xref: /openbmc/linux/drivers/usb/core/message.c (revision 8730046c)
1 /*
2  * message.c - synchronous message handling
3  *
4  * Released under the GPLv2 only.
5  * SPDX-License-Identifier: GPL-2.0
6  */
7 
8 #include <linux/pci.h>	/* for scatterlist macros */
9 #include <linux/usb.h>
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 #include <linux/mm.h>
13 #include <linux/timer.h>
14 #include <linux/ctype.h>
15 #include <linux/nls.h>
16 #include <linux/device.h>
17 #include <linux/scatterlist.h>
18 #include <linux/usb/cdc.h>
19 #include <linux/usb/quirks.h>
20 #include <linux/usb/hcd.h>	/* for usbcore internals */
21 #include <asm/byteorder.h>
22 
23 #include "usb.h"
24 
25 static void cancel_async_set_config(struct usb_device *udev);
26 
27 struct api_context {
28 	struct completion	done;
29 	int			status;
30 };
31 
32 static void usb_api_blocking_completion(struct urb *urb)
33 {
34 	struct api_context *ctx = urb->context;
35 
36 	ctx->status = urb->status;
37 	complete(&ctx->done);
38 }
39 
40 
41 /*
42  * Starts urb and waits for completion or timeout. Note that this call
43  * is NOT interruptible. Many device driver i/o requests should be
44  * interruptible and therefore these drivers should implement their
45  * own interruptible routines.
46  */
47 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
48 {
49 	struct api_context ctx;
50 	unsigned long expire;
51 	int retval;
52 
53 	init_completion(&ctx.done);
54 	urb->context = &ctx;
55 	urb->actual_length = 0;
56 	retval = usb_submit_urb(urb, GFP_NOIO);
57 	if (unlikely(retval))
58 		goto out;
59 
60 	expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
61 	if (!wait_for_completion_timeout(&ctx.done, expire)) {
62 		usb_kill_urb(urb);
63 		retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
64 
65 		dev_dbg(&urb->dev->dev,
66 			"%s timed out on ep%d%s len=%u/%u\n",
67 			current->comm,
68 			usb_endpoint_num(&urb->ep->desc),
69 			usb_urb_dir_in(urb) ? "in" : "out",
70 			urb->actual_length,
71 			urb->transfer_buffer_length);
72 	} else
73 		retval = ctx.status;
74 out:
75 	if (actual_length)
76 		*actual_length = urb->actual_length;
77 
78 	usb_free_urb(urb);
79 	return retval;
80 }
81 
82 /*-------------------------------------------------------------------*/
83 /* returns status (negative) or length (positive) */
84 static int usb_internal_control_msg(struct usb_device *usb_dev,
85 				    unsigned int pipe,
86 				    struct usb_ctrlrequest *cmd,
87 				    void *data, int len, int timeout)
88 {
89 	struct urb *urb;
90 	int retv;
91 	int length;
92 
93 	urb = usb_alloc_urb(0, GFP_NOIO);
94 	if (!urb)
95 		return -ENOMEM;
96 
97 	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
98 			     len, usb_api_blocking_completion, NULL);
99 
100 	retv = usb_start_wait_urb(urb, timeout, &length);
101 	if (retv < 0)
102 		return retv;
103 	else
104 		return length;
105 }
106 
107 /**
108  * usb_control_msg - Builds a control urb, sends it off and waits for completion
109  * @dev: pointer to the usb device to send the message to
110  * @pipe: endpoint "pipe" to send the message to
111  * @request: USB message request value
112  * @requesttype: USB message request type value
113  * @value: USB message value
114  * @index: USB message index value
115  * @data: pointer to the data to send
116  * @size: length in bytes of the data to send
117  * @timeout: time in msecs to wait for the message to complete before timing
118  *	out (if 0 the wait is forever)
119  *
120  * Context: !in_interrupt ()
121  *
122  * This function sends a simple control message to a specified endpoint and
123  * waits for the message to complete, or timeout.
124  *
125  * Don't use this function from within an interrupt context, like a bottom half
126  * handler.  If you need an asynchronous message, or need to send a message
127  * from within interrupt context, use usb_submit_urb().
128  * If a thread in your driver uses this call, make sure your disconnect()
129  * method can wait for it to complete.  Since you don't have a handle on the
130  * URB used, you can't cancel the request.
131  *
132  * Return: If successful, the number of bytes transferred. Otherwise, a negative
133  * error number.
134  */
135 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
136 		    __u8 requesttype, __u16 value, __u16 index, void *data,
137 		    __u16 size, int timeout)
138 {
139 	struct usb_ctrlrequest *dr;
140 	int ret;
141 
142 	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
143 	if (!dr)
144 		return -ENOMEM;
145 
146 	dr->bRequestType = requesttype;
147 	dr->bRequest = request;
148 	dr->wValue = cpu_to_le16(value);
149 	dr->wIndex = cpu_to_le16(index);
150 	dr->wLength = cpu_to_le16(size);
151 
152 	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
153 
154 	kfree(dr);
155 
156 	return ret;
157 }
158 EXPORT_SYMBOL_GPL(usb_control_msg);
159 
160 /**
161  * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
162  * @usb_dev: pointer to the usb device to send the message to
163  * @pipe: endpoint "pipe" to send the message to
164  * @data: pointer to the data to send
165  * @len: length in bytes of the data to send
166  * @actual_length: pointer to a location to put the actual length transferred
167  *	in bytes
168  * @timeout: time in msecs to wait for the message to complete before
169  *	timing out (if 0 the wait is forever)
170  *
171  * Context: !in_interrupt ()
172  *
173  * This function sends a simple interrupt message to a specified endpoint and
174  * waits for the message to complete, or timeout.
175  *
176  * Don't use this function from within an interrupt context, like a bottom half
177  * handler.  If you need an asynchronous message, or need to send a message
178  * from within interrupt context, use usb_submit_urb() If a thread in your
179  * driver uses this call, make sure your disconnect() method can wait for it to
180  * complete.  Since you don't have a handle on the URB used, you can't cancel
181  * the request.
182  *
183  * Return:
184  * If successful, 0. Otherwise a negative error number. The number of actual
185  * bytes transferred will be stored in the @actual_length parameter.
186  */
187 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
188 		      void *data, int len, int *actual_length, int timeout)
189 {
190 	return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
191 }
192 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
193 
194 /**
195  * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
196  * @usb_dev: pointer to the usb device to send the message to
197  * @pipe: endpoint "pipe" to send the message to
198  * @data: pointer to the data to send
199  * @len: length in bytes of the data to send
200  * @actual_length: pointer to a location to put the actual length transferred
201  *	in bytes
202  * @timeout: time in msecs to wait for the message to complete before
203  *	timing out (if 0 the wait is forever)
204  *
205  * Context: !in_interrupt ()
206  *
207  * This function sends a simple bulk message to a specified endpoint
208  * and waits for the message to complete, or timeout.
209  *
210  * Don't use this function from within an interrupt context, like a bottom half
211  * handler.  If you need an asynchronous message, or need to send a message
212  * from within interrupt context, use usb_submit_urb() If a thread in your
213  * driver uses this call, make sure your disconnect() method can wait for it to
214  * complete.  Since you don't have a handle on the URB used, you can't cancel
215  * the request.
216  *
217  * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
218  * users are forced to abuse this routine by using it to submit URBs for
219  * interrupt endpoints.  We will take the liberty of creating an interrupt URB
220  * (with the default interval) if the target is an interrupt endpoint.
221  *
222  * Return:
223  * If successful, 0. Otherwise a negative error number. The number of actual
224  * bytes transferred will be stored in the @actual_length parameter.
225  *
226  */
227 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
228 		 void *data, int len, int *actual_length, int timeout)
229 {
230 	struct urb *urb;
231 	struct usb_host_endpoint *ep;
232 
233 	ep = usb_pipe_endpoint(usb_dev, pipe);
234 	if (!ep || len < 0)
235 		return -EINVAL;
236 
237 	urb = usb_alloc_urb(0, GFP_KERNEL);
238 	if (!urb)
239 		return -ENOMEM;
240 
241 	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
242 			USB_ENDPOINT_XFER_INT) {
243 		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
244 		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
245 				usb_api_blocking_completion, NULL,
246 				ep->desc.bInterval);
247 	} else
248 		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
249 				usb_api_blocking_completion, NULL);
250 
251 	return usb_start_wait_urb(urb, timeout, actual_length);
252 }
253 EXPORT_SYMBOL_GPL(usb_bulk_msg);
254 
255 /*-------------------------------------------------------------------*/
256 
257 static void sg_clean(struct usb_sg_request *io)
258 {
259 	if (io->urbs) {
260 		while (io->entries--)
261 			usb_free_urb(io->urbs[io->entries]);
262 		kfree(io->urbs);
263 		io->urbs = NULL;
264 	}
265 	io->dev = NULL;
266 }
267 
268 static void sg_complete(struct urb *urb)
269 {
270 	struct usb_sg_request *io = urb->context;
271 	int status = urb->status;
272 
273 	spin_lock(&io->lock);
274 
275 	/* In 2.5 we require hcds' endpoint queues not to progress after fault
276 	 * reports, until the completion callback (this!) returns.  That lets
277 	 * device driver code (like this routine) unlink queued urbs first,
278 	 * if it needs to, since the HC won't work on them at all.  So it's
279 	 * not possible for page N+1 to overwrite page N, and so on.
280 	 *
281 	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
282 	 * complete before the HCD can get requests away from hardware,
283 	 * though never during cleanup after a hard fault.
284 	 */
285 	if (io->status
286 			&& (io->status != -ECONNRESET
287 				|| status != -ECONNRESET)
288 			&& urb->actual_length) {
289 		dev_err(io->dev->bus->controller,
290 			"dev %s ep%d%s scatterlist error %d/%d\n",
291 			io->dev->devpath,
292 			usb_endpoint_num(&urb->ep->desc),
293 			usb_urb_dir_in(urb) ? "in" : "out",
294 			status, io->status);
295 		/* BUG (); */
296 	}
297 
298 	if (io->status == 0 && status && status != -ECONNRESET) {
299 		int i, found, retval;
300 
301 		io->status = status;
302 
303 		/* the previous urbs, and this one, completed already.
