1 /* 2 * message.c - synchronous message handling 3 */ 4 5 #include <linux/pci.h> /* for scatterlist macros */ 6 #include <linux/usb.h> 7 #include <linux/module.h> 8 #include <linux/slab.h> 9 #include <linux/init.h> 10 #include <linux/mm.h> 11 #include <linux/timer.h> 12 #include <linux/ctype.h> 13 #include <linux/device.h> 14 #include <linux/scatterlist.h> 15 #include <linux/usb/quirks.h> 16 #include <asm/byteorder.h> 17 18 #include "hcd.h" /* for usbcore internals */ 19 #include "usb.h" 20 21 static void cancel_async_set_config(struct usb_device *udev); 22 23 struct api_context { 24 struct completion done; 25 int status; 26 }; 27 28 static void usb_api_blocking_completion(struct urb *urb) 29 { 30 struct api_context *ctx = urb->context; 31 32 ctx->status = urb->status; 33 complete(&ctx->done); 34 } 35 36 37 /* 38 * Starts urb and waits for completion or timeout. Note that this call 39 * is NOT interruptible. Many device driver i/o requests should be 40 * interruptible and therefore these drivers should implement their 41 * own interruptible routines. 42 */ 43 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length) 44 { 45 struct api_context ctx; 46 unsigned long expire; 47 int retval; 48 49 init_completion(&ctx.done); 50 urb->context = &ctx; 51 urb->actual_length = 0; 52 retval = usb_submit_urb(urb, GFP_NOIO); 53 if (unlikely(retval)) 54 goto out; 55 56 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT; 57 if (!wait_for_completion_timeout(&ctx.done, expire)) { 58 usb_kill_urb(urb); 59 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status); 60 61 dev_dbg(&urb->dev->dev, 62 "%s timed out on ep%d%s len=%u/%u\n", 63 current->comm, 64 usb_endpoint_num(&urb->ep->desc), 65 usb_urb_dir_in(urb) ? "in" : "out", 66 urb->actual_length, 67 urb->transfer_buffer_length); 68 } else 69 retval = ctx.status; 70 out: 71 if (actual_length) 72 *actual_length = urb->actual_length; 73 74 usb_free_urb(urb); 75 return retval; 76 } 77 78 /*-------------------------------------------------------------------*/ 79 /* returns status (negative) or length (positive) */ 80 static int usb_internal_control_msg(struct usb_device *usb_dev, 81 unsigned int pipe, 82 struct usb_ctrlrequest *cmd, 83 void *data, int len, int timeout) 84 { 85 struct urb *urb; 86 int retv; 87 int length; 88 89 urb = usb_alloc_urb(0, GFP_NOIO); 90 if (!urb) 91 return -ENOMEM; 92 93 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data, 94 len, usb_api_blocking_completion, NULL); 95 96 retv = usb_start_wait_urb(urb, timeout, &length); 97 if (retv < 0) 98 return retv; 99 else 100 return length; 101 } 102 103 /** 104 * usb_control_msg - Builds a control urb, sends it off and waits for completion 105 * @dev: pointer to the usb device to send the message to 106 * @pipe: endpoint "pipe" to send the message to 107 * @request: USB message request value 108 * @requesttype: USB message request type value 109 * @value: USB message value 110 * @index: USB message index value 111 * @data: pointer to the data to send 112 * @size: length in bytes of the data to send 113 * @timeout: time in msecs to wait for the message to complete before timing 114 * out (if 0 the wait is forever) 115 * 116 * Context: !in_interrupt () 117 * 118 * This function sends a simple control message to a specified endpoint and 119 * waits for the message to complete, or timeout. 120 * 121 * If successful, it returns the number of bytes transferred, otherwise a 122 * negative error number. 123 * 124 * Don't use this function from within an interrupt context, like a bottom half 125 * handler. If you need an asynchronous message, or need to send a message 126 * from within interrupt context, use usb_submit_urb(). 127 * If a thread in your driver uses this call, make sure your disconnect() 128 * method can wait for it to complete. Since you don't have a handle on the 129 * URB used, you can't cancel the request. 130 */ 131 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, 132 __u8 requesttype, __u16 value, __u16 index, void *data, 133 __u16 size, int timeout) 134 { 135 struct usb_ctrlrequest *dr; 136 int ret; 137 138 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO); 139 if (!dr) 140 return -ENOMEM; 141 142 dr->bRequestType = requesttype; 143 dr->bRequest = request; 144 dr->wValue = cpu_to_le16(value); 145 dr->wIndex = cpu_to_le16(index); 146 dr->wLength = cpu_to_le16(size); 147 148 /* dbg("usb_control_msg"); */ 149 150 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout); 151 152 kfree(dr); 153 154 return ret; 155 } 156 EXPORT_SYMBOL_GPL(usb_control_msg); 157 158 /** 159 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion 160 * @usb_dev: pointer to the usb device to send the message to 161 * @pipe: endpoint "pipe" to send the message to 162 * @data: pointer to the data to send 163 * @len: length in bytes of the data to send 164 * @actual_length: pointer to a location to put the actual length transferred 165 * in bytes 166 * @timeout: time in msecs to wait for the message to complete before 167 * timing out (if 0 the wait is forever) 168 * 169 * Context: !in_interrupt () 170 * 171 * This function sends a simple interrupt message to a specified endpoint and 172 * waits for the message to complete, or timeout. 173 * 174 * If successful, it returns 0, otherwise a negative error number. The number 175 * of actual bytes transferred will be stored in the actual_length paramater. 176 * 177 * Don't use this function from within an interrupt context, like a bottom half 178 * handler. If you need an asynchronous message, or need to send a message 179 * from within interrupt context, use usb_submit_urb() If a thread in your 180 * driver uses this call, make sure your disconnect() method can wait for it to 181 * complete. Since you don't have a handle on the URB used, you can't cancel 182 * the request. 