xref: /openbmc/linux/drivers/usb/core/message.c (revision b34081f1)
1 /*
2  * message.c - synchronous message handling
3  */
4 
5 #include <linux/pci.h>	/* for scatterlist macros */
6 #include <linux/usb.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/timer.h>
12 #include <linux/ctype.h>
13 #include <linux/nls.h>
14 #include <linux/device.h>
15 #include <linux/scatterlist.h>
16 #include <linux/usb/quirks.h>
17 #include <linux/usb/hcd.h>	/* for usbcore internals */
18 #include <asm/byteorder.h>
19 
20 #include "usb.h"
21 
22 static void cancel_async_set_config(struct usb_device *udev);
23 
24 struct api_context {
25 	struct completion	done;
26 	int			status;
27 };
28 
29 static void usb_api_blocking_completion(struct urb *urb)
30 {
31 	struct api_context *ctx = urb->context;
32 
33 	ctx->status = urb->status;
34 	complete(&ctx->done);
35 }
36 
37 
38 /*
39  * Starts urb and waits for completion or timeout. Note that this call
40  * is NOT interruptible. Many device driver i/o requests should be
41  * interruptible and therefore these drivers should implement their
42  * own interruptible routines.
43  */
44 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
45 {
46 	struct api_context ctx;
47 	unsigned long expire;
48 	int retval;
49 
50 	init_completion(&ctx.done);
51 	urb->context = &ctx;
52 	urb->actual_length = 0;
53 	retval = usb_submit_urb(urb, GFP_NOIO);
54 	if (unlikely(retval))
55 		goto out;
56 
57 	expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
58 	if (!wait_for_completion_timeout(&ctx.done, expire)) {
59 		usb_kill_urb(urb);
60 		retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
61 
62 		dev_dbg(&urb->dev->dev,
63 			"%s timed out on ep%d%s len=%u/%u\n",
64 			current->comm,
65 			usb_endpoint_num(&urb->ep->desc),
66 			usb_urb_dir_in(urb) ? "in" : "out",
67 			urb->actual_length,
68 			urb->transfer_buffer_length);
69 	} else
70 		retval = ctx.status;
71 out:
72 	if (actual_length)
73 		*actual_length = urb->actual_length;
74 
75 	usb_free_urb(urb);
76 	return retval;
77 }
78 
79 /*-------------------------------------------------------------------*/
80 /* returns status (negative) or length (positive) */
81 static int usb_internal_control_msg(struct usb_device *usb_dev,
82 				    unsigned int pipe,
83 				    struct usb_ctrlrequest *cmd,
84 				    void *data, int len, int timeout)
85 {
86 	struct urb *urb;
87 	int retv;
88 	int length;
89 
90 	urb = usb_alloc_urb(0, GFP_NOIO);
91 	if (!urb)
92 		return -ENOMEM;
93 
94 	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
95 			     len, usb_api_blocking_completion, NULL);
96 
97 	retv = usb_start_wait_urb(urb, timeout, &length);
98 	if (retv < 0)
99 		return retv;
100 	else
101 		return length;
102 }
103 
104 /**
105  * usb_control_msg - Builds a control urb, sends it off and waits for completion
106  * @dev: pointer to the usb device to send the message to
107  * @pipe: endpoint "pipe" to send the message to
108  * @request: USB message request value
109  * @requesttype: USB message request type value
110  * @value: USB message value
111  * @index: USB message index value
112  * @data: pointer to the data to send
113  * @size: length in bytes of the data to send
114  * @timeout: time in msecs to wait for the message to complete before timing
115  *	out (if 0 the wait is forever)
116  *
117  * Context: !in_interrupt ()
118  *
119  * This function sends a simple control message to a specified endpoint and
120  * waits for the message to complete, or timeout.
121  *
122  * Don't use this function from within an interrupt context, like a bottom half
123  * handler.  If you need an asynchronous message, or need to send a message
124  * from within interrupt context, use usb_submit_urb().
125  * If a thread in your driver uses this call, make sure your disconnect()
126  * method can wait for it to complete.  Since you don't have a handle on the
127  * URB used, you can't cancel the request.
128  *
129  * Return: If successful, the number of bytes transferred. Otherwise, a negative
130  * error number.
131  */
132 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
133 		    __u8 requesttype, __u16 value, __u16 index, void *data,
134 		    __u16 size, int timeout)
135 {
136 	struct usb_ctrlrequest *dr;
137 	int ret;
138 
139 	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
140 	if (!dr)
141 		return -ENOMEM;
142 
143 	dr->bRequestType = requesttype;
144 	dr->bRequest = request;
145 	dr->wValue = cpu_to_le16(value);
146 	dr->wIndex = cpu_to_le16(index);
147 	dr->wLength = cpu_to_le16(size);
148 
149 	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
150 
151 	kfree(dr);
152 
153 	return ret;
154 }
155 EXPORT_SYMBOL_GPL(usb_control_msg);
156 
157 /**
158  * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
159  * @usb_dev: pointer to the usb device to send the message to
160  * @pipe: endpoint "pipe" to send the message to
161  * @data: pointer to the data to send
162  * @len: length in bytes of the data to send
163  * @actual_length: pointer to a location to put the actual length transferred
164  *	in bytes
165  * @timeout: time in msecs to wait for the message to complete before
166  *	timing out (if 0 the wait is forever)
167  *
168  * Context: !in_interrupt ()
169  *
170  * This function sends a simple interrupt message to a specified endpoint and
171  * waits for the message to complete, or timeout.
172  *
173  * Don't use this function from within an interrupt context, like a bottom half
174  * handler.  If you need an asynchronous message, or need to send a message
175  * from within interrupt context, use usb_submit_urb() If a thread in your
176  * driver uses this call, make sure your disconnect() method can wait for it to
177  * complete.  Since you don't have a handle on the URB used, you can't cancel
178  * the request.
179  *
180  * Return:
181  * If successful, 0. Otherwise a negative error number. The number of actual
182  * bytes transferred will be stored in the @actual_length paramater.
183  */
184 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
185 		      void *data, int len, int *actual_length, int timeout)
186 {
187 	return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
188 }
189 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
190 
191 /**
192  * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
193  * @usb_dev: pointer to the usb device to send the message to
194  * @pipe: endpoint "pipe" to send the message to
195  * @data: pointer to the data to send
196  * @len: length in bytes of the data to send
197  * @actual_length: pointer to a location to put the actual length transferred
198  *	in bytes
199  * @timeout: time in msecs to wait for the message to complete before
200  *	timing out (if 0 the wait is forever)
201  *
202  * Context: !in_interrupt ()
203  *
204  * This function sends a simple bulk message to a specified endpoint
205  * and waits for the message to complete, or timeout.
206  *
207  * Don't use this function from within an interrupt context, like a bottom half
208  * handler.  If you need an asynchronous message, or need to send a message
209  * from within interrupt context, use usb_submit_urb() If a thread in your
210  * driver uses this call, make sure your disconnect() method can wait for it to
211  * complete.  Since you don't have a handle on the URB used, you can't cancel
212  * the request.
213  *
214  * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
215  * users are forced to abuse this routine by using it to submit URBs for
216  * interrupt endpoints.  We will take the liberty of creating an interrupt URB
217  * (with the default interval) if the target is an interrupt endpoint.
218  *
219  * Return:
220  * If successful, 0. Otherwise a negative error number. The number of actual
221  * bytes transferred will be stored in the @actual_length paramater.
222  *
223  */
224 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
225 		 void *data, int len, int *actual_length, int timeout)
226 {
227 	struct urb *urb;
228 	struct usb_host_endpoint *ep;
229 
230 	ep = usb_pipe_endpoint(usb_dev, pipe);
231 	if (!ep || len < 0)
232 		return -EINVAL;
233 
234 	urb = usb_alloc_urb(0, GFP_KERNEL);
235 	if (!urb)
236 		return -ENOMEM;
237 
238 	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
239 			USB_ENDPOINT_XFER_INT) {
240 		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
241 		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
242 				usb_api_blocking_completion, NULL,
243 				ep->desc.bInterval);
244 	} else
245 		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
246 				usb_api_blocking_completion, NULL);
247 
248 	return usb_start_wait_urb(urb, timeout, actual_length);
249 }
250 EXPORT_SYMBOL_GPL(usb_bulk_msg);
251 
252 /*-------------------------------------------------------------------*/
253 
254 static void sg_clean(struct usb_sg_request *io)
255 {
256 	if (io->urbs) {
257 		while (io->entries--)
258 			usb_free_urb(io->urbs[io->entries]);
259 		kfree(io->urbs);
260 		io->urbs = NULL;
261 	}
262 	io->dev = NULL;
263 }
264 
265 static void sg_complete(struct urb *urb)
266 {
267 	struct usb_sg_request *io = urb->context;
268 	int status = urb->status;
269 
270 	spin_lock(&io->lock);
271 
272 	/* In 2.5 we require hcds' endpoint queues not to progress after fault
273 	 * reports, until the completion callback (this!) returns.  That lets
274 	 * device driver code (like this routine) unlink queued urbs first,
275 	 * if it needs to, since the HC won't work on them at all.  So it's
276 	 * not possible for page N+1 to overwrite page N, and so on.