304 		 * unlink pending urbs so they won't rx/tx bad data.
305 		 * careful: unlink can sometimes be synchronous...
306 		 */
307 		spin_unlock(&io->lock);
308 		for (i = 0, found = 0; i < io->entries; i++) {
309 			if (!io->urbs[i])
310 				continue;
311 			if (found) {
312 				usb_block_urb(io->urbs[i]);
313 				retval = usb_unlink_urb(io->urbs[i]);
314 				if (retval != -EINPROGRESS &&
315 				    retval != -ENODEV &&
316 				    retval != -EBUSY &&
317 				    retval != -EIDRM)
318 					dev_err(&io->dev->dev,
319 						"%s, unlink --> %d\n",
320 						__func__, retval);
321 			} else if (urb == io->urbs[i])
322 				found = 1;
323 		}
324 		spin_lock(&io->lock);
325 	}
326 
327 	/* on the last completion, signal usb_sg_wait() */
328 	io->bytes += urb->actual_length;
329 	io->count--;
330 	if (!io->count)
331 		complete(&io->complete);
332 
333 	spin_unlock(&io->lock);
334 }
335 
336 
337 /**
338  * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
339  * @io: request block being initialized.  until usb_sg_wait() returns,
340  *	treat this as a pointer to an opaque block of memory,
341  * @dev: the usb device that will send or receive the data
342  * @pipe: endpoint "pipe" used to transfer the data
343  * @period: polling rate for interrupt endpoints, in frames or
344  * 	(for high speed endpoints) microframes; ignored for bulk
345  * @sg: scatterlist entries
346  * @nents: how many entries in the scatterlist
347  * @length: how many bytes to send from the scatterlist, or zero to
348  * 	send every byte identified in the list.
349  * @mem_flags: SLAB_* flags affecting memory allocations in this call
350  *
351  * This initializes a scatter/gather request, allocating resources such as
352  * I/O mappings and urb memory (except maybe memory used by USB controller
353  * drivers).
354  *
355  * The request must be issued using usb_sg_wait(), which waits for the I/O to
356  * complete (or to be canceled) and then cleans up all resources allocated by
357  * usb_sg_init().
358  *
359  * The request may be canceled with usb_sg_cancel(), either before or after
360  * usb_sg_wait() is called.
361  *
362  * Return: Zero for success, else a negative errno value.
363  */
364 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
365 		unsigned pipe, unsigned	period, struct scatterlist *sg,
366 		int nents, size_t length, gfp_t mem_flags)
367 {
368 	int i;
369 	int urb_flags;
370 	int use_sg;
371 
372 	if (!io || !dev || !sg
373 			|| usb_pipecontrol(pipe)
374 			|| usb_pipeisoc(pipe)
375 			|| nents <= 0)
376 		return -EINVAL;
377 
378 	spin_lock_init(&io->lock);
379 	io->dev = dev;
380 	io->pipe = pipe;
381 
382 	if (dev->bus->sg_tablesize > 0) {
383 		use_sg = true;
384 		io->entries = 1;
385 	} else {
386 		use_sg = false;
387 		io->entries = nents;
388 	}
389 
390 	/* initialize all the urbs we'll use */
391 	io->urbs = kmalloc(io->entries * sizeof(*io->urbs), mem_flags);
392 	if (!io->urbs)
393 		goto nomem;
394 
395 	urb_flags = URB_NO_INTERRUPT;
396 	if (usb_pipein(pipe))
397 		urb_flags |= URB_SHORT_NOT_OK;
398 
399 	for_each_sg(sg, sg, io->entries, i) {
400 		struct urb *urb;
401 		unsigned len;
402 
403 		urb = usb_alloc_urb(0, mem_flags);
404 		if (!urb) {
405 			io->entries = i;
406 			goto nomem;
407 		}
408 		io->urbs[i] = urb;
409 
410 		urb->dev = NULL;
411 		urb->pipe = pipe;
412 		urb->interval = period;
413 		urb->transfer_flags = urb_flags;
414 		urb->complete = sg_complete;
415 		urb->context = io;
416 		urb->sg = sg;
417 
418 		if (use_sg) {
419 			/* There is no single transfer buffer */
420 			urb->transfer_buffer = NULL;
421 			urb->num_sgs = nents;
422 
423 			/* A length of zero means transfer the whole sg list */
424 			len = length;
425 			if (len == 0) {
426 				struct scatterlist	*sg2;
427 				int			j;
428 
429 				for_each_sg(sg, sg2, nents, j)
430 					len += sg2->length;
431 			}
432 		} else {
433 			/*
434 			 * Some systems can't use DMA; they use PIO instead.
435 			 * For their sakes, transfer_buffer is set whenever
436 			 * possible.
437 			 */
438 			if (!PageHighMem(sg_page(sg)))
439 				urb->transfer_buffer = sg_virt(sg);
440 			else
441 				urb->transfer_buffer = NULL;
442 
443 			len = sg->length;
444 			if (length) {
445 				len = min_t(size_t, len, length);
446 				length -= len;
447 				if (length == 0)
448 					io->entries = i + 1;
449 			}
450 		}
451 		urb->transfer_buffer_length = len;
452 	}
453 	io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
454 
455 	/* transaction state */
456 	io->count = io->entries;
457 	io->status = 0;
458 	io->bytes = 0;
459 	init_completion(&io->complete);
460 	return 0;
461 
462 nomem:
463 	sg_clean(io);
464 	return -ENOMEM;
465 }
466 EXPORT_SYMBOL_GPL(usb_sg_init);
467 
468 /**
469  * usb_sg_wait - synchronously execute scatter/gather request
470  * @io: request block handle, as initialized with usb_sg_init().
471  * 	some fields become accessible when this call returns.
472  * Context: !in_interrupt ()
473  *
474  * This function blocks until the specified I/O operation completes.  It
475  * leverages the grouping of the related I/O requests to get good transfer
476  * rates, by queueing the requests.  At higher speeds, such queuing can
477  * significantly improve USB throughput.
478  *
479  * There are three kinds of completion for this function.
480  * (1) success, where io->status is zero.  The number of io->bytes
481  *     transferred is as requested.
482  * (2) error, where io->status is a negative errno value.  The number
483  *     of io->bytes transferred before the error is usually less
484  *     than requested, and can be nonzero.
485  * (3) cancellation, a type of error with status -ECONNRESET that
486  *     is initiated by usb_sg_cancel().
487  *
488  * When this function returns, all memory allocated through usb_sg_init() or
489  * this call will have been freed.  The request block parameter may still be
490  * passed to usb_sg_cancel(), or it may be freed.  It could also be
491  * reinitialized and then reused.
492  *
493  * Data Transfer Rates:
494  *
495  * Bulk transfers are valid for full or high speed endpoints.
496  * The best full speed data rate is 19 packets of 64 bytes each
497  * per frame, or 1216 bytes per millisecond.
498  * The best high speed data rate is 13 packets of 512 bytes each
499  * per microframe, or 52 KBytes per millisecond.
500  *
501  * The reason to use interrupt transfers through this API would most likely
502  * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
503  * could be transferred.  That capability is less useful for low or full
504  * speed interrupt endpoints, which allow at most one packet per millisecond,
505  * of at most 8 or 64 bytes (respectively).
506  *
507  * It is not necessary to call this function to reserve bandwidth for devices
508  * under an xHCI host controller, as the bandwidth is reserved when the
509  * configuration or interface alt setting is selected.
510  */
511 void usb_sg_wait(struct usb_sg_request *io)
512 {
513 	int i;
514 	int entries = io->entries;
515 
516 	/* queue the urbs.  */
517 	spin_lock_irq(&io->lock);
518 	i = 0;
519 	while (i < entries && !io->status) {
520 		int retval;
521 
522 		io->urbs[i]->dev = io->dev;
523 		spin_unlock_irq(&io->lock);
524 
525 		retval = usb_submit_urb(io->urbs[i], GFP_NOIO);
526 
527 		switch (retval) {
528 			/* maybe we retrying will recover */
529 		case -ENXIO:	/* hc didn't queue this one */
530 		case -EAGAIN:
531 		case -ENOMEM:
532 			retval = 0;
533 			yield();
534 			break;
535 
536 			/* no error? continue immediately.
537 			 *
538 			 * NOTE: to work better with UHCI (4K I/O buffer may
539 			 * need 3K of TDs) it may be good to limit how many
540 			 * URBs are queued at once; N milliseconds?
541 			 */
542 		case 0:
543 			++i;
544 			cpu_relax();
545 			break;
546 
547 			/* fail any uncompleted urbs */
548 		default:
549 			io->urbs[i]->status = retval;
550 			dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
551 				__func__, retval);
552 			usb_sg_cancel(io);
553 		}
554 		spin_lock_irq(&io->lock);
555 		if (retval && (io->status == 0 || io->status == -ECONNRESET))
556 			io->status = retval;
557 	}
558 	io->count -= entries - i;
559 	if (io->count == 0)
560 		complete(&io->complete);
561 	spin_unlock_irq(&io->lock);
562 
563 	/* OK, yes, this could be packaged as non-blocking.
564 	 * So could the submit loop above ... but it's easier to
565 	 * solve neither problem than to solve both!
566 	 */
567 	wait_for_completion(&io->complete);
568 
569 	sg_clean(io);
570 }
571 EXPORT_SYMBOL_GPL(usb_sg_wait);
572 
573 /**
574  * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
575  * @io: request block, initialized with usb_sg_init()
576  *
577  * This stops a request after it has been started by usb_sg_wait().
