xref: /openbmc/linux/drivers/usb/core/message.c (revision 83268fa6b43cefb60ee188fd53ed49120d3ae4f4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * message.c - synchronous message handling
4  *
5  * Released under the GPLv2 only.
6  */
7 
8 #include <linux/pci.h>	/* for scatterlist macros */
9 #include <linux/usb.h>
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 #include <linux/mm.h>
13 #include <linux/timer.h>
14 #include <linux/ctype.h>
15 #include <linux/nls.h>
16 #include <linux/device.h>
17 #include <linux/scatterlist.h>
18 #include <linux/usb/cdc.h>
19 #include <linux/usb/quirks.h>
20 #include <linux/usb/hcd.h>	/* for usbcore internals */
21 #include <linux/usb/of.h>
22 #include <asm/byteorder.h>
23 
24 #include "usb.h"
25 
26 static void cancel_async_set_config(struct usb_device *udev);
27 
28 struct api_context {
29 	struct completion	done;
30 	int			status;
31 };
32 
33 static void usb_api_blocking_completion(struct urb *urb)
34 {
35 	struct api_context *ctx = urb->context;
36 
37 	ctx->status = urb->status;
38 	complete(&ctx->done);
39 }
40 
41 
42 /*
43  * Starts urb and waits for completion or timeout. Note that this call
44  * is NOT interruptible. Many device driver i/o requests should be
45  * interruptible and therefore these drivers should implement their
46  * own interruptible routines.
47  */
48 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
49 {
50 	struct api_context ctx;
51 	unsigned long expire;
52 	int retval;
53 
54 	init_completion(&ctx.done);
55 	urb->context = &ctx;
56 	urb->actual_length = 0;
57 	retval = usb_submit_urb(urb, GFP_NOIO);
58 	if (unlikely(retval))
59 		goto out;
60 
61 	expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
62 	if (!wait_for_completion_timeout(&ctx.done, expire)) {
63 		usb_kill_urb(urb);
64 		retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
65 
66 		dev_dbg(&urb->dev->dev,
67 			"%s timed out on ep%d%s len=%u/%u\n",
68 			current->comm,
69 			usb_endpoint_num(&urb->ep->desc),
70 			usb_urb_dir_in(urb) ? "in" : "out",
71 			urb->actual_length,
72 			urb->transfer_buffer_length);
73 	} else
74 		retval = ctx.status;
75 out:
76 	if (actual_length)
77 		*actual_length = urb->actual_length;
78 
79 	usb_free_urb(urb);
80 	return retval;
81 }
82 
83 /*-------------------------------------------------------------------*/
84 /* returns status (negative) or length (positive) */
85 static int usb_internal_control_msg(struct usb_device *usb_dev,
86 				    unsigned int pipe,
87 				    struct usb_ctrlrequest *cmd,
88 				    void *data, int len, int timeout)
89 {
90 	struct urb *urb;
91 	int retv;
92 	int length;
93 
94 	urb = usb_alloc_urb(0, GFP_NOIO);
95 	if (!urb)
96 		return -ENOMEM;
97 
98 	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
99 			     len, usb_api_blocking_completion, NULL);
100 
101 	retv = usb_start_wait_urb(urb, timeout, &length);
102 	if (retv < 0)
103 		return retv;
104 	else
105 		return length;
106 }
107 
108 /**
109  * usb_control_msg - Builds a control urb, sends it off and waits for completion
110  * @dev: pointer to the usb device to send the message to
111  * @pipe: endpoint "pipe" to send the message to
112  * @request: USB message request value
113  * @requesttype: USB message request type value
114  * @value: USB message value
115  * @index: USB message index value
116  * @data: pointer to the data to send
117  * @size: length in bytes of the data to send
118  * @timeout: time in msecs to wait for the message to complete before timing
119  *	out (if 0 the wait is forever)
120  *
121  * Context: !in_interrupt ()
122  *
123  * This function sends a simple control message to a specified endpoint and
124  * waits for the message to complete, or timeout.
125  *
126  * Don't use this function from within an interrupt context. If you need
127  * an asynchronous message, or need to send a message from within interrupt
128  * context, use usb_submit_urb(). If a thread in your driver uses this call,
129  * make sure your disconnect() method can wait for it to complete. Since you
130  * don't have a handle on the URB used, you can't cancel the request.
131  *
132  * Return: If successful, the number of bytes transferred. Otherwise, a negative
133  * error number.
134  */
135 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
136 		    __u8 requesttype, __u16 value, __u16 index, void *data,
137 		    __u16 size, int timeout)
138 {
139 	struct usb_ctrlrequest *dr;
140 	int ret;
141 
142 	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
143 	if (!dr)
144 		return -ENOMEM;
145 
146 	dr->bRequestType = requesttype;
147 	dr->bRequest = request;
148 	dr->wValue = cpu_to_le16(value);
149 	dr->wIndex = cpu_to_le16(index);
150 	dr->wLength = cpu_to_le16(size);
151 
152 	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
153 
154 	/* Linger a bit, prior to the next control message. */
155 	if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG)
156 		msleep(200);
157 
158 	kfree(dr);
159 
160 	return ret;
161 }
162 EXPORT_SYMBOL_GPL(usb_control_msg);
163 
164 /**
165  * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
166  * @usb_dev: pointer to the usb device to send the message to
167  * @pipe: endpoint "pipe" to send the message to
168  * @data: pointer to the data to send
169  * @len: length in bytes of the data to send
170  * @actual_length: pointer to a location to put the actual length transferred
171  *	in bytes
172  * @timeout: time in msecs to wait for the message to complete before
173  *	timing out (if 0 the wait is forever)
174  *
175  * Context: !in_interrupt ()
176  *
177  * This function sends a simple interrupt message to a specified endpoint and
178  * waits for the message to complete, or timeout.
179  *
180  * Don't use this function from within an interrupt context. If you need
181  * an asynchronous message, or need to send a message from within interrupt
182  * context, use usb_submit_urb() If a thread in your driver uses this call,
183  * make sure your disconnect() method can wait for it to complete. Since you
184  * don't have a handle on the URB used, you can't cancel the request.
185  *
186  * Return:
187  * If successful, 0. Otherwise a negative error number. The number of actual
188  * bytes transferred will be stored in the @actual_length parameter.
189  */
190 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
191 		      void *data, int len, int *actual_length, int timeout)
192 {
193 	return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
194 }
195 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
196 
197 /**
198  * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
199  * @usb_dev: pointer to the usb device to send the message to
200  * @pipe: endpoint "pipe" to send the message to
201  * @data: pointer to the data to send
202  * @len: length in bytes of the data to send
203  * @actual_length: pointer to a location to put the actual length transferred
204  *	in bytes
205  * @timeout: time in msecs to wait for the message to complete before
206  *	timing out (if 0 the wait is forever)
207  *
208  * Context: !in_interrupt ()
209  *
210  * This function sends a simple bulk message to a specified endpoint
211  * and waits for the message to complete, or timeout.
212  *
213  * Don't use this function from within an interrupt context. If you need
214  * an asynchronous message, or need to send a message from within interrupt
215  * context, use usb_submit_urb() If a thread in your driver uses this call,
216  * make sure your disconnect() method can wait for it to complete. Since you
217  * don't have a handle on the URB used, you can't cancel the request.
218  *
219  * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
220  * users are forced to abuse this routine by using it to submit URBs for
221  * interrupt endpoints.  We will take the liberty of creating an interrupt URB
222  * (with the default interval) if the target is an interrupt endpoint.
223  *
224  * Return:
225  * If successful, 0. Otherwise a negative error number. The number of actual
226  * bytes transferred will be stored in the @actual_length parameter.
227  *
228  */
229 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
230 		 void *data, int len, int *actual_length, int timeout)
231 {
232 	struct urb *urb;
233 	struct usb_host_endpoint *ep;
234 
235 	ep = usb_pipe_endpoint(usb_dev, pipe);
236 	if (!ep || len < 0)
237 		return -EINVAL;
238 
239 	urb = usb_alloc_urb(0, GFP_KERNEL);
240 	if (!urb)
241 		return -ENOMEM;
242 
243 	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
244 			USB_ENDPOINT_XFER_INT) {
245 		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
246 		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
247 				usb_api_blocking_completion, NULL,
248 				ep->desc.bInterval);
249 	} else
250 		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
251 				usb_api_blocking_completion, NULL);
252 
253 	return usb_start_wait_urb(urb, timeout, actual_length);
254 }
255 EXPORT_SYMBOL_GPL(usb_bulk_msg);
256 
257 /*-------------------------------------------------------------------*/
258 
259 static void sg_clean(struct usb_sg_request *io)
260 {
261 	if (io->urbs) {
262 		while (io->entries--)
263 			usb_free_urb(io->urbs[io->entries]);
264 		kfree(io->urbs);
265 		io->urbs = NULL;
266 	}
267 	io->dev = NULL;
268 }
269 
270 static void sg_complete(struct urb *urb)
271 {
272 	unsigned long flags;
273 	struct usb_sg_request *io = urb->context;
274 	int status = urb->status;
275 
276 	spin_lock_irqsave(&io->lock, flags);
277 
278 	/* In 2.5 we require hcds' endpoint queues not to progress after fault
279 	 * reports, until the completion callback (this!) returns.  That lets
280 	 * device driver code (like this routine) unlink queued urbs first,
281 	 * if it needs to, since the HC won't work on them at all.  So it's
282 	 * not possible for page N+1 to overwrite page N, and so on.
283 	 *
284 	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
285 	 * complete before the HCD can get requests away from hardware,
286 	 * though never during cleanup after a hard fault.
287 	 */
288 	if (io->status
289 			&& (io->status != -ECONNRESET
290 				|| status != -ECONNRESET)
291 			&& urb->actual_length) {
292 		dev_err(io->dev->bus->controller,
293 			"dev %s ep%d%s scatterlist error %d/%d\n",
294 			io->dev->devpath,
295 			usb_endpoint_num(&urb->ep->desc),
296 			usb_urb_dir_in(urb) ? "in" : "out",
297 			status, io->status);
298 		/* BUG (); */
299 	}
300 
301 	if (io->status == 0 && status && status != -ECONNRESET) {
302 		int i, found, retval;
303 
304 		io->status = status;
305 
306 		/* the previous urbs, and this one, completed already.
307 		 * unlink pending urbs so they won't rx/tx bad data.
