xref: /openbmc/linux/drivers/usb/core/message.c (revision a1e58bbd)
1 /*
2  * message.c - synchronous message handling
3  */
4 
5 #include <linux/pci.h>	/* for scatterlist macros */
6 #include <linux/usb.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/timer.h>
12 #include <linux/ctype.h>
13 #include <linux/device.h>
14 #include <linux/scatterlist.h>
15 #include <linux/usb/quirks.h>
16 #include <asm/byteorder.h>
17 
18 #include "hcd.h"	/* for usbcore internals */
19 #include "usb.h"
20 
21 struct api_context {
22 	struct completion	done;
23 	int			status;
24 };
25 
26 static void usb_api_blocking_completion(struct urb *urb)
27 {
28 	struct api_context *ctx = urb->context;
29 
30 	ctx->status = urb->status;
31 	complete(&ctx->done);
32 }
33 
34 
35 /*
36  * Starts urb and waits for completion or timeout. Note that this call
37  * is NOT interruptible. Many device driver i/o requests should be
38  * interruptible and therefore these drivers should implement their
39  * own interruptible routines.
40  */
41 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
42 {
43 	struct api_context ctx;
44 	unsigned long expire;
45 	int retval;
46 
47 	init_completion(&ctx.done);
48 	urb->context = &ctx;
49 	urb->actual_length = 0;
50 	retval = usb_submit_urb(urb, GFP_NOIO);
51 	if (unlikely(retval))
52 		goto out;
53 
54 	expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
55 	if (!wait_for_completion_timeout(&ctx.done, expire)) {
56 		usb_kill_urb(urb);
57 		retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
58 
59 		dev_dbg(&urb->dev->dev,
60 			"%s timed out on ep%d%s len=%d/%d\n",
61 			current->comm,
62 			usb_endpoint_num(&urb->ep->desc),
63 			usb_urb_dir_in(urb) ? "in" : "out",
64 			urb->actual_length,
65 			urb->transfer_buffer_length);
66 	} else
67 		retval = ctx.status;
68 out:
69 	if (actual_length)
70 		*actual_length = urb->actual_length;
71 
72 	usb_free_urb(urb);
73 	return retval;
74 }
75 
76 /*-------------------------------------------------------------------*/
77 /* returns status (negative) or length (positive) */
78 static int usb_internal_control_msg(struct usb_device *usb_dev,
79 				    unsigned int pipe,
80 				    struct usb_ctrlrequest *cmd,
81 				    void *data, int len, int timeout)
82 {
83 	struct urb *urb;
84 	int retv;
85 	int length;
86 
87 	urb = usb_alloc_urb(0, GFP_NOIO);
88 	if (!urb)
89 		return -ENOMEM;
90 
91 	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
92 			     len, usb_api_blocking_completion, NULL);
93 
94 	retv = usb_start_wait_urb(urb, timeout, &length);
95 	if (retv < 0)
96 		return retv;
97 	else
98 		return length;
99 }
100 
101 /**
102  * usb_control_msg - Builds a control urb, sends it off and waits for completion
103  * @dev: pointer to the usb device to send the message to
104  * @pipe: endpoint "pipe" to send the message to
105  * @request: USB message request value
106  * @requesttype: USB message request type value
107  * @value: USB message value
108  * @index: USB message index value
109  * @data: pointer to the data to send
110  * @size: length in bytes of the data to send
111  * @timeout: time in msecs to wait for the message to complete before timing
112  *	out (if 0 the wait is forever)
113  *
114  * Context: !in_interrupt ()
115  *
116  * This function sends a simple control message to a specified endpoint and
117  * waits for the message to complete, or timeout.
118  *
119  * If successful, it returns the number of bytes transferred, otherwise a
120  * negative error number.
121  *
122  * Don't use this function from within an interrupt context, like a bottom half
123  * handler.  If you need an asynchronous message, or need to send a message
124  * from within interrupt context, use usb_submit_urb().
125  * If a thread in your driver uses this call, make sure your disconnect()
126  * method can wait for it to complete.  Since you don't have a handle on the
127  * URB used, you can't cancel the request.
128  */
129 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
130 		    __u8 requesttype, __u16 value, __u16 index, void *data,
131 		    __u16 size, int timeout)
132 {
133 	struct usb_ctrlrequest *dr;
134 	int ret;
135 
136 	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
137 	if (!dr)
138 		return -ENOMEM;
139 
140 	dr->bRequestType = requesttype;
141 	dr->bRequest = request;
142 	dr->wValue = cpu_to_le16p(&value);
143 	dr->wIndex = cpu_to_le16p(&index);
144 	dr->wLength = cpu_to_le16p(&size);
145 
146 	/* dbg("usb_control_msg"); */
147 
148 	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
149 
150 	kfree(dr);
151 
152 	return ret;
153 }
154 EXPORT_SYMBOL_GPL(usb_control_msg);
155 
156 /**
157  * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
158  * @usb_dev: pointer to the usb device to send the message to
159  * @pipe: endpoint "pipe" to send the message to
160  * @data: pointer to the data to send
161  * @len: length in bytes of the data to send
162  * @actual_length: pointer to a location to put the actual length transferred
163  *	in bytes
164  * @timeout: time in msecs to wait for the message to complete before
165  *	timing out (if 0 the wait is forever)
166  *
167  * Context: !in_interrupt ()
168  *
169  * This function sends a simple interrupt message to a specified endpoint and
170  * waits for the message to complete, or timeout.
171  *
172  * If successful, it returns 0, otherwise a negative error number.  The number
173  * of actual bytes transferred will be stored in the actual_length paramater.
174  *
175  * Don't use this function from within an interrupt context, like a bottom half
176  * handler.  If you need an asynchronous message, or need to send a message
177  * from within interrupt context, use usb_submit_urb() If a thread in your
178  * driver uses this call, make sure your disconnect() method can wait for it to
179  * complete.  Since you don't have a handle on the URB used, you can't cancel
180  * the request.
181  */
182 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
183 		      void *data, int len, int *actual_length, int timeout)
184 {
185 	return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
186 }
187 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
188 
189 /**
190  * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
191  * @usb_dev: pointer to the usb device to send the message to
192  * @pipe: endpoint "pipe" to send the message to
193  * @data: pointer to the data to send
194  * @len: length in bytes of the data to send
195  * @actual_length: pointer to a location to put the actual length transferred
196  *	in bytes
197  * @timeout: time in msecs to wait for the message to complete before
198  *	timing out (if 0 the wait is forever)
199  *
200  * Context: !in_interrupt ()
201  *
202  * This function sends a simple bulk message to a specified endpoint
203  * and waits for the message to complete, or timeout.
204  *
205  * If successful, it returns 0, otherwise a negative error number.  The number
206  * of actual bytes transferred will be stored in the actual_length paramater.
207  *
208  * Don't use this function from within an interrupt context, like a bottom half
209  * handler.  If you need an asynchronous message, or need to send a message
210  * from within interrupt context, use usb_submit_urb() If a thread in your
211  * driver uses this call, make sure your disconnect() method can wait for it to
212  * complete.  Since you don't have a handle on the URB used, you can't cancel
213  * the request.
214  *
215  * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
216  * users are forced to abuse this routine by using it to submit URBs for
217  * interrupt endpoints.  We will take the liberty of creating an interrupt URB
218  * (with the default interval) if the target is an interrupt endpoint.
