1 /* 2 * message.c - synchronous message handling 3 */ 4 5 #include <linux/pci.h> /* for scatterlist macros */ 6 #include <linux/usb.h> 7 #include <linux/module.h> 8 #include <linux/slab.h> 9 #include <linux/init.h> 10 #include <linux/mm.h> 11 #include <linux/timer.h> 12 #include <linux/ctype.h> 13 #include <linux/nls.h> 14 #include <linux/device.h> 15 #include <linux/scatterlist.h> 16 #include <linux/usb/quirks.h> 17 #include <linux/usb/hcd.h> /* for usbcore internals */ 18 #include <asm/byteorder.h> 19 20 #include "usb.h" 21 22 static void cancel_async_set_config(struct usb_device *udev); 23 24 struct api_context { 25 struct completion done; 26 int status; 27 }; 28 29 static void usb_api_blocking_completion(struct urb *urb) 30 { 31 struct api_context *ctx = urb->context; 32 33 ctx->status = urb->status; 34 complete(&ctx->done); 35 } 36 37 38 /* 39 * Starts urb and waits for completion or timeout. Note that this call 40 * is NOT interruptible. Many device driver i/o requests should be 41 * interruptible and therefore these drivers should implement their 42 * own interruptible routines. 43 */ 44 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length) 45 { 46 struct api_context ctx; 47 unsigned long expire; 48 int retval; 49 50 init_completion(&ctx.done); 51 urb->context = &ctx; 52 urb->actual_length = 0; 53 retval = usb_submit_urb(urb, GFP_NOIO); 54 if (unlikely(retval)) 55 goto out; 56 57 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT; 58 if (!wait_for_completion_timeout(&ctx.done, expire)) { 59 usb_kill_urb(urb); 60 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status); 61 62 dev_dbg(&urb->dev->dev, 63 "%s timed out on ep%d%s len=%u/%u\n", 64 current->comm, 65 usb_endpoint_num(&urb->ep->desc), 66 usb_urb_dir_in(urb) ? "in" : "out", 67 urb->actual_length, 68 urb->transfer_buffer_length); 69 } else 70 retval = ctx.status; 71 out: 72 if (actual_length) 73 *actual_length = urb->actual_length; 74 75 usb_free_urb(urb); 76 return retval; 77 } 78 79 /*-------------------------------------------------------------------*/ 80 /* returns status (negative) or length (positive) */ 81 static int usb_internal_control_msg(struct usb_device *usb_dev, 82 unsigned int pipe, 83 struct usb_ctrlrequest *cmd, 84 void *data, int len, int timeout) 85 { 86 struct urb *urb; 87 int retv; 88 int length; 89 90 urb = usb_alloc_urb(0, GFP_NOIO); 91 if (!urb) 92 return -ENOMEM; 93 94 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data, 95 len, usb_api_blocking_completion, NULL); 96 97 retv = usb_start_wait_urb(urb, timeout, &length); 98 if (retv < 0) 99 return retv; 100 else 101 return length; 102 } 103 104 /** 105 * usb_control_msg - Builds a control urb, sends it off and waits for completion 106 * @dev: pointer to the usb device to send the message to 107 * @pipe: endpoint "pipe" to send the message to 108 * @request: USB message request value 109 * @requesttype: USB message request type value 110 * @value: USB message value 111 * @index: USB message index value 112 * @data: pointer to the data to send 113 * @size: length in bytes of the data to send 114 * @timeout: time in msecs to wait for the message to complete before timing 115 * out (if 0 the wait is forever) 116 * 117 * Context: !in_interrupt () 118 * 119 * This function sends a simple control message to a specified endpoint and 120 * waits for the message to complete, or timeout. 121 * 122 * Don't use this function from within an interrupt context, like a bottom half 123 * handler. If you need an asynchronous message, or need to send a message 124 * from within interrupt context, use usb_submit_urb(). 125 * If a thread in your driver uses this call, make sure your disconnect() 126 * method can wait for it to complete. Since you don't have a handle on the 127 * URB used, you can't cancel the request. 128 * 129 * Return: If successful, the number of bytes transferred. Otherwise, a negative 130 * error number. 131 */ 132 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, 133 __u8 requesttype, __u16 value, __u16 index, void *data, 134 __u16 size, int timeout) 135 { 136 struct usb_ctrlrequest *dr; 137 int ret; 138 139 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO); 140 if (!dr) 141 return -ENOMEM; 142 143 dr->bRequestType = requesttype; 144 dr->bRequest = request; 145 dr->wValue = cpu_to_le16(value); 146 dr->wIndex = cpu_to_le16(index); 147 dr->wLength = cpu_to_le16(size); 148 149 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout); 150 151 kfree(dr); 152 153 return ret; 154 } 155 EXPORT_SYMBOL_GPL(usb_control_msg); 156 157 /** 158 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion 159 * @usb_dev: pointer to the usb device to send the message to 160 * @pipe: endpoint "pipe" to send the message to 161 * @data: pointer to the data to send 162 * @len: length in bytes of the data to send 163 * @actual_length: pointer to a location to put the actual length transferred 164 * in bytes 165 * @timeout: time in msecs to wait for the message to complete before 166 * timing out (if 0 the wait is forever) 167 * 168 * Context: !in_interrupt () 169 * 170 * This function sends a simple interrupt message to a specified endpoint and 171 * waits for the message to complete, or timeout. 172 * 173 * Don't use this function from within an interrupt context, like a bottom half 174 * handler. If you need an asynchronous message, or need to send a message 175 * from within interrupt context, use usb_submit_urb() If a thread in your 176 * driver uses this call, make sure your disconnect() method can wait for it to 177 * complete. Since you don't have a handle on the URB used, you can't cancel 178 * the request. 179 * 180 * Return: 181 * If successful, 0. Otherwise a negative error number. The number of actual 182 * bytes transferred will be stored in the @actual_length paramater. 183 */ 184 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 185 void *data, int len, int *actual_length, int timeout) 186 { 187 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout); 188 } 189 EXPORT_SYMBOL_GPL(usb_interrupt_msg); 190 191 /** 192 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion 193 * @usb_dev: pointer to the usb device to send the message to 194 * @pipe: endpoint "pipe" to send the message to 195 * @data: pointer to the data to send 196 * @len: length in bytes of the data to send 197 * @actual_length: pointer to a location to put the actual length transferred 198 * in bytes 199 * @timeout: time in msecs to wait for the message to complete before 200 * timing out (if 0 the wait is forever) 201 * 202 * Context: !in_interrupt () 203 * 204 * This function sends a simple bulk message to a specified endpoint 205 * and waits for the message to complete, or timeout. 206 * 207 * Don't use this function from within an interrupt context, like a bottom half 208 * handler. If you need an asynchronous message, or need to send a message 209 * from within interrupt context, use usb_submit_urb() If a thread in your 210 * driver uses this call, make sure your disconnect() method can wait for it to 211 * complete. Since you don't have a handle on the URB used, you can't cancel 212 * the request. 213 * 214 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl, 215 * users are forced to abuse this routine by using it to submit URBs for 216 * interrupt endpoints. We will take the liberty of creating an interrupt URB 217 * (with the default interval) if the target is an interrupt endpoint. 218 * 219 * Return: 220 * If successful, 0. Otherwise a negative error number. The number of actual 221 * bytes transferred will be stored in the @actual_length paramater. 