308 		 * careful: unlink can sometimes be synchronous...
309 		 */
310 		spin_unlock_irqrestore(&io->lock, flags);
311 		for (i = 0, found = 0; i < io->entries; i++) {
312 			if (!io->urbs[i])
313 				continue;
314 			if (found) {
315 				usb_block_urb(io->urbs[i]);
316 				retval = usb_unlink_urb(io->urbs[i]);
317 				if (retval != -EINPROGRESS &&
318 				    retval != -ENODEV &&
319 				    retval != -EBUSY &&
320 				    retval != -EIDRM)
321 					dev_err(&io->dev->dev,
322 						"%s, unlink --> %d\n",
323 						__func__, retval);
324 			} else if (urb == io->urbs[i])
325 				found = 1;
326 		}
327 		spin_lock_irqsave(&io->lock, flags);
328 	}
329 
330 	/* on the last completion, signal usb_sg_wait() */
331 	io->bytes += urb->actual_length;
332 	io->count--;
333 	if (!io->count)
334 		complete(&io->complete);
335 
336 	spin_unlock_irqrestore(&io->lock, flags);
337 }
338 
339 
340 /**
341  * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
342  * @io: request block being initialized.  until usb_sg_wait() returns,
343  *	treat this as a pointer to an opaque block of memory,
344  * @dev: the usb device that will send or receive the data
345  * @pipe: endpoint "pipe" used to transfer the data
346  * @period: polling rate for interrupt endpoints, in frames or
347  * 	(for high speed endpoints) microframes; ignored for bulk
348  * @sg: scatterlist entries
349  * @nents: how many entries in the scatterlist
350  * @length: how many bytes to send from the scatterlist, or zero to
351  * 	send every byte identified in the list.
352  * @mem_flags: SLAB_* flags affecting memory allocations in this call
353  *
354  * This initializes a scatter/gather request, allocating resources such as
355  * I/O mappings and urb memory (except maybe memory used by USB controller
356  * drivers).
357  *
358  * The request must be issued using usb_sg_wait(), which waits for the I/O to
359  * complete (or to be canceled) and then cleans up all resources allocated by
360  * usb_sg_init().
361  *
362  * The request may be canceled with usb_sg_cancel(), either before or after
363  * usb_sg_wait() is called.
364  *
365  * Return: Zero for success, else a negative errno value.
366  */
367 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
368 		unsigned pipe, unsigned	period, struct scatterlist *sg,
369 		int nents, size_t length, gfp_t mem_flags)
370 {
371 	int i;
372 	int urb_flags;
373 	int use_sg;
374 
375 	if (!io || !dev || !sg
376 			|| usb_pipecontrol(pipe)
377 			|| usb_pipeisoc(pipe)
378 			|| nents <= 0)
379 		return -EINVAL;
380 
381 	spin_lock_init(&io->lock);
382 	io->dev = dev;
383 	io->pipe = pipe;
384 
385 	if (dev->bus->sg_tablesize > 0) {
386 		use_sg = true;
387 		io->entries = 1;
388 	} else {
389 		use_sg = false;
390 		io->entries = nents;
391 	}
392 
393 	/* initialize all the urbs we'll use */
394 	io->urbs = kmalloc_array(io->entries, sizeof(*io->urbs), mem_flags);
395 	if (!io->urbs)
396 		goto nomem;
397 
398 	urb_flags = URB_NO_INTERRUPT;
399 	if (usb_pipein(pipe))
400 		urb_flags |= URB_SHORT_NOT_OK;
401 
402 	for_each_sg(sg, sg, io->entries, i) {
403 		struct urb *urb;
404 		unsigned len;
405 
406 		urb = usb_alloc_urb(0, mem_flags);
407 		if (!urb) {
408 			io->entries = i;
409 			goto nomem;
410 		}
411 		io->urbs[i] = urb;
412 
413 		urb->dev = NULL;
414 		urb->pipe = pipe;
415 		urb->interval = period;
416 		urb->transfer_flags = urb_flags;
417 		urb->complete = sg_complete;
418 		urb->context = io;
419 		urb->sg = sg;
420 
421 		if (use_sg) {
422 			/* There is no single transfer buffer */
423 			urb->transfer_buffer = NULL;
424 			urb->num_sgs = nents;
425 
426 			/* A length of zero means transfer the whole sg list */
427 			len = length;
428 			if (len == 0) {
429 				struct scatterlist	*sg2;
430 				int			j;
431 
432 				for_each_sg(sg, sg2, nents, j)
433 					len += sg2->length;
434 			}
435 		} else {
436 			/*
437 			 * Some systems can't use DMA; they use PIO instead.
438 			 * For their sakes, transfer_buffer is set whenever
439 			 * possible.
440 			 */
441 			if (!PageHighMem(sg_page(sg)))
442 				urb->transfer_buffer = sg_virt(sg);
443 			else
444 				urb->transfer_buffer = NULL;
445 
446 			len = sg->length;
447 			if (length) {
448 				len = min_t(size_t, len, length);
449 				length -= len;
450 				if (length == 0)
451 					io->entries = i + 1;
452 			}
453 		}
454 		urb->transfer_buffer_length = len;
455 	}
456 	io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
457 
458 	/* transaction state */
459 	io->count = io->entries;
460 	io->status = 0;
461 	io->bytes = 0;
462 	init_completion(&io->complete);
463 	return 0;
464 
465 nomem:
466 	sg_clean(io);
467 	return -ENOMEM;
468 }
469 EXPORT_SYMBOL_GPL(usb_sg_init);
470 
471 /**
472  * usb_sg_wait - synchronously execute scatter/gather request
473  * @io: request block handle, as initialized with usb_sg_init().
474  * 	some fields become accessible when this call returns.
475  * Context: !in_interrupt ()
476  *
477  * This function blocks until the specified I/O operation completes.  It
478  * leverages the grouping of the related I/O requests to get good transfer
479  * rates, by queueing the requests.  At higher speeds, such queuing can
480  * significantly improve USB throughput.
481  *
482  * There are three kinds of completion for this function.
483  *
484  * (1) success, where io->status is zero.  The number of io->bytes
485  *     transferred is as requested.
486  * (2) error, where io->status is a negative errno value.  The number
487  *     of io->bytes transferred before the error is usually less
488  *     than requested, and can be nonzero.
489  * (3) cancellation, a type of error with status -ECONNRESET that
490  *     is initiated by usb_sg_cancel().
491  *
492  * When this function returns, all memory allocated through usb_sg_init() or
493  * this call will have been freed.  The request block parameter may still be
494  * passed to usb_sg_cancel(), or it may be freed.  It could also be
495  * reinitialized and then reused.
496  *
497  * Data Transfer Rates:
498  *
499  * Bulk transfers are valid for full or high speed endpoints.
500  * The best full speed data rate is 19 packets of 64 bytes each
501  * per frame, or 1216 bytes per millisecond.
502  * The best high speed data rate is 13 packets of 512 bytes each
503  * per microframe, or 52 KBytes per millisecond.
504  *
505  * The reason to use interrupt transfers through this API would most likely
506  * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
507  * could be transferred.  That capability is less useful for low or full
508  * speed interrupt endpoints, which allow at most one packet per millisecond,
509  * of at most 8 or 64 bytes (respectively).
510  *
511  * It is not necessary to call this function to reserve bandwidth for devices
512  * under an xHCI host controller, as the bandwidth is reserved when the
513  * configuration or interface alt setting is selected.
514  */
515 void usb_sg_wait(struct usb_sg_request *io)
516 {
517 	int i;
518 	int entries = io->entries;
519 
520 	/* queue the urbs.  */
521 	spin_lock_irq(&io->lock);
522 	i = 0;
523 	while (i < entries && !io->status) {
524 		int retval;
525 
526 		io->urbs[i]->dev = io->dev;
527 		spin_unlock_irq(&io->lock);
528 
529 		retval = usb_submit_urb(io->urbs[i], GFP_NOIO);
530 
531 		switch (retval) {
532 			/* maybe we retrying will recover */
533 		case -ENXIO:	/* hc didn't queue this one */
534 		case -EAGAIN:
535 		case -ENOMEM:
536 			retval = 0;
537 			yield();
538 			break;
539 
540 			/* no error? continue immediately.
541 			 *
542 			 * NOTE: to work better with UHCI (4K I/O buffer may
543 			 * need 3K of TDs) it may be good to limit how many
544 			 * URBs are queued at once; N milliseconds?
545 			 */
546 		case 0:
547 			++i;
548 			cpu_relax();
549 			break;
550 
551 			/* fail any uncompleted urbs */
552 		default:
553 			io->urbs[i]->status = retval;
554 			dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
555 				__func__, retval);
556 			usb_sg_cancel(io);
557 		}
558 		spin_lock_irq(&io->lock);
559 		if (retval && (io->status == 0 || io->status == -ECONNRESET))
560 			io->status = retval;
561 	}
562 	io->count -= entries - i;
563 	if (io->count == 0)
564 		complete(&io->complete);
565 	spin_unlock_irq(&io->lock);
566 
567 	/* OK, yes, this could be packaged as non-blocking.
568 	 * So could the submit loop above ... but it's easier to
569 	 * solve neither problem than to solve both!
570 	 */
571 	wait_for_completion(&io->complete);
572 
573 	sg_clean(io);
574 }
575 EXPORT_SYMBOL_GPL(usb_sg_wait);
576 
577 /**
578  * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
579  * @io: request block, initialized with usb_sg_init()
580  *
581  * This stops a request after it has been started by usb_sg_wait().
582  * It can also prevents one initialized by usb_sg_init() from starting,
583  * so that call just frees resources allocated to the request.
584  */
585 void usb_sg_cancel(struct usb_sg_request *io)
586 {
587 	unsigned long flags;
588 	int i, retval;
589 
590 	spin_lock_irqsave(&io->lock, flags);
591 	if (io->status) {
592 		spin_unlock_irqrestore(&io->lock, flags);
593 		return;
594 	}
595 	/* shut everything down */
596 	io->status = -ECONNRESET;
597 	spin_unlock_irqrestore(&io->lock, flags);
598 
599 	for (i = io->entries - 1; i >= 0; --i) {
600 		usb_block_urb(io->urbs[i]);
601 
602 		retval = usb_unlink_urb(io->urbs[i]);
603 		if (retval != -EINPROGRESS
604 		    && retval != -ENODEV
605 		    && retval != -EBUSY
606 		    && retval != -EIDRM)
607 			dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
608 				 __func__, retval);
609 	}
610 }
611 EXPORT_SYMBOL_GPL(usb_sg_cancel);
612 
613 /*-------------------------------------------------------------------*/
614 
615 /**
616  * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
617  * @dev: the device whose descriptor is being retrieved
618  * @type: the descriptor type (USB_DT_*)
619  * @index: the number of the descriptor
620  * @buf: where to put the descriptor
621  * @size: how big is "buf"?