219  */
220 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
221 		 void *data, int len, int *actual_length, int timeout)
222 {
223 	struct urb *urb;
224 	struct usb_host_endpoint *ep;
225 
226 	ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out)
227 			[usb_pipeendpoint(pipe)];
228 	if (!ep || len < 0)
229 		return -EINVAL;
230 
231 	urb = usb_alloc_urb(0, GFP_KERNEL);
232 	if (!urb)
233 		return -ENOMEM;
234 
235 	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
236 			USB_ENDPOINT_XFER_INT) {
237 		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
238 		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
239 				usb_api_blocking_completion, NULL,
240 				ep->desc.bInterval);
241 	} else
242 		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
243 				usb_api_blocking_completion, NULL);
244 
245 	return usb_start_wait_urb(urb, timeout, actual_length);
246 }
247 EXPORT_SYMBOL_GPL(usb_bulk_msg);
248 
249 /*-------------------------------------------------------------------*/
250 
251 static void sg_clean(struct usb_sg_request *io)
252 {
253 	if (io->urbs) {
254 		while (io->entries--)
255 			usb_free_urb(io->urbs [io->entries]);
256 		kfree(io->urbs);
257 		io->urbs = NULL;
258 	}
259 	if (io->dev->dev.dma_mask != NULL)
260 		usb_buffer_unmap_sg(io->dev, usb_pipein(io->pipe),
261 				    io->sg, io->nents);
262 	io->dev = NULL;
263 }
264 
265 static void sg_complete(struct urb *urb)
266 {
267 	struct usb_sg_request *io = urb->context;
268 	int status = urb->status;
269 
270 	spin_lock(&io->lock);
271 
272 	/* In 2.5 we require hcds' endpoint queues not to progress after fault
273 	 * reports, until the completion callback (this!) returns.  That lets
274 	 * device driver code (like this routine) unlink queued urbs first,
275 	 * if it needs to, since the HC won't work on them at all.  So it's
276 	 * not possible for page N+1 to overwrite page N, and so on.
277 	 *
278 	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
279 	 * complete before the HCD can get requests away from hardware,
280 	 * though never during cleanup after a hard fault.
281 	 */
282 	if (io->status
283 			&& (io->status != -ECONNRESET
284 				|| status != -ECONNRESET)
285 			&& urb->actual_length) {
286 		dev_err(io->dev->bus->controller,
287 			"dev %s ep%d%s scatterlist error %d/%d\n",
288 			io->dev->devpath,
289 			usb_endpoint_num(&urb->ep->desc),
290 			usb_urb_dir_in(urb) ? "in" : "out",
291 			status, io->status);
292 		/* BUG (); */
293 	}
294 
295 	if (io->status == 0 && status && status != -ECONNRESET) {
296 		int i, found, retval;
297 
298 		io->status = status;
299 
300 		/* the previous urbs, and this one, completed already.
301 		 * unlink pending urbs so they won't rx/tx bad data.
302 		 * careful: unlink can sometimes be synchronous...
303 		 */
304 		spin_unlock(&io->lock);
305 		for (i = 0, found = 0; i < io->entries; i++) {
306 			if (!io->urbs [i] || !io->urbs [i]->dev)
307 				continue;
308 			if (found) {
309 				retval = usb_unlink_urb(io->urbs [i]);
310 				if (retval != -EINPROGRESS &&
311 				    retval != -ENODEV &&
312 				    retval != -EBUSY)
313 					dev_err(&io->dev->dev,
314 						"%s, unlink --> %d\n",
315 						__FUNCTION__, retval);
316 			} else if (urb == io->urbs [i])
317 				found = 1;
318 		}
319 		spin_lock(&io->lock);
320 	}
321 	urb->dev = NULL;
322 
323 	/* on the last completion, signal usb_sg_wait() */
324 	io->bytes += urb->actual_length;
325 	io->count--;
326 	if (!io->count)
327 		complete(&io->complete);
328 
329 	spin_unlock(&io->lock);
330 }
331 
332 
333 /**
334  * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
335  * @io: request block being initialized.  until usb_sg_wait() returns,
336  *	treat this as a pointer to an opaque block of memory,
337  * @dev: the usb device that will send or receive the data
338  * @pipe: endpoint "pipe" used to transfer the data
339  * @period: polling rate for interrupt endpoints, in frames or
340  * 	(for high speed endpoints) microframes; ignored for bulk
341  * @sg: scatterlist entries
342  * @nents: how many entries in the scatterlist
343  * @length: how many bytes to send from the scatterlist, or zero to
344  * 	send every byte identified in the list.
345  * @mem_flags: SLAB_* flags affecting memory allocations in this call
346  *
347  * Returns zero for success, else a negative errno value.  This initializes a
348  * scatter/gather request, allocating resources such as I/O mappings and urb
349  * memory (except maybe memory used by USB controller drivers).
350  *
351  * The request must be issued using usb_sg_wait(), which waits for the I/O to
352  * complete (or to be canceled) and then cleans up all resources allocated by
353  * usb_sg_init().
354  *
355  * The request may be canceled with usb_sg_cancel(), either before or after
356  * usb_sg_wait() is called.
357  */
358 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
359 		unsigned pipe, unsigned	period, struct scatterlist *sg,
360 		int nents, size_t length, gfp_t mem_flags)
361 {
362 	int i;
363 	int urb_flags;
364 	int dma;
365 
366 	if (!io || !dev || !sg
367 			|| usb_pipecontrol(pipe)
368 			|| usb_pipeisoc(pipe)
369 			|| nents <= 0)
370 		return -EINVAL;
371 
372 	spin_lock_init(&io->lock);
373 	io->dev = dev;
374 	io->pipe = pipe;
375 	io->sg = sg;
376 	io->nents = nents;
377 
378 	/* not all host controllers use DMA (like the mainstream pci ones);
379 	 * they can use PIO (sl811) or be software over another transport.
380 	 */
381 	dma = (dev->dev.dma_mask != NULL);
382 	if (dma)
383 		io->entries = usb_buffer_map_sg(dev, usb_pipein(pipe),
384 						sg, nents);
385 	else
386 		io->entries = nents;
387 
388 	/* initialize all the urbs we'll use */
389 	if (io->entries <= 0)
390 		return io->entries;
391 
392 	io->count = io->entries;
393 	io->urbs = kmalloc(io->entries * sizeof *io->urbs, mem_flags);
394 	if (!io->urbs)
395 		goto nomem;
396 
397 	urb_flags = URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT;
398 	if (usb_pipein(pipe))
399 		urb_flags |= URB_SHORT_NOT_OK;
400 
401 	for (i = 0; i < io->entries; i++) {
402 		unsigned len;
403 
404 		io->urbs[i] = usb_alloc_urb(0, mem_flags);
405 		if (!io->urbs[i]) {
406 			io->entries = i;
407 			goto nomem;
408 		}
409 
410 		io->urbs[i]->dev = NULL;
411 		io->urbs[i]->pipe = pipe;
412 		io->urbs[i]->interval = period;
413 		io->urbs[i]->transfer_flags = urb_flags;
414 
415 		io->urbs[i]->complete = sg_complete;
416 		io->urbs[i]->context = io;
417 
418 		/*
419 		 * Some systems need to revert to PIO when DMA is temporarily
420 		 * unavailable.  For their sakes, both transfer_buffer and
421 		 * transfer_dma are set when possible.  However this can only
422 		 * work on systems without:
423 		 *
424 		 *  - HIGHMEM, since DMA buffers located in high memory are
425 		 *    not directly addressable by the CPU for PIO;
426 		 *
427 		 *  - IOMMU, since dma_map_sg() is allowed to use an IOMMU to
428 		 *    make virtually discontiguous buffers be "dma-contiguous"
429 		 *    so that PIO and DMA need diferent numbers of URBs.
430 		 *
431 		 * So when HIGHMEM or IOMMU are in use, transfer_buffer is NULL
432 		 * to prevent stale pointers and to help spot bugs.
