1 /* 2 * message.c - synchronous message handling 3 */ 4 5 #include <linux/pci.h> /* for scatterlist macros */ 6 #include <linux/usb.h> 7 #include <linux/module.h> 8 #include <linux/slab.h> 9 #include <linux/mm.h> 10 #include <linux/timer.h> 11 #include <linux/ctype.h> 12 #include <linux/nls.h> 13 #include <linux/device.h> 14 #include <linux/scatterlist.h> 15 #include <linux/usb/quirks.h> 16 #include <linux/usb/hcd.h> /* for usbcore internals */ 17 #include <asm/byteorder.h> 18 19 #include "usb.h" 20 21 static void cancel_async_set_config(struct usb_device *udev); 22 23 struct api_context { 24 struct completion done; 25 int status; 26 }; 27 28 static void usb_api_blocking_completion(struct urb *urb) 29 { 30 struct api_context *ctx = urb->context; 31 32 ctx->status = urb->status; 33 complete(&ctx->done); 34 } 35 36 37 /* 38 * Starts urb and waits for completion or timeout. Note that this call 39 * is NOT interruptible. Many device driver i/o requests should be 40 * interruptible and therefore these drivers should implement their 41 * own interruptible routines. 42 */ 43 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length) 44 { 45 struct api_context ctx; 46 unsigned long expire; 47 int retval; 48 49 init_completion(&ctx.done); 50 urb->context = &ctx; 51 urb->actual_length = 0; 52 retval = usb_submit_urb(urb, GFP_NOIO); 53 if (unlikely(retval)) 54 goto out; 55 56 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT; 57 if (!wait_for_completion_timeout(&ctx.done, expire)) { 58 usb_kill_urb(urb); 59 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status); 60 61 dev_dbg(&urb->dev->dev, 62 "%s timed out on ep%d%s len=%u/%u\n", 63 current->comm, 64 usb_endpoint_num(&urb->ep->desc), 65 usb_urb_dir_in(urb) ? "in" : "out", 66 urb->actual_length, 67 urb->transfer_buffer_length); 68 } else 69 retval = ctx.status; 70 out: 71 if (actual_length) 72 *actual_length = urb->actual_length; 73 74 usb_free_urb(urb); 75 return retval; 76 } 77 78 /*-------------------------------------------------------------------*/ 79 /* returns status (negative) or length (positive) */ 80 static int usb_internal_control_msg(struct usb_device *usb_dev, 81 unsigned int pipe, 82 struct usb_ctrlrequest *cmd, 83 void *data, int len, int timeout) 84 { 85 struct urb *urb; 86 int retv; 87 int length; 88 89 urb = usb_alloc_urb(0, GFP_NOIO); 90 if (!urb) 91 return -ENOMEM; 92 93 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data, 94 len, usb_api_blocking_completion, NULL); 95 96 retv = usb_start_wait_urb(urb, timeout, &length); 97 if (retv < 0) 98 return retv; 99 else 100 return length; 101 } 102 103 /** 104 * usb_control_msg - Builds a control urb, sends it off and waits for completion 105 * @dev: pointer to the usb device to send the message to 106 * @pipe: endpoint "pipe" to send the message to 107 * @request: USB message request value 108 * @requesttype: USB message request type value 109 * @value: USB message value 110 * @index: USB message index value 111 * @data: pointer to the data to send 112 * @size: length in bytes of the data to send 113 * @timeout: time in msecs to wait for the message to complete before timing 114 * out (if 0 the wait is forever) 115 * 116 * Context: !in_interrupt () 117 * 118 * This function sends a simple control message to a specified endpoint and 119 * waits for the message to complete, or timeout. 120 * 121 * Don't use this function from within an interrupt context, like a bottom half 122 * handler. If you need an asynchronous message, or need to send a message 123 * from within interrupt context, use usb_submit_urb(). 124 * If a thread in your driver uses this call, make sure your disconnect() 125 * method can wait for it to complete. Since you don't have a handle on the 126 * URB used, you can't cancel the request. 127 * 128 * Return: If successful, the number of bytes transferred. Otherwise, a negative 129 * error number. 130 */ 131 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, 132 __u8 requesttype, __u16 value, __u16 index, void *data, 133 __u16 size, int timeout) 134 { 135 struct usb_ctrlrequest *dr; 136 int ret; 137 138 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO); 139 if (!dr) 140 return -ENOMEM; 141 142 dr->bRequestType = requesttype; 143 dr->bRequest = request; 144 dr->wValue = cpu_to_le16(value); 145 dr->wIndex = cpu_to_le16(index); 146 dr->wLength = cpu_to_le16(size); 147 148 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout); 149 150 kfree(dr); 151 152 return ret; 153 } 154 EXPORT_SYMBOL_GPL(usb_control_msg); 155 156 /** 157 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion 158 * @usb_dev: pointer to the usb device to send the message to 159 * @pipe: endpoint "pipe" to send the message to 160 * @data: pointer to the data to send 161 * @len: length in bytes of the data to send 162 * @actual_length: pointer to a location to put the actual length transferred 163 * in bytes 164 * @timeout: time in msecs to wait for the message to complete before 165 * timing out (if 0 the wait is forever) 166 * 167 * Context: !in_interrupt () 168 * 169 * This function sends a simple interrupt message to a specified endpoint and 170 * waits for the message to complete, or timeout. 171 * 172 * Don't use this function from within an interrupt context, like a bottom half 173 * handler. If you need an asynchronous message, or need to send a message 174 * from within interrupt context, use usb_submit_urb() If a thread in your 175 * driver uses this call, make sure your disconnect() method can wait for it to 176 * complete. Since you don't have a handle on the URB used, you can't cancel 177 * the request. 178 * 179 * Return: 180 * If successful, 0. Otherwise a negative error number. The number of actual 181 * bytes transferred will be stored in the @actual_length parameter. 182 */ 183 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 184 void *data, int len, int *actual_length, int timeout) 185 { 186 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout); 187 } 188 EXPORT_SYMBOL_GPL(usb_interrupt_msg); 189 190 /** 191 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion 192 * @usb_dev: pointer to the usb device to send the message to 193 * @pipe: endpoint "pipe" to send the message to 194 * @data: pointer to the data to send 195 * @len: length in bytes of the data to send 196 * @actual_length: pointer to a location to put the actual length transferred 197 * in bytes 198 * @timeout: time in msecs to wait for the message to complete before 199 * timing out (if 0 the wait is forever) 200 * 201 * Context: !in_interrupt () 202 * 203 * This function sends a simple bulk message to a specified endpoint 204 * and waits for the message to complete, or timeout. 205 * 206 * Don't use this function from within an interrupt context, like a bottom half 207 * handler. If you need an asynchronous message, or need to send a message 208 * from within interrupt context, use usb_submit_urb() If a thread in your 209 * driver uses this call, make sure your disconnect() method can wait for it to 210 * complete. Since you don't have a handle on the URB used, you can't cancel 211 * the request. 212 * 213 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl, 214 * users are forced to abuse this routine by using it to submit URBs for 215 * interrupt endpoints. We will take the liberty of creating an interrupt URB 216 * (with the default interval) if the target is an interrupt endpoint. 217 * 218 * Return: 219 * If successful, 0. Otherwise a negative error number. The number of actual 220 * bytes transferred will be stored in the @actual_length parameter. 