578  * It can also prevents one initialized by usb_sg_init() from starting,
579  * so that call just frees resources allocated to the request.
580  */
581 void usb_sg_cancel(struct usb_sg_request *io)
582 {
583 	unsigned long flags;
584 	int i, retval;
585 
586 	spin_lock_irqsave(&io->lock, flags);
587 	if (io->status) {
588 		spin_unlock_irqrestore(&io->lock, flags);
589 		return;
590 	}
591 	/* shut everything down */
592 	io->status = -ECONNRESET;
593 	spin_unlock_irqrestore(&io->lock, flags);
594 
595 	for (i = io->entries - 1; i >= 0; --i) {
596 		usb_block_urb(io->urbs[i]);
597 
598 		retval = usb_unlink_urb(io->urbs[i]);
599 		if (retval != -EINPROGRESS
600 		    && retval != -ENODEV
601 		    && retval != -EBUSY
602 		    && retval != -EIDRM)
603 			dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
604 				 __func__, retval);
605 	}
606 }
607 EXPORT_SYMBOL_GPL(usb_sg_cancel);
608 
609 /*-------------------------------------------------------------------*/
610 
611 /**
612  * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
613  * @dev: the device whose descriptor is being retrieved
614  * @type: the descriptor type (USB_DT_*)
615  * @index: the number of the descriptor
616  * @buf: where to put the descriptor
617  * @size: how big is "buf"?
618  * Context: !in_interrupt ()
619  *
620  * Gets a USB descriptor.  Convenience functions exist to simplify
621  * getting some types of descriptors.  Use
622  * usb_get_string() or usb_string() for USB_DT_STRING.
623  * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
624  * are part of the device structure.
625  * In addition to a number of USB-standard descriptors, some
626  * devices also use class-specific or vendor-specific descriptors.
627  *
628  * This call is synchronous, and may not be used in an interrupt context.
629  *
630  * Return: The number of bytes received on success, or else the status code
631  * returned by the underlying usb_control_msg() call.
632  */
633 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
634 		       unsigned char index, void *buf, int size)
635 {
636 	int i;
637 	int result;
638 
639 	memset(buf, 0, size);	/* Make sure we parse really received data */
640 
641 	for (i = 0; i < 3; ++i) {
642 		/* retry on length 0 or error; some devices are flakey */
643 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
644 				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
645 				(type << 8) + index, 0, buf, size,
646 				USB_CTRL_GET_TIMEOUT);
647 		if (result <= 0 && result != -ETIMEDOUT)
648 			continue;
649 		if (result > 1 && ((u8 *)buf)[1] != type) {
650 			result = -ENODATA;
651 			continue;
652 		}
653 		break;
654 	}
655 	return result;
656 }
657 EXPORT_SYMBOL_GPL(usb_get_descriptor);
658 
659 /**
660  * usb_get_string - gets a string descriptor
661  * @dev: the device whose string descriptor is being retrieved
662  * @langid: code for language chosen (from string descriptor zero)
663  * @index: the number of the descriptor
664  * @buf: where to put the string
665  * @size: how big is "buf"?
666  * Context: !in_interrupt ()
667  *
668  * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
669  * in little-endian byte order).
670  * The usb_string() function will often be a convenient way to turn
671  * these strings into kernel-printable form.
672  *
673  * Strings may be referenced in device, configuration, interface, or other
674  * descriptors, and could also be used in vendor-specific ways.
675  *
676  * This call is synchronous, and may not be used in an interrupt context.
677  *
678  * Return: The number of bytes received on success, or else the status code
679  * returned by the underlying usb_control_msg() call.
680  */
681 static int usb_get_string(struct usb_device *dev, unsigned short langid,
682 			  unsigned char index, void *buf, int size)
683 {
684 	int i;
685 	int result;
686 
687 	for (i = 0; i < 3; ++i) {
688 		/* retry on length 0 or stall; some devices are flakey */
689 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
690 			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
691 			(USB_DT_STRING << 8) + index, langid, buf, size,
692 			USB_CTRL_GET_TIMEOUT);
693 		if (result == 0 || result == -EPIPE)
694 			continue;
695 		if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
696 			result = -ENODATA;
697 			continue;
698 		}
699 		break;
700 	}
701 	return result;
702 }
703 
704 static void usb_try_string_workarounds(unsigned char *buf, int *length)
705 {
706 	int newlength, oldlength = *length;
707 
708 	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
709 		if (!isprint(buf[newlength]) || buf[newlength + 1])
710 			break;
711 
712 	if (newlength > 2) {
713 		buf[0] = newlength;
714 		*length = newlength;
715 	}
716 }
717 
718 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
719 			  unsigned int index, unsigned char *buf)
720 {
721 	int rc;
722 
723 	/* Try to read the string descriptor by asking for the maximum
724 	 * possible number of bytes */
725 	if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
726 		rc = -EIO;
727 	else
728 		rc = usb_get_string(dev, langid, index, buf, 255);
729 
730 	/* If that failed try to read the descriptor length, then
731 	 * ask for just that many bytes */
732 	if (rc < 2) {
733 		rc = usb_get_string(dev, langid, index, buf, 2);
734 		if (rc == 2)
735 			rc = usb_get_string(dev, langid, index, buf, buf[0]);
736 	}
737 
738 	if (rc >= 2) {
739 		if (!buf[0] && !buf[1])
740 			usb_try_string_workarounds(buf, &rc);
741 
742 		/* There might be extra junk at the end of the descriptor */
743 		if (buf[0] < rc)
744 			rc = buf[0];
745 
746 		rc = rc - (rc & 1); /* force a multiple of two */
747 	}
748 
749 	if (rc < 2)
750 		rc = (rc < 0 ? rc : -EINVAL);
751 
752 	return rc;
753 }
754 
755 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
756 {
757 	int err;
758 
759 	if (dev->have_langid)
760 		return 0;
761 
762 	if (dev->string_langid < 0)
763 		return -EPIPE;
764 
765 	err = usb_string_sub(dev, 0, 0, tbuf);
766 
767 	/* If the string was reported but is malformed, default to english
768 	 * (0x0409) */
769 	if (err == -ENODATA || (err > 0 && err < 4)) {
770 		dev->string_langid = 0x0409;
771 		dev->have_langid = 1;
772 		dev_err(&dev->dev,
773 			"language id specifier not provided by device, defaulting to English\n");
774 		return 0;
775 	}
776 
777 	/* In case of all other errors, we assume the device is not able to
778 	 * deal with strings at all. Set string_langid to -1 in order to
779 	 * prevent any string to be retrieved from the device */
780 	if (err < 0) {
781 		dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
782 					err);
783 		dev->string_langid = -1;
784 		return -EPIPE;
785 	}
786 
787 	/* always use the first langid listed */
788 	dev->string_langid = tbuf[2] | (tbuf[3] << 8);
789 	dev->have_langid = 1;
790 	dev_dbg(&dev->dev, "default language 0x%04x\n",
791 				dev->string_langid);
792 	return 0;
793 }
794 
795 /**
796  * usb_string - returns UTF-8 version of a string descriptor
797  * @dev: the device whose string descriptor is being retrieved
798  * @index: the number of the descriptor
799  * @buf: where to put the string
800  * @size: how big is "buf"?
801  * Context: !in_interrupt ()
802  *
803  * This converts the UTF-16LE encoded strings returned by devices, from
804  * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
805  * that are more usable in most kernel contexts.  Note that this function
806  * chooses strings in the first language supported by the device.
807  *
808  * This call is synchronous, and may not be used in an interrupt context.
809  *
810  * Return: length of the string (>= 0) or usb_control_msg status (< 0).
811  */
812 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
813 {
814 	unsigned char *tbuf;
815 	int err;
816 
817 	if (dev->state == USB_STATE_SUSPENDED)
818 		return -EHOSTUNREACH;
819 	if (size <= 0 || !buf || !index)
820 		return -EINVAL;
821 	buf[0] = 0;
822 	tbuf = kmalloc(256, GFP_NOIO);
823 	if (!tbuf)
824 		return -ENOMEM;
825 
826 	err = usb_get_langid(dev, tbuf);
827 	if (err < 0)
828 		goto errout;
829 
830 	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
831 	if (err < 0)
832 		goto errout;
833 
834 	size--;		/* leave room for trailing NULL char in output buffer */
835 	err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
836 			UTF16_LITTLE_ENDIAN, buf, size);
837 	buf[err] = 0;
838 
839 	if (tbuf[1] != USB_DT_STRING)
840 		dev_dbg(&dev->dev,
841 			"wrong descriptor type %02x for string %d (\"%s\")\n",
842 			tbuf[1], index, buf);
843 
844  errout:
845 	kfree(tbuf);
846 	return err;
847 }
848 EXPORT_SYMBOL_GPL(usb_string);
849 
850 /* one UTF-8-encoded 16-bit character has at most three bytes */
851 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
852 
853 /**
854  * usb_cache_string - read a string descriptor and cache it for later use
855  * @udev: the device whose string descriptor is being read
856  * @index: the descriptor index
857  *
858  * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
859  * or %NULL if the index is 0 or the string could not be read.
860  */
861 char *usb_cache_string(struct usb_device *udev, int index)
862 {
863 	char *buf;
864 	char *smallbuf = NULL;
865 	int len;
866 
867 	if (index <= 0)
868 		return NULL;
869 
870 	buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
871 	if (buf) {
872 		len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
873 		if (len > 0) {
874 			smallbuf = kmalloc(++len, GFP_NOIO);
875 			if (!smallbuf)
876 				return buf;
877 			memcpy(smallbuf, buf, len);
878 		}
879 		kfree(buf);
880 	}
881 	return smallbuf;
882 }
883 
884 /*
885  * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
886  * @dev: the device whose device descriptor is being updated
887  * @size: how much of the descriptor to read
888  * Context: !in_interrupt ()
889  *
890  * Updates the copy of the device descriptor stored in the device structure,
891  * which dedicates space for this purpose.
