xref: /openbmc/linux/drivers/usb/core/message.c (revision afb46f79)
1 /*
2  * message.c - synchronous message handling
3  */
4 
5 #include <linux/pci.h>	/* for scatterlist macros */
6 #include <linux/usb.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/mm.h>
10 #include <linux/timer.h>
11 #include <linux/ctype.h>
12 #include <linux/nls.h>
13 #include <linux/device.h>
14 #include <linux/scatterlist.h>
15 #include <linux/usb/quirks.h>
16 #include <linux/usb/hcd.h>	/* for usbcore internals */
17 #include <asm/byteorder.h>
18 
19 #include "usb.h"
20 
21 static void cancel_async_set_config(struct usb_device *udev);
22 
23 struct api_context {
24 	struct completion	done;
25 	int			status;
26 };
27 
28 static void usb_api_blocking_completion(struct urb *urb)
29 {
30 	struct api_context *ctx = urb->context;
31 
32 	ctx->status = urb->status;
33 	complete(&ctx->done);
34 }
35 
36 
37 /*
38  * Starts urb and waits for completion or timeout. Note that this call
39  * is NOT interruptible. Many device driver i/o requests should be
40  * interruptible and therefore these drivers should implement their
41  * own interruptible routines.
42  */
43 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
44 {
45 	struct api_context ctx;
46 	unsigned long expire;
47 	int retval;
48 
49 	init_completion(&ctx.done);
50 	urb->context = &ctx;
51 	urb->actual_length = 0;
52 	retval = usb_submit_urb(urb, GFP_NOIO);
53 	if (unlikely(retval))
54 		goto out;
55 
56 	expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
57 	if (!wait_for_completion_timeout(&ctx.done, expire)) {
58 		usb_kill_urb(urb);
59 		retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
60 
61 		dev_dbg(&urb->dev->dev,
62 			"%s timed out on ep%d%s len=%u/%u\n",
63 			current->comm,
64 			usb_endpoint_num(&urb->ep->desc),
65 			usb_urb_dir_in(urb) ? "in" : "out",
66 			urb->actual_length,
67 			urb->transfer_buffer_length);
68 	} else
69 		retval = ctx.status;
70 out:
71 	if (actual_length)
72 		*actual_length = urb->actual_length;
73 
74 	usb_free_urb(urb);
75 	return retval;
76 }
77 
78 /*-------------------------------------------------------------------*/
79 /* returns status (negative) or length (positive) */
80 static int usb_internal_control_msg(struct usb_device *usb_dev,
81 				    unsigned int pipe,
82 				    struct usb_ctrlrequest *cmd,
83 				    void *data, int len, int timeout)
84 {
85 	struct urb *urb;
86 	int retv;
87 	int length;
88 
89 	urb = usb_alloc_urb(0, GFP_NOIO);
90 	if (!urb)
91 		return -ENOMEM;
92 
93 	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
94 			     len, usb_api_blocking_completion, NULL);
95 
96 	retv = usb_start_wait_urb(urb, timeout, &length);
97 	if (retv < 0)
98 		return retv;
99 	else
100 		return length;
101 }
102 
103 /**
104  * usb_control_msg - Builds a control urb, sends it off and waits for completion
105  * @dev: pointer to the usb device to send the message to
106  * @pipe: endpoint "pipe" to send the message to
107  * @request: USB message request value
108  * @requesttype: USB message request type value
109  * @value: USB message value
110  * @index: USB message index value
111  * @data: pointer to the data to send
112  * @size: length in bytes of the data to send
113  * @timeout: time in msecs to wait for the message to complete before timing
114  *	out (if 0 the wait is forever)
115  *
116  * Context: !in_interrupt ()
117  *
118  * This function sends a simple control message to a specified endpoint and
119  * waits for the message to complete, or timeout.
120  *
121  * Don't use this function from within an interrupt context, like a bottom half
122  * handler.  If you need an asynchronous message, or need to send a message
123  * from within interrupt context, use usb_submit_urb().
124  * If a thread in your driver uses this call, make sure your disconnect()
125  * method can wait for it to complete.  Since you don't have a handle on the
126  * URB used, you can't cancel the request.
127  *
128  * Return: If successful, the number of bytes transferred. Otherwise, a negative
129  * error number.
130  */
131 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
132 		    __u8 requesttype, __u16 value, __u16 index, void *data,
133 		    __u16 size, int timeout)
134 {
135 	struct usb_ctrlrequest *dr;
136 	int ret;
137 
138 	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
139 	if (!dr)
140 		return -ENOMEM;
141 
142 	dr->bRequestType = requesttype;
143 	dr->bRequest = request;
144 	dr->wValue = cpu_to_le16(value);
145 	dr->wIndex = cpu_to_le16(index);
146 	dr->wLength = cpu_to_le16(size);
147 
148 	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
149 
150 	kfree(dr);
151 
152 	return ret;
153 }
154 EXPORT_SYMBOL_GPL(usb_control_msg);
155 
156 /**
157  * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
158  * @usb_dev: pointer to the usb device to send the message to
159  * @pipe: endpoint "pipe" to send the message to
160  * @data: pointer to the data to send
161  * @len: length in bytes of the data to send
162  * @actual_length: pointer to a location to put the actual length transferred
163  *	in bytes
164  * @timeout: time in msecs to wait for the message to complete before
165  *	timing out (if 0 the wait is forever)
166  *
167  * Context: !in_interrupt ()
168  *
169  * This function sends a simple interrupt message to a specified endpoint and
170  * waits for the message to complete, or timeout.
171  *
172  * Don't use this function from within an interrupt context, like a bottom half
173  * handler.  If you need an asynchronous message, or need to send a message
174  * from within interrupt context, use usb_submit_urb() If a thread in your
175  * driver uses this call, make sure your disconnect() method can wait for it to
176  * complete.  Since you don't have a handle on the URB used, you can't cancel
177  * the request.
178  *
179  * Return:
180  * If successful, 0. Otherwise a negative error number. The number of actual
181  * bytes transferred will be stored in the @actual_length parameter.
182  */
183 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
184 		      void *data, int len, int *actual_length, int timeout)
185 {
186 	return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
187 }
188 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
189 
190 /**
191  * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
192  * @usb_dev: pointer to the usb device to send the message to
193  * @pipe: endpoint "pipe" to send the message to
194  * @data: pointer to the data to send
195  * @len: length in bytes of the data to send
196  * @actual_length: pointer to a location to put the actual length transferred
197  *	in bytes
198  * @timeout: time in msecs to wait for the message to complete before
199  *	timing out (if 0 the wait is forever)
200  *
201  * Context: !in_interrupt ()
202  *
203  * This function sends a simple bulk message to a specified endpoint
204  * and waits for the message to complete, or timeout.
205  *
206  * Don't use this function from within an interrupt context, like a bottom half
207  * handler.  If you need an asynchronous message, or need to send a message
208  * from within interrupt context, use usb_submit_urb() If a thread in your
209  * driver uses this call, make sure your disconnect() method can wait for it to
210  * complete.  Since you don't have a handle on the URB used, you can't cancel
211  * the request.
212  *
213  * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
214  * users are forced to abuse this routine by using it to submit URBs for
215  * interrupt endpoints.  We will take the liberty of creating an interrupt URB
216  * (with the default interval) if the target is an interrupt endpoint.
217  *
218  * Return:
219  * If successful, 0. Otherwise a negative error number. The number of actual
220  * bytes transferred will be stored in the @actual_length parameter.
221  *
222  */
223 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
224 		 void *data, int len, int *actual_length, int timeout)
225 {
226 	struct urb *urb;
227 	struct usb_host_endpoint *ep;
228 
229 	ep = usb_pipe_endpoint(usb_dev, pipe);
230 	if (!ep || len < 0)
231 		return -EINVAL;
232 
233 	urb = usb_alloc_urb(0, GFP_KERNEL);
234 	if (!urb)
235 		return -ENOMEM;
236 
237 	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
238 			USB_ENDPOINT_XFER_INT) {
239 		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
240 		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
241 				usb_api_blocking_completion, NULL,
242 				ep->desc.bInterval);
243 	} else
244 		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
245 				usb_api_blocking_completion, NULL);
246 
247 	return usb_start_wait_urb(urb, timeout, actual_length);
248 }
249 EXPORT_SYMBOL_GPL(usb_bulk_msg);
250 
251 /*-------------------------------------------------------------------*/
252 
253 static void sg_clean(struct usb_sg_request *io)
254 {
255 	if (io->urbs) {
256 		while (io->entries--)
257 			usb_free_urb(io->urbs[io->entries]);
258 		kfree(io->urbs);
259 		io->urbs = NULL;
260 	}
261 	io->dev = NULL;
262 }
263 
264 static void sg_complete(struct urb *urb)
265 {
266 	struct usb_sg_request *io = urb->context;
267 	int status = urb->status;
268 
269 	spin_lock(&io->lock);
270 
271 	/* In 2.5 we require hcds' endpoint queues not to progress after fault
272 	 * reports, until the completion callback (this!) returns.  That lets
273 	 * device driver code (like this routine) unlink queued urbs first,
274 	 * if it needs to, since the HC won't work on them at all.  So it's
275 	 * not possible for page N+1 to overwrite page N, and so on.