221 * 222 */ 223 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 224 void *data, int len, int *actual_length, int timeout) 225 { 226 struct urb *urb; 227 struct usb_host_endpoint *ep; 228 229 ep = usb_pipe_endpoint(usb_dev, pipe); 230 if (!ep || len < 0) 231 return -EINVAL; 232 233 urb = usb_alloc_urb(0, GFP_KERNEL); 234 if (!urb) 235 return -ENOMEM; 236 237 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 238 USB_ENDPOINT_XFER_INT) { 239 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30); 240 usb_fill_int_urb(urb, usb_dev, pipe, data, len, 241 usb_api_blocking_completion, NULL, 242 ep->desc.bInterval); 243 } else 244 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len, 245 usb_api_blocking_completion, NULL); 246 247 return usb_start_wait_urb(urb, timeout, actual_length); 248 } 249 EXPORT_SYMBOL_GPL(usb_bulk_msg); 250 251 /*-------------------------------------------------------------------*/ 252 253 static void sg_clean(struct usb_sg_request *io) 254 { 255 if (io->urbs) { 256 while (io->entries--) 257 usb_free_urb(io->urbs[io->entries]); 258 kfree(io->urbs); 259 io->urbs = NULL; 260 } 261 io->dev = NULL; 262 } 263 264 static void sg_complete(struct urb *urb) 265 { 266 struct usb_sg_request *io = urb->context; 267 int status = urb->status; 268 269 spin_lock(&io->lock); 270 271 /* In 2.5 we require hcds' endpoint queues not to progress after fault 272 * reports, until the completion callback (this!) returns. That lets 273 * device driver code (like this routine) unlink queued urbs first, 274 * if it needs to, since the HC won't work on them at all. So it's 275 * not possible for page N+1 to overwrite page N, and so on. 276 * 277 * That's only for "hard" faults; "soft" faults (unlinks) sometimes 278 * complete before the HCD can get requests away from hardware, 279 * though never during cleanup after a hard fault. 280 */ 281 if (io->status 282 && (io->status != -ECONNRESET 283 || status != -ECONNRESET) 284 && urb->actual_length) { 285 dev_err(io->dev->bus->controller, 286 "dev %s ep%d%s scatterlist error %d/%d\n", 287 io->dev->devpath, 288 usb_endpoint_num(&urb->ep->desc), 289 usb_urb_dir_in(urb) ? "in" : "out", 290 status, io->status); 291 /* BUG (); */ 292 } 293 294 if (io->status == 0 && status && status != -ECONNRESET) { 295 int i, found, retval; 296 297 io->status = status; 298 299 /* the previous urbs, and this one, completed already. 300 * unlink pending urbs so they won't rx/tx bad data. 301 * careful: unlink can sometimes be synchronous... 302 */ 303 spin_unlock(&io->lock); 304 for (i = 0, found = 0; i < io->entries; i++) { 305 if (!io->urbs[i] || !io->urbs[i]->dev) 306 continue; 307 if (found) { 308 retval = usb_unlink_urb(io->urbs[i]); 309 if (retval != -EINPROGRESS && 310 retval != -ENODEV && 311 retval != -EBUSY && 312 retval != -EIDRM) 313 dev_err(&io->dev->dev, 314 "%s, unlink --> %d\n", 315 __func__, retval); 316 } else if (urb == io->urbs[i]) 317 found = 1; 318 } 319 spin_lock(&io->lock); 320 } 321 322 /* on the last completion, signal usb_sg_wait() */ 323 io->bytes += urb->actual_length; 324 io->count--; 325 if (!io->count) 326 complete(&io->complete); 327 328 spin_unlock(&io->lock); 329 } 330 331 332 /** 333 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request 334 * @io: request block being initialized. until usb_sg_wait() returns, 335 * treat this as a pointer to an opaque block of memory, 336 * @dev: the usb device that will send or receive the data 337 * @pipe: endpoint "pipe" used to transfer the data 338 * @period: polling rate for interrupt endpoints, in frames or 339 * (for high speed endpoints) microframes; ignored for bulk 340 * @sg: scatterlist entries 341 * @nents: how many entries in the scatterlist 342 * @length: how many bytes to send from the scatterlist, or zero to 343 * send every byte identified in the list. 344 * @mem_flags: SLAB_* flags affecting memory allocations in this call 345 * 346 * This initializes a scatter/gather request, allocating resources such as 347 * I/O mappings and urb memory (except maybe memory used by USB controller 348 * drivers). 349 * 350 * The request must be issued using usb_sg_wait(), which waits for the I/O to 351 * complete (or to be canceled) and then cleans up all resources allocated by 352 * usb_sg_init(). 353 * 354 * The request may be canceled with usb_sg_cancel(), either before or after 355 * usb_sg_wait() is called. 356 * 357 * Return: Zero for success, else a negative errno value. 358 */ 359 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev, 360 unsigned pipe, unsigned period, struct scatterlist *sg, 361 int nents, size_t length, gfp_t mem_flags) 362 { 363 int i; 364 int urb_flags; 365 int use_sg; 366 367 if (!io || !dev || !sg 368 || usb_pipecontrol(pipe) 369 || usb_pipeisoc(pipe) 370 || nents <= 0) 371 return -EINVAL; 372 373 spin_lock_init(&io->lock); 374 io->dev = dev; 375 io->pipe = pipe; 376 377 if (dev->bus->sg_tablesize > 0) { 378 use_sg = true; 379 io->entries = 1; 380 } else { 381 use_sg = false; 382 io->entries = nents; 383 } 384 385 /* initialize all the urbs we'll use */ 386 io->urbs = kmalloc(io->entries * sizeof(*io->urbs), mem_flags); 387 if (!io->urbs) 388 goto nomem; 389 390 urb_flags = URB_NO_INTERRUPT; 391 if (usb_pipein(pipe)) 392 urb_flags |= URB_SHORT_NOT_OK; 393 394 for_each_sg(sg, sg, io->entries, i) { 395 struct urb *urb; 396 unsigned len; 397 398 urb = usb_alloc_urb(0, mem_flags); 399 if (!urb) { 400 io->entries = i; 401 goto nomem; 402 } 403 io->urbs[i] = urb; 404 405 urb->dev = NULL; 406 urb->pipe = pipe; 407 urb->interval = period; 408 urb->transfer_flags = urb_flags; 409 urb->complete = sg_complete; 410 urb->context = io; 411 urb->sg = sg; 412 413 if (use_sg) { 414 /* There is no single transfer buffer */ 415 urb->transfer_buffer = NULL; 416 urb->num_sgs = nents; 417 418 /* A length of zero means transfer the whole sg list */ 419 len = length; 420 if (len == 0) { 421 struct scatterlist *sg2; 422 int j; 423 424 for_each_sg(sg, sg2, nents, j) 425 len += sg2->length; 426 } 427 } else { 428 /* 429 * Some systems can't use DMA; they use PIO instead. 430 * For their sakes, transfer_buffer is set whenever 431 * possible. 432 */ 433 if (!PageHighMem(sg_page(sg))) 434 urb->transfer_buffer = sg_virt(sg); 435 else 436 urb->transfer_buffer = NULL; 437 438 len = sg->length; 439 if (length) { 440 len = min_t(size_t, len, length); 441 length -= len; 442 if (length == 0) 443 io->entries = i + 1; 444 } 445 } 446 urb->transfer_buffer_length = len; 447 } 448 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT; 449 450 /* transaction state */ 451 io->count = io->entries; 452 io->status = 0; 453 io->bytes = 0; 454 init_completion(&io->complete); 455 return 0; 456 457 nomem: 458 sg_clean(io); 459 return -ENOMEM; 460 } 461 EXPORT_SYMBOL_GPL(usb_sg_init); 462 463 /** 464 * usb_sg_wait - synchronously execute scatter/gather request 465 * @io: request block handle, as initialized with usb_sg_init(). 466 * some fields become accessible when this call returns. 467 * Context: !in_interrupt () 468 * 469 * This function blocks until the specified I/O operation completes. It 470 * leverages the grouping of the related I/O requests to get good transfer 471 * rates, by queueing the requests. At higher speeds, such queuing can 472 * significantly improve USB throughput. 473 * 474 * There are three kinds of completion for this function. 475 * (1) success, where io->status is zero. The number of io->bytes 476 * transferred is as requested. 477 * (2) error, where io->status is a negative errno value. The number 478 * of io->bytes transferred before the error is usually less 479 * than requested, and can be nonzero. 480 * (3) cancellation, a type of error with status -ECONNRESET that 481 * is initiated by usb_sg_cancel(). 482 * 483 * When this function returns, all memory allocated through usb_sg_init() or 484 * this call will have been freed. The request block parameter may still be 485 * passed to usb_sg_cancel(), or it may be freed. It could also be 486 * reinitialized and then reused. 487 * 488 * Data Transfer Rates: 489 * 490 * Bulk transfers are valid for full or high speed endpoints. 491 * The best full speed data rate is 19 packets of 64 bytes each 492 * per frame, or 1216 bytes per millisecond. 493 * The best high speed data rate is 13 packets of 512 bytes each 494 * per microframe, or 52 KBytes per millisecond. 495 * 496 * The reason to use interrupt transfers through this API would most likely 497 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond 498 * could be transferred. That capability is less useful for low or full 499 * speed interrupt endpoints, which allow at most one packet per millisecond, 500 * of at most 8 or 64 bytes (respectively). 501 * 502 * It is not necessary to call this function to reserve bandwidth for devices 503 * under an xHCI host controller, as the bandwidth is reserved when the 504 * configuration or interface alt setting is selected. 505 */ 506 void usb_sg_wait(struct usb_sg_request *io) 507 { 508 int i; 509 int entries = io->entries; 510 511 /* queue the urbs. */ 512 spin_lock_irq(&io->lock); 513 i = 0; 514 while (i < entries && !io->status) { 515 int retval; 516 517 io->urbs[i]->dev = io->dev; 518 retval = usb_submit_urb(io->urbs[i], GFP_ATOMIC); 519 520 /* after we submit, let completions or cancellations fire; 521 * we handshake using io->status. 