892  *
893  * Not exported, only for use by the core.  If drivers really want to read
894  * the device descriptor directly, they can call usb_get_descriptor() with
895  * type = USB_DT_DEVICE and index = 0.
896  *
897  * This call is synchronous, and may not be used in an interrupt context.
898  *
899  * Return: The number of bytes received on success, or else the status code
900  * returned by the underlying usb_control_msg() call.
901  */
902 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
903 {
904 	struct usb_device_descriptor *desc;
905 	int ret;
906 
907 	if (size > sizeof(*desc))
908 		return -EINVAL;
909 	desc = kmalloc(sizeof(*desc), GFP_NOIO);
910 	if (!desc)
911 		return -ENOMEM;
912 
913 	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
914 	if (ret >= 0)
915 		memcpy(&dev->descriptor, desc, size);
916 	kfree(desc);
917 	return ret;
918 }
919 
920 /**
921  * usb_get_status - issues a GET_STATUS call
922  * @dev: the device whose status is being checked
923  * @type: USB_RECIP_*; for device, interface, or endpoint
924  * @target: zero (for device), else interface or endpoint number
925  * @data: pointer to two bytes of bitmap data
926  * Context: !in_interrupt ()
927  *
928  * Returns device, interface, or endpoint status.  Normally only of
929  * interest to see if the device is self powered, or has enabled the
930  * remote wakeup facility; or whether a bulk or interrupt endpoint
931  * is halted ("stalled").
932  *
933  * Bits in these status bitmaps are set using the SET_FEATURE request,
934  * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
935  * function should be used to clear halt ("stall") status.
936  *
937  * This call is synchronous, and may not be used in an interrupt context.
938  *
939  * Returns 0 and the status value in *@data (in host byte order) on success,
940  * or else the status code from the underlying usb_control_msg() call.
941  */
942 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
943 {
944 	int ret;
945 	__le16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
946 
947 	if (!status)
948 		return -ENOMEM;
949 
950 	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
951 		USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
952 		sizeof(*status), USB_CTRL_GET_TIMEOUT);
953 
954 	if (ret == 2) {
955 		*(u16 *) data = le16_to_cpu(*status);
956 		ret = 0;
957 	} else if (ret >= 0) {
958 		ret = -EIO;
959 	}
960 	kfree(status);
961 	return ret;
962 }
963 EXPORT_SYMBOL_GPL(usb_get_status);
964 
965 /**
966  * usb_clear_halt - tells device to clear endpoint halt/stall condition
967  * @dev: device whose endpoint is halted
968  * @pipe: endpoint "pipe" being cleared
969  * Context: !in_interrupt ()
970  *
971  * This is used to clear halt conditions for bulk and interrupt endpoints,
972  * as reported by URB completion status.  Endpoints that are halted are
973  * sometimes referred to as being "stalled".  Such endpoints are unable
974  * to transmit or receive data until the halt status is cleared.  Any URBs
975  * queued for such an endpoint should normally be unlinked by the driver
976  * before clearing the halt condition, as described in sections 5.7.5
977  * and 5.8.5 of the USB 2.0 spec.
978  *
979  * Note that control and isochronous endpoints don't halt, although control
980  * endpoints report "protocol stall" (for unsupported requests) using the
981  * same status code used to report a true stall.
982  *
983  * This call is synchronous, and may not be used in an interrupt context.
984  *
985  * Return: Zero on success, or else the status code returned by the
986  * underlying usb_control_msg() call.
987  */
988 int usb_clear_halt(struct usb_device *dev, int pipe)
989 {
990 	int result;
991 	int endp = usb_pipeendpoint(pipe);
992 
993 	if (usb_pipein(pipe))
994 		endp |= USB_DIR_IN;
995 
996 	/* we don't care if it wasn't halted first. in fact some devices
997 	 * (like some ibmcam model 1 units) seem to expect hosts to make
998 	 * this request for iso endpoints, which can't halt!
999 	 */
1000 	result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1001 		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1002 		USB_ENDPOINT_HALT, endp, NULL, 0,
1003 		USB_CTRL_SET_TIMEOUT);
1004 
1005 	/* don't un-halt or force to DATA0 except on success */
1006 	if (result < 0)
1007 		return result;
1008 
1009 	/* NOTE:  seems like Microsoft and Apple don't bother verifying
1010 	 * the clear "took", so some devices could lock up if you check...
1011 	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
1012 	 *
1013 	 * NOTE:  make sure the logic here doesn't diverge much from
1014 	 * the copy in usb-storage, for as long as we need two copies.
1015 	 */
1016 
1017 	usb_reset_endpoint(dev, endp);
1018 
1019 	return 0;
1020 }
1021 EXPORT_SYMBOL_GPL(usb_clear_halt);
1022 
1023 static int create_intf_ep_devs(struct usb_interface *intf)
1024 {
1025 	struct usb_device *udev = interface_to_usbdev(intf);
1026 	struct usb_host_interface *alt = intf->cur_altsetting;
1027 	int i;
1028 
1029 	if (intf->ep_devs_created || intf->unregistering)
1030 		return 0;
1031 
1032 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1033 		(void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1034 	intf->ep_devs_created = 1;
1035 	return 0;
1036 }
1037 
1038 static void remove_intf_ep_devs(struct usb_interface *intf)
1039 {
1040 	struct usb_host_interface *alt = intf->cur_altsetting;
1041 	int i;
1042 
1043 	if (!intf->ep_devs_created)
1044 		return;
1045 
1046 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1047 		usb_remove_ep_devs(&alt->endpoint[i]);
1048 	intf->ep_devs_created = 0;
1049 }
1050 
1051 /**
1052  * usb_disable_endpoint -- Disable an endpoint by address
1053  * @dev: the device whose endpoint is being disabled
1054  * @epaddr: the endpoint's address.  Endpoint number for output,
1055  *	endpoint number + USB_DIR_IN for input
1056  * @reset_hardware: flag to erase any endpoint state stored in the
1057  *	controller hardware
1058  *
1059  * Disables the endpoint for URB submission and nukes all pending URBs.
1060  * If @reset_hardware is set then also deallocates hcd/hardware state
1061  * for the endpoint.
1062  */
1063 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1064 		bool reset_hardware)
1065 {
1066 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1067 	struct usb_host_endpoint *ep;
1068 
1069 	if (!dev)
1070 		return;
1071 
1072 	if (usb_endpoint_out(epaddr)) {
1073 		ep = dev->ep_out[epnum];
1074 		if (reset_hardware)
1075 			dev->ep_out[epnum] = NULL;
1076 	} else {
1077 		ep = dev->ep_in[epnum];
1078 		if (reset_hardware)
1079 			dev->ep_in[epnum] = NULL;
1080 	}
1081 	if (ep) {
1082 		ep->enabled = 0;
1083 		usb_hcd_flush_endpoint(dev, ep);
1084 		if (reset_hardware)
1085 			usb_hcd_disable_endpoint(dev, ep);
1086 	}
1087 }
1088 
1089 /**
1090  * usb_reset_endpoint - Reset an endpoint's state.
1091  * @dev: the device whose endpoint is to be reset
1092  * @epaddr: the endpoint's address.  Endpoint number for output,
1093  *	endpoint number + USB_DIR_IN for input
1094  *
1095  * Resets any host-side endpoint state such as the toggle bit,
1096  * sequence number or current window.
1097  */
1098 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1099 {
1100 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1101 	struct usb_host_endpoint *ep;
1102 
1103 	if (usb_endpoint_out(epaddr))
1104 		ep = dev->ep_out[epnum];
1105 	else
1106 		ep = dev->ep_in[epnum];
1107 	if (ep)
1108 		usb_hcd_reset_endpoint(dev, ep);
1109 }
1110 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1111 
1112 
1113 /**
1114  * usb_disable_interface -- Disable all endpoints for an interface
1115  * @dev: the device whose interface is being disabled
1116  * @intf: pointer to the interface descriptor
1117  * @reset_hardware: flag to erase any endpoint state stored in the
1118  *	controller hardware
1119  *
1120  * Disables all the endpoints for the interface's current altsetting.
1121  */
1122 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1123 		bool reset_hardware)
1124 {
1125 	struct usb_host_interface *alt = intf->cur_altsetting;
1126 	int i;
1127 
1128 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1129 		usb_disable_endpoint(dev,
1130 				alt->endpoint[i].desc.bEndpointAddress,
1131 				reset_hardware);
1132 	}
1133 }
1134 
1135 /**
1136  * usb_disable_device - Disable all the endpoints for a USB device
1137  * @dev: the device whose endpoints are being disabled
1138  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1139  *
1140  * Disables all the device's endpoints, potentially including endpoint 0.
1141  * Deallocates hcd/hardware state for the endpoints (nuking all or most
1142  * pending urbs) and usbcore state for the interfaces, so that usbcore
1143  * must usb_set_configuration() before any interfaces could be used.
1144  */
1145 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1146 {
1147 	int i;
1148 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1149 
1150 	/* getting rid of interfaces will disconnect
1151 	 * any drivers bound to them (a key side effect)
1152 	 */
1153 	if (dev->actconfig) {
1154 		/*
1155 		 * FIXME: In order to avoid self-deadlock involving the
1156 		 * bandwidth_mutex, we have to mark all the interfaces
1157 		 * before unregistering any of them.
1158 		 */
1159 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1160 			dev->actconfig->interface[i]->unregistering = 1;
1161 
1162 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1163 			struct usb_interface	*interface;
1164 
1165 			/* remove this interface if it has been registered */
1166 			interface = dev->actconfig->interface[i];
1167 			if (!device_is_registered(&interface->dev))
1168 				continue;
1169 			dev_dbg(&dev->dev, "unregistering interface %s\n",
1170 				dev_name(&interface->dev));
1171 			remove_intf_ep_devs(interface);
1172 			device_del(&interface->dev);
1173 		}
1174 
1175 		/* Now that the interfaces are unbound, nobody should
1176 		 * try to access them.