277 	 *
278 	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
279 	 * complete before the HCD can get requests away from hardware,
280 	 * though never during cleanup after a hard fault.
281 	 */
282 	if (io->status
283 			&& (io->status != -ECONNRESET
284 				|| status != -ECONNRESET)
285 			&& urb->actual_length) {
286 		dev_err(io->dev->bus->controller,
287 			"dev %s ep%d%s scatterlist error %d/%d\n",
288 			io->dev->devpath,
289 			usb_endpoint_num(&urb->ep->desc),
290 			usb_urb_dir_in(urb) ? "in" : "out",
291 			status, io->status);
292 		/* BUG (); */
293 	}
294 
295 	if (io->status == 0 && status && status != -ECONNRESET) {
296 		int i, found, retval;
297 
298 		io->status = status;
299 
300 		/* the previous urbs, and this one, completed already.
301 		 * unlink pending urbs so they won't rx/tx bad data.
302 		 * careful: unlink can sometimes be synchronous...
303 		 */
304 		spin_unlock(&io->lock);
305 		for (i = 0, found = 0; i < io->entries; i++) {
306 			if (!io->urbs[i] || !io->urbs[i]->dev)
307 				continue;
308 			if (found) {
309 				retval = usb_unlink_urb(io->urbs[i]);
310 				if (retval != -EINPROGRESS &&
311 				    retval != -ENODEV &&
312 				    retval != -EBUSY &&
313 				    retval != -EIDRM)
314 					dev_err(&io->dev->dev,
315 						"%s, unlink --> %d\n",
316 						__func__, retval);
317 			} else if (urb == io->urbs[i])
318 				found = 1;
319 		}
320 		spin_lock(&io->lock);
321 	}
322 
323 	/* on the last completion, signal usb_sg_wait() */
324 	io->bytes += urb->actual_length;
325 	io->count--;
326 	if (!io->count)
327 		complete(&io->complete);
328 
329 	spin_unlock(&io->lock);
330 }
331 
332 
333 /**
334  * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
335  * @io: request block being initialized.  until usb_sg_wait() returns,
336  *	treat this as a pointer to an opaque block of memory,
337  * @dev: the usb device that will send or receive the data
338  * @pipe: endpoint "pipe" used to transfer the data
339  * @period: polling rate for interrupt endpoints, in frames or
340  * 	(for high speed endpoints) microframes; ignored for bulk
341  * @sg: scatterlist entries
342  * @nents: how many entries in the scatterlist
343  * @length: how many bytes to send from the scatterlist, or zero to
344  * 	send every byte identified in the list.
345  * @mem_flags: SLAB_* flags affecting memory allocations in this call
346  *
347  * This initializes a scatter/gather request, allocating resources such as
348  * I/O mappings and urb memory (except maybe memory used by USB controller
349  * drivers).
350  *
351  * The request must be issued using usb_sg_wait(), which waits for the I/O to
352  * complete (or to be canceled) and then cleans up all resources allocated by
353  * usb_sg_init().
354  *
355  * The request may be canceled with usb_sg_cancel(), either before or after
356  * usb_sg_wait() is called.
357  *
358  * Return: Zero for success, else a negative errno value.
359  */
360 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
361 		unsigned pipe, unsigned	period, struct scatterlist *sg,
362 		int nents, size_t length, gfp_t mem_flags)
363 {
364 	int i;
365 	int urb_flags;
366 	int use_sg;
367 
368 	if (!io || !dev || !sg
369 			|| usb_pipecontrol(pipe)
370 			|| usb_pipeisoc(pipe)
371 			|| nents <= 0)
372 		return -EINVAL;
373 
374 	spin_lock_init(&io->lock);
375 	io->dev = dev;
376 	io->pipe = pipe;
377 
378 	if (dev->bus->sg_tablesize > 0) {
379 		use_sg = true;
380 		io->entries = 1;
381 	} else {
382 		use_sg = false;
383 		io->entries = nents;
384 	}
385 
386 	/* initialize all the urbs we'll use */
387 	io->urbs = kmalloc(io->entries * sizeof(*io->urbs), mem_flags);
388 	if (!io->urbs)
389 		goto nomem;
390 
391 	urb_flags = URB_NO_INTERRUPT;
392 	if (usb_pipein(pipe))
393 		urb_flags |= URB_SHORT_NOT_OK;
394 
395 	for_each_sg(sg, sg, io->entries, i) {
396 		struct urb *urb;
397 		unsigned len;
398 
399 		urb = usb_alloc_urb(0, mem_flags);
400 		if (!urb) {
401 			io->entries = i;
402 			goto nomem;
403 		}
404 		io->urbs[i] = urb;
405 
406 		urb->dev = NULL;
407 		urb->pipe = pipe;
408 		urb->interval = period;
409 		urb->transfer_flags = urb_flags;
410 		urb->complete = sg_complete;
411 		urb->context = io;
412 		urb->sg = sg;
413 
414 		if (use_sg) {
415 			/* There is no single transfer buffer */
416 			urb->transfer_buffer = NULL;
417 			urb->num_sgs = nents;
418 
419 			/* A length of zero means transfer the whole sg list */
420 			len = length;
421 			if (len == 0) {
422 				struct scatterlist	*sg2;
423 				int			j;
424 
425 				for_each_sg(sg, sg2, nents, j)
426 					len += sg2->length;
427 			}
428 		} else {
429 			/*
430 			 * Some systems can't use DMA; they use PIO instead.
431 			 * For their sakes, transfer_buffer is set whenever
432 			 * possible.
433 			 */
434 			if (!PageHighMem(sg_page(sg)))
435 				urb->transfer_buffer = sg_virt(sg);
436 			else
437 				urb->transfer_buffer = NULL;
438 
439 			len = sg->length;
440 			if (length) {
441 				len = min_t(size_t, len, length);
442 				length -= len;
443 				if (length == 0)
444 					io->entries = i + 1;
445 			}
446 		}
447 		urb->transfer_buffer_length = len;
448 	}
449 	io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
450 
451 	/* transaction state */
452 	io->count = io->entries;
453 	io->status = 0;
454 	io->bytes = 0;
455 	init_completion(&io->complete);
456 	return 0;
457 
458 nomem:
459 	sg_clean(io);
460 	return -ENOMEM;
461 }
462 EXPORT_SYMBOL_GPL(usb_sg_init);
463 
464 /**
465  * usb_sg_wait - synchronously execute scatter/gather request
466  * @io: request block handle, as initialized with usb_sg_init().
467  * 	some fields become accessible when this call returns.
468  * Context: !in_interrupt ()
469  *
470  * This function blocks until the specified I/O operation completes.  It
471  * leverages the grouping of the related I/O requests to get good transfer
472  * rates, by queueing the requests.  At higher speeds, such queuing can
473  * significantly improve USB throughput.
474  *
475  * There are three kinds of completion for this function.
476  * (1) success, where io->status is zero.  The number of io->bytes
477  *     transferred is as requested.
478  * (2) error, where io->status is a negative errno value.  The number
479  *     of io->bytes transferred before the error is usually less
480  *     than requested, and can be nonzero.
481  * (3) cancellation, a type of error with status -ECONNRESET that
482  *     is initiated by usb_sg_cancel().
483  *
484  * When this function returns, all memory allocated through usb_sg_init() or
485  * this call will have been freed.  The request block parameter may still be
486  * passed to usb_sg_cancel(), or it may be freed.  It could also be
487  * reinitialized and then reused.
488  *
489  * Data Transfer Rates:
490  *
491  * Bulk transfers are valid for full or high speed endpoints.
492  * The best full speed data rate is 19 packets of 64 bytes each
493  * per frame, or 1216 bytes per millisecond.
494  * The best high speed data rate is 13 packets of 512 bytes each
495  * per microframe, or 52 KBytes per millisecond.
496  *
497  * The reason to use interrupt transfers through this API would most likely
498  * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
499  * could be transferred.  That capability is less useful for low or full
500  * speed interrupt endpoints, which allow at most one packet per millisecond,
501  * of at most 8 or 64 bytes (respectively).
502  *
503  * It is not necessary to call this function to reserve bandwidth for devices
504  * under an xHCI host controller, as the bandwidth is reserved when the
505  * configuration or interface alt setting is selected.
506  */
507 void usb_sg_wait(struct usb_sg_request *io)
508 {
509 	int i;
510 	int entries = io->entries;
511 
512 	/* queue the urbs.  */
513 	spin_lock_irq(&io->lock);
514 	i = 0;
515 	while (i < entries && !io->status) {
516 		int retval;
517 
518 		io->urbs[i]->dev = io->dev;
519 		retval = usb_submit_urb(io->urbs[i], GFP_ATOMIC);
520 
521 		/* after we submit, let completions or cancelations fire;
522 		 * we handshake using io->status.