522 */ 523 spin_unlock_irq(&io->lock); 524 switch (retval) { 525 /* maybe we retrying will recover */ 526 case -ENXIO: /* hc didn't queue this one */ 527 case -EAGAIN: 528 case -ENOMEM: 529 retval = 0; 530 yield(); 531 break; 532 533 /* no error? continue immediately. 534 * 535 * NOTE: to work better with UHCI (4K I/O buffer may 536 * need 3K of TDs) it may be good to limit how many 537 * URBs are queued at once; N milliseconds? 538 */ 539 case 0: 540 ++i; 541 cpu_relax(); 542 break; 543 544 /* fail any uncompleted urbs */ 545 default: 546 io->urbs[i]->status = retval; 547 dev_dbg(&io->dev->dev, "%s, submit --> %d\n", 548 __func__, retval); 549 usb_sg_cancel(io); 550 } 551 spin_lock_irq(&io->lock); 552 if (retval && (io->status == 0 || io->status == -ECONNRESET)) 553 io->status = retval; 554 } 555 io->count -= entries - i; 556 if (io->count == 0) 557 complete(&io->complete); 558 spin_unlock_irq(&io->lock); 559 560 /* OK, yes, this could be packaged as non-blocking. 561 * So could the submit loop above ... but it's easier to 562 * solve neither problem than to solve both! 563 */ 564 wait_for_completion(&io->complete); 565 566 sg_clean(io); 567 } 568 EXPORT_SYMBOL_GPL(usb_sg_wait); 569 570 /** 571 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait() 572 * @io: request block, initialized with usb_sg_init() 573 * 574 * This stops a request after it has been started by usb_sg_wait(). 575 * It can also prevents one initialized by usb_sg_init() from starting, 576 * so that call just frees resources allocated to the request. 577 */ 578 void usb_sg_cancel(struct usb_sg_request *io) 579 { 580 unsigned long flags; 581 582 spin_lock_irqsave(&io->lock, flags); 583 584 /* shut everything down, if it didn't already */ 585 if (!io->status) { 586 int i; 587 588 io->status = -ECONNRESET; 589 spin_unlock(&io->lock); 590 for (i = 0; i < io->entries; i++) { 591 int retval; 592 593 if (!io->urbs[i]->dev) 594 continue; 595 retval = usb_unlink_urb(io->urbs[i]); 596 if (retval != -EINPROGRESS 597 && retval != -ENODEV 598 && retval != -EBUSY 599 && retval != -EIDRM) 600 dev_warn(&io->dev->dev, "%s, unlink --> %d\n", 601 __func__, retval); 602 } 603 spin_lock(&io->lock); 604 } 605 spin_unlock_irqrestore(&io->lock, flags); 606 } 607 EXPORT_SYMBOL_GPL(usb_sg_cancel); 608 609 /*-------------------------------------------------------------------*/ 610 611 /** 612 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request 613 * @dev: the device whose descriptor is being retrieved 614 * @type: the descriptor type (USB_DT_*) 615 * @index: the number of the descriptor 616 * @buf: where to put the descriptor 617 * @size: how big is "buf"? 618 * Context: !in_interrupt () 619 * 620 * Gets a USB descriptor. Convenience functions exist to simplify 621 * getting some types of descriptors. Use 622 * usb_get_string() or usb_string() for USB_DT_STRING. 623 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG) 624 * are part of the device structure. 625 * In addition to a number of USB-standard descriptors, some 626 * devices also use class-specific or vendor-specific descriptors. 627 * 628 * This call is synchronous, and may not be used in an interrupt context. 629 * 630 * Return: The number of bytes received on success, or else the status code 631 * returned by the underlying usb_control_msg() call. 632 */ 633 int usb_get_descriptor(struct usb_device *dev, unsigned char type, 634 unsigned char index, void *buf, int size) 635 { 636 int i; 637 int result; 638 639 memset(buf, 0, size); /* Make sure we parse really received data */ 640 641 for (i = 0; i < 3; ++i) { 642 /* retry on length 0 or error; some devices are flakey */ 643 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 644 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 645 (type << 8) + index, 0, buf, size, 646 USB_CTRL_GET_TIMEOUT); 647 if (result <= 0 && result != -ETIMEDOUT) 648 continue; 649 if (result > 1 && ((u8 *)buf)[1] != type) { 650 result = -ENODATA; 651 continue; 652 } 653 break; 654 } 655 return result; 656 } 657 EXPORT_SYMBOL_GPL(usb_get_descriptor); 658 659 /** 660 * usb_get_string - gets a string descriptor 661 * @dev: the device whose string descriptor is being retrieved 662 * @langid: code for language chosen (from string descriptor zero) 663 * @index: the number of the descriptor 664 * @buf: where to put the string 665 * @size: how big is "buf"? 666 * Context: !in_interrupt () 667 * 668 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character, 669 * in little-endian byte order). 670 * The usb_string() function will often be a convenient way to turn 671 * these strings into kernel-printable form. 672 * 673 * Strings may be referenced in device, configuration, interface, or other 674 * descriptors, and could also be used in vendor-specific ways. 675 * 676 * This call is synchronous, and may not be used in an interrupt context. 677 * 678 * Return: The number of bytes received on success, or else the status code 679 * returned by the underlying usb_control_msg() call. 680 */ 681 static int usb_get_string(struct usb_device *dev, unsigned short langid, 682 unsigned char index, void *buf, int size) 683 { 684 int i; 685 int result; 686 687 for (i = 0; i < 3; ++i) { 688 /* retry on length 0 or stall; some devices are flakey */ 689 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 690 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 691 (USB_DT_STRING << 8) + index, langid, buf, size, 692 USB_CTRL_GET_TIMEOUT); 693 if (result == 0 || result == -EPIPE) 694 continue; 695 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) { 696 result = -ENODATA; 697 continue; 698 } 699 break; 700 } 701 return result; 702 } 703 704 static void usb_try_string_workarounds(unsigned char *buf, int *length) 705 { 706 int newlength, oldlength = *length; 707 708 for (newlength = 2; newlength + 1 < oldlength; newlength += 2) 709 if (!isprint(buf[newlength]) || buf[newlength + 1]) 710 break; 711 712 if (newlength > 2) { 713 buf[0] = newlength; 714 *length = newlength; 715 } 716 } 717 718 static int usb_string_sub(struct usb_device *dev, unsigned int langid, 719 unsigned int index, unsigned char *buf) 720 { 721 int rc; 722 723 /* Try to read the string descriptor by asking for the maximum 724 * possible number of bytes */ 725 if (dev->quirks & USB_QUIRK_STRING_FETCH_255) 726 rc = -EIO; 727 else 728 rc = usb_get_string(dev, langid, index, buf, 255); 729 730 /* If that failed try to read the descriptor length, then 731 * ask for just that many bytes */ 732 if (rc < 2) { 733 rc = usb_get_string(dev, langid, index, buf, 2); 734 if (rc == 2) 735 rc = usb_get_string(dev, langid, index, buf, buf[0]); 736 } 737 738 if (rc >= 2) { 739 if (!buf[0] && !buf[1]) 740 usb_try_string_workarounds(buf, &rc); 741 742 /* There might be extra junk at the end of the descriptor */ 743 if (buf[0] < rc) 744 rc = buf[0]; 745 746 rc = rc - (rc & 1); /* force a multiple of two */ 747 } 748 749 if (rc < 2) 750 rc = (rc < 0 ? rc : -EINVAL); 751 752 return rc; 753 } 754 755 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf) 756 { 757 int err; 758 759 if (dev->have_langid) 760 return 0; 761 762 if (dev->string_langid < 0) 763 return -EPIPE; 764 765 err = usb_string_sub(dev, 0, 0, tbuf); 766 767 /* If the string was reported but is malformed, default to english 768 * (0x0409) */ 769 if (err == -ENODATA || (err > 0 && err < 4)) { 770 dev->string_langid = 0x0409; 771 dev->have_langid = 1; 772 dev_err(&dev->dev, 773 "string descriptor 0 malformed (err = %d), " 774 "defaulting to 0x%04x\n", 775 err, dev->string_langid); 776 return 0; 777 } 778 779 /* In case of all other errors, we assume the device is not able to 780 * deal with strings at all. Set string_langid to -1 in order to 781 * prevent any string to be retrieved from the device */ 782 if (err < 0) { 783 dev_err(&dev->dev, "string descriptor 0 read error: %d\n", 784 err); 785 dev->string_langid = -1; 786 return -EPIPE; 787 } 788 789 /* always use the first langid listed */ 790 dev->string_langid = tbuf[2] | (tbuf[3] << 8); 791 dev->have_langid = 1; 792 dev_dbg(&dev->dev, "default language 0x%04x\n", 793 dev->string_langid); 794 return 0; 795 } 796 797 /** 798 * usb_string - returns UTF-8 version of a string descriptor 799 * @dev: the device whose string descriptor is being retrieved 800 * @index: the number of the descriptor 801 * @buf: where to put the string 802 * @size: how big is "buf"? 