 			usb_remove_sysfs_intf_files(intf);
1589 		}
1590 		intf->cur_altsetting = alt;
1591 		usb_enable_interface(dev, intf, true);
1592 		if (device_is_registered(&intf->dev)) {
1593 			usb_create_sysfs_intf_files(intf);
1594 			create_intf_ep_devs(intf);
1595 		}
1596 	}
1597 	/* Now that the interfaces are installed, re-enable LPM. */
1598 	usb_unlocked_enable_lpm(dev);
1599 	return 0;
1600 }
1601 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1602 
1603 static void usb_release_interface(struct device *dev)
1604 {
1605 	struct usb_interface *intf = to_usb_interface(dev);
1606 	struct usb_interface_cache *intfc =
1607 			altsetting_to_usb_interface_cache(intf->altsetting);
1608 
1609 	kref_put(&intfc->ref, usb_release_interface_cache);
1610 	usb_put_dev(interface_to_usbdev(intf));
1611 	of_node_put(dev->of_node);
1612 	kfree(intf);
1613 }
1614 
1615 /*
1616  * usb_deauthorize_interface - deauthorize an USB interface
1617  *
1618  * @intf: USB interface structure
1619  */
1620 void usb_deauthorize_interface(struct usb_interface *intf)
1621 {
1622 	struct device *dev = &intf->dev;
1623 
1624 	device_lock(dev->parent);
1625 
1626 	if (intf->authorized) {
1627 		device_lock(dev);
1628 		intf->authorized = 0;
1629 		device_unlock(dev);
1630 
1631 		usb_forced_unbind_intf(intf);
1632 	}
1633 
1634 	device_unlock(dev->parent);
1635 }
1636 
1637 /*
1638  * usb_authorize_interface - authorize an USB interface
1639  *
1640  * @intf: USB interface structure
1641  */
1642 void usb_authorize_interface(struct usb_interface *intf)
1643 {
1644 	struct device *dev = &intf->dev;
1645 
1646 	if (!intf->authorized) {
1647 		device_lock(dev);
1648 		intf->authorized = 1; /* authorize interface */
1649 		device_unlock(dev);
1650 	}
1651 }
1652 
1653 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1654 {
1655 	struct usb_device *usb_dev;
1656 	struct usb_interface *intf;
1657 	struct usb_host_interface *alt;
1658 
1659 	intf = to_usb_interface(dev);
1660 	usb_dev = interface_to_usbdev(intf);
1661 	alt = intf->cur_altsetting;
1662 
1663 	if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1664 		   alt->desc.bInterfaceClass,
1665 		   alt->desc.bInterfaceSubClass,
1666 		   alt->desc.bInterfaceProtocol))
1667 		return -ENOMEM;
1668 
1669 	if (add_uevent_var(env,
1670 		   "MODALIAS=usb:"
1671 		   "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1672 		   le16_to_cpu(usb_dev->descriptor.idVendor),
1673 		   le16_to_cpu(usb_dev->descriptor.idProduct),
1674 		   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1675 		   usb_dev->descriptor.bDeviceClass,
1676 		   usb_dev->descriptor.bDeviceSubClass,
1677 		   usb_dev->descriptor.bDeviceProtocol,
1678 		   alt->desc.bInterfaceClass,
1679 		   alt->desc.bInterfaceSubClass,
1680 		   alt->desc.bInterfaceProtocol,
1681 		   alt->desc.bInterfaceNumber))
1682 		return -ENOMEM;
1683 
1684 	return 0;
1685 }
1686 
1687 struct device_type usb_if_device_type = {
1688 	.name =		"usb_interface",
1689 	.release =	usb_release_interface,
1690 	.uevent =	usb_if_uevent,
1691 };
1692 
1693 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1694 						struct usb_host_config *config,
1695 						u8 inum)
1696 {
1697 	struct usb_interface_assoc_descriptor *retval = NULL;
1698 	struct usb_interface_assoc_descriptor *intf_assoc;
1699 	int first_intf;
1700 	int last_intf;
1701 	int i;
1702 
1703 	for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1704 		intf_assoc = config->intf_assoc[i];
1705 		if (intf_assoc->bInterfaceCount == 0)
1706 			continue;
1707 
1708 		first_intf = intf_assoc->bFirstInterface;
1709 		last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1710 		if (inum >= first_intf && inum <= last_intf) {
1711 			if (!retval)
1712 				retval = intf_assoc;
1713 			else
1714 				dev_err(&dev->dev, "Interface #%d referenced"
1715 					" by multiple IADs\n", inum);
1716 		}
1717 	}
1718 
1719 	return retval;
1720 }
1721 
1722 
1723 /*
1724  * Internal function to queue a device reset
1725  * See usb_queue_reset_device() for more details
1726  */
1727 static void __usb_queue_reset_device(struct work_struct *ws)
1728 {
1729 	int rc;
1730 	struct usb_interface *iface =
1731 		container_of(ws, struct usb_interface, reset_ws);
1732 	struct usb_device *udev = interface_to_usbdev(iface);
1733 
1734 	rc = usb_lock_device_for_reset(udev, iface);
1735 	if (rc >= 0) {
1736 		usb_reset_device(udev);
1737 		usb_unlock_device(udev);
1738 	}
1739 	usb_put_intf(iface);	/* Undo _get_ in usb_queue_reset_device() */
1740 }
1741 
1742 
1743 /*
1744  * usb_set_configuration - Makes a particular device setting be current
1745  * @dev: the device whose configuration is being updated
1746  * @configuration: the configuration being chosen.
