1 /* 2 * message.c - synchronous message handling 3 */ 4 5 #include <linux/pci.h> /* for scatterlist macros */ 6 #include <linux/usb.h> 7 #include <linux/module.h> 8 #include <linux/slab.h> 9 #include <linux/init.h> 10 #include <linux/mm.h> 11 #include <linux/timer.h> 12 #include <linux/ctype.h> 13 #include <linux/device.h> 14 #include <linux/scatterlist.h> 15 #include <linux/usb/quirks.h> 16 #include <asm/byteorder.h> 17 18 #include "hcd.h" /* for usbcore internals */ 19 #include "usb.h" 20 21 struct api_context { 22 struct completion done; 23 int status; 24 }; 25 26 static void usb_api_blocking_completion(struct urb *urb) 27 { 28 struct api_context *ctx = urb->context; 29 30 ctx->status = urb->status; 31 complete(&ctx->done); 32 } 33 34 35 /* 36 * Starts urb and waits for completion or timeout. Note that this call 37 * is NOT interruptible. Many device driver i/o requests should be 38 * interruptible and therefore these drivers should implement their 39 * own interruptible routines. 40 */ 41 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length) 42 { 43 struct api_context ctx; 44 unsigned long expire; 45 int retval; 46 47 init_completion(&ctx.done); 48 urb->context = &ctx; 49 urb->actual_length = 0; 50 retval = usb_submit_urb(urb, GFP_NOIO); 51 if (unlikely(retval)) 52 goto out; 53 54 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT; 55 if (!wait_for_completion_timeout(&ctx.done, expire)) { 56 usb_kill_urb(urb); 57 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status); 58 59 dev_dbg(&urb->dev->dev, 60 "%s timed out on ep%d%s len=%d/%d\n", 61 current->comm, 62 usb_endpoint_num(&urb->ep->desc), 63 usb_urb_dir_in(urb) ? "in" : "out", 64 urb->actual_length, 65 urb->transfer_buffer_length); 66 } else 67 retval = ctx.status; 68 out: 69 if (actual_length) 70 *actual_length = urb->actual_length; 71 72 usb_free_urb(urb); 73 return retval; 74 } 75 76 /*-------------------------------------------------------------------*/ 77 /* returns status (negative) or length (positive) */ 78 static int usb_internal_control_msg(struct usb_device *usb_dev, 79 unsigned int pipe, 80 struct usb_ctrlrequest *cmd, 81 void *data, int len, int timeout) 82 { 83 struct urb *urb; 84 int retv; 85 int length; 86 87 urb = usb_alloc_urb(0, GFP_NOIO); 88 if (!urb) 89 return -ENOMEM; 90 91 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data, 92 len, usb_api_blocking_completion, NULL); 93 94 retv = usb_start_wait_urb(urb, timeout, &length); 95 if (retv < 0) 96 return retv; 97 else 98 return length; 99 } 100 101 /** 102 * usb_control_msg - Builds a control urb, sends it off and waits for completion 103 * @dev: pointer to the usb device to send the message to 104 * @pipe: endpoint "pipe" to send the message to 105 * @request: USB message request value 106 * @requesttype: USB message request type value 107 * @value: USB message value 108 * @index: USB message index value 109 * @data: pointer to the data to send 110 * @size: length in bytes of the data to send 111 * @timeout: time in msecs to wait for the message to complete before timing 112 * out (if 0 the wait is forever) 113 * 114 * Context: !in_interrupt () 115 * 116 * This function sends a simple control message to a specified endpoint and 117 * waits for the message to complete, or timeout. 118 * 119 * If successful, it returns the number of bytes transferred, otherwise a 120 * negative error number. 121 * 122 * Don't use this function from within an interrupt context, like a bottom half 123 * handler. If you need an asynchronous message, or need to send a message 124 * from within interrupt context, use usb_submit_urb(). 125 * If a thread in your driver uses this call, make sure your disconnect() 126 * method can wait for it to complete. Since you don't have a handle on the 127 * URB used, you can't cancel the request. 128 */ 129 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, 130 __u8 requesttype, __u16 value, __u16 index, void *data, 131 __u16 size, int timeout) 132 { 133 struct usb_ctrlrequest *dr; 134 int ret; 135 136 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO); 137 if (!dr) 138 return -ENOMEM; 139 140 dr->bRequestType = requesttype; 141 dr->bRequest = request; 142 dr->wValue = cpu_to_le16p(&value); 143 dr->wIndex = cpu_to_le16p(&index); 144 dr->wLength = cpu_to_le16p(&size); 145 146 /* dbg("usb_control_msg"); */ 147 148 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout); 149 150 kfree(dr); 151 152 return ret; 153 } 154 EXPORT_SYMBOL_GPL(usb_control_msg); 155 156 /** 157 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion 158 * @usb_dev: pointer to the usb device to send the message to 159 * @pipe: endpoint "pipe" to send the message to 160 * @data: pointer to the data to send 161 * @len: length in bytes of the data to send 162 * @actual_length: pointer to a location to put the actual length transferred 163 * in bytes 164 * @timeout: time in msecs to wait for the message to complete before 165 * timing out (if 0 the wait is forever) 166 * 167 * Context: !in_interrupt () 168 * 169 * This function sends a simple interrupt message to a specified endpoint and 170 * waits for the message to complete, or timeout. 171 * 172 * If successful, it returns 0, otherwise a negative error number. The number 173 * of actual bytes transferred will be stored in the actual_length paramater. 174 * 175 * Don't use this function from within an interrupt context, like a bottom half 176 * handler. If you need an asynchronous message, or need to send a message 177 * from within interrupt context, use usb_submit_urb() If a thread in your 178 * driver uses this call, make sure your disconnect() method can wait for it to 179 * complete. Since you don't have a handle on the URB used, you can't cancel 180 * the request. 181 */ 182 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 183 void *data, int len, int *actual_length, int timeout) 184 { 185 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout); 186 } 187 EXPORT_SYMBOL_GPL(usb_interrupt_msg); 188 189 /** 190 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion 191 * @usb_dev: pointer to the usb device to send the message to 192 * @pipe: endpoint "pipe" to send the message to 193 * @data: pointer to the data to send 194 * @len: length in bytes of the data to send 195 * @actual_length: pointer to a location to put the actual length transferred 196 * in bytes 197 * @timeout: time in msecs to wait for the message to complete before 198 * timing out (if 0 the wait is forever) 199 * 200 * Context: !in_interrupt () 201 * 202 * This function sends a simple bulk message to a specified endpoint 203 * and waits for the message to complete, or timeout. 204 * 205 * If successful, it returns 0, otherwise a negative error number. The number 206 * of actual bytes transferred will be stored in the actual_length paramater. 207 * 208 * Don't use this function from within an interrupt context, like a bottom half 209 * handler. If you need an asynchronous message, or need to send a message 210 * from within interrupt context, use usb_submit_urb() If a thread in your 211 * driver uses this call, make sure your disconnect() method can wait for it to 212 * complete. Since you don't have a handle on the URB used, you can't cancel 213 * the request. 