433 		 */
434 		if (dma) {
435 			io->urbs[i]->transfer_dma = sg_dma_address(sg + i);
436 			len = sg_dma_len(sg + i);
437 #if defined(CONFIG_HIGHMEM) || defined(CONFIG_GART_IOMMU)
438 			io->urbs[i]->transfer_buffer = NULL;
439 #else
440 			io->urbs[i]->transfer_buffer = sg_virt(&sg[i]);
441 #endif
442 		} else {
443 			/* hc may use _only_ transfer_buffer */
444 			io->urbs[i]->transfer_buffer = sg_virt(&sg[i]);
445 			len = sg[i].length;
446 		}
447 
448 		if (length) {
449 			len = min_t(unsigned, len, length);
450 			length -= len;
451 			if (length == 0)
452 				io->entries = i + 1;
453 		}
454 		io->urbs[i]->transfer_buffer_length = len;
455 	}
456 	io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
457 
458 	/* transaction state */
459 	io->status = 0;
460 	io->bytes = 0;
461 	init_completion(&io->complete);
462 	return 0;
463 
464 nomem:
465 	sg_clean(io);
466 	return -ENOMEM;
467 }
468 EXPORT_SYMBOL_GPL(usb_sg_init);
469 
470 /**
471  * usb_sg_wait - synchronously execute scatter/gather request
472  * @io: request block handle, as initialized with usb_sg_init().
473  * 	some fields become accessible when this call returns.
474  * Context: !in_interrupt ()
475  *
476  * This function blocks until the specified I/O operation completes.  It
477  * leverages the grouping of the related I/O requests to get good transfer
478  * rates, by queueing the requests.  At higher speeds, such queuing can
479  * significantly improve USB throughput.
480  *
481  * There are three kinds of completion for this function.
482  * (1) success, where io->status is zero.  The number of io->bytes
483  *     transferred is as requested.
484  * (2) error, where io->status is a negative errno value.  The number
485  *     of io->bytes transferred before the error is usually less
486  *     than requested, and can be nonzero.
487  * (3) cancellation, a type of error with status -ECONNRESET that
488  *     is initiated by usb_sg_cancel().
489  *
490  * When this function returns, all memory allocated through usb_sg_init() or
491  * this call will have been freed.  The request block parameter may still be
492  * passed to usb_sg_cancel(), or it may be freed.  It could also be
493  * reinitialized and then reused.
494  *
495  * Data Transfer Rates:
496  *
497  * Bulk transfers are valid for full or high speed endpoints.
498  * The best full speed data rate is 19 packets of 64 bytes each
499  * per frame, or 1216 bytes per millisecond.
500  * The best high speed data rate is 13 packets of 512 bytes each
501  * per microframe, or 52 KBytes per millisecond.
502  *
503  * The reason to use interrupt transfers through this API would most likely
504  * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
505  * could be transferred.  That capability is less useful for low or full
506  * speed interrupt endpoints, which allow at most one packet per millisecond,
507  * of at most 8 or 64 bytes (respectively).
508  */
509 void usb_sg_wait(struct usb_sg_request *io)
510 {
511 	int i;
512 	int entries = io->entries;
513 
514 	/* queue the urbs.  */
515 	spin_lock_irq(&io->lock);
516 	i = 0;
517 	while (i < entries && !io->status) {
518 		int retval;
519 
520 		io->urbs[i]->dev = io->dev;
521 		retval = usb_submit_urb(io->urbs [i], GFP_ATOMIC);
522 
523 		/* after we submit, let completions or cancelations fire;
524 		 * we handshake using io->status.
525 		 */
526 		spin_unlock_irq(&io->lock);
527 		switch (retval) {
528 			/* maybe we retrying will recover */
529 		case -ENXIO:	/* hc didn't queue this one */
530 		case -EAGAIN:
531 		case -ENOMEM:
532 			io->urbs[i]->dev = NULL;
533 			retval = 0;
534 			yield();
535 			break;
536 
537 			/* no error? continue immediately.
538 			 *
539 			 * NOTE: to work better with UHCI (4K I/O buffer may
540 			 * need 3K of TDs) it may be good to limit how many
541 			 * URBs are queued at once; N milliseconds?
542 			 */
543 		case 0:
544 			++i;
545 			cpu_relax();
546 			break;
547 
548 			/* fail any uncompleted urbs */
549 		default:
550 			io->urbs[i]->dev = NULL;
551 			io->urbs[i]->status = retval;
552 			dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
553 				__FUNCTION__, retval);
554 			usb_sg_cancel(io);
555 		}
556 		spin_lock_irq(&io->lock);
557 		if (retval && (io->status == 0 || io->status == -ECONNRESET))
558 			io->status = retval;
559 	}
560 	io->count -= entries - i;
561 	if (io->count == 0)
562 		complete(&io->complete);
563 	spin_unlock_irq(&io->lock);
564 
565 	/* OK, yes, this could be packaged as non-blocking.
566 	 * So could the submit loop above ... but it's easier to
567 	 * solve neither problem than to solve both!
568 	 */
569 	wait_for_completion(&io->complete);
570 
571 	sg_clean(io);
572 }
573 EXPORT_SYMBOL_GPL(usb_sg_wait);
574 
575 /**
576  * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
577  * @io: request block, initialized with usb_sg_init()
578  *
579  * This stops a request after it has been started by usb_sg_wait().
580  * It can also prevents one initialized by usb_sg_init() from starting,
581  * so that call just frees resources allocated to the request.
582  */
583 void usb_sg_cancel(struct usb_sg_request *io)
584 {
585 	unsigned long flags;
586 
587 	spin_lock_irqsave(&io->lock, flags);
588 
589 	/* shut everything down, if it didn't already */
590 	if (!io->status) {
591 		int i;
592 
593 		io->status = -ECONNRESET;
594 		spin_unlock(&io->lock);
595 		for (i = 0; i < io->entries; i++) {
596 			int retval;
597 
598 			if (!io->urbs [i]->dev)
599 				continue;
600 			retval = usb_unlink_urb(io->urbs [i]);
601 			if (retval != -EINPROGRESS && retval != -EBUSY)
602 				dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
603 					__FUNCTION__, retval);
604 		}
605 		spin_lock(&io->lock);
606 	}
607 	spin_unlock_irqrestore(&io->lock, flags);
608 }
609 EXPORT_SYMBOL_GPL(usb_sg_cancel);
610 
611 /*-------------------------------------------------------------------*/
612 
613 /**
614  * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
615  * @dev: the device whose descriptor is being retrieved
616  * @type: the descriptor type (USB_DT_*)
617  * @index: the number of the descriptor
618  * @buf: where to put the descriptor
619  * @size: how big is "buf"?
620  * Context: !in_interrupt ()
621  *
622  * Gets a USB descriptor.  Convenience functions exist to simplify
623  * getting some types of descriptors.  Use
624  * usb_get_string() or usb_string() for USB_DT_STRING.
625  * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
626  * are part of the device structure.
627  * In addition to a number of USB-standard descriptors, some
628  * devices also use class-specific or vendor-specific descriptors.
629  *
630  * This call is synchronous, and may not be used in an interrupt context.
631  *
632  * Returns the number of bytes received on success, or else the status code
633  * returned by the underlying usb_control_msg() call.
634  */
635 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
636 		       unsigned char index, void *buf, int size)
637 {
638 	int i;
639 	int result;
640 
641 	memset(buf, 0, size);	/* Make sure we parse really received data */
642 
643 	for (i = 0; i < 3; ++i) {
644 		/* retry on length 0 or error; some devices are flakey */
645 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
646 				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
647 				(type << 8) + index, 0, buf, size,
648 				USB_CTRL_GET_TIMEOUT);
649 		if (result <= 0 && result != -ETIMEDOUT)
650 			continue;
651 		if (result > 1 && ((u8 *)buf)[1] != type) {
652 			result = -EPROTO;
653 			continue;
654 		}
655 		break;
656 	}
657 	return result;
658 }
659 EXPORT_SYMBOL_GPL(usb_get_descriptor);
660 
661 /**
662  * usb_get_string - gets a string descriptor
663  * @dev: the device whose string descriptor is being retrieved
664  * @langid: code for language chosen (from string descriptor zero)
665  * @index: the number of the descriptor
666  * @buf: where to put the string
667  * @size: how big is "buf"?