183 */ 184 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 185 void *data, int len, int *actual_length, int timeout) 186 { 187 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout); 188 } 189 EXPORT_SYMBOL_GPL(usb_interrupt_msg); 190 191 /** 192 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion 193 * @usb_dev: pointer to the usb device to send the message to 194 * @pipe: endpoint "pipe" to send the message to 195 * @data: pointer to the data to send 196 * @len: length in bytes of the data to send 197 * @actual_length: pointer to a location to put the actual length transferred 198 * in bytes 199 * @timeout: time in msecs to wait for the message to complete before 200 * timing out (if 0 the wait is forever) 201 * 202 * Context: !in_interrupt () 203 * 204 * This function sends a simple bulk message to a specified endpoint 205 * and waits for the message to complete, or timeout. 206 * 207 * If successful, it returns 0, otherwise a negative error number. The number 208 * of actual bytes transferred will be stored in the actual_length paramater. 209 * 210 * Don't use this function from within an interrupt context, like a bottom half 211 * handler. If you need an asynchronous message, or need to send a message 212 * from within interrupt context, use usb_submit_urb() If a thread in your 213 * driver uses this call, make sure your disconnect() method can wait for it to 214 * complete. Since you don't have a handle on the URB used, you can't cancel 215 * the request. 216 * 217 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl, 218 * users are forced to abuse this routine by using it to submit URBs for 219 * interrupt endpoints. We will take the liberty of creating an interrupt URB 220 * (with the default interval) if the target is an interrupt endpoint. 221 */ 222 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 223 void *data, int len, int *actual_length, int timeout) 224 { 225 struct urb *urb; 226 struct usb_host_endpoint *ep; 227 228 ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out) 229 [usb_pipeendpoint(pipe)]; 230 if (!ep || len < 0) 231 return -EINVAL; 232 233 urb = usb_alloc_urb(0, GFP_KERNEL); 234 if (!urb) 235 return -ENOMEM; 236 237 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 238 USB_ENDPOINT_XFER_INT) { 239 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30); 240 usb_fill_int_urb(urb, usb_dev, pipe, data, len, 241 usb_api_blocking_completion, NULL, 242 ep->desc.bInterval); 243 } else 244 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len, 245 usb_api_blocking_completion, NULL); 246 247 return usb_start_wait_urb(urb, timeout, actual_length); 248 } 249 EXPORT_SYMBOL_GPL(usb_bulk_msg); 250 251 /*-------------------------------------------------------------------*/ 252 253 static void sg_clean(struct usb_sg_request *io) 254 { 255 if (io->urbs) { 256 while (io->entries--) 257 usb_free_urb(io->urbs [io->entries]); 258 kfree(io->urbs); 259 io->urbs = NULL; 260 } 261 if (io->dev->dev.dma_mask != NULL) 262 usb_buffer_unmap_sg(io->dev, usb_pipein(io->pipe), 263 io->sg, io->nents); 264 io->dev = NULL; 265 } 266 267 static void sg_complete(struct urb *urb) 268 { 269 struct usb_sg_request *io = urb->context; 270 int status = urb->status; 271 272 spin_lock(&io->lock); 273 274 /* In 2.5 we require hcds' endpoint queues not to progress after fault 275 * reports, until the completion callback (this!) returns. That lets 276 * device driver code (like this routine) unlink queued urbs first, 277 * if it needs to, since the HC won't work on them at all. So it's 278 * not possible for page N+1 to overwrite page N, and so on. 279 * 280 * That's only for "hard" faults; "soft" faults (unlinks) sometimes 281 * complete before the HCD can get requests away from hardware, 282 * though never during cleanup after a hard fault. 283 */ 284 if (io->status 285 && (io->status != -ECONNRESET 286 || status != -ECONNRESET) 287 && urb->actual_length) { 288 dev_err(io->dev->bus->controller, 289 "dev %s ep%d%s scatterlist error %d/%d\n", 290 io->dev->devpath, 291 usb_endpoint_num(&urb->ep->desc), 292 usb_urb_dir_in(urb) ? "in" : "out", 293 status, io->status); 294 /* BUG (); */ 295 } 296 297 if (io->status == 0 && status && status != -ECONNRESET) { 298 int i, found, retval; 299 300 io->status = status; 301 302 /* the previous urbs, and this one, completed already. 303 * unlink pending urbs so they won't rx/tx bad data. 304 * careful: unlink can sometimes be synchronous... 305 */ 306 spin_unlock(&io->lock); 307 for (i = 0, found = 0; i < io->entries; i++) { 308 if (!io->urbs [i] || !io->urbs [i]->dev) 309 continue; 310 if (found) { 311 retval = usb_unlink_urb(io->urbs [i]); 312 if (retval != -EINPROGRESS && 313 retval != -ENODEV && 314 retval != -EBUSY) 315 dev_err(&io->dev->dev, 316 "%s, unlink --> %d\n", 317 __func__, retval); 318 } else if (urb == io->urbs [i]) 319 found = 1; 320 } 321 spin_lock(&io->lock); 322 } 323 urb->dev = NULL; 324 325 /* on the last completion, signal usb_sg_wait() */ 326 io->bytes += urb->actual_length; 327 io->count--; 328 if (!io->count) 329 complete(&io->complete); 330 331 spin_unlock(&io->lock); 332 } 333 334 335 /** 336 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request 337 * @io: request block being initialized. until usb_sg_wait() returns, 338 * treat this as a pointer to an opaque block of memory, 339 * @dev: the usb device that will send or receive the data 340 * @pipe: endpoint "pipe" used to transfer the data 341 * @period: polling rate for interrupt endpoints, in frames or 342 * (for high speed endpoints) microframes; ignored for bulk 343 * @sg: scatterlist entries 344 * @nents: how many entries in the scatterlist 345 * @length: how many bytes to send from the scatterlist, or zero to 346 * send every byte identified in the list. 347 * @mem_flags: SLAB_* flags affecting memory allocations in this call 348 * 349 * Returns zero for success, else a negative errno value. This initializes a 350 * scatter/gather request, allocating resources such as I/O mappings and urb 351 * memory (except maybe memory used by USB controller drivers). 