222 * 223 */ 224 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 225 void *data, int len, int *actual_length, int timeout) 226 { 227 struct urb *urb; 228 struct usb_host_endpoint *ep; 229 230 ep = usb_pipe_endpoint(usb_dev, pipe); 231 if (!ep || len < 0) 232 return -EINVAL; 233 234 urb = usb_alloc_urb(0, GFP_KERNEL); 235 if (!urb) 236 return -ENOMEM; 237 238 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 239 USB_ENDPOINT_XFER_INT) { 240 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30); 241 usb_fill_int_urb(urb, usb_dev, pipe, data, len, 242 usb_api_blocking_completion, NULL, 243 ep->desc.bInterval); 244 } else 245 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len, 246 usb_api_blocking_completion, NULL); 247 248 return usb_start_wait_urb(urb, timeout, actual_length); 249 } 250 EXPORT_SYMBOL_GPL(usb_bulk_msg); 251 252 /*-------------------------------------------------------------------*/ 253 254 static void sg_clean(struct usb_sg_request *io) 255 { 256 if (io->urbs) { 257 while (io->entries--) 258 usb_free_urb(io->urbs[io->entries]); 259 kfree(io->urbs); 260 io->urbs = NULL; 261 } 262 io->dev = NULL; 263 } 264 265 static void sg_complete(struct urb *urb) 266 { 267 struct usb_sg_request *io = urb->context; 268 int status = urb->status; 269 270 spin_lock(&io->lock); 271 272 /* In 2.5 we require hcds' endpoint queues not to progress after fault 273 * reports, until the completion callback (this!) returns. That lets 274 * device driver code (like this routine) unlink queued urbs first, 275 * if it needs to, since the HC won't work on them at all. So it's 276 * not possible for page N+1 to overwrite page N, and so on. 277 * 278 * That's only for "hard" faults; "soft" faults (unlinks) sometimes 279 * complete before the HCD can get requests away from hardware, 280 * though never during cleanup after a hard fault. 281 */ 282 if (io->status 283 && (io->status != -ECONNRESET 284 || status != -ECONNRESET) 285 && urb->actual_length) { 286 dev_err(io->dev->bus->controller, 287 "dev %s ep%d%s scatterlist error %d/%d\n", 288 io->dev->devpath, 289 usb_endpoint_num(&urb->ep->desc), 290 usb_urb_dir_in(urb) ? "in" : "out", 291 status, io->status); 292 /* BUG (); */ 293 } 294 295 if (io->status == 0 && status && status != -ECONNRESET) { 296 int i, found, retval; 297 298 io->status = status; 299 300 /* the previous urbs, and this one, completed already. 301 * unlink pending urbs so they won't rx/tx bad data. 302 * careful: unlink can sometimes be synchronous... 303 */ 304 spin_unlock(&io->lock); 305 for (i = 0, found = 0; i < io->entries; i++) { 306 if (!io->urbs[i] || !io->urbs[i]->dev) 307 continue; 308 if (found) { 309 retval = usb_unlink_urb(io->urbs[i]); 310 if (retval != -EINPROGRESS && 311 retval != -ENODEV && 312 retval != -EBUSY && 313 retval != -EIDRM) 314 dev_err(&io->dev->dev, 315 "%s, unlink --> %d\n", 316 __func__, retval); 317 } else if (urb == io->urbs[i]) 318 found = 1; 319 } 320 spin_lock(&io->lock); 321 } 322 323 /* on the last completion, signal usb_sg_wait() */ 324 io->bytes += urb->actual_length; 325 io->count--; 326 if (!io->count) 327 complete(&io->complete); 328 329 spin_unlock(&io->lock); 330 } 331 332 333 /** 334 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request 335 * @io: request block being initialized. until usb_sg_wait() returns, 336 * treat this as a pointer to an opaque block of memory, 337 * @dev: the usb device that will send or receive the data 338 * @pipe: endpoint "pipe" used to transfer the data 339 * @period: polling rate for interrupt endpoints, in frames or 340 * (for high speed endpoints) microframes; ignored for bulk 341 * @sg: scatterlist entries 342 * @nents: how many entries in the scatterlist 343 * @length: how many bytes to send from the scatterlist, or zero to 344 * send every byte identified in the list. 345 * @mem_flags: SLAB_* flags affecting memory allocations in this call 346 * 347 * This initializes a scatter/gather request, allocating resources such as 348 * I/O mappings and urb memory (except maybe memory used by USB controller 349 * drivers). 350 * 351 * The request must be issued using usb_sg_wait(), which waits for the I/O to 352 * complete (or to be canceled) and then cleans up all resources allocated by 353 * usb_sg_init(). 354 * 355 * The request may be canceled with usb_sg_cancel(), either before or after 356 * usb_sg_wait() is called. 357 * 358 * Return: Zero for success, else a negative errno value. 359 */ 360 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev, 361 unsigned pipe, unsigned period, struct scatterlist *sg, 362 int nents, size_t length, gfp_t mem_flags) 363 { 364 int i; 365 int urb_flags; 366 int use_sg; 367 368 if (!io || !dev || !sg 369 || usb_pipecontrol(pipe) 370 || usb_pipeisoc(pipe) 371 || nents <= 0) 372 return -EINVAL; 373 374 spin_lock_init(&io->lock); 375 io->dev = dev; 376 io->pipe = pipe; 377 378 if (dev->bus->sg_tablesize > 0) { 379 use_sg = true; 380 io->entries = 1; 381 } else { 382 use_sg = false; 383 io->entries = nents; 384 } 385 386 /* initialize all the urbs we'll use */ 387 io->urbs = kmalloc(io->entries * sizeof(*io->urbs), mem_flags); 388 if (!io->urbs) 389 goto nomem; 390 391 urb_flags = URB_NO_INTERRUPT; 392 if (usb_pipein(pipe)) 393 urb_flags |= URB_SHORT_NOT_OK; 394 395 for_each_sg(sg, sg, io->entries, i) { 396 struct urb *urb; 397 unsigned len; 398 399 urb = usb_alloc_urb(0, mem_flags); 400 if (!urb) { 401 io->entries = i; 402 goto nomem; 403 } 404 io->urbs[i] = urb; 405 406 urb->dev = NULL; 407 urb->pipe = pipe; 408 urb->interval = period; 409 urb->transfer_flags = urb_flags; 410 urb->complete = sg_complete; 411 urb->context = io; 412 urb->sg = sg; 413 414 if (use_sg) { 415 /* There is no single transfer buffer */ 416 urb->transfer_buffer = NULL; 417 urb->num_sgs = nents; 418 419 /* A length of zero means transfer the whole sg list */ 420 len = length; 421 if (len == 0) { 422 struct scatterlist *sg2; 423 int j; 424 425 for_each_sg(sg, sg2, nents, j) 426 len += sg2->length; 427 } 428 } else { 429 /* 430 * Some systems can't use DMA; they use PIO instead. 431 * For their sakes, transfer_buffer is set whenever 432 * possible. 433 */ 434 if (!PageHighMem(sg_page(sg))) 435 urb->transfer_buffer = sg_virt(sg); 436 else 437 urb->transfer_buffer = NULL; 438 439 len = sg->length; 440 if (length) { 441 len = min_t(size_t, len, length); 442 length -= len; 443 if (length == 0) 444 io->entries = i + 1; 445 } 446 } 447 urb->transfer_buffer_length = len; 448 } 449 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT; 450 451 /* transaction state */ 452 io->count = io->entries; 453 io->status = 0; 454 io->bytes = 0; 455 init_completion(&io->complete); 456 return 0; 457 458 nomem: 459 sg_clean(io); 460 return -ENOMEM; 461 } 462 EXPORT_SYMBOL_GPL(usb_sg_init); 463 464 /** 465 * usb_sg_wait - synchronously execute scatter/gather request 466 * @io: request block handle, as initialized with usb_sg_init(). 467 * some fields become accessible when this call returns. 468 * Context: !in_interrupt () 469 * 470 * This function blocks until the specified I/O operation completes. It 471 * leverages the grouping of the related I/O requests to get good transfer 472 * rates, by queueing the requests. At higher speeds, such queuing can 473 * significantly improve USB throughput. 474 * 475 * There are three kinds of completion for this function. 476 * (1) success, where io->status is zero. The number of io->bytes 477 * transferred is as requested. 478 * (2) error, where io->status is a negative errno value. The number 479 * of io->bytes transferred before the error is usually less 480 * than requested, and can be nonzero. 481 * (3) cancellation, a type of error with status -ECONNRESET that 482 * is initiated by usb_sg_cancel(). 483 * 484 * When this function returns, all memory allocated through usb_sg_init() or 485 * this call will have been freed. The request block parameter may still be 486 * passed to usb_sg_cancel(), or it may be freed. It could also be 487 * reinitialized and then reused. 488 * 489 * Data Transfer Rates: 490 * 491 * Bulk transfers are valid for full or high speed endpoints. 492 * The best full speed data rate is 19 packets of 64 bytes each 493 * per frame, or 1216 bytes per millisecond. 494 * The best high speed data rate is 13 packets of 512 bytes each 495 * per microframe, or 52 KBytes per millisecond. 496 * 497 * The reason to use interrupt transfers through this API would most likely 498 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond 499 * could be transferred. That capability is less useful for low or full 500 * speed interrupt endpoints, which allow at most one packet per millisecond, 501 * of at most 8 or 64 bytes (respectively). 502 * 503 * It is not necessary to call this function to reserve bandwidth for devices 504 * under an xHCI host controller, as the bandwidth is reserved when the 505 * configuration or interface alt setting is selected. 506 */ 507 void usb_sg_wait(struct usb_sg_request *io) 508 { 509 int i; 510 int entries = io->entries; 511 512 /* queue the urbs. */ 513 spin_lock_irq(&io->lock); 514 i = 0; 515 while (i < entries && !io->status) { 516 int retval; 517 518 io->urbs[i]->dev = io->dev; 519 retval = usb_submit_urb(io->urbs[i], GFP_ATOMIC); 520 521 /* after we submit, let completions or cancelations fire; 522 * we handshake using io->status. 