668  * Context: !in_interrupt ()
669  *
670  * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
671  * in little-endian byte order).
672  * The usb_string() function will often be a convenient way to turn
673  * these strings into kernel-printable form.
674  *
675  * Strings may be referenced in device, configuration, interface, or other
676  * descriptors, and could also be used in vendor-specific ways.
677  *
678  * This call is synchronous, and may not be used in an interrupt context.
679  *
680  * Returns the number of bytes received on success, or else the status code
681  * returned by the underlying usb_control_msg() call.
682  */
683 static int usb_get_string(struct usb_device *dev, unsigned short langid,
684 			  unsigned char index, void *buf, int size)
685 {
686 	int i;
687 	int result;
688 
689 	for (i = 0; i < 3; ++i) {
690 		/* retry on length 0 or stall; some devices are flakey */
691 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
692 			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
693 			(USB_DT_STRING << 8) + index, langid, buf, size,
694 			USB_CTRL_GET_TIMEOUT);
695 		if (!(result == 0 || result == -EPIPE))
696 			break;
697 	}
698 	return result;
699 }
700 
701 static void usb_try_string_workarounds(unsigned char *buf, int *length)
702 {
703 	int newlength, oldlength = *length;
704 
705 	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
706 		if (!isprint(buf[newlength]) || buf[newlength + 1])
707 			break;
708 
709 	if (newlength > 2) {
710 		buf[0] = newlength;
711 		*length = newlength;
712 	}
713 }
714 
715 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
716 			  unsigned int index, unsigned char *buf)
717 {
718 	int rc;
719 
720 	/* Try to read the string descriptor by asking for the maximum
721 	 * possible number of bytes */
722 	if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
723 		rc = -EIO;
724 	else
725 		rc = usb_get_string(dev, langid, index, buf, 255);
726 
727 	/* If that failed try to read the descriptor length, then
728 	 * ask for just that many bytes */
729 	if (rc < 2) {
730 		rc = usb_get_string(dev, langid, index, buf, 2);
731 		if (rc == 2)
732 			rc = usb_get_string(dev, langid, index, buf, buf[0]);
733 	}
734 
735 	if (rc >= 2) {
736 		if (!buf[0] && !buf[1])
737 			usb_try_string_workarounds(buf, &rc);
738 
739 		/* There might be extra junk at the end of the descriptor */
740 		if (buf[0] < rc)
741 			rc = buf[0];
742 
743 		rc = rc - (rc & 1); /* force a multiple of two */
744 	}
745 
746 	if (rc < 2)
747 		rc = (rc < 0 ? rc : -EINVAL);
748 
749 	return rc;
750 }
751 
752 /**
753  * usb_string - returns ISO 8859-1 version of a string descriptor
754  * @dev: the device whose string descriptor is being retrieved
755  * @index: the number of the descriptor
756  * @buf: where to put the string
757  * @size: how big is "buf"?
758  * Context: !in_interrupt ()
759  *
760  * This converts the UTF-16LE encoded strings returned by devices, from
761  * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones
762  * that are more usable in most kernel contexts.  Note that all characters
763  * in the chosen descriptor that can't be encoded using ISO-8859-1
764  * are converted to the question mark ("?") character, and this function
765  * chooses strings in the first language supported by the device.
766  *
767  * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit
768  * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode,
769  * and is appropriate for use many uses of English and several other
770  * Western European languages.  (But it doesn't include the "Euro" symbol.)
771  *
772  * This call is synchronous, and may not be used in an interrupt context.
773  *
774  * Returns length of the string (>= 0) or usb_control_msg status (< 0).
775  */
776 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
777 {
778 	unsigned char *tbuf;
779 	int err;
780 	unsigned int u, idx;
781 
782 	if (dev->state == USB_STATE_SUSPENDED)
783 		return -EHOSTUNREACH;
784 	if (size <= 0 || !buf || !index)
785 		return -EINVAL;
786 	buf[0] = 0;
787 	tbuf = kmalloc(256, GFP_KERNEL);
788 	if (!tbuf)
789 		return -ENOMEM;
790 
791 	/* get langid for strings if it's not yet known */
792 	if (!dev->have_langid) {
793 		err = usb_string_sub(dev, 0, 0, tbuf);
794 		if (err < 0) {
795 			dev_err(&dev->dev,
796 				"string descriptor 0 read error: %d\n",
797 				err);
798 			goto errout;
799 		} else if (err < 4) {
800 			dev_err(&dev->dev, "string descriptor 0 too short\n");
801 			err = -EINVAL;
802 			goto errout;
803 		} else {
804 			dev->have_langid = 1;
805 			dev->string_langid = tbuf[2] | (tbuf[3] << 8);
806 			/* always use the first langid listed */
807 			dev_dbg(&dev->dev, "default language 0x%04x\n",
808 				dev->string_langid);
809 		}
810 	}
811 
812 	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
813 	if (err < 0)
814 		goto errout;
815 
816 	size--;		/* leave room for trailing NULL char in output buffer */
817 	for (idx = 0, u = 2; u < err; u += 2) {
818 		if (idx >= size)
819 			break;
820 		if (tbuf[u+1])			/* high byte */
821 			buf[idx++] = '?';  /* non ISO-8859-1 character */
822 		else
823 			buf[idx++] = tbuf[u];
824 	}
825 	buf[idx] = 0;
826 	err = idx;
827 
828 	if (tbuf[1] != USB_DT_STRING)
829 		dev_dbg(&dev->dev,
830 			"wrong descriptor type %02x for string %d (\"%s\")\n",
831 			tbuf[1], index, buf);
832 
833  errout:
834 	kfree(tbuf);
835 	return err;
836 }
837 EXPORT_SYMBOL_GPL(usb_string);
838 
839 /**
840  * usb_cache_string - read a string descriptor and cache it for later use
841  * @udev: the device whose string descriptor is being read
842  * @index: the descriptor index
843  *
844  * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
845  * or NULL if the index is 0 or the string could not be read.
846  */
847 char *usb_cache_string(struct usb_device *udev, int index)
848 {
849 	char *buf;
850 	char *smallbuf = NULL;
851 	int len;
852 
853 	if (index <= 0)
854 		return NULL;
855 
856 	buf = kmalloc(256, GFP_KERNEL);
857 	if (buf) {
858 		len = usb_string(udev, index, buf, 256);
859 		if (len > 0) {
860 			smallbuf = kmalloc(++len, GFP_KERNEL);
861 			if (!smallbuf)
862 				return buf;
863 			memcpy(smallbuf, buf, len);
864 		}
865 		kfree(buf);
866 	}
867 	return smallbuf;
868 }
869 
870 /*
871  * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
872  * @dev: the device whose device descriptor is being updated
873  * @size: how much of the descriptor to read
874  * Context: !in_interrupt ()
875  *
876  * Updates the copy of the device descriptor stored in the device structure,
877  * which dedicates space for this purpose.
878  *
879  * Not exported, only for use by the core.  If drivers really want to read
880  * the device descriptor directly, they can call usb_get_descriptor() with
881  * type = USB_DT_DEVICE and index = 0.
882  *
883  * This call is synchronous, and may not be used in an interrupt context.
884  *
885  * Returns the number of bytes received on success, or else the status code
886  * returned by the underlying usb_control_msg() call.