214 * 215 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl, 216 * users are forced to abuse this routine by using it to submit URBs for 217 * interrupt endpoints. We will take the liberty of creating an interrupt URB 218 * (with the default interval) if the target is an interrupt endpoint. 219 */ 220 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 221 void *data, int len, int *actual_length, int timeout) 222 { 223 struct urb *urb; 224 struct usb_host_endpoint *ep; 225 226 ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out) 227 [usb_pipeendpoint(pipe)]; 228 if (!ep || len < 0) 229 return -EINVAL; 230 231 urb = usb_alloc_urb(0, GFP_KERNEL); 232 if (!urb) 233 return -ENOMEM; 234 235 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 236 USB_ENDPOINT_XFER_INT) { 237 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30); 238 usb_fill_int_urb(urb, usb_dev, pipe, data, len, 239 usb_api_blocking_completion, NULL, 240 ep->desc.bInterval); 241 } else 242 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len, 243 usb_api_blocking_completion, NULL); 244 245 return usb_start_wait_urb(urb, timeout, actual_length); 246 } 247 EXPORT_SYMBOL_GPL(usb_bulk_msg); 248 249 /*-------------------------------------------------------------------*/ 250 251 static void sg_clean(struct usb_sg_request *io) 252 { 253 if (io->urbs) { 254 while (io->entries--) 255 usb_free_urb(io->urbs [io->entries]); 256 kfree(io->urbs); 257 io->urbs = NULL; 258 } 259 if (io->dev->dev.dma_mask != NULL) 260 usb_buffer_unmap_sg(io->dev, usb_pipein(io->pipe), 261 io->sg, io->nents); 262 io->dev = NULL; 263 } 264 265 static void sg_complete(struct urb *urb) 266 { 267 struct usb_sg_request *io = urb->context; 268 int status = urb->status; 269 270 spin_lock(&io->lock); 271 272 /* In 2.5 we require hcds' endpoint queues not to progress after fault 273 * reports, until the completion callback (this!) returns. That lets 274 * device driver code (like this routine) unlink queued urbs first, 275 * if it needs to, since the HC won't work on them at all. So it's 276 * not possible for page N+1 to overwrite page N, and so on. 277 * 278 * That's only for "hard" faults; "soft" faults (unlinks) sometimes 279 * complete before the HCD can get requests away from hardware, 280 * though never during cleanup after a hard fault. 281 */ 282 if (io->status 283 && (io->status != -ECONNRESET 284 || status != -ECONNRESET) 285 && urb->actual_length) { 286 dev_err(io->dev->bus->controller, 287 "dev %s ep%d%s scatterlist error %d/%d\n", 288 io->dev->devpath, 289 usb_endpoint_num(&urb->ep->desc), 290 usb_urb_dir_in(urb) ? "in" : "out", 291 status, io->status); 292 /* BUG (); */ 293 } 294 295 if (io->status == 0 && status && status != -ECONNRESET) { 296 int i, found, retval; 297 298 io->status = status; 299 300 /* the previous urbs, and this one, completed already. 301 * unlink pending urbs so they won't rx/tx bad data. 302 * careful: unlink can sometimes be synchronous... 303 */ 304 spin_unlock(&io->lock); 305 for (i = 0, found = 0; i < io->entries; i++) { 306 if (!io->urbs [i] || !io->urbs [i]->dev) 307 continue; 308 if (found) { 309 retval = usb_unlink_urb(io->urbs [i]); 310 if (retval != -EINPROGRESS && 311 retval != -ENODEV && 312 retval != -EBUSY) 313 dev_err(&io->dev->dev, 314 "%s, unlink --> %d\n", 315 __FUNCTION__, retval); 316 } else if (urb == io->urbs [i]) 317 found = 1; 318 } 319 spin_lock(&io->lock); 320 } 321 urb->dev = NULL; 322 323 /* on the last completion, signal usb_sg_wait() */ 324 io->bytes += urb->actual_length; 325 io->count--; 326 if (!io->count) 327 complete(&io->complete); 328 329 spin_unlock(&io->lock); 330 } 331 332 333 /** 334 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request 335 * @io: request block being initialized. until usb_sg_wait() returns, 336 * treat this as a pointer to an opaque block of memory, 337 * @dev: the usb device that will send or receive the data 338 * @pipe: endpoint "pipe" used to transfer the data 339 * @period: polling rate for interrupt endpoints, in frames or 340 * (for high speed endpoints) microframes; ignored for bulk 341 * @sg: scatterlist entries 342 * @nents: how many entries in the scatterlist 343 * @length: how many bytes to send from the scatterlist, or zero to 344 * send every byte identified in the list. 345 * @mem_flags: SLAB_* flags affecting memory allocations in this call 346 * 347 * Returns zero for success, else a negative errno value. This initializes a 348 * scatter/gather request, allocating resources such as I/O mappings and urb 349 * memory (except maybe memory used by USB controller drivers). 350 * 351 * The request must be issued using usb_sg_wait(), which waits for the I/O to 352 * complete (or to be canceled) and then cleans up all resources allocated by 353 * usb_sg_init(). 354 * 355 * The request may be canceled with usb_sg_cancel(), either before or after 356 * usb_sg_wait() is called. 357 */ 358 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev, 359 unsigned pipe, unsigned period, struct scatterlist *sg, 360 int nents, size_t length, gfp_t mem_flags) 361 { 362 int i; 363 int urb_flags; 364 int dma; 365 366 if (!io || !dev || !sg 367 || usb_pipecontrol(pipe) 368 || usb_pipeisoc(pipe) 369 || nents <= 0) 370 return -EINVAL; 371 372 spin_lock_init(&io->lock); 373 io->dev = dev; 374 io->pipe = pipe; 375 io->sg = sg; 376 io->nents = nents; 377 378 /* not all host controllers use DMA (like the mainstream pci ones); 379 * they can use PIO (sl811) or be software over another transport. 380 */ 381 dma = (dev->dev.dma_mask != NULL); 382 if (dma) 383 io->entries = usb_buffer_map_sg(dev, usb_pipein(pipe), 384 sg, nents); 385 else 386 io->entries = nents; 387 388 /* initialize all the urbs we'll use */ 389 if (io->entries <= 0) 390 return io->entries; 391 392 io->count = io->entries; 393 io->urbs = kmalloc(io->entries * sizeof *io->urbs, mem_flags); 394 if (!io->urbs) 395 goto nomem; 396 397 urb_flags = URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT; 398 if (usb_pipein(pipe)) 399 urb_flags |= URB_SHORT_NOT_OK; 400 401 for (i = 0; i < io->entries; i++) { 402 unsigned len; 403 404 io->urbs[i] = usb_alloc_urb(0, mem_flags); 405 if (!io->urbs[i]) { 406 io->entries = i; 407 goto nomem; 408 } 409 410 io->urbs[i]->dev = NULL; 411 io->urbs[i]->pipe = pipe; 412 io->urbs[i]->interval = period; 413 io->urbs[i]->transfer_flags = urb_flags; 414 415 io->urbs[i]->complete = sg_complete; 416 io->urbs[i]->context = io; 417 418 /* 419 * Some systems need to revert to PIO when DMA is temporarily 420 * unavailable. For their sakes, both transfer_buffer and 421 * transfer_dma are set when possible. However this can only 422 * work on systems without: 423 * 424 * - HIGHMEM, since DMA buffers located in high memory are 425 * not directly addressable by the CPU for PIO; 426 * 427 * - IOMMU, since dma_map_sg() is allowed to use an IOMMU to 428 * make virtually discontiguous buffers be "dma-contiguous" 429 * so that PIO and DMA need diferent numbers of URBs. 430 * 431 * So when HIGHMEM or IOMMU are in use, transfer_buffer is NULL 432 * to prevent stale pointers and to help spot bugs. 433 */ 434 if (dma) { 435 io->urbs[i]->transfer_dma = sg_dma_address(sg + i); 436 len = sg_dma_len(sg + i); 437 #if defined(CONFIG_HIGHMEM) || defined(CONFIG_GART_IOMMU) 438 io->urbs[i]->transfer_buffer = NULL; 439 #else 440 io->urbs[i]->transfer_buffer = sg_virt(&sg[i]); 441 #endif 442 } else { 443 /* hc may use _only_ transfer_buffer */ 444 io->urbs[i]->transfer_buffer = sg_virt(&sg[i]); 445 len = sg[i].length; 446 } 447 448 if (length) { 449 len = min_t(unsigned, len, length); 450 length -= len; 451 if (length == 0) 452 io->entries = i + 1; 453 } 454 io->urbs[i]->transfer_buffer_length = len; 455 } 456 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT; 457 458 /* transaction state */ 459 io->status = 0; 460 io->bytes = 0; 461 init_completion(&io->complete); 462 return 0; 463 464 nomem: 465 sg_clean(io); 466 return -ENOMEM; 467 } 468 EXPORT_SYMBOL_GPL(usb_sg_init); 469 470 /** 471 * usb_sg_wait - synchronously execute scatter/gather request 472 * @io: request block handle, as initialized with usb_sg_init(). 