523 */ 524 spin_unlock_irq(&io->lock); 525 switch (retval) { 526 /* maybe we retrying will recover */ 527 case -ENXIO: /* hc didn't queue this one */ 528 case -EAGAIN: 529 case -ENOMEM: 530 retval = 0; 531 yield(); 532 break; 533 534 /* no error? continue immediately. 535 * 536 * NOTE: to work better with UHCI (4K I/O buffer may 537 * need 3K of TDs) it may be good to limit how many 538 * URBs are queued at once; N milliseconds? 539 */ 540 case 0: 541 ++i; 542 cpu_relax(); 543 break; 544 545 /* fail any uncompleted urbs */ 546 default: 547 io->urbs[i]->status = retval; 548 dev_dbg(&io->dev->dev, "%s, submit --> %d\n", 549 __func__, retval); 550 usb_sg_cancel(io); 551 } 552 spin_lock_irq(&io->lock); 553 if (retval && (io->status == 0 || io->status == -ECONNRESET)) 554 io->status = retval; 555 } 556 io->count -= entries - i; 557 if (io->count == 0) 558 complete(&io->complete); 559 spin_unlock_irq(&io->lock); 560 561 /* OK, yes, this could be packaged as non-blocking. 562 * So could the submit loop above ... but it's easier to 563 * solve neither problem than to solve both! 564 */ 565 wait_for_completion(&io->complete); 566 567 sg_clean(io); 568 } 569 EXPORT_SYMBOL_GPL(usb_sg_wait); 570 571 /** 572 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait() 573 * @io: request block, initialized with usb_sg_init() 574 * 575 * This stops a request after it has been started by usb_sg_wait(). 576 * It can also prevents one initialized by usb_sg_init() from starting, 577 * so that call just frees resources allocated to the request. 578 */ 579 void usb_sg_cancel(struct usb_sg_request *io) 580 { 581 unsigned long flags; 582 583 spin_lock_irqsave(&io->lock, flags); 584 585 /* shut everything down, if it didn't already */ 586 if (!io->status) { 587 int i; 588 589 io->status = -ECONNRESET; 590 spin_unlock(&io->lock); 591 for (i = 0; i < io->entries; i++) { 592 int retval; 593 594 if (!io->urbs[i]->dev) 595 continue; 596 retval = usb_unlink_urb(io->urbs[i]); 597 if (retval != -EINPROGRESS 598 && retval != -ENODEV 599 && retval != -EBUSY 600 && retval != -EIDRM) 601 dev_warn(&io->dev->dev, "%s, unlink --> %d\n", 602 __func__, retval); 603 } 604 spin_lock(&io->lock); 605 } 606 spin_unlock_irqrestore(&io->lock, flags); 607 } 608 EXPORT_SYMBOL_GPL(usb_sg_cancel); 609 610 /*-------------------------------------------------------------------*/ 611 612 /** 613 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request 614 * @dev: the device whose descriptor is being retrieved 615 * @type: the descriptor type (USB_DT_*) 616 * @index: the number of the descriptor 617 * @buf: where to put the descriptor 618 * @size: how big is "buf"? 619 * Context: !in_interrupt () 620 * 621 * Gets a USB descriptor. Convenience functions exist to simplify 622 * getting some types of descriptors. Use 623 * usb_get_string() or usb_string() for USB_DT_STRING. 624 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG) 625 * are part of the device structure. 626 * In addition to a number of USB-standard descriptors, some 627 * devices also use class-specific or vendor-specific descriptors. 628 * 629 * This call is synchronous, and may not be used in an interrupt context. 630 * 631 * Return: The number of bytes received on success, or else the status code 632 * returned by the underlying usb_control_msg() call. 633 */ 634 int usb_get_descriptor(struct usb_device *dev, unsigned char type, 635 unsigned char index, void *buf, int size) 636 { 637 int i; 638 int result; 639 640 memset(buf, 0, size); /* Make sure we parse really received data */ 641 642 for (i = 0; i < 3; ++i) { 643 /* retry on length 0 or error; some devices are flakey */ 644 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 645 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 646 (type << 8) + index, 0, buf, size, 647 USB_CTRL_GET_TIMEOUT); 648 if (result <= 0 && result != -ETIMEDOUT) 649 continue; 650 if (result > 1 && ((u8 *)buf)[1] != type) { 651 result = -ENODATA; 652 continue; 653 } 654 break; 655 } 656 return result; 657 } 658 EXPORT_SYMBOL_GPL(usb_get_descriptor); 659 660 /** 661 * usb_get_string - gets a string descriptor 662 * @dev: the device whose string descriptor is being retrieved 663 * @langid: code for language chosen (from string descriptor zero) 664 * @index: the number of the descriptor 665 * @buf: where to put the string 666 * @size: how big is "buf"? 667 * Context: !in_interrupt () 668 * 669 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character, 670 * in little-endian byte order). 671 * The usb_string() function will often be a convenient way to turn 672 * these strings into kernel-printable form. 673 * 674 * Strings may be referenced in device, configuration, interface, or other 675 * descriptors, and could also be used in vendor-specific ways. 676 * 677 * This call is synchronous, and may not be used in an interrupt context. 678 * 679 * Return: The number of bytes received on success, or else the status code 680 * returned by the underlying usb_control_msg() call. 681 */ 682 static int usb_get_string(struct usb_device *dev, unsigned short langid, 683 unsigned char index, void *buf, int size) 684 { 685 int i; 686 int result; 687 688 for (i = 0; i < 3; ++i) { 689 /* retry on length 0 or stall; some devices are flakey */ 690 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 691 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 692 (USB_DT_STRING << 8) + index, langid, buf, size, 693 USB_CTRL_GET_TIMEOUT); 694 if (result == 0 || result == -EPIPE) 695 continue; 696 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) { 697 result = -ENODATA; 698 continue; 699 } 700 break; 701 } 702 return result; 703 } 704 705 static void usb_try_string_workarounds(unsigned char *buf, int *length) 706 { 707 int newlength, oldlength = *length; 708 709 for (newlength = 2; newlength + 1 < oldlength; newlength += 2) 710 if (!isprint(buf[newlength]) || buf[newlength + 1]) 711 break; 712 713 if (newlength > 2) { 714 buf[0] = newlength; 715 *length = newlength; 716 } 717 } 718 719 static int usb_string_sub(struct usb_device *dev, unsigned int langid, 720 unsigned int index, unsigned char *buf) 721 { 722 int rc; 723 724 /* Try to read the string descriptor by asking for the maximum 725 * possible number of bytes */ 726 if (dev->quirks & USB_QUIRK_STRING_FETCH_255) 727 rc = -EIO; 728 else 729 rc = usb_get_string(dev, langid, index, buf, 255); 730 731 /* If that failed try to read the descriptor length, then 732 * ask for just that many bytes */ 733 if (rc < 2) { 734 rc = usb_get_string(dev, langid, index, buf, 2); 735 if (rc == 2) 736 rc = usb_get_string(dev, langid, index, buf, buf[0]); 737 } 738 739 if (rc >= 2) { 740 if (!buf[0] && !buf[1]) 741 usb_try_string_workarounds(buf, &rc); 742 743 /* There might be extra junk at the end of the descriptor */ 744 if (buf[0] < rc) 745 rc = buf[0]; 746 747 rc = rc - (rc & 1); /* force a multiple of two */ 748 } 749 750 if (rc < 2) 751 rc = (rc < 0 ? rc : -EINVAL); 752 753 return rc; 754 } 755 756 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf) 757 { 758 int err; 759 760 if (dev->have_langid) 761 return 0; 762 763 if (dev->string_langid < 0) 764 return -EPIPE; 765 766 err = usb_string_sub(dev, 0, 0, tbuf); 767 768 /* If the string was reported but is malformed, default to english 769 * (0x0409) */ 770 if (err == -ENODATA || (err > 0 && err < 4)) { 771 dev->string_langid = 0x0409; 772 dev->have_langid = 1; 773 dev_err(&dev->dev, 774 "string descriptor 0 malformed (err = %d), " 775 "defaulting to 0x%04x\n", 776 err, dev->string_langid); 777 return 0; 778 } 779 780 /* In case of all other errors, we assume the device is not able to 781 * deal with strings at all. Set string_langid to -1 in order to 782 * prevent any string to be retrieved from the device */ 783 if (err < 0) { 784 dev_err(&dev->dev, "string descriptor 0 read error: %d\n", 785 err); 786 dev->string_langid = -1; 787 return -EPIPE; 788 } 789 790 /* always use the first langid listed */ 791 dev->string_langid = tbuf[2] | (tbuf[3] << 8); 792 dev->have_langid = 1; 793 dev_dbg(&dev->dev, "default language 0x%04x\n", 794 dev->string_langid); 795 return 0; 796 } 797 798 /** 799 * usb_string - returns UTF-8 version of a string descriptor 800 * @dev: the device whose string descriptor is being retrieved 801 * @index: the number of the descriptor 802 * @buf: where to put the string 803 * @size: how big is "buf"? 