523 		 */
524 		spin_unlock_irq(&io->lock);
525 		switch (retval) {
526 			/* maybe we retrying will recover */
527 		case -ENXIO:	/* hc didn't queue this one */
528 		case -EAGAIN:
529 		case -ENOMEM:
530 			retval = 0;
531 			yield();
532 			break;
533 
534 			/* no error? continue immediately.
535 			 *
536 			 * NOTE: to work better with UHCI (4K I/O buffer may
537 			 * need 3K of TDs) it may be good to limit how many
538 			 * URBs are queued at once; N milliseconds?
539 			 */
540 		case 0:
541 			++i;
542 			cpu_relax();
543 			break;
544 
545 			/* fail any uncompleted urbs */
546 		default:
547 			io->urbs[i]->status = retval;
548 			dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
549 				__func__, retval);
550 			usb_sg_cancel(io);
551 		}
552 		spin_lock_irq(&io->lock);
553 		if (retval && (io->status == 0 || io->status == -ECONNRESET))
554 			io->status = retval;
555 	}
556 	io->count -= entries - i;
557 	if (io->count == 0)
558 		complete(&io->complete);
559 	spin_unlock_irq(&io->lock);
560 
561 	/* OK, yes, this could be packaged as non-blocking.
562 	 * So could the submit loop above ... but it's easier to
563 	 * solve neither problem than to solve both!
564 	 */
565 	wait_for_completion(&io->complete);
566 
567 	sg_clean(io);
568 }
569 EXPORT_SYMBOL_GPL(usb_sg_wait);
570 
571 /**
572  * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
573  * @io: request block, initialized with usb_sg_init()
574  *
575  * This stops a request after it has been started by usb_sg_wait().
576  * It can also prevents one initialized by usb_sg_init() from starting,
577  * so that call just frees resources allocated to the request.
578  */
579 void usb_sg_cancel(struct usb_sg_request *io)
580 {
581 	unsigned long flags;
582 
583 	spin_lock_irqsave(&io->lock, flags);
584 
585 	/* shut everything down, if it didn't already */
586 	if (!io->status) {
587 		int i;
588 
589 		io->status = -ECONNRESET;
590 		spin_unlock(&io->lock);
591 		for (i = 0; i < io->entries; i++) {
592 			int retval;
593 
594 			if (!io->urbs[i]->dev)
595 				continue;
596 			retval = usb_unlink_urb(io->urbs[i]);
597 			if (retval != -EINPROGRESS
598 					&& retval != -ENODEV
599 					&& retval != -EBUSY
600 					&& retval != -EIDRM)
601 				dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
602 					__func__, retval);
603 		}
604 		spin_lock(&io->lock);
605 	}
606 	spin_unlock_irqrestore(&io->lock, flags);
607 }
608 EXPORT_SYMBOL_GPL(usb_sg_cancel);
609 
610 /*-------------------------------------------------------------------*/
611 
612 /**
613  * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
614  * @dev: the device whose descriptor is being retrieved
615  * @type: the descriptor type (USB_DT_*)
616  * @index: the number of the descriptor
617  * @buf: where to put the descriptor
618  * @size: how big is "buf"?
619  * Context: !in_interrupt ()
620  *
621  * Gets a USB descriptor.  Convenience functions exist to simplify
622  * getting some types of descriptors.  Use
623  * usb_get_string() or usb_string() for USB_DT_STRING.
624  * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
625  * are part of the device structure.
626  * In addition to a number of USB-standard descriptors, some
627  * devices also use class-specific or vendor-specific descriptors.
628  *
629  * This call is synchronous, and may not be used in an interrupt context.
630  *
631  * Return: The number of bytes received on success, or else the status code
632  * returned by the underlying usb_control_msg() call.
633  */
634 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
635 		       unsigned char index, void *buf, int size)
636 {
637 	int i;
638 	int result;
639 
640 	memset(buf, 0, size);	/* Make sure we parse really received data */
641 
642 	for (i = 0; i < 3; ++i) {
643 		/* retry on length 0 or error; some devices are flakey */
644 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
645 				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
646 				(type << 8) + index, 0, buf, size,
647 				USB_CTRL_GET_TIMEOUT);
648 		if (result <= 0 && result != -ETIMEDOUT)
649 			continue;
650 		if (result > 1 && ((u8 *)buf)[1] != type) {
651 			result = -ENODATA;
652 			continue;
653 		}
654 		break;
655 	}
656 	return result;
657 }
658 EXPORT_SYMBOL_GPL(usb_get_descriptor);
659 
660 /**
661  * usb_get_string - gets a string descriptor
662  * @dev: the device whose string descriptor is being retrieved
663  * @langid: code for language chosen (from string descriptor zero)
664  * @index: the number of the descriptor
665  * @buf: where to put the string
666  * @size: how big is "buf"?
667  * Context: !in_interrupt ()
668  *
669  * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
670  * in little-endian byte order).
671  * The usb_string() function will often be a convenient way to turn
672  * these strings into kernel-printable form.
673  *
674  * Strings may be referenced in device, configuration, interface, or other
675  * descriptors, and could also be used in vendor-specific ways.
676  *
677  * This call is synchronous, and may not be used in an interrupt context.
678  *
679  * Return: The number of bytes received on success, or else the status code
680  * returned by the underlying usb_control_msg() call.
681  */
682 static int usb_get_string(struct usb_device *dev, unsigned short langid,
683 			  unsigned char index, void *buf, int size)
684 {
685 	int i;
686 	int result;
687 
688 	for (i = 0; i < 3; ++i) {
689 		/* retry on length 0 or stall; some devices are flakey */
690 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
691 			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
692 			(USB_DT_STRING << 8) + index, langid, buf, size,
693 			USB_CTRL_GET_TIMEOUT);
694 		if (result == 0 || result == -EPIPE)
695 			continue;
696 		if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
697 			result = -ENODATA;
698 			continue;
699 		}
700 		break;
701 	}
702 	return result;
703 }
704 
705 static void usb_try_string_workarounds(unsigned char *buf, int *length)
706 {
707 	int newlength, oldlength = *length;
708 
709 	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
710 		if (!isprint(buf[newlength]) || buf[newlength + 1])
711 			break;
712 
713 	if (newlength > 2) {
714 		buf[0] = newlength;
715 		*length = newlength;
716 	}
717 }
718 
719 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
720 			  unsigned int index, unsigned char *buf)
721 {
722 	int rc;
723 
724 	/* Try to read the string descriptor by asking for the maximum
725 	 * possible number of bytes */
726 	if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
727 		rc = -EIO;
728 	else
729 		rc = usb_get_string(dev, langid, index, buf, 255);
730 
731 	/* If that failed try to read the descriptor length, then
732 	 * ask for just that many bytes */
733 	if (rc < 2) {
734 		rc = usb_get_string(dev, langid, index, buf, 2);
735 		if (rc == 2)
736 			rc = usb_get_string(dev, langid, index, buf, buf[0]);
737 	}
738 
739 	if (rc >= 2) {
740 		if (!buf[0] && !buf[1])
741 			usb_try_string_workarounds(buf, &rc);
742 
743 		/* There might be extra junk at the end of the descriptor */
744 		if (buf[0] < rc)
745 			rc = buf[0];
746 
747 		rc = rc - (rc & 1); /* force a multiple of two */
748 	}
749 
750 	if (rc < 2)
751 		rc = (rc < 0 ? rc : -EINVAL);
752 
753 	return rc;
754 }
755 
756 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
757 {
758 	int err;
759 
760 	if (dev->have_langid)
761 		return 0;
762 
763 	if (dev->string_langid < 0)
764 		return -EPIPE;
765 
766 	err = usb_string_sub(dev, 0, 0, tbuf);
767 
768 	/* If the string was reported but is malformed, default to english
769 	 * (0x0409) */
770 	if (err == -ENODATA || (err > 0 && err < 4)) {
771 		dev->string_langid = 0x0409;
772 		dev->have_langid = 1;
773 		dev_err(&dev->dev,
774 			"string descriptor 0 malformed (err = %d), "
775 			"defaulting to 0x%04x\n",
776 				err, dev->string_langid);
777 		return 0;
778 	}
779 
780 	/* In case of all other errors, we assume the device is not able to
781 	 * deal with strings at all. Set string_langid to -1 in order to
782 	 * prevent any string to be retrieved from the device */
783 	if (err < 0) {
784 		dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
785 					err);
786 		dev->string_langid = -1;
787 		return -EPIPE;
788 	}
789 
790 	/* always use the first langid listed */
791 	dev->string_langid = tbuf[2] | (tbuf[3] << 8);
792 	dev->have_langid = 1;
793 	dev_dbg(&dev->dev, "default language 0x%04x\n",
794 				dev->string_langid);
795 	return 0;
796 }
797 
798 /**
799  * usb_string - returns UTF-8 version of a string descriptor
800  * @dev: the device whose string descriptor is being retrieved
801  * @index: the number of the descriptor
802  * @buf: where to put the string
803  * @size: how big is "buf"?