473 * some fields become accessible when this call returns. 474 * Context: !in_interrupt () 475 * 476 * This function blocks until the specified I/O operation completes. It 477 * leverages the grouping of the related I/O requests to get good transfer 478 * rates, by queueing the requests. At higher speeds, such queuing can 479 * significantly improve USB throughput. 480 * 481 * There are three kinds of completion for this function. 482 * (1) success, where io->status is zero. The number of io->bytes 483 * transferred is as requested. 484 * (2) error, where io->status is a negative errno value. The number 485 * of io->bytes transferred before the error is usually less 486 * than requested, and can be nonzero. 487 * (3) cancellation, a type of error with status -ECONNRESET that 488 * is initiated by usb_sg_cancel(). 489 * 490 * When this function returns, all memory allocated through usb_sg_init() or 491 * this call will have been freed. The request block parameter may still be 492 * passed to usb_sg_cancel(), or it may be freed. It could also be 493 * reinitialized and then reused. 494 * 495 * Data Transfer Rates: 496 * 497 * Bulk transfers are valid for full or high speed endpoints. 498 * The best full speed data rate is 19 packets of 64 bytes each 499 * per frame, or 1216 bytes per millisecond. 500 * The best high speed data rate is 13 packets of 512 bytes each 501 * per microframe, or 52 KBytes per millisecond. 502 * 503 * The reason to use interrupt transfers through this API would most likely 504 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond 505 * could be transferred. That capability is less useful for low or full 506 * speed interrupt endpoints, which allow at most one packet per millisecond, 507 * of at most 8 or 64 bytes (respectively). 508 */ 509 void usb_sg_wait(struct usb_sg_request *io) 510 { 511 int i; 512 int entries = io->entries; 513 514 /* queue the urbs. */ 515 spin_lock_irq(&io->lock); 516 i = 0; 517 while (i < entries && !io->status) { 518 int retval; 519 520 io->urbs[i]->dev = io->dev; 521 retval = usb_submit_urb(io->urbs [i], GFP_ATOMIC); 522 523 /* after we submit, let completions or cancelations fire; 524 * we handshake using io->status. 525 */ 526 spin_unlock_irq(&io->lock); 527 switch (retval) { 528 /* maybe we retrying will recover */ 529 case -ENXIO: /* hc didn't queue this one */ 530 case -EAGAIN: 531 case -ENOMEM: 532 io->urbs[i]->dev = NULL; 533 retval = 0; 534 yield(); 535 break; 536 537 /* no error? continue immediately. 538 * 539 * NOTE: to work better with UHCI (4K I/O buffer may 540 * need 3K of TDs) it may be good to limit how many 541 * URBs are queued at once; N milliseconds? 542 */ 543 case 0: 544 ++i; 545 cpu_relax(); 546 break; 547 548 /* fail any uncompleted urbs */ 549 default: 550 io->urbs[i]->dev = NULL; 551 io->urbs[i]->status = retval; 552 dev_dbg(&io->dev->dev, "%s, submit --> %d\n", 553 __FUNCTION__, retval); 554 usb_sg_cancel(io); 555 } 556 spin_lock_irq(&io->lock); 557 if (retval && (io->status == 0 || io->status == -ECONNRESET)) 558 io->status = retval; 559 } 560 io->count -= entries - i; 561 if (io->count == 0) 562 complete(&io->complete); 563 spin_unlock_irq(&io->lock); 564 565 /* OK, yes, this could be packaged as non-blocking. 566 * So could the submit loop above ... but it's easier to 567 * solve neither problem than to solve both! 568 */ 569 wait_for_completion(&io->complete); 570 571 sg_clean(io); 572 } 573 EXPORT_SYMBOL_GPL(usb_sg_wait); 574 575 /** 576 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait() 577 * @io: request block, initialized with usb_sg_init() 578 * 579 * This stops a request after it has been started by usb_sg_wait(). 580 * It can also prevents one initialized by usb_sg_init() from starting, 581 * so that call just frees resources allocated to the request. 582 */ 583 void usb_sg_cancel(struct usb_sg_request *io) 584 { 585 unsigned long flags; 586 587 spin_lock_irqsave(&io->lock, flags); 588 589 /* shut everything down, if it didn't already */ 590 if (!io->status) { 591 int i; 592 593 io->status = -ECONNRESET; 594 spin_unlock(&io->lock); 595 for (i = 0; i < io->entries; i++) { 596 int retval; 597 598 if (!io->urbs [i]->dev) 599 continue; 600 retval = usb_unlink_urb(io->urbs [i]); 601 if (retval != -EINPROGRESS && retval != -EBUSY) 602 dev_warn(&io->dev->dev, "%s, unlink --> %d\n", 603 __FUNCTION__, retval); 604 } 605 spin_lock(&io->lock); 606 } 607 spin_unlock_irqrestore(&io->lock, flags); 608 } 609 EXPORT_SYMBOL_GPL(usb_sg_cancel); 610 611 /*-------------------------------------------------------------------*/ 612 613 /** 614 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request 615 * @dev: the device whose descriptor is being retrieved 616 * @type: the descriptor type (USB_DT_*) 617 * @index: the number of the descriptor 618 * @buf: where to put the descriptor 619 * @size: how big is "buf"? 620 * Context: !in_interrupt () 621 * 622 * Gets a USB descriptor. Convenience functions exist to simplify 623 * getting some types of descriptors. Use 624 * usb_get_string() or usb_string() for USB_DT_STRING. 625 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG) 626 * are part of the device structure. 627 * In addition to a number of USB-standard descriptors, some 628 * devices also use class-specific or vendor-specific descriptors. 629 * 630 * This call is synchronous, and may not be used in an interrupt context. 631 * 632 * Returns the number of bytes received on success, or else the status code 633 * returned by the underlying usb_control_msg() call. 634 */ 635 int usb_get_descriptor(struct usb_device *dev, unsigned char type, 636 unsigned char index, void *buf, int size) 637 { 638 int i; 639 int result; 640 641 memset(buf, 0, size); /* Make sure we parse really received data */ 642 643 for (i = 0; i < 3; ++i) { 644 /* retry on length 0 or error; some devices are flakey */ 645 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 646 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 647 (type << 8) + index, 0, buf, size, 648 USB_CTRL_GET_TIMEOUT); 649 if (result <= 0 && result != -ETIMEDOUT) 650 continue; 651 if (result > 1 && ((u8 *)buf)[1] != type) { 652 result = -EPROTO; 653 continue; 654 } 655 break; 656 } 657 return result; 658 } 659 EXPORT_SYMBOL_GPL(usb_get_descriptor); 660 661 /** 662 * usb_get_string - gets a string descriptor 663 * @dev: the device whose string descriptor is being retrieved 664 * @langid: code for language chosen (from string descriptor zero) 665 * @index: the number of the descriptor 666 * @buf: where to put the string 667 * @size: how big is "buf"? 