352 * 353 * The request must be issued using usb_sg_wait(), which waits for the I/O to 354 * complete (or to be canceled) and then cleans up all resources allocated by 355 * usb_sg_init(). 356 * 357 * The request may be canceled with usb_sg_cancel(), either before or after 358 * usb_sg_wait() is called. 359 */ 360 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev, 361 unsigned pipe, unsigned period, struct scatterlist *sg, 362 int nents, size_t length, gfp_t mem_flags) 363 { 364 int i; 365 int urb_flags; 366 int dma; 367 368 if (!io || !dev || !sg 369 || usb_pipecontrol(pipe) 370 || usb_pipeisoc(pipe) 371 || nents <= 0) 372 return -EINVAL; 373 374 spin_lock_init(&io->lock); 375 io->dev = dev; 376 io->pipe = pipe; 377 io->sg = sg; 378 io->nents = nents; 379 380 /* not all host controllers use DMA (like the mainstream pci ones); 381 * they can use PIO (sl811) or be software over another transport. 382 */ 383 dma = (dev->dev.dma_mask != NULL); 384 if (dma) 385 io->entries = usb_buffer_map_sg(dev, usb_pipein(pipe), 386 sg, nents); 387 else 388 io->entries = nents; 389 390 /* initialize all the urbs we'll use */ 391 if (io->entries <= 0) 392 return io->entries; 393 394 io->urbs = kmalloc(io->entries * sizeof *io->urbs, mem_flags); 395 if (!io->urbs) 396 goto nomem; 397 398 urb_flags = URB_NO_INTERRUPT; 399 if (dma) 400 urb_flags |= URB_NO_TRANSFER_DMA_MAP; 401 if (usb_pipein(pipe)) 402 urb_flags |= URB_SHORT_NOT_OK; 403 404 for_each_sg(sg, sg, io->entries, i) { 405 unsigned len; 406 407 io->urbs[i] = usb_alloc_urb(0, mem_flags); 408 if (!io->urbs[i]) { 409 io->entries = i; 410 goto nomem; 411 } 412 413 io->urbs[i]->dev = NULL; 414 io->urbs[i]->pipe = pipe; 415 io->urbs[i]->interval = period; 416 io->urbs[i]->transfer_flags = urb_flags; 417 418 io->urbs[i]->complete = sg_complete; 419 io->urbs[i]->context = io; 420 421 /* 422 * Some systems need to revert to PIO when DMA is temporarily 423 * unavailable. For their sakes, both transfer_buffer and 424 * transfer_dma are set when possible. However this can only 425 * work on systems without: 426 * 427 * - HIGHMEM, since DMA buffers located in high memory are 428 * not directly addressable by the CPU for PIO; 429 * 430 * - IOMMU, since dma_map_sg() is allowed to use an IOMMU to 431 * make virtually discontiguous buffers be "dma-contiguous" 432 * so that PIO and DMA need diferent numbers of URBs. 433 * 434 * So when HIGHMEM or IOMMU are in use, transfer_buffer is NULL 435 * to prevent stale pointers and to help spot bugs. 436 */ 437 if (dma) { 438 io->urbs[i]->transfer_dma = sg_dma_address(sg); 439 len = sg_dma_len(sg); 440 #if defined(CONFIG_HIGHMEM) || defined(CONFIG_GART_IOMMU) 441 io->urbs[i]->transfer_buffer = NULL; 442 #else 443 io->urbs[i]->transfer_buffer = sg_virt(sg); 444 #endif 445 } else { 446 /* hc may use _only_ transfer_buffer */ 447 io->urbs[i]->transfer_buffer = sg_virt(sg); 448 len = sg->length; 449 } 450 451 if (length) { 452 len = min_t(unsigned, len, length); 453 length -= len; 454 if (length == 0) 455 io->entries = i + 1; 456 } 457 io->urbs[i]->transfer_buffer_length = len; 458 } 459 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT; 460 461 /* transaction state */ 462 io->count = io->entries; 463 io->status = 0; 464 io->bytes = 0; 465 init_completion(&io->complete); 466 return 0; 467 468 nomem: 469 sg_clean(io); 470 return -ENOMEM; 471 } 472 EXPORT_SYMBOL_GPL(usb_sg_init); 473 474 /** 475 * usb_sg_wait - synchronously execute scatter/gather request 476 * @io: request block handle, as initialized with usb_sg_init(). 477 * some fields become accessible when this call returns. 478 * Context: !in_interrupt () 479 * 480 * This function blocks until the specified I/O operation completes. It 481 * leverages the grouping of the related I/O requests to get good transfer 482 * rates, by queueing the requests. At higher speeds, such queuing can 483 * significantly improve USB throughput. 484 * 485 * There are three kinds of completion for this function. 486 * (1) success, where io->status is zero. The number of io->bytes 487 * transferred is as requested. 488 * (2) error, where io->status is a negative errno value. The number 489 * of io->bytes transferred before the error is usually less 490 * than requested, and can be nonzero. 491 * (3) cancellation, a type of error with status -ECONNRESET that 492 * is initiated by usb_sg_cancel(). 493 * 494 * When this function returns, all memory allocated through usb_sg_init() or 495 * this call will have been freed. The request block parameter may still be 496 * passed to usb_sg_cancel(), or it may be freed. It could also be 497 * reinitialized and then reused. 498 * 499 * Data Transfer Rates: 500 * 501 * Bulk transfers are valid for full or high speed endpoints. 502 * The best full speed data rate is 19 packets of 64 bytes each 503 * per frame, or 1216 bytes per millisecond. 504 * The best high speed data rate is 13 packets of 512 bytes each 505 * per microframe, or 52 KBytes per millisecond. 506 * 507 * The reason to use interrupt transfers through this API would most likely 508 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond 509 * could be transferred. That capability is less useful for low or full 510 * speed interrupt endpoints, which allow at most one packet per millisecond, 511 * of at most 8 or 64 bytes (respectively). 512 */ 513 void usb_sg_wait(struct usb_sg_request *io) 514 { 515 int i; 516 int entries = io->entries; 517 518 /* queue the urbs. */ 519 spin_lock_irq(&io->lock); 520 i = 0; 521 while (i < entries && !io->status) { 522 int retval; 523 524 io->urbs[i]->dev = io->dev; 525 retval = usb_submit_urb(io->urbs [i], GFP_ATOMIC); 526 527 /* after we submit, let completions or cancelations fire; 528 * we handshake using io->status. 529 */ 530 spin_unlock_irq(&io->lock); 531 switch (retval) { 532 /* maybe we retrying will recover */ 533 case -ENXIO: /* hc didn't queue this one */ 534 case -EAGAIN: 535 case -ENOMEM: 536 io->urbs[i]->dev = NULL; 537 retval = 0; 538 yield(); 539 break; 540 541 /* no error? continue immediately. 