622  * Context: !in_interrupt ()
623  *
624  * Gets a USB descriptor.  Convenience functions exist to simplify
625  * getting some types of descriptors.  Use
626  * usb_get_string() or usb_string() for USB_DT_STRING.
627  * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
628  * are part of the device structure.
629  * In addition to a number of USB-standard descriptors, some
630  * devices also use class-specific or vendor-specific descriptors.
631  *
632  * This call is synchronous, and may not be used in an interrupt context.
633  *
634  * Return: The number of bytes received on success, or else the status code
635  * returned by the underlying usb_control_msg() call.
636  */
637 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
638 		       unsigned char index, void *buf, int size)
639 {
640 	int i;
641 	int result;
642 
643 	memset(buf, 0, size);	/* Make sure we parse really received data */
644 
645 	for (i = 0; i < 3; ++i) {
646 		/* retry on length 0 or error; some devices are flakey */
647 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
648 				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
649 				(type << 8) + index, 0, buf, size,
650 				USB_CTRL_GET_TIMEOUT);
651 		if (result <= 0 && result != -ETIMEDOUT)
652 			continue;
653 		if (result > 1 && ((u8 *)buf)[1] != type) {
654 			result = -ENODATA;
655 			continue;
656 		}
657 		break;
658 	}
659 	return result;
660 }
661 EXPORT_SYMBOL_GPL(usb_get_descriptor);
662 
663 /**
664  * usb_get_string - gets a string descriptor
665  * @dev: the device whose string descriptor is being retrieved
666  * @langid: code for language chosen (from string descriptor zero)
667  * @index: the number of the descriptor
668  * @buf: where to put the string
669  * @size: how big is "buf"?
670  * Context: !in_interrupt ()
671  *
672  * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
673  * in little-endian byte order).
674  * The usb_string() function will often be a convenient way to turn
675  * these strings into kernel-printable form.
676  *
677  * Strings may be referenced in device, configuration, interface, or other
678  * descriptors, and could also be used in vendor-specific ways.
679  *
680  * This call is synchronous, and may not be used in an interrupt context.
681  *
682  * Return: The number of bytes received on success, or else the status code
683  * returned by the underlying usb_control_msg() call.
684  */
685 static int usb_get_string(struct usb_device *dev, unsigned short langid,
686 			  unsigned char index, void *buf, int size)
687 {
688 	int i;
689 	int result;
690 
691 	for (i = 0; i < 3; ++i) {
692 		/* retry on length 0 or stall; some devices are flakey */
693 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
694 			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
695 			(USB_DT_STRING << 8) + index, langid, buf, size,
696 			USB_CTRL_GET_TIMEOUT);
697 		if (result == 0 || result == -EPIPE)
698 			continue;
699 		if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
700 			result = -ENODATA;
701 			continue;
702 		}
703 		break;
704 	}
705 	return result;
706 }
707 
708 static void usb_try_string_workarounds(unsigned char *buf, int *length)
709 {
710 	int newlength, oldlength = *length;
711 
712 	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
713 		if (!isprint(buf[newlength]) || buf[newlength + 1])
714 			break;
715 
716 	if (newlength > 2) {
717 		buf[0] = newlength;
718 		*length = newlength;
719 	}
720 }
721 
722 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
723 			  unsigned int index, unsigned char *buf)
724 {
725 	int rc;
726 
727 	/* Try to read the string descriptor by asking for the maximum
728 	 * possible number of bytes */
729 	if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
730 		rc = -EIO;
731 	else
732 		rc = usb_get_string(dev, langid, index, buf, 255);
733 
734 	/* If that failed try to read the descriptor length, then
735 	 * ask for just that many bytes */
736 	if (rc < 2) {
737 		rc = usb_get_string(dev, langid, index, buf, 2);
738 		if (rc == 2)
739 			rc = usb_get_string(dev, langid, index, buf, buf[0]);
740 	}
741 
742 	if (rc >= 2) {
743 		if (!buf[0] && !buf[1])
744 			usb_try_string_workarounds(buf, &rc);
745 
746 		/* There might be extra junk at the end of the descriptor */
747 		if (buf[0] < rc)
748 			rc = buf[0];
749 
750 		rc = rc - (rc & 1); /* force a multiple of two */
751 	}
752 
753 	if (rc < 2)
754 		rc = (rc < 0 ? rc : -EINVAL);
755 
756 	return rc;
757 }
758 
759 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
760 {
761 	int err;
762 
763 	if (dev->have_langid)
764 		return 0;
765 
766 	if (dev->string_langid < 0)
767 		return -EPIPE;
768 
769 	err = usb_string_sub(dev, 0, 0, tbuf);
770 
771 	/* If the string was reported but is malformed, default to english
772 	 * (0x0409) */
773 	if (err == -ENODATA || (err > 0 && err < 4)) {
774 		dev->string_langid = 0x0409;
775 		dev->have_langid = 1;
776 		dev_err(&dev->dev,
777 			"language id specifier not provided by device, defaulting to English\n");
778 		return 0;
779 	}
780 
781 	/* In case of all other errors, we assume the device is not able to
782 	 * deal with strings at all. Set string_langid to -1 in order to
783 	 * prevent any string to be retrieved from the device */
784 	if (err < 0) {
785 		dev_info(&dev->dev, "string descriptor 0 read error: %d\n",
786 					err);
787 		dev->string_langid = -1;
788 		return -EPIPE;
789 	}
790 
791 	/* always use the first langid listed */
792 	dev->string_langid = tbuf[2] | (tbuf[3] << 8);
793 	dev->have_langid = 1;
794 	dev_dbg(&dev->dev, "default language 0x%04x\n",
795 				dev->string_langid);
796 	return 0;
797 }
798 
799 /**
800  * usb_string - returns UTF-8 version of a string descriptor
801  * @dev: the device whose string descriptor is being retrieved
802  * @index: the number of the descriptor
803  * @buf: where to put the string
804  * @size: how big is "buf"?
805  * Context: !in_interrupt ()
806  *
807  * This converts the UTF-16LE encoded strings returned by devices, from
808  * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
809  * that are more usable in most kernel contexts.  Note that this function
810  * chooses strings in the first language supported by the device.
811  *
812  * This call is synchronous, and may not be used in an interrupt context.
813  *
814  * Return: length of the string (>= 0) or usb_control_msg status (< 0).
815  */
816 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
817 {
818 	unsigned char *tbuf;
819 	int err;
820 
821 	if (dev->state == USB_STATE_SUSPENDED)
822 		return -EHOSTUNREACH;
823 	if (size <= 0 || !buf || !index)
824 		return -EINVAL;
825 	buf[0] = 0;
826 	tbuf = kmalloc(256, GFP_NOIO);
827 	if (!tbuf)
828 		return -ENOMEM;
829 
830 	err = usb_get_langid(dev, tbuf);
831 	if (err < 0)
832 		goto errout;
833 
834 	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
835 	if (err < 0)
836 		goto errout;
837 
838 	size--;		/* leave room for trailing NULL char in output buffer */
839 	err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
840 			UTF16_LITTLE_ENDIAN, buf, size);
841 	buf[err] = 0;
842 
843 	if (tbuf[1] != USB_DT_STRING)
844 		dev_dbg(&dev->dev,
845 			"wrong descriptor type %02x for string %d (\"%s\")\n",
846 			tbuf[1], index, buf);
847 
848  errout:
849 	kfree(tbuf);
850 	return err;
851 }
852 EXPORT_SYMBOL_GPL(usb_string);
853 
854 /* one UTF-8-encoded 16-bit character has at most three bytes */
855 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
856 
857 /**
858  * usb_cache_string - read a string descriptor and cache it for later use
859  * @udev: the device whose string descriptor is being read
860  * @index: the descriptor index
861  *
862  * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
863  * or %NULL if the index is 0 or the string could not be read.
864  */
865 char *usb_cache_string(struct usb_device *udev, int index)
866 {
867 	char *buf;
868 	char *smallbuf = NULL;
869 	int len;
870 
871 	if (index <= 0)
872 		return NULL;
873 
874 	buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
875 	if (buf) {
876 		len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
877 		if (len > 0) {
878 			smallbuf = kmalloc(++len, GFP_NOIO);
879 			if (!smallbuf)
880 				return buf;
881 			memcpy(smallbuf, buf, len);
882 		}
883 		kfree(buf);
884 	}
885 	return smallbuf;
886 }
887 
888 /*
889  * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
890  * @dev: the device whose device descriptor is being updated
891  * @size: how much of the descriptor to read
892  * Context: !in_interrupt ()
893  *
894  * Updates the copy of the device descriptor stored in the device structure,
895  * which dedicates space for this purpose.
896  *
897  * Not exported, only for use by the core.  If drivers really want to read
898  * the device descriptor directly, they can call usb_get_descriptor() with
899  * type = USB_DT_DEVICE and index = 0.
900  *
901  * This call is synchronous, and may not be used in an interrupt context.
902  *
903  * Return: The number of bytes received on success, or else the status code
904  * returned by the underlying usb_control_msg() call.
905  */
906 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
907 {
908 	struct usb_device_descriptor *desc;
909 	int ret;
910 
911 	if (size > sizeof(*desc))
912 		return -EINVAL;
913 	desc = kmalloc(sizeof(*desc), GFP_NOIO);
914 	if (!desc)
915 		return -ENOMEM;
916 
917 	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
918 	if (ret >= 0)
919 		memcpy(&dev->descriptor, desc, size);
920 	kfree(desc);
921 	return ret;
922 }
923 
924 /*
925  * usb_set_isoch_delay - informs the device of the packet transmit delay
926  * @dev: the device whose delay is to be informed
927  * Context: !in_interrupt()
928  *
929  * Since this is an optional request, we don't bother if it fails.