804  * Context: !in_interrupt ()
805  *
806  * This converts the UTF-16LE encoded strings returned by devices, from
807  * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
808  * that are more usable in most kernel contexts.  Note that this function
809  * chooses strings in the first language supported by the device.
810  *
811  * This call is synchronous, and may not be used in an interrupt context.
812  *
813  * Return: length of the string (>= 0) or usb_control_msg status (< 0).
814  */
815 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
816 {
817 	unsigned char *tbuf;
818 	int err;
819 
820 	if (dev->state == USB_STATE_SUSPENDED)
821 		return -EHOSTUNREACH;
822 	if (size <= 0 || !buf || !index)
823 		return -EINVAL;
824 	buf[0] = 0;
825 	tbuf = kmalloc(256, GFP_NOIO);
826 	if (!tbuf)
827 		return -ENOMEM;
828 
829 	err = usb_get_langid(dev, tbuf);
830 	if (err < 0)
831 		goto errout;
832 
833 	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
834 	if (err < 0)
835 		goto errout;
836 
837 	size--;		/* leave room for trailing NULL char in output buffer */
838 	err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
839 			UTF16_LITTLE_ENDIAN, buf, size);
840 	buf[err] = 0;
841 
842 	if (tbuf[1] != USB_DT_STRING)
843 		dev_dbg(&dev->dev,
844 			"wrong descriptor type %02x for string %d (\"%s\")\n",
845 			tbuf[1], index, buf);
846 
847  errout:
848 	kfree(tbuf);
849 	return err;
850 }
851 EXPORT_SYMBOL_GPL(usb_string);
852 
853 /* one UTF-8-encoded 16-bit character has at most three bytes */
854 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
855 
856 /**
857  * usb_cache_string - read a string descriptor and cache it for later use
858  * @udev: the device whose string descriptor is being read
859  * @index: the descriptor index
860  *
861  * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
862  * or %NULL if the index is 0 or the string could not be read.
863  */
864 char *usb_cache_string(struct usb_device *udev, int index)
865 {
866 	char *buf;
867 	char *smallbuf = NULL;
868 	int len;
869 
870 	if (index <= 0)
871 		return NULL;
872 
873 	buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
874 	if (buf) {
875 		len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
876 		if (len > 0) {
877 			smallbuf = kmalloc(++len, GFP_NOIO);
878 			if (!smallbuf)
879 				return buf;
880 			memcpy(smallbuf, buf, len);
881 		}
882 		kfree(buf);
883 	}
884 	return smallbuf;
885 }
886 
887 /*
888  * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
889  * @dev: the device whose device descriptor is being updated
890  * @size: how much of the descriptor to read
891  * Context: !in_interrupt ()
892  *
893  * Updates the copy of the device descriptor stored in the device structure,
894  * which dedicates space for this purpose.
895  *
896  * Not exported, only for use by the core.  If drivers really want to read
897  * the device descriptor directly, they can call usb_get_descriptor() with
898  * type = USB_DT_DEVICE and index = 0.
899  *
900  * This call is synchronous, and may not be used in an interrupt context.
901  *
902  * Return: The number of bytes received on success, or else the status code
903  * returned by the underlying usb_control_msg() call.
904  */
905 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
906 {
907 	struct usb_device_descriptor *desc;
908 	int ret;
909 
910 	if (size > sizeof(*desc))
911 		return -EINVAL;
912 	desc = kmalloc(sizeof(*desc), GFP_NOIO);
913 	if (!desc)
914 		return -ENOMEM;
915 
916 	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
917 	if (ret >= 0)
918 		memcpy(&dev->descriptor, desc, size);
919 	kfree(desc);
920 	return ret;
921 }
922 
923 /**
924  * usb_get_status - issues a GET_STATUS call
925  * @dev: the device whose status is being checked
926  * @type: USB_RECIP_*; for device, interface, or endpoint
927  * @target: zero (for device), else interface or endpoint number
928  * @data: pointer to two bytes of bitmap data
929  * Context: !in_interrupt ()
930  *
931  * Returns device, interface, or endpoint status.  Normally only of
932  * interest to see if the device is self powered, or has enabled the
933  * remote wakeup facility; or whether a bulk or interrupt endpoint
934  * is halted ("stalled").
935  *
936  * Bits in these status bitmaps are set using the SET_FEATURE request,
937  * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
938  * function should be used to clear halt ("stall") status.
939  *
940  * This call is synchronous, and may not be used in an interrupt context.
941  *
942  * Returns 0 and the status value in *@data (in host byte order) on success,
943  * or else the status code from the underlying usb_control_msg() call.
944  */
945 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
946 {
947 	int ret;
948 	__le16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
949 
950 	if (!status)
951 		return -ENOMEM;
952 
953 	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
954 		USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
955 		sizeof(*status), USB_CTRL_GET_TIMEOUT);
956 
957 	if (ret == 2) {
958 		*(u16 *) data = le16_to_cpu(*status);
959 		ret = 0;
960 	} else if (ret >= 0) {
961 		ret = -EIO;
962 	}
963 	kfree(status);
964 	return ret;
965 }
966 EXPORT_SYMBOL_GPL(usb_get_status);
967 
968 /**
969  * usb_clear_halt - tells device to clear endpoint halt/stall condition
970  * @dev: device whose endpoint is halted
971  * @pipe: endpoint "pipe" being cleared
972  * Context: !in_interrupt ()
973  *
974  * This is used to clear halt conditions for bulk and interrupt endpoints,
975  * as reported by URB completion status.  Endpoints that are halted are
976  * sometimes referred to as being "stalled".  Such endpoints are unable
977  * to transmit or receive data until the halt status is cleared.  Any URBs
978  * queued for such an endpoint should normally be unlinked by the driver
979  * before clearing the halt condition, as described in sections 5.7.5
980  * and 5.8.5 of the USB 2.0 spec.
981  *
982  * Note that control and isochronous endpoints don't halt, although control
983  * endpoints report "protocol stall" (for unsupported requests) using the
984  * same status code used to report a true stall.
985  *
986  * This call is synchronous, and may not be used in an interrupt context.
987  *
988  * Return: Zero on success, or else the status code returned by the
989  * underlying usb_control_msg() call.
990  */
991 int usb_clear_halt(struct usb_device *dev, int pipe)
992 {
993 	int result;
994 	int endp = usb_pipeendpoint(pipe);
995 
996 	if (usb_pipein(pipe))
997 		endp |= USB_DIR_IN;
998 
999 	/* we don't care if it wasn't halted first. in fact some devices
1000 	 * (like some ibmcam model 1 units) seem to expect hosts to make
1001 	 * this request for iso endpoints, which can't halt!
1002 	 */
1003 	result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1004 		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1005 		USB_ENDPOINT_HALT, endp, NULL, 0,
1006 		USB_CTRL_SET_TIMEOUT);
1007 
1008 	/* don't un-halt or force to DATA0 except on success */
1009 	if (result < 0)
1010 		return result;
1011 
1012 	/* NOTE:  seems like Microsoft and Apple don't bother verifying
1013 	 * the clear "took", so some devices could lock up if you check...
1014 	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
1015 	 *
1016 	 * NOTE:  make sure the logic here doesn't diverge much from
1017 	 * the copy in usb-storage, for as long as we need two copies.
1018 	 */
1019 
1020 	usb_reset_endpoint(dev, endp);
1021 
1022 	return 0;
1023 }
1024 EXPORT_SYMBOL_GPL(usb_clear_halt);
1025 
1026 static int create_intf_ep_devs(struct usb_interface *intf)
1027 {
1028 	struct usb_device *udev = interface_to_usbdev(intf);
1029 	struct usb_host_interface *alt = intf->cur_altsetting;
1030 	int i;
1031 
1032 	if (intf->ep_devs_created || intf->unregistering)
1033 		return 0;
1034 
1035 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1036 		(void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1037 	intf->ep_devs_created = 1;
1038 	return 0;
1039 }
1040 
1041 static void remove_intf_ep_devs(struct usb_interface *intf)
1042 {
1043 	struct usb_host_interface *alt = intf->cur_altsetting;
1044 	int i;
1045 
1046 	if (!intf->ep_devs_created)
1047 		return;
1048 
1049 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1050 		usb_remove_ep_devs(&alt->endpoint[i]);
1051 	intf->ep_devs_created = 0;
1052 }
1053 
1054 /**
1055  * usb_disable_endpoint -- Disable an endpoint by address
1056  * @dev: the device whose endpoint is being disabled
1057  * @epaddr: the endpoint's address.  Endpoint number for output,
1058  *	endpoint number + USB_DIR_IN for input
1059  * @reset_hardware: flag to erase any endpoint state stored in the
1060  *	controller hardware
1061  *
1062  * Disables the endpoint for URB submission and nukes all pending URBs.
1063  * If @reset_hardware is set then also deallocates hcd/hardware state
1064  * for the endpoint.