276 	 *
277 	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
278 	 * complete before the HCD can get requests away from hardware,
279 	 * though never during cleanup after a hard fault.
280 	 */
281 	if (io->status
282 			&& (io->status != -ECONNRESET
283 				|| status != -ECONNRESET)
284 			&& urb->actual_length) {
285 		dev_err(io->dev->bus->controller,
286 			"dev %s ep%d%s scatterlist error %d/%d\n",
287 			io->dev->devpath,
288 			usb_endpoint_num(&urb->ep->desc),
289 			usb_urb_dir_in(urb) ? "in" : "out",
290 			status, io->status);
291 		/* BUG (); */
292 	}
293 
294 	if (io->status == 0 && status && status != -ECONNRESET) {
295 		int i, found, retval;
296 
297 		io->status = status;
298 
299 		/* the previous urbs, and this one, completed already.
300 		 * unlink pending urbs so they won't rx/tx bad data.
301 		 * careful: unlink can sometimes be synchronous...
302 		 */
303 		spin_unlock(&io->lock);
304 		for (i = 0, found = 0; i < io->entries; i++) {
305 			if (!io->urbs[i] || !io->urbs[i]->dev)
306 				continue;
307 			if (found) {
308 				retval = usb_unlink_urb(io->urbs[i]);
309 				if (retval != -EINPROGRESS &&
310 				    retval != -ENODEV &&
311 				    retval != -EBUSY &&
312 				    retval != -EIDRM)
313 					dev_err(&io->dev->dev,
314 						"%s, unlink --> %d\n",
315 						__func__, retval);
316 			} else if (urb == io->urbs[i])
317 				found = 1;
318 		}
319 		spin_lock(&io->lock);
320 	}
321 
322 	/* on the last completion, signal usb_sg_wait() */
323 	io->bytes += urb->actual_length;
324 	io->count--;
325 	if (!io->count)
326 		complete(&io->complete);
327 
328 	spin_unlock(&io->lock);
329 }
330 
331 
332 /**
333  * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
334  * @io: request block being initialized.  until usb_sg_wait() returns,
335  *	treat this as a pointer to an opaque block of memory,
336  * @dev: the usb device that will send or receive the data
337  * @pipe: endpoint "pipe" used to transfer the data
338  * @period: polling rate for interrupt endpoints, in frames or
339  * 	(for high speed endpoints) microframes; ignored for bulk
340  * @sg: scatterlist entries
341  * @nents: how many entries in the scatterlist
342  * @length: how many bytes to send from the scatterlist, or zero to
343  * 	send every byte identified in the list.
344  * @mem_flags: SLAB_* flags affecting memory allocations in this call
345  *
346  * This initializes a scatter/gather request, allocating resources such as
347  * I/O mappings and urb memory (except maybe memory used by USB controller
348  * drivers).
349  *
350  * The request must be issued using usb_sg_wait(), which waits for the I/O to
351  * complete (or to be canceled) and then cleans up all resources allocated by
352  * usb_sg_init().
353  *
354  * The request may be canceled with usb_sg_cancel(), either before or after
355  * usb_sg_wait() is called.
356  *
357  * Return: Zero for success, else a negative errno value.
358  */
359 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
360 		unsigned pipe, unsigned	period, struct scatterlist *sg,
361 		int nents, size_t length, gfp_t mem_flags)
362 {
363 	int i;
364 	int urb_flags;
365 	int use_sg;
366 
367 	if (!io || !dev || !sg
368 			|| usb_pipecontrol(pipe)
369 			|| usb_pipeisoc(pipe)
370 			|| nents <= 0)
371 		return -EINVAL;
372 
373 	spin_lock_init(&io->lock);
374 	io->dev = dev;
375 	io->pipe = pipe;
376 
377 	if (dev->bus->sg_tablesize > 0) {
378 		use_sg = true;
379 		io->entries = 1;
380 	} else {
381 		use_sg = false;
382 		io->entries = nents;
383 	}
384 
385 	/* initialize all the urbs we'll use */
386 	io->urbs = kmalloc(io->entries * sizeof(*io->urbs), mem_flags);
387 	if (!io->urbs)
388 		goto nomem;
389 
390 	urb_flags = URB_NO_INTERRUPT;
391 	if (usb_pipein(pipe))
392 		urb_flags |= URB_SHORT_NOT_OK;
393 
394 	for_each_sg(sg, sg, io->entries, i) {
395 		struct urb *urb;
396 		unsigned len;
397 
398 		urb = usb_alloc_urb(0, mem_flags);
399 		if (!urb) {
400 			io->entries = i;
401 			goto nomem;
402 		}
403 		io->urbs[i] = urb;
404 
405 		urb->dev = NULL;
406 		urb->pipe = pipe;
407 		urb->interval = period;
408 		urb->transfer_flags = urb_flags;
409 		urb->complete = sg_complete;
410 		urb->context = io;
411 		urb->sg = sg;
412 
413 		if (use_sg) {
414 			/* There is no single transfer buffer */
415 			urb->transfer_buffer = NULL;
416 			urb->num_sgs = nents;
417 
418 			/* A length of zero means transfer the whole sg list */
419 			len = length;
420 			if (len == 0) {
421 				struct scatterlist	*sg2;
422 				int			j;
423 
424 				for_each_sg(sg, sg2, nents, j)
425 					len += sg2->length;
426 			}
427 		} else {
428 			/*
429 			 * Some systems can't use DMA; they use PIO instead.
430 			 * For their sakes, transfer_buffer is set whenever
431 			 * possible.
432 			 */
433 			if (!PageHighMem(sg_page(sg)))
434 				urb->transfer_buffer = sg_virt(sg);
435 			else
436 				urb->transfer_buffer = NULL;
437 
438 			len = sg->length;
439 			if (length) {
440 				len = min_t(size_t, len, length);
441 				length -= len;
442 				if (length == 0)
443 					io->entries = i + 1;
444 			}
445 		}
446 		urb->transfer_buffer_length = len;
447 	}
448 	io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
449 
450 	/* transaction state */
451 	io->count = io->entries;
452 	io->status = 0;
453 	io->bytes = 0;
454 	init_completion(&io->complete);
455 	return 0;
456 
457 nomem:
458 	sg_clean(io);
459 	return -ENOMEM;
460 }
461 EXPORT_SYMBOL_GPL(usb_sg_init);
462 
463 /**
464  * usb_sg_wait - synchronously execute scatter/gather request
465  * @io: request block handle, as initialized with usb_sg_init().
466  * 	some fields become accessible when this call returns.
467  * Context: !in_interrupt ()
468  *
469  * This function blocks until the specified I/O operation completes.  It
470  * leverages the grouping of the related I/O requests to get good transfer
471  * rates, by queueing the requests.  At higher speeds, such queuing can
472  * significantly improve USB throughput.
473  *
474  * There are three kinds of completion for this function.
475  * (1) success, where io->status is zero.  The number of io->bytes
476  *     transferred is as requested.
477  * (2) error, where io->status is a negative errno value.  The number
478  *     of io->bytes transferred before the error is usually less
479  *     than requested, and can be nonzero.
480  * (3) cancellation, a type of error with status -ECONNRESET that
481  *     is initiated by usb_sg_cancel().
482  *
483  * When this function returns, all memory allocated through usb_sg_init() or
484  * this call will have been freed.  The request block parameter may still be
485  * passed to usb_sg_cancel(), or it may be freed.  It could also be
486  * reinitialized and then reused.
487  *
488  * Data Transfer Rates:
489  *
490  * Bulk transfers are valid for full or high speed endpoints.
491  * The best full speed data rate is 19 packets of 64 bytes each
492  * per frame, or 1216 bytes per millisecond.
493  * The best high speed data rate is 13 packets of 512 bytes each
494  * per microframe, or 52 KBytes per millisecond.
495  *
496  * The reason to use interrupt transfers through this API would most likely
497  * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
498  * could be transferred.  That capability is less useful for low or full
499  * speed interrupt endpoints, which allow at most one packet per millisecond,
500  * of at most 8 or 64 bytes (respectively).
501  *
502  * It is not necessary to call this function to reserve bandwidth for devices
503  * under an xHCI host controller, as the bandwidth is reserved when the
504  * configuration or interface alt setting is selected.
505  */
506 void usb_sg_wait(struct usb_sg_request *io)
507 {
508 	int i;
509 	int entries = io->entries;
510 
511 	/* queue the urbs.  */
512 	spin_lock_irq(&io->lock);
513 	i = 0;
514 	while (i < entries && !io->status) {
515 		int retval;
516 
517 		io->urbs[i]->dev = io->dev;
518 		retval = usb_submit_urb(io->urbs[i], GFP_ATOMIC);
519 
520 		/* after we submit, let completions or cancellations fire;
521 		 * we handshake using io->status.