930  */
931 int usb_set_isoch_delay(struct usb_device *dev)
932 {
933 	/* skip hub devices */
934 	if (dev->descriptor.bDeviceClass == USB_CLASS_HUB)
935 		return 0;
936 
937 	/* skip non-SS/non-SSP devices */
938 	if (dev->speed < USB_SPEED_SUPER)
939 		return 0;
940 
941 	return usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
942 			USB_REQ_SET_ISOCH_DELAY,
943 			USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE,
944 			dev->hub_delay, 0, NULL, 0,
945 			USB_CTRL_SET_TIMEOUT);
946 }
947 
948 /**
949  * usb_get_status - issues a GET_STATUS call
950  * @dev: the device whose status is being checked
951  * @recip: USB_RECIP_*; for device, interface, or endpoint
952  * @type: USB_STATUS_TYPE_*; for standard or PTM status types
953  * @target: zero (for device), else interface or endpoint number
954  * @data: pointer to two bytes of bitmap data
955  * Context: !in_interrupt ()
956  *
957  * Returns device, interface, or endpoint status.  Normally only of
958  * interest to see if the device is self powered, or has enabled the
959  * remote wakeup facility; or whether a bulk or interrupt endpoint
960  * is halted ("stalled").
961  *
962  * Bits in these status bitmaps are set using the SET_FEATURE request,
963  * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
964  * function should be used to clear halt ("stall") status.
965  *
966  * This call is synchronous, and may not be used in an interrupt context.
967  *
968  * Returns 0 and the status value in *@data (in host byte order) on success,
969  * or else the status code from the underlying usb_control_msg() call.
970  */
971 int usb_get_status(struct usb_device *dev, int recip, int type, int target,
972 		void *data)
973 {
974 	int ret;
975 	void *status;
976 	int length;
977 
978 	switch (type) {
979 	case USB_STATUS_TYPE_STANDARD:
980 		length = 2;
981 		break;
982 	case USB_STATUS_TYPE_PTM:
983 		if (recip != USB_RECIP_DEVICE)
984 			return -EINVAL;
985 
986 		length = 4;
987 		break;
988 	default:
989 		return -EINVAL;
990 	}
991 
992 	status =  kmalloc(length, GFP_KERNEL);
993 	if (!status)
994 		return -ENOMEM;
995 
996 	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
997 		USB_REQ_GET_STATUS, USB_DIR_IN | recip, USB_STATUS_TYPE_STANDARD,
998 		target, status, length, USB_CTRL_GET_TIMEOUT);
999 
1000 	switch (ret) {
1001 	case 4:
1002 		if (type != USB_STATUS_TYPE_PTM) {
1003 			ret = -EIO;
1004 			break;
1005 		}
1006 
1007 		*(u32 *) data = le32_to_cpu(*(__le32 *) status);
1008 		ret = 0;
1009 		break;
1010 	case 2:
1011 		if (type != USB_STATUS_TYPE_STANDARD) {
1012 			ret = -EIO;
1013 			break;
1014 		}
1015 
1016 		*(u16 *) data = le16_to_cpu(*(__le16 *) status);
1017 		ret = 0;
1018 		break;
1019 	default:
1020 		ret = -EIO;
1021 	}
1022 
1023 	kfree(status);
1024 	return ret;
1025 }
1026 EXPORT_SYMBOL_GPL(usb_get_status);
1027 
1028 /**
1029  * usb_clear_halt - tells device to clear endpoint halt/stall condition
1030  * @dev: device whose endpoint is halted
1031  * @pipe: endpoint "pipe" being cleared
1032  * Context: !in_interrupt ()
1033  *
1034  * This is used to clear halt conditions for bulk and interrupt endpoints,
1035  * as reported by URB completion status.  Endpoints that are halted are
1036  * sometimes referred to as being "stalled".  Such endpoints are unable
1037  * to transmit or receive data until the halt status is cleared.  Any URBs
1038  * queued for such an endpoint should normally be unlinked by the driver
1039  * before clearing the halt condition, as described in sections 5.7.5
1040  * and 5.8.5 of the USB 2.0 spec.
1041  *
1042  * Note that control and isochronous endpoints don't halt, although control
1043  * endpoints report "protocol stall" (for unsupported requests) using the
1044  * same status code used to report a true stall.
1045  *
1046  * This call is synchronous, and may not be used in an interrupt context.
1047  *
1048  * Return: Zero on success, or else the status code returned by the
1049  * underlying usb_control_msg() call.
1050  */
1051 int usb_clear_halt(struct usb_device *dev, int pipe)
1052 {
1053 	int result;
1054 	int endp = usb_pipeendpoint(pipe);
1055 
1056 	if (usb_pipein(pipe))
1057 		endp |= USB_DIR_IN;
1058 
1059 	/* we don't care if it wasn't halted first. in fact some devices
1060 	 * (like some ibmcam model 1 units) seem to expect hosts to make
1061 	 * this request for iso endpoints, which can't halt!
1062 	 */
1063 	result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1064 		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1065 		USB_ENDPOINT_HALT, endp, NULL, 0,
1066 		USB_CTRL_SET_TIMEOUT);
1067 
1068 	/* don't un-halt or force to DATA0 except on success */
1069 	if (result < 0)
1070 		return result;
1071 
1072 	/* NOTE:  seems like Microsoft and Apple don't bother verifying
1073 	 * the clear "took", so some devices could lock up if you check...
1074 	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
1075 	 *
1076 	 * NOTE:  make sure the logic here doesn't diverge much from
1077 	 * the copy in usb-storage, for as long as we need two copies.
1078 	 */
1079 
1080 	usb_reset_endpoint(dev, endp);
1081 
1082 	return 0;
1083 }
1084 EXPORT_SYMBOL_GPL(usb_clear_halt);
1085 
1086 static int create_intf_ep_devs(struct usb_interface *intf)
1087 {
1088 	struct usb_device *udev = interface_to_usbdev(intf);
1089 	struct usb_host_interface *alt = intf->cur_altsetting;
1090 	int i;
1091 
1092 	if (intf->ep_devs_created || intf->unregistering)
1093 		return 0;
1094 
1095 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1096 		(void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1097 	intf->ep_devs_created = 1;
1098 	return 0;
1099 }
1100 
1101 static void remove_intf_ep_devs(struct usb_interface *intf)
1102 {
1103 	struct usb_host_interface *alt = intf->cur_altsetting;
1104 	int i;
1105 
1106 	if (!intf->ep_devs_created)
1107 		return;
1108 
1109 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1110 		usb_remove_ep_devs(&alt->endpoint[i]);
1111 	intf->ep_devs_created = 0;
1112 }
1113 
1114 /**
1115  * usb_disable_endpoint -- Disable an endpoint by address
1116  * @dev: the device whose endpoint is being disabled
1117  * @epaddr: the endpoint's address.  Endpoint number for output,
1118  *	endpoint number + USB_DIR_IN for input
1119  * @reset_hardware: flag to erase any endpoint state stored in the
1120  *	controller hardware
1121  *
1122  * Disables the endpoint for URB submission and nukes all pending URBs.
1123  * If @reset_hardware is set then also deallocates hcd/hardware state
1124  * for the endpoint.
1125  */
1126 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1127 		bool reset_hardware)
1128 {
1129 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1130 	struct usb_host_endpoint *ep;
1131 
1132 	if (!dev)
1133 		return;
1134 
1135 	if (usb_endpoint_out(epaddr)) {
1136 		ep = dev->ep_out[epnum];
1137 		if (reset_hardware)
1138 			dev->ep_out[epnum] = NULL;
1139 	} else {
1140 		ep = dev->ep_in[epnum];
1141 		if (reset_hardware)
1142 			dev->ep_in[epnum] = NULL;
1143 	}
1144 	if (ep) {
1145 		ep->enabled = 0;
1146 		usb_hcd_flush_endpoint(dev, ep);
1147 		if (reset_hardware)
1148 			usb_hcd_disable_endpoint(dev, ep);
1149 	}
1150 }
1151 
1152 /**
1153  * usb_reset_endpoint - Reset an endpoint's state.
1154  * @dev: the device whose endpoint is to be reset
1155  * @epaddr: the endpoint's address.  Endpoint number for output,
1156  *	endpoint number + USB_DIR_IN for input
1157  *
1158  * Resets any host-side endpoint state such as the toggle bit,
1159  * sequence number or current window.
1160  */
1161 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1162 {
1163 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1164 	struct usb_host_endpoint *ep;
1165 
1166 	if (usb_endpoint_out(epaddr))
1167 		ep = dev->ep_out[epnum];
1168 	else
1169 		ep = dev->ep_in[epnum];
1170 	if (ep)
1171 		usb_hcd_reset_endpoint(dev, ep);
1172 }
1173 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1174 
1175 
1176 /**
1177  * usb_disable_interface -- Disable all endpoints for an interface
1178  * @dev: the device whose interface is being disabled
1179  * @intf: pointer to the interface descriptor
1180  * @reset_hardware: flag to erase any endpoint state stored in the
1181  *	controller hardware
1182  *
1183  * Disables all the endpoints for the interface's current altsetting.
1184  */
1185 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1186 		bool reset_hardware)
1187 {
1188 	struct usb_host_interface *alt = intf->cur_altsetting;
1189 	int i;
1190 
1191 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1192 		usb_disable_endpoint(dev,
1193 				alt->endpoint[i].desc.bEndpointAddress,
1194 				reset_hardware);
1195 	}
1196 }
1197 
1198 /**
1199  * usb_disable_device - Disable all the endpoints for a USB device
1200  * @dev: the device whose endpoints are being disabled
1201  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1202  *
1203  * Disables all the device's endpoints, potentially including endpoint 0.
1204  * Deallocates hcd/hardware state for the endpoints (nuking all or most
1205  * pending urbs) and usbcore state for the interfaces, so that usbcore
1206  * must usb_set_configuration() before any interfaces could be used.
1207  */
1208 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1209 {
1210 	int i;
1211 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1212 
1213 	/* getting rid of interfaces will disconnect
1214 	 * any drivers bound to them (a key side effect)
1215 	 */
1216 	if (dev->actconfig) {
1217 		/*
1218 		 * FIXME: In order to avoid self-deadlock involving the
1219 		 * bandwidth_mutex, we have to mark all the interfaces
1220 		 * before unregistering any of them.