1065  */
1066 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1067 		bool reset_hardware)
1068 {
1069 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1070 	struct usb_host_endpoint *ep;
1071 
1072 	if (!dev)
1073 		return;
1074 
1075 	if (usb_endpoint_out(epaddr)) {
1076 		ep = dev->ep_out[epnum];
1077 		if (reset_hardware)
1078 			dev->ep_out[epnum] = NULL;
1079 	} else {
1080 		ep = dev->ep_in[epnum];
1081 		if (reset_hardware)
1082 			dev->ep_in[epnum] = NULL;
1083 	}
1084 	if (ep) {
1085 		ep->enabled = 0;
1086 		usb_hcd_flush_endpoint(dev, ep);
1087 		if (reset_hardware)
1088 			usb_hcd_disable_endpoint(dev, ep);
1089 	}
1090 }
1091 
1092 /**
1093  * usb_reset_endpoint - Reset an endpoint's state.
1094  * @dev: the device whose endpoint is to be reset
1095  * @epaddr: the endpoint's address.  Endpoint number for output,
1096  *	endpoint number + USB_DIR_IN for input
1097  *
1098  * Resets any host-side endpoint state such as the toggle bit,
1099  * sequence number or current window.
1100  */
1101 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1102 {
1103 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1104 	struct usb_host_endpoint *ep;
1105 
1106 	if (usb_endpoint_out(epaddr))
1107 		ep = dev->ep_out[epnum];
1108 	else
1109 		ep = dev->ep_in[epnum];
1110 	if (ep)
1111 		usb_hcd_reset_endpoint(dev, ep);
1112 }
1113 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1114 
1115 
1116 /**
1117  * usb_disable_interface -- Disable all endpoints for an interface
1118  * @dev: the device whose interface is being disabled
1119  * @intf: pointer to the interface descriptor
1120  * @reset_hardware: flag to erase any endpoint state stored in the
1121  *	controller hardware
1122  *
1123  * Disables all the endpoints for the interface's current altsetting.
1124  */
1125 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1126 		bool reset_hardware)
1127 {
1128 	struct usb_host_interface *alt = intf->cur_altsetting;
1129 	int i;
1130 
1131 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1132 		usb_disable_endpoint(dev,
1133 				alt->endpoint[i].desc.bEndpointAddress,
1134 				reset_hardware);
1135 	}
1136 }
1137 
1138 /**
1139  * usb_disable_device - Disable all the endpoints for a USB device
1140  * @dev: the device whose endpoints are being disabled
1141  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1142  *
1143  * Disables all the device's endpoints, potentially including endpoint 0.
1144  * Deallocates hcd/hardware state for the endpoints (nuking all or most
1145  * pending urbs) and usbcore state for the interfaces, so that usbcore
1146  * must usb_set_configuration() before any interfaces could be used.
1147  */
1148 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1149 {
1150 	int i;
1151 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1152 
1153 	/* getting rid of interfaces will disconnect
1154 	 * any drivers bound to them (a key side effect)
1155 	 */
1156 	if (dev->actconfig) {
1157 		/*
1158 		 * FIXME: In order to avoid self-deadlock involving the
1159 		 * bandwidth_mutex, we have to mark all the interfaces
1160 		 * before unregistering any of them.
1161 		 */
1162 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1163 			dev->actconfig->interface[i]->unregistering = 1;
1164 
1165 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1166 			struct usb_interface	*interface;
1167 
1168 			/* remove this interface if it has been registered */
1169 			interface = dev->actconfig->interface[i];
1170 			if (!device_is_registered(&interface->dev))
1171 				continue;
1172 			dev_dbg(&dev->dev, "unregistering interface %s\n",
1173 				dev_name(&interface->dev));
1174 			remove_intf_ep_devs(interface);
1175 			device_del(&interface->dev);
1176 		}
1177 
1178 		/* Now that the interfaces are unbound, nobody should
1179 		 * try to access them.
1180 		 */
1181 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1182 			put_device(&dev->actconfig->interface[i]->dev);
1183 			dev->actconfig->interface[i] = NULL;
1184 		}
1185 		usb_unlocked_disable_lpm(dev);
1186 		usb_disable_ltm(dev);
1187 		dev->actconfig = NULL;
1188 		if (dev->state == USB_STATE_CONFIGURED)
1189 			usb_set_device_state(dev, USB_STATE_ADDRESS);
1190 	}
1191 
1192 	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1193 		skip_ep0 ? "non-ep0" : "all");
1194 	if (hcd->driver->check_bandwidth) {
1195 		/* First pass: Cancel URBs, leave endpoint pointers intact. */
1196 		for (i = skip_ep0; i < 16; ++i) {
1197 			usb_disable_endpoint(dev, i, false);
1198 			usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1199 		}
1200 		/* Remove endpoints from the host controller internal state */
1201 		mutex_lock(hcd->bandwidth_mutex);
1202 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1203 		mutex_unlock(hcd->bandwidth_mutex);
1204 		/* Second pass: remove endpoint pointers */
1205 	}
1206 	for (i = skip_ep0; i < 16; ++i) {
1207 		usb_disable_endpoint(dev, i, true);
1208 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1209 	}
1210 }
1211 
1212 /**
1213  * usb_enable_endpoint - Enable an endpoint for USB communications
1214  * @dev: the device whose interface is being enabled
1215  * @ep: the endpoint
1216  * @reset_ep: flag to reset the endpoint state
1217  *
1218  * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1219  * For control endpoints, both the input and output sides are handled.
1220  */
1221 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1222 		bool reset_ep)
1223 {
1224 	int epnum = usb_endpoint_num(&ep->desc);
1225 	int is_out = usb_endpoint_dir_out(&ep->desc);
1226 	int is_control = usb_endpoint_xfer_control(&ep->desc);
1227 
1228 	if (reset_ep)
1229 		usb_hcd_reset_endpoint(dev, ep);
1230 	if (is_out || is_control)
1231 		dev->ep_out[epnum] = ep;
1232 	if (!is_out || is_control)
1233 		dev->ep_in[epnum] = ep;
1234 	ep->enabled = 1;
1235 }
1236 
1237 /**
1238  * usb_enable_interface - Enable all the endpoints for an interface
1239  * @dev: the device whose interface is being enabled
1240  * @intf: pointer to the interface descriptor
1241  * @reset_eps: flag to reset the endpoints' state
1242  *
1243  * Enables all the endpoints for the interface's current altsetting.
1244  */
1245 void usb_enable_interface(struct usb_device *dev,
1246 		struct usb_interface *intf, bool reset_eps)
1247 {
1248 	struct usb_host_interface *alt = intf->cur_altsetting;
1249 	int i;
1250 
1251 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1252 		usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1253 }
1254 
1255 /**
1256  * usb_set_interface - Makes a particular alternate setting be current
1257  * @dev: the device whose interface is being updated
1258  * @interface: the interface being updated
1259  * @alternate: the setting being chosen.
1260  * Context: !in_interrupt ()
1261  *
1262  * This is used to enable data transfers on interfaces that may not
1263  * be enabled by default.  Not all devices support such configurability.
1264  * Only the driver bound to an interface may change its setting.
1265  *
1266  * Within any given configuration, each interface may have several
1267  * alternative settings.  These are often used to control levels of
1268  * bandwidth consumption.  For example, the default setting for a high
1269  * speed interrupt endpoint may not send more than 64 bytes per microframe,
1270  * while interrupt transfers of up to 3KBytes per microframe are legal.
1271  * Also, isochronous endpoints may never be part of an
1272  * interface's default setting.  To access such bandwidth, alternate
1273  * interface settings must be made current.
1274  *
1275  * Note that in the Linux USB subsystem, bandwidth associated with
1276  * an endpoint in a given alternate setting is not reserved until an URB
1277  * is submitted that needs that bandwidth.  Some other operating systems
1278  * allocate bandwidth early, when a configuration is chosen.
1279  *
1280  * This call is synchronous, and may not be used in an interrupt context.
1281  * Also, drivers must not change altsettings while urbs are scheduled for
1282  * endpoints in that interface; all such urbs must first be completed
1283  * (perhaps forced by unlinking).
1284  *
1285  * Return: Zero on success, or else the status code returned by the
1286  * underlying usb_control_msg() call.
1287  */
1288 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1289 {
1290 	struct usb_interface *iface;
1291 	struct usb_host_interface *alt;
1292 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1293 	int ret;
1294 	int manual = 0;
1295 	unsigned int epaddr;
1296 	unsigned int pipe;
1297 
1298 	if (dev->state == USB_STATE_SUSPENDED)
1299 		return -EHOSTUNREACH;
1300 
1301 	iface = usb_ifnum_to_if(dev, interface);
1302 	if (!iface) {
1303 		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1304 			interface);
1305 		return -EINVAL;
1306 	}
1307 	if (iface->unregistering)
1308 		return -ENODEV;
1309 
1310 	alt = usb_altnum_to_altsetting(iface, alternate);
1311 	if (!alt) {
1312 		dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1313 			 alternate);
1314 		return -EINVAL;
1315 	}
1316 
1317 	/* Make sure we have enough bandwidth for this alternate interface.
1318 	 * Remove the current alt setting and add the new alt setting.