1177 		 */
1178 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1179 			put_device(&dev->actconfig->interface[i]->dev);
1180 			dev->actconfig->interface[i] = NULL;
1181 		}
1182 
1183 		if (dev->usb2_hw_lpm_enabled == 1)
1184 			usb_set_usb2_hardware_lpm(dev, 0);
1185 		usb_unlocked_disable_lpm(dev);
1186 		usb_disable_ltm(dev);
1187 
1188 		dev->actconfig = NULL;
1189 		if (dev->state == USB_STATE_CONFIGURED)
1190 			usb_set_device_state(dev, USB_STATE_ADDRESS);
1191 	}
1192 
1193 	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1194 		skip_ep0 ? "non-ep0" : "all");
1195 	if (hcd->driver->check_bandwidth) {
1196 		/* First pass: Cancel URBs, leave endpoint pointers intact. */
1197 		for (i = skip_ep0; i < 16; ++i) {
1198 			usb_disable_endpoint(dev, i, false);
1199 			usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1200 		}
1201 		/* Remove endpoints from the host controller internal state */
1202 		mutex_lock(hcd->bandwidth_mutex);
1203 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1204 		mutex_unlock(hcd->bandwidth_mutex);
1205 		/* Second pass: remove endpoint pointers */
1206 	}
1207 	for (i = skip_ep0; i < 16; ++i) {
1208 		usb_disable_endpoint(dev, i, true);
1209 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1210 	}
1211 }
1212 
1213 /**
1214  * usb_enable_endpoint - Enable an endpoint for USB communications
1215  * @dev: the device whose interface is being enabled
1216  * @ep: the endpoint
1217  * @reset_ep: flag to reset the endpoint state
1218  *
1219  * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1220  * For control endpoints, both the input and output sides are handled.
1221  */
1222 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1223 		bool reset_ep)
1224 {
1225 	int epnum = usb_endpoint_num(&ep->desc);
1226 	int is_out = usb_endpoint_dir_out(&ep->desc);
1227 	int is_control = usb_endpoint_xfer_control(&ep->desc);
1228 
1229 	if (reset_ep)
1230 		usb_hcd_reset_endpoint(dev, ep);
1231 	if (is_out || is_control)
1232 		dev->ep_out[epnum] = ep;
1233 	if (!is_out || is_control)
1234 		dev->ep_in[epnum] = ep;
1235 	ep->enabled = 1;
1236 }
1237 
1238 /**
1239  * usb_enable_interface - Enable all the endpoints for an interface
1240  * @dev: the device whose interface is being enabled
1241  * @intf: pointer to the interface descriptor
1242  * @reset_eps: flag to reset the endpoints' state
1243  *
1244  * Enables all the endpoints for the interface's current altsetting.
1245  */
1246 void usb_enable_interface(struct usb_device *dev,
1247 		struct usb_interface *intf, bool reset_eps)
1248 {
1249 	struct usb_host_interface *alt = intf->cur_altsetting;
1250 	int i;
1251 
1252 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1253 		usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1254 }
1255 
1256 /**
1257  * usb_set_interface - Makes a particular alternate setting be current
1258  * @dev: the device whose interface is being updated
1259  * @interface: the interface being updated
1260  * @alternate: the setting being chosen.
1261  * Context: !in_interrupt ()
1262  *
1263  * This is used to enable data transfers on interfaces that may not
1264  * be enabled by default.  Not all devices support such configurability.
1265  * Only the driver bound to an interface may change its setting.
1266  *
1267  * Within any given configuration, each interface may have several
1268  * alternative settings.  These are often used to control levels of
1269  * bandwidth consumption.  For example, the default setting for a high
1270  * speed interrupt endpoint may not send more than 64 bytes per microframe,
1271  * while interrupt transfers of up to 3KBytes per microframe are legal.
1272  * Also, isochronous endpoints may never be part of an
1273  * interface's default setting.  To access such bandwidth, alternate
1274  * interface settings must be made current.
1275  *
1276  * Note that in the Linux USB subsystem, bandwidth associated with
1277  * an endpoint in a given alternate setting is not reserved until an URB
1278  * is submitted that needs that bandwidth.  Some other operating systems
1279  * allocate bandwidth early, when a configuration is chosen.
1280  *
1281  * This call is synchronous, and may not be used in an interrupt context.
1282  * Also, drivers must not change altsettings while urbs are scheduled for
1283  * endpoints in that interface; all such urbs must first be completed
1284  * (perhaps forced by unlinking).
1285  *
1286  * Return: Zero on success, or else the status code returned by the
1287  * underlying usb_control_msg() call.
1288  */
1289 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1290 {
1291 	struct usb_interface *iface;
1292 	struct usb_host_interface *alt;
1293 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1294 	int i, ret, manual = 0;
1295 	unsigned int epaddr;
1296 	unsigned int pipe;
1297 
1298 	if (dev->state == USB_STATE_SUSPENDED)
1299 		return -EHOSTUNREACH;
1300 
1301 	iface = usb_ifnum_to_if(dev, interface);
1302 	if (!iface) {
1303 		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1304 			interface);
1305 		return -EINVAL;
1306 	}
1307 	if (iface->unregistering)
1308 		return -ENODEV;
1309 
1310 	alt = usb_altnum_to_altsetting(iface, alternate);
1311 	if (!alt) {
1312 		dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1313 			 alternate);
1314 		return -EINVAL;
1315 	}
1316 
1317 	/* Make sure we have enough bandwidth for this alternate interface.
1318 	 * Remove the current alt setting and add the new alt setting.
1319 	 */
1320 	mutex_lock(hcd->bandwidth_mutex);
1321 	/* Disable LPM, and re-enable it once the new alt setting is installed,
1322 	 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1323 	 */
1324 	if (usb_disable_lpm(dev)) {
1325 		dev_err(&iface->dev, "%s Failed to disable LPM\n.", __func__);
1326 		mutex_unlock(hcd->bandwidth_mutex);
1327 		return -ENOMEM;
1328 	}
1329 	/* Changing alt-setting also frees any allocated streams */
1330 	for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1331 		iface->cur_altsetting->endpoint[i].streams = 0;
1332 
1333 	ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1334 	if (ret < 0) {
1335 		dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1336 				alternate);
1337 		usb_enable_lpm(dev);
1338 		mutex_unlock(hcd->bandwidth_mutex);
1339 		return ret;
1340 	}
1341 
1342 	if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1343 		ret = -EPIPE;
1344 	else
1345 		ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1346 				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1347 				   alternate, interface, NULL, 0, 5000);
1348 
1349 	/* 9.4.10 says devices don't need this and are free to STALL the
1350 	 * request if the interface only has one alternate setting.
1351 	 */
1352 	if (ret == -EPIPE && iface->num_altsetting == 1) {
1353 		dev_dbg(&dev->dev,
1354 			"manual set_interface for iface %d, alt %d\n",
1355 			interface, alternate);
1356 		manual = 1;
1357 	} else if (ret < 0) {
1358 		/* Re-instate the old alt setting */
1359 		usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1360 		usb_enable_lpm(dev);
1361 		mutex_unlock(hcd->bandwidth_mutex);
1362 		return ret;
1363 	}
1364 	mutex_unlock(hcd->bandwidth_mutex);
1365 
1366 	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1367 	 * when they implement async or easily-killable versions of this or
1368 	 * other "should-be-internal" functions (like clear_halt).
1369 	 * should hcd+usbcore postprocess control requests?
1370 	 */
1371 
1372 	/* prevent submissions using previous endpoint settings */
1373 	if (iface->cur_altsetting != alt) {
1374 		remove_intf_ep_devs(iface);
1375 		usb_remove_sysfs_intf_files(iface);
1376 	}
1377 	usb_disable_interface(dev, iface, true);
1378 
1379 	iface->cur_altsetting = alt;
1380 
1381 	/* Now that the interface is installed, re-enable LPM. */
1382 	usb_unlocked_enable_lpm(dev);
1383 
1384 	/* If the interface only has one altsetting and the device didn't
1385 	 * accept the request, we attempt to carry out the equivalent action
1386 	 * by manually clearing the HALT feature for each endpoint in the
1387 	 * new altsetting.
1388 	 */
1389 	if (manual) {
1390 		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1391 			epaddr = alt->endpoint[i].desc.bEndpointAddress;
1392 			pipe = __create_pipe(dev,
1393 					USB_ENDPOINT_NUMBER_MASK & epaddr) |
1394 					(usb_endpoint_out(epaddr) ?
1395 					USB_DIR_OUT : USB_DIR_IN);
1396 
1397 			usb_clear_halt(dev, pipe);
1398 		}
1399 	}
1400 
1401 	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1402 	 *
1403 	 * Note:
1404 	 * Despite EP0 is always present in all interfaces/AS, the list of
1405 	 * endpoints from the descriptor does not contain EP0. Due to its
1406 	 * omnipresence one might expect EP0 being considered "affected" by
1407 	 * any SetInterface request and hence assume toggles need to be reset.
1408 	 * However, EP0 toggles are re-synced for every individual transfer
1409 	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1410 	 * (Likewise, EP0 never "halts" on well designed devices.)
1411 	 */
1412 	usb_enable_interface(dev, iface, true);
1413 	if (device_is_registered(&iface->dev)) {
1414 		usb_create_sysfs_intf_files(iface);
1415 		create_intf_ep_devs(iface);
1416 	}
1417 	return 0;
1418 }
1419 EXPORT_SYMBOL_GPL(usb_set_interface);
1420 
1421 /**
1422  * usb_reset_configuration - lightweight device reset
1423  * @dev: the device whose configuration is being reset
1424  *
1425  * This issues a standard SET_CONFIGURATION request to the device using
1426  * the current configuration.  The effect is to reset most USB-related
1427  * state in the device, including interface altsettings (reset to zero),
1428  * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1429  * endpoints).  Other usbcore state is unchanged, including bindings of
1430  * usb device drivers to interfaces.