1221 		 */
1222 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1223 			dev->actconfig->interface[i]->unregistering = 1;
1224 
1225 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1226 			struct usb_interface	*interface;
1227 
1228 			/* remove this interface if it has been registered */
1229 			interface = dev->actconfig->interface[i];
1230 			if (!device_is_registered(&interface->dev))
1231 				continue;
1232 			dev_dbg(&dev->dev, "unregistering interface %s\n",
1233 				dev_name(&interface->dev));
1234 			remove_intf_ep_devs(interface);
1235 			device_del(&interface->dev);
1236 		}
1237 
1238 		/* Now that the interfaces are unbound, nobody should
1239 		 * try to access them.
1240 		 */
1241 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1242 			put_device(&dev->actconfig->interface[i]->dev);
1243 			dev->actconfig->interface[i] = NULL;
1244 		}
1245 
1246 		if (dev->usb2_hw_lpm_enabled == 1)
1247 			usb_set_usb2_hardware_lpm(dev, 0);
1248 		usb_unlocked_disable_lpm(dev);
1249 		usb_disable_ltm(dev);
1250 
1251 		dev->actconfig = NULL;
1252 		if (dev->state == USB_STATE_CONFIGURED)
1253 			usb_set_device_state(dev, USB_STATE_ADDRESS);
1254 	}
1255 
1256 	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1257 		skip_ep0 ? "non-ep0" : "all");
1258 	if (hcd->driver->check_bandwidth) {
1259 		/* First pass: Cancel URBs, leave endpoint pointers intact. */
1260 		for (i = skip_ep0; i < 16; ++i) {
1261 			usb_disable_endpoint(dev, i, false);
1262 			usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1263 		}
1264 		/* Remove endpoints from the host controller internal state */
1265 		mutex_lock(hcd->bandwidth_mutex);
1266 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1267 		mutex_unlock(hcd->bandwidth_mutex);
1268 		/* Second pass: remove endpoint pointers */
1269 	}
1270 	for (i = skip_ep0; i < 16; ++i) {
1271 		usb_disable_endpoint(dev, i, true);
1272 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1273 	}
1274 }
1275 
1276 /**
1277  * usb_enable_endpoint - Enable an endpoint for USB communications
1278  * @dev: the device whose interface is being enabled
1279  * @ep: the endpoint
1280  * @reset_ep: flag to reset the endpoint state
1281  *
1282  * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1283  * For control endpoints, both the input and output sides are handled.
1284  */
1285 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1286 		bool reset_ep)
1287 {
1288 	int epnum = usb_endpoint_num(&ep->desc);
1289 	int is_out = usb_endpoint_dir_out(&ep->desc);
1290 	int is_control = usb_endpoint_xfer_control(&ep->desc);
1291 
1292 	if (reset_ep)
1293 		usb_hcd_reset_endpoint(dev, ep);
1294 	if (is_out || is_control)
1295 		dev->ep_out[epnum] = ep;
1296 	if (!is_out || is_control)
1297 		dev->ep_in[epnum] = ep;
1298 	ep->enabled = 1;
1299 }
1300 
1301 /**
1302  * usb_enable_interface - Enable all the endpoints for an interface
1303  * @dev: the device whose interface is being enabled
1304  * @intf: pointer to the interface descriptor
1305  * @reset_eps: flag to reset the endpoints' state
1306  *
1307  * Enables all the endpoints for the interface's current altsetting.
1308  */
1309 void usb_enable_interface(struct usb_device *dev,
1310 		struct usb_interface *intf, bool reset_eps)
1311 {
1312 	struct usb_host_interface *alt = intf->cur_altsetting;
1313 	int i;
1314 
1315 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1316 		usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1317 }
1318 
1319 /**
1320  * usb_set_interface - Makes a particular alternate setting be current
1321  * @dev: the device whose interface is being updated
1322  * @interface: the interface being updated
1323  * @alternate: the setting being chosen.
1324  * Context: !in_interrupt ()
1325  *
1326  * This is used to enable data transfers on interfaces that may not
1327  * be enabled by default.  Not all devices support such configurability.
1328  * Only the driver bound to an interface may change its setting.
1329  *
1330  * Within any given configuration, each interface may have several
1331  * alternative settings.  These are often used to control levels of
1332  * bandwidth consumption.  For example, the default setting for a high
1333  * speed interrupt endpoint may not send more than 64 bytes per microframe,
1334  * while interrupt transfers of up to 3KBytes per microframe are legal.
1335  * Also, isochronous endpoints may never be part of an
1336  * interface's default setting.  To access such bandwidth, alternate
1337  * interface settings must be made current.
1338  *
1339  * Note that in the Linux USB subsystem, bandwidth associated with
1340  * an endpoint in a given alternate setting is not reserved until an URB
1341  * is submitted that needs that bandwidth.  Some other operating systems
1342  * allocate bandwidth early, when a configuration is chosen.
1343  *
1344  * xHCI reserves bandwidth and configures the alternate setting in
1345  * usb_hcd_alloc_bandwidth(). If it fails the original interface altsetting
1346  * may be disabled. Drivers cannot rely on any particular alternate
1347  * setting being in effect after a failure.
1348  *
1349  * This call is synchronous, and may not be used in an interrupt context.
1350  * Also, drivers must not change altsettings while urbs are scheduled for
1351  * endpoints in that interface; all such urbs must first be completed
1352  * (perhaps forced by unlinking).
1353  *
1354  * Return: Zero on success, or else the status code returned by the
1355  * underlying usb_control_msg() call.
1356  */
1357 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1358 {
1359 	struct usb_interface *iface;
1360 	struct usb_host_interface *alt;
1361 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1362 	int i, ret, manual = 0;
1363 	unsigned int epaddr;
1364 	unsigned int pipe;
1365 
1366 	if (dev->state == USB_STATE_SUSPENDED)
1367 		return -EHOSTUNREACH;
1368 
1369 	iface = usb_ifnum_to_if(dev, interface);
1370 	if (!iface) {
1371 		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1372 			interface);
1373 		return -EINVAL;
1374 	}
1375 	if (iface->unregistering)
1376 		return -ENODEV;
1377 
1378 	alt = usb_altnum_to_altsetting(iface, alternate);
1379 	if (!alt) {
1380 		dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1381 			 alternate);
1382 		return -EINVAL;
1383 	}
1384 	/*
1385 	 * usb3 hosts configure the interface in usb_hcd_alloc_bandwidth,
1386 	 * including freeing dropped endpoint ring buffers.
1387 	 * Make sure the interface endpoints are flushed before that
1388 	 */
1389 	usb_disable_interface(dev, iface, false);
1390 
1391 	/* Make sure we have enough bandwidth for this alternate interface.
1392 	 * Remove the current alt setting and add the new alt setting.
1393 	 */
1394 	mutex_lock(hcd->bandwidth_mutex);
1395 	/* Disable LPM, and re-enable it once the new alt setting is installed,
1396 	 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1397 	 */
1398 	if (usb_disable_lpm(dev)) {
1399 		dev_err(&iface->dev, "%s Failed to disable LPM\n", __func__);
1400 		mutex_unlock(hcd->bandwidth_mutex);
1401 		return -ENOMEM;
1402 	}
1403 	/* Changing alt-setting also frees any allocated streams */
1404 	for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1405 		iface->cur_altsetting->endpoint[i].streams = 0;
1406 
1407 	ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1408 	if (ret < 0) {
1409 		dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1410 				alternate);
1411 		usb_enable_lpm(dev);
1412 		mutex_unlock(hcd->bandwidth_mutex);
1413 		return ret;
1414 	}
1415 
1416 	if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1417 		ret = -EPIPE;
1418 	else
1419 		ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1420 				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1421 				   alternate, interface, NULL, 0, 5000);
1422 
1423 	/* 9.4.10 says devices don't need this and are free to STALL the
1424 	 * request if the interface only has one alternate setting.
1425 	 */
1426 	if (ret == -EPIPE && iface->num_altsetting == 1) {
1427 		dev_dbg(&dev->dev,
1428 			"manual set_interface for iface %d, alt %d\n",
1429 			interface, alternate);
1430 		manual = 1;
1431 	} else if (ret < 0) {
1432 		/* Re-instate the old alt setting */
1433 		usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1434 		usb_enable_lpm(dev);
1435 		mutex_unlock(hcd->bandwidth_mutex);
1436 		return ret;
1437 	}
1438 	mutex_unlock(hcd->bandwidth_mutex);
1439 
1440 	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1441 	 * when they implement async or easily-killable versions of this or
1442 	 * other "should-be-internal" functions (like clear_halt).
1443 	 * should hcd+usbcore postprocess control requests?
1444 	 */
1445 
1446 	/* prevent submissions using previous endpoint settings */
1447 	if (iface->cur_altsetting != alt) {
1448 		remove_intf_ep_devs(iface);
1449 		usb_remove_sysfs_intf_files(iface);
1450 	}
1451 	usb_disable_interface(dev, iface, true);
1452 
1453 	iface->cur_altsetting = alt;
1454 
1455 	/* Now that the interface is installed, re-enable LPM. */
1456 	usb_unlocked_enable_lpm(dev);
1457 
1458 	/* If the interface only has one altsetting and the device didn't
1459 	 * accept the request, we attempt to carry out the equivalent action
1460 	 * by manually clearing the HALT feature for each endpoint in the
1461 	 * new altsetting.
1462 	 */
1463 	if (manual) {
1464 		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1465 			epaddr = alt->endpoint[i].desc.bEndpointAddress;
1466 			pipe = __create_pipe(dev,
1467 					USB_ENDPOINT_NUMBER_MASK & epaddr) |
1468 					(usb_endpoint_out(epaddr) ?
1469 					USB_DIR_OUT : USB_DIR_IN);
1470 
1471 			usb_clear_halt(dev, pipe);
1472 		}
1473 	}
1474 
1475 	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1476 	 *
1477 	 * Note:
1478 	 * Despite EP0 is always present in all interfaces/AS, the list of
1479 	 * endpoints from the descriptor does not contain EP0. Due to its
1480 	 * omnipresence one might expect EP0 being considered "affected" by
1481 	 * any SetInterface request and hence assume toggles need to be reset.
1482 	 * However, EP0 toggles are re-synced for every individual transfer
1483 	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1484 	 * (Likewise, EP0 never "halts" on well designed devices.)