668 * Context: !in_interrupt () 669 * 670 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character, 671 * in little-endian byte order). 672 * The usb_string() function will often be a convenient way to turn 673 * these strings into kernel-printable form. 674 * 675 * Strings may be referenced in device, configuration, interface, or other 676 * descriptors, and could also be used in vendor-specific ways. 677 * 678 * This call is synchronous, and may not be used in an interrupt context. 679 * 680 * Returns the number of bytes received on success, or else the status code 681 * returned by the underlying usb_control_msg() call. 682 */ 683 static int usb_get_string(struct usb_device *dev, unsigned short langid, 684 unsigned char index, void *buf, int size) 685 { 686 int i; 687 int result; 688 689 for (i = 0; i < 3; ++i) { 690 /* retry on length 0 or stall; some devices are flakey */ 691 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 692 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 693 (USB_DT_STRING << 8) + index, langid, buf, size, 694 USB_CTRL_GET_TIMEOUT); 695 if (!(result == 0 || result == -EPIPE)) 696 break; 697 } 698 return result; 699 } 700 701 static void usb_try_string_workarounds(unsigned char *buf, int *length) 702 { 703 int newlength, oldlength = *length; 704 705 for (newlength = 2; newlength + 1 < oldlength; newlength += 2) 706 if (!isprint(buf[newlength]) || buf[newlength + 1]) 707 break; 708 709 if (newlength > 2) { 710 buf[0] = newlength; 711 *length = newlength; 712 } 713 } 714 715 static int usb_string_sub(struct usb_device *dev, unsigned int langid, 716 unsigned int index, unsigned char *buf) 717 { 718 int rc; 719 720 /* Try to read the string descriptor by asking for the maximum 721 * possible number of bytes */ 722 if (dev->quirks & USB_QUIRK_STRING_FETCH_255) 723 rc = -EIO; 724 else 725 rc = usb_get_string(dev, langid, index, buf, 255); 726 727 /* If that failed try to read the descriptor length, then 728 * ask for just that many bytes */ 729 if (rc < 2) { 730 rc = usb_get_string(dev, langid, index, buf, 2); 731 if (rc == 2) 732 rc = usb_get_string(dev, langid, index, buf, buf[0]); 733 } 734 735 if (rc >= 2) { 736 if (!buf[0] && !buf[1]) 737 usb_try_string_workarounds(buf, &rc); 738 739 /* There might be extra junk at the end of the descriptor */ 740 if (buf[0] < rc) 741 rc = buf[0]; 742 743 rc = rc - (rc & 1); /* force a multiple of two */ 744 } 745 746 if (rc < 2) 747 rc = (rc < 0 ? rc : -EINVAL); 748 749 return rc; 750 } 751 752 /** 753 * usb_string - returns ISO 8859-1 version of a string descriptor 754 * @dev: the device whose string descriptor is being retrieved 755 * @index: the number of the descriptor 756 * @buf: where to put the string 757 * @size: how big is "buf"? 758 * Context: !in_interrupt () 759 * 760 * This converts the UTF-16LE encoded strings returned by devices, from 761 * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones 762 * that are more usable in most kernel contexts. Note that all characters 763 * in the chosen descriptor that can't be encoded using ISO-8859-1 764 * are converted to the question mark ("?") character, and this function 765 * chooses strings in the first language supported by the device. 766 * 767 * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit 768 * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode, 769 * and is appropriate for use many uses of English and several other 770 * Western European languages. (But it doesn't include the "Euro" symbol.) 771 * 772 * This call is synchronous, and may not be used in an interrupt context. 773 * 774 * Returns length of the string (>= 0) or usb_control_msg status (< 0). 775 */ 776 int usb_string(struct usb_device *dev, int index, char *buf, size_t size) 777 { 778 unsigned char *tbuf; 779 int err; 780 unsigned int u, idx; 781 782 if (dev->state == USB_STATE_SUSPENDED) 783 return -EHOSTUNREACH; 784 if (size <= 0 || !buf || !index) 785 return -EINVAL; 786 buf[0] = 0; 787 tbuf = kmalloc(256, GFP_KERNEL); 788 if (!tbuf) 789 return -ENOMEM; 790 791 /* get langid for strings if it's not yet known */ 792 if (!dev->have_langid) { 793 err = usb_string_sub(dev, 0, 0, tbuf); 794 if (err < 0) { 795 dev_err(&dev->dev, 796 "string descriptor 0 read error: %d\n", 797 err); 798 goto errout; 799 } else if (err < 4) { 800 dev_err(&dev->dev, "string descriptor 0 too short\n"); 801 err = -EINVAL; 802 goto errout; 803 } else { 804 dev->have_langid = 1; 805 dev->string_langid = tbuf[2] | (tbuf[3] << 8); 806 /* always use the first langid listed */ 807 dev_dbg(&dev->dev, "default language 0x%04x\n", 808 dev->string_langid); 809 } 810 } 811 812 err = usb_string_sub(dev, dev->string_langid, index, tbuf); 813 if (err < 0) 814 goto errout; 815 816 size--; /* leave room for trailing NULL char in output buffer */ 817 for (idx = 0, u = 2; u < err; u += 2) { 818 if (idx >= size) 819 break; 820 if (tbuf[u+1]) /* high byte */ 821 buf[idx++] = '?'; /* non ISO-8859-1 character */ 822 else 823 buf[idx++] = tbuf[u]; 824 } 825 buf[idx] = 0; 826 err = idx; 827 828 if (tbuf[1] != USB_DT_STRING) 829 dev_dbg(&dev->dev, 830 "wrong descriptor type %02x for string %d (\"%s\")\n", 831 tbuf[1], index, buf); 832 833 errout: 834 kfree(tbuf); 835 return err; 836 } 837 EXPORT_SYMBOL_GPL(usb_string); 838 839 /** 840 * usb_cache_string - read a string descriptor and cache it for later use 841 * @udev: the device whose string descriptor is being read 842 * @index: the descriptor index 843 * 844 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string, 845 * or NULL if the index is 0 or the string could not be read. 846 */ 847 char *usb_cache_string(struct usb_device *udev, int index) 848 { 849 char *buf; 850 char *smallbuf = NULL; 851 int len; 852 853 if (index <= 0) 854 return NULL; 855 856 buf = kmalloc(256, GFP_KERNEL); 857 if (buf) { 858 len = usb_string(udev, index, buf, 256); 859 if (len > 0) { 860 smallbuf = kmalloc(++len, GFP_KERNEL); 861 if (!smallbuf) 862 return buf; 863 memcpy(smallbuf, buf, len); 864 } 865 kfree(buf); 866 } 867 return smallbuf; 868 } 869 870 /* 871 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore) 872 * @dev: the device whose device descriptor is being updated 873 * @size: how much of the descriptor to read 874 * Context: !in_interrupt () 875 * 876 * Updates the copy of the device descriptor stored in the device structure, 877 * which dedicates space for this purpose. 878 * 879 * Not exported, only for use by the core. If drivers really want to read 880 * the device descriptor directly, they can call usb_get_descriptor() with 881 * type = USB_DT_DEVICE and index = 0. 882 * 883 * This call is synchronous, and may not be used in an interrupt context. 