1431  *
1432  * Because this affects multiple interfaces, avoid using this with composite
1433  * (multi-interface) devices.  Instead, the driver for each interface may
1434  * use usb_set_interface() on the interfaces it claims.  Be careful though;
1435  * some devices don't support the SET_INTERFACE request, and others won't
1436  * reset all the interface state (notably endpoint state).  Resetting the whole
1437  * configuration would affect other drivers' interfaces.
1438  *
1439  * The caller must own the device lock.
1440  *
1441  * Return: Zero on success, else a negative error code.
1442  */
1443 int usb_reset_configuration(struct usb_device *dev)
1444 {
1445 	int			i, retval;
1446 	struct usb_host_config	*config;
1447 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1448 
1449 	if (dev->state == USB_STATE_SUSPENDED)
1450 		return -EHOSTUNREACH;
1451 
1452 	/* caller must have locked the device and must own
1453 	 * the usb bus readlock (so driver bindings are stable);
1454 	 * calls during probe() are fine
1455 	 */
1456 
1457 	for (i = 1; i < 16; ++i) {
1458 		usb_disable_endpoint(dev, i, true);
1459 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1460 	}
1461 
1462 	config = dev->actconfig;
1463 	retval = 0;
1464 	mutex_lock(hcd->bandwidth_mutex);
1465 	/* Disable LPM, and re-enable it once the configuration is reset, so
1466 	 * that the xHCI driver can recalculate the U1/U2 timeouts.
1467 	 */
1468 	if (usb_disable_lpm(dev)) {
1469 		dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1470 		mutex_unlock(hcd->bandwidth_mutex);
1471 		return -ENOMEM;
1472 	}
1473 	/* Make sure we have enough bandwidth for each alternate setting 0 */
1474 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1475 		struct usb_interface *intf = config->interface[i];
1476 		struct usb_host_interface *alt;
1477 
1478 		alt = usb_altnum_to_altsetting(intf, 0);
1479 		if (!alt)
1480 			alt = &intf->altsetting[0];
1481 		if (alt != intf->cur_altsetting)
1482 			retval = usb_hcd_alloc_bandwidth(dev, NULL,
1483 					intf->cur_altsetting, alt);
1484 		if (retval < 0)
1485 			break;
1486 	}
1487 	/* If not, reinstate the old alternate settings */
1488 	if (retval < 0) {
1489 reset_old_alts:
1490 		for (i--; i >= 0; i--) {
1491 			struct usb_interface *intf = config->interface[i];
1492 			struct usb_host_interface *alt;
1493 
1494 			alt = usb_altnum_to_altsetting(intf, 0);
1495 			if (!alt)
1496 				alt = &intf->altsetting[0];
1497 			if (alt != intf->cur_altsetting)
1498 				usb_hcd_alloc_bandwidth(dev, NULL,
1499 						alt, intf->cur_altsetting);
1500 		}
1501 		usb_enable_lpm(dev);
1502 		mutex_unlock(hcd->bandwidth_mutex);
1503 		return retval;
1504 	}
1505 	retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1506 			USB_REQ_SET_CONFIGURATION, 0,
1507 			config->desc.bConfigurationValue, 0,
1508 			NULL, 0, USB_CTRL_SET_TIMEOUT);
1509 	if (retval < 0)
1510 		goto reset_old_alts;
1511 	mutex_unlock(hcd->bandwidth_mutex);
1512 
1513 	/* re-init hc/hcd interface/endpoint state */
1514 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1515 		struct usb_interface *intf = config->interface[i];
1516 		struct usb_host_interface *alt;
1517 
1518 		alt = usb_altnum_to_altsetting(intf, 0);
1519 
1520 		/* No altsetting 0?  We'll assume the first altsetting.
1521 		 * We could use a GetInterface call, but if a device is
1522 		 * so non-compliant that it doesn't have altsetting 0
1523 		 * then I wouldn't trust its reply anyway.
1524 		 */
1525 		if (!alt)
1526 			alt = &intf->altsetting[0];
1527 
1528 		if (alt != intf->cur_altsetting) {
1529 			remove_intf_ep_devs(intf);
1530 			usb_remove_sysfs_intf_files(intf);
1531 		}
1532 		intf->cur_altsetting = alt;
1533 		usb_enable_interface(dev, intf, true);
1534 		if (device_is_registered(&intf->dev)) {
1535 			usb_create_sysfs_intf_files(intf);
1536 			create_intf_ep_devs(intf);
1537 		}
1538 	}
1539 	/* Now that the interfaces are installed, re-enable LPM. */
1540 	usb_unlocked_enable_lpm(dev);
1541 	return 0;
1542 }
1543 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1544 
1545 static void usb_release_interface(struct device *dev)
1546 {
1547 	struct usb_interface *intf = to_usb_interface(dev);
1548 	struct usb_interface_cache *intfc =
1549 			altsetting_to_usb_interface_cache(intf->altsetting);
1550 
1551 	kref_put(&intfc->ref, usb_release_interface_cache);
1552 	usb_put_dev(interface_to_usbdev(intf));
1553 	kfree(intf);
1554 }
1555 
1556 /*
1557  * usb_deauthorize_interface - deauthorize an USB interface
1558  *
1559  * @intf: USB interface structure
1560  */
1561 void usb_deauthorize_interface(struct usb_interface *intf)
1562 {
1563 	struct device *dev = &intf->dev;
1564 
1565 	device_lock(dev->parent);
1566 
1567 	if (intf->authorized) {
1568 		device_lock(dev);
1569 		intf->authorized = 0;
1570 		device_unlock(dev);
1571 
1572 		usb_forced_unbind_intf(intf);
1573 	}
1574 
1575 	device_unlock(dev->parent);
1576 }
1577 
1578 /*
1579  * usb_authorize_interface - authorize an USB interface
1580  *
1581  * @intf: USB interface structure
1582  */
1583 void usb_authorize_interface(struct usb_interface *intf)
1584 {
1585 	struct device *dev = &intf->dev;
1586 
1587 	if (!intf->authorized) {
1588 		device_lock(dev);
1589 		intf->authorized = 1; /* authorize interface */
1590 		device_unlock(dev);
1591 	}
1592 }
1593 
1594 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1595 {
1596 	struct usb_device *usb_dev;
1597 	struct usb_interface *intf;
1598 	struct usb_host_interface *alt;
1599 
1600 	intf = to_usb_interface(dev);
1601 	usb_dev = interface_to_usbdev(intf);
1602 	alt = intf->cur_altsetting;
1603 
1604 	if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1605 		   alt->desc.bInterfaceClass,
1606 		   alt->desc.bInterfaceSubClass,
1607 		   alt->desc.bInterfaceProtocol))
1608 		return -ENOMEM;
1609 
1610 	if (add_uevent_var(env,
1611 		   "MODALIAS=usb:"
1612 		   "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1613 		   le16_to_cpu(usb_dev->descriptor.idVendor),
1614 		   le16_to_cpu(usb_dev->descriptor.idProduct),
1615 		   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1616 		   usb_dev->descriptor.bDeviceClass,
1617 		   usb_dev->descriptor.bDeviceSubClass,
1618 		   usb_dev->descriptor.bDeviceProtocol,
1619 		   alt->desc.bInterfaceClass,
1620 		   alt->desc.bInterfaceSubClass,
1621 		   alt->desc.bInterfaceProtocol,
1622 		   alt->desc.bInterfaceNumber))
1623 		return -ENOMEM;
1624 
1625 	return 0;
1626 }
1627 
1628 struct device_type usb_if_device_type = {
1629 	.name =		"usb_interface",
1630 	.release =	usb_release_interface,
1631 	.uevent =	usb_if_uevent,
1632 };
1633 
1634 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1635 						struct usb_host_config *config,
1636 						u8 inum)
1637 {
1638 	struct usb_interface_assoc_descriptor *retval = NULL;
1639 	struct usb_interface_assoc_descriptor *intf_assoc;
1640 	int first_intf;
1641 	int last_intf;
1642 	int i;
1643 
1644 	for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1645 		intf_assoc = config->intf_assoc[i];
1646 		if (intf_assoc->bInterfaceCount == 0)
1647 			continue;
1648 
1649 		first_intf = intf_assoc->bFirstInterface;
1650 		last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1651 		if (inum >= first_intf && inum <= last_intf) {
1652 			if (!retval)
1653 				retval = intf_assoc;
1654 			else
1655 				dev_err(&dev->dev, "Interface #%d referenced"
1656 					" by multiple IADs\n", inum);
1657 		}
1658 	}
1659 
1660 	return retval;
1661 }
1662 
1663 
1664 /*
1665  * Internal function to queue a device reset
1666  * See usb_queue_reset_device() for more details
1667  */
1668 static void __usb_queue_reset_device(struct work_struct *ws)
1669 {
1670 	int rc;
1671 	struct usb_interface *iface =
1672 		container_of(ws, struct usb_interface, reset_ws);
1673 	struct usb_device *udev = interface_to_usbdev(iface);
1674 
1675 	rc = usb_lock_device_for_reset(udev, iface);
1676 	if (rc >= 0) {
1677 		usb_reset_device(udev);
1678 		usb_unlock_device(udev);
1679 	}
1680 	usb_put_intf(iface);	/* Undo _get_ in usb_queue_reset_device() */
1681 }
1682 
1683 
1684 /*
1685  * usb_set_configuration - Makes a particular device setting be current
1686  * @dev: the device whose configuration is being updated
1687  * @configuration: the configuration being chosen.
1688  * Context: !in_interrupt(), caller owns the device lock
1689  *
1690  * This is used to enable non-default device modes.  Not all devices
1691  * use this kind of configurability; many devices only have one
1692  * configuration.
1693  *
1694  * @configuration is the value of the configuration to be installed.