803 * Context: !in_interrupt () 804 * 805 * This converts the UTF-16LE encoded strings returned by devices, from 806 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones 807 * that are more usable in most kernel contexts. Note that this function 808 * chooses strings in the first language supported by the device. 809 * 810 * This call is synchronous, and may not be used in an interrupt context. 811 * 812 * Return: length of the string (>= 0) or usb_control_msg status (< 0). 813 */ 814 int usb_string(struct usb_device *dev, int index, char *buf, size_t size) 815 { 816 unsigned char *tbuf; 817 int err; 818 819 if (dev->state == USB_STATE_SUSPENDED) 820 return -EHOSTUNREACH; 821 if (size <= 0 || !buf || !index) 822 return -EINVAL; 823 buf[0] = 0; 824 tbuf = kmalloc(256, GFP_NOIO); 825 if (!tbuf) 826 return -ENOMEM; 827 828 err = usb_get_langid(dev, tbuf); 829 if (err < 0) 830 goto errout; 831 832 err = usb_string_sub(dev, dev->string_langid, index, tbuf); 833 if (err < 0) 834 goto errout; 835 836 size--; /* leave room for trailing NULL char in output buffer */ 837 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2, 838 UTF16_LITTLE_ENDIAN, buf, size); 839 buf[err] = 0; 840 841 if (tbuf[1] != USB_DT_STRING) 842 dev_dbg(&dev->dev, 843 "wrong descriptor type %02x for string %d (\"%s\")\n", 844 tbuf[1], index, buf); 845 846 errout: 847 kfree(tbuf); 848 return err; 849 } 850 EXPORT_SYMBOL_GPL(usb_string); 851 852 /* one UTF-8-encoded 16-bit character has at most three bytes */ 853 #define MAX_USB_STRING_SIZE (127 * 3 + 1) 854 855 /** 856 * usb_cache_string - read a string descriptor and cache it for later use 857 * @udev: the device whose string descriptor is being read 858 * @index: the descriptor index 859 * 860 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string, 861 * or %NULL if the index is 0 or the string could not be read. 862 */ 863 char *usb_cache_string(struct usb_device *udev, int index) 864 { 865 char *buf; 866 char *smallbuf = NULL; 867 int len; 868 869 if (index <= 0) 870 return NULL; 871 872 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO); 873 if (buf) { 874 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE); 875 if (len > 0) { 876 smallbuf = kmalloc(++len, GFP_NOIO); 877 if (!smallbuf) 878 return buf; 879 memcpy(smallbuf, buf, len); 880 } 881 kfree(buf); 882 } 883 return smallbuf; 884 } 885 886 /* 887 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore) 888 * @dev: the device whose device descriptor is being updated 889 * @size: how much of the descriptor to read 890 * Context: !in_interrupt () 891 * 892 * Updates the copy of the device descriptor stored in the device structure, 893 * which dedicates space for this purpose. 894 * 895 * Not exported, only for use by the core. If drivers really want to read 896 * the device descriptor directly, they can call usb_get_descriptor() with 897 * type = USB_DT_DEVICE and index = 0. 898 * 899 * This call is synchronous, and may not be used in an interrupt context. 900 * 901 * Return: The number of bytes received on success, or else the status code 902 * returned by the underlying usb_control_msg() call. 903 */ 904 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size) 905 { 906 struct usb_device_descriptor *desc; 907 int ret; 908 909 if (size > sizeof(*desc)) 910 return -EINVAL; 911 desc = kmalloc(sizeof(*desc), GFP_NOIO); 912 if (!desc) 913 return -ENOMEM; 914 915 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size); 916 if (ret >= 0) 917 memcpy(&dev->descriptor, desc, size); 918 kfree(desc); 919 return ret; 920 } 921 922 /** 923 * usb_get_status - issues a GET_STATUS call 924 * @dev: the device whose status is being checked 925 * @type: USB_RECIP_*; for device, interface, or endpoint 926 * @target: zero (for device), else interface or endpoint number 927 * @data: pointer to two bytes of bitmap data 928 * Context: !in_interrupt () 929 * 930 * Returns device, interface, or endpoint status. Normally only of 931 * interest to see if the device is self powered, or has enabled the 932 * remote wakeup facility; or whether a bulk or interrupt endpoint 933 * is halted ("stalled"). 934 * 935 * Bits in these status bitmaps are set using the SET_FEATURE request, 936 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt() 937 * function should be used to clear halt ("stall") status. 938 * 939 * This call is synchronous, and may not be used in an interrupt context. 940 * 941 * Returns 0 and the status value in *@data (in host byte order) on success, 942 * or else the status code from the underlying usb_control_msg() call. 943 */ 944 int usb_get_status(struct usb_device *dev, int type, int target, void *data) 945 { 946 int ret; 947 __le16 *status = kmalloc(sizeof(*status), GFP_KERNEL); 948 949 if (!status) 950 return -ENOMEM; 951 952 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 953 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status, 954 sizeof(*status), USB_CTRL_GET_TIMEOUT); 955 956 if (ret == 2) { 957 *(u16 *) data = le16_to_cpu(*status); 958 ret = 0; 959 } else if (ret >= 0) { 960 ret = -EIO; 961 } 962 kfree(status); 963 return ret; 964 } 965 EXPORT_SYMBOL_GPL(usb_get_status); 966 967 /** 968 * usb_clear_halt - tells device to clear endpoint halt/stall condition 969 * @dev: device whose endpoint is halted 970 * @pipe: endpoint "pipe" being cleared 971 * Context: !in_interrupt () 972 * 973 * This is used to clear halt conditions for bulk and interrupt endpoints, 974 * as reported by URB completion status. Endpoints that are halted are 975 * sometimes referred to as being "stalled". Such endpoints are unable 976 * to transmit or receive data until the halt status is cleared. Any URBs 977 * queued for such an endpoint should normally be unlinked by the driver 978 * before clearing the halt condition, as described in sections 5.7.5 979 * and 5.8.5 of the USB 2.0 spec. 980 * 981 * Note that control and isochronous endpoints don't halt, although control 982 * endpoints report "protocol stall" (for unsupported requests) using the 983 * same status code used to report a true stall. 984 * 985 * This call is synchronous, and may not be used in an interrupt context. 986 * 987 * Return: Zero on success, or else the status code returned by the 988 * underlying usb_control_msg() call. 989 */ 990 int usb_clear_halt(struct usb_device *dev, int pipe) 991 { 992 int result; 993 int endp = usb_pipeendpoint(pipe); 994 995 if (usb_pipein(pipe)) 996 endp |= USB_DIR_IN; 997 998 /* we don't care if it wasn't halted first. in fact some devices 999 * (like some ibmcam model 1 units) seem to expect hosts to make 1000 * this request for iso endpoints, which can't halt! 1001 */ 1002 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1003 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 1004 USB_ENDPOINT_HALT, endp, NULL, 0, 1005 USB_CTRL_SET_TIMEOUT); 1006 1007 /* don't un-halt or force to DATA0 except on success */ 1008 if (result < 0) 1009 return result; 1010 1011 /* NOTE: seems like Microsoft and Apple don't bother verifying 1012 * the clear "took", so some devices could lock up if you check... 1013 * such as the Hagiwara FlashGate DUAL. So we won't bother. 1014 * 1015 * NOTE: make sure the logic here doesn't diverge much from 1016 * the copy in usb-storage, for as long as we need two copies. 1017 */ 1018 1019 usb_reset_endpoint(dev, endp); 1020 1021 return 0; 1022 } 1023 EXPORT_SYMBOL_GPL(usb_clear_halt); 1024 1025 static int create_intf_ep_devs(struct usb_interface *intf) 1026 { 1027 struct usb_device *udev = interface_to_usbdev(intf); 1028 struct usb_host_interface *alt = intf->cur_altsetting; 1029 int i; 1030 1031 if (intf->ep_devs_created || intf->unregistering) 1032 return 0; 1033 1034 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1035 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev); 1036 intf->ep_devs_created = 1; 1037 return 0; 1038 } 1039 1040 static void remove_intf_ep_devs(struct usb_interface *intf) 1041 { 1042 struct usb_host_interface *alt = intf->cur_altsetting; 1043 int i; 1044 1045 if (!intf->ep_devs_created) 1046 return; 1047 1048 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1049 usb_remove_ep_devs(&alt->endpoint[i]); 1050 intf->ep_devs_created = 0; 1051 } 1052 1053 /** 1054 * usb_disable_endpoint -- Disable an endpoint by address 1055 * @dev: the device whose endpoint is being disabled 1056 * @epaddr: the endpoint's address. Endpoint number for output, 1057 * endpoint number + USB_DIR_IN for input 1058 * @reset_hardware: flag to erase any endpoint state stored in the 1059 * controller hardware 1060 * 1061 * Disables the endpoint for URB submission and nukes all pending URBs. 1062 * If @reset_hardware is set then also deallocates hcd/hardware state 1063 * for the endpoint. 