884 * 885 * Returns the number of bytes received on success, or else the status code 886 * returned by the underlying usb_control_msg() call. 887 */ 888 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size) 889 { 890 struct usb_device_descriptor *desc; 891 int ret; 892 893 if (size > sizeof(*desc)) 894 return -EINVAL; 895 desc = kmalloc(sizeof(*desc), GFP_NOIO); 896 if (!desc) 897 return -ENOMEM; 898 899 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size); 900 if (ret >= 0) 901 memcpy(&dev->descriptor, desc, size); 902 kfree(desc); 903 return ret; 904 } 905 906 /** 907 * usb_get_status - issues a GET_STATUS call 908 * @dev: the device whose status is being checked 909 * @type: USB_RECIP_*; for device, interface, or endpoint 910 * @target: zero (for device), else interface or endpoint number 911 * @data: pointer to two bytes of bitmap data 912 * Context: !in_interrupt () 913 * 914 * Returns device, interface, or endpoint status. Normally only of 915 * interest to see if the device is self powered, or has enabled the 916 * remote wakeup facility; or whether a bulk or interrupt endpoint 917 * is halted ("stalled"). 918 * 919 * Bits in these status bitmaps are set using the SET_FEATURE request, 920 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt() 921 * function should be used to clear halt ("stall") status. 922 * 923 * This call is synchronous, and may not be used in an interrupt context. 924 * 925 * Returns the number of bytes received on success, or else the status code 926 * returned by the underlying usb_control_msg() call. 927 */ 928 int usb_get_status(struct usb_device *dev, int type, int target, void *data) 929 { 930 int ret; 931 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL); 932 933 if (!status) 934 return -ENOMEM; 935 936 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 937 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status, 938 sizeof(*status), USB_CTRL_GET_TIMEOUT); 939 940 *(u16 *)data = *status; 941 kfree(status); 942 return ret; 943 } 944 EXPORT_SYMBOL_GPL(usb_get_status); 945 946 /** 947 * usb_clear_halt - tells device to clear endpoint halt/stall condition 948 * @dev: device whose endpoint is halted 949 * @pipe: endpoint "pipe" being cleared 950 * Context: !in_interrupt () 951 * 952 * This is used to clear halt conditions for bulk and interrupt endpoints, 953 * as reported by URB completion status. Endpoints that are halted are 954 * sometimes referred to as being "stalled". Such endpoints are unable 955 * to transmit or receive data until the halt status is cleared. Any URBs 956 * queued for such an endpoint should normally be unlinked by the driver 957 * before clearing the halt condition, as described in sections 5.7.5 958 * and 5.8.5 of the USB 2.0 spec. 959 * 960 * Note that control and isochronous endpoints don't halt, although control 961 * endpoints report "protocol stall" (for unsupported requests) using the 962 * same status code used to report a true stall. 963 * 964 * This call is synchronous, and may not be used in an interrupt context. 965 * 966 * Returns zero on success, or else the status code returned by the 967 * underlying usb_control_msg() call. 968 */ 969 int usb_clear_halt(struct usb_device *dev, int pipe) 970 { 971 int result; 972 int endp = usb_pipeendpoint(pipe); 973 974 if (usb_pipein(pipe)) 975 endp |= USB_DIR_IN; 976 977 /* we don't care if it wasn't halted first. in fact some devices 978 * (like some ibmcam model 1 units) seem to expect hosts to make 979 * this request for iso endpoints, which can't halt! 980 */ 981 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 982 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 983 USB_ENDPOINT_HALT, endp, NULL, 0, 984 USB_CTRL_SET_TIMEOUT); 985 986 /* don't un-halt or force to DATA0 except on success */ 987 if (result < 0) 988 return result; 989 990 /* NOTE: seems like Microsoft and Apple don't bother verifying 991 * the clear "took", so some devices could lock up if you check... 992 * such as the Hagiwara FlashGate DUAL. So we won't bother. 993 * 994 * NOTE: make sure the logic here doesn't diverge much from 995 * the copy in usb-storage, for as long as we need two copies. 996 */ 997 998 /* toggle was reset by the clear */ 999 usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0); 1000 1001 return 0; 1002 } 1003 EXPORT_SYMBOL_GPL(usb_clear_halt); 1004 1005 /** 1006 * usb_disable_endpoint -- Disable an endpoint by address 1007 * @dev: the device whose endpoint is being disabled 1008 * @epaddr: the endpoint's address. Endpoint number for output, 1009 * endpoint number + USB_DIR_IN for input 1010 * 1011 * Deallocates hcd/hardware state for this endpoint ... and nukes all 1012 * pending urbs. 1013 * 1014 * If the HCD hasn't registered a disable() function, this sets the 1015 * endpoint's maxpacket size to 0 to prevent further submissions. 1016 */ 1017 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr) 1018 { 1019 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1020 struct usb_host_endpoint *ep; 1021 1022 if (!dev) 1023 return; 1024 1025 if (usb_endpoint_out(epaddr)) { 1026 ep = dev->ep_out[epnum]; 1027 dev->ep_out[epnum] = NULL; 1028 } else { 1029 ep = dev->ep_in[epnum]; 1030 dev->ep_in[epnum] = NULL; 1031 } 1032 if (ep) { 1033 ep->enabled = 0; 1034 usb_hcd_flush_endpoint(dev, ep); 1035 usb_hcd_disable_endpoint(dev, ep); 1036 } 1037 } 1038 1039 /** 1040 * usb_disable_interface -- Disable all endpoints for an interface 1041 * @dev: the device whose interface is being disabled 1042 * @intf: pointer to the interface descriptor 1043 * 1044 * Disables all the endpoints for the interface's current altsetting. 1045 */ 1046 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf) 1047 { 1048 struct usb_host_interface *alt = intf->cur_altsetting; 1049 int i; 1050 1051 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 1052 usb_disable_endpoint(dev, 1053 alt->endpoint[i].desc.bEndpointAddress); 1054 } 1055 } 1056 1057 /** 1058 * usb_disable_device - Disable all the endpoints for a USB device 1059 * @dev: the device whose endpoints are being disabled 1060 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. 1061 * 1062 * Disables all the device's endpoints, potentially including endpoint 0. 1063 * Deallocates hcd/hardware state for the endpoints (nuking all or most 1064 * pending urbs) and usbcore state for the interfaces, so that usbcore 1065 * must usb_set_configuration() before any interfaces could be used. 1066 */ 1067 void usb_disable_device(struct usb_device *dev, int skip_ep0) 1068 { 1069 int i; 1070 1071 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __FUNCTION__, 1072 skip_ep0 ? "non-ep0" : "all"); 1073 for (i = skip_ep0; i < 16; ++i) { 1074 usb_disable_endpoint(dev, i); 1075 usb_disable_endpoint(dev, i + USB_DIR_IN); 1076 } 1077 dev->toggle[0] = dev->toggle[1] = 0; 1078 1079 /* getting rid of interfaces will disconnect 1080 * any drivers bound to them (a key side effect) 1081 */ 1082 if (dev->actconfig) { 1083 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1084 struct usb_interface *interface; 1085 1086 /* remove this interface if it has been registered */ 1087 interface = dev->actconfig->interface[i]; 1088 if (!device_is_registered(&interface->dev)) 1089 continue; 1090 dev_dbg(&dev->dev, "unregistering interface %s\n", 1091 interface->dev.bus_id); 1092 usb_remove_sysfs_intf_files(interface); 1093 device_del(&interface->dev); 1094 } 1095 1096 /* Now that the interfaces are unbound, nobody should 1097 * try to access them. 1098 */ 1099 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1100 put_device(&dev->actconfig->interface[i]->dev); 1101 dev->actconfig->interface[i] = NULL; 1102 } 1103 dev->actconfig = NULL; 1104 if (dev->state == USB_STATE_CONFIGURED) 1105 usb_set_device_state(dev, USB_STATE_ADDRESS); 1106 } 1107 } 1108 1109 /** 1110 * usb_enable_endpoint - Enable an endpoint for USB communications 1111 * @dev: the device whose interface is being enabled 1112 * @ep: the endpoint 1113 * 1114 * Resets the endpoint toggle, and sets dev->ep_{in,out} pointers. 