1485 	 */
1486 	usb_enable_interface(dev, iface, true);
1487 	if (device_is_registered(&iface->dev)) {
1488 		usb_create_sysfs_intf_files(iface);
1489 		create_intf_ep_devs(iface);
1490 	}
1491 	return 0;
1492 }
1493 EXPORT_SYMBOL_GPL(usb_set_interface);
1494 
1495 /**
1496  * usb_reset_configuration - lightweight device reset
1497  * @dev: the device whose configuration is being reset
1498  *
1499  * This issues a standard SET_CONFIGURATION request to the device using
1500  * the current configuration.  The effect is to reset most USB-related
1501  * state in the device, including interface altsettings (reset to zero),
1502  * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1503  * endpoints).  Other usbcore state is unchanged, including bindings of
1504  * usb device drivers to interfaces.
1505  *
1506  * Because this affects multiple interfaces, avoid using this with composite
1507  * (multi-interface) devices.  Instead, the driver for each interface may
1508  * use usb_set_interface() on the interfaces it claims.  Be careful though;
1509  * some devices don't support the SET_INTERFACE request, and others won't
1510  * reset all the interface state (notably endpoint state).  Resetting the whole
1511  * configuration would affect other drivers' interfaces.
1512  *
1513  * The caller must own the device lock.
1514  *
1515  * Return: Zero on success, else a negative error code.
1516  */
1517 int usb_reset_configuration(struct usb_device *dev)
1518 {
1519 	int			i, retval;
1520 	struct usb_host_config	*config;
1521 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1522 
1523 	if (dev->state == USB_STATE_SUSPENDED)
1524 		return -EHOSTUNREACH;
1525 
1526 	/* caller must have locked the device and must own
1527 	 * the usb bus readlock (so driver bindings are stable);
1528 	 * calls during probe() are fine
1529 	 */
1530 
1531 	for (i = 1; i < 16; ++i) {
1532 		usb_disable_endpoint(dev, i, true);
1533 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1534 	}
1535 
1536 	config = dev->actconfig;
1537 	retval = 0;
1538 	mutex_lock(hcd->bandwidth_mutex);
1539 	/* Disable LPM, and re-enable it once the configuration is reset, so
1540 	 * that the xHCI driver can recalculate the U1/U2 timeouts.
1541 	 */
1542 	if (usb_disable_lpm(dev)) {
1543 		dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1544 		mutex_unlock(hcd->bandwidth_mutex);
1545 		return -ENOMEM;
1546 	}
1547 	/* Make sure we have enough bandwidth for each alternate setting 0 */
1548 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1549 		struct usb_interface *intf = config->interface[i];
1550 		struct usb_host_interface *alt;
1551 
1552 		alt = usb_altnum_to_altsetting(intf, 0);
1553 		if (!alt)
1554 			alt = &intf->altsetting[0];
1555 		if (alt != intf->cur_altsetting)
1556 			retval = usb_hcd_alloc_bandwidth(dev, NULL,
1557 					intf->cur_altsetting, alt);
1558 		if (retval < 0)
1559 			break;
1560 	}
1561 	/* If not, reinstate the old alternate settings */
1562 	if (retval < 0) {
1563 reset_old_alts:
1564 		for (i--; i >= 0; i--) {
1565 			struct usb_interface *intf = config->interface[i];
1566 			struct usb_host_interface *alt;
1567 
1568 			alt = usb_altnum_to_altsetting(intf, 0);
1569 			if (!alt)
1570 				alt = &intf->altsetting[0];
1571 			if (alt != intf->cur_altsetting)
1572 				usb_hcd_alloc_bandwidth(dev, NULL,
1573 						alt, intf->cur_altsetting);
1574 		}
1575 		usb_enable_lpm(dev);
1576 		mutex_unlock(hcd->bandwidth_mutex);
1577 		return retval;
1578 	}
1579 	retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1580 			USB_REQ_SET_CONFIGURATION, 0,
1581 			config->desc.bConfigurationValue, 0,
1582 			NULL, 0, USB_CTRL_SET_TIMEOUT);
1583 	if (retval < 0)
1584 		goto reset_old_alts;
1585 	mutex_unlock(hcd->bandwidth_mutex);
1586 
1587 	/* re-init hc/hcd interface/endpoint state */
1588 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1589 		struct usb_interface *intf = config->interface[i];
1590 		struct usb_host_interface *alt;
1591 
1592 		alt = usb_altnum_to_altsetting(intf, 0);
1593 
1594 		/* No altsetting 0?  We'll assume the first altsetting.
1595 		 * We could use a GetInterface call, but if a device is
1596 		 * so non-compliant that it doesn't have altsetting 0
1597 		 * then I wouldn't trust its reply anyway.
1598 		 */
1599 		if (!alt)
1600 			alt = &intf->altsetting[0];
1601 
1602 		if (alt != intf->cur_altsetting) {
1603 			remove_intf_ep_devs(intf);
1604 			usb_remove_sysfs_intf_files(intf);
1605 		}
1606 		intf->cur_altsetting = alt;
1607 		usb_enable_interface(dev, intf, true);
1608 		if (device_is_registered(&intf->dev)) {
1609 			usb_create_sysfs_intf_files(intf);
1610 			create_intf_ep_devs(intf);
1611 		}
1612 	}
1613 	/* Now that the interfaces are installed, re-enable LPM. */
1614 	usb_unlocked_enable_lpm(dev);
1615 	return 0;
1616 }
1617 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1618 
1619 static void usb_release_interface(struct device *dev)
1620 {
1621 	struct usb_interface *intf = to_usb_interface(dev);
1622 	struct usb_interface_cache *intfc =
1623 			altsetting_to_usb_interface_cache(intf->altsetting);
1624 
1625 	kref_put(&intfc->ref, usb_release_interface_cache);
1626 	usb_put_dev(interface_to_usbdev(intf));
1627 	of_node_put(dev->of_node);
1628 	kfree(intf);
1629 }
1630 
1631 /*
1632  * usb_deauthorize_interface - deauthorize an USB interface
1633  *
1634  * @intf: USB interface structure
1635  */
1636 void usb_deauthorize_interface(struct usb_interface *intf)
1637 {
1638 	struct device *dev = &intf->dev;
1639 
1640 	device_lock(dev->parent);
1641 
1642 	if (intf->authorized) {
1643 		device_lock(dev);
1644 		intf->authorized = 0;
1645 		device_unlock(dev);
1646 
1647 		usb_forced_unbind_intf(intf);
1648 	}
1649 
1650 	device_unlock(dev->parent);
1651 }
1652 
1653 /*
1654  * usb_authorize_interface - authorize an USB interface
1655  *
1656  * @intf: USB interface structure
1657  */
1658 void usb_authorize_interface(struct usb_interface *intf)
1659 {
1660 	struct device *dev = &intf->dev;
1661 
1662 	if (!intf->authorized) {
1663 		device_lock(dev);
1664 		intf->authorized = 1; /* authorize interface */
1665 		device_unlock(dev);
1666 	}
1667 }
1668 
1669 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1670 {
1671 	struct usb_device *usb_dev;
1672 	struct usb_interface *intf;
1673 	struct usb_host_interface *alt;
1674 
1675 	intf = to_usb_interface(dev);
1676 	usb_dev = interface_to_usbdev(intf);
1677 	alt = intf->cur_altsetting;
1678 
1679 	if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1680 		   alt->desc.bInterfaceClass,
1681 		   alt->desc.bInterfaceSubClass,
1682 		   alt->desc.bInterfaceProtocol))
1683 		return -ENOMEM;
1684 
1685 	if (add_uevent_var(env,
1686 		   "MODALIAS=usb:"
1687 		   "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1688 		   le16_to_cpu(usb_dev->descriptor.idVendor),
1689 		   le16_to_cpu(usb_dev->descriptor.idProduct),
1690 		   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1691 		   usb_dev->descriptor.bDeviceClass,
1692 		   usb_dev->descriptor.bDeviceSubClass,
1693 		   usb_dev->descriptor.bDeviceProtocol,
1694 		   alt->desc.bInterfaceClass,
1695 		   alt->desc.bInterfaceSubClass,
1696 		   alt->desc.bInterfaceProtocol,
1697 		   alt->desc.bInterfaceNumber))
1698 		return -ENOMEM;
1699 
1700 	return 0;
1701 }
1702 
1703 struct device_type usb_if_device_type = {
1704 	.name =		"usb_interface",
1705 	.release =	usb_release_interface,
1706 	.uevent =	usb_if_uevent,
1707 };
1708 
1709 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1710 						struct usb_host_config *config,
1711 						u8 inum)
1712 {
1713 	struct usb_interface_assoc_descriptor *retval = NULL;
1714 	struct usb_interface_assoc_descriptor *intf_assoc;
1715 	int first_intf;
1716 	int last_intf;
1717 	int i;
1718 
1719 	for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1720 		intf_assoc = config->intf_assoc[i];
1721 		if (intf_assoc->bInterfaceCount == 0)
1722 			continue;
1723 
1724 		first_intf = intf_assoc->bFirstInterface;
1725 		last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1726 		if (inum >= first_intf && inum <= last_intf) {
1727 			if (!retval)
1728 				retval = intf_assoc;
1729 			else
1730 				dev_err(&dev->dev, "Interface #%d referenced"
1731 					" by multiple IADs\n", inum);
1732 		}
1733 	}
1734 
1735 	return retval;
1736 }
1737 
1738 
1739 /*
1740  * Internal function to queue a device reset
1741  * See usb_queue_reset_device() for more details
1742  */
1743 static void __usb_queue_reset_device(struct work_struct *ws)
1744 {
1745 	int rc;
1746 	struct usb_interface *iface =
1747 		container_of(ws, struct usb_interface, reset_ws);
1748 	struct usb_device *udev = interface_to_usbdev(iface);
1749 
1750 	rc = usb_lock_device_for_reset(udev, iface);
1751 	if (rc >= 0) {
1752 		usb_reset_device(udev);
1753 		usb_unlock_device(udev);
1754 	}
1755 	usb_put_intf(iface);	/* Undo _get_ in usb_queue_reset_device() */
1756 }
1757 
1758 
1759 /*
1760  * usb_set_configuration - Makes a particular device setting be current
1761  * @dev: the device whose configuration is being updated
1762  * @configuration: the configuration being chosen.
1763  * Context: !in_interrupt(), caller owns the device lock
1764  *
1765  * This is used to enable non-default device modes.  Not all devices
1766  * use this kind of configurability; many devices only have one
1767  * configuration.