1319 	 */
1320 	mutex_lock(hcd->bandwidth_mutex);
1321 	/* Disable LPM, and re-enable it once the new alt setting is installed,
1322 	 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1323 	 */
1324 	if (usb_disable_lpm(dev)) {
1325 		dev_err(&iface->dev, "%s Failed to disable LPM\n.", __func__);
1326 		mutex_unlock(hcd->bandwidth_mutex);
1327 		return -ENOMEM;
1328 	}
1329 	ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1330 	if (ret < 0) {
1331 		dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1332 				alternate);
1333 		usb_enable_lpm(dev);
1334 		mutex_unlock(hcd->bandwidth_mutex);
1335 		return ret;
1336 	}
1337 
1338 	if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1339 		ret = -EPIPE;
1340 	else
1341 		ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1342 				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1343 				   alternate, interface, NULL, 0, 5000);
1344 
1345 	/* 9.4.10 says devices don't need this and are free to STALL the
1346 	 * request if the interface only has one alternate setting.
1347 	 */
1348 	if (ret == -EPIPE && iface->num_altsetting == 1) {
1349 		dev_dbg(&dev->dev,
1350 			"manual set_interface for iface %d, alt %d\n",
1351 			interface, alternate);
1352 		manual = 1;
1353 	} else if (ret < 0) {
1354 		/* Re-instate the old alt setting */
1355 		usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1356 		usb_enable_lpm(dev);
1357 		mutex_unlock(hcd->bandwidth_mutex);
1358 		return ret;
1359 	}
1360 	mutex_unlock(hcd->bandwidth_mutex);
1361 
1362 	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1363 	 * when they implement async or easily-killable versions of this or
1364 	 * other "should-be-internal" functions (like clear_halt).
1365 	 * should hcd+usbcore postprocess control requests?
1366 	 */
1367 
1368 	/* prevent submissions using previous endpoint settings */
1369 	if (iface->cur_altsetting != alt) {
1370 		remove_intf_ep_devs(iface);
1371 		usb_remove_sysfs_intf_files(iface);
1372 	}
1373 	usb_disable_interface(dev, iface, true);
1374 
1375 	iface->cur_altsetting = alt;
1376 
1377 	/* Now that the interface is installed, re-enable LPM. */
1378 	usb_unlocked_enable_lpm(dev);
1379 
1380 	/* If the interface only has one altsetting and the device didn't
1381 	 * accept the request, we attempt to carry out the equivalent action
1382 	 * by manually clearing the HALT feature for each endpoint in the
1383 	 * new altsetting.
1384 	 */
1385 	if (manual) {
1386 		int i;
1387 
1388 		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1389 			epaddr = alt->endpoint[i].desc.bEndpointAddress;
1390 			pipe = __create_pipe(dev,
1391 					USB_ENDPOINT_NUMBER_MASK & epaddr) |
1392 					(usb_endpoint_out(epaddr) ?
1393 					USB_DIR_OUT : USB_DIR_IN);
1394 
1395 			usb_clear_halt(dev, pipe);
1396 		}
1397 	}
1398 
1399 	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1400 	 *
1401 	 * Note:
1402 	 * Despite EP0 is always present in all interfaces/AS, the list of
1403 	 * endpoints from the descriptor does not contain EP0. Due to its
1404 	 * omnipresence one might expect EP0 being considered "affected" by
1405 	 * any SetInterface request and hence assume toggles need to be reset.
1406 	 * However, EP0 toggles are re-synced for every individual transfer
1407 	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1408 	 * (Likewise, EP0 never "halts" on well designed devices.)
1409 	 */
1410 	usb_enable_interface(dev, iface, true);
1411 	if (device_is_registered(&iface->dev)) {
1412 		usb_create_sysfs_intf_files(iface);
1413 		create_intf_ep_devs(iface);
1414 	}
1415 	return 0;
1416 }
1417 EXPORT_SYMBOL_GPL(usb_set_interface);
1418 
1419 /**
1420  * usb_reset_configuration - lightweight device reset
1421  * @dev: the device whose configuration is being reset
1422  *
1423  * This issues a standard SET_CONFIGURATION request to the device using
1424  * the current configuration.  The effect is to reset most USB-related
1425  * state in the device, including interface altsettings (reset to zero),
1426  * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1427  * endpoints).  Other usbcore state is unchanged, including bindings of
1428  * usb device drivers to interfaces.
1429  *
1430  * Because this affects multiple interfaces, avoid using this with composite
1431  * (multi-interface) devices.  Instead, the driver for each interface may
1432  * use usb_set_interface() on the interfaces it claims.  Be careful though;
1433  * some devices don't support the SET_INTERFACE request, and others won't
1434  * reset all the interface state (notably endpoint state).  Resetting the whole
1435  * configuration would affect other drivers' interfaces.
1436  *
1437  * The caller must own the device lock.
1438  *
1439  * Return: Zero on success, else a negative error code.
1440  */
1441 int usb_reset_configuration(struct usb_device *dev)
1442 {
1443 	int			i, retval;
1444 	struct usb_host_config	*config;
1445 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1446 
1447 	if (dev->state == USB_STATE_SUSPENDED)
1448 		return -EHOSTUNREACH;
1449 
1450 	/* caller must have locked the device and must own
1451 	 * the usb bus readlock (so driver bindings are stable);
1452 	 * calls during probe() are fine
1453 	 */
1454 
1455 	for (i = 1; i < 16; ++i) {
1456 		usb_disable_endpoint(dev, i, true);
1457 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1458 	}
1459 
1460 	config = dev->actconfig;
1461 	retval = 0;
1462 	mutex_lock(hcd->bandwidth_mutex);
1463 	/* Disable LPM, and re-enable it once the configuration is reset, so
1464 	 * that the xHCI driver can recalculate the U1/U2 timeouts.
1465 	 */
1466 	if (usb_disable_lpm(dev)) {
1467 		dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1468 		mutex_unlock(hcd->bandwidth_mutex);
1469 		return -ENOMEM;
1470 	}
1471 	/* Make sure we have enough bandwidth for each alternate setting 0 */
1472 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1473 		struct usb_interface *intf = config->interface[i];
1474 		struct usb_host_interface *alt;
1475 
1476 		alt = usb_altnum_to_altsetting(intf, 0);
1477 		if (!alt)
1478 			alt = &intf->altsetting[0];
1479 		if (alt != intf->cur_altsetting)
1480 			retval = usb_hcd_alloc_bandwidth(dev, NULL,
1481 					intf->cur_altsetting, alt);
1482 		if (retval < 0)
1483 			break;
1484 	}
1485 	/* If not, reinstate the old alternate settings */
1486 	if (retval < 0) {
1487 reset_old_alts:
1488 		for (i--; i >= 0; i--) {
1489 			struct usb_interface *intf = config->interface[i];
1490 			struct usb_host_interface *alt;
1491 
1492 			alt = usb_altnum_to_altsetting(intf, 0);
1493 			if (!alt)
1494 				alt = &intf->altsetting[0];
1495 			if (alt != intf->cur_altsetting)
1496 				usb_hcd_alloc_bandwidth(dev, NULL,
1497 						alt, intf->cur_altsetting);
1498 		}
1499 		usb_enable_lpm(dev);
1500 		mutex_unlock(hcd->bandwidth_mutex);
1501 		return retval;
1502 	}
1503 	retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1504 			USB_REQ_SET_CONFIGURATION, 0,
1505 			config->desc.bConfigurationValue, 0,
1506 			NULL, 0, USB_CTRL_SET_TIMEOUT);
1507 	if (retval < 0)
1508 		goto reset_old_alts;
1509 	mutex_unlock(hcd->bandwidth_mutex);
1510 
1511 	/* re-init hc/hcd interface/endpoint state */
1512 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1513 		struct usb_interface *intf = config->interface[i];
1514 		struct usb_host_interface *alt;
1515 
1516 		alt = usb_altnum_to_altsetting(intf, 0);
1517 
1518 		/* No altsetting 0?  We'll assume the first altsetting.
1519 		 * We could use a GetInterface call, but if a device is
1520 		 * so non-compliant that it doesn't have altsetting 0
1521 		 * then I wouldn't trust its reply anyway.