1115 * For control endpoints, both the input and output sides are handled. 1116 */ 1117 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep) 1118 { 1119 int epnum = usb_endpoint_num(&ep->desc); 1120 int is_out = usb_endpoint_dir_out(&ep->desc); 1121 int is_control = usb_endpoint_xfer_control(&ep->desc); 1122 1123 if (is_out || is_control) { 1124 usb_settoggle(dev, epnum, 1, 0); 1125 dev->ep_out[epnum] = ep; 1126 } 1127 if (!is_out || is_control) { 1128 usb_settoggle(dev, epnum, 0, 0); 1129 dev->ep_in[epnum] = ep; 1130 } 1131 ep->enabled = 1; 1132 } 1133 1134 /** 1135 * usb_enable_interface - Enable all the endpoints for an interface 1136 * @dev: the device whose interface is being enabled 1137 * @intf: pointer to the interface descriptor 1138 * 1139 * Enables all the endpoints for the interface's current altsetting. 1140 */ 1141 static void usb_enable_interface(struct usb_device *dev, 1142 struct usb_interface *intf) 1143 { 1144 struct usb_host_interface *alt = intf->cur_altsetting; 1145 int i; 1146 1147 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1148 usb_enable_endpoint(dev, &alt->endpoint[i]); 1149 } 1150 1151 /** 1152 * usb_set_interface - Makes a particular alternate setting be current 1153 * @dev: the device whose interface is being updated 1154 * @interface: the interface being updated 1155 * @alternate: the setting being chosen. 1156 * Context: !in_interrupt () 1157 * 1158 * This is used to enable data transfers on interfaces that may not 1159 * be enabled by default. Not all devices support such configurability. 1160 * Only the driver bound to an interface may change its setting. 1161 * 1162 * Within any given configuration, each interface may have several 1163 * alternative settings. These are often used to control levels of 1164 * bandwidth consumption. For example, the default setting for a high 1165 * speed interrupt endpoint may not send more than 64 bytes per microframe, 1166 * while interrupt transfers of up to 3KBytes per microframe are legal. 1167 * Also, isochronous endpoints may never be part of an 1168 * interface's default setting. To access such bandwidth, alternate 1169 * interface settings must be made current. 1170 * 1171 * Note that in the Linux USB subsystem, bandwidth associated with 1172 * an endpoint in a given alternate setting is not reserved until an URB 1173 * is submitted that needs that bandwidth. Some other operating systems 1174 * allocate bandwidth early, when a configuration is chosen. 1175 * 1176 * This call is synchronous, and may not be used in an interrupt context. 1177 * Also, drivers must not change altsettings while urbs are scheduled for 1178 * endpoints in that interface; all such urbs must first be completed 1179 * (perhaps forced by unlinking). 1180 * 1181 * Returns zero on success, or else the status code returned by the 1182 * underlying usb_control_msg() call. 1183 */ 1184 int usb_set_interface(struct usb_device *dev, int interface, int alternate) 1185 { 1186 struct usb_interface *iface; 1187 struct usb_host_interface *alt; 1188 int ret; 1189 int manual = 0; 1190 unsigned int epaddr; 1191 unsigned int pipe; 1192 1193 if (dev->state == USB_STATE_SUSPENDED) 1194 return -EHOSTUNREACH; 1195 1196 iface = usb_ifnum_to_if(dev, interface); 1197 if (!iface) { 1198 dev_dbg(&dev->dev, "selecting invalid interface %d\n", 1199 interface); 1200 return -EINVAL; 1201 } 1202 1203 alt = usb_altnum_to_altsetting(iface, alternate); 1204 if (!alt) { 1205 warn("selecting invalid altsetting %d", alternate); 1206 return -EINVAL; 1207 } 1208 1209 if (dev->quirks & USB_QUIRK_NO_SET_INTF) 1210 ret = -EPIPE; 1211 else 1212 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1213 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE, 1214 alternate, interface, NULL, 0, 5000); 1215 1216 /* 9.4.10 says devices don't need this and are free to STALL the 1217 * request if the interface only has one alternate setting. 1218 */ 1219 if (ret == -EPIPE && iface->num_altsetting == 1) { 1220 dev_dbg(&dev->dev, 1221 "manual set_interface for iface %d, alt %d\n", 1222 interface, alternate); 1223 manual = 1; 1224 } else if (ret < 0) 1225 return ret; 1226 1227 /* FIXME drivers shouldn't need to replicate/bugfix the logic here 1228 * when they implement async or easily-killable versions of this or 1229 * other "should-be-internal" functions (like clear_halt). 1230 * should hcd+usbcore postprocess control requests? 1231 */ 1232 1233 /* prevent submissions using previous endpoint settings */ 1234 if (iface->cur_altsetting != alt && device_is_registered(&iface->dev)) 1235 usb_remove_sysfs_intf_files(iface); 1236 usb_disable_interface(dev, iface); 1237 1238 iface->cur_altsetting = alt; 1239 1240 /* If the interface only has one altsetting and the device didn't 1241 * accept the request, we attempt to carry out the equivalent action 1242 * by manually clearing the HALT feature for each endpoint in the 1243 * new altsetting. 1244 */ 1245 if (manual) { 1246 int i; 1247 1248 for (i = 0; i < alt->desc.bNumEndpoints; i++) { 1249 epaddr = alt->endpoint[i].desc.bEndpointAddress; 1250 pipe = __create_pipe(dev, 1251 USB_ENDPOINT_NUMBER_MASK & epaddr) | 1252 (usb_endpoint_out(epaddr) ? 1253 USB_DIR_OUT : USB_DIR_IN); 1254 1255 usb_clear_halt(dev, pipe); 1256 } 1257 } 1258 1259 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting 1260 * 1261 * Note: 1262 * Despite EP0 is always present in all interfaces/AS, the list of 1263 * endpoints from the descriptor does not contain EP0. Due to its 1264 * omnipresence one might expect EP0 being considered "affected" by 1265 * any SetInterface request and hence assume toggles need to be reset. 1266 * However, EP0 toggles are re-synced for every individual transfer 1267 * during the SETUP stage - hence EP0 toggles are "don't care" here. 1268 * (Likewise, EP0 never "halts" on well designed devices.) 1269 */ 1270 usb_enable_interface(dev, iface); 1271 if (device_is_registered(&iface->dev)) 1272 usb_create_sysfs_intf_files(iface); 1273 1274 return 0; 1275 } 1276 EXPORT_SYMBOL_GPL(usb_set_interface); 1277 1278 /** 1279 * usb_reset_configuration - lightweight device reset 1280 * @dev: the device whose configuration is being reset 1281 * 1282 * This issues a standard SET_CONFIGURATION request to the device using 1283 * the current configuration. The effect is to reset most USB-related 1284 * state in the device, including interface altsettings (reset to zero), 1285 * endpoint halts (cleared), and data toggle (only for bulk and interrupt 1286 * endpoints). Other usbcore state is unchanged, including bindings of 1287 * usb device drivers to interfaces. 