1747  * Context: !in_interrupt(), caller owns the device lock
1748  *
1749  * This is used to enable non-default device modes.  Not all devices
1750  * use this kind of configurability; many devices only have one
1751  * configuration.
1752  *
1753  * @configuration is the value of the configuration to be installed.
1754  * According to the USB spec (e.g. section 9.1.1.5), configuration values
1755  * must be non-zero; a value of zero indicates that the device in
1756  * unconfigured.  However some devices erroneously use 0 as one of their
1757  * configuration values.  To help manage such devices, this routine will
1758  * accept @configuration = -1 as indicating the device should be put in
1759  * an unconfigured state.
1760  *
1761  * USB device configurations may affect Linux interoperability,
1762  * power consumption and the functionality available.  For example,
1763  * the default configuration is limited to using 100mA of bus power,
1764  * so that when certain device functionality requires more power,
1765  * and the device is bus powered, that functionality should be in some
1766  * non-default device configuration.  Other device modes may also be
1767  * reflected as configuration options, such as whether two ISDN
1768  * channels are available independently; and choosing between open
1769  * standard device protocols (like CDC) or proprietary ones.
1770  *
1771  * Note that a non-authorized device (dev->authorized == 0) will only
1772  * be put in unconfigured mode.
1773  *
1774  * Note that USB has an additional level of device configurability,
1775  * associated with interfaces.  That configurability is accessed using
1776  * usb_set_interface().
1777  *
1778  * This call is synchronous. The calling context must be able to sleep,
1779  * must own the device lock, and must not hold the driver model's USB
1780  * bus mutex; usb interface driver probe() methods cannot use this routine.
1781  *
1782  * Returns zero on success, or else the status code returned by the
1783  * underlying call that failed.  On successful completion, each interface
1784  * in the original device configuration has been destroyed, and each one
1785  * in the new configuration has been probed by all relevant usb device
1786  * drivers currently known to the kernel.
1787  */
1788 int usb_set_configuration(struct usb_device *dev, int configuration)
1789 {
1790 	int i, ret;
1791 	struct usb_host_config *cp = NULL;
1792 	struct usb_interface **new_interfaces = NULL;
1793 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1794 	int n, nintf;
1795 
1796 	if (dev->authorized == 0 || configuration == -1)
1797 		configuration = 0;
1798 	else {
1799 		for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1800 			if (dev->config[i].desc.bConfigurationValue ==
1801 					configuration) {
1802 				cp = &dev->config[i];
1803 				break;
1804 			}
1805 		}
1806 	}
1807 	if ((!cp && configuration != 0))
1808 		return -EINVAL;
1809 
1810 	/* The USB spec says configuration 0 means unconfigured.
1811 	 * But if a device includes a configuration numbered 0,
1812 	 * we will accept it as a correctly configured state.
1813 	 * Use -1 if you really want to unconfigure the device.