1064 */ 1065 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr, 1066 bool reset_hardware) 1067 { 1068 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1069 struct usb_host_endpoint *ep; 1070 1071 if (!dev) 1072 return; 1073 1074 if (usb_endpoint_out(epaddr)) { 1075 ep = dev->ep_out[epnum]; 1076 if (reset_hardware) 1077 dev->ep_out[epnum] = NULL; 1078 } else { 1079 ep = dev->ep_in[epnum]; 1080 if (reset_hardware) 1081 dev->ep_in[epnum] = NULL; 1082 } 1083 if (ep) { 1084 ep->enabled = 0; 1085 usb_hcd_flush_endpoint(dev, ep); 1086 if (reset_hardware) 1087 usb_hcd_disable_endpoint(dev, ep); 1088 } 1089 } 1090 1091 /** 1092 * usb_reset_endpoint - Reset an endpoint's state. 1093 * @dev: the device whose endpoint is to be reset 1094 * @epaddr: the endpoint's address. Endpoint number for output, 1095 * endpoint number + USB_DIR_IN for input 1096 * 1097 * Resets any host-side endpoint state such as the toggle bit, 1098 * sequence number or current window. 1099 */ 1100 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr) 1101 { 1102 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1103 struct usb_host_endpoint *ep; 1104 1105 if (usb_endpoint_out(epaddr)) 1106 ep = dev->ep_out[epnum]; 1107 else 1108 ep = dev->ep_in[epnum]; 1109 if (ep) 1110 usb_hcd_reset_endpoint(dev, ep); 1111 } 1112 EXPORT_SYMBOL_GPL(usb_reset_endpoint); 1113 1114 1115 /** 1116 * usb_disable_interface -- Disable all endpoints for an interface 1117 * @dev: the device whose interface is being disabled 1118 * @intf: pointer to the interface descriptor 1119 * @reset_hardware: flag to erase any endpoint state stored in the 1120 * controller hardware 1121 * 1122 * Disables all the endpoints for the interface's current altsetting. 1123 */ 1124 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf, 1125 bool reset_hardware) 1126 { 1127 struct usb_host_interface *alt = intf->cur_altsetting; 1128 int i; 1129 1130 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 1131 usb_disable_endpoint(dev, 1132 alt->endpoint[i].desc.bEndpointAddress, 1133 reset_hardware); 1134 } 1135 } 1136 1137 /** 1138 * usb_disable_device - Disable all the endpoints for a USB device 1139 * @dev: the device whose endpoints are being disabled 1140 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. 1141 * 1142 * Disables all the device's endpoints, potentially including endpoint 0. 1143 * Deallocates hcd/hardware state for the endpoints (nuking all or most 1144 * pending urbs) and usbcore state for the interfaces, so that usbcore 1145 * must usb_set_configuration() before any interfaces could be used. 1146 */ 1147 void usb_disable_device(struct usb_device *dev, int skip_ep0) 1148 { 1149 int i; 1150 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1151 1152 /* getting rid of interfaces will disconnect 1153 * any drivers bound to them (a key side effect) 1154 */ 1155 if (dev->actconfig) { 1156 /* 1157 * FIXME: In order to avoid self-deadlock involving the 1158 * bandwidth_mutex, we have to mark all the interfaces 1159 * before unregistering any of them. 1160 */ 1161 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) 1162 dev->actconfig->interface[i]->unregistering = 1; 1163 1164 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1165 struct usb_interface *interface; 1166 1167 /* remove this interface if it has been registered */ 1168 interface = dev->actconfig->interface[i]; 1169 if (!device_is_registered(&interface->dev)) 1170 continue; 1171 dev_dbg(&dev->dev, "unregistering interface %s\n", 1172 dev_name(&interface->dev)); 1173 remove_intf_ep_devs(interface); 1174 device_del(&interface->dev); 1175 } 1176 1177 /* Now that the interfaces are unbound, nobody should 1178 * try to access them. 1179 */ 1180 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1181 put_device(&dev->actconfig->interface[i]->dev); 1182 dev->actconfig->interface[i] = NULL; 1183 } 1184 1185 if (dev->usb2_hw_lpm_enabled == 1) 1186 usb_set_usb2_hardware_lpm(dev, 0); 1187 usb_unlocked_disable_lpm(dev); 1188 usb_disable_ltm(dev); 1189 1190 dev->actconfig = NULL; 1191 if (dev->state == USB_STATE_CONFIGURED) 1192 usb_set_device_state(dev, USB_STATE_ADDRESS); 1193 } 1194 1195 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__, 1196 skip_ep0 ? "non-ep0" : "all"); 1197 if (hcd->driver->check_bandwidth) { 1198 /* First pass: Cancel URBs, leave endpoint pointers intact. */ 1199 for (i = skip_ep0; i < 16; ++i) { 1200 usb_disable_endpoint(dev, i, false); 1201 usb_disable_endpoint(dev, i + USB_DIR_IN, false); 1202 } 1203 /* Remove endpoints from the host controller internal state */ 1204 mutex_lock(hcd->bandwidth_mutex); 1205 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); 1206 mutex_unlock(hcd->bandwidth_mutex); 1207 /* Second pass: remove endpoint pointers */ 1208 } 1209 for (i = skip_ep0; i < 16; ++i) { 1210 usb_disable_endpoint(dev, i, true); 1211 usb_disable_endpoint(dev, i + USB_DIR_IN, true); 1212 } 1213 } 1214 1215 /** 1216 * usb_enable_endpoint - Enable an endpoint for USB communications 1217 * @dev: the device whose interface is being enabled 1218 * @ep: the endpoint 1219 * @reset_ep: flag to reset the endpoint state 1220 * 1221 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers. 1222 * For control endpoints, both the input and output sides are handled. 1223 */ 1224 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep, 1225 bool reset_ep) 1226 { 1227 int epnum = usb_endpoint_num(&ep->desc); 1228 int is_out = usb_endpoint_dir_out(&ep->desc); 1229 int is_control = usb_endpoint_xfer_control(&ep->desc); 1230 1231 if (reset_ep) 1232 usb_hcd_reset_endpoint(dev, ep); 1233 if (is_out || is_control) 1234 dev->ep_out[epnum] = ep; 1235 if (!is_out || is_control) 1236 dev->ep_in[epnum] = ep; 1237 ep->enabled = 1; 1238 } 1239 1240 /** 1241 * usb_enable_interface - Enable all the endpoints for an interface 1242 * @dev: the device whose interface is being enabled 1243 * @intf: pointer to the interface descriptor 1244 * @reset_eps: flag to reset the endpoints' state 1245 * 1246 * Enables all the endpoints for the interface's current altsetting. 1247 */ 1248 void usb_enable_interface(struct usb_device *dev, 1249 struct usb_interface *intf, bool reset_eps) 1250 { 1251 struct usb_host_interface *alt = intf->cur_altsetting; 1252 int i; 1253 1254 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1255 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps); 1256 } 1257 1258 /** 1259 * usb_set_interface - Makes a particular alternate setting be current 1260 * @dev: the device whose interface is being updated 1261 * @interface: the interface being updated 1262 * @alternate: the setting being chosen. 1263 * Context: !in_interrupt () 1264 * 1265 * This is used to enable data transfers on interfaces that may not 1266 * be enabled by default. Not all devices support such configurability. 1267 * Only the driver bound to an interface may change its setting. 1268 * 1269 * Within any given configuration, each interface may have several 1270 * alternative settings. These are often used to control levels of 1271 * bandwidth consumption. For example, the default setting for a high 1272 * speed interrupt endpoint may not send more than 64 bytes per microframe, 1273 * while interrupt transfers of up to 3KBytes per microframe are legal. 1274 * Also, isochronous endpoints may never be part of an 1275 * interface's default setting. To access such bandwidth, alternate 1276 * interface settings must be made current. 1277 * 1278 * Note that in the Linux USB subsystem, bandwidth associated with 1279 * an endpoint in a given alternate setting is not reserved until an URB 1280 * is submitted that needs that bandwidth. Some other operating systems 1281 * allocate bandwidth early, when a configuration is chosen. 1282 * 1283 * This call is synchronous, and may not be used in an interrupt context. 1284 * Also, drivers must not change altsettings while urbs are scheduled for 1285 * endpoints in that interface; all such urbs must first be completed 1286 * (perhaps forced by unlinking). 