887  */
888 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
889 {
890 	struct usb_device_descriptor *desc;
891 	int ret;
892 
893 	if (size > sizeof(*desc))
894 		return -EINVAL;
895 	desc = kmalloc(sizeof(*desc), GFP_NOIO);
896 	if (!desc)
897 		return -ENOMEM;
898 
899 	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
900 	if (ret >= 0)
901 		memcpy(&dev->descriptor, desc, size);
902 	kfree(desc);
903 	return ret;
904 }
905 
906 /**
907  * usb_get_status - issues a GET_STATUS call
908  * @dev: the device whose status is being checked
909  * @type: USB_RECIP_*; for device, interface, or endpoint
910  * @target: zero (for device), else interface or endpoint number
911  * @data: pointer to two bytes of bitmap data
912  * Context: !in_interrupt ()
913  *
914  * Returns device, interface, or endpoint status.  Normally only of
915  * interest to see if the device is self powered, or has enabled the
916  * remote wakeup facility; or whether a bulk or interrupt endpoint
917  * is halted ("stalled").
918  *
919  * Bits in these status bitmaps are set using the SET_FEATURE request,
920  * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
921  * function should be used to clear halt ("stall") status.
922  *
923  * This call is synchronous, and may not be used in an interrupt context.
924  *
925  * Returns the number of bytes received on success, or else the status code
926  * returned by the underlying usb_control_msg() call.
927  */
928 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
929 {
930 	int ret;
931 	u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
932 
933 	if (!status)
934 		return -ENOMEM;
935 
936 	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
937 		USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
938 		sizeof(*status), USB_CTRL_GET_TIMEOUT);
939 
940 	*(u16 *)data = *status;
941 	kfree(status);
942 	return ret;
943 }
944 EXPORT_SYMBOL_GPL(usb_get_status);
945 
946 /**
947  * usb_clear_halt - tells device to clear endpoint halt/stall condition
948  * @dev: device whose endpoint is halted
949  * @pipe: endpoint "pipe" being cleared
950  * Context: !in_interrupt ()
951  *
952  * This is used to clear halt conditions for bulk and interrupt endpoints,
953  * as reported by URB completion status.  Endpoints that are halted are
954  * sometimes referred to as being "stalled".  Such endpoints are unable
955  * to transmit or receive data until the halt status is cleared.  Any URBs
956  * queued for such an endpoint should normally be unlinked by the driver
957  * before clearing the halt condition, as described in sections 5.7.5
958  * and 5.8.5 of the USB 2.0 spec.
959  *
960  * Note that control and isochronous endpoints don't halt, although control
961  * endpoints report "protocol stall" (for unsupported requests) using the
962  * same status code used to report a true stall.
963  *
964  * This call is synchronous, and may not be used in an interrupt context.
965  *
966  * Returns zero on success, or else the status code returned by the
967  * underlying usb_control_msg() call.
968  */
969 int usb_clear_halt(struct usb_device *dev, int pipe)
970 {
971 	int result;
972 	int endp = usb_pipeendpoint(pipe);
973 
974 	if (usb_pipein(pipe))
975 		endp |= USB_DIR_IN;
976 
977 	/* we don't care if it wasn't halted first. in fact some devices
978 	 * (like some ibmcam model 1 units) seem to expect hosts to make
979 	 * this request for iso endpoints, which can't halt!
980 	 */
981 	result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
982 		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
983 		USB_ENDPOINT_HALT, endp, NULL, 0,
984 		USB_CTRL_SET_TIMEOUT);
985 
986 	/* don't un-halt or force to DATA0 except on success */
987 	if (result < 0)
988 		return result;
989 
990 	/* NOTE:  seems like Microsoft and Apple don't bother verifying
991 	 * the clear "took", so some devices could lock up if you check...
992 	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
993 	 *
994 	 * NOTE:  make sure the logic here doesn't diverge much from
995 	 * the copy in usb-storage, for as long as we need two copies.
996 	 */
997 
998 	/* toggle was reset by the clear */
999 	usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0);
1000 
1001 	return 0;
1002 }
1003 EXPORT_SYMBOL_GPL(usb_clear_halt);
1004 
1005 /**
1006  * usb_disable_endpoint -- Disable an endpoint by address
1007  * @dev: the device whose endpoint is being disabled
1008  * @epaddr: the endpoint's address.  Endpoint number for output,
1009  *	endpoint number + USB_DIR_IN for input
1010  *
1011  * Deallocates hcd/hardware state for this endpoint ... and nukes all
1012  * pending urbs.
1013  *
1014  * If the HCD hasn't registered a disable() function, this sets the
1015  * endpoint's maxpacket size to 0 to prevent further submissions.
1016  */
1017 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr)
1018 {
1019 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1020 	struct usb_host_endpoint *ep;
1021 
1022 	if (!dev)
1023 		return;
1024 
1025 	if (usb_endpoint_out(epaddr)) {
1026 		ep = dev->ep_out[epnum];
1027 		dev->ep_out[epnum] = NULL;
1028 	} else {
1029 		ep = dev->ep_in[epnum];
1030 		dev->ep_in[epnum] = NULL;
1031 	}
1032 	if (ep) {
1033 		ep->enabled = 0;
1034 		usb_hcd_flush_endpoint(dev, ep);
1035 		usb_hcd_disable_endpoint(dev, ep);
1036 	}
1037 }
1038 
1039 /**
1040  * usb_disable_interface -- Disable all endpoints for an interface
1041  * @dev: the device whose interface is being disabled
1042  * @intf: pointer to the interface descriptor
1043  *
1044  * Disables all the endpoints for the interface's current altsetting.
1045  */
1046 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf)
1047 {
1048 	struct usb_host_interface *alt = intf->cur_altsetting;
1049 	int i;
1050 
1051 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1052 		usb_disable_endpoint(dev,
1053 				alt->endpoint[i].desc.bEndpointAddress);
1054 	}
1055 }
1056 
1057 /**
1058  * usb_disable_device - Disable all the endpoints for a USB device
1059  * @dev: the device whose endpoints are being disabled
1060  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1061  *
1062  * Disables all the device's endpoints, potentially including endpoint 0.
1063  * Deallocates hcd/hardware state for the endpoints (nuking all or most
1064  * pending urbs) and usbcore state for the interfaces, so that usbcore
1065  * must usb_set_configuration() before any interfaces could be used.
1066  */
1067 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1068 {
1069 	int i;
1070 
1071 	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __FUNCTION__,
1072 		skip_ep0 ? "non-ep0" : "all");
1073 	for (i = skip_ep0; i < 16; ++i) {
1074 		usb_disable_endpoint(dev, i);
1075 		usb_disable_endpoint(dev, i + USB_DIR_IN);
1076 	}
1077 	dev->toggle[0] = dev->toggle[1] = 0;
1078 
1079 	/* getting rid of interfaces will disconnect
1080 	 * any drivers bound to them (a key side effect)
1081 	 */
1082 	if (dev->actconfig) {
1083 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1084 			struct usb_interface	*interface;
1085 
1086 			/* remove this interface if it has been registered */
1087 			interface = dev->actconfig->interface[i];
1088 			if (!device_is_registered(&interface->dev))
1089 				continue;
1090 			dev_dbg(&dev->dev, "unregistering interface %s\n",
1091 				interface->dev.bus_id);
1092 			usb_remove_sysfs_intf_files(interface);
1093 			device_del(&interface->dev);
1094 		}
1095 
1096 		/* Now that the interfaces are unbound, nobody should
1097 		 * try to access them.
1098 		 */
1099 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1100 			put_device(&dev->actconfig->interface[i]->dev);
1101 			dev->actconfig->interface[i] = NULL;
1102 		}
1103 		dev->actconfig = NULL;
1104 		if (dev->state == USB_STATE_CONFIGURED)
1105 			usb_set_device_state(dev, USB_STATE_ADDRESS);
1106 	}
1107 }
1108 
1109 /**
1110  * usb_enable_endpoint - Enable an endpoint for USB communications
1111  * @dev: the device whose interface is being enabled
1112  * @ep: the endpoint
1113  *
1114  * Resets the endpoint toggle, and sets dev->ep_{in,out} pointers.