1814 	 */
1815 	if (cp && configuration == 0)
1816 		dev_warn(&dev->dev, "config 0 descriptor??\n");
1817 
1818 	/* Allocate memory for new interfaces before doing anything else,
1819 	 * so that if we run out then nothing will have changed. */
1820 	n = nintf = 0;
1821 	if (cp) {
1822 		nintf = cp->desc.bNumInterfaces;
1823 		new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1824 				GFP_NOIO);
1825 		if (!new_interfaces)
1826 			return -ENOMEM;
1827 
1828 		for (; n < nintf; ++n) {
1829 			new_interfaces[n] = kzalloc(
1830 					sizeof(struct usb_interface),
1831 					GFP_NOIO);
1832 			if (!new_interfaces[n]) {
1833 				ret = -ENOMEM;
1834 free_interfaces:
1835 				while (--n >= 0)
1836 					kfree(new_interfaces[n]);
1837 				kfree(new_interfaces);
1838 				return ret;
1839 			}
1840 		}
1841 
1842 		i = dev->bus_mA - usb_get_max_power(dev, cp);
1843 		if (i < 0)
1844 			dev_warn(&dev->dev, "new config #%d exceeds power "
1845 					"limit by %dmA\n",
1846 					configuration, -i);
1847 	}
1848 
1849 	/* Wake up the device so we can send it the Set-Config request */
1850 	ret = usb_autoresume_device(dev);
1851 	if (ret)
1852 		goto free_interfaces;
1853 
1854 	/* if it's already configured, clear out old state first.
1855 	 * getting rid of old interfaces means unbinding their drivers.
1856 	 */
1857 	if (dev->state != USB_STATE_ADDRESS)
1858 		usb_disable_device(dev, 1);	/* Skip ep0 */
1859 
1860 	/* Get rid of pending async Set-Config requests for this device */
1861 	cancel_async_set_config(dev);
1862 
1863 	/* Make sure we have bandwidth (and available HCD resources) for this
1864 	 * configuration.  Remove endpoints from the schedule if we're dropping
1865 	 * this configuration to set configuration 0.  After this point, the
1866 	 * host controller will not allow submissions to dropped endpoints.  If
1867 	 * this call fails, the device state is unchanged.
1868 	 */
1869 	mutex_lock(hcd->bandwidth_mutex);
1870 	/* Disable LPM, and re-enable it once the new configuration is
1871 	 * installed, so that the xHCI driver can recalculate the U1/U2
1872 	 * timeouts.
1873 	 */
1874 	if (dev->actconfig && usb_disable_lpm(dev)) {
1875 		dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1876 		mutex_unlock(hcd->bandwidth_mutex);
1877 		ret = -ENOMEM;
1878 		goto free_interfaces;
1879 	}
1880 	ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1881 	if (ret < 0) {
1882 		if (dev->actconfig)
1883 			usb_enable_lpm(dev);
1884 		mutex_unlock(hcd->bandwidth_mutex);
1885 		usb_autosuspend_device(dev);
1886 		goto free_interfaces;
1887 	}
1888 
1889 	/*
1890 	 * Initialize the new interface structures and the
1891 	 * hc/hcd/usbcore interface/endpoint state.
1892 	 */
1893 	for (i = 0; i < nintf; ++i) {
1894 		struct usb_interface_cache *intfc;
1895 		struct usb_interface *intf;
1896 		struct usb_host_interface *alt;
1897 		u8 ifnum;
1898 
1899 		cp->interface[i] = intf = new_interfaces[i];
1900 		intfc = cp->intf_cache[i];
1901 		intf->altsetting = intfc->altsetting;
1902 		intf->num_altsetting = intfc->num_altsetting;
1903 		intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
1904 		kref_get(&intfc->ref);
1905 
1906 		alt = usb_altnum_to_altsetting(intf, 0);
1907 
1908 		/* No altsetting 0?  We'll assume the first altsetting.
1909 		 * We could use a GetInterface call, but if a device is
1910 		 * so non-compliant that it doesn't have altsetting 0
1911 		 * then I wouldn't trust its reply anyway.
1912 		 */
1913 		if (!alt)
1914 			alt = &intf->altsetting[0];
1915 
1916 		ifnum = alt->desc.bInterfaceNumber;
1917 		intf->intf_assoc = find_iad(dev, cp, ifnum);
1918 		intf->cur_altsetting = alt;
1919 		usb_enable_interface(dev, intf, true);
1920 		intf->dev.parent = &dev->dev;
1921 		if (usb_of_has_combined_node(dev)) {
1922 			device_set_of_node_from_dev(&intf->dev, &dev->dev);
1923 		} else {
1924 			intf->dev.of_node = usb_of_get_interface_node(dev,
1925 					configuration, ifnum);
1926 		}
1927 		intf->dev.driver = NULL;
1928 		intf->dev.bus = &usb_bus_type;
1929 		intf->dev.type = &usb_if_device_type;
1930 		intf->dev.groups = usb_interface_groups;
1931 		/*
1932 		 * Please refer to usb_alloc_dev() to see why we set
1933 		 * dma_mask and dma_pfn_offset.