522 		 */
523 		spin_unlock_irq(&io->lock);
524 		switch (retval) {
525 			/* maybe we retrying will recover */
526 		case -ENXIO:	/* hc didn't queue this one */
527 		case -EAGAIN:
528 		case -ENOMEM:
529 			retval = 0;
530 			yield();
531 			break;
532 
533 			/* no error? continue immediately.
534 			 *
535 			 * NOTE: to work better with UHCI (4K I/O buffer may
536 			 * need 3K of TDs) it may be good to limit how many
537 			 * URBs are queued at once; N milliseconds?
538 			 */
539 		case 0:
540 			++i;
541 			cpu_relax();
542 			break;
543 
544 			/* fail any uncompleted urbs */
545 		default:
546 			io->urbs[i]->status = retval;
547 			dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
548 				__func__, retval);
549 			usb_sg_cancel(io);
550 		}
551 		spin_lock_irq(&io->lock);
552 		if (retval && (io->status == 0 || io->status == -ECONNRESET))
553 			io->status = retval;
554 	}
555 	io->count -= entries - i;
556 	if (io->count == 0)
557 		complete(&io->complete);
558 	spin_unlock_irq(&io->lock);
559 
560 	/* OK, yes, this could be packaged as non-blocking.
561 	 * So could the submit loop above ... but it's easier to
562 	 * solve neither problem than to solve both!
563 	 */
564 	wait_for_completion(&io->complete);
565 
566 	sg_clean(io);
567 }
568 EXPORT_SYMBOL_GPL(usb_sg_wait);
569 
570 /**
571  * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
572  * @io: request block, initialized with usb_sg_init()
573  *
574  * This stops a request after it has been started by usb_sg_wait().
575  * It can also prevents one initialized by usb_sg_init() from starting,
576  * so that call just frees resources allocated to the request.
577  */
578 void usb_sg_cancel(struct usb_sg_request *io)
579 {
580 	unsigned long flags;
581 
582 	spin_lock_irqsave(&io->lock, flags);
583 
584 	/* shut everything down, if it didn't already */
585 	if (!io->status) {
586 		int i;
587 
588 		io->status = -ECONNRESET;
589 		spin_unlock(&io->lock);
590 		for (i = 0; i < io->entries; i++) {
591 			int retval;
592 
593 			if (!io->urbs[i]->dev)
594 				continue;
595 			retval = usb_unlink_urb(io->urbs[i]);
596 			if (retval != -EINPROGRESS
597 					&& retval != -ENODEV
598 					&& retval != -EBUSY
599 					&& retval != -EIDRM)
600 				dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
601 					__func__, retval);
602 		}
603 		spin_lock(&io->lock);
604 	}
605 	spin_unlock_irqrestore(&io->lock, flags);
606 }
607 EXPORT_SYMBOL_GPL(usb_sg_cancel);
608 
609 /*-------------------------------------------------------------------*/
610 
611 /**
612  * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
613  * @dev: the device whose descriptor is being retrieved
614  * @type: the descriptor type (USB_DT_*)
615  * @index: the number of the descriptor
616  * @buf: where to put the descriptor
617  * @size: how big is "buf"?
618  * Context: !in_interrupt ()
619  *
620  * Gets a USB descriptor.  Convenience functions exist to simplify
621  * getting some types of descriptors.  Use
622  * usb_get_string() or usb_string() for USB_DT_STRING.
623  * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
624  * are part of the device structure.
625  * In addition to a number of USB-standard descriptors, some
626  * devices also use class-specific or vendor-specific descriptors.
627  *
628  * This call is synchronous, and may not be used in an interrupt context.
629  *
630  * Return: The number of bytes received on success, or else the status code
631  * returned by the underlying usb_control_msg() call.
632  */
633 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
634 		       unsigned char index, void *buf, int size)
635 {
636 	int i;
637 	int result;
638 
639 	memset(buf, 0, size);	/* Make sure we parse really received data */
640 
641 	for (i = 0; i < 3; ++i) {
642 		/* retry on length 0 or error; some devices are flakey */
643 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
644 				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
645 				(type << 8) + index, 0, buf, size,
646 				USB_CTRL_GET_TIMEOUT);
647 		if (result <= 0 && result != -ETIMEDOUT)
648 			continue;
649 		if (result > 1 && ((u8 *)buf)[1] != type) {
650 			result = -ENODATA;
651 			continue;
652 		}
653 		break;
654 	}
655 	return result;
656 }
657 EXPORT_SYMBOL_GPL(usb_get_descriptor);
658 
659 /**
660  * usb_get_string - gets a string descriptor
661  * @dev: the device whose string descriptor is being retrieved
662  * @langid: code for language chosen (from string descriptor zero)
663  * @index: the number of the descriptor
664  * @buf: where to put the string
665  * @size: how big is "buf"?
666  * Context: !in_interrupt ()
667  *
668  * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
669  * in little-endian byte order).
670  * The usb_string() function will often be a convenient way to turn
671  * these strings into kernel-printable form.
672  *
673  * Strings may be referenced in device, configuration, interface, or other
674  * descriptors, and could also be used in vendor-specific ways.
675  *
676  * This call is synchronous, and may not be used in an interrupt context.
677  *
678  * Return: The number of bytes received on success, or else the status code
679  * returned by the underlying usb_control_msg() call.
680  */
681 static int usb_get_string(struct usb_device *dev, unsigned short langid,
682 			  unsigned char index, void *buf, int size)
683 {
684 	int i;
685 	int result;
686 
687 	for (i = 0; i < 3; ++i) {
688 		/* retry on length 0 or stall; some devices are flakey */
689 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
690 			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
691 			(USB_DT_STRING << 8) + index, langid, buf, size,
692 			USB_CTRL_GET_TIMEOUT);
693 		if (result == 0 || result == -EPIPE)
694 			continue;
695 		if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
696 			result = -ENODATA;
697 			continue;
698 		}
699 		break;
700 	}
701 	return result;
702 }
703 
704 static void usb_try_string_workarounds(unsigned char *buf, int *length)
705 {
706 	int newlength, oldlength = *length;
707 
708 	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
709 		if (!isprint(buf[newlength]) || buf[newlength + 1])
710 			break;
711 
712 	if (newlength > 2) {
713 		buf[0] = newlength;
714 		*length = newlength;
715 	}
716 }
717 
718 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
719 			  unsigned int index, unsigned char *buf)
720 {
721 	int rc;
722 
723 	/* Try to read the string descriptor by asking for the maximum
724 	 * possible number of bytes */
725 	if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
726 		rc = -EIO;
727 	else
728 		rc = usb_get_string(dev, langid, index, buf, 255);
729 
730 	/* If that failed try to read the descriptor length, then
731 	 * ask for just that many bytes */
732 	if (rc < 2) {
733 		rc = usb_get_string(dev, langid, index, buf, 2);
734 		if (rc == 2)
735 			rc = usb_get_string(dev, langid, index, buf, buf[0]);
736 	}
737 
738 	if (rc >= 2) {
739 		if (!buf[0] && !buf[1])
740 			usb_try_string_workarounds(buf, &rc);
741 
742 		/* There might be extra junk at the end of the descriptor */
743 		if (buf[0] < rc)
744 			rc = buf[0];
745 
746 		rc = rc - (rc & 1); /* force a multiple of two */
747 	}
748 
749 	if (rc < 2)
750 		rc = (rc < 0 ? rc : -EINVAL);
751 
752 	return rc;
753 }
754 
755 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
756 {
757 	int err;
758 
759 	if (dev->have_langid)
760 		return 0;
761 
762 	if (dev->string_langid < 0)
763 		return -EPIPE;
764 
765 	err = usb_string_sub(dev, 0, 0, tbuf);
766 
767 	/* If the string was reported but is malformed, default to english
768 	 * (0x0409) */
769 	if (err == -ENODATA || (err > 0 && err < 4)) {
770 		dev->string_langid = 0x0409;
771 		dev->have_langid = 1;
772 		dev_err(&dev->dev,
773 			"string descriptor 0 malformed (err = %d), "
774 			"defaulting to 0x%04x\n",
775 				err, dev->string_langid);
776 		return 0;
777 	}
778 
779 	/* In case of all other errors, we assume the device is not able to
780 	 * deal with strings at all. Set string_langid to -1 in order to
781 	 * prevent any string to be retrieved from the device */
782 	if (err < 0) {
783 		dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
784 					err);
785 		dev->string_langid = -1;
786 		return -EPIPE;
787 	}
788 
789 	/* always use the first langid listed */
790 	dev->string_langid = tbuf[2] | (tbuf[3] << 8);
791 	dev->have_langid = 1;
792 	dev_dbg(&dev->dev, "default language 0x%04x\n",
793 				dev->string_langid);
794 	return 0;
795 }
796 
797 /**
798  * usb_string - returns UTF-8 version of a string descriptor
799  * @dev: the device whose string descriptor is being retrieved
800  * @index: the number of the descriptor
801  * @buf: where to put the string
802  * @size: how big is "buf"?
803  * Context: !in_interrupt ()
804  *
805  * This converts the UTF-16LE encoded strings returned by devices, from
806  * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
807  * that are more usable in most kernel contexts.  Note that this function
808  * chooses strings in the first language supported by the device.