1115  * For control endpoints, both the input and output sides are handled.
1116  */
1117 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep)
1118 {
1119 	int epnum = usb_endpoint_num(&ep->desc);
1120 	int is_out = usb_endpoint_dir_out(&ep->desc);
1121 	int is_control = usb_endpoint_xfer_control(&ep->desc);
1122 
1123 	if (is_out || is_control) {
1124 		usb_settoggle(dev, epnum, 1, 0);
1125 		dev->ep_out[epnum] = ep;
1126 	}
1127 	if (!is_out || is_control) {
1128 		usb_settoggle(dev, epnum, 0, 0);
1129 		dev->ep_in[epnum] = ep;
1130 	}
1131 	ep->enabled = 1;
1132 }
1133 
1134 /**
1135  * usb_enable_interface - Enable all the endpoints for an interface
1136  * @dev: the device whose interface is being enabled
1137  * @intf: pointer to the interface descriptor
1138  *
1139  * Enables all the endpoints for the interface's current altsetting.
1140  */
1141 static void usb_enable_interface(struct usb_device *dev,
1142 				 struct usb_interface *intf)
1143 {
1144 	struct usb_host_interface *alt = intf->cur_altsetting;
1145 	int i;
1146 
1147 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1148 		usb_enable_endpoint(dev, &alt->endpoint[i]);
1149 }
1150 
1151 /**
1152  * usb_set_interface - Makes a particular alternate setting be current
1153  * @dev: the device whose interface is being updated
1154  * @interface: the interface being updated
1155  * @alternate: the setting being chosen.
1156  * Context: !in_interrupt ()
1157  *
1158  * This is used to enable data transfers on interfaces that may not
1159  * be enabled by default.  Not all devices support such configurability.
1160  * Only the driver bound to an interface may change its setting.
1161  *
1162  * Within any given configuration, each interface may have several
1163  * alternative settings.  These are often used to control levels of
1164  * bandwidth consumption.  For example, the default setting for a high
1165  * speed interrupt endpoint may not send more than 64 bytes per microframe,
1166  * while interrupt transfers of up to 3KBytes per microframe are legal.
1167  * Also, isochronous endpoints may never be part of an
1168  * interface's default setting.  To access such bandwidth, alternate
1169  * interface settings must be made current.
1170  *
1171  * Note that in the Linux USB subsystem, bandwidth associated with
1172  * an endpoint in a given alternate setting is not reserved until an URB
1173  * is submitted that needs that bandwidth.  Some other operating systems
1174  * allocate bandwidth early, when a configuration is chosen.
1175  *
1176  * This call is synchronous, and may not be used in an interrupt context.
1177  * Also, drivers must not change altsettings while urbs are scheduled for
1178  * endpoints in that interface; all such urbs must first be completed
1179  * (perhaps forced by unlinking).
1180  *
1181  * Returns zero on success, or else the status code returned by the
1182  * underlying usb_control_msg() call.
1183  */
1184 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1185 {
1186 	struct usb_interface *iface;
1187 	struct usb_host_interface *alt;
1188 	int ret;
1189 	int manual = 0;
1190 	unsigned int epaddr;
1191 	unsigned int pipe;
1192 
1193 	if (dev->state == USB_STATE_SUSPENDED)
1194 		return -EHOSTUNREACH;
1195 
1196 	iface = usb_ifnum_to_if(dev, interface);
1197 	if (!iface) {
1198 		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1199 			interface);
1200 		return -EINVAL;
1201 	}
1202 
1203 	alt = usb_altnum_to_altsetting(iface, alternate);
1204 	if (!alt) {
1205 		warn("selecting invalid altsetting %d", alternate);
1206 		return -EINVAL;
1207 	}
1208 
1209 	if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1210 		ret = -EPIPE;
1211 	else
1212 		ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1213 				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1214 				   alternate, interface, NULL, 0, 5000);
1215 
1216 	/* 9.4.10 says devices don't need this and are free to STALL the
1217 	 * request if the interface only has one alternate setting.
1218 	 */
1219 	if (ret == -EPIPE && iface->num_altsetting == 1) {
1220 		dev_dbg(&dev->dev,
1221 			"manual set_interface for iface %d, alt %d\n",
1222 			interface, alternate);
1223 		manual = 1;
1224 	} else if (ret < 0)
1225 		return ret;
1226 
1227 	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1228 	 * when they implement async or easily-killable versions of this or
1229 	 * other "should-be-internal" functions (like clear_halt).
1230 	 * should hcd+usbcore postprocess control requests?
1231 	 */
1232 
1233 	/* prevent submissions using previous endpoint settings */
1234 	if (iface->cur_altsetting != alt && device_is_registered(&iface->dev))
1235 		usb_remove_sysfs_intf_files(iface);
1236 	usb_disable_interface(dev, iface);
1237 
1238 	iface->cur_altsetting = alt;
1239 
1240 	/* If the interface only has one altsetting and the device didn't
1241 	 * accept the request, we attempt to carry out the equivalent action
1242 	 * by manually clearing the HALT feature for each endpoint in the
1243 	 * new altsetting.
1244 	 */
1245 	if (manual) {
1246 		int i;
1247 
1248 		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1249 			epaddr = alt->endpoint[i].desc.bEndpointAddress;
1250 			pipe = __create_pipe(dev,
1251 					USB_ENDPOINT_NUMBER_MASK & epaddr) |
1252 					(usb_endpoint_out(epaddr) ?
1253 					USB_DIR_OUT : USB_DIR_IN);
1254 
1255 			usb_clear_halt(dev, pipe);
1256 		}
1257 	}
1258 
1259 	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1260 	 *
1261 	 * Note:
1262 	 * Despite EP0 is always present in all interfaces/AS, the list of
1263 	 * endpoints from the descriptor does not contain EP0. Due to its
1264 	 * omnipresence one might expect EP0 being considered "affected" by
1265 	 * any SetInterface request and hence assume toggles need to be reset.
1266 	 * However, EP0 toggles are re-synced for every individual transfer
1267 	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1268 	 * (Likewise, EP0 never "halts" on well designed devices.)
1269 	 */
1270 	usb_enable_interface(dev, iface);
1271 	if (device_is_registered(&iface->dev))
1272 		usb_create_sysfs_intf_files(iface);
1273 
1274 	return 0;
1275 }
1276 EXPORT_SYMBOL_GPL(usb_set_interface);
1277 
1278 /**
1279  * usb_reset_configuration - lightweight device reset
1280  * @dev: the device whose configuration is being reset
1281  *
1282  * This issues a standard SET_CONFIGURATION request to the device using
1283  * the current configuration.  The effect is to reset most USB-related
1284  * state in the device, including interface altsettings (reset to zero),
1285  * endpoint halts (cleared), and data toggle (only for bulk and interrupt
1286  * endpoints).  Other usbcore state is unchanged, including bindings of
1287  * usb device drivers to interfaces.
1288  *
1289  * Because this affects multiple interfaces, avoid using this with composite
1290  * (multi-interface) devices.  Instead, the driver for each interface may
1291  * use usb_set_interface() on the interfaces it claims.  Be careful though;
1292  * some devices don't support the SET_INTERFACE request, and others won't
1293  * reset all the interface state (notably data toggles).  Resetting the whole
1294  * configuration would affect other drivers' interfaces.
1295  *
1296  * The caller must own the device lock.
1297  *
1298  * Returns zero on success, else a negative error code.