1934 		 */
1935 		intf->dev.dma_mask = dev->dev.dma_mask;
1936 		intf->dev.dma_pfn_offset = dev->dev.dma_pfn_offset;
1937 		INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1938 		intf->minor = -1;
1939 		device_initialize(&intf->dev);
1940 		pm_runtime_no_callbacks(&intf->dev);
1941 		dev_set_name(&intf->dev, "%d-%s:%d.%d", dev->bus->busnum,
1942 				dev->devpath, configuration, ifnum);
1943 		usb_get_dev(dev);
1944 	}
1945 	kfree(new_interfaces);
1946 
1947 	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1948 			      USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1949 			      NULL, 0, USB_CTRL_SET_TIMEOUT);
1950 	if (ret < 0 && cp) {
1951 		/*
1952 		 * All the old state is gone, so what else can we do?
1953 		 * The device is probably useless now anyway.
1954 		 */
1955 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1956 		for (i = 0; i < nintf; ++i) {
1957 			usb_disable_interface(dev, cp->interface[i], true);
1958 			put_device(&cp->interface[i]->dev);
1959 			cp->interface[i] = NULL;
1960 		}
1961 		cp = NULL;
1962 	}
1963 
1964 	dev->actconfig = cp;
1965 	mutex_unlock(hcd->bandwidth_mutex);
1966 
1967 	if (!cp) {
1968 		usb_set_device_state(dev, USB_STATE_ADDRESS);
1969 
1970 		/* Leave LPM disabled while the device is unconfigured. */
1971 		usb_autosuspend_device(dev);
1972 		return ret;
1973 	}
1974 	usb_set_device_state(dev, USB_STATE_CONFIGURED);
1975 
1976 	if (cp->string == NULL &&
1977 			!(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1978 		cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1979 
1980 	/* Now that the interfaces are installed, re-enable LPM. */
1981 	usb_unlocked_enable_lpm(dev);
1982 	/* Enable LTM if it was turned off by usb_disable_device. */
1983 	usb_enable_ltm(dev);
1984 
1985 	/* Now that all the interfaces are set up, register them
1986 	 * to trigger binding of drivers to interfaces.  probe()
1987 	 * routines may install different altsettings and may
1988 	 * claim() any interfaces not yet bound.  Many class drivers
1989 	 * need that: CDC, audio, video, etc.
1990 	 */
1991 	for (i = 0; i < nintf; ++i) {
1992 		struct usb_interface *intf = cp->interface[i];
1993 
1994 		dev_dbg(&dev->dev,
1995 			"adding %s (config #%d, interface %d)\n",
1996 			dev_name(&intf->dev), configuration,
1997 			intf->cur_altsetting->desc.bInterfaceNumber);
1998 		device_enable_async_suspend(&intf->dev);
1999 		ret = device_add(&intf->dev);
2000 		if (ret != 0) {
2001 			dev_err(&dev->dev, "device_add(%s) --> %d\n",
2002 				dev_name(&intf->dev), ret);
2003 			continue;
2004 		}
2005 		create_intf_ep_devs(intf);
2006 	}
2007 
2008 	usb_autosuspend_device(dev);
2009 	return 0;
2010 }
2011 EXPORT_SYMBOL_GPL(usb_set_configuration);
2012 
2013 static LIST_HEAD(set_config_list);
2014 static DEFINE_SPINLOCK(set_config_lock);
2015 
2016 struct set_config_request {
2017 	struct usb_device	*udev;
2018 	int			config;
2019 	struct work_struct	work;
2020 	struct list_head	node;
2021 };
2022 
2023 /* Worker routine for usb_driver_set_configuration() */
2024 static void driver_set_config_work(struct work_struct *work)
2025 {
2026 	struct set_config_request *req =
2027 		container_of(work, struct set_config_request, work);
2028 	struct usb_device *udev = req->udev;
2029 
2030 	usb_lock_device(udev);
2031 	spin_lock(&set_config_lock);
2032 	list_del(&req->node);
2033 	spin_unlock(&set_config_lock);
2034 
2035 	if (req->config >= -1)		/* Is req still valid? */
2036 		usb_set_configuration(udev, req->config);
2037 	usb_unlock_device(udev);
2038 	usb_put_dev(udev);
2039 	kfree(req);
2040 }
2041 
2042 /* Cancel pending Set-Config requests for a device whose configuration
2043  * was just changed
2044  */
2045 static void cancel_async_set_config(struct usb_device *udev)
2046 {
2047 	struct set_config_request *req;
2048 
2049 	spin_lock(&set_config_lock);
2050 	list_for_each_entry(req, &set_config_list, node) {
2051 		if (req->udev == udev)
2052 			req->config = -999;	/* Mark as cancelled */
2053 	}
2054 	spin_unlock(&set_config_lock);
2055 }
2056 
2057 /**
2058  * usb_driver_set_configuration - Provide a way for drivers to change device configurations
2059  * @udev: the device whose configuration is being updated
2060  * @config: the configuration being chosen.