1695  * According to the USB spec (e.g. section 9.1.1.5), configuration values
1696  * must be non-zero; a value of zero indicates that the device in
1697  * unconfigured.  However some devices erroneously use 0 as one of their
1698  * configuration values.  To help manage such devices, this routine will
1699  * accept @configuration = -1 as indicating the device should be put in
1700  * an unconfigured state.
1701  *
1702  * USB device configurations may affect Linux interoperability,
1703  * power consumption and the functionality available.  For example,
1704  * the default configuration is limited to using 100mA of bus power,
1705  * so that when certain device functionality requires more power,
1706  * and the device is bus powered, that functionality should be in some
1707  * non-default device configuration.  Other device modes may also be
1708  * reflected as configuration options, such as whether two ISDN
1709  * channels are available independently; and choosing between open
1710  * standard device protocols (like CDC) or proprietary ones.
1711  *
1712  * Note that a non-authorized device (dev->authorized == 0) will only
1713  * be put in unconfigured mode.
1714  *
1715  * Note that USB has an additional level of device configurability,
1716  * associated with interfaces.  That configurability is accessed using
1717  * usb_set_interface().
1718  *
1719  * This call is synchronous. The calling context must be able to sleep,
1720  * must own the device lock, and must not hold the driver model's USB
1721  * bus mutex; usb interface driver probe() methods cannot use this routine.
1722  *
1723  * Returns zero on success, or else the status code returned by the
1724  * underlying call that failed.  On successful completion, each interface
1725  * in the original device configuration has been destroyed, and each one
1726  * in the new configuration has been probed by all relevant usb device
1727  * drivers currently known to the kernel.
1728  */
1729 int usb_set_configuration(struct usb_device *dev, int configuration)
1730 {
1731 	int i, ret;
1732 	struct usb_host_config *cp = NULL;
1733 	struct usb_interface **new_interfaces = NULL;
1734 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1735 	int n, nintf;
1736 
1737 	if (dev->authorized == 0 || configuration == -1)
1738 		configuration = 0;
1739 	else {
1740 		for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1741 			if (dev->config[i].desc.bConfigurationValue ==
1742 					configuration) {
1743 				cp = &dev->config[i];
1744 				break;
1745 			}
1746 		}
1747 	}
1748 	if ((!cp && configuration != 0))
1749 		return -EINVAL;
1750 
1751 	/* The USB spec says configuration 0 means unconfigured.
1752 	 * But if a device includes a configuration numbered 0,
1753 	 * we will accept it as a correctly configured state.
1754 	 * Use -1 if you really want to unconfigure the device.
1755 	 */
1756 	if (cp && configuration == 0)
1757 		dev_warn(&dev->dev, "config 0 descriptor??\n");
1758 
1759 	/* Allocate memory for new interfaces before doing anything else,
1760 	 * so that if we run out then nothing will have changed. */
1761 	n = nintf = 0;
1762 	if (cp) {
1763 		nintf = cp->desc.bNumInterfaces;
1764 		new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1765 				GFP_NOIO);
1766 		if (!new_interfaces)
1767 			return -ENOMEM;
1768 
1769 		for (; n < nintf; ++n) {
1770 			new_interfaces[n] = kzalloc(
1771 					sizeof(struct usb_interface),
1772 					GFP_NOIO);
1773 			if (!new_interfaces[n]) {
1774 				ret = -ENOMEM;
1775 free_interfaces:
1776 				while (--n >= 0)
1777 					kfree(new_interfaces[n]);
1778 				kfree(new_interfaces);
1779 				return ret;
1780 			}
1781 		}
1782 
1783 		i = dev->bus_mA - usb_get_max_power(dev, cp);
1784 		if (i < 0)
1785 			dev_warn(&dev->dev, "new config #%d exceeds power "
1786 					"limit by %dmA\n",
1787 					configuration, -i);
1788 	}
1789 
1790 	/* Wake up the device so we can send it the Set-Config request */
1791 	ret = usb_autoresume_device(dev);
1792 	if (ret)
1793 		goto free_interfaces;
1794 
1795 	/* if it's already configured, clear out old state first.
1796 	 * getting rid of old interfaces means unbinding their drivers.
1797 	 */
1798 	if (dev->state != USB_STATE_ADDRESS)
1799 		usb_disable_device(dev, 1);	/* Skip ep0 */
1800 
1801 	/* Get rid of pending async Set-Config requests for this device */
1802 	cancel_async_set_config(dev);
1803 
1804 	/* Make sure we have bandwidth (and available HCD resources) for this
1805 	 * configuration.  Remove endpoints from the schedule if we're dropping
1806 	 * this configuration to set configuration 0.  After this point, the
1807 	 * host controller will not allow submissions to dropped endpoints.  If
1808 	 * this call fails, the device state is unchanged.
1809 	 */
1810 	mutex_lock(hcd->bandwidth_mutex);
1811 	/* Disable LPM, and re-enable it once the new configuration is
1812 	 * installed, so that the xHCI driver can recalculate the U1/U2
1813 	 * timeouts.
1814 	 */
1815 	if (dev->actconfig && usb_disable_lpm(dev)) {
1816 		dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1817 		mutex_unlock(hcd->bandwidth_mutex);
1818 		ret = -ENOMEM;
1819 		goto free_interfaces;
1820 	}
1821 	ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1822 	if (ret < 0) {
1823 		if (dev->actconfig)
1824 			usb_enable_lpm(dev);
1825 		mutex_unlock(hcd->bandwidth_mutex);
1826 		usb_autosuspend_device(dev);
1827 		goto free_interfaces;
1828 	}
1829 
1830 	/*
1831 	 * Initialize the new interface structures and the
1832 	 * hc/hcd/usbcore interface/endpoint state.
1833 	 */
1834 	for (i = 0; i < nintf; ++i) {
1835 		struct usb_interface_cache *intfc;
1836 		struct usb_interface *intf;
1837 		struct usb_host_interface *alt;
1838 
1839 		cp->interface[i] = intf = new_interfaces[i];
1840 		intfc = cp->intf_cache[i];
1841 		intf->altsetting = intfc->altsetting;
1842 		intf->num_altsetting = intfc->num_altsetting;
1843 		intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
1844 		kref_get(&intfc->ref);
1845 
1846 		alt = usb_altnum_to_altsetting(intf, 0);
1847 
1848 		/* No altsetting 0?  We'll assume the first altsetting.
1849 		 * We could use a GetInterface call, but if a device is
1850 		 * so non-compliant that it doesn't have altsetting 0
1851 		 * then I wouldn't trust its reply anyway.
1852 		 */
1853 		if (!alt)
1854 			alt = &intf->altsetting[0];
1855 
1856 		intf->intf_assoc =
1857 			find_iad(dev, cp, alt->desc.bInterfaceNumber);
1858 		intf->cur_altsetting = alt;
1859 		usb_enable_interface(dev, intf, true);
1860 		intf->dev.parent = &dev->dev;
1861 		intf->dev.driver = NULL;
1862 		intf->dev.bus = &usb_bus_type;
1863 		intf->dev.type = &usb_if_device_type;
1864 		intf->dev.groups = usb_interface_groups;
1865 		/*
1866 		 * Please refer to usb_alloc_dev() to see why we set
1867 		 * dma_mask and dma_pfn_offset.
1868 		 */
1869 		intf->dev.dma_mask = dev->dev.dma_mask;
1870 		intf->dev.dma_pfn_offset = dev->dev.dma_pfn_offset;
1871 		INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1872 		intf->minor = -1;
1873 		device_initialize(&intf->dev);
1874 		pm_runtime_no_callbacks(&intf->dev);
1875 		dev_set_name(&intf->dev, "%d-%s:%d.%d",
1876 			dev->bus->busnum, dev->devpath,
1877 			configuration, alt->desc.bInterfaceNumber);
1878 		usb_get_dev(dev);
1879 	}
1880 	kfree(new_interfaces);
1881 
1882 	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1883 			      USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1884 			      NULL, 0, USB_CTRL_SET_TIMEOUT);
1885 	if (ret < 0 && cp) {
1886 		/*
1887 		 * All the old state is gone, so what else can we do?
1888 		 * The device is probably useless now anyway.
1889 		 */
1890 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1891 		for (i = 0; i < nintf; ++i) {
1892 			usb_disable_interface(dev, cp->interface[i], true);
1893 			put_device(&cp->interface[i]->dev);
1894 			cp->interface[i] = NULL;
1895 		}
1896 		cp = NULL;
1897 	}
1898 
1899 	dev->actconfig = cp;
1900 	mutex_unlock(hcd->bandwidth_mutex);
1901 
1902 	if (!cp) {
1903 		usb_set_device_state(dev, USB_STATE_ADDRESS);
1904 
1905 		/* Leave LPM disabled while the device is unconfigured. */
1906 		usb_autosuspend_device(dev);
1907 		return ret;
1908 	}
1909 	usb_set_device_state(dev, USB_STATE_CONFIGURED);
1910 
1911 	if (cp->string == NULL &&
1912 			!(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1913 		cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1914 
1915 	/* Now that the interfaces are installed, re-enable LPM. */
1916 	usb_unlocked_enable_lpm(dev);
1917 	/* Enable LTM if it was turned off by usb_disable_device. */
1918 	usb_enable_ltm(dev);
1919 
1920 	/* Now that all the interfaces are set up, register them
1921 	 * to trigger binding of drivers to interfaces.  probe()
1922 	 * routines may install different altsettings and may
1923 	 * claim() any interfaces not yet bound.  Many class drivers
1924 	 * need that: CDC, audio, video, etc.