1287 * 1288 * Return: Zero on success, or else the status code returned by the 1289 * underlying usb_control_msg() call. 1290 */ 1291 int usb_set_interface(struct usb_device *dev, int interface, int alternate) 1292 { 1293 struct usb_interface *iface; 1294 struct usb_host_interface *alt; 1295 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1296 int i, ret, manual = 0; 1297 unsigned int epaddr; 1298 unsigned int pipe; 1299 1300 if (dev->state == USB_STATE_SUSPENDED) 1301 return -EHOSTUNREACH; 1302 1303 iface = usb_ifnum_to_if(dev, interface); 1304 if (!iface) { 1305 dev_dbg(&dev->dev, "selecting invalid interface %d\n", 1306 interface); 1307 return -EINVAL; 1308 } 1309 if (iface->unregistering) 1310 return -ENODEV; 1311 1312 alt = usb_altnum_to_altsetting(iface, alternate); 1313 if (!alt) { 1314 dev_warn(&dev->dev, "selecting invalid altsetting %d\n", 1315 alternate); 1316 return -EINVAL; 1317 } 1318 1319 /* Make sure we have enough bandwidth for this alternate interface. 1320 * Remove the current alt setting and add the new alt setting. 1321 */ 1322 mutex_lock(hcd->bandwidth_mutex); 1323 /* Disable LPM, and re-enable it once the new alt setting is installed, 1324 * so that the xHCI driver can recalculate the U1/U2 timeouts. 1325 */ 1326 if (usb_disable_lpm(dev)) { 1327 dev_err(&iface->dev, "%s Failed to disable LPM\n.", __func__); 1328 mutex_unlock(hcd->bandwidth_mutex); 1329 return -ENOMEM; 1330 } 1331 /* Changing alt-setting also frees any allocated streams */ 1332 for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++) 1333 iface->cur_altsetting->endpoint[i].streams = 0; 1334 1335 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt); 1336 if (ret < 0) { 1337 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n", 1338 alternate); 1339 usb_enable_lpm(dev); 1340 mutex_unlock(hcd->bandwidth_mutex); 1341 return ret; 1342 } 1343 1344 if (dev->quirks & USB_QUIRK_NO_SET_INTF) 1345 ret = -EPIPE; 1346 else 1347 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1348 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE, 1349 alternate, interface, NULL, 0, 5000); 1350 1351 /* 9.4.10 says devices don't need this and are free to STALL the 1352 * request if the interface only has one alternate setting. 1353 */ 1354 if (ret == -EPIPE && iface->num_altsetting == 1) { 1355 dev_dbg(&dev->dev, 1356 "manual set_interface for iface %d, alt %d\n", 1357 interface, alternate); 1358 manual = 1; 1359 } else if (ret < 0) { 1360 /* Re-instate the old alt setting */ 1361 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting); 1362 usb_enable_lpm(dev); 1363 mutex_unlock(hcd->bandwidth_mutex); 1364 return ret; 1365 } 1366 mutex_unlock(hcd->bandwidth_mutex); 1367 1368 /* FIXME drivers shouldn't need to replicate/bugfix the logic here 1369 * when they implement async or easily-killable versions of this or 1370 * other "should-be-internal" functions (like clear_halt). 1371 * should hcd+usbcore postprocess control requests? 1372 */ 1373 1374 /* prevent submissions using previous endpoint settings */ 1375 if (iface->cur_altsetting != alt) { 1376 remove_intf_ep_devs(iface); 1377 usb_remove_sysfs_intf_files(iface); 1378 } 1379 usb_disable_interface(dev, iface, true); 1380 1381 iface->cur_altsetting = alt; 1382 1383 /* Now that the interface is installed, re-enable LPM. */ 1384 usb_unlocked_enable_lpm(dev); 1385 1386 /* If the interface only has one altsetting and the device didn't 1387 * accept the request, we attempt to carry out the equivalent action 1388 * by manually clearing the HALT feature for each endpoint in the 1389 * new altsetting. 1390 */ 1391 if (manual) { 1392 int i; 1393 1394 for (i = 0; i < alt->desc.bNumEndpoints; i++) { 1395 epaddr = alt->endpoint[i].desc.bEndpointAddress; 1396 pipe = __create_pipe(dev, 1397 USB_ENDPOINT_NUMBER_MASK & epaddr) | 1398 (usb_endpoint_out(epaddr) ? 1399 USB_DIR_OUT : USB_DIR_IN); 1400 1401 usb_clear_halt(dev, pipe); 1402 } 1403 } 1404 1405 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting 1406 * 1407 * Note: 1408 * Despite EP0 is always present in all interfaces/AS, the list of 1409 * endpoints from the descriptor does not contain EP0. Due to its 1410 * omnipresence one might expect EP0 being considered "affected" by 1411 * any SetInterface request and hence assume toggles need to be reset. 1412 * However, EP0 toggles are re-synced for every individual transfer 1413 * during the SETUP stage - hence EP0 toggles are "don't care" here. 1414 * (Likewise, EP0 never "halts" on well designed devices.) 1415 */ 1416 usb_enable_interface(dev, iface, true); 1417 if (device_is_registered(&iface->dev)) { 1418 usb_create_sysfs_intf_files(iface); 1419 create_intf_ep_devs(iface); 1420 } 1421 return 0; 1422 } 1423 EXPORT_SYMBOL_GPL(usb_set_interface); 1424 1425 /** 1426 * usb_reset_configuration - lightweight device reset 1427 * @dev: the device whose configuration is being reset 1428 * 1429 * This issues a standard SET_CONFIGURATION request to the device using 1430 * the current configuration. The effect is to reset most USB-related 1431 * state in the device, including interface altsettings (reset to zero), 1432 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt 1433 * endpoints). Other usbcore state is unchanged, including bindings of 1434 * usb device drivers to interfaces. 1435 * 1436 * Because this affects multiple interfaces, avoid using this with composite 1437 * (multi-interface) devices. Instead, the driver for each interface may 1438 * use usb_set_interface() on the interfaces it claims. Be careful though; 1439 * some devices don't support the SET_INTERFACE request, and others won't 1440 * reset all the interface state (notably endpoint state). Resetting the whole 1441 * configuration would affect other drivers' interfaces. 1442 * 1443 * The caller must own the device lock. 1444 * 1445 * Return: Zero on success, else a negative error code. 1446 */ 1447 int usb_reset_configuration(struct usb_device *dev) 1448 { 1449 int i, retval; 1450 struct usb_host_config *config; 1451 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1452 1453 if (dev->state == USB_STATE_SUSPENDED) 1454 return -EHOSTUNREACH; 1455 1456 /* caller must have locked the device and must own 1457 * the usb bus readlock (so driver bindings are stable); 1458 * calls during probe() are fine 1459 */ 1460 1461 for (i = 1; i < 16; ++i) { 1462 usb_disable_endpoint(dev, i, true); 1463 usb_disable_endpoint(dev, i + USB_DIR_IN, true); 1464 } 1465 1466 config = dev->actconfig; 1467 retval = 0; 1468 mutex_lock(hcd->bandwidth_mutex); 1469 /* Disable LPM, and re-enable it once the configuration is reset, so 1470 * that the xHCI driver can recalculate the U1/U2 timeouts. 1471 */ 1472 if (usb_disable_lpm(dev)) { 1473 dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__); 1474 mutex_unlock(hcd->bandwidth_mutex); 1475 return -ENOMEM; 1476 } 1477 /* Make sure we have enough bandwidth for each alternate setting 0 */ 1478 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1479 struct usb_interface *intf = config->interface[i]; 1480 struct usb_host_interface *alt; 1481 1482 alt = usb_altnum_to_altsetting(intf, 0); 1483 if (!alt) 1484 alt = &intf->altsetting[0]; 1485 if (alt != intf->cur_altsetting) 1486 retval = usb_hcd_alloc_bandwidth(dev, NULL, 1487 intf->cur_altsetting, alt); 1488 if (retval < 0) 1489 break; 1490 } 1491 /* If not, reinstate the old alternate settings */ 1492 if (retval < 0) { 1493 reset_old_alts: 1494 for (i--; i >= 0; i--) { 1495 struct usb_interface *intf = config->interface[i]; 1496 struct usb_host_interface *alt; 1497 1498 alt = usb_altnum_to_altsetting(intf, 0); 1499 if (!alt) 1500 alt = &intf->altsetting[0]; 1501 if (alt != intf->cur_altsetting) 1502 usb_hcd_alloc_bandwidth(dev, NULL, 1503 alt, intf->cur_altsetting); 1504 } 1505 usb_enable_lpm(dev); 1506 mutex_unlock(hcd->bandwidth_mutex); 1507 return retval; 1508 } 1509 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1510 USB_REQ_SET_CONFIGURATION, 0, 1511 config->desc.bConfigurationValue, 0, 1512 NULL, 0, USB_CTRL_SET_TIMEOUT); 1513 if (retval < 0) 1514 goto reset_old_alts; 1515 mutex_unlock(hcd->bandwidth_mutex); 1516 1517 /* re-init hc/hcd interface/endpoint state */ 1518 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1519 struct usb_interface *intf = config->interface[i]; 1520 struct usb_host_interface *alt; 1521 1522 alt = usb_altnum_to_altsetting(intf, 0); 1523 1524 /* No altsetting 0? We'll assume the first altsetting. 