2061  * Context: In process context, must be able to sleep
2062  *
2063  * Device interface drivers are not allowed to change device configurations.
2064  * This is because changing configurations will destroy the interface the
2065  * driver is bound to and create new ones; it would be like a floppy-disk
2066  * driver telling the computer to replace the floppy-disk drive with a
2067  * tape drive!
2068  *
2069  * Still, in certain specialized circumstances the need may arise.  This
2070  * routine gets around the normal restrictions by using a work thread to
2071  * submit the change-config request.
2072  *
2073  * Return: 0 if the request was successfully queued, error code otherwise.
2074  * The caller has no way to know whether the queued request will eventually
2075  * succeed.
2076  */
2077 int usb_driver_set_configuration(struct usb_device *udev, int config)
2078 {
2079 	struct set_config_request *req;
2080 
2081 	req = kmalloc(sizeof(*req), GFP_KERNEL);
2082 	if (!req)
2083 		return -ENOMEM;
2084 	req->udev = udev;
2085 	req->config = config;
2086 	INIT_WORK(&req->work, driver_set_config_work);
2087 
2088 	spin_lock(&set_config_lock);
2089 	list_add(&req->node, &set_config_list);
2090 	spin_unlock(&set_config_lock);
2091 
2092 	usb_get_dev(udev);
2093 	schedule_work(&req->work);
2094 	return 0;
2095 }
2096 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2097 
2098 /**
2099  * cdc_parse_cdc_header - parse the extra headers present in CDC devices
2100  * @hdr: the place to put the results of the parsing
2101  * @intf: the interface for which parsing is requested
2102  * @buffer: pointer to the extra headers to be parsed
2103  * @buflen: length of the extra headers
2104  *
2105  * This evaluates the extra headers present in CDC devices which
2106  * bind the interfaces for data and control and provide details
2107  * about the capabilities of the device.
2108  *
2109  * Return: number of descriptors parsed or -EINVAL
2110  * if the header is contradictory beyond salvage
2111  */
2112 
2113 int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr,
2114 				struct usb_interface *intf,
2115 				u8 *buffer,
2116 				int buflen)
2117 {
2118 	/* duplicates are ignored */
2119 	struct usb_cdc_union_desc *union_header = NULL;
2120 
2121 	/* duplicates are not tolerated */
2122 	struct usb_cdc_header_desc *header = NULL;
2123 	struct usb_cdc_ether_desc *ether = NULL;
2124 	struct usb_cdc_mdlm_detail_desc *detail = NULL;
2125 	struct usb_cdc_mdlm_desc *desc = NULL;
2126 
2127 	unsigned int elength;
2128 	int cnt = 0;
2129 
2130 	memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header));
2131 	hdr->phonet_magic_present = false;
2132 	while (buflen > 0) {
2133 		elength = buffer[0];
2134 		if (!elength) {
2135 			dev_err(&intf->dev, "skipping garbage byte\n");
2136 			elength = 1;
2137 			goto next_desc;
2138 		}
2139 		if ((buflen < elength) || (elength < 3)) {
2140 			dev_err(&intf->dev, "invalid descriptor buffer length\n");
2141 			break;
2142 		}
2143 		if (buffer[1] != USB_DT_CS_INTERFACE) {
2144 			dev_err(&intf->dev, "skipping garbage\n");
2145 			goto next_desc;
2146 		}
2147 
2148 		switch (buffer[2]) {
2149 		case USB_CDC_UNION_TYPE: /* we've found it */
2150 			if (elength < sizeof(struct usb_cdc_union_desc))
2151 				goto next_desc;
2152 			if (union_header) {