1925 	 */
1926 	for (i = 0; i < nintf; ++i) {
1927 		struct usb_interface *intf = cp->interface[i];
1928 
1929 		dev_dbg(&dev->dev,
1930 			"adding %s (config #%d, interface %d)\n",
1931 			dev_name(&intf->dev), configuration,
1932 			intf->cur_altsetting->desc.bInterfaceNumber);
1933 		device_enable_async_suspend(&intf->dev);
1934 		ret = device_add(&intf->dev);
1935 		if (ret != 0) {
1936 			dev_err(&dev->dev, "device_add(%s) --> %d\n",
1937 				dev_name(&intf->dev), ret);
1938 			continue;
1939 		}
1940 		create_intf_ep_devs(intf);
1941 	}
1942 
1943 	usb_autosuspend_device(dev);
1944 	return 0;
1945 }
1946 EXPORT_SYMBOL_GPL(usb_set_configuration);
1947 
1948 static LIST_HEAD(set_config_list);
1949 static DEFINE_SPINLOCK(set_config_lock);
1950 
1951 struct set_config_request {
1952 	struct usb_device	*udev;
1953 	int			config;
1954 	struct work_struct	work;
1955 	struct list_head	node;
1956 };
1957 
1958 /* Worker routine for usb_driver_set_configuration() */
1959 static void driver_set_config_work(struct work_struct *work)
1960 {
1961 	struct set_config_request *req =
1962 		container_of(work, struct set_config_request, work);
1963 	struct usb_device *udev = req->udev;
1964 
1965 	usb_lock_device(udev);
1966 	spin_lock(&set_config_lock);
1967 	list_del(&req->node);
1968 	spin_unlock(&set_config_lock);
1969 
1970 	if (req->config >= -1)		/* Is req still valid? */
1971 		usb_set_configuration(udev, req->config);
1972 	usb_unlock_device(udev);
1973 	usb_put_dev(udev);
1974 	kfree(req);
1975 }
1976 
1977 /* Cancel pending Set-Config requests for a device whose configuration
1978  * was just changed
1979  */
1980 static void cancel_async_set_config(struct usb_device *udev)
1981 {
1982 	struct set_config_request *req;
1983 
1984 	spin_lock(&set_config_lock);
1985 	list_for_each_entry(req, &set_config_list, node) {
1986 		if (req->udev == udev)
1987 			req->config = -999;	/* Mark as cancelled */
1988 	}
1989 	spin_unlock(&set_config_lock);
1990 }
1991 
1992 /**
1993  * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1994  * @udev: the device whose configuration is being updated
1995  * @config: the configuration being chosen.
1996  * Context: In process context, must be able to sleep
1997  *
1998  * Device interface drivers are not allowed to change device configurations.
1999  * This is because changing configurations will destroy the interface the
2000  * driver is bound to and create new ones; it would be like a floppy-disk
2001  * driver telling the computer to replace the floppy-disk drive with a
2002  * tape drive!
2003  *
2004  * Still, in certain specialized circumstances the need may arise.  This
2005  * routine gets around the normal restrictions by using a work thread to
2006  * submit the change-config request.
2007  *
2008  * Return: 0 if the request was successfully queued, error code otherwise.
2009  * The caller has no way to know whether the queued request will eventually
2010  * succeed.
2011  */
2012 int usb_driver_set_configuration(struct usb_device *udev, int config)
2013 {
2014 	struct set_config_request *req;
2015 
2016 	req = kmalloc(sizeof(*req), GFP_KERNEL);
2017 	if (!req)
2018 		return -ENOMEM;
2019 	req->udev = udev;
2020 	req->config = config;
2021 	INIT_WORK(&req->work, driver_set_config_work);
2022 
2023 	spin_lock(&set_config_lock);
2024 	list_add(&req->node, &set_config_list);
2025 	spin_unlock(&set_config_lock);
2026 
2027 	usb_get_dev(udev);
2028 	schedule_work(&req->work);
2029 	return 0;
2030 }
2031 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2032 
2033 /**
2034  * cdc_parse_cdc_header - parse the extra headers present in CDC devices
2035  * @hdr: the place to put the results of the parsing
2036  * @intf: the interface for which parsing is requested
2037  * @buffer: pointer to the extra headers to be parsed
2038  * @buflen: length of the extra headers
2039  *
2040  * This evaluates the extra headers present in CDC devices which
2041  * bind the interfaces for data and control and provide details
2042  * about the capabilities of the device.
2043  *
2044  * Return: number of descriptors parsed or -EINVAL
2045  * if the header is contradictory beyond salvage
2046  */
2047 
2048 int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr,
2049 				struct usb_interface *intf,
2050 				u8 *buffer,
2051 				int buflen)
2052 {
2053 	/* duplicates are ignored */
2054 	struct usb_cdc_union_desc *union_header = NULL;
2055 
2056 	/* duplicates are not tolerated */
2057 	struct usb_cdc_header_desc *header = NULL;
2058 	struct usb_cdc_ether_desc *ether = NULL;
2059 	struct usb_cdc_mdlm_detail_desc *detail = NULL;
2060 	struct usb_cdc_mdlm_desc *desc = NULL;
2061 
2062 	unsigned int elength;
2063 	int cnt = 0;
2064 
2065 	memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header));
2066 	hdr->phonet_magic_present = false;
2067 	while (buflen > 0) {
2068 		elength = buffer[0];
2069 		if (!elength) {
2070 			dev_err(&intf->dev, "skipping garbage byte\n");
2071 			elength = 1;
2072 			goto next_desc;
2073 		}
2074 		if (buffer[1] != USB_DT_CS_INTERFACE) {
2075 			dev_err(&intf->dev, "skipping garbage\n");
2076 			goto next_desc;
2077 		}
2078 
2079 		switch (buffer[2]) {
2080 		case USB_CDC_UNION_TYPE: /* we've found it */
2081 			if (elength < sizeof(struct usb_cdc_union_desc))
2082 				goto next_desc;
2083 			if (union_header) {
2084 				dev_err(&intf->dev, "More than one union descriptor, skipping ...\n");
2085 				goto next_desc;
2086 			}
2087 			union_header = (struct usb_cdc_union_desc *)buffer;
2088 			break;
2089 		case USB_CDC_COUNTRY_TYPE:
2090 			if (elength < sizeof(struct usb_cdc_country_functional_desc))
2091 				goto next_desc;
2092 			hdr->usb_cdc_country_functional_desc =
2093 				(struct usb_cdc_country_functional_desc *)buffer;
2094 			break;
2095 		case USB_CDC_HEADER_TYPE:
2096 			if (elength != sizeof(struct usb_cdc_header_desc))
2097 				goto next_desc;
2098 			if (header)
2099 				return -EINVAL;
2100 			header = (struct usb_cdc_header_desc *)buffer;
2101 			break;
2102 		case USB_CDC_ACM_TYPE:
2103 			if (elength < sizeof(struct usb_cdc_acm_descriptor))
2104 				goto next_desc;
2105 			hdr->usb_cdc_acm_descriptor =
2106 				(struct usb_cdc_acm_descriptor *)buffer;
2107 			break;
2108 		case USB_CDC_ETHERNET_TYPE:
2109 			if (elength != sizeof(struct usb_cdc_ether_desc))
2110 				goto next_desc;
2111 			if (ether)
2112 				return -EINVAL;
2113 			ether = (struct usb_cdc_ether_desc *)buffer;
2114 			break;
2115 		case USB_CDC_CALL_MANAGEMENT_TYPE:
2116 			if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor))
2117 				goto next_desc;
2118 			hdr->usb_cdc_call_mgmt_descriptor =
2119 				(struct usb_cdc_call_mgmt_descriptor *)buffer;
2120 			break;
2121 		case USB_CDC_DMM_TYPE:
2122 			if (elength < sizeof(struct usb_cdc_dmm_desc))
2123 				goto next_desc;
2124 			hdr->usb_cdc_dmm_desc =
2125 				(struct usb_cdc_dmm_desc *)buffer;
2126 			break;
2127 		case USB_CDC_MDLM_TYPE:
2128 			if (elength < sizeof(struct usb_cdc_mdlm_desc *))
2129 				goto next_desc;
2130 			if (desc)
2131 				return -EINVAL;
2132 			desc = (struct usb_cdc_mdlm_desc *)buffer;
2133 			break;
2134 		case USB_CDC_MDLM_DETAIL_TYPE:
2135 			if (elength < sizeof(struct usb_cdc_mdlm_detail_desc *))
2136 				goto next_desc;
2137 			if (detail)
2138 				return -EINVAL;
2139 			detail = (struct usb_cdc_mdlm_detail_desc *)buffer;
2140 			break;
2141 		case USB_CDC_NCM_TYPE:
2142 			if (elength < sizeof(struct usb_cdc_ncm_desc))
2143 				goto next_desc;
2144 			hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer;
2145 			break;
2146 		case USB_CDC_MBIM_TYPE:
2147 			if (elength < sizeof(struct usb_cdc_mbim_desc))
2148 				goto next_desc;
2149 
2150 			hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer;
2151 			break;
2152 		case USB_CDC_MBIM_EXTENDED_TYPE:
2153 			if (elength < sizeof(struct usb_cdc_mbim_extended_desc))
2154 				break;
2155 			hdr->usb_cdc_mbim_extended_desc =
2156 				(struct usb_cdc_mbim_extended_desc *)buffer;
2157 			break;
2158 		case CDC_PHONET_MAGIC_NUMBER:
2159 			hdr->phonet_magic_present = true;
2160 			break;
2161 		default:
2162 			/*
2163 			 * there are LOTS more CDC descriptors that
2164 			 * could legitimately be found here.
2165 			 */
2166 			dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n",
2167 					buffer[2], elength);
2168 			goto next_desc;
2169 		}
2170 		cnt++;
2171 next_desc:
2172 		buflen -= elength;
2173 		buffer += elength;
2174 	}
2175 	hdr->usb_cdc_union_desc = union_header;
2176 	hdr->usb_cdc_header_desc = header;
2177 	hdr->usb_cdc_mdlm_detail_desc = detail;
2178 	hdr->usb_cdc_mdlm_desc = desc;
2179 	hdr->usb_cdc_ether_desc = ether;
2180 	return cnt;
2181 }
2182 
2183 EXPORT_SYMBOL(cdc_parse_cdc_header);
2184