542 * 543 * NOTE: to work better with UHCI (4K I/O buffer may 544 * need 3K of TDs) it may be good to limit how many 545 * URBs are queued at once; N milliseconds? 546 */ 547 case 0: 548 ++i; 549 cpu_relax(); 550 break; 551 552 /* fail any uncompleted urbs */ 553 default: 554 io->urbs[i]->dev = NULL; 555 io->urbs[i]->status = retval; 556 dev_dbg(&io->dev->dev, "%s, submit --> %d\n", 557 __func__, retval); 558 usb_sg_cancel(io); 559 } 560 spin_lock_irq(&io->lock); 561 if (retval && (io->status == 0 || io->status == -ECONNRESET)) 562 io->status = retval; 563 } 564 io->count -= entries - i; 565 if (io->count == 0) 566 complete(&io->complete); 567 spin_unlock_irq(&io->lock); 568 569 /* OK, yes, this could be packaged as non-blocking. 570 * So could the submit loop above ... but it's easier to 571 * solve neither problem than to solve both! 572 */ 573 wait_for_completion(&io->complete); 574 575 sg_clean(io); 576 } 577 EXPORT_SYMBOL_GPL(usb_sg_wait); 578 579 /** 580 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait() 581 * @io: request block, initialized with usb_sg_init() 582 * 583 * This stops a request after it has been started by usb_sg_wait(). 584 * It can also prevents one initialized by usb_sg_init() from starting, 585 * so that call just frees resources allocated to the request. 586 */ 587 void usb_sg_cancel(struct usb_sg_request *io) 588 { 589 unsigned long flags; 590 591 spin_lock_irqsave(&io->lock, flags); 592 593 /* shut everything down, if it didn't already */ 594 if (!io->status) { 595 int i; 596 597 io->status = -ECONNRESET; 598 spin_unlock(&io->lock); 599 for (i = 0; i < io->entries; i++) { 600 int retval; 601 602 if (!io->urbs [i]->dev) 603 continue; 604 retval = usb_unlink_urb(io->urbs [i]); 605 if (retval != -EINPROGRESS && retval != -EBUSY) 606 dev_warn(&io->dev->dev, "%s, unlink --> %d\n", 607 __func__, retval); 608 } 609 spin_lock(&io->lock); 610 } 611 spin_unlock_irqrestore(&io->lock, flags); 612 } 613 EXPORT_SYMBOL_GPL(usb_sg_cancel); 614 615 /*-------------------------------------------------------------------*/ 616 617 /** 618 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request 619 * @dev: the device whose descriptor is being retrieved 620 * @type: the descriptor type (USB_DT_*) 621 * @index: the number of the descriptor 622 * @buf: where to put the descriptor 623 * @size: how big is "buf"? 624 * Context: !in_interrupt () 625 * 626 * Gets a USB descriptor. Convenience functions exist to simplify 627 * getting some types of descriptors. Use 628 * usb_get_string() or usb_string() for USB_DT_STRING. 629 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG) 630 * are part of the device structure. 631 * In addition to a number of USB-standard descriptors, some 632 * devices also use class-specific or vendor-specific descriptors. 633 * 634 * This call is synchronous, and may not be used in an interrupt context. 635 * 636 * Returns the number of bytes received on success, or else the status code 637 * returned by the underlying usb_control_msg() call. 638 */ 639 int usb_get_descriptor(struct usb_device *dev, unsigned char type, 640 unsigned char index, void *buf, int size) 641 { 642 int i; 643 int result; 644 645 memset(buf, 0, size); /* Make sure we parse really received data */ 646 647 for (i = 0; i < 3; ++i) { 648 /* retry on length 0 or error; some devices are flakey */ 649 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 650 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 651 (type << 8) + index, 0, buf, size, 652 USB_CTRL_GET_TIMEOUT); 653 if (result <= 0 && result != -ETIMEDOUT) 654 continue; 655 if (result > 1 && ((u8 *)buf)[1] != type) { 656 result = -ENODATA; 657 continue; 658 } 659 break; 660 } 661 return result; 662 } 663 EXPORT_SYMBOL_GPL(usb_get_descriptor); 664 665 /** 666 * usb_get_string - gets a string descriptor 667 * @dev: the device whose string descriptor is being retrieved 668 * @langid: code for language chosen (from string descriptor zero) 669 * @index: the number of the descriptor 670 * @buf: where to put the string 671 * @size: how big is "buf"? 672 * Context: !in_interrupt () 673 * 674 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character, 675 * in little-endian byte order). 676 * The usb_string() function will often be a convenient way to turn 677 * these strings into kernel-printable form. 678 * 679 * Strings may be referenced in device, configuration, interface, or other 680 * descriptors, and could also be used in vendor-specific ways. 681 * 682 * This call is synchronous, and may not be used in an interrupt context. 683 * 684 * Returns the number of bytes received on success, or else the status code 685 * returned by the underlying usb_control_msg() call. 686 */ 687 static int usb_get_string(struct usb_device *dev, unsigned short langid, 688 unsigned char index, void *buf, int size) 689 { 690 int i; 691 int result; 692 693 for (i = 0; i < 3; ++i) { 694 /* retry on length 0 or stall; some devices are flakey */ 695 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 696 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 697 (USB_DT_STRING << 8) + index, langid, buf, size, 698 USB_CTRL_GET_TIMEOUT); 699 if (result == 0 || result == -EPIPE) 700 continue; 701 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) { 702 result = -ENODATA; 703 continue; 704 } 705 break; 706 } 707 return result; 708 } 709 710 static void usb_try_string_workarounds(unsigned char *buf, int *length) 711 { 712 int newlength, oldlength = *length; 713 714 for (newlength = 2; newlength + 1 < oldlength; newlength += 2) 715 if (!isprint(buf[newlength]) || buf[newlength + 1]) 716 break; 717 718 if (newlength > 2) { 719 buf[0] = newlength; 720 *length = newlength; 721 } 722 } 723 724 static int usb_string_sub(struct usb_device *dev, unsigned int langid, 725 unsigned int index, unsigned char *buf) 726 { 727 int rc; 728 729 /* Try to read the string descriptor by asking for the maximum 730 * possible number of bytes */ 