1522 		 */
1523 		if (!alt)
1524 			alt = &intf->altsetting[0];
1525 
1526 		if (alt != intf->cur_altsetting) {
1527 			remove_intf_ep_devs(intf);
1528 			usb_remove_sysfs_intf_files(intf);
1529 		}
1530 		intf->cur_altsetting = alt;
1531 		usb_enable_interface(dev, intf, true);
1532 		if (device_is_registered(&intf->dev)) {
1533 			usb_create_sysfs_intf_files(intf);
1534 			create_intf_ep_devs(intf);
1535 		}
1536 	}
1537 	/* Now that the interfaces are installed, re-enable LPM. */
1538 	usb_unlocked_enable_lpm(dev);
1539 	return 0;
1540 }
1541 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1542 
1543 static void usb_release_interface(struct device *dev)
1544 {
1545 	struct usb_interface *intf = to_usb_interface(dev);
1546 	struct usb_interface_cache *intfc =
1547 			altsetting_to_usb_interface_cache(intf->altsetting);
1548 
1549 	kref_put(&intfc->ref, usb_release_interface_cache);
1550 	kfree(intf);
1551 }
1552 
1553 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1554 {
1555 	struct usb_device *usb_dev;
1556 	struct usb_interface *intf;
1557 	struct usb_host_interface *alt;
1558 
1559 	intf = to_usb_interface(dev);
1560 	usb_dev = interface_to_usbdev(intf);
1561 	alt = intf->cur_altsetting;
1562 
1563 	if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1564 		   alt->desc.bInterfaceClass,
1565 		   alt->desc.bInterfaceSubClass,
1566 		   alt->desc.bInterfaceProtocol))
1567 		return -ENOMEM;
1568 
1569 	if (add_uevent_var(env,
1570 		   "MODALIAS=usb:"
1571 		   "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1572 		   le16_to_cpu(usb_dev->descriptor.idVendor),
1573 		   le16_to_cpu(usb_dev->descriptor.idProduct),
1574 		   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1575 		   usb_dev->descriptor.bDeviceClass,
1576 		   usb_dev->descriptor.bDeviceSubClass,
1577 		   usb_dev->descriptor.bDeviceProtocol,
1578 		   alt->desc.bInterfaceClass,
1579 		   alt->desc.bInterfaceSubClass,
1580 		   alt->desc.bInterfaceProtocol,
1581 		   alt->desc.bInterfaceNumber))
1582 		return -ENOMEM;
1583 
1584 	return 0;
1585 }
1586 
1587 struct device_type usb_if_device_type = {
1588 	.name =		"usb_interface",
1589 	.release =	usb_release_interface,
1590 	.uevent =	usb_if_uevent,
1591 };
1592 
1593 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1594 						struct usb_host_config *config,
1595 						u8 inum)
1596 {
1597 	struct usb_interface_assoc_descriptor *retval = NULL;
1598 	struct usb_interface_assoc_descriptor *intf_assoc;
1599 	int first_intf;
1600 	int last_intf;
1601 	int i;
1602 
1603 	for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1604 		intf_assoc = config->intf_assoc[i];
1605 		if (intf_assoc->bInterfaceCount == 0)
1606 			continue;
1607 
1608 		first_intf = intf_assoc->bFirstInterface;
1609 		last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1610 		if (inum >= first_intf && inum <= last_intf) {
1611 			if (!retval)
1612 				retval = intf_assoc;
1613 			else
1614 				dev_err(&dev->dev, "Interface #%d referenced"
1615 					" by multiple IADs\n", inum);
1616 		}
1617 	}
1618 
1619 	return retval;
1620 }
1621 
1622 
1623 /*
1624  * Internal function to queue a device reset
1625  *
1626  * This is initialized into the workstruct in 'struct
1627  * usb_device->reset_ws' that is launched by
1628  * message.c:usb_set_configuration() when initializing each 'struct
1629  * usb_interface'.
1630  *
1631  * It is safe to get the USB device without reference counts because
1632  * the life cycle of @iface is bound to the life cycle of @udev. Then,
1633  * this function will be ran only if @iface is alive (and before
1634  * freeing it any scheduled instances of it will have been cancelled).
1635  *
1636  * We need to set a flag (usb_dev->reset_running) because when we call
1637  * the reset, the interfaces might be unbound. The current interface
1638  * cannot try to remove the queued work as it would cause a deadlock
1639  * (you cannot remove your work from within your executing
1640  * workqueue). This flag lets it know, so that
1641  * usb_cancel_queued_reset() doesn't try to do it.
1642  *
1643  * See usb_queue_reset_device() for more details
1644  */
1645 static void __usb_queue_reset_device(struct work_struct *ws)
1646 {
1647 	int rc;
1648 	struct usb_interface *iface =
1649 		container_of(ws, struct usb_interface, reset_ws);
1650 	struct usb_device *udev = interface_to_usbdev(iface);
1651 
1652 	rc = usb_lock_device_for_reset(udev, iface);
1653 	if (rc >= 0) {
1654 		iface->reset_running = 1;
1655 		usb_reset_device(udev);
1656 		iface->reset_running = 0;
1657 		usb_unlock_device(udev);
1658 	}
1659 }
1660 
1661 
1662 /*
1663  * usb_set_configuration - Makes a particular device setting be current
1664  * @dev: the device whose configuration is being updated
1665  * @configuration: the configuration being chosen.
1666  * Context: !in_interrupt(), caller owns the device lock
1667  *
1668  * This is used to enable non-default device modes.  Not all devices
1669  * use this kind of configurability; many devices only have one
1670  * configuration.
1671  *
1672  * @configuration is the value of the configuration to be installed.
1673  * According to the USB spec (e.g. section 9.1.1.5), configuration values
1674  * must be non-zero; a value of zero indicates that the device in
1675  * unconfigured.  However some devices erroneously use 0 as one of their
1676  * configuration values.  To help manage such devices, this routine will
1677  * accept @configuration = -1 as indicating the device should be put in
1678  * an unconfigured state.
1679  *
1680  * USB device configurations may affect Linux interoperability,
1681  * power consumption and the functionality available.  For example,
1682  * the default configuration is limited to using 100mA of bus power,
1683  * so that when certain device functionality requires more power,
1684  * and the device is bus powered, that functionality should be in some
1685  * non-default device configuration.  Other device modes may also be
1686  * reflected as configuration options, such as whether two ISDN
1687  * channels are available independently; and choosing between open
1688  * standard device protocols (like CDC) or proprietary ones.
1689  *
1690  * Note that a non-authorized device (dev->authorized == 0) will only
1691  * be put in unconfigured mode.
1692  *
1693  * Note that USB has an additional level of device configurability,
1694  * associated with interfaces.  That configurability is accessed using
1695  * usb_set_interface().
1696  *
1697  * This call is synchronous. The calling context must be able to sleep,
1698  * must own the device lock, and must not hold the driver model's USB
1699  * bus mutex; usb interface driver probe() methods cannot use this routine.
1700  *
1701  * Returns zero on success, or else the status code returned by the
1702  * underlying call that failed.  On successful completion, each interface
1703  * in the original device configuration has been destroyed, and each one
1704  * in the new configuration has been probed by all relevant usb device
1705  * drivers currently known to the kernel.
1706  */
1707 int usb_set_configuration(struct usb_device *dev, int configuration)
1708 {
1709 	int i, ret;
1710 	struct usb_host_config *cp = NULL;
1711 	struct usb_interface **new_interfaces = NULL;
1712 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1713 	int n, nintf;
1714 
1715 	if (dev->authorized == 0 || configuration == -1)
1716 		configuration = 0;
1717 	else {
1718 		for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1719 			if (dev->config[i].desc.bConfigurationValue ==
1720 					configuration) {
1721 				cp = &dev->config[i];
1722 				break;
1723 			}
1724 		}
1725 	}
1726 	if ((!cp && configuration != 0))
1727 		return -EINVAL;
1728 
1729 	/* The USB spec says configuration 0 means unconfigured.
1730 	 * But if a device includes a configuration numbered 0,
1731 	 * we will accept it as a correctly configured state.
1732 	 * Use -1 if you really want to unconfigure the device.
1733 	 */
1734 	if (cp && configuration == 0)
1735 		dev_warn(&dev->dev, "config 0 descriptor??\n");
1736 
1737 	/* Allocate memory for new interfaces before doing anything else,
1738 	 * so that if we run out then nothing will have changed. */
1739 	n = nintf = 0;
1740 	if (cp) {
1741 		nintf = cp->desc.bNumInterfaces;
1742 		new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1743 				GFP_NOIO);
1744 		if (!new_interfaces) {
1745 			dev_err(&dev->dev, "Out of memory\n");
1746 			return -ENOMEM;
1747 		}
1748 
1749 		for (; n < nintf; ++n) {
1750 			new_interfaces[n] = kzalloc(
1751 					sizeof(struct usb_interface),
1752 					GFP_NOIO);
1753 			if (!new_interfaces[n]) {
1754 				dev_err(&dev->dev, "Out of memory\n");
1755 				ret = -ENOMEM;
1756 free_interfaces:
1757 				while (--n >= 0)
1758 					kfree(new_interfaces[n]);
1759 				kfree(new_interfaces);
1760 				return ret;
1761 			}
1762 		}
1763 
1764 		i = dev->bus_mA - usb_get_max_power(dev, cp);
1765 		if (i < 0)
1766 			dev_warn(&dev->dev, "new config #%d exceeds power "
1767 					"limit by %dmA\n",
1768 					configuration, -i);
1769 	}
1770 
1771 	/* Wake up the device so we can send it the Set-Config request */
1772 	ret = usb_autoresume_device(dev);
1773 	if (ret)
1774 		goto free_interfaces;
1775 
1776 	/* if it's already configured, clear out old state first.
1777 	 * getting rid of old interfaces means unbinding their drivers.