804 * Context: !in_interrupt () 805 * 806 * This converts the UTF-16LE encoded strings returned by devices, from 807 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones 808 * that are more usable in most kernel contexts. Note that this function 809 * chooses strings in the first language supported by the device. 810 * 811 * This call is synchronous, and may not be used in an interrupt context. 812 * 813 * Return: length of the string (>= 0) or usb_control_msg status (< 0). 814 */ 815 int usb_string(struct usb_device *dev, int index, char *buf, size_t size) 816 { 817 unsigned char *tbuf; 818 int err; 819 820 if (dev->state == USB_STATE_SUSPENDED) 821 return -EHOSTUNREACH; 822 if (size <= 0 || !buf || !index) 823 return -EINVAL; 824 buf[0] = 0; 825 tbuf = kmalloc(256, GFP_NOIO); 826 if (!tbuf) 827 return -ENOMEM; 828 829 err = usb_get_langid(dev, tbuf); 830 if (err < 0) 831 goto errout; 832 833 err = usb_string_sub(dev, dev->string_langid, index, tbuf); 834 if (err < 0) 835 goto errout; 836 837 size--; /* leave room for trailing NULL char in output buffer */ 838 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2, 839 UTF16_LITTLE_ENDIAN, buf, size); 840 buf[err] = 0; 841 842 if (tbuf[1] != USB_DT_STRING) 843 dev_dbg(&dev->dev, 844 "wrong descriptor type %02x for string %d (\"%s\")\n", 845 tbuf[1], index, buf); 846 847 errout: 848 kfree(tbuf); 849 return err; 850 } 851 EXPORT_SYMBOL_GPL(usb_string); 852 853 /* one UTF-8-encoded 16-bit character has at most three bytes */ 854 #define MAX_USB_STRING_SIZE (127 * 3 + 1) 855 856 /** 857 * usb_cache_string - read a string descriptor and cache it for later use 858 * @udev: the device whose string descriptor is being read 859 * @index: the descriptor index 860 * 861 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string, 862 * or %NULL if the index is 0 or the string could not be read. 863 */ 864 char *usb_cache_string(struct usb_device *udev, int index) 865 { 866 char *buf; 867 char *smallbuf = NULL; 868 int len; 869 870 if (index <= 0) 871 return NULL; 872 873 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO); 874 if (buf) { 875 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE); 876 if (len > 0) { 877 smallbuf = kmalloc(++len, GFP_NOIO); 878 if (!smallbuf) 879 return buf; 880 memcpy(smallbuf, buf, len); 881 } 882 kfree(buf); 883 } 884 return smallbuf; 885 } 886 887 /* 888 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore) 889 * @dev: the device whose device descriptor is being updated 890 * @size: how much of the descriptor to read 891 * Context: !in_interrupt () 892 * 893 * Updates the copy of the device descriptor stored in the device structure, 894 * which dedicates space for this purpose. 895 * 896 * Not exported, only for use by the core. If drivers really want to read 897 * the device descriptor directly, they can call usb_get_descriptor() with 898 * type = USB_DT_DEVICE and index = 0. 899 * 900 * This call is synchronous, and may not be used in an interrupt context. 901 * 902 * Return: The number of bytes received on success, or else the status code 903 * returned by the underlying usb_control_msg() call. 904 */ 905 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size) 906 { 907 struct usb_device_descriptor *desc; 908 int ret; 909 910 if (size > sizeof(*desc)) 911 return -EINVAL; 912 desc = kmalloc(sizeof(*desc), GFP_NOIO); 913 if (!desc) 914 return -ENOMEM; 915 916 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size); 917 if (ret >= 0) 918 memcpy(&dev->descriptor, desc, size); 919 kfree(desc); 920 return ret; 921 } 922 923 /** 924 * usb_get_status - issues a GET_STATUS call 925 * @dev: the device whose status is being checked 926 * @type: USB_RECIP_*; for device, interface, or endpoint 927 * @target: zero (for device), else interface or endpoint number 928 * @data: pointer to two bytes of bitmap data 929 * Context: !in_interrupt () 930 * 931 * Returns device, interface, or endpoint status. Normally only of 932 * interest to see if the device is self powered, or has enabled the 933 * remote wakeup facility; or whether a bulk or interrupt endpoint 934 * is halted ("stalled"). 935 * 936 * Bits in these status bitmaps are set using the SET_FEATURE request, 937 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt() 938 * function should be used to clear halt ("stall") status. 939 * 940 * This call is synchronous, and may not be used in an interrupt context. 941 * 942 * Returns 0 and the status value in *@data (in host byte order) on success, 943 * or else the status code from the underlying usb_control_msg() call. 944 */ 945 int usb_get_status(struct usb_device *dev, int type, int target, void *data) 946 { 947 int ret; 948 __le16 *status = kmalloc(sizeof(*status), GFP_KERNEL); 949 950 if (!status) 951 return -ENOMEM; 952 953 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 954 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status, 955 sizeof(*status), USB_CTRL_GET_TIMEOUT); 956 957 if (ret == 2) { 958 *(u16 *) data = le16_to_cpu(*status); 959 ret = 0; 960 } else if (ret >= 0) { 961 ret = -EIO; 962 } 963 kfree(status); 964 return ret; 965 } 966 EXPORT_SYMBOL_GPL(usb_get_status); 967 968 /** 969 * usb_clear_halt - tells device to clear endpoint halt/stall condition 970 * @dev: device whose endpoint is halted 971 * @pipe: endpoint "pipe" being cleared 972 * Context: !in_interrupt () 973 * 974 * This is used to clear halt conditions for bulk and interrupt endpoints, 975 * as reported by URB completion status. Endpoints that are halted are 976 * sometimes referred to as being "stalled". Such endpoints are unable 977 * to transmit or receive data until the halt status is cleared. Any URBs 978 * queued for such an endpoint should normally be unlinked by the driver 979 * before clearing the halt condition, as described in sections 5.7.5 980 * and 5.8.5 of the USB 2.0 spec. 981 * 982 * Note that control and isochronous endpoints don't halt, although control 983 * endpoints report "protocol stall" (for unsupported requests) using the 984 * same status code used to report a true stall. 985 * 986 * This call is synchronous, and may not be used in an interrupt context. 987 * 988 * Return: Zero on success, or else the status code returned by the 989 * underlying usb_control_msg() call. 990 */ 991 int usb_clear_halt(struct usb_device *dev, int pipe) 992 { 993 int result; 994 int endp = usb_pipeendpoint(pipe); 995 996 if (usb_pipein(pipe)) 997 endp |= USB_DIR_IN; 998 999 /* we don't care if it wasn't halted first. in fact some devices 1000 * (like some ibmcam model 1 units) seem to expect hosts to make 1001 * this request for iso endpoints, which can't halt! 1002 */ 1003 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1004 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 1005 USB_ENDPOINT_HALT, endp, NULL, 0, 1006 USB_CTRL_SET_TIMEOUT); 1007 1008 /* don't un-halt or force to DATA0 except on success */ 1009 if (result < 0) 1010 return result; 1011 1012 /* NOTE: seems like Microsoft and Apple don't bother verifying 1013 * the clear "took", so some devices could lock up if you check... 1014 * such as the Hagiwara FlashGate DUAL. So we won't bother. 1015 * 1016 * NOTE: make sure the logic here doesn't diverge much from 1017 * the copy in usb-storage, for as long as we need two copies. 1018 */ 1019 1020 usb_reset_endpoint(dev, endp); 1021 1022 return 0; 1023 } 1024 EXPORT_SYMBOL_GPL(usb_clear_halt); 1025 1026 static int create_intf_ep_devs(struct usb_interface *intf) 1027 { 1028 struct usb_device *udev = interface_to_usbdev(intf); 1029 struct usb_host_interface *alt = intf->cur_altsetting; 1030 int i; 1031 1032 if (intf->ep_devs_created || intf->unregistering) 1033 return 0; 1034 1035 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1036 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev); 1037 intf->ep_devs_created = 1; 1038 return 0; 1039 } 1040 1041 static void remove_intf_ep_devs(struct usb_interface *intf) 1042 { 1043 struct usb_host_interface *alt = intf->cur_altsetting; 1044 int i; 1045 1046 if (!intf->ep_devs_created) 1047 return; 1048 1049 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1050 usb_remove_ep_devs(&alt->endpoint[i]); 1051 intf->ep_devs_created = 0; 1052 } 1053 1054 /** 1055 * usb_disable_endpoint -- Disable an endpoint by address 1056 * @dev: the device whose endpoint is being disabled 1057 * @epaddr: the endpoint's address. Endpoint number for output, 1058 * endpoint number + USB_DIR_IN for input 1059 * @reset_hardware: flag to erase any endpoint state stored in the 1060 * controller hardware 1061 * 1062 * Disables the endpoint for URB submission and nukes all pending URBs. 1063 * If @reset_hardware is set then also deallocates hcd/hardware state 1064 * for the endpoint. 