731 if (dev->quirks & USB_QUIRK_STRING_FETCH_255) 732 rc = -EIO; 733 else 734 rc = usb_get_string(dev, langid, index, buf, 255); 735 736 /* If that failed try to read the descriptor length, then 737 * ask for just that many bytes */ 738 if (rc < 2) { 739 rc = usb_get_string(dev, langid, index, buf, 2); 740 if (rc == 2) 741 rc = usb_get_string(dev, langid, index, buf, buf[0]); 742 } 743 744 if (rc >= 2) { 745 if (!buf[0] && !buf[1]) 746 usb_try_string_workarounds(buf, &rc); 747 748 /* There might be extra junk at the end of the descriptor */ 749 if (buf[0] < rc) 750 rc = buf[0]; 751 752 rc = rc - (rc & 1); /* force a multiple of two */ 753 } 754 755 if (rc < 2) 756 rc = (rc < 0 ? rc : -EINVAL); 757 758 return rc; 759 } 760 761 /** 762 * usb_string - returns ISO 8859-1 version of a string descriptor 763 * @dev: the device whose string descriptor is being retrieved 764 * @index: the number of the descriptor 765 * @buf: where to put the string 766 * @size: how big is "buf"? 767 * Context: !in_interrupt () 768 * 769 * This converts the UTF-16LE encoded strings returned by devices, from 770 * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones 771 * that are more usable in most kernel contexts. Note that all characters 772 * in the chosen descriptor that can't be encoded using ISO-8859-1 773 * are converted to the question mark ("?") character, and this function 774 * chooses strings in the first language supported by the device. 775 * 776 * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit 777 * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode, 778 * and is appropriate for use many uses of English and several other 779 * Western European languages. (But it doesn't include the "Euro" symbol.) 780 * 781 * This call is synchronous, and may not be used in an interrupt context. 782 * 783 * Returns length of the string (>= 0) or usb_control_msg status (< 0). 784 */ 785 int usb_string(struct usb_device *dev, int index, char *buf, size_t size) 786 { 787 unsigned char *tbuf; 788 int err; 789 unsigned int u, idx; 790 791 if (dev->state == USB_STATE_SUSPENDED) 792 return -EHOSTUNREACH; 793 if (size <= 0 || !buf || !index) 794 return -EINVAL; 795 buf[0] = 0; 796 tbuf = kmalloc(256, GFP_NOIO); 797 if (!tbuf) 798 return -ENOMEM; 799 800 /* get langid for strings if it's not yet known */ 801 if (!dev->have_langid) { 802 err = usb_string_sub(dev, 0, 0, tbuf); 803 if (err < 0) { 804 dev_err(&dev->dev, 805 "string descriptor 0 read error: %d\n", 806 err); 807 } else if (err < 4) { 808 dev_err(&dev->dev, "string descriptor 0 too short\n"); 809 } else { 810 dev->string_langid = tbuf[2] | (tbuf[3] << 8); 811 /* always use the first langid listed */ 812 dev_dbg(&dev->dev, "default language 0x%04x\n", 813 dev->string_langid); 814 } 815 816 dev->have_langid = 1; 817 } 818 819 err = usb_string_sub(dev, dev->string_langid, index, tbuf); 820 if (err < 0) 821 goto errout; 822 823 size--; /* leave room for trailing NULL char in output buffer */ 824 for (idx = 0, u = 2; u < err; u += 2) { 825 if (idx >= size) 826 break; 827 if (tbuf[u+1]) /* high byte */ 828 buf[idx++] = '?'; /* non ISO-8859-1 character */ 829 else 830 buf[idx++] = tbuf[u]; 831 } 832 buf[idx] = 0; 833 err = idx; 834 835 if (tbuf[1] != USB_DT_STRING) 836 dev_dbg(&dev->dev, 837 "wrong descriptor type %02x for string %d (\"%s\")\n", 838 tbuf[1], index, buf); 839 840 errout: 841 kfree(tbuf); 842 return err; 843 } 844 EXPORT_SYMBOL_GPL(usb_string); 845 846 /** 847 * usb_cache_string - read a string descriptor and cache it for later use 848 * @udev: the device whose string descriptor is being read 849 * @index: the descriptor index 850 * 851 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string, 852 * or NULL if the index is 0 or the string could not be read. 853 */ 854 char *usb_cache_string(struct usb_device *udev, int index) 855 { 856 char *buf; 857 char *smallbuf = NULL; 858 int len; 859 860 if (index <= 0) 861 return NULL; 862 863 buf = kmalloc(256, GFP_KERNEL); 864 if (buf) { 865 len = usb_string(udev, index, buf, 256); 866 if (len > 0) { 867 smallbuf = kmalloc(++len, GFP_KERNEL); 868 if (!smallbuf) 869 return buf; 870 memcpy(smallbuf, buf, len); 871 } 872 kfree(buf); 873 } 874 return smallbuf; 875 } 876 877 /* 878 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore) 879 * @dev: the device whose device descriptor is being updated 880 * @size: how much of the descriptor to read 881 * Context: !in_interrupt () 882 * 883 * Updates the copy of the device descriptor stored in the device structure, 884 * which dedicates space for this purpose. 885 * 886 * Not exported, only for use by the core. If drivers really want to read 887 * the device descriptor directly, they can call usb_get_descriptor() with 888 * type = USB_DT_DEVICE and index = 0. 889 * 890 * This call is synchronous, and may not be used in an interrupt context. 891 * 892 * Returns the number of bytes received on success, or else the status code 893 * returned by the underlying usb_control_msg() call. 894 */ 895 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size) 896 { 897 struct usb_device_descriptor *desc; 898 int ret; 899 900 if (size > sizeof(*desc)) 901 return -EINVAL; 902 desc = kmalloc(sizeof(*desc), GFP_NOIO); 903 if (!desc) 904 return -ENOMEM; 905 906 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size); 907 if (ret >= 0) 908 memcpy(&dev->descriptor, desc, size); 909 kfree(desc); 910 return ret; 911 } 912 913 /** 914 * usb_get_status - issues a GET_STATUS call 915 * @dev: the device whose status is being checked 916 * @type: USB_RECIP_*; for device, interface, or endpoint 917 * @target: zero (for device), else interface or endpoint number 918 * @data: pointer to two bytes of bitmap data 919 * Context: !in_interrupt () 920 * 921 * Returns device, interface, or endpoint status. Normally only of 922 * interest to see if the device is self powered, or has enabled the 923 * remote wakeup facility; or whether a bulk or interrupt endpoint 924 * is halted ("stalled"). 