1299  */
1300 int usb_reset_configuration(struct usb_device *dev)
1301 {
1302 	int			i, retval;
1303 	struct usb_host_config	*config;
1304 
1305 	if (dev->state == USB_STATE_SUSPENDED)
1306 		return -EHOSTUNREACH;
1307 
1308 	/* caller must have locked the device and must own
1309 	 * the usb bus readlock (so driver bindings are stable);
1310 	 * calls during probe() are fine
1311 	 */
1312 
1313 	for (i = 1; i < 16; ++i) {
1314 		usb_disable_endpoint(dev, i);
1315 		usb_disable_endpoint(dev, i + USB_DIR_IN);
1316 	}
1317 
1318 	config = dev->actconfig;
1319 	retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1320 			USB_REQ_SET_CONFIGURATION, 0,
1321 			config->desc.bConfigurationValue, 0,
1322 			NULL, 0, USB_CTRL_SET_TIMEOUT);
1323 	if (retval < 0)
1324 		return retval;
1325 
1326 	dev->toggle[0] = dev->toggle[1] = 0;
1327 
1328 	/* re-init hc/hcd interface/endpoint state */
1329 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1330 		struct usb_interface *intf = config->interface[i];
1331 		struct usb_host_interface *alt;
1332 
1333 		if (device_is_registered(&intf->dev))
1334 			usb_remove_sysfs_intf_files(intf);
1335 		alt = usb_altnum_to_altsetting(intf, 0);
1336 
1337 		/* No altsetting 0?  We'll assume the first altsetting.
1338 		 * We could use a GetInterface call, but if a device is
1339 		 * so non-compliant that it doesn't have altsetting 0
1340 		 * then I wouldn't trust its reply anyway.
1341 		 */
1342 		if (!alt)
1343 			alt = &intf->altsetting[0];
1344 
1345 		intf->cur_altsetting = alt;
1346 		usb_enable_interface(dev, intf);
1347 		if (device_is_registered(&intf->dev))
1348 			usb_create_sysfs_intf_files(intf);
1349 	}
1350 	return 0;
1351 }
1352 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1353 
1354 static void usb_release_interface(struct device *dev)
1355 {
1356 	struct usb_interface *intf = to_usb_interface(dev);
1357 	struct usb_interface_cache *intfc =
1358 			altsetting_to_usb_interface_cache(intf->altsetting);
1359 
1360 	kref_put(&intfc->ref, usb_release_interface_cache);
1361 	kfree(intf);
1362 }
1363 
1364 #ifdef	CONFIG_HOTPLUG
1365 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1366 {
1367 	struct usb_device *usb_dev;
1368 	struct usb_interface *intf;
1369 	struct usb_host_interface *alt;
1370 
1371 	intf = to_usb_interface(dev);
1372 	usb_dev = interface_to_usbdev(intf);
1373 	alt = intf->cur_altsetting;
1374 
1375 	if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1376 		   alt->desc.bInterfaceClass,
1377 		   alt->desc.bInterfaceSubClass,
1378 		   alt->desc.bInterfaceProtocol))
1379 		return -ENOMEM;
1380 
1381 	if (add_uevent_var(env,
1382 		   "MODALIAS=usb:"
1383 		   "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
1384 		   le16_to_cpu(usb_dev->descriptor.idVendor),
1385 		   le16_to_cpu(usb_dev->descriptor.idProduct),
1386 		   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1387 		   usb_dev->descriptor.bDeviceClass,
1388 		   usb_dev->descriptor.bDeviceSubClass,
1389 		   usb_dev->descriptor.bDeviceProtocol,
1390 		   alt->desc.bInterfaceClass,
1391 		   alt->desc.bInterfaceSubClass,
1392 		   alt->desc.bInterfaceProtocol))
1393 		return -ENOMEM;
1394 
1395 	return 0;
1396 }
1397 
1398 #else
1399 
1400 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1401 {
1402 	return -ENODEV;
1403 }
1404 #endif	/* CONFIG_HOTPLUG */
1405 
1406 struct device_type usb_if_device_type = {
1407 	.name =		"usb_interface",
1408 	.release =	usb_release_interface,
1409 	.uevent =	usb_if_uevent,
1410 };
1411 
1412 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1413 						struct usb_host_config *config,
1414 						u8 inum)
1415 {
1416 	struct usb_interface_assoc_descriptor *retval = NULL;
1417 	struct usb_interface_assoc_descriptor *intf_assoc;
1418 	int first_intf;
1419 	int last_intf;
1420 	int i;
1421 
1422 	for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1423 		intf_assoc = config->intf_assoc[i];
1424 		if (intf_assoc->bInterfaceCount == 0)
1425 			continue;
1426 
1427 		first_intf = intf_assoc->bFirstInterface;
1428 		last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1429 		if (inum >= first_intf && inum <= last_intf) {
1430 			if (!retval)
1431 				retval = intf_assoc;
1432 			else
1433 				dev_err(&dev->dev, "Interface #%d referenced"
1434 					" by multiple IADs\n", inum);
1435 		}
1436 	}
1437 
1438 	return retval;
1439 }
1440 
1441 /*
1442  * usb_set_configuration - Makes a particular device setting be current
1443  * @dev: the device whose configuration is being updated
1444  * @configuration: the configuration being chosen.
1445  * Context: !in_interrupt(), caller owns the device lock
1446  *
1447  * This is used to enable non-default device modes.  Not all devices
1448  * use this kind of configurability; many devices only have one
1449  * configuration.
1450  *
1451  * @configuration is the value of the configuration to be installed.
1452  * According to the USB spec (e.g. section 9.1.1.5), configuration values
1453  * must be non-zero; a value of zero indicates that the device in
1454  * unconfigured.  However some devices erroneously use 0 as one of their
1455  * configuration values.  To help manage such devices, this routine will
1456  * accept @configuration = -1 as indicating the device should be put in
1457  * an unconfigured state.
1458  *
1459  * USB device configurations may affect Linux interoperability,
1460  * power consumption and the functionality available.  For example,
1461  * the default configuration is limited to using 100mA of bus power,
1462  * so that when certain device functionality requires more power,
1463  * and the device is bus powered, that functionality should be in some
1464  * non-default device configuration.  Other device modes may also be
1465  * reflected as configuration options, such as whether two ISDN
1466  * channels are available independently; and choosing between open
1467  * standard device protocols (like CDC) or proprietary ones.
1468  *
1469  * Note that a non-authorized device (dev->authorized == 0) will only
1470  * be put in unconfigured mode.
1471  *
1472  * Note that USB has an additional level of device configurability,
1473  * associated with interfaces.  That configurability is accessed using
1474  * usb_set_interface().
1475  *
1476  * This call is synchronous. The calling context must be able to sleep,
1477  * must own the device lock, and must not hold the driver model's USB
1478  * bus mutex; usb device driver probe() methods cannot use this routine.
1479  *
1480  * Returns zero on success, or else the status code returned by the
1481  * underlying call that failed.  On successful completion, each interface
1482  * in the original device configuration has been destroyed, and each one
1483  * in the new configuration has been probed by all relevant usb device
1484  * drivers currently known to the kernel.
1485  */
1486 int usb_set_configuration(struct usb_device *dev, int configuration)
1487 {
1488 	int i, ret;
1489 	struct usb_host_config *cp = NULL;
1490 	struct usb_interface **new_interfaces = NULL;
1491 	int n, nintf;
1492 
1493 	if (dev->authorized == 0 || configuration == -1)
1494 		configuration = 0;
1495 	else {
1496 		for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1497 			if (dev->config[i].desc.bConfigurationValue ==
1498 					configuration) {
1499 				cp = &dev->config[i];
1500 				break;
1501 			}
1502 		}
1503 	}
1504 	if ((!cp && configuration != 0))
1505 		return -EINVAL;
1506 
1507 	/* The USB spec says configuration 0 means unconfigured.