1065 */ 1066 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr, 1067 bool reset_hardware) 1068 { 1069 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1070 struct usb_host_endpoint *ep; 1071 1072 if (!dev) 1073 return; 1074 1075 if (usb_endpoint_out(epaddr)) { 1076 ep = dev->ep_out[epnum]; 1077 if (reset_hardware) 1078 dev->ep_out[epnum] = NULL; 1079 } else { 1080 ep = dev->ep_in[epnum]; 1081 if (reset_hardware) 1082 dev->ep_in[epnum] = NULL; 1083 } 1084 if (ep) { 1085 ep->enabled = 0; 1086 usb_hcd_flush_endpoint(dev, ep); 1087 if (reset_hardware) 1088 usb_hcd_disable_endpoint(dev, ep); 1089 } 1090 } 1091 1092 /** 1093 * usb_reset_endpoint - Reset an endpoint's state. 1094 * @dev: the device whose endpoint is to be reset 1095 * @epaddr: the endpoint's address. Endpoint number for output, 1096 * endpoint number + USB_DIR_IN for input 1097 * 1098 * Resets any host-side endpoint state such as the toggle bit, 1099 * sequence number or current window. 1100 */ 1101 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr) 1102 { 1103 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1104 struct usb_host_endpoint *ep; 1105 1106 if (usb_endpoint_out(epaddr)) 1107 ep = dev->ep_out[epnum]; 1108 else 1109 ep = dev->ep_in[epnum]; 1110 if (ep) 1111 usb_hcd_reset_endpoint(dev, ep); 1112 } 1113 EXPORT_SYMBOL_GPL(usb_reset_endpoint); 1114 1115 1116 /** 1117 * usb_disable_interface -- Disable all endpoints for an interface 1118 * @dev: the device whose interface is being disabled 1119 * @intf: pointer to the interface descriptor 1120 * @reset_hardware: flag to erase any endpoint state stored in the 1121 * controller hardware 1122 * 1123 * Disables all the endpoints for the interface's current altsetting. 1124 */ 1125 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf, 1126 bool reset_hardware) 1127 { 1128 struct usb_host_interface *alt = intf->cur_altsetting; 1129 int i; 1130 1131 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 1132 usb_disable_endpoint(dev, 1133 alt->endpoint[i].desc.bEndpointAddress, 1134 reset_hardware); 1135 } 1136 } 1137 1138 /** 1139 * usb_disable_device - Disable all the endpoints for a USB device 1140 * @dev: the device whose endpoints are being disabled 1141 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. 1142 * 1143 * Disables all the device's endpoints, potentially including endpoint 0. 1144 * Deallocates hcd/hardware state for the endpoints (nuking all or most 1145 * pending urbs) and usbcore state for the interfaces, so that usbcore 1146 * must usb_set_configuration() before any interfaces could be used. 1147 */ 1148 void usb_disable_device(struct usb_device *dev, int skip_ep0) 1149 { 1150 int i; 1151 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1152 1153 /* getting rid of interfaces will disconnect 1154 * any drivers bound to them (a key side effect) 1155 */ 1156 if (dev->actconfig) { 1157 /* 1158 * FIXME: In order to avoid self-deadlock involving the 1159 * bandwidth_mutex, we have to mark all the interfaces 1160 * before unregistering any of them. 1161 */ 1162 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) 1163 dev->actconfig->interface[i]->unregistering = 1; 1164 1165 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1166 struct usb_interface *interface; 1167 1168 /* remove this interface if it has been registered */ 1169 interface = dev->actconfig->interface[i]; 1170 if (!device_is_registered(&interface->dev)) 1171 continue; 1172 dev_dbg(&dev->dev, "unregistering interface %s\n", 1173 dev_name(&interface->dev)); 1174 remove_intf_ep_devs(interface); 1175 device_del(&interface->dev); 1176 } 1177 1178 /* Now that the interfaces are unbound, nobody should 1179 * try to access them. 1180 */ 1181 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1182 put_device(&dev->actconfig->interface[i]->dev); 1183 dev->actconfig->interface[i] = NULL; 1184 } 1185 usb_unlocked_disable_lpm(dev); 1186 usb_disable_ltm(dev); 1187 dev->actconfig = NULL; 1188 if (dev->state == USB_STATE_CONFIGURED) 1189 usb_set_device_state(dev, USB_STATE_ADDRESS); 1190 } 1191 1192 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__, 1193 skip_ep0 ? "non-ep0" : "all"); 1194 if (hcd->driver->check_bandwidth) { 1195 /* First pass: Cancel URBs, leave endpoint pointers intact. */ 1196 for (i = skip_ep0; i < 16; ++i) { 1197 usb_disable_endpoint(dev, i, false); 1198 usb_disable_endpoint(dev, i + USB_DIR_IN, false); 1199 } 1200 /* Remove endpoints from the host controller internal state */ 1201 mutex_lock(hcd->bandwidth_mutex); 1202 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); 1203 mutex_unlock(hcd->bandwidth_mutex); 1204 /* Second pass: remove endpoint pointers */ 1205 } 1206 for (i = skip_ep0; i < 16; ++i) { 1207 usb_disable_endpoint(dev, i, true); 1208 usb_disable_endpoint(dev, i + USB_DIR_IN, true); 1209 } 1210 } 1211 1212 /** 1213 * usb_enable_endpoint - Enable an endpoint for USB communications 1214 * @dev: the device whose interface is being enabled 1215 * @ep: the endpoint 1216 * @reset_ep: flag to reset the endpoint state 1217 * 1218 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers. 1219 * For control endpoints, both the input and output sides are handled. 1220 */ 1221 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep, 1222 bool reset_ep) 1223 { 1224 int epnum = usb_endpoint_num(&ep->desc); 1225 int is_out = usb_endpoint_dir_out(&ep->desc); 1226 int is_control = usb_endpoint_xfer_control(&ep->desc); 1227 1228 if (reset_ep) 1229 usb_hcd_reset_endpoint(dev, ep); 1230 if (is_out || is_control) 1231 dev->ep_out[epnum] = ep; 1232 if (!is_out || is_control) 1233 dev->ep_in[epnum] = ep; 1234 ep->enabled = 1; 1235 } 1236 1237 /** 1238 * usb_enable_interface - Enable all the endpoints for an interface 1239 * @dev: the device whose interface is being enabled 1240 * @intf: pointer to the interface descriptor 1241 * @reset_eps: flag to reset the endpoints' state 1242 * 1243 * Enables all the endpoints for the interface's current altsetting. 1244 */ 1245 void usb_enable_interface(struct usb_device *dev, 1246 struct usb_interface *intf, bool reset_eps) 1247 { 1248 struct usb_host_interface *alt = intf->cur_altsetting; 1249 int i; 1250 1251 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1252 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps); 1253 } 1254 1255 /** 1256 * usb_set_interface - Makes a particular alternate setting be current 1257 * @dev: the device whose interface is being updated 1258 * @interface: the interface being updated 1259 * @alternate: the setting being chosen. 1260 * Context: !in_interrupt () 1261 * 1262 * This is used to enable data transfers on interfaces that may not 1263 * be enabled by default. Not all devices support such configurability. 1264 * Only the driver bound to an interface may change its setting. 1265 * 1266 * Within any given configuration, each interface may have several 1267 * alternative settings. These are often used to control levels of 1268 * bandwidth consumption. For example, the default setting for a high 1269 * speed interrupt endpoint may not send more than 64 bytes per microframe, 1270 * while interrupt transfers of up to 3KBytes per microframe are legal. 1271 * Also, isochronous endpoints may never be part of an 1272 * interface's default setting. To access such bandwidth, alternate 1273 * interface settings must be made current. 1274 * 1275 * Note that in the Linux USB subsystem, bandwidth associated with 1276 * an endpoint in a given alternate setting is not reserved until an URB 1277 * is submitted that needs that bandwidth. Some other operating systems 1278 * allocate bandwidth early, when a configuration is chosen. 1279 * 1280 * This call is synchronous, and may not be used in an interrupt context. 1281 * Also, drivers must not change altsettings while urbs are scheduled for 1282 * endpoints in that interface; all such urbs must first be completed 1283 * (perhaps forced by unlinking). 