809  *
810  * This call is synchronous, and may not be used in an interrupt context.
811  *
812  * Return: length of the string (>= 0) or usb_control_msg status (< 0).
813  */
814 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
815 {
816 	unsigned char *tbuf;
817 	int err;
818 
819 	if (dev->state == USB_STATE_SUSPENDED)
820 		return -EHOSTUNREACH;
821 	if (size <= 0 || !buf || !index)
822 		return -EINVAL;
823 	buf[0] = 0;
824 	tbuf = kmalloc(256, GFP_NOIO);
825 	if (!tbuf)
826 		return -ENOMEM;
827 
828 	err = usb_get_langid(dev, tbuf);
829 	if (err < 0)
830 		goto errout;
831 
832 	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
833 	if (err < 0)
834 		goto errout;
835 
836 	size--;		/* leave room for trailing NULL char in output buffer */
837 	err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
838 			UTF16_LITTLE_ENDIAN, buf, size);
839 	buf[err] = 0;
840 
841 	if (tbuf[1] != USB_DT_STRING)
842 		dev_dbg(&dev->dev,
843 			"wrong descriptor type %02x for string %d (\"%s\")\n",
844 			tbuf[1], index, buf);
845 
846  errout:
847 	kfree(tbuf);
848 	return err;
849 }
850 EXPORT_SYMBOL_GPL(usb_string);
851 
852 /* one UTF-8-encoded 16-bit character has at most three bytes */
853 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
854 
855 /**
856  * usb_cache_string - read a string descriptor and cache it for later use
857  * @udev: the device whose string descriptor is being read
858  * @index: the descriptor index
859  *
860  * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
861  * or %NULL if the index is 0 or the string could not be read.
862  */
863 char *usb_cache_string(struct usb_device *udev, int index)
864 {
865 	char *buf;
866 	char *smallbuf = NULL;
867 	int len;
868 
869 	if (index <= 0)
870 		return NULL;
871 
872 	buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
873 	if (buf) {
874 		len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
875 		if (len > 0) {
876 			smallbuf = kmalloc(++len, GFP_NOIO);
877 			if (!smallbuf)
878 				return buf;
879 			memcpy(smallbuf, buf, len);
880 		}
881 		kfree(buf);
882 	}
883 	return smallbuf;
884 }
885 
886 /*
887  * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
888  * @dev: the device whose device descriptor is being updated
889  * @size: how much of the descriptor to read
890  * Context: !in_interrupt ()
891  *
892  * Updates the copy of the device descriptor stored in the device structure,
893  * which dedicates space for this purpose.
894  *
895  * Not exported, only for use by the core.  If drivers really want to read
896  * the device descriptor directly, they can call usb_get_descriptor() with
897  * type = USB_DT_DEVICE and index = 0.
898  *
899  * This call is synchronous, and may not be used in an interrupt context.
900  *
901  * Return: The number of bytes received on success, or else the status code
902  * returned by the underlying usb_control_msg() call.
903  */
904 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
905 {
906 	struct usb_device_descriptor *desc;
907 	int ret;
908 
909 	if (size > sizeof(*desc))
910 		return -EINVAL;
911 	desc = kmalloc(sizeof(*desc), GFP_NOIO);
912 	if (!desc)
913 		return -ENOMEM;
914 
915 	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
916 	if (ret >= 0)
917 		memcpy(&dev->descriptor, desc, size);
918 	kfree(desc);
919 	return ret;
920 }
921 
922 /**
923  * usb_get_status - issues a GET_STATUS call
924  * @dev: the device whose status is being checked
925  * @type: USB_RECIP_*; for device, interface, or endpoint
926  * @target: zero (for device), else interface or endpoint number
927  * @data: pointer to two bytes of bitmap data
928  * Context: !in_interrupt ()
929  *
930  * Returns device, interface, or endpoint status.  Normally only of
931  * interest to see if the device is self powered, or has enabled the
932  * remote wakeup facility; or whether a bulk or interrupt endpoint
933  * is halted ("stalled").
934  *
935  * Bits in these status bitmaps are set using the SET_FEATURE request,
936  * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
937  * function should be used to clear halt ("stall") status.
938  *
939  * This call is synchronous, and may not be used in an interrupt context.
940  *
941  * Returns 0 and the status value in *@data (in host byte order) on success,
942  * or else the status code from the underlying usb_control_msg() call.
943  */
944 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
945 {
946 	int ret;
947 	__le16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
948 
949 	if (!status)
950 		return -ENOMEM;
951 
952 	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
953 		USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
954 		sizeof(*status), USB_CTRL_GET_TIMEOUT);
955 
956 	if (ret == 2) {
957 		*(u16 *) data = le16_to_cpu(*status);
958 		ret = 0;
959 	} else if (ret >= 0) {
960 		ret = -EIO;
961 	}
962 	kfree(status);
963 	return ret;
964 }
965 EXPORT_SYMBOL_GPL(usb_get_status);
966 
967 /**
968  * usb_clear_halt - tells device to clear endpoint halt/stall condition
969  * @dev: device whose endpoint is halted
970  * @pipe: endpoint "pipe" being cleared
971  * Context: !in_interrupt ()
972  *
973  * This is used to clear halt conditions for bulk and interrupt endpoints,
974  * as reported by URB completion status.  Endpoints that are halted are
975  * sometimes referred to as being "stalled".  Such endpoints are unable
976  * to transmit or receive data until the halt status is cleared.  Any URBs
977  * queued for such an endpoint should normally be unlinked by the driver
978  * before clearing the halt condition, as described in sections 5.7.5
979  * and 5.8.5 of the USB 2.0 spec.
980  *
981  * Note that control and isochronous endpoints don't halt, although control
982  * endpoints report "protocol stall" (for unsupported requests) using the
983  * same status code used to report a true stall.
984  *
985  * This call is synchronous, and may not be used in an interrupt context.
986  *
987  * Return: Zero on success, or else the status code returned by the
988  * underlying usb_control_msg() call.
989  */
990 int usb_clear_halt(struct usb_device *dev, int pipe)
991 {
992 	int result;
993 	int endp = usb_pipeendpoint(pipe);
994 
995 	if (usb_pipein(pipe))
996 		endp |= USB_DIR_IN;
997 
998 	/* we don't care if it wasn't halted first. in fact some devices
999 	 * (like some ibmcam model 1 units) seem to expect hosts to make
1000 	 * this request for iso endpoints, which can't halt!
1001 	 */
1002 	result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1003 		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1004 		USB_ENDPOINT_HALT, endp, NULL, 0,
1005 		USB_CTRL_SET_TIMEOUT);
1006 
1007 	/* don't un-halt or force to DATA0 except on success */
1008 	if (result < 0)
1009 		return result;
1010 
1011 	/* NOTE:  seems like Microsoft and Apple don't bother verifying
1012 	 * the clear "took", so some devices could lock up if you check...
1013 	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
1014 	 *
1015 	 * NOTE:  make sure the logic here doesn't diverge much from
1016 	 * the copy in usb-storage, for as long as we need two copies.
1017 	 */
1018 
1019 	usb_reset_endpoint(dev, endp);
1020 
1021 	return 0;
1022 }
1023 EXPORT_SYMBOL_GPL(usb_clear_halt);
1024 
1025 static int create_intf_ep_devs(struct usb_interface *intf)
1026 {
1027 	struct usb_device *udev = interface_to_usbdev(intf);
1028 	struct usb_host_interface *alt = intf->cur_altsetting;
1029 	int i;
1030 
1031 	if (intf->ep_devs_created || intf->unregistering)
1032 		return 0;
1033 
1034 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1035 		(void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1036 	intf->ep_devs_created = 1;
1037 	return 0;
1038 }
1039 
1040 static void remove_intf_ep_devs(struct usb_interface *intf)
1041 {
1042 	struct usb_host_interface *alt = intf->cur_altsetting;
1043 	int i;
1044 
1045 	if (!intf->ep_devs_created)
1046 		return;
1047 
1048 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1049 		usb_remove_ep_devs(&alt->endpoint[i]);
1050 	intf->ep_devs_created = 0;
1051 }
1052 
1053 /**
1054  * usb_disable_endpoint -- Disable an endpoint by address
1055  * @dev: the device whose endpoint is being disabled
1056  * @epaddr: the endpoint's address.  Endpoint number for output,
1057  *	endpoint number + USB_DIR_IN for input
1058  * @reset_hardware: flag to erase any endpoint state stored in the
1059  *	controller hardware
1060  *
1061  * Disables the endpoint for URB submission and nukes all pending URBs.
1062  * If @reset_hardware is set then also deallocates hcd/hardware state
1063  * for the endpoint.