1778 	 */
1779 	if (dev->state != USB_STATE_ADDRESS)
1780 		usb_disable_device(dev, 1);	/* Skip ep0 */
1781 
1782 	/* Get rid of pending async Set-Config requests for this device */
1783 	cancel_async_set_config(dev);
1784 
1785 	/* Make sure we have bandwidth (and available HCD resources) for this
1786 	 * configuration.  Remove endpoints from the schedule if we're dropping
1787 	 * this configuration to set configuration 0.  After this point, the
1788 	 * host controller will not allow submissions to dropped endpoints.  If
1789 	 * this call fails, the device state is unchanged.
1790 	 */
1791 	mutex_lock(hcd->bandwidth_mutex);
1792 	/* Disable LPM, and re-enable it once the new configuration is
1793 	 * installed, so that the xHCI driver can recalculate the U1/U2
1794 	 * timeouts.
1795 	 */
1796 	if (dev->actconfig && usb_disable_lpm(dev)) {
1797 		dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1798 		mutex_unlock(hcd->bandwidth_mutex);
1799 		ret = -ENOMEM;
1800 		goto free_interfaces;
1801 	}
1802 	ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1803 	if (ret < 0) {
1804 		if (dev->actconfig)
1805 			usb_enable_lpm(dev);
1806 		mutex_unlock(hcd->bandwidth_mutex);
1807 		usb_autosuspend_device(dev);
1808 		goto free_interfaces;
1809 	}
1810 
1811 	/*
1812 	 * Initialize the new interface structures and the
1813 	 * hc/hcd/usbcore interface/endpoint state.
1814 	 */
1815 	for (i = 0; i < nintf; ++i) {
1816 		struct usb_interface_cache *intfc;
1817 		struct usb_interface *intf;
1818 		struct usb_host_interface *alt;
1819 
1820 		cp->interface[i] = intf = new_interfaces[i];
1821 		intfc = cp->intf_cache[i];
1822 		intf->altsetting = intfc->altsetting;
1823 		intf->num_altsetting = intfc->num_altsetting;
1824 		kref_get(&intfc->ref);
1825 
1826 		alt = usb_altnum_to_altsetting(intf, 0);
1827 
1828 		/* No altsetting 0?  We'll assume the first altsetting.
1829 		 * We could use a GetInterface call, but if a device is
1830 		 * so non-compliant that it doesn't have altsetting 0
1831 		 * then I wouldn't trust its reply anyway.
1832 		 */
1833 		if (!alt)
1834 			alt = &intf->altsetting[0];
1835 
1836 		intf->intf_assoc =
1837 			find_iad(dev, cp, alt->desc.bInterfaceNumber);
1838 		intf->cur_altsetting = alt;
1839 		usb_enable_interface(dev, intf, true);
1840 		intf->dev.parent = &dev->dev;
1841 		intf->dev.driver = NULL;
1842 		intf->dev.bus = &usb_bus_type;
1843 		intf->dev.type = &usb_if_device_type;
1844 		intf->dev.groups = usb_interface_groups;
1845 		intf->dev.dma_mask = dev->dev.dma_mask;
1846 		INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1847 		intf->minor = -1;
1848 		device_initialize(&intf->dev);
1849 		pm_runtime_no_callbacks(&intf->dev);
1850 		dev_set_name(&intf->dev, "%d-%s:%d.%d",
1851 			dev->bus->busnum, dev->devpath,
1852 			configuration, alt->desc.bInterfaceNumber);
1853 	}
1854 	kfree(new_interfaces);
1855 
1856 	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1857 			      USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1858 			      NULL, 0, USB_CTRL_SET_TIMEOUT);
1859 	if (ret < 0 && cp) {
1860 		/*
1861 		 * All the old state is gone, so what else can we do?
1862 		 * The device is probably useless now anyway.
1863 		 */
1864 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1865 		for (i = 0; i < nintf; ++i) {
1866 			usb_disable_interface(dev, cp->interface[i], true);
1867 			put_device(&cp->interface[i]->dev);
1868 			cp->interface[i] = NULL;
1869 		}
1870 		cp = NULL;
1871 	}
1872 
1873 	dev->actconfig = cp;
1874 	mutex_unlock(hcd->bandwidth_mutex);
1875 
1876 	if (!cp) {
1877 		usb_set_device_state(dev, USB_STATE_ADDRESS);
1878 
1879 		/* Leave LPM disabled while the device is unconfigured. */
1880 		usb_autosuspend_device(dev);
1881 		return ret;
1882 	}
1883 	usb_set_device_state(dev, USB_STATE_CONFIGURED);
1884 
1885 	if (cp->string == NULL &&
1886 			!(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1887 		cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1888 
1889 	/* Now that the interfaces are installed, re-enable LPM. */
1890 	usb_unlocked_enable_lpm(dev);
1891 	/* Enable LTM if it was turned off by usb_disable_device. */
1892 	usb_enable_ltm(dev);
1893 
1894 	/* Now that all the interfaces are set up, register them
1895 	 * to trigger binding of drivers to interfaces.  probe()
1896 	 * routines may install different altsettings and may
1897 	 * claim() any interfaces not yet bound.  Many class drivers
1898 	 * need that: CDC, audio, video, etc.
1899 	 */
1900 	for (i = 0; i < nintf; ++i) {
1901 		struct usb_interface *intf = cp->interface[i];
1902 
1903 		dev_dbg(&dev->dev,
1904 			"adding %s (config #%d, interface %d)\n",
1905 			dev_name(&intf->dev), configuration,
1906 			intf->cur_altsetting->desc.bInterfaceNumber);
1907 		device_enable_async_suspend(&intf->dev);
1908 		ret = device_add(&intf->dev);
1909 		if (ret != 0) {
1910 			dev_err(&dev->dev, "device_add(%s) --> %d\n",
1911 				dev_name(&intf->dev), ret);
1912 			continue;
1913 		}
1914 		create_intf_ep_devs(intf);
1915 	}
1916 
1917 	usb_autosuspend_device(dev);
1918 	return 0;
1919 }
1920 
1921 static LIST_HEAD(set_config_list);
1922 static DEFINE_SPINLOCK(set_config_lock);
1923 
1924 struct set_config_request {
1925 	struct usb_device	*udev;
1926 	int			config;
1927 	struct work_struct	work;
1928 	struct list_head	node;
1929 };
1930 
1931 /* Worker routine for usb_driver_set_configuration() */
1932 static void driver_set_config_work(struct work_struct *work)
1933 {
1934 	struct set_config_request *req =
1935 		container_of(work, struct set_config_request, work);
1936 	struct usb_device *udev = req->udev;
1937 
1938 	usb_lock_device(udev);
1939 	spin_lock(&set_config_lock);
1940 	list_del(&req->node);
1941 	spin_unlock(&set_config_lock);
1942 
1943 	if (req->config >= -1)		/* Is req still valid? */
1944 		usb_set_configuration(udev, req->config);
1945 	usb_unlock_device(udev);
1946 	usb_put_dev(udev);
1947 	kfree(req);
1948 }
1949 
1950 /* Cancel pending Set-Config requests for a device whose configuration
1951  * was just changed
1952  */
1953 static void cancel_async_set_config(struct usb_device *udev)
1954 {
1955 	struct set_config_request *req;
1956 
1957 	spin_lock(&set_config_lock);
1958 	list_for_each_entry(req, &set_config_list, node) {
1959 		if (req->udev == udev)
1960 			req->config = -999;	/* Mark as cancelled */
1961 	}
1962 	spin_unlock(&set_config_lock);
1963 }
1964 
1965 /**
1966  * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1967  * @udev: the device whose configuration is being updated
1968  * @config: the configuration being chosen.
1969  * Context: In process context, must be able to sleep
1970  *
1971  * Device interface drivers are not allowed to change device configurations.
1972  * This is because changing configurations will destroy the interface the
1973  * driver is bound to and create new ones; it would be like a floppy-disk
1974  * driver telling the computer to replace the floppy-disk drive with a
1975  * tape drive!
1976  *
1977  * Still, in certain specialized circumstances the need may arise.  This
1978  * routine gets around the normal restrictions by using a work thread to
1979  * submit the change-config request.
1980  *
1981  * Return: 0 if the request was successfully queued, error code otherwise.
1982  * The caller has no way to know whether the queued request will eventually
1983  * succeed.
1984  */
1985 int usb_driver_set_configuration(struct usb_device *udev, int config)
1986 {
1987 	struct set_config_request *req;
1988 
1989 	req = kmalloc(sizeof(*req), GFP_KERNEL);
1990 	if (!req)
1991 		return -ENOMEM;
1992 	req->udev = udev;
1993 	req->config = config;
1994 	INIT_WORK(&req->work, driver_set_config_work);
1995 
1996 	spin_lock(&set_config_lock);
1997 	list_add(&req->node, &set_config_list);
1998 	spin_unlock(&set_config_lock);
1999 
2000 	usb_get_dev(udev);
2001 	schedule_work(&req->work);
2002 	return 0;
2003 }
2004 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2005