1284 * 1285 * Return: Zero on success, or else the status code returned by the 1286 * underlying usb_control_msg() call. 1287 */ 1288 int usb_set_interface(struct usb_device *dev, int interface, int alternate) 1289 { 1290 struct usb_interface *iface; 1291 struct usb_host_interface *alt; 1292 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1293 int ret; 1294 int manual = 0; 1295 unsigned int epaddr; 1296 unsigned int pipe; 1297 1298 if (dev->state == USB_STATE_SUSPENDED) 1299 return -EHOSTUNREACH; 1300 1301 iface = usb_ifnum_to_if(dev, interface); 1302 if (!iface) { 1303 dev_dbg(&dev->dev, "selecting invalid interface %d\n", 1304 interface); 1305 return -EINVAL; 1306 } 1307 if (iface->unregistering) 1308 return -ENODEV; 1309 1310 alt = usb_altnum_to_altsetting(iface, alternate); 1311 if (!alt) { 1312 dev_warn(&dev->dev, "selecting invalid altsetting %d\n", 1313 alternate); 1314 return -EINVAL; 1315 } 1316 1317 /* Make sure we have enough bandwidth for this alternate interface. 1318 * Remove the current alt setting and add the new alt setting. 1319 */ 1320 mutex_lock(hcd->bandwidth_mutex); 1321 /* Disable LPM, and re-enable it once the new alt setting is installed, 1322 * so that the xHCI driver can recalculate the U1/U2 timeouts. 1323 */ 1324 if (usb_disable_lpm(dev)) { 1325 dev_err(&iface->dev, "%s Failed to disable LPM\n.", __func__); 1326 mutex_unlock(hcd->bandwidth_mutex); 1327 return -ENOMEM; 1328 } 1329 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt); 1330 if (ret < 0) { 1331 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n", 1332 alternate); 1333 usb_enable_lpm(dev); 1334 mutex_unlock(hcd->bandwidth_mutex); 1335 return ret; 1336 } 1337 1338 if (dev->quirks & USB_QUIRK_NO_SET_INTF) 1339 ret = -EPIPE; 1340 else 1341 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1342 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE, 1343 alternate, interface, NULL, 0, 5000); 1344 1345 /* 9.4.10 says devices don't need this and are free to STALL the 1346 * request if the interface only has one alternate setting. 1347 */ 1348 if (ret == -EPIPE && iface->num_altsetting == 1) { 1349 dev_dbg(&dev->dev, 1350 "manual set_interface for iface %d, alt %d\n", 1351 interface, alternate); 1352 manual = 1; 1353 } else if (ret < 0) { 1354 /* Re-instate the old alt setting */ 1355 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting); 1356 usb_enable_lpm(dev); 1357 mutex_unlock(hcd->bandwidth_mutex); 1358 return ret; 1359 } 1360 mutex_unlock(hcd->bandwidth_mutex); 1361 1362 /* FIXME drivers shouldn't need to replicate/bugfix the logic here 1363 * when they implement async or easily-killable versions of this or 1364 * other "should-be-internal" functions (like clear_halt). 1365 * should hcd+usbcore postprocess control requests? 1366 */ 1367 1368 /* prevent submissions using previous endpoint settings */ 1369 if (iface->cur_altsetting != alt) { 1370 remove_intf_ep_devs(iface); 1371 usb_remove_sysfs_intf_files(iface); 1372 } 1373 usb_disable_interface(dev, iface, true); 1374 1375 iface->cur_altsetting = alt; 1376 1377 /* Now that the interface is installed, re-enable LPM. */ 1378 usb_unlocked_enable_lpm(dev); 1379 1380 /* If the interface only has one altsetting and the device didn't 1381 * accept the request, we attempt to carry out the equivalent action 1382 * by manually clearing the HALT feature for each endpoint in the 1383 * new altsetting. 1384 */ 1385 if (manual) { 1386 int i; 1387 1388 for (i = 0; i < alt->desc.bNumEndpoints; i++) { 1389 epaddr = alt->endpoint[i].desc.bEndpointAddress; 1390 pipe = __create_pipe(dev, 1391 USB_ENDPOINT_NUMBER_MASK & epaddr) | 1392 (usb_endpoint_out(epaddr) ? 1393 USB_DIR_OUT : USB_DIR_IN); 1394 1395 usb_clear_halt(dev, pipe); 1396 } 1397 } 1398 1399 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting 1400 * 1401 * Note: 1402 * Despite EP0 is always present in all interfaces/AS, the list of 1403 * endpoints from the descriptor does not contain EP0. Due to its 1404 * omnipresence one might expect EP0 being considered "affected" by 1405 * any SetInterface request and hence assume toggles need to be reset. 1406 * However, EP0 toggles are re-synced for every individual transfer 1407 * during the SETUP stage - hence EP0 toggles are "don't care" here. 1408 * (Likewise, EP0 never "halts" on well designed devices.) 1409 */ 1410 usb_enable_interface(dev, iface, true); 1411 if (device_is_registered(&iface->dev)) { 1412 usb_create_sysfs_intf_files(iface); 1413 create_intf_ep_devs(iface); 1414 } 1415 return 0; 1416 } 1417 EXPORT_SYMBOL_GPL(usb_set_interface); 1418 1419 /** 1420 * usb_reset_configuration - lightweight device reset 1421 * @dev: the device whose configuration is being reset 1422 * 1423 * This issues a standard SET_CONFIGURATION request to the device using 1424 * the current configuration. The effect is to reset most USB-related 1425 * state in the device, including interface altsettings (reset to zero), 1426 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt 1427 * endpoints). Other usbcore state is unchanged, including bindings of 1428 * usb device drivers to interfaces. 1429 * 1430 * Because this affects multiple interfaces, avoid using this with composite 1431 * (multi-interface) devices. Instead, the driver for each interface may 1432 * use usb_set_interface() on the interfaces it claims. Be careful though; 1433 * some devices don't support the SET_INTERFACE request, and others won't 1434 * reset all the interface state (notably endpoint state). Resetting the whole 1435 * configuration would affect other drivers' interfaces. 1436 * 1437 * The caller must own the device lock. 1438 * 1439 * Return: Zero on success, else a negative error code. 1440 */ 1441 int usb_reset_configuration(struct usb_device *dev) 1442 { 1443 int i, retval; 1444 struct usb_host_config *config; 1445 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1446 1447 if (dev->state == USB_STATE_SUSPENDED) 1448 return -EHOSTUNREACH; 1449 1450 /* caller must have locked the device and must own 1451 * the usb bus readlock (so driver bindings are stable); 1452 * calls during probe() are fine 1453 */ 1454 1455 for (i = 1; i < 16; ++i) { 1456 usb_disable_endpoint(dev, i, true); 1457 usb_disable_endpoint(dev, i + USB_DIR_IN, true); 1458 } 1459 1460 config = dev->actconfig; 1461 retval = 0; 1462 mutex_lock(hcd->bandwidth_mutex); 1463 /* Disable LPM, and re-enable it once the configuration is reset, so 1464 * that the xHCI driver can recalculate the U1/U2 timeouts. 1465 */ 1466 if (usb_disable_lpm(dev)) { 1467 dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__); 1468 mutex_unlock(hcd->bandwidth_mutex); 1469 return -ENOMEM; 1470 } 1471 /* Make sure we have enough bandwidth for each alternate setting 0 */ 1472 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1473 struct usb_interface *intf = config->interface[i]; 1474 struct usb_host_interface *alt; 1475 1476 alt = usb_altnum_to_altsetting(intf, 0); 1477 if (!alt) 1478 alt = &intf->altsetting[0]; 1479 if (alt != intf->cur_altsetting) 1480 retval = usb_hcd_alloc_bandwidth(dev, NULL, 1481 intf->cur_altsetting, alt); 1482 if (retval < 0) 1483 break; 1484 } 1485 /* If not, reinstate the old alternate settings */ 1486 if (retval < 0) { 1487 reset_old_alts: 1488 for (i--; i >= 0; i--) { 1489 struct usb_interface *intf = config->interface[i]; 1490 struct usb_host_interface *alt; 1491 1492 alt = usb_altnum_to_altsetting(intf, 0); 1493 if (!alt) 1494 alt = &intf->altsetting[0]; 1495 if (alt != intf->cur_altsetting) 1496 usb_hcd_alloc_bandwidth(dev, NULL, 1497 alt, intf->cur_altsetting); 1498 } 1499 usb_enable_lpm(dev); 1500 mutex_unlock(hcd->bandwidth_mutex); 1501 return retval; 1502 } 1503 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1504 USB_REQ_SET_CONFIGURATION, 0, 1505 config->desc.bConfigurationValue, 0, 1506 NULL, 0, USB_CTRL_SET_TIMEOUT); 1507 if (retval < 0) 1508 goto reset_old_alts; 1509 mutex_unlock(hcd->bandwidth_mutex); 1510 1511 /* re-init hc/hcd interface/endpoint state */ 1512 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1513 struct usb_interface *intf = config->interface[i]; 1514 struct usb_host_interface *alt; 1515 1516 alt = usb_altnum_to_altsetting(intf, 0); 1517 1518 /* No altsetting 0? We'll assume the first altsetting. 