1064  */
1065 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1066 		bool reset_hardware)
1067 {
1068 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1069 	struct usb_host_endpoint *ep;
1070 
1071 	if (!dev)
1072 		return;
1073 
1074 	if (usb_endpoint_out(epaddr)) {
1075 		ep = dev->ep_out[epnum];
1076 		if (reset_hardware)
1077 			dev->ep_out[epnum] = NULL;
1078 	} else {
1079 		ep = dev->ep_in[epnum];
1080 		if (reset_hardware)
1081 			dev->ep_in[epnum] = NULL;
1082 	}
1083 	if (ep) {
1084 		ep->enabled = 0;
1085 		usb_hcd_flush_endpoint(dev, ep);
1086 		if (reset_hardware)
1087 			usb_hcd_disable_endpoint(dev, ep);
1088 	}
1089 }
1090 
1091 /**
1092  * usb_reset_endpoint - Reset an endpoint's state.
1093  * @dev: the device whose endpoint is to be reset
1094  * @epaddr: the endpoint's address.  Endpoint number for output,
1095  *	endpoint number + USB_DIR_IN for input
1096  *
1097  * Resets any host-side endpoint state such as the toggle bit,
1098  * sequence number or current window.
1099  */
1100 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1101 {
1102 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1103 	struct usb_host_endpoint *ep;
1104 
1105 	if (usb_endpoint_out(epaddr))
1106 		ep = dev->ep_out[epnum];
1107 	else
1108 		ep = dev->ep_in[epnum];
1109 	if (ep)
1110 		usb_hcd_reset_endpoint(dev, ep);
1111 }
1112 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1113 
1114 
1115 /**
1116  * usb_disable_interface -- Disable all endpoints for an interface
1117  * @dev: the device whose interface is being disabled
1118  * @intf: pointer to the interface descriptor
1119  * @reset_hardware: flag to erase any endpoint state stored in the
1120  *	controller hardware
1121  *
1122  * Disables all the endpoints for the interface's current altsetting.
1123  */
1124 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1125 		bool reset_hardware)
1126 {
1127 	struct usb_host_interface *alt = intf->cur_altsetting;
1128 	int i;
1129 
1130 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1131 		usb_disable_endpoint(dev,
1132 				alt->endpoint[i].desc.bEndpointAddress,
1133 				reset_hardware);
1134 	}
1135 }
1136 
1137 /**
1138  * usb_disable_device - Disable all the endpoints for a USB device
1139  * @dev: the device whose endpoints are being disabled
1140  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1141  *
1142  * Disables all the device's endpoints, potentially including endpoint 0.
1143  * Deallocates hcd/hardware state for the endpoints (nuking all or most
1144  * pending urbs) and usbcore state for the interfaces, so that usbcore
1145  * must usb_set_configuration() before any interfaces could be used.
1146  */
1147 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1148 {
1149 	int i;
1150 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1151 
1152 	/* getting rid of interfaces will disconnect
1153 	 * any drivers bound to them (a key side effect)
1154 	 */
1155 	if (dev->actconfig) {
1156 		/*
1157 		 * FIXME: In order to avoid self-deadlock involving the
1158 		 * bandwidth_mutex, we have to mark all the interfaces
1159 		 * before unregistering any of them.
1160 		 */
1161 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1162 			dev->actconfig->interface[i]->unregistering = 1;
1163 
1164 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1165 			struct usb_interface	*interface;
1166 
1167 			/* remove this interface if it has been registered */
1168 			interface = dev->actconfig->interface[i];
1169 			if (!device_is_registered(&interface->dev))
1170 				continue;
1171 			dev_dbg(&dev->dev, "unregistering interface %s\n",
1172 				dev_name(&interface->dev));
1173 			remove_intf_ep_devs(interface);
1174 			device_del(&interface->dev);
1175 		}
1176 
1177 		/* Now that the interfaces are unbound, nobody should
1178 		 * try to access them.
1179 		 */
1180 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1181 			put_device(&dev->actconfig->interface[i]->dev);
1182 			dev->actconfig->interface[i] = NULL;
1183 		}
1184 
1185 		if (dev->usb2_hw_lpm_enabled == 1)
1186 			usb_set_usb2_hardware_lpm(dev, 0);
1187 		usb_unlocked_disable_lpm(dev);
1188 		usb_disable_ltm(dev);
1189 
1190 		dev->actconfig = NULL;
1191 		if (dev->state == USB_STATE_CONFIGURED)
1192 			usb_set_device_state(dev, USB_STATE_ADDRESS);
1193 	}
1194 
1195 	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1196 		skip_ep0 ? "non-ep0" : "all");
1197 	if (hcd->driver->check_bandwidth) {
1198 		/* First pass: Cancel URBs, leave endpoint pointers intact. */
1199 		for (i = skip_ep0; i < 16; ++i) {
1200 			usb_disable_endpoint(dev, i, false);
1201 			usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1202 		}
1203 		/* Remove endpoints from the host controller internal state */
1204 		mutex_lock(hcd->bandwidth_mutex);
1205 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1206 		mutex_unlock(hcd->bandwidth_mutex);
1207 		/* Second pass: remove endpoint pointers */
1208 	}
1209 	for (i = skip_ep0; i < 16; ++i) {
1210 		usb_disable_endpoint(dev, i, true);
1211 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1212 	}
1213 }
1214 
1215 /**
1216  * usb_enable_endpoint - Enable an endpoint for USB communications
1217  * @dev: the device whose interface is being enabled
1218  * @ep: the endpoint
1219  * @reset_ep: flag to reset the endpoint state
1220  *
1221  * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1222  * For control endpoints, both the input and output sides are handled.
1223  */
1224 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1225 		bool reset_ep)
1226 {
1227 	int epnum = usb_endpoint_num(&ep->desc);
1228 	int is_out = usb_endpoint_dir_out(&ep->desc);
1229 	int is_control = usb_endpoint_xfer_control(&ep->desc);
1230 
1231 	if (reset_ep)
1232 		usb_hcd_reset_endpoint(dev, ep);
1233 	if (is_out || is_control)
1234 		dev->ep_out[epnum] = ep;
1235 	if (!is_out || is_control)
1236 		dev->ep_in[epnum] = ep;
1237 	ep->enabled = 1;
1238 }
1239 
1240 /**
1241  * usb_enable_interface - Enable all the endpoints for an interface
1242  * @dev: the device whose interface is being enabled
1243  * @intf: pointer to the interface descriptor
1244  * @reset_eps: flag to reset the endpoints' state
1245  *
1246  * Enables all the endpoints for the interface's current altsetting.
1247  */
1248 void usb_enable_interface(struct usb_device *dev,
1249 		struct usb_interface *intf, bool reset_eps)
1250 {
1251 	struct usb_host_interface *alt = intf->cur_altsetting;
1252 	int i;
1253 
1254 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1255 		usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1256 }
1257 
1258 /**
1259  * usb_set_interface - Makes a particular alternate setting be current
1260  * @dev: the device whose interface is being updated
1261  * @interface: the interface being updated
1262  * @alternate: the setting being chosen.
1263  * Context: !in_interrupt ()
1264  *
1265  * This is used to enable data transfers on interfaces that may not
1266  * be enabled by default.  Not all devices support such configurability.
1267  * Only the driver bound to an interface may change its setting.
1268  *
1269  * Within any given configuration, each interface may have several
1270  * alternative settings.  These are often used to control levels of
1271  * bandwidth consumption.  For example, the default setting for a high
1272  * speed interrupt endpoint may not send more than 64 bytes per microframe,
1273  * while interrupt transfers of up to 3KBytes per microframe are legal.
1274  * Also, isochronous endpoints may never be part of an
1275  * interface's default setting.  To access such bandwidth, alternate
1276  * interface settings must be made current.
1277  *
1278  * Note that in the Linux USB subsystem, bandwidth associated with
1279  * an endpoint in a given alternate setting is not reserved until an URB
1280  * is submitted that needs that bandwidth.  Some other operating systems
1281  * allocate bandwidth early, when a configuration is chosen.
1282  *
1283  * This call is synchronous, and may not be used in an interrupt context.
1284  * Also, drivers must not change altsettings while urbs are scheduled for
1285  * endpoints in that interface; all such urbs must first be completed
1286  * (perhaps forced by unlinking).
1287  *
1288  * Return: Zero on success, or else the status code returned by the
1289  * underlying usb_control_msg() call.
1290  */
1291 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1292 {
1293 	struct usb_interface *iface;
1294 	struct usb_host_interface *alt;
1295 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1296 	int i, ret, manual = 0;
1297 	unsigned int epaddr;
1298 	unsigned int pipe;
1299 
1300 	if (dev->state == USB_STATE_SUSPENDED)
1301 		return -EHOSTUNREACH;
1302 
1303 	iface = usb_ifnum_to_if(dev, interface);
1304 	if (!iface) {
1305 		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1306 			interface);
1307 		return -EINVAL;
1308 	}
1309 	if (iface->unregistering)
1310 		return -ENODEV;
1311 
1312 	alt = usb_altnum_to_altsetting(iface, alternate);
1313 	if (!alt) {
1314 		dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1315 			 alternate);
1316 		return -EINVAL;
1317 	}
1318 
1319 	/* Make sure we have enough bandwidth for this alternate interface.
1320 	 * Remove the current alt setting and add the new alt setting.