1768  *
1769  * @configuration is the value of the configuration to be installed.
1770  * According to the USB spec (e.g. section 9.1.1.5), configuration values
1771  * must be non-zero; a value of zero indicates that the device in
1772  * unconfigured.  However some devices erroneously use 0 as one of their
1773  * configuration values.  To help manage such devices, this routine will
1774  * accept @configuration = -1 as indicating the device should be put in
1775  * an unconfigured state.
1776  *
1777  * USB device configurations may affect Linux interoperability,
1778  * power consumption and the functionality available.  For example,
1779  * the default configuration is limited to using 100mA of bus power,
1780  * so that when certain device functionality requires more power,
1781  * and the device is bus powered, that functionality should be in some
1782  * non-default device configuration.  Other device modes may also be
1783  * reflected as configuration options, such as whether two ISDN
1784  * channels are available independently; and choosing between open
1785  * standard device protocols (like CDC) or proprietary ones.
1786  *
1787  * Note that a non-authorized device (dev->authorized == 0) will only
1788  * be put in unconfigured mode.
1789  *
1790  * Note that USB has an additional level of device configurability,
1791  * associated with interfaces.  That configurability is accessed using
1792  * usb_set_interface().
1793  *
1794  * This call is synchronous. The calling context must be able to sleep,
1795  * must own the device lock, and must not hold the driver model's USB
1796  * bus mutex; usb interface driver probe() methods cannot use this routine.
1797  *
1798  * Returns zero on success, or else the status code returned by the
1799  * underlying call that failed.  On successful completion, each interface
1800  * in the original device configuration has been destroyed, and each one
1801  * in the new configuration has been probed by all relevant usb device
1802  * drivers currently known to the kernel.
1803  */
1804 int usb_set_configuration(struct usb_device *dev, int configuration)
1805 {
1806 	int i, ret;
1807 	struct usb_host_config *cp = NULL;
1808 	struct usb_interface **new_interfaces = NULL;
1809 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1810 	int n, nintf;
1811 
1812 	if (dev->authorized == 0 || configuration == -1)
1813 		configuration = 0;
1814 	else {
1815 		for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1816 			if (dev->config[i].desc.bConfigurationValue ==
1817 					configuration) {
1818 				cp = &dev->config[i];
1819 				break;
1820 			}
1821 		}
1822 	}
1823 	if ((!cp && configuration != 0))
1824 		return -EINVAL;
1825 
1826 	/* The USB spec says configuration 0 means unconfigured.
1827 	 * But if a device includes a configuration numbered 0,
1828 	 * we will accept it as a correctly configured state.
1829 	 * Use -1 if you really want to unconfigure the device.
1830 	 */
1831 	if (cp && configuration == 0)
1832 		dev_warn(&dev->dev, "config 0 descriptor??\n");
1833 
1834 	/* Allocate memory for new interfaces before doing anything else,
1835 	 * so that if we run out then nothing will have changed. */
1836 	n = nintf = 0;
1837 	if (cp) {
1838 		nintf = cp->desc.bNumInterfaces;
1839 		new_interfaces = kmalloc_array(nintf, sizeof(*new_interfaces),
1840 					       GFP_NOIO);
1841 		if (!new_interfaces)
1842 			return -ENOMEM;
1843 
1844 		for (; n < nintf; ++n) {
1845 			new_interfaces[n] = kzalloc(
1846 					sizeof(struct usb_interface),
1847 					GFP_NOIO);
1848 			if (!new_interfaces[n]) {
1849 				ret = -ENOMEM;
1850 free_interfaces:
1851 				while (--n >= 0)
1852 					kfree(new_interfaces[n]);
1853 				kfree(new_interfaces);
1854 				return ret;
1855 			}
1856 		}
1857 
1858 		i = dev->bus_mA - usb_get_max_power(dev, cp);
1859 		if (i < 0)
1860 			dev_warn(&dev->dev, "new config #%d exceeds power "
1861 					"limit by %dmA\n",
1862 					configuration, -i);
1863 	}
1864 
1865 	/* Wake up the device so we can send it the Set-Config request */
1866 	ret = usb_autoresume_device(dev);
1867 	if (ret)
1868 		goto free_interfaces;
1869 
1870 	/* if it's already configured, clear out old state first.
1871 	 * getting rid of old interfaces means unbinding their drivers.
1872 	 */
1873 	if (dev->state != USB_STATE_ADDRESS)
1874 		usb_disable_device(dev, 1);	/* Skip ep0 */
1875 
1876 	/* Get rid of pending async Set-Config requests for this device */
1877 	cancel_async_set_config(dev);
1878 
1879 	/* Make sure we have bandwidth (and available HCD resources) for this
1880 	 * configuration.  Remove endpoints from the schedule if we're dropping
1881 	 * this configuration to set configuration 0.  After this point, the
1882 	 * host controller will not allow submissions to dropped endpoints.  If
1883 	 * this call fails, the device state is unchanged.
1884 	 */
1885 	mutex_lock(hcd->bandwidth_mutex);
1886 	/* Disable LPM, and re-enable it once the new configuration is
1887 	 * installed, so that the xHCI driver can recalculate the U1/U2
1888 	 * timeouts.
1889 	 */
1890 	if (dev->actconfig && usb_disable_lpm(dev)) {
1891 		dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1892 		mutex_unlock(hcd->bandwidth_mutex);
1893 		ret = -ENOMEM;
1894 		goto free_interfaces;
1895 	}
1896 	ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1897 	if (ret < 0) {
1898 		if (dev->actconfig)
1899 			usb_enable_lpm(dev);
1900 		mutex_unlock(hcd->bandwidth_mutex);
1901 		usb_autosuspend_device(dev);
1902 		goto free_interfaces;
1903 	}
1904 
1905 	/*
1906 	 * Initialize the new interface structures and the
1907 	 * hc/hcd/usbcore interface/endpoint state.
1908 	 */
1909 	for (i = 0; i < nintf; ++i) {
1910 		struct usb_interface_cache *intfc;
1911 		struct usb_interface *intf;
1912 		struct usb_host_interface *alt;
1913 		u8 ifnum;
1914 
1915 		cp->interface[i] = intf = new_interfaces[i];
1916 		intfc = cp->intf_cache[i];
1917 		intf->altsetting = intfc->altsetting;
1918 		intf->num_altsetting = intfc->num_altsetting;
1919 		intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
1920 		kref_get(&intfc->ref);
1921 
1922 		alt = usb_altnum_to_altsetting(intf, 0);
1923 
1924 		/* No altsetting 0?  We'll assume the first altsetting.
1925 		 * We could use a GetInterface call, but if a device is
1926 		 * so non-compliant that it doesn't have altsetting 0
1927 		 * then I wouldn't trust its reply anyway.
1928 		 */
1929 		if (!alt)
1930 			alt = &intf->altsetting[0];
1931 
1932 		ifnum = alt->desc.bInterfaceNumber;
1933 		intf->intf_assoc = find_iad(dev, cp, ifnum);
1934 		intf->cur_altsetting = alt;
1935 		usb_enable_interface(dev, intf, true);
1936 		intf->dev.parent = &dev->dev;
1937 		if (usb_of_has_combined_node(dev)) {
1938 			device_set_of_node_from_dev(&intf->dev, &dev->dev);
1939 		} else {
1940 			intf->dev.of_node = usb_of_get_interface_node(dev,
1941 					configuration, ifnum);
1942 		}
1943 		intf->dev.driver = NULL;
1944 		intf->dev.bus = &usb_bus_type;
1945 		intf->dev.type = &usb_if_device_type;
1946 		intf->dev.groups = usb_interface_groups;
1947 		/*
1948 		 * Please refer to usb_alloc_dev() to see why we set
1949 		 * dma_mask and dma_pfn_offset.
1950 		 */
1951 		intf->dev.dma_mask = dev->dev.dma_mask;
1952 		intf->dev.dma_pfn_offset = dev->dev.dma_pfn_offset;
1953 		INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1954 		intf->minor = -1;
1955 		device_initialize(&intf->dev);
1956 		pm_runtime_no_callbacks(&intf->dev);
1957 		dev_set_name(&intf->dev, "%d-%s:%d.%d", dev->bus->busnum,
1958 				dev->devpath, configuration, ifnum);
1959 		usb_get_dev(dev);
1960 	}
1961 	kfree(new_interfaces);
1962 
1963 	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1964 			      USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1965 			      NULL, 0, USB_CTRL_SET_TIMEOUT);
1966 	if (ret < 0 && cp) {
1967 		/*
1968 		 * All the old state is gone, so what else can we do?
1969 		 * The device is probably useless now anyway.
1970 		 */
1971 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1972 		for (i = 0; i < nintf; ++i) {
1973 			usb_disable_interface(dev, cp->interface[i], true);
1974 			put_device(&cp->interface[i]->dev);
1975 			cp->interface[i] = NULL;
1976 		}
1977 		cp = NULL;
1978 	}
1979 
1980 	dev->actconfig = cp;
1981 	mutex_unlock(hcd->bandwidth_mutex);
1982 
1983 	if (!cp) {
1984 		usb_set_device_state(dev, USB_STATE_ADDRESS);
1985 
1986 		/* Leave LPM disabled while the device is unconfigured. */
1987 		usb_autosuspend_device(dev);
1988 		return ret;
1989 	}
1990 	usb_set_device_state(dev, USB_STATE_CONFIGURED);
1991 
1992 	if (cp->string == NULL &&
1993 			!(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1994 		cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1995 
1996 	/* Now that the interfaces are installed, re-enable LPM. */
1997 	usb_unlocked_enable_lpm(dev);
1998 	/* Enable LTM if it was turned off by usb_disable_device. */
1999 	usb_enable_ltm(dev);
2000 
2001 	/* Now that all the interfaces are set up, register them
2002 	 * to trigger binding of drivers to interfaces.  probe()
2003 	 * routines may install different altsettings and may
2004 	 * claim() any interfaces not yet bound.  Many class drivers
2005 	 * need that: CDC, audio, video, etc.