1525 * We could use a GetInterface call, but if a device is 1526 * so non-compliant that it doesn't have altsetting 0 1527 * then I wouldn't trust its reply anyway. 1528 */ 1529 if (!alt) 1530 alt = &intf->altsetting[0]; 1531 1532 if (alt != intf->cur_altsetting) { 1533 remove_intf_ep_devs(intf); 1534 usb_remove_sysfs_intf_files(intf); 1535 } 1536 intf->cur_altsetting = alt; 1537 usb_enable_interface(dev, intf, true); 1538 if (device_is_registered(&intf->dev)) { 1539 usb_create_sysfs_intf_files(intf); 1540 create_intf_ep_devs(intf); 1541 } 1542 } 1543 /* Now that the interfaces are installed, re-enable LPM. */ 1544 usb_unlocked_enable_lpm(dev); 1545 return 0; 1546 } 1547 EXPORT_SYMBOL_GPL(usb_reset_configuration); 1548 1549 static void usb_release_interface(struct device *dev) 1550 { 1551 struct usb_interface *intf = to_usb_interface(dev); 1552 struct usb_interface_cache *intfc = 1553 altsetting_to_usb_interface_cache(intf->altsetting); 1554 1555 kref_put(&intfc->ref, usb_release_interface_cache); 1556 kfree(intf); 1557 } 1558 1559 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env) 1560 { 1561 struct usb_device *usb_dev; 1562 struct usb_interface *intf; 1563 struct usb_host_interface *alt; 1564 1565 intf = to_usb_interface(dev); 1566 usb_dev = interface_to_usbdev(intf); 1567 alt = intf->cur_altsetting; 1568 1569 if (add_uevent_var(env, "INTERFACE=%d/%d/%d", 1570 alt->desc.bInterfaceClass, 1571 alt->desc.bInterfaceSubClass, 1572 alt->desc.bInterfaceProtocol)) 1573 return -ENOMEM; 1574 1575 if (add_uevent_var(env, 1576 "MODALIAS=usb:" 1577 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X", 1578 le16_to_cpu(usb_dev->descriptor.idVendor), 1579 le16_to_cpu(usb_dev->descriptor.idProduct), 1580 le16_to_cpu(usb_dev->descriptor.bcdDevice), 1581 usb_dev->descriptor.bDeviceClass, 1582 usb_dev->descriptor.bDeviceSubClass, 1583 usb_dev->descriptor.bDeviceProtocol, 1584 alt->desc.bInterfaceClass, 1585 alt->desc.bInterfaceSubClass, 1586 alt->desc.bInterfaceProtocol, 1587 alt->desc.bInterfaceNumber)) 1588 return -ENOMEM; 1589 1590 return 0; 1591 } 1592 1593 struct device_type usb_if_device_type = { 1594 .name = "usb_interface", 1595 .release = usb_release_interface, 1596 .uevent = usb_if_uevent, 1597 }; 1598 1599 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev, 1600 struct usb_host_config *config, 1601 u8 inum) 1602 { 1603 struct usb_interface_assoc_descriptor *retval = NULL; 1604 struct usb_interface_assoc_descriptor *intf_assoc; 1605 int first_intf; 1606 int last_intf; 1607 int i; 1608 1609 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) { 1610 intf_assoc = config->intf_assoc[i]; 1611 if (intf_assoc->bInterfaceCount == 0) 1612 continue; 1613 1614 first_intf = intf_assoc->bFirstInterface; 1615 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1); 1616 if (inum >= first_intf && inum <= last_intf) { 1617 if (!retval) 1618 retval = intf_assoc; 1619 else 1620 dev_err(&dev->dev, "Interface #%d referenced" 1621 " by multiple IADs\n", inum); 1622 } 1623 } 1624 1625 return retval; 1626 } 1627 1628 1629 /* 1630 * Internal function to queue a device reset 1631 * 1632 * This is initialized into the workstruct in 'struct 1633 * usb_device->reset_ws' that is launched by 1634 * message.c:usb_set_configuration() when initializing each 'struct 1635 * usb_interface'. 1636 * 1637 * It is safe to get the USB device without reference counts because 1638 * the life cycle of @iface is bound to the life cycle of @udev. Then, 1639 * this function will be ran only if @iface is alive (and before 1640 * freeing it any scheduled instances of it will have been cancelled). 1641 * 1642 * We need to set a flag (usb_dev->reset_running) because when we call 1643 * the reset, the interfaces might be unbound. The current interface 1644 * cannot try to remove the queued work as it would cause a deadlock 1645 * (you cannot remove your work from within your executing 1646 * workqueue). This flag lets it know, so that 1647 * usb_cancel_queued_reset() doesn't try to do it. 1648 * 1649 * See usb_queue_reset_device() for more details 1650 */ 1651 static void __usb_queue_reset_device(struct work_struct *ws) 1652 { 1653 int rc; 1654 struct usb_interface *iface = 1655 container_of(ws, struct usb_interface, reset_ws); 1656 struct usb_device *udev = interface_to_usbdev(iface); 1657 1658 rc = usb_lock_device_for_reset(udev, iface); 1659 if (rc >= 0) { 1660 iface->reset_running = 1; 1661 usb_reset_device(udev); 1662 iface->reset_running = 0; 1663 usb_unlock_device(udev); 1664 } 1665 } 1666 1667 1668 /* 1669 * usb_set_configuration - Makes a particular device setting be current 1670 * @dev: the device whose configuration is being updated 1671 * @configuration: the configuration being chosen. 1672 * Context: !in_interrupt(), caller owns the device lock 1673 * 1674 * This is used to enable non-default device modes. Not all devices 1675 * use this kind of configurability; many devices only have one 1676 * configuration. 1677 * 1678 * @configuration is the value of the configuration to be installed. 1679 * According to the USB spec (e.g. section 9.1.1.5), configuration values 1680 * must be non-zero; a value of zero indicates that the device in 1681 * unconfigured. However some devices erroneously use 0 as one of their 1682 * configuration values. To help manage such devices, this routine will 1683 * accept @configuration = -1 as indicating the device should be put in 1684 * an unconfigured state. 1685 * 1686 * USB device configurations may affect Linux interoperability, 1687 * power consumption and the functionality available. For example, 1688 * the default configuration is limited to using 100mA of bus power, 1689 * so that when certain device functionality requires more power, 1690 * and the device is bus powered, that functionality should be in some 1691 * non-default device configuration. Other device modes may also be 1692 * reflected as configuration options, such as whether two ISDN 1693 * channels are available independently; and choosing between open 1694 * standard device protocols (like CDC) or proprietary ones. 1695 * 1696 * Note that a non-authorized device (dev->authorized == 0) will only 1697 * be put in unconfigured mode. 1698 * 1699 * Note that USB has an additional level of device configurability, 1700 * associated with interfaces. That configurability is accessed using 1701 * usb_set_interface(). 1702 * 1703 * This call is synchronous. The calling context must be able to sleep, 1704 * must own the device lock, and must not hold the driver model's USB 1705 * bus mutex; usb interface driver probe() methods cannot use this routine. 1706 * 1707 * Returns zero on success, or else the status code returned by the 1708 * underlying call that failed. On successful completion, each interface 1709 * in the original device configuration has been destroyed, and each one 1710 * in the new configuration has been probed by all relevant usb device 1711 * drivers currently known to the kernel. 1712 */ 1713 int usb_set_configuration(struct usb_device *dev, int configuration) 1714 { 1715 int i, ret; 1716 struct usb_host_config *cp = NULL; 1717 struct usb_interface **new_interfaces = NULL; 1718 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1719 int n, nintf; 1720 1721 if (dev->authorized == 0 || configuration == -1) 1722 configuration = 0; 1723 else { 1724 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) { 1725 if (dev->config[i].desc.bConfigurationValue == 1726 configuration) { 1727 cp = &dev->config[i]; 1728 break; 1729 } 1730 } 1731 } 1732 if ((!cp && configuration != 0)) 1733 return -EINVAL; 1734 1735 /* The USB spec says configuration 0 means unconfigured. 1736 * But if a device includes a configuration numbered 0, 1737 * we will accept it as a correctly configured state. 1738 * Use -1 if you really want to unconfigure the device. 1739 */ 1740 if (cp && configuration == 0) 1741 dev_warn(&dev->dev, "config 0 descriptor??