925 * 926 * Bits in these status bitmaps are set using the SET_FEATURE request, 927 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt() 928 * function should be used to clear halt ("stall") status. 929 * 930 * This call is synchronous, and may not be used in an interrupt context. 931 * 932 * Returns the number of bytes received on success, or else the status code 933 * returned by the underlying usb_control_msg() call. 934 */ 935 int usb_get_status(struct usb_device *dev, int type, int target, void *data) 936 { 937 int ret; 938 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL); 939 940 if (!status) 941 return -ENOMEM; 942 943 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 944 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status, 945 sizeof(*status), USB_CTRL_GET_TIMEOUT); 946 947 *(u16 *)data = *status; 948 kfree(status); 949 return ret; 950 } 951 EXPORT_SYMBOL_GPL(usb_get_status); 952 953 /** 954 * usb_clear_halt - tells device to clear endpoint halt/stall condition 955 * @dev: device whose endpoint is halted 956 * @pipe: endpoint "pipe" being cleared 957 * Context: !in_interrupt () 958 * 959 * This is used to clear halt conditions for bulk and interrupt endpoints, 960 * as reported by URB completion status. Endpoints that are halted are 961 * sometimes referred to as being "stalled". Such endpoints are unable 962 * to transmit or receive data until the halt status is cleared. Any URBs 963 * queued for such an endpoint should normally be unlinked by the driver 964 * before clearing the halt condition, as described in sections 5.7.5 965 * and 5.8.5 of the USB 2.0 spec. 966 * 967 * Note that control and isochronous endpoints don't halt, although control 968 * endpoints report "protocol stall" (for unsupported requests) using the 969 * same status code used to report a true stall. 970 * 971 * This call is synchronous, and may not be used in an interrupt context. 972 * 973 * Returns zero on success, or else the status code returned by the 974 * underlying usb_control_msg() call. 975 */ 976 int usb_clear_halt(struct usb_device *dev, int pipe) 977 { 978 int result; 979 int endp = usb_pipeendpoint(pipe); 980 981 if (usb_pipein(pipe)) 982 endp |= USB_DIR_IN; 983 984 /* we don't care if it wasn't halted first. in fact some devices 985 * (like some ibmcam model 1 units) seem to expect hosts to make 986 * this request for iso endpoints, which can't halt! 987 */ 988 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 989 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 990 USB_ENDPOINT_HALT, endp, NULL, 0, 991 USB_CTRL_SET_TIMEOUT); 992 993 /* don't un-halt or force to DATA0 except on success */ 994 if (result < 0) 995 return result; 996 997 /* NOTE: seems like Microsoft and Apple don't bother verifying 998 * the clear "took", so some devices could lock up if you check... 999 * such as the Hagiwara FlashGate DUAL. So we won't bother. 1000 * 1001 * NOTE: make sure the logic here doesn't diverge much from 1002 * the copy in usb-storage, for as long as we need two copies. 1003 */ 1004 1005 usb_reset_endpoint(dev, endp); 1006 1007 return 0; 1008 } 1009 EXPORT_SYMBOL_GPL(usb_clear_halt); 1010 1011 static int create_intf_ep_devs(struct usb_interface *intf) 1012 { 1013 struct usb_device *udev = interface_to_usbdev(intf); 1014 struct usb_host_interface *alt = intf->cur_altsetting; 1015 int i; 1016 1017 if (intf->ep_devs_created || intf->unregistering) 1018 return 0; 1019 1020 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1021 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev); 1022 intf->ep_devs_created = 1; 1023 return 0; 1024 } 1025 1026 static void remove_intf_ep_devs(struct usb_interface *intf) 1027 { 1028 struct usb_host_interface *alt = intf->cur_altsetting; 1029 int i; 1030 1031 if (!intf->ep_devs_created) 1032 return; 1033 1034 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1035 usb_remove_ep_devs(&alt->endpoint[i]); 1036 intf->ep_devs_created = 0; 1037 } 1038 1039 /** 1040 * usb_disable_endpoint -- Disable an endpoint by address 1041 * @dev: the device whose endpoint is being disabled 1042 * @epaddr: the endpoint's address. Endpoint number for output, 1043 * endpoint number + USB_DIR_IN for input 1044 * @reset_hardware: flag to erase any endpoint state stored in the 1045 * controller hardware 1046 * 1047 * Disables the endpoint for URB submission and nukes all pending URBs. 1048 * If @reset_hardware is set then also deallocates hcd/hardware state 1049 * for the endpoint. 1050 */ 1051 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr, 1052 bool reset_hardware) 1053 { 1054 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1055 struct usb_host_endpoint *ep; 1056 1057 if (!dev) 1058 return; 1059 1060 if (usb_endpoint_out(epaddr)) { 1061 ep = dev->ep_out[epnum]; 1062 if (reset_hardware) 1063 dev->ep_out[epnum] = NULL; 1064 } else { 1065 ep = dev->ep_in[epnum]; 1066 if (reset_hardware) 1067 dev->ep_in[epnum] = NULL; 1068 } 1069 if (ep) { 1070 ep->enabled = 0; 1071 usb_hcd_flush_endpoint(dev, ep); 1072 if (reset_hardware) 1073 usb_hcd_disable_endpoint(dev, ep); 1074 } 1075 } 1076 1077 /** 1078 * usb_reset_endpoint - Reset an endpoint's state. 1079 * @dev: the device whose endpoint is to be reset 1080 * @epaddr: the endpoint's address. Endpoint number for output, 1081 * endpoint number + USB_DIR_IN for input 1082 * 1083 * Resets any host-side endpoint state such as the toggle bit, 1084 * sequence number or current window. 1085 */ 1086 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr) 1087 { 1088 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1089 struct usb_host_endpoint *ep; 1090 1091 if (usb_endpoint_out(epaddr)) 1092 ep = dev->ep_out[epnum]; 1093 else 1094 ep = dev->ep_in[epnum]; 1095 if (ep) 1096 usb_hcd_reset_endpoint(dev, ep); 1097 } 1098 EXPORT_SYMBOL_GPL(usb_reset_endpoint); 1099 1100 1101 /** 1102 * usb_disable_interface -- Disable all endpoints for an interface 1103 * @dev: the device whose interface is being disabled 1104 * @intf: pointer to the interface descriptor 1105 * @reset_hardware: flag to erase any endpoint state stored in the 1106 * controller hardware 1107 * 1108 * Disables all the endpoints for the interface's current altsetting. 