2006 	 */
2007 	for (i = 0; i < nintf; ++i) {
2008 		struct usb_interface *intf = cp->interface[i];
2009 
2010 		dev_dbg(&dev->dev,
2011 			"adding %s (config #%d, interface %d)\n",
2012 			dev_name(&intf->dev), configuration,
2013 			intf->cur_altsetting->desc.bInterfaceNumber);
2014 		device_enable_async_suspend(&intf->dev);
2015 		ret = device_add(&intf->dev);
2016 		if (ret != 0) {
2017 			dev_err(&dev->dev, "device_add(%s) --> %d\n",
2018 				dev_name(&intf->dev), ret);
2019 			continue;
2020 		}
2021 		create_intf_ep_devs(intf);
2022 	}
2023 
2024 	usb_autosuspend_device(dev);
2025 	return 0;
2026 }
2027 EXPORT_SYMBOL_GPL(usb_set_configuration);
2028 
2029 static LIST_HEAD(set_config_list);
2030 static DEFINE_SPINLOCK(set_config_lock);
2031 
2032 struct set_config_request {
2033 	struct usb_device	*udev;
2034 	int			config;
2035 	struct work_struct	work;
2036 	struct list_head	node;
2037 };
2038 
2039 /* Worker routine for usb_driver_set_configuration() */
2040 static void driver_set_config_work(struct work_struct *work)
2041 {
2042 	struct set_config_request *req =
2043 		container_of(work, struct set_config_request, work);
2044 	struct usb_device *udev = req->udev;
2045 
2046 	usb_lock_device(udev);
2047 	spin_lock(&set_config_lock);
2048 	list_del(&req->node);
2049 	spin_unlock(&set_config_lock);
2050 
2051 	if (req->config >= -1)		/* Is req still valid? */
2052 		usb_set_configuration(udev, req->config);
2053 	usb_unlock_device(udev);
2054 	usb_put_dev(udev);
2055 	kfree(req);
2056 }
2057 
2058 /* Cancel pending Set-Config requests for a device whose configuration
2059  * was just changed
2060  */
2061 static void cancel_async_set_config(struct usb_device *udev)
2062 {
2063 	struct set_config_request *req;
2064 
2065 	spin_lock(&set_config_lock);
2066 	list_for_each_entry(req, &set_config_list, node) {
2067 		if (req->udev == udev)
2068 			req->config = -999;	/* Mark as cancelled */
2069 	}
2070 	spin_unlock(&set_config_lock);
2071 }
2072 
2073 /**
2074  * usb_driver_set_configuration - Provide a way for drivers to change device configurations
2075  * @udev: the device whose configuration is being updated
2076  * @config: the configuration being chosen.
2077  * Context: In process context, must be able to sleep
2078  *
2079  * Device interface drivers are not allowed to change device configurations.
2080  * This is because changing configurations will destroy the interface the
2081  * driver is bound to and create new ones; it would be like a floppy-disk
2082  * driver telling the computer to replace the floppy-disk drive with a
2083  * tape drive!
2084  *
2085  * Still, in certain specialized circumstances the need may arise.  This
2086  * routine gets around the normal restrictions by using a work thread to
2087  * submit the change-config request.
2088  *
2089  * Return: 0 if the request was successfully queued, error code otherwise.
2090  * The caller has no way to know whether the queued request will eventually
2091  * succeed.
2092  */
2093 int usb_driver_set_configuration(struct usb_device *udev, int config)
2094 {
2095 	struct set_config_request *req;
2096 
2097 	req = kmalloc(sizeof(*req), GFP_KERNEL);
2098 	if (!req)
2099 		return -ENOMEM;
2100 	req->udev = udev;
2101 	req->config = config;
2102 	INIT_WORK(&req->work, driver_set_config_work);
2103 
2104 	spin_lock(&set_config_lock);
2105 	list_add(&req->node, &set_config_list);
2106 	spin_unlock(&set_config_lock);
2107 
2108 	usb_get_dev(udev);
2109 	schedule_work(&req->work);
2110 	return 0;
2111 }
2112 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2113 
2114 /**
2115  * cdc_parse_cdc_header - parse the extra headers present in CDC devices
2116  * @hdr: the place to put the results of the parsing
2117  * @intf: the interface for which parsing is requested
2118  * @buffer: pointer to the extra headers to be parsed
2119  * @buflen: length of the extra headers
2120  *
2121  * This evaluates the extra headers present in CDC devices which
2122  * bind the interfaces for data and control and provide details
2123  * about the capabilities of the device.
2124  *
2125  * Return: number of descriptors parsed or -EINVAL
2126  * if the header is contradictory beyond salvage
2127  */
2128 
2129 int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr,
2130 				struct usb_interface *intf,
2131 				u8 *buffer,
2132 				int buflen)
2133 {
2134 	/* duplicates are ignored */
2135 	struct usb_cdc_union_desc *union_header = NULL;
2136 
2137 	/* duplicates are not tolerated */
2138 	struct usb_cdc_header_desc *header = NULL;
2139 	struct usb_cdc_ether_desc *ether = NULL;
2140 	struct usb_cdc_mdlm_detail_desc *detail = NULL;
2141 	struct usb_cdc_mdlm_desc *desc = NULL;
2142 
2143 	unsigned int elength;
2144 	int cnt = 0;
2145 
2146 	memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header));
2147 	hdr->phonet_magic_present = false;
2148 	while (buflen > 0) {
2149 		elength = buffer[0];
2150 		if (!elength) {
2151 			dev_err(&intf->dev, "skipping garbage byte\n");
2152 			elength = 1;
2153 			goto next_desc;
2154 		}
2155 		if ((buflen < elength) || (elength < 3)) {
2156 			dev_err(&intf->dev, "invalid descriptor buffer length\n");
2157 			break;
2158 		}
2159 		if (buffer[1] != USB_DT_CS_INTERFACE) {
2160 			dev_err(&intf->dev, "skipping garbage\n");
2161 			goto next_desc;
2162 		}
2163 
2164 		switch (buffer[2]) {
2165 		case USB_CDC_UNION_TYPE: /* we've found it */
2166 			if (elength < sizeof(struct usb_cdc_union_desc))
2167 				goto next_desc;
2168 			if (union_header) {
2169 				dev_err(&intf->dev, "More than one union descriptor, skipping ...\n");
2170 				goto next_desc;
2171 			}
2172 			union_header = (struct usb_cdc_union_desc *)buffer;
2173 			break;
2174 		case USB_CDC_COUNTRY_TYPE:
2175 			if (elength < sizeof(struct usb_cdc_country_functional_desc))
2176 				goto next_desc;
2177 			hdr->usb_cdc_country_functional_desc =
2178 				(struct usb_cdc_country_functional_desc *)buffer;
2179 			break;
2180 		case USB_CDC_HEADER_TYPE:
2181 			if (elength != sizeof(struct usb_cdc_header_desc))
2182 				goto next_desc;
2183 			if (header)
2184 				return -EINVAL;
2185 			header = (struct usb_cdc_header_desc *)buffer;
2186 			break;
2187 		case USB_CDC_ACM_TYPE:
2188 			if (elength < sizeof(struct usb_cdc_acm_descriptor))
2189 				goto next_desc;
2190 			hdr->usb_cdc_acm_descriptor =
2191 				(struct usb_cdc_acm_descriptor *)buffer;
2192 			break;
2193 		case USB_CDC_ETHERNET_TYPE:
2194 			if (elength != sizeof(struct usb_cdc_ether_desc))
2195 				goto next_desc;
2196 			if (ether)
2197 				return -EINVAL;
2198 			ether = (struct usb_cdc_ether_desc *)buffer;
2199 			break;
2200 		case USB_CDC_CALL_MANAGEMENT_TYPE:
2201 			if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor))
2202 				goto next_desc;
2203 			hdr->usb_cdc_call_mgmt_descriptor =
2204 				(struct usb_cdc_call_mgmt_descriptor *)buffer;
2205 			break;
2206 		case USB_CDC_DMM_TYPE:
2207 			if (elength < sizeof(struct usb_cdc_dmm_desc))
2208 				goto next_desc;
2209 			hdr->usb_cdc_dmm_desc =
2210 				(struct usb_cdc_dmm_desc *)buffer;
2211 			break;
2212 		case USB_CDC_MDLM_TYPE:
2213 			if (elength < sizeof(struct usb_cdc_mdlm_desc *))
2214 				goto next_desc;
2215 			if (desc)
2216 				return -EINVAL;
2217 			desc = (struct usb_cdc_mdlm_desc *)buffer;
2218 			break;
2219 		case USB_CDC_MDLM_DETAIL_TYPE:
2220 			if (elength < sizeof(struct usb_cdc_mdlm_detail_desc *))
2221 				goto next_desc;
2222 			if (detail)
2223 				return -EINVAL;
2224 			detail = (struct usb_cdc_mdlm_detail_desc *)buffer;
2225 			break;
2226 		case USB_CDC_NCM_TYPE:
2227 			if (elength < sizeof(struct usb_cdc_ncm_desc))
2228 				goto next_desc;
2229 			hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer;
2230 			break;
2231 		case USB_CDC_MBIM_TYPE:
2232 			if (elength < sizeof(struct usb_cdc_mbim_desc))
2233 				goto next_desc;
2234 
2235 			hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer;
2236 			break;
2237 		case USB_CDC_MBIM_EXTENDED_TYPE:
2238 			if (elength < sizeof(struct usb_cdc_mbim_extended_desc))
2239 				break;
2240 			hdr->usb_cdc_mbim_extended_desc =
2241 				(struct usb_cdc_mbim_extended_desc *)buffer;
2242 			break;
2243 		case CDC_PHONET_MAGIC_NUMBER:
2244 			hdr->phonet_magic_present = true;
2245 			break;
2246 		default:
2247 			/*
2248 			 * there are LOTS more CDC descriptors that
2249 			 * could legitimately be found here.
2250 			 */
2251 			dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n",
2252 					buffer[2], elength);
2253 			goto next_desc;
2254 		}
2255 		cnt++;
2256 next_desc:
2257 		buflen -= elength;
2258 		buffer += elength;
2259 	}
2260 	hdr->usb_cdc_union_desc = union_header;
2261 	hdr->usb_cdc_header_desc = header;
2262 	hdr->usb_cdc_mdlm_detail_desc = detail;
2263 	hdr->usb_cdc_mdlm_desc = desc;
2264 	hdr->usb_cdc_ether_desc = ether;
2265 	return cnt;
2266 }
2267 
2268 EXPORT_SYMBOL(cdc_parse_cdc_header);
2269