1519 * We could use a GetInterface call, but if a device is 1520 * so non-compliant that it doesn't have altsetting 0 1521 * then I wouldn't trust its reply anyway. 1522 */ 1523 if (!alt) 1524 alt = &intf->altsetting[0]; 1525 1526 if (alt != intf->cur_altsetting) { 1527 remove_intf_ep_devs(intf); 1528 usb_remove_sysfs_intf_files(intf); 1529 } 1530 intf->cur_altsetting = alt; 1531 usb_enable_interface(dev, intf, true); 1532 if (device_is_registered(&intf->dev)) { 1533 usb_create_sysfs_intf_files(intf); 1534 create_intf_ep_devs(intf); 1535 } 1536 } 1537 /* Now that the interfaces are installed, re-enable LPM. */ 1538 usb_unlocked_enable_lpm(dev); 1539 return 0; 1540 } 1541 EXPORT_SYMBOL_GPL(usb_reset_configuration); 1542 1543 static void usb_release_interface(struct device *dev) 1544 { 1545 struct usb_interface *intf = to_usb_interface(dev); 1546 struct usb_interface_cache *intfc = 1547 altsetting_to_usb_interface_cache(intf->altsetting); 1548 1549 kref_put(&intfc->ref, usb_release_interface_cache); 1550 kfree(intf); 1551 } 1552 1553 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env) 1554 { 1555 struct usb_device *usb_dev; 1556 struct usb_interface *intf; 1557 struct usb_host_interface *alt; 1558 1559 intf = to_usb_interface(dev); 1560 usb_dev = interface_to_usbdev(intf); 1561 alt = intf->cur_altsetting; 1562 1563 if (add_uevent_var(env, "INTERFACE=%d/%d/%d", 1564 alt->desc.bInterfaceClass, 1565 alt->desc.bInterfaceSubClass, 1566 alt->desc.bInterfaceProtocol)) 1567 return -ENOMEM; 1568 1569 if (add_uevent_var(env, 1570 "MODALIAS=usb:" 1571 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X", 1572 le16_to_cpu(usb_dev->descriptor.idVendor), 1573 le16_to_cpu(usb_dev->descriptor.idProduct), 1574 le16_to_cpu(usb_dev->descriptor.bcdDevice), 1575 usb_dev->descriptor.bDeviceClass, 1576 usb_dev->descriptor.bDeviceSubClass, 1577 usb_dev->descriptor.bDeviceProtocol, 1578 alt->desc.bInterfaceClass, 1579 alt->desc.bInterfaceSubClass, 1580 alt->desc.bInterfaceProtocol, 1581 alt->desc.bInterfaceNumber)) 1582 return -ENOMEM; 1583 1584 return 0; 1585 } 1586 1587 struct device_type usb_if_device_type = { 1588 .name = "usb_interface", 1589 .release = usb_release_interface, 1590 .uevent = usb_if_uevent, 1591 }; 1592 1593 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev, 1594 struct usb_host_config *config, 1595 u8 inum) 1596 { 1597 struct usb_interface_assoc_descriptor *retval = NULL; 1598 struct usb_interface_assoc_descriptor *intf_assoc; 1599 int first_intf; 1600 int last_intf; 1601 int i; 1602 1603 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) { 1604 intf_assoc = config->intf_assoc[i]; 1605 if (intf_assoc->bInterfaceCount == 0) 1606 continue; 1607 1608 first_intf = intf_assoc->bFirstInterface; 1609 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1); 1610 if (inum >= first_intf && inum <= last_intf) { 1611 if (!retval) 1612 retval = intf_assoc; 1613 else 1614 dev_err(&dev->dev, "Interface #%d referenced" 1615 " by multiple IADs\n", inum); 1616 } 1617 } 1618 1619 return retval; 1620 } 1621 1622 1623 /* 1624 * Internal function to queue a device reset 1625 * 1626 * This is initialized into the workstruct in 'struct 1627 * usb_device->reset_ws' that is launched by 1628 * message.c:usb_set_configuration() when initializing each 'struct 1629 * usb_interface'. 1630 * 1631 * It is safe to get the USB device without reference counts because 1632 * the life cycle of @iface is bound to the life cycle of @udev. Then, 1633 * this function will be ran only if @iface is alive (and before 1634 * freeing it any scheduled instances of it will have been cancelled). 1635 * 1636 * We need to set a flag (usb_dev->reset_running) because when we call 1637 * the reset, the interfaces might be unbound. The current interface 1638 * cannot try to remove the queued work as it would cause a deadlock 1639 * (you cannot remove your work from within your executing 1640 * workqueue). This flag lets it know, so that 1641 * usb_cancel_queued_reset() doesn't try to do it. 1642 * 1643 * See usb_queue_reset_device() for more details 1644 */ 1645 static void __usb_queue_reset_device(struct work_struct *ws) 1646 { 1647 int rc; 1648 struct usb_interface *iface = 1649 container_of(ws, struct usb_interface, reset_ws); 1650 struct usb_device *udev = interface_to_usbdev(iface); 1651 1652 rc = usb_lock_device_for_reset(udev, iface); 1653 if (rc >= 0) { 1654 iface->reset_running = 1; 1655 usb_reset_device(udev); 1656 iface->reset_running = 0; 1657 usb_unlock_device(udev); 1658 } 1659 } 1660 1661 1662 /* 1663 * usb_set_configuration - Makes a particular device setting be current 1664 * @dev: the device whose configuration is being updated 1665 * @configuration: the configuration being chosen. 1666 * Context: !in_interrupt(), caller owns the device lock 1667 * 1668 * This is used to enable non-default device modes. Not all devices 1669 * use this kind of configurability; many devices only have one 1670 * configuration. 1671 * 1672 * @configuration is the value of the configuration to be installed. 1673 * According to the USB spec (e.g. section 9.1.1.5), configuration values 1674 * must be non-zero; a value of zero indicates that the device in 1675 * unconfigured. However some devices erroneously use 0 as one of their 1676 * configuration values. To help manage such devices, this routine will 1677 * accept @configuration = -1 as indicating the device should be put in 1678 * an unconfigured state. 1679 * 1680 * USB device configurations may affect Linux interoperability, 1681 * power consumption and the functionality available. For example, 1682 * the default configuration is limited to using 100mA of bus power, 1683 * so that when certain device functionality requires more power, 1684 * and the device is bus powered, that functionality should be in some 1685 * non-default device configuration. Other device modes may also be 1686 * reflected as configuration options, such as whether two ISDN 1687 * channels are available independently; and choosing between open 1688 * standard device protocols (like CDC) or proprietary ones. 1689 * 1690 * Note that a non-authorized device (dev->authorized == 0) will only 1691 * be put in unconfigured mode. 1692 * 1693 * Note that USB has an additional level of device configurability, 1694 * associated with interfaces. That configurability is accessed using 1695 * usb_set_interface(). 1696 * 1697 * This call is synchronous. The calling context must be able to sleep, 1698 * must own the device lock, and must not hold the driver model's USB 1699 * bus mutex; usb interface driver probe() methods cannot use this routine. 1700 * 1701 * Returns zero on success, or else the status code returned by the 1702 * underlying call that failed. On successful completion, each interface 1703 * in the original device configuration has been destroyed, and each one 1704 * in the new configuration has been probed by all relevant usb device 1705 * drivers currently known to the kernel. 1706 */ 1707 int usb_set_configuration(struct usb_device *dev, int configuration) 1708 { 1709 int i, ret; 1710 struct usb_host_config *cp = NULL; 1711 struct usb_interface **new_interfaces = NULL; 1712 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1713 int n, nintf; 1714 1715 if (dev->authorized == 0 || configuration == -1) 1716 configuration = 0; 1717 else { 1718 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) { 1719 if (dev->config[i].desc.bConfigurationValue == 1720 configuration) { 1721 cp = &dev->config[i]; 1722 break; 1723 } 1724 } 1725 } 1726 if ((!cp && configuration != 0)) 1727 return -EINVAL; 1728 1729 /* The USB spec says configuration 0 means unconfigured. 1730 * But if a device includes a configuration numbered 0, 1731 * we will accept it as a correctly configured state. 1732 * Use -1 if you really want to unconfigure the device. 1733 */ 1734 if (cp && configuration == 0) 1735 dev_warn(&dev->dev, "config 0 descriptor??