2153 				dev_err(&intf->dev, "More than one union descriptor, skipping ...\n");
2154 				goto next_desc;
2155 			}
2156 			union_header = (struct usb_cdc_union_desc *)buffer;
2157 			break;
2158 		case USB_CDC_COUNTRY_TYPE:
2159 			if (elength < sizeof(struct usb_cdc_country_functional_desc))
2160 				goto next_desc;
2161 			hdr->usb_cdc_country_functional_desc =
2162 				(struct usb_cdc_country_functional_desc *)buffer;
2163 			break;
2164 		case USB_CDC_HEADER_TYPE:
2165 			if (elength != sizeof(struct usb_cdc_header_desc))
2166 				goto next_desc;
2167 			if (header)
2168 				return -EINVAL;
2169 			header = (struct usb_cdc_header_desc *)buffer;
2170 			break;
2171 		case USB_CDC_ACM_TYPE:
2172 			if (elength < sizeof(struct usb_cdc_acm_descriptor))
2173 				goto next_desc;
2174 			hdr->usb_cdc_acm_descriptor =
2175 				(struct usb_cdc_acm_descriptor *)buffer;
2176 			break;
2177 		case USB_CDC_ETHERNET_TYPE:
2178 			if (elength != sizeof(struct usb_cdc_ether_desc))
2179 				goto next_desc;
2180 			if (ether)
2181 				return -EINVAL;
2182 			ether = (struct usb_cdc_ether_desc *)buffer;
2183 			break;
2184 		case USB_CDC_CALL_MANAGEMENT_TYPE:
2185 			if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor))
2186 				goto next_desc;
2187 			hdr->usb_cdc_call_mgmt_descriptor =
2188 				(struct usb_cdc_call_mgmt_descriptor *)buffer;
2189 			break;
2190 		case USB_CDC_DMM_TYPE:
2191 			if (elength < sizeof(struct usb_cdc_dmm_desc))
2192 				goto next_desc;
2193 			hdr->usb_cdc_dmm_desc =
2194 				(struct usb_cdc_dmm_desc *)buffer;
2195 			break;
2196 		case USB_CDC_MDLM_TYPE:
2197 			if (elength < sizeof(struct usb_cdc_mdlm_desc *))
2198 				goto next_desc;
2199 			if (desc)
2200 				return -EINVAL;
2201 			desc = (struct usb_cdc_mdlm_desc *)buffer;
2202 			break;
2203 		case USB_CDC_MDLM_DETAIL_TYPE:
2204 			if (elength < sizeof(struct usb_cdc_mdlm_detail_desc *))
2205 				goto next_desc;
2206 			if (detail)
2207 				return -EINVAL;
2208 			detail = (struct usb_cdc_mdlm_detail_desc *)buffer;
2209 			break;
2210 		case USB_CDC_NCM_TYPE:
2211 			if (elength < sizeof(struct usb_cdc_ncm_desc))
2212 				goto next_desc;
2213 			hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer;
2214 			break;
2215 		case USB_CDC_MBIM_TYPE:
2216 			if (elength < sizeof(struct usb_cdc_mbim_desc))
2217 				goto next_desc;
2218 
2219 			hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer;
2220 			break;
2221 		case USB_CDC_MBIM_EXTENDED_TYPE:
2222 			if (elength < sizeof(struct usb_cdc_mbim_extended_desc))
2223 				break;
2224 			hdr->usb_cdc_mbim_extended_desc =
2225 				(struct usb_cdc_mbim_extended_desc *)buffer;
2226 			break;
2227 		case CDC_PHONET_MAGIC_NUMBER:
2228 			hdr->phonet_magic_present = true;
2229 			break;
2230 		default:
2231 			/*
2232 			 * there are LOTS more CDC descriptors that
2233 			 * could legitimately be found here.
2234 			 */
2235 			dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n",
2236 					buffer[2], elength);
2237 			goto next_desc;
2238 		}
2239 		cnt++;
2240 next_desc:
2241 		buflen -= elength;
2242 		buffer += elength;
2243 	}
2244 	hdr->usb_cdc_union_desc = union_header;
2245 	hdr->usb_cdc_header_desc = header;
2246 	hdr->usb_cdc_mdlm_detail_desc = detail;
2247 	hdr->usb_cdc_mdlm_desc = desc;
2248 	hdr->usb_cdc_ether_desc = ether;
2249 	return cnt;
2250 }
2251 
2252 EXPORT_SYMBOL(cdc_parse_cdc_header);
2253