1288 * 1289 * Because this affects multiple interfaces, avoid using this with composite 1290 * (multi-interface) devices. Instead, the driver for each interface may 1291 * use usb_set_interface() on the interfaces it claims. Be careful though; 1292 * some devices don't support the SET_INTERFACE request, and others won't 1293 * reset all the interface state (notably data toggles). Resetting the whole 1294 * configuration would affect other drivers' interfaces. 1295 * 1296 * The caller must own the device lock. 1297 * 1298 * Returns zero on success, else a negative error code. 1299 */ 1300 int usb_reset_configuration(struct usb_device *dev) 1301 { 1302 int i, retval; 1303 struct usb_host_config *config; 1304 1305 if (dev->state == USB_STATE_SUSPENDED) 1306 return -EHOSTUNREACH; 1307 1308 /* caller must have locked the device and must own 1309 * the usb bus readlock (so driver bindings are stable); 1310 * calls during probe() are fine 1311 */ 1312 1313 for (i = 1; i < 16; ++i) { 1314 usb_disable_endpoint(dev, i); 1315 usb_disable_endpoint(dev, i + USB_DIR_IN); 1316 } 1317 1318 config = dev->actconfig; 1319 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1320 USB_REQ_SET_CONFIGURATION, 0, 1321 config->desc.bConfigurationValue, 0, 1322 NULL, 0, USB_CTRL_SET_TIMEOUT); 1323 if (retval < 0) 1324 return retval; 1325 1326 dev->toggle[0] = dev->toggle[1] = 0; 1327 1328 /* re-init hc/hcd interface/endpoint state */ 1329 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1330 struct usb_interface *intf = config->interface[i]; 1331 struct usb_host_interface *alt; 1332 1333 if (device_is_registered(&intf->dev)) 1334 usb_remove_sysfs_intf_files(intf); 1335 alt = usb_altnum_to_altsetting(intf, 0); 1336 1337 /* No altsetting 0? We'll assume the first altsetting. 1338 * We could use a GetInterface call, but if a device is 1339 * so non-compliant that it doesn't have altsetting 0 1340 * then I wouldn't trust its reply anyway. 1341 */ 1342 if (!alt) 1343 alt = &intf->altsetting[0]; 1344 1345 intf->cur_altsetting = alt; 1346 usb_enable_interface(dev, intf); 1347 if (device_is_registered(&intf->dev)) 1348 usb_create_sysfs_intf_files(intf); 1349 } 1350 return 0; 1351 } 1352 EXPORT_SYMBOL_GPL(usb_reset_configuration); 1353 1354 static void usb_release_interface(struct device *dev) 1355 { 1356 struct usb_interface *intf = to_usb_interface(dev); 1357 struct usb_interface_cache *intfc = 1358 altsetting_to_usb_interface_cache(intf->altsetting); 1359 1360 kref_put(&intfc->ref, usb_release_interface_cache); 1361 kfree(intf); 1362 } 1363 1364 #ifdef CONFIG_HOTPLUG 1365 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env) 1366 { 1367 struct usb_device *usb_dev; 1368 struct usb_interface *intf; 1369 struct usb_host_interface *alt; 1370 1371 intf = to_usb_interface(dev); 1372 usb_dev = interface_to_usbdev(intf); 1373 alt = intf->cur_altsetting; 1374 1375 if (add_uevent_var(env, "INTERFACE=%d/%d/%d", 1376 alt->desc.bInterfaceClass, 1377 alt->desc.bInterfaceSubClass, 1378 alt->desc.bInterfaceProtocol)) 1379 return -ENOMEM; 1380 1381 if (add_uevent_var(env, 1382 "MODALIAS=usb:" 1383 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X", 1384 le16_to_cpu(usb_dev->descriptor.idVendor), 1385 le16_to_cpu(usb_dev->descriptor.idProduct), 1386 le16_to_cpu(usb_dev->descriptor.bcdDevice), 1387 usb_dev->descriptor.bDeviceClass, 1388 usb_dev->descriptor.bDeviceSubClass, 1389 usb_dev->descriptor.bDeviceProtocol, 1390 alt->desc.bInterfaceClass, 1391 alt->desc.bInterfaceSubClass, 1392 alt->desc.bInterfaceProtocol)) 1393 return -ENOMEM; 1394 1395 return 0; 1396 } 1397 1398 #else 1399 1400 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env) 1401 { 1402 return -ENODEV; 1403 } 1404 #endif /* CONFIG_HOTPLUG */ 1405 1406 struct device_type usb_if_device_type = { 1407 .name = "usb_interface", 1408 .release = usb_release_interface, 1409 .uevent = usb_if_uevent, 1410 }; 1411 1412 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev, 1413 struct usb_host_config *config, 1414 u8 inum) 1415 { 1416 struct usb_interface_assoc_descriptor *retval = NULL; 1417 struct usb_interface_assoc_descriptor *intf_assoc; 1418 int first_intf; 1419 int last_intf; 1420 int i; 1421 1422 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) { 1423 intf_assoc = config->intf_assoc[i]; 1424 if (intf_assoc->bInterfaceCount == 0) 1425 continue; 1426 1427 first_intf = intf_assoc->bFirstInterface; 1428 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1); 1429 if (inum >= first_intf && inum <= last_intf) { 1430 if (!retval) 1431 retval = intf_assoc; 1432 else 1433 dev_err(&dev->dev, "Interface #%d referenced" 1434 " by multiple IADs\n", inum); 1435 } 1436 } 1437 1438 return retval; 1439 } 1440 1441 /* 1442 * usb_set_configuration - Makes a particular device setting be current 1443 * @dev: the device whose configuration is being updated 1444 * @configuration: the configuration being chosen. 1445 * Context: !in_interrupt(), caller owns the device lock 1446 * 1447 * This is used to enable non-default device modes. Not all devices 1448 * use this kind of configurability; many devices only have one 1449 * configuration. 1450 * 1451 * @configuration is the value of the configuration to be installed. 1452 * According to the USB spec (e.g. section 9.1.1.5), configuration values 1453 * must be non-zero; a value of zero indicates that the device in 1454 * unconfigured. However some devices erroneously use 0 as one of their 1455 * configuration values. To help manage such devices, this routine will 1456 * accept @configuration = -1 as indicating the device should be put in 1457 * an unconfigured state. 1458 * 1459 * USB device configurations may affect Linux interoperability, 1460 * power consumption and the functionality available. For example, 1461 * the default configuration is limited to using 100mA of bus power, 1462 * so that when certain device functionality requires more power, 1463 * and the device is bus powered, that functionality should be in some 1464 * non-default device configuration. Other device modes may also be 1465 * reflected as configuration options, such as whether two ISDN 1466 * channels are available independently; and choosing between open 1467 * standard device protocols (like CDC) or proprietary ones. 1468 * 1469 * Note that a non-authorized device (dev->authorized == 0) will only 1470 * be put in unconfigured mode. 1471 * 1472 * Note that USB has an additional level of device configurability, 1473 * associated with interfaces. That configurability is accessed using 1474 * usb_set_interface(). 1475 * 1476 * This call is synchronous. The calling context must be able to sleep, 1477 * must own the device lock, and must not hold the driver model's USB 1478 * bus mutex; usb device driver probe() methods cannot use this routine. 