1321 	 */
1322 	mutex_lock(hcd->bandwidth_mutex);
1323 	/* Disable LPM, and re-enable it once the new alt setting is installed,
1324 	 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1325 	 */
1326 	if (usb_disable_lpm(dev)) {
1327 		dev_err(&iface->dev, "%s Failed to disable LPM\n.", __func__);
1328 		mutex_unlock(hcd->bandwidth_mutex);
1329 		return -ENOMEM;
1330 	}
1331 	/* Changing alt-setting also frees any allocated streams */
1332 	for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1333 		iface->cur_altsetting->endpoint[i].streams = 0;
1334 
1335 	ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1336 	if (ret < 0) {
1337 		dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1338 				alternate);
1339 		usb_enable_lpm(dev);
1340 		mutex_unlock(hcd->bandwidth_mutex);
1341 		return ret;
1342 	}
1343 
1344 	if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1345 		ret = -EPIPE;
1346 	else
1347 		ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1348 				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1349 				   alternate, interface, NULL, 0, 5000);
1350 
1351 	/* 9.4.10 says devices don't need this and are free to STALL the
1352 	 * request if the interface only has one alternate setting.
1353 	 */
1354 	if (ret == -EPIPE && iface->num_altsetting == 1) {
1355 		dev_dbg(&dev->dev,
1356 			"manual set_interface for iface %d, alt %d\n",
1357 			interface, alternate);
1358 		manual = 1;
1359 	} else if (ret < 0) {
1360 		/* Re-instate the old alt setting */
1361 		usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1362 		usb_enable_lpm(dev);
1363 		mutex_unlock(hcd->bandwidth_mutex);
1364 		return ret;
1365 	}
1366 	mutex_unlock(hcd->bandwidth_mutex);
1367 
1368 	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1369 	 * when they implement async or easily-killable versions of this or
1370 	 * other "should-be-internal" functions (like clear_halt).
1371 	 * should hcd+usbcore postprocess control requests?
1372 	 */
1373 
1374 	/* prevent submissions using previous endpoint settings */
1375 	if (iface->cur_altsetting != alt) {
1376 		remove_intf_ep_devs(iface);
1377 		usb_remove_sysfs_intf_files(iface);
1378 	}
1379 	usb_disable_interface(dev, iface, true);
1380 
1381 	iface->cur_altsetting = alt;
1382 
1383 	/* Now that the interface is installed, re-enable LPM. */
1384 	usb_unlocked_enable_lpm(dev);
1385 
1386 	/* If the interface only has one altsetting and the device didn't
1387 	 * accept the request, we attempt to carry out the equivalent action
1388 	 * by manually clearing the HALT feature for each endpoint in the
1389 	 * new altsetting.
1390 	 */
1391 	if (manual) {
1392 		int i;
1393 
1394 		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1395 			epaddr = alt->endpoint[i].desc.bEndpointAddress;
1396 			pipe = __create_pipe(dev,
1397 					USB_ENDPOINT_NUMBER_MASK & epaddr) |
1398 					(usb_endpoint_out(epaddr) ?
1399 					USB_DIR_OUT : USB_DIR_IN);
1400 
1401 			usb_clear_halt(dev, pipe);
1402 		}
1403 	}
1404 
1405 	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1406 	 *
1407 	 * Note:
1408 	 * Despite EP0 is always present in all interfaces/AS, the list of
1409 	 * endpoints from the descriptor does not contain EP0. Due to its
1410 	 * omnipresence one might expect EP0 being considered "affected" by
1411 	 * any SetInterface request and hence assume toggles need to be reset.
1412 	 * However, EP0 toggles are re-synced for every individual transfer
1413 	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1414 	 * (Likewise, EP0 never "halts" on well designed devices.)
1415 	 */
1416 	usb_enable_interface(dev, iface, true);
1417 	if (device_is_registered(&iface->dev)) {
1418 		usb_create_sysfs_intf_files(iface);
1419 		create_intf_ep_devs(iface);
1420 	}
1421 	return 0;
1422 }
1423 EXPORT_SYMBOL_GPL(usb_set_interface);
1424 
1425 /**
1426  * usb_reset_configuration - lightweight device reset
1427  * @dev: the device whose configuration is being reset
1428  *
1429  * This issues a standard SET_CONFIGURATION request to the device using
1430  * the current configuration.  The effect is to reset most USB-related
1431  * state in the device, including interface altsettings (reset to zero),
1432  * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1433  * endpoints).  Other usbcore state is unchanged, including bindings of
1434  * usb device drivers to interfaces.
1435  *
1436  * Because this affects multiple interfaces, avoid using this with composite
1437  * (multi-interface) devices.  Instead, the driver for each interface may
1438  * use usb_set_interface() on the interfaces it claims.  Be careful though;
1439  * some devices don't support the SET_INTERFACE request, and others won't
1440  * reset all the interface state (notably endpoint state).  Resetting the whole
1441  * configuration would affect other drivers' interfaces.
1442  *
1443  * The caller must own the device lock.
1444  *
1445  * Return: Zero on success, else a negative error code.
1446  */
1447 int usb_reset_configuration(struct usb_device *dev)
1448 {
1449 	int			i, retval;
1450 	struct usb_host_config	*config;
1451 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1452 
1453 	if (dev->state == USB_STATE_SUSPENDED)
1454 		return -EHOSTUNREACH;
1455 
1456 	/* caller must have locked the device and must own
1457 	 * the usb bus readlock (so driver bindings are stable);
1458 	 * calls during probe() are fine
1459 	 */
1460 
1461 	for (i = 1; i < 16; ++i) {
1462 		usb_disable_endpoint(dev, i, true);
1463 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1464 	}
1465 
1466 	config = dev->actconfig;
1467 	retval = 0;
1468 	mutex_lock(hcd->bandwidth_mutex);
1469 	/* Disable LPM, and re-enable it once the configuration is reset, so
1470 	 * that the xHCI driver can recalculate the U1/U2 timeouts.
1471 	 */
1472 	if (usb_disable_lpm(dev)) {
1473 		dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1474 		mutex_unlock(hcd->bandwidth_mutex);
1475 		return -ENOMEM;
1476 	}
1477 	/* Make sure we have enough bandwidth for each alternate setting 0 */
1478 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1479 		struct usb_interface *intf = config->interface[i];
1480 		struct usb_host_interface *alt;
1481 
1482 		alt = usb_altnum_to_altsetting(intf, 0);
1483 		if (!alt)
1484 			alt = &intf->altsetting[0];
1485 		if (alt != intf->cur_altsetting)
1486 			retval = usb_hcd_alloc_bandwidth(dev, NULL,
1487 					intf->cur_altsetting, alt);
1488 		if (retval < 0)
1489 			break;
1490 	}
1491 	/* If not, reinstate the old alternate settings */
1492 	if (retval < 0) {
1493 reset_old_alts:
1494 		for (i--; i >= 0; i--) {
1495 			struct usb_interface *intf = config->interface[i];
1496 			struct usb_host_interface *alt;
1497 
1498 			alt = usb_altnum_to_altsetting(intf, 0);
1499 			if (!alt)
1500 				alt = &intf->altsetting[0];
1501 			if (alt != intf->cur_altsetting)
1502 				usb_hcd_alloc_bandwidth(dev, NULL,
1503 						alt, intf->cur_altsetting);
1504 		}
1505 		usb_enable_lpm(dev);
1506 		mutex_unlock(hcd->bandwidth_mutex);
1507 		return retval;
1508 	}
1509 	retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1510 			USB_REQ_SET_CONFIGURATION, 0,
1511 			config->desc.bConfigurationValue, 0,
1512 			NULL, 0, USB_CTRL_SET_TIMEOUT);
1513 	if (retval < 0)
1514 		goto reset_old_alts;
1515 	mutex_unlock(hcd->bandwidth_mutex);
1516 
1517 	/* re-init hc/hcd interface/endpoint state */
1518 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1519 		struct usb_interface *intf = config->interface[i];
1520 		struct usb_host_interface *alt;
1521 
1522 		alt = usb_altnum_to_altsetting(intf, 0);
1523 
1524 		/* No altsetting 0?  We'll assume the first altsetting.
1525 		 * We could use a GetInterface call, but if a device is
1526 		 * so non-compliant that it doesn't have altsetting 0
1527 		 * then I wouldn't trust its reply anyway.