\n"); 1736 1737 /* Allocate memory for new interfaces before doing anything else, 1738 * so that if we run out then nothing will have changed. */ 1739 n = nintf = 0; 1740 if (cp) { 1741 nintf = cp->desc.bNumInterfaces; 1742 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces), 1743 GFP_NOIO); 1744 if (!new_interfaces) { 1745 dev_err(&dev->dev, "Out of memory\n"); 1746 return -ENOMEM; 1747 } 1748 1749 for (; n < nintf; ++n) { 1750 new_interfaces[n] = kzalloc( 1751 sizeof(struct usb_interface), 1752 GFP_NOIO); 1753 if (!new_interfaces[n]) { 1754 dev_err(&dev->dev, "Out of memory\n"); 1755 ret = -ENOMEM; 1756 free_interfaces: 1757 while (--n >= 0) 1758 kfree(new_interfaces[n]); 1759 kfree(new_interfaces); 1760 return ret; 1761 } 1762 } 1763 1764 i = dev->bus_mA - usb_get_max_power(dev, cp); 1765 if (i < 0) 1766 dev_warn(&dev->dev, "new config #%d exceeds power " 1767 "limit by %dmA\n", 1768 configuration, -i); 1769 } 1770 1771 /* Wake up the device so we can send it the Set-Config request */ 1772 ret = usb_autoresume_device(dev); 1773 if (ret) 1774 goto free_interfaces; 1775 1776 /* if it's already configured, clear out old state first. 1777 * getting rid of old interfaces means unbinding their drivers. 1778 */ 1779 if (dev->state != USB_STATE_ADDRESS) 1780 usb_disable_device(dev, 1); /* Skip ep0 */ 1781 1782 /* Get rid of pending async Set-Config requests for this device */ 1783 cancel_async_set_config(dev); 1784 1785 /* Make sure we have bandwidth (and available HCD resources) for this 1786 * configuration. Remove endpoints from the schedule if we're dropping 1787 * this configuration to set configuration 0. After this point, the 1788 * host controller will not allow submissions to dropped endpoints. If 1789 * this call fails, the device state is unchanged. 1790 */ 1791 mutex_lock(hcd->bandwidth_mutex); 1792 /* Disable LPM, and re-enable it once the new configuration is 1793 * installed, so that the xHCI driver can recalculate the U1/U2 1794 * timeouts. 1795 */ 1796 if (dev->actconfig && usb_disable_lpm(dev)) { 1797 dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__); 1798 mutex_unlock(hcd->bandwidth_mutex); 1799 ret = -ENOMEM; 1800 goto free_interfaces; 1801 } 1802 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL); 1803 if (ret < 0) { 1804 if (dev->actconfig) 1805 usb_enable_lpm(dev); 1806 mutex_unlock(hcd->bandwidth_mutex); 1807 usb_autosuspend_device(dev); 1808 goto free_interfaces; 1809 } 1810 1811 /* 1812 * Initialize the new interface structures and the 1813 * hc/hcd/usbcore interface/endpoint state. 1814 */ 1815 for (i = 0; i < nintf; ++i) { 1816 struct usb_interface_cache *intfc; 1817 struct usb_interface *intf; 1818 struct usb_host_interface *alt; 1819 1820 cp->interface[i] = intf = new_interfaces[i]; 1821 intfc = cp->intf_cache[i]; 1822 intf->altsetting = intfc->altsetting; 1823 intf->num_altsetting = intfc->num_altsetting; 1824 kref_get(&intfc->ref); 1825 1826 alt = usb_altnum_to_altsetting(intf, 0); 1827 1828 /* No altsetting 0? We'll assume the first altsetting. 1829 * We could use a GetInterface call, but if a device is 1830 * so non-compliant that it doesn't have altsetting 0 1831 * then I wouldn't trust its reply anyway. 1832 */ 1833 if (!alt) 1834 alt = &intf->altsetting[0]; 1835 1836 intf->intf_assoc = 1837 find_iad(dev, cp, alt->desc.bInterfaceNumber); 1838 intf->cur_altsetting = alt; 1839 usb_enable_interface(dev, intf, true); 1840 intf->dev.parent = &dev->dev; 1841 intf->dev.driver = NULL; 1842 intf->dev.bus = &usb_bus_type; 1843 intf->dev.type = &usb_if_device_type; 1844 intf->dev.groups = usb_interface_groups; 1845 intf->dev.dma_mask = dev->dev.dma_mask; 1846 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device); 1847 intf->minor = -1; 1848 device_initialize(&intf->dev); 1849 pm_runtime_no_callbacks(&intf->dev); 1850 dev_set_name(&intf->dev, "%d-%s:%d.%d", 1851 dev->bus->busnum, dev->devpath, 1852 configuration, alt->desc.bInterfaceNumber); 1853 } 1854 kfree(new_interfaces); 1855 1856 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1857 USB_REQ_SET_CONFIGURATION, 0, configuration, 0, 1858 NULL, 0, USB_CTRL_SET_TIMEOUT); 1859 if (ret < 0 && cp) { 1860 /* 1861 * All the old state is gone, so what else can we do? 1862 * The device is probably useless now anyway. 1863 */ 1864 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); 1865 for (i = 0; i < nintf; ++i) { 1866 usb_disable_interface(dev, cp->interface[i], true); 1867 put_device(&cp->interface[i]->dev); 1868 cp->interface[i] = NULL; 1869 } 1870 cp = NULL; 1871 } 1872 1873 dev->actconfig = cp; 1874 mutex_unlock(hcd->bandwidth_mutex); 1875 1876 if (!cp) { 1877 usb_set_device_state(dev, USB_STATE_ADDRESS); 1878 1879 /* Leave LPM disabled while the device is unconfigured. */ 1880 usb_autosuspend_device(dev); 1881 return ret; 1882 } 1883 usb_set_device_state(dev, USB_STATE_CONFIGURED); 1884 1885 if (cp->string == NULL && 1886 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS)) 1887 cp->string = usb_cache_string(dev, cp->desc.iConfiguration); 1888 1889 /* Now that the interfaces are installed, re-enable LPM. */ 1890 usb_unlocked_enable_lpm(dev); 1891 /* Enable LTM if it was turned off by usb_disable_device. */ 1892 usb_enable_ltm(dev); 1893 1894 /* Now that all the interfaces are set up, register them 1895 * to trigger binding of drivers to interfaces. probe() 1896 * routines may install different altsettings and may 1897 * claim() any interfaces not yet bound. Many class drivers 1898 * need that: CDC, audio, video, etc. 1899 */ 1900 for (i = 0; i < nintf; ++i) { 1901 struct usb_interface *intf = cp->interface[i]; 1902 1903 dev_dbg(&dev->dev, 1904 "adding %s (config #%d, interface %d)\n", 1905 dev_name(&intf->dev), configuration, 1906 intf->cur_altsetting->desc.bInterfaceNumber); 1907 device_enable_async_suspend(&intf->dev); 1908 ret = device_add(&intf->dev); 1909 if (ret != 0) { 1910 dev_err(&dev->dev, "device_add(%s) --> %d\n", 1911 dev_name(&intf->dev), ret); 1912 continue; 1913 } 1914 create_intf_ep_devs(intf); 1915 } 1916 1917 usb_autosuspend_device(dev); 1918 return 0; 1919 } 1920 1921 static LIST_HEAD(set_config_list); 1922 static DEFINE_SPINLOCK(set_config_lock); 1923 1924 struct set_config_request { 1925 struct usb_device *udev; 1926 int config; 1927 struct work_struct work; 1928 struct list_head node; 1929 }; 1930 1931 /* Worker routine for usb_driver_set_configuration() */ 1932 static void driver_set_config_work(struct work_struct *work) 1933 { 1934 struct set_config_request *req = 1935 container_of(work, struct set_config_request, work); 1936 struct usb_device *udev = req->udev; 1937 1938 usb_lock_device(udev); 1939 spin_lock(&set_config_lock); 1940 list_del(&req->node); 1941 spin_unlock(&set_config_lock); 1942 1943 if (req->config >= -1) /* Is req still valid? */ 1944 usb_set_configuration(udev, req->config); 1945 usb_unlock_device(udev); 1946 usb_put_dev(udev); 1947 kfree(req); 1948 } 1949 1950 /* Cancel pending Set-Config requests for a device whose configuration 1951 * was just changed 1952 */ 1953 static void cancel_async_set_config(struct usb_device *udev) 1954 { 1955 struct set_config_request *req; 1956 1957 spin_lock(&set_config_lock); 1958 list_for_each_entry(req, &set_config_list, node) { 1959 if (req->udev == udev) 1960 req->config = -999; /* Mark as cancelled */ 1961 } 1962 spin_unlock(&set_config_lock); 1963 } 1964 1965 /** 1966 * usb_driver_set_configuration - Provide a way for drivers to change device configurations 1967 * @udev: the device whose configuration is being updated 1968 * @config: the configuration being chosen. 1969 * Context: In process context, must be able to sleep 1970 * 1971 * Device interface drivers are not allowed to change device configurations. 1972 * This is because changing configurations will destroy the interface the 1973 * driver is bound to and create new ones; it would be like a floppy-disk 1974 * driver telling the computer to replace the floppy-disk drive with a 1975 * tape drive! 1976 * 1977 * Still, in certain specialized circumstances the need may arise. This 1978 * routine gets around the normal restrictions by using a work thread to 1979 * submit the change-config request. 1980 * 1981 * Return: 0 if the request was successfully queued, error code otherwise. 1982 * The caller has no way to know whether the queued request will eventually 1983 * succeed. 1984 */ 1985 int usb_driver_set_configuration(struct usb_device *udev, int config) 1986 { 1987 struct set_config_request *req; 1988 1989 req = kmalloc(sizeof(*req), GFP_KERNEL); 1990 if (!req) 1991 return -ENOMEM; 1992 req->udev = udev; 1993 req->config = config; 1994 INIT_WORK(&req->work, driver_set_config_work); 1995 1996 spin_lock(&set_config_lock); 1997 list_add(&req->node, &set_config_list); 1998 spin_unlock(&set_config_lock); 1999 2000 usb_get_dev(udev); 2001 schedule_work(&req->work); 2002 return 0; 2003 } 2004 EXPORT_SYMBOL_GPL(usb_driver_set_configuration); 2005