1479 * 1480 * Returns zero on success, or else the status code returned by the 1481 * underlying call that failed. On successful completion, each interface 1482 * in the original device configuration has been destroyed, and each one 1483 * in the new configuration has been probed by all relevant usb device 1484 * drivers currently known to the kernel. 1485 */ 1486 int usb_set_configuration(struct usb_device *dev, int configuration) 1487 { 1488 int i, ret; 1489 struct usb_host_config *cp = NULL; 1490 struct usb_interface **new_interfaces = NULL; 1491 int n, nintf; 1492 1493 if (dev->authorized == 0 || configuration == -1) 1494 configuration = 0; 1495 else { 1496 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) { 1497 if (dev->config[i].desc.bConfigurationValue == 1498 configuration) { 1499 cp = &dev->config[i]; 1500 break; 1501 } 1502 } 1503 } 1504 if ((!cp && configuration != 0)) 1505 return -EINVAL; 1506 1507 /* The USB spec says configuration 0 means unconfigured. 1508 * But if a device includes a configuration numbered 0, 1509 * we will accept it as a correctly configured state. 1510 * Use -1 if you really want to unconfigure the device. 1511 */ 1512 if (cp && configuration == 0) 1513 dev_warn(&dev->dev, "config 0 descriptor??\n"); 1514 1515 /* Allocate memory for new interfaces before doing anything else, 1516 * so that if we run out then nothing will have changed. */ 1517 n = nintf = 0; 1518 if (cp) { 1519 nintf = cp->desc.bNumInterfaces; 1520 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces), 1521 GFP_KERNEL); 1522 if (!new_interfaces) { 1523 dev_err(&dev->dev, "Out of memory\n"); 1524 return -ENOMEM; 1525 } 1526 1527 for (; n < nintf; ++n) { 1528 new_interfaces[n] = kzalloc( 1529 sizeof(struct usb_interface), 1530 GFP_KERNEL); 1531 if (!new_interfaces[n]) { 1532 dev_err(&dev->dev, "Out of memory\n"); 1533 ret = -ENOMEM; 1534 free_interfaces: 1535 while (--n >= 0) 1536 kfree(new_interfaces[n]); 1537 kfree(new_interfaces); 1538 return ret; 1539 } 1540 } 1541 1542 i = dev->bus_mA - cp->desc.bMaxPower * 2; 1543 if (i < 0) 1544 dev_warn(&dev->dev, "new config #%d exceeds power " 1545 "limit by %dmA\n", 1546 configuration, -i); 1547 } 1548 1549 /* Wake up the device so we can send it the Set-Config request */ 1550 ret = usb_autoresume_device(dev); 1551 if (ret) 1552 goto free_interfaces; 1553 1554 /* if it's already configured, clear out old state first. 1555 * getting rid of old interfaces means unbinding their drivers. 1556 */ 1557 if (dev->state != USB_STATE_ADDRESS) 1558 usb_disable_device(dev, 1); /* Skip ep0 */ 1559 1560 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1561 USB_REQ_SET_CONFIGURATION, 0, configuration, 0, 1562 NULL, 0, USB_CTRL_SET_TIMEOUT); 1563 if (ret < 0) { 1564 /* All the old state is gone, so what else can we do? 1565 * The device is probably useless now anyway. 1566 */ 1567 cp = NULL; 1568 } 1569 1570 dev->actconfig = cp; 1571 if (!cp) { 1572 usb_set_device_state(dev, USB_STATE_ADDRESS); 1573 usb_autosuspend_device(dev); 1574 goto free_interfaces; 1575 } 1576 usb_set_device_state(dev, USB_STATE_CONFIGURED); 1577 1578 /* Initialize the new interface structures and the 1579 * hc/hcd/usbcore interface/endpoint state. 1580 */ 1581 for (i = 0; i < nintf; ++i) { 1582 struct usb_interface_cache *intfc; 1583 struct usb_interface *intf; 1584 struct usb_host_interface *alt; 1585 1586 cp->interface[i] = intf = new_interfaces[i]; 1587 intfc = cp->intf_cache[i]; 1588 intf->altsetting = intfc->altsetting; 1589 intf->num_altsetting = intfc->num_altsetting; 1590 intf->intf_assoc = find_iad(dev, cp, i); 1591 kref_get(&intfc->ref); 1592 1593 alt = usb_altnum_to_altsetting(intf, 0); 1594 1595 /* No altsetting 0? We'll assume the first altsetting. 1596 * We could use a GetInterface call, but if a device is 1597 * so non-compliant that it doesn't have altsetting 0 1598 * then I wouldn't trust its reply anyway. 1599 */ 1600 if (!alt) 1601 alt = &intf->altsetting[0]; 1602 1603 intf->cur_altsetting = alt; 1604 usb_enable_interface(dev, intf); 1605 intf->dev.parent = &dev->dev; 1606 intf->dev.driver = NULL; 1607 intf->dev.bus = &usb_bus_type; 1608 intf->dev.type = &usb_if_device_type; 1609 intf->dev.dma_mask = dev->dev.dma_mask; 1610 device_initialize(&intf->dev); 1611 mark_quiesced(intf); 1612 sprintf(&intf->dev.bus_id[0], "%d-%s:%d.%d", 1613 dev->bus->busnum, dev->devpath, 1614 configuration, alt->desc.bInterfaceNumber); 1615 } 1616 kfree(new_interfaces); 1617 1618 if (cp->string == NULL) 1619 cp->string = usb_cache_string(dev, cp->desc.iConfiguration); 1620 1621 /* Now that all the interfaces are set up, register them 1622 * to trigger binding of drivers to interfaces. probe() 1623 * routines may install different altsettings and may 1624 * claim() any interfaces not yet bound. Many class drivers 1625 * need that: CDC, audio, video, etc. 1626 */ 1627 for (i = 0; i < nintf; ++i) { 1628 struct usb_interface *intf = cp->interface[i]; 1629 1630 dev_dbg(&dev->dev, 1631 "adding %s (config #%d, interface %d)\n", 1632 intf->dev.bus_id, configuration, 1633 intf->cur_altsetting->desc.bInterfaceNumber); 1634 ret = device_add(&intf->dev); 1635 if (ret != 0) { 1636 dev_err(&dev->dev, "device_add(%s) --> %d\n", 1637 intf->dev.bus_id, ret); 1638 continue; 1639 } 1640 usb_create_sysfs_intf_files(intf); 1641 } 1642 1643 usb_autosuspend_device(dev); 1644 return 0; 1645 } 1646 1647 struct set_config_request { 1648 struct usb_device *udev; 1649 int config; 1650 struct work_struct work; 1651 }; 1652 1653 /* Worker routine for usb_driver_set_configuration() */ 1654 static void driver_set_config_work(struct work_struct *work) 1655 { 1656 struct set_config_request *req = 1657 container_of(work, struct set_config_request, work); 1658 1659 usb_lock_device(req->udev); 1660 usb_set_configuration(req->udev, req->config); 1661 usb_unlock_device(req->udev); 1662 usb_put_dev(req->udev); 1663 kfree(req); 1664 } 1665 1666 /** 1667 * usb_driver_set_configuration - Provide a way for drivers to change device configurations 1668 * @udev: the device whose configuration is being updated 1669 * @config: the configuration being chosen. 1670 * Context: In process context, must be able to sleep 1671 * 1672 * Device interface drivers are not allowed to change device configurations. 1673 * This is because changing configurations will destroy the interface the 1674 * driver is bound to and create new ones; it would be like a floppy-disk 1675 * driver telling the computer to replace the floppy-disk drive with a 1676 * tape drive! 1677 * 1678 * Still, in certain specialized circumstances the need may arise. This 1679 * routine gets around the normal restrictions by using a work thread to 1680 * submit the change-config request. 1681 * 1682 * Returns 0 if the request was succesfully queued, error code otherwise. 1683 * The caller has no way to know whether the queued request will eventually 1684 * succeed. 1685 */ 1686 int usb_driver_set_configuration(struct usb_device *udev, int config) 1687 { 1688 struct set_config_request *req; 1689 1690 req = kmalloc(sizeof(*req), GFP_KERNEL); 1691 if (!req) 1692 return -ENOMEM; 1693 req->udev = udev; 1694 req->config = config; 1695 INIT_WORK(&req->work, driver_set_config_work); 1696 1697 usb_get_dev(udev); 1698 schedule_work(&req->work); 1699 return 0; 1700 } 1701 EXPORT_SYMBOL_GPL(usb_driver_set_configuration); 1702