1109 */ 1110 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf, 1111 bool reset_hardware) 1112 { 1113 struct usb_host_interface *alt = intf->cur_altsetting; 1114 int i; 1115 1116 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 1117 usb_disable_endpoint(dev, 1118 alt->endpoint[i].desc.bEndpointAddress, 1119 reset_hardware); 1120 } 1121 } 1122 1123 /** 1124 * usb_disable_device - Disable all the endpoints for a USB device 1125 * @dev: the device whose endpoints are being disabled 1126 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. 1127 * 1128 * Disables all the device's endpoints, potentially including endpoint 0. 1129 * Deallocates hcd/hardware state for the endpoints (nuking all or most 1130 * pending urbs) and usbcore state for the interfaces, so that usbcore 1131 * must usb_set_configuration() before any interfaces could be used. 1132 */ 1133 void usb_disable_device(struct usb_device *dev, int skip_ep0) 1134 { 1135 int i; 1136 1137 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__, 1138 skip_ep0 ? "non-ep0" : "all"); 1139 for (i = skip_ep0; i < 16; ++i) { 1140 usb_disable_endpoint(dev, i, true); 1141 usb_disable_endpoint(dev, i + USB_DIR_IN, true); 1142 } 1143 1144 /* getting rid of interfaces will disconnect 1145 * any drivers bound to them (a key side effect) 1146 */ 1147 if (dev->actconfig) { 1148 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1149 struct usb_interface *interface; 1150 1151 /* remove this interface if it has been registered */ 1152 interface = dev->actconfig->interface[i]; 1153 if (!device_is_registered(&interface->dev)) 1154 continue; 1155 dev_dbg(&dev->dev, "unregistering interface %s\n", 1156 dev_name(&interface->dev)); 1157 interface->unregistering = 1; 1158 remove_intf_ep_devs(interface); 1159 device_del(&interface->dev); 1160 } 1161 1162 /* Now that the interfaces are unbound, nobody should 1163 * try to access them. 1164 */ 1165 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1166 put_device(&dev->actconfig->interface[i]->dev); 1167 dev->actconfig->interface[i] = NULL; 1168 } 1169 dev->actconfig = NULL; 1170 if (dev->state == USB_STATE_CONFIGURED) 1171 usb_set_device_state(dev, USB_STATE_ADDRESS); 1172 } 1173 } 1174 1175 /** 1176 * usb_enable_endpoint - Enable an endpoint for USB communications 1177 * @dev: the device whose interface is being enabled 1178 * @ep: the endpoint 1179 * @reset_ep: flag to reset the endpoint state 1180 * 1181 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers. 1182 * For control endpoints, both the input and output sides are handled. 1183 */ 1184 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep, 1185 bool reset_ep) 1186 { 1187 int epnum = usb_endpoint_num(&ep->desc); 1188 int is_out = usb_endpoint_dir_out(&ep->desc); 1189 int is_control = usb_endpoint_xfer_control(&ep->desc); 1190 1191 if (reset_ep) 1192 usb_hcd_reset_endpoint(dev, ep); 1193 if (is_out || is_control) 1194 dev->ep_out[epnum] = ep; 1195 if (!is_out || is_control) 1196 dev->ep_in[epnum] = ep; 1197 ep->enabled = 1; 1198 } 1199 1200 /** 1201 * usb_enable_interface - Enable all the endpoints for an interface 1202 * @dev: the device whose interface is being enabled 1203 * @intf: pointer to the interface descriptor 1204 * @reset_eps: flag to reset the endpoints' state 1205 * 1206 * Enables all the endpoints for the interface's current altsetting. 1207 */ 1208 void usb_enable_interface(struct usb_device *dev, 1209 struct usb_interface *intf, bool reset_eps) 1210 { 1211 struct usb_host_interface *alt = intf->cur_altsetting; 1212 int i; 1213 1214 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1215 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps); 1216 } 1217 1218 /** 1219 * usb_set_interface - Makes a particular alternate setting be current 1220 * @dev: the device whose interface is being updated 1221 * @interface: the interface being updated 1222 * @alternate: the setting being chosen. 1223 * Context: !in_interrupt () 1224 * 1225 * This is used to enable data transfers on interfaces that may not 1226 * be enabled by default. Not all devices support such configurability. 1227 * Only the driver bound to an interface may change its setting. 1228 * 1229 * Within any given configuration, each interface may have several 1230 * alternative settings. These are often used to control levels of 1231 * bandwidth consumption. For example, the default setting for a high 1232 * speed interrupt endpoint may not send more than 64 bytes per microframe, 1233 * while interrupt transfers of up to 3KBytes per microframe are legal. 1234 * Also, isochronous endpoints may never be part of an 1235 * interface's default setting. To access such bandwidth, alternate 1236 * interface settings must be made current. 1237 * 1238 * Note that in the Linux USB subsystem, bandwidth associated with 1239 * an endpoint in a given alternate setting is not reserved until an URB 1240 * is submitted that needs that bandwidth. Some other operating systems 1241 * allocate bandwidth early, when a configuration is chosen. 1242 * 1243 * This call is synchronous, and may not be used in an interrupt context. 1244 * Also, drivers must not change altsettings while urbs are scheduled for 1245 * endpoints in that interface; all such urbs must first be completed 1246 * (perhaps forced by unlinking). 