1508 	 * But if a device includes a configuration numbered 0,
1509 	 * we will accept it as a correctly configured state.
1510 	 * Use -1 if you really want to unconfigure the device.
1511 	 */
1512 	if (cp && configuration == 0)
1513 		dev_warn(&dev->dev, "config 0 descriptor??\n");
1514 
1515 	/* Allocate memory for new interfaces before doing anything else,
1516 	 * so that if we run out then nothing will have changed. */
1517 	n = nintf = 0;
1518 	if (cp) {
1519 		nintf = cp->desc.bNumInterfaces;
1520 		new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1521 				GFP_KERNEL);
1522 		if (!new_interfaces) {
1523 			dev_err(&dev->dev, "Out of memory\n");
1524 			return -ENOMEM;
1525 		}
1526 
1527 		for (; n < nintf; ++n) {
1528 			new_interfaces[n] = kzalloc(
1529 					sizeof(struct usb_interface),
1530 					GFP_KERNEL);
1531 			if (!new_interfaces[n]) {
1532 				dev_err(&dev->dev, "Out of memory\n");
1533 				ret = -ENOMEM;
1534 free_interfaces:
1535 				while (--n >= 0)
1536 					kfree(new_interfaces[n]);
1537 				kfree(new_interfaces);
1538 				return ret;
1539 			}
1540 		}
1541 
1542 		i = dev->bus_mA - cp->desc.bMaxPower * 2;
1543 		if (i < 0)
1544 			dev_warn(&dev->dev, "new config #%d exceeds power "
1545 					"limit by %dmA\n",
1546 					configuration, -i);
1547 	}
1548 
1549 	/* Wake up the device so we can send it the Set-Config request */
1550 	ret = usb_autoresume_device(dev);
1551 	if (ret)
1552 		goto free_interfaces;
1553 
1554 	/* if it's already configured, clear out old state first.
1555 	 * getting rid of old interfaces means unbinding their drivers.
1556 	 */
1557 	if (dev->state != USB_STATE_ADDRESS)
1558 		usb_disable_device(dev, 1);	/* Skip ep0 */
1559 
1560 	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1561 			      USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1562 			      NULL, 0, USB_CTRL_SET_TIMEOUT);
1563 	if (ret < 0) {
1564 		/* All the old state is gone, so what else can we do?
1565 		 * The device is probably useless now anyway.
1566 		 */
1567 		cp = NULL;
1568 	}
1569 
1570 	dev->actconfig = cp;
1571 	if (!cp) {
1572 		usb_set_device_state(dev, USB_STATE_ADDRESS);
1573 		usb_autosuspend_device(dev);
1574 		goto free_interfaces;
1575 	}
1576 	usb_set_device_state(dev, USB_STATE_CONFIGURED);
1577 
1578 	/* Initialize the new interface structures and the
1579 	 * hc/hcd/usbcore interface/endpoint state.
1580 	 */
1581 	for (i = 0; i < nintf; ++i) {
1582 		struct usb_interface_cache *intfc;
1583 		struct usb_interface *intf;
1584 		struct usb_host_interface *alt;
1585 
1586 		cp->interface[i] = intf = new_interfaces[i];
1587 		intfc = cp->intf_cache[i];
1588 		intf->altsetting = intfc->altsetting;
1589 		intf->num_altsetting = intfc->num_altsetting;
1590 		intf->intf_assoc = find_iad(dev, cp, i);
1591 		kref_get(&intfc->ref);
1592 
1593 		alt = usb_altnum_to_altsetting(intf, 0);
1594 
1595 		/* No altsetting 0?  We'll assume the first altsetting.
1596 		 * We could use a GetInterface call, but if a device is
1597 		 * so non-compliant that it doesn't have altsetting 0
1598 		 * then I wouldn't trust its reply anyway.
1599 		 */
1600 		if (!alt)
1601 			alt = &intf->altsetting[0];
1602 
1603 		intf->cur_altsetting = alt;
1604 		usb_enable_interface(dev, intf);
1605 		intf->dev.parent = &dev->dev;
1606 		intf->dev.driver = NULL;
1607 		intf->dev.bus = &usb_bus_type;
1608 		intf->dev.type = &usb_if_device_type;
1609 		intf->dev.dma_mask = dev->dev.dma_mask;
1610 		device_initialize(&intf->dev);
1611 		mark_quiesced(intf);
1612 		sprintf(&intf->dev.bus_id[0], "%d-%s:%d.%d",
1613 			dev->bus->busnum, dev->devpath,
1614 			configuration, alt->desc.bInterfaceNumber);
1615 	}
1616 	kfree(new_interfaces);
1617 
1618 	if (cp->string == NULL)
1619 		cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1620 
1621 	/* Now that all the interfaces are set up, register them
1622 	 * to trigger binding of drivers to interfaces.  probe()
1623 	 * routines may install different altsettings and may
1624 	 * claim() any interfaces not yet bound.  Many class drivers
1625 	 * need that: CDC, audio, video, etc.
1626 	 */
1627 	for (i = 0; i < nintf; ++i) {
1628 		struct usb_interface *intf = cp->interface[i];
1629 
1630 		dev_dbg(&dev->dev,
1631 			"adding %s (config #%d, interface %d)\n",
1632 			intf->dev.bus_id, configuration,
1633 			intf->cur_altsetting->desc.bInterfaceNumber);
1634 		ret = device_add(&intf->dev);
1635 		if (ret != 0) {
1636 			dev_err(&dev->dev, "device_add(%s) --> %d\n",
1637 				intf->dev.bus_id, ret);
1638 			continue;
1639 		}
1640 		usb_create_sysfs_intf_files(intf);
1641 	}
1642 
1643 	usb_autosuspend_device(dev);
1644 	return 0;
1645 }
1646 
1647 struct set_config_request {
1648 	struct usb_device	*udev;
1649 	int			config;
1650 	struct work_struct	work;
1651 };
1652 
1653 /* Worker routine for usb_driver_set_configuration() */
1654 static void driver_set_config_work(struct work_struct *work)
1655 {
1656 	struct set_config_request *req =
1657 		container_of(work, struct set_config_request, work);
1658 
1659 	usb_lock_device(req->udev);
1660 	usb_set_configuration(req->udev, req->config);
1661 	usb_unlock_device(req->udev);
1662 	usb_put_dev(req->udev);
1663 	kfree(req);
1664 }
1665 
1666 /**
1667  * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1668  * @udev: the device whose configuration is being updated
1669  * @config: the configuration being chosen.
1670  * Context: In process context, must be able to sleep
1671  *
1672  * Device interface drivers are not allowed to change device configurations.
1673  * This is because changing configurations will destroy the interface the
1674  * driver is bound to and create new ones; it would be like a floppy-disk
1675  * driver telling the computer to replace the floppy-disk drive with a
1676  * tape drive!
1677  *
1678  * Still, in certain specialized circumstances the need may arise.  This
1679  * routine gets around the normal restrictions by using a work thread to
1680  * submit the change-config request.
1681  *
1682  * Returns 0 if the request was succesfully queued, error code otherwise.
1683  * The caller has no way to know whether the queued request will eventually
1684  * succeed.
1685  */
1686 int usb_driver_set_configuration(struct usb_device *udev, int config)
1687 {
1688 	struct set_config_request *req;
1689 
1690 	req = kmalloc(sizeof(*req), GFP_KERNEL);
1691 	if (!req)
1692 		return -ENOMEM;
1693 	req->udev = udev;
1694 	req->config = config;
1695 	INIT_WORK(&req->work, driver_set_config_work);
1696 
1697 	usb_get_dev(udev);
1698 	schedule_work(&req->work);
1699 	return 0;
1700 }
1701 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
1702