1528 		 */
1529 		if (!alt)
1530 			alt = &intf->altsetting[0];
1531 
1532 		if (alt != intf->cur_altsetting) {
1533 			remove_intf_ep_devs(intf);
1534 			usb_remove_sysfs_intf_files(intf);
1535 		}
1536 		intf->cur_altsetting = alt;
1537 		usb_enable_interface(dev, intf, true);
1538 		if (device_is_registered(&intf->dev)) {
1539 			usb_create_sysfs_intf_files(intf);
1540 			create_intf_ep_devs(intf);
1541 		}
1542 	}
1543 	/* Now that the interfaces are installed, re-enable LPM. */
1544 	usb_unlocked_enable_lpm(dev);
1545 	return 0;
1546 }
1547 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1548 
1549 static void usb_release_interface(struct device *dev)
1550 {
1551 	struct usb_interface *intf = to_usb_interface(dev);
1552 	struct usb_interface_cache *intfc =
1553 			altsetting_to_usb_interface_cache(intf->altsetting);
1554 
1555 	kref_put(&intfc->ref, usb_release_interface_cache);
1556 	kfree(intf);
1557 }
1558 
1559 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1560 {
1561 	struct usb_device *usb_dev;
1562 	struct usb_interface *intf;
1563 	struct usb_host_interface *alt;
1564 
1565 	intf = to_usb_interface(dev);
1566 	usb_dev = interface_to_usbdev(intf);
1567 	alt = intf->cur_altsetting;
1568 
1569 	if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1570 		   alt->desc.bInterfaceClass,
1571 		   alt->desc.bInterfaceSubClass,
1572 		   alt->desc.bInterfaceProtocol))
1573 		return -ENOMEM;
1574 
1575 	if (add_uevent_var(env,
1576 		   "MODALIAS=usb:"
1577 		   "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1578 		   le16_to_cpu(usb_dev->descriptor.idVendor),
1579 		   le16_to_cpu(usb_dev->descriptor.idProduct),
1580 		   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1581 		   usb_dev->descriptor.bDeviceClass,
1582 		   usb_dev->descriptor.bDeviceSubClass,
1583 		   usb_dev->descriptor.bDeviceProtocol,
1584 		   alt->desc.bInterfaceClass,
1585 		   alt->desc.bInterfaceSubClass,
1586 		   alt->desc.bInterfaceProtocol,
1587 		   alt->desc.bInterfaceNumber))
1588 		return -ENOMEM;
1589 
1590 	return 0;
1591 }
1592 
1593 struct device_type usb_if_device_type = {
1594 	.name =		"usb_interface",
1595 	.release =	usb_release_interface,
1596 	.uevent =	usb_if_uevent,
1597 };
1598 
1599 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1600 						struct usb_host_config *config,
1601 						u8 inum)
1602 {
1603 	struct usb_interface_assoc_descriptor *retval = NULL;
1604 	struct usb_interface_assoc_descriptor *intf_assoc;
1605 	int first_intf;
1606 	int last_intf;
1607 	int i;
1608 
1609 	for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1610 		intf_assoc = config->intf_assoc[i];
1611 		if (intf_assoc->bInterfaceCount == 0)
1612 			continue;
1613 
1614 		first_intf = intf_assoc->bFirstInterface;
1615 		last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1616 		if (inum >= first_intf && inum <= last_intf) {
1617 			if (!retval)
1618 				retval = intf_assoc;
1619 			else
1620 				dev_err(&dev->dev, "Interface #%d referenced"
1621 					" by multiple IADs\n", inum);
1622 		}
1623 	}
1624 
1625 	return retval;
1626 }
1627 
1628 
1629 /*
1630  * Internal function to queue a device reset
1631  *
1632  * This is initialized into the workstruct in 'struct
1633  * usb_device->reset_ws' that is launched by
1634  * message.c:usb_set_configuration() when initializing each 'struct
1635  * usb_interface'.
1636  *
1637  * It is safe to get the USB device without reference counts because
1638  * the life cycle of @iface is bound to the life cycle of @udev. Then,
1639  * this function will be ran only if @iface is alive (and before
1640  * freeing it any scheduled instances of it will have been cancelled).
1641  *
1642  * We need to set a flag (usb_dev->reset_running) because when we call
1643  * the reset, the interfaces might be unbound. The current interface
1644  * cannot try to remove the queued work as it would cause a deadlock
1645  * (you cannot remove your work from within your executing
1646  * workqueue). This flag lets it know, so that
1647  * usb_cancel_queued_reset() doesn't try to do it.
1648  *
1649  * See usb_queue_reset_device() for more details
1650  */
1651 static void __usb_queue_reset_device(struct work_struct *ws)
1652 {
1653 	int rc;
1654 	struct usb_interface *iface =
1655 		container_of(ws, struct usb_interface, reset_ws);
1656 	struct usb_device *udev = interface_to_usbdev(iface);
1657 
1658 	rc = usb_lock_device_for_reset(udev, iface);
1659 	if (rc >= 0) {
1660 		iface->reset_running = 1;
1661 		usb_reset_device(udev);
1662 		iface->reset_running = 0;
1663 		usb_unlock_device(udev);
1664 	}
1665 }
1666 
1667 
1668 /*
1669  * usb_set_configuration - Makes a particular device setting be current
1670  * @dev: the device whose configuration is being updated
1671  * @configuration: the configuration being chosen.
1672  * Context: !in_interrupt(), caller owns the device lock
1673  *
1674  * This is used to enable non-default device modes.  Not all devices
1675  * use this kind of configurability; many devices only have one
1676  * configuration.
1677  *
1678  * @configuration is the value of the configuration to be installed.
1679  * According to the USB spec (e.g. section 9.1.1.5), configuration values
1680  * must be non-zero; a value of zero indicates that the device in
1681  * unconfigured.  However some devices erroneously use 0 as one of their
1682  * configuration values.  To help manage such devices, this routine will
1683  * accept @configuration = -1 as indicating the device should be put in
1684  * an unconfigured state.
1685  *
1686  * USB device configurations may affect Linux interoperability,
1687  * power consumption and the functionality available.  For example,
1688  * the default configuration is limited to using 100mA of bus power,
1689  * so that when certain device functionality requires more power,
1690  * and the device is bus powered, that functionality should be in some
1691  * non-default device configuration.  Other device modes may also be
1692  * reflected as configuration options, such as whether two ISDN
1693  * channels are available independently; and choosing between open
1694  * standard device protocols (like CDC) or proprietary ones.
1695  *
1696  * Note that a non-authorized device (dev->authorized == 0) will only
1697  * be put in unconfigured mode.
1698  *
1699  * Note that USB has an additional level of device configurability,
1700  * associated with interfaces.  That configurability is accessed using
1701  * usb_set_interface().
1702  *
1703  * This call is synchronous. The calling context must be able to sleep,
1704  * must own the device lock, and must not hold the driver model's USB
1705  * bus mutex; usb interface driver probe() methods cannot use this routine.
1706  *
1707  * Returns zero on success, or else the status code returned by the
1708  * underlying call that failed.  On successful completion, each interface
1709  * in the original device configuration has been destroyed, and each one
1710  * in the new configuration has been probed by all relevant usb device
1711  * drivers currently known to the kernel.
1712  */
1713 int usb_set_configuration(struct usb_device *dev, int configuration)
1714 {
1715 	int i, ret;
1716 	struct usb_host_config *cp = NULL;
1717 	struct usb_interface **new_interfaces = NULL;
1718 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1719 	int n, nintf;
1720 
1721 	if (dev->authorized == 0 || configuration == -1)
1722 		configuration = 0;
1723 	else {
1724 		for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1725 			if (dev->config[i].desc.bConfigurationValue ==
1726 					configuration) {
1727 				cp = &dev->config[i];
1728 				break;
1729 			}
1730 		}
1731 	}
1732 	if ((!cp && configuration != 0))
1733 		return -EINVAL;
1734 
1735 	/* The USB spec says configuration 0 means unconfigured.
1736 	 * But if a device includes a configuration numbered 0,
1737 	 * we will accept it as a correctly configured state.
1738 	 * Use -1 if you really want to unconfigure the device.
1739 	 */
1740 	if (cp && configuration == 0)
1741 		dev_warn(&dev->dev, "config 0 descriptor??\n");
1742 
1743 	/* Allocate memory for new interfaces before doing anything else,
1744 	 * so that if we run out then nothing will have changed. */
1745 	n = nintf = 0;
1746 	if (cp) {
1747 		nintf = cp->desc.bNumInterfaces;
1748 		new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1749 				GFP_NOIO);
1750 		if (!new_interfaces) {
1751 			dev_err(&dev->dev, "Out of memory\n");
1752 			return -ENOMEM;
1753 		}
1754 
1755 		for (; n < nintf; ++n) {
1756 			new_interfaces[n] = kzalloc(
1757 					sizeof(struct usb_interface),
1758 					GFP_NOIO);
1759 			if (!new_interfaces[n]) {
1760 				dev_err(&dev->dev, "Out of memory\n");
1761 				ret = -ENOMEM;
1762 free_interfaces:
1763 				while (--n >= 0)
1764 					kfree(new_interfaces[n]);
1765 				kfree(new_interfaces);
1766 				return ret;
1767 			}
1768 		}
1769 
1770 		i = dev->bus_mA - usb_get_max_power(dev, cp);
1771 		if (i < 0)
1772 			dev_warn(&dev->dev, "new config #%d exceeds power "
1773 					"limit by %dmA\n",
1774 					configuration, -i);
1775 	}
1776 
1777 	/* Wake up the device so we can send it the Set-Config request */
1778 	ret = usb_autoresume_device(dev);
1779 	if (ret)
1780 		goto free_interfaces;
1781 
1782 	/* if it's already configured, clear out old state first.
1783 	 * getting rid of old interfaces means unbinding their drivers.