\n"); 1742 1743 /* Allocate memory for new interfaces before doing anything else, 1744 * so that if we run out then nothing will have changed. */ 1745 n = nintf = 0; 1746 if (cp) { 1747 nintf = cp->desc.bNumInterfaces; 1748 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces), 1749 GFP_NOIO); 1750 if (!new_interfaces) { 1751 dev_err(&dev->dev, "Out of memory\n"); 1752 return -ENOMEM; 1753 } 1754 1755 for (; n < nintf; ++n) { 1756 new_interfaces[n] = kzalloc( 1757 sizeof(struct usb_interface), 1758 GFP_NOIO); 1759 if (!new_interfaces[n]) { 1760 dev_err(&dev->dev, "Out of memory\n"); 1761 ret = -ENOMEM; 1762 free_interfaces: 1763 while (--n >= 0) 1764 kfree(new_interfaces[n]); 1765 kfree(new_interfaces); 1766 return ret; 1767 } 1768 } 1769 1770 i = dev->bus_mA - usb_get_max_power(dev, cp); 1771 if (i < 0) 1772 dev_warn(&dev->dev, "new config #%d exceeds power " 1773 "limit by %dmA\n", 1774 configuration, -i); 1775 } 1776 1777 /* Wake up the device so we can send it the Set-Config request */ 1778 ret = usb_autoresume_device(dev); 1779 if (ret) 1780 goto free_interfaces; 1781 1782 /* if it's already configured, clear out old state first. 1783 * getting rid of old interfaces means unbinding their drivers. 1784 */ 1785 if (dev->state != USB_STATE_ADDRESS) 1786 usb_disable_device(dev, 1); /* Skip ep0 */ 1787 1788 /* Get rid of pending async Set-Config requests for this device */ 1789 cancel_async_set_config(dev); 1790 1791 /* Make sure we have bandwidth (and available HCD resources) for this 1792 * configuration. Remove endpoints from the schedule if we're dropping 1793 * this configuration to set configuration 0. After this point, the 1794 * host controller will not allow submissions to dropped endpoints. If 1795 * this call fails, the device state is unchanged. 1796 */ 1797 mutex_lock(hcd->bandwidth_mutex); 1798 /* Disable LPM, and re-enable it once the new configuration is 1799 * installed, so that the xHCI driver can recalculate the U1/U2 1800 * timeouts. 1801 */ 1802 if (dev->actconfig && usb_disable_lpm(dev)) { 1803 dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__); 1804 mutex_unlock(hcd->bandwidth_mutex); 1805 ret = -ENOMEM; 1806 goto free_interfaces; 1807 } 1808 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL); 1809 if (ret < 0) { 1810 if (dev->actconfig) 1811 usb_enable_lpm(dev); 1812 mutex_unlock(hcd->bandwidth_mutex); 1813 usb_autosuspend_device(dev); 1814 goto free_interfaces; 1815 } 1816 1817 /* 1818 * Initialize the new interface structures and the 1819 * hc/hcd/usbcore interface/endpoint state. 1820 */ 1821 for (i = 0; i < nintf; ++i) { 1822 struct usb_interface_cache *intfc; 1823 struct usb_interface *intf; 1824 struct usb_host_interface *alt; 1825 1826 cp->interface[i] = intf = new_interfaces[i]; 1827 intfc = cp->intf_cache[i]; 1828 intf->altsetting = intfc->altsetting; 1829 intf->num_altsetting = intfc->num_altsetting; 1830 kref_get(&intfc->ref); 1831 1832 alt = usb_altnum_to_altsetting(intf, 0); 1833 1834 /* No altsetting 0? We'll assume the first altsetting. 1835 * We could use a GetInterface call, but if a device is 1836 * so non-compliant that it doesn't have altsetting 0 1837 * then I wouldn't trust its reply anyway. 1838 */ 1839 if (!alt) 1840 alt = &intf->altsetting[0]; 1841 1842 intf->intf_assoc = 1843 find_iad(dev, cp, alt->desc.bInterfaceNumber); 1844 intf->cur_altsetting = alt; 1845 usb_enable_interface(dev, intf, true); 1846 intf->dev.parent = &dev->dev; 1847 intf->dev.driver = NULL; 1848 intf->dev.bus = &usb_bus_type; 1849 intf->dev.type = &usb_if_device_type; 1850 intf->dev.groups = usb_interface_groups; 1851 intf->dev.dma_mask = dev->dev.dma_mask; 1852 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device); 1853 intf->minor = -1; 1854 device_initialize(&intf->dev); 1855 pm_runtime_no_callbacks(&intf->dev); 1856 dev_set_name(&intf->dev, "%d-%s:%d.%d", 1857 dev->bus->busnum, dev->devpath, 1858 configuration, alt->desc.bInterfaceNumber); 1859 } 1860 kfree(new_interfaces); 1861 1862 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1863 USB_REQ_SET_CONFIGURATION, 0, configuration, 0, 1864 NULL, 0, USB_CTRL_SET_TIMEOUT); 1865 if (ret < 0 && cp) { 1866 /* 1867 * All the old state is gone, so what else can we do? 1868 * The device is probably useless now anyway. 1869 */ 1870 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); 1871 for (i = 0; i < nintf; ++i) { 1872 usb_disable_interface(dev, cp->interface[i], true); 1873 put_device(&cp->interface[i]->dev); 1874 cp->interface[i] = NULL; 1875 } 1876 cp = NULL; 1877 } 1878 1879 dev->actconfig = cp; 1880 mutex_unlock(hcd->bandwidth_mutex); 1881 1882 if (!cp) { 1883 usb_set_device_state(dev, USB_STATE_ADDRESS); 1884 1885 /* Leave LPM disabled while the device is unconfigured. */ 1886 usb_autosuspend_device(dev); 1887 return ret; 1888 } 1889 usb_set_device_state(dev, USB_STATE_CONFIGURED); 1890 1891 if (cp->string == NULL && 1892 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS)) 1893 cp->string = usb_cache_string(dev, cp->desc.iConfiguration); 1894 1895 /* Now that the interfaces are installed, re-enable LPM. */ 1896 usb_unlocked_enable_lpm(dev); 1897 /* Enable LTM if it was turned off by usb_disable_device. */ 1898 usb_enable_ltm(dev); 1899 1900 /* Now that all the interfaces are set up, register them 1901 * to trigger binding of drivers to interfaces. probe() 1902 * routines may install different altsettings and may 1903 * claim() any interfaces not yet bound. Many class drivers 1904 * need that: CDC, audio, video, etc. 1905 */ 1906 for (i = 0; i < nintf; ++i) { 1907 struct usb_interface *intf = cp->interface[i]; 1908 1909 dev_dbg(&dev->dev, 1910 "adding %s (config #%d, interface %d)\n", 1911 dev_name(&intf->dev), configuration, 1912 intf->cur_altsetting->desc.bInterfaceNumber); 1913 device_enable_async_suspend(&intf->dev); 1914 ret = device_add(&intf->dev); 1915 if (ret != 0) { 1916 dev_err(&dev->dev, "device_add(%s) --> %d\n", 1917 dev_name(&intf->dev), ret); 1918 continue; 1919 } 1920 create_intf_ep_devs(intf); 1921 } 1922 1923 usb_autosuspend_device(dev); 1924 return 0; 1925 } 1926 EXPORT_SYMBOL_GPL(usb_set_configuration); 1927 1928 static LIST_HEAD(set_config_list); 1929 static DEFINE_SPINLOCK(set_config_lock); 1930 1931 struct set_config_request { 1932 struct usb_device *udev; 1933 int config; 1934 struct work_struct work; 1935 struct list_head node; 1936 }; 1937 1938 /* Worker routine for usb_driver_set_configuration() */ 1939 static void driver_set_config_work(struct work_struct *work) 1940 { 1941 struct set_config_request *req = 1942 container_of(work, struct set_config_request, work); 1943 struct usb_device *udev = req->udev; 1944 1945 usb_lock_device(udev); 1946 spin_lock(&set_config_lock); 1947 list_del(&req->node); 1948 spin_unlock(&set_config_lock); 1949 1950 if (req->config >= -1) /* Is req still valid? */ 1951 usb_set_configuration(udev, req->config); 1952 usb_unlock_device(udev); 1953 usb_put_dev(udev); 1954 kfree(req); 1955 } 1956 1957 /* Cancel pending Set-Config requests for a device whose configuration 1958 * was just changed 1959 */ 1960 static void cancel_async_set_config(struct usb_device *udev) 1961 { 1962 struct set_config_request *req; 1963 1964 spin_lock(&set_config_lock); 1965 list_for_each_entry(req, &set_config_list, node) { 1966 if (req->udev == udev) 1967 req->config = -999; /* Mark as cancelled */ 1968 } 1969 spin_unlock(&set_config_lock); 1970 } 1971 1972 /** 1973 * usb_driver_set_configuration - Provide a way for drivers to change device configurations 1974 * @udev: the device whose configuration is being updated 1975 * @config: the configuration being chosen. 1976 * Context: In process context, must be able to sleep 1977 * 1978 * Device interface drivers are not allowed to change device configurations. 1979 * This is because changing configurations will destroy the interface the 1980 * driver is bound to and create new ones; it would be like a floppy-disk 1981 * driver telling the computer to replace the floppy-disk drive with a 1982 * tape drive! 1983 * 1984 * Still, in certain specialized circumstances the need may arise. This 1985 * routine gets around the normal restrictions by using a work thread to 1986 * submit the change-config request. 1987 * 1988 * Return: 0 if the request was successfully queued, error code otherwise. 1989 * The caller has no way to know whether the queued request will eventually 1990 * succeed. 1991 */ 1992 int usb_driver_set_configuration(struct usb_device *udev, int config) 1993 { 1994 struct set_config_request *req; 1995 1996 req = kmalloc(sizeof(*req), GFP_KERNEL); 1997 if (!req) 1998 return -ENOMEM; 1999 req->udev = udev; 2000 req->config = config; 2001 INIT_WORK(&req->work, driver_set_config_work); 2002 2003 spin_lock(&set_config_lock); 2004 list_add(&req->node, &set_config_list); 2005 spin_unlock(&set_config_lock); 2006 2007 usb_get_dev(udev); 2008 schedule_work(&req->work); 2009 return 0; 2010 } 2011 EXPORT_SYMBOL_GPL(usb_driver_set_configuration); 2012