1247 * 1248 * Returns zero on success, or else the status code returned by the 1249 * underlying usb_control_msg() call. 1250 */ 1251 int usb_set_interface(struct usb_device *dev, int interface, int alternate) 1252 { 1253 struct usb_interface *iface; 1254 struct usb_host_interface *alt; 1255 int ret; 1256 int manual = 0; 1257 unsigned int epaddr; 1258 unsigned int pipe; 1259 1260 if (dev->state == USB_STATE_SUSPENDED) 1261 return -EHOSTUNREACH; 1262 1263 iface = usb_ifnum_to_if(dev, interface); 1264 if (!iface) { 1265 dev_dbg(&dev->dev, "selecting invalid interface %d\n", 1266 interface); 1267 return -EINVAL; 1268 } 1269 1270 alt = usb_altnum_to_altsetting(iface, alternate); 1271 if (!alt) { 1272 dev_warn(&dev->dev, "selecting invalid altsetting %d", 1273 alternate); 1274 return -EINVAL; 1275 } 1276 1277 if (dev->quirks & USB_QUIRK_NO_SET_INTF) 1278 ret = -EPIPE; 1279 else 1280 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1281 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE, 1282 alternate, interface, NULL, 0, 5000); 1283 1284 /* 9.4.10 says devices don't need this and are free to STALL the 1285 * request if the interface only has one alternate setting. 1286 */ 1287 if (ret == -EPIPE && iface->num_altsetting == 1) { 1288 dev_dbg(&dev->dev, 1289 "manual set_interface for iface %d, alt %d\n", 1290 interface, alternate); 1291 manual = 1; 1292 } else if (ret < 0) 1293 return ret; 1294 1295 /* FIXME drivers shouldn't need to replicate/bugfix the logic here 1296 * when they implement async or easily-killable versions of this or 1297 * other "should-be-internal" functions (like clear_halt). 1298 * should hcd+usbcore postprocess control requests? 1299 */ 1300 1301 /* prevent submissions using previous endpoint settings */ 1302 if (iface->cur_altsetting != alt) { 1303 remove_intf_ep_devs(iface); 1304 usb_remove_sysfs_intf_files(iface); 1305 } 1306 usb_disable_interface(dev, iface, true); 1307 1308 iface->cur_altsetting = alt; 1309 1310 /* If the interface only has one altsetting and the device didn't 1311 * accept the request, we attempt to carry out the equivalent action 1312 * by manually clearing the HALT feature for each endpoint in the 1313 * new altsetting. 1314 */ 1315 if (manual) { 1316 int i; 1317 1318 for (i = 0; i < alt->desc.bNumEndpoints; i++) { 1319 epaddr = alt->endpoint[i].desc.bEndpointAddress; 1320 pipe = __create_pipe(dev, 1321 USB_ENDPOINT_NUMBER_MASK & epaddr) | 1322 (usb_endpoint_out(epaddr) ? 1323 USB_DIR_OUT : USB_DIR_IN); 1324 1325 usb_clear_halt(dev, pipe); 1326 } 1327 } 1328 1329 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting 1330 * 1331 * Note: 1332 * Despite EP0 is always present in all interfaces/AS, the list of 1333 * endpoints from the descriptor does not contain EP0. Due to its 1334 * omnipresence one might expect EP0 being considered "affected" by 1335 * any SetInterface request and hence assume toggles need to be reset. 1336 * However, EP0 toggles are re-synced for every individual transfer 1337 * during the SETUP stage - hence EP0 toggles are "don't care" here. 1338 * (Likewise, EP0 never "halts" on well designed devices.) 1339 */ 1340 usb_enable_interface(dev, iface, true); 1341 if (device_is_registered(&iface->dev)) { 1342 usb_create_sysfs_intf_files(iface); 1343 create_intf_ep_devs(iface); 1344 } 1345 return 0; 1346 } 1347 EXPORT_SYMBOL_GPL(usb_set_interface); 1348 1349 /** 1350 * usb_reset_configuration - lightweight device reset 1351 * @dev: the device whose configuration is being reset 1352 * 1353 * This issues a standard SET_CONFIGURATION request to the device using 1354 * the current configuration. The effect is to reset most USB-related 1355 * state in the device, including interface altsettings (reset to zero), 1356 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt 1357 * endpoints). Other usbcore state is unchanged, including bindings of 1358 * usb device drivers to interfaces. 1359 * 1360 * Because this affects multiple interfaces, avoid using this with composite 1361 * (multi-interface) devices. Instead, the driver for each interface may 1362 * use usb_set_interface() on the interfaces it claims. Be careful though; 1363 * some devices don't support the SET_INTERFACE request, and others won't 1364 * reset all the interface state (notably endpoint state). Resetting the whole 1365 * configuration would affect other drivers' interfaces. 1366 * 1367 * The caller must own the device lock. 1368 * 1369 * Returns zero on success, else a negative error code. 1370 */ 1371 int usb_reset_configuration(struct usb_device *dev) 1372 { 1373 int i, retval; 1374 struct usb_host_config *config; 1375 1376 if (dev->state == USB_STATE_SUSPENDED) 1377 return -EHOSTUNREACH; 1378 1379 /* caller must have locked the device and must own 1380 * the usb bus readlock (so driver bindings are stable); 1381 * calls during probe() are fine 1382 */ 1383 1384 for (i = 1; i < 16; ++i) { 1385 usb_disable_endpoint(dev, i, true); 1386 usb_disable_endpoint(dev, i + USB_DIR_IN, true); 1387 } 1388 1389 config = dev->actconfig; 1390 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1391 USB_REQ_SET_CONFIGURATION, 0, 1392 config->desc.bConfigurationValue, 0, 1393 NULL, 0, USB_CTRL_SET_TIMEOUT); 1394 if (retval < 0) 1395 return retval; 1396 1397 /* re-init hc/hcd interface/endpoint state */ 1398 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1399 struct usb_interface *intf = config->interface[i]; 1400 struct usb_host_interface *alt; 1401 1402 alt = usb_altnum_to_altsetting(intf, 0); 1403 1404 /* No altsetting 0? We'll assume the first altsetting. 1405 * We could use a GetInterface call, but if a device is 1406 * so non-compliant that it doesn't have altsetting 0 1407 * then I wouldn't trust its reply anyway. 1408 */ 1409 if (!alt) 1410 alt = &intf->altsetting[0]; 1411 1412 if (alt != intf->cur_altsetting) { 1413 remove_intf_ep_devs(intf); 1414 usb_remove_sysfs_intf_files(intf); 1415 } 1416 intf->cur_altsetting = alt; 1417 usb_enable_interface(dev, intf, true); 1418 if (device_is_registered(&intf->dev)) { 1419 usb_create_sysfs_intf_files(intf); 1420 create_intf_ep_devs(intf); 1421 } 1422 } 1423 return 0; 1424 } 1425 EXPORT_SYMBOL_GPL(usb_reset_configuration); 1426 1427 static void usb_release_interface(struct device *dev) 1428 { 1429 struct usb_interface *intf = to_usb_interface(dev); 1430 struct usb_interface_cache *intfc = 1431 altsetting_to_usb_interface_cache(intf->altsetting); 1432 