1784 	 */
1785 	if (dev->state != USB_STATE_ADDRESS)
1786 		usb_disable_device(dev, 1);	/* Skip ep0 */
1787 
1788 	/* Get rid of pending async Set-Config requests for this device */
1789 	cancel_async_set_config(dev);
1790 
1791 	/* Make sure we have bandwidth (and available HCD resources) for this
1792 	 * configuration.  Remove endpoints from the schedule if we're dropping
1793 	 * this configuration to set configuration 0.  After this point, the
1794 	 * host controller will not allow submissions to dropped endpoints.  If
1795 	 * this call fails, the device state is unchanged.
1796 	 */
1797 	mutex_lock(hcd->bandwidth_mutex);
1798 	/* Disable LPM, and re-enable it once the new configuration is
1799 	 * installed, so that the xHCI driver can recalculate the U1/U2
1800 	 * timeouts.
1801 	 */
1802 	if (dev->actconfig && usb_disable_lpm(dev)) {
1803 		dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1804 		mutex_unlock(hcd->bandwidth_mutex);
1805 		ret = -ENOMEM;
1806 		goto free_interfaces;
1807 	}
1808 	ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1809 	if (ret < 0) {
1810 		if (dev->actconfig)
1811 			usb_enable_lpm(dev);
1812 		mutex_unlock(hcd->bandwidth_mutex);
1813 		usb_autosuspend_device(dev);
1814 		goto free_interfaces;
1815 	}
1816 
1817 	/*
1818 	 * Initialize the new interface structures and the
1819 	 * hc/hcd/usbcore interface/endpoint state.
1820 	 */
1821 	for (i = 0; i < nintf; ++i) {
1822 		struct usb_interface_cache *intfc;
1823 		struct usb_interface *intf;
1824 		struct usb_host_interface *alt;
1825 
1826 		cp->interface[i] = intf = new_interfaces[i];
1827 		intfc = cp->intf_cache[i];
1828 		intf->altsetting = intfc->altsetting;
1829 		intf->num_altsetting = intfc->num_altsetting;
1830 		kref_get(&intfc->ref);
1831 
1832 		alt = usb_altnum_to_altsetting(intf, 0);
1833 
1834 		/* No altsetting 0?  We'll assume the first altsetting.
1835 		 * We could use a GetInterface call, but if a device is
1836 		 * so non-compliant that it doesn't have altsetting 0
1837 		 * then I wouldn't trust its reply anyway.
1838 		 */
1839 		if (!alt)
1840 			alt = &intf->altsetting[0];
1841 
1842 		intf->intf_assoc =
1843 			find_iad(dev, cp, alt->desc.bInterfaceNumber);
1844 		intf->cur_altsetting = alt;
1845 		usb_enable_interface(dev, intf, true);
1846 		intf->dev.parent = &dev->dev;
1847 		intf->dev.driver = NULL;
1848 		intf->dev.bus = &usb_bus_type;
1849 		intf->dev.type = &usb_if_device_type;
1850 		intf->dev.groups = usb_interface_groups;
1851 		intf->dev.dma_mask = dev->dev.dma_mask;
1852 		INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1853 		intf->minor = -1;
1854 		device_initialize(&intf->dev);
1855 		pm_runtime_no_callbacks(&intf->dev);
1856 		dev_set_name(&intf->dev, "%d-%s:%d.%d",
1857 			dev->bus->busnum, dev->devpath,
1858 			configuration, alt->desc.bInterfaceNumber);
1859 	}
1860 	kfree(new_interfaces);
1861 
1862 	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1863 			      USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1864 			      NULL, 0, USB_CTRL_SET_TIMEOUT);
1865 	if (ret < 0 && cp) {
1866 		/*
1867 		 * All the old state is gone, so what else can we do?
1868 		 * The device is probably useless now anyway.
1869 		 */
1870 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1871 		for (i = 0; i < nintf; ++i) {
1872 			usb_disable_interface(dev, cp->interface[i], true);
1873 			put_device(&cp->interface[i]->dev);
1874 			cp->interface[i] = NULL;
1875 		}
1876 		cp = NULL;
1877 	}
1878 
1879 	dev->actconfig = cp;
1880 	mutex_unlock(hcd->bandwidth_mutex);
1881 
1882 	if (!cp) {
1883 		usb_set_device_state(dev, USB_STATE_ADDRESS);
1884 
1885 		/* Leave LPM disabled while the device is unconfigured. */
1886 		usb_autosuspend_device(dev);
1887 		return ret;
1888 	}
1889 	usb_set_device_state(dev, USB_STATE_CONFIGURED);
1890 
1891 	if (cp->string == NULL &&
1892 			!(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1893 		cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1894 
1895 	/* Now that the interfaces are installed, re-enable LPM. */
1896 	usb_unlocked_enable_lpm(dev);
1897 	/* Enable LTM if it was turned off by usb_disable_device. */
1898 	usb_enable_ltm(dev);
1899 
1900 	/* Now that all the interfaces are set up, register them
1901 	 * to trigger binding of drivers to interfaces.  probe()
1902 	 * routines may install different altsettings and may
1903 	 * claim() any interfaces not yet bound.  Many class drivers
1904 	 * need that: CDC, audio, video, etc.
1905 	 */
1906 	for (i = 0; i < nintf; ++i) {
1907 		struct usb_interface *intf = cp->interface[i];
1908 
1909 		dev_dbg(&dev->dev,
1910 			"adding %s (config #%d, interface %d)\n",
1911 			dev_name(&intf->dev), configuration,
1912 			intf->cur_altsetting->desc.bInterfaceNumber);
1913 		device_enable_async_suspend(&intf->dev);
1914 		ret = device_add(&intf->dev);
1915 		if (ret != 0) {
1916 			dev_err(&dev->dev, "device_add(%s) --> %d\n",
1917 				dev_name(&intf->dev), ret);
1918 			continue;
1919 		}
1920 		create_intf_ep_devs(intf);
1921 	}
1922 
1923 	usb_autosuspend_device(dev);
1924 	return 0;
1925 }
1926 EXPORT_SYMBOL_GPL(usb_set_configuration);
1927 
1928 static LIST_HEAD(set_config_list);
1929 static DEFINE_SPINLOCK(set_config_lock);
1930 
1931 struct set_config_request {
1932 	struct usb_device	*udev;
1933 	int			config;
1934 	struct work_struct	work;
1935 	struct list_head	node;
1936 };
1937 
1938 /* Worker routine for usb_driver_set_configuration() */
1939 static void driver_set_config_work(struct work_struct *work)
1940 {
1941 	struct set_config_request *req =
1942 		container_of(work, struct set_config_request, work);
1943 	struct usb_device *udev = req->udev;
1944 
1945 	usb_lock_device(udev);
1946 	spin_lock(&set_config_lock);
1947 	list_del(&req->node);
1948 	spin_unlock(&set_config_lock);
1949 
1950 	if (req->config >= -1)		/* Is req still valid? */
1951 		usb_set_configuration(udev, req->config);
1952 	usb_unlock_device(udev);
1953 	usb_put_dev(udev);
1954 	kfree(req);
1955 }
1956 
1957 /* Cancel pending Set-Config requests for a device whose configuration
1958  * was just changed
1959  */
1960 static void cancel_async_set_config(struct usb_device *udev)
1961 {
1962 	struct set_config_request *req;
1963 
1964 	spin_lock(&set_config_lock);
1965 	list_for_each_entry(req, &set_config_list, node) {
1966 		if (req->udev == udev)
1967 			req->config = -999;	/* Mark as cancelled */
1968 	}
1969 	spin_unlock(&set_config_lock);
1970 }
1971 
1972 /**
1973  * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1974  * @udev: the device whose configuration is being updated
1975  * @config: the configuration being chosen.
1976  * Context: In process context, must be able to sleep
1977  *
1978  * Device interface drivers are not allowed to change device configurations.
1979  * This is because changing configurations will destroy the interface the
1980  * driver is bound to and create new ones; it would be like a floppy-disk
1981  * driver telling the computer to replace the floppy-disk drive with a
1982  * tape drive!
1983  *
1984  * Still, in certain specialized circumstances the need may arise.  This
1985  * routine gets around the normal restrictions by using a work thread to
1986  * submit the change-config request.
1987  *
1988  * Return: 0 if the request was successfully queued, error code otherwise.
1989  * The caller has no way to know whether the queued request will eventually
1990  * succeed.
1991  */
1992 int usb_driver_set_configuration(struct usb_device *udev, int config)
1993 {
1994 	struct set_config_request *req;
1995 
1996 	req = kmalloc(sizeof(*req), GFP_KERNEL);
1997 	if (!req)
1998 		return -ENOMEM;
1999 	req->udev = udev;
2000 	req->config = config;
2001 	INIT_WORK(&req->work, driver_set_config_work);
2002 
2003 	spin_lock(&set_config_lock);
2004 	list_add(&req->node, &set_config_list);
2005 	spin_unlock(&set_config_lock);
2006 
2007 	usb_get_dev(udev);
2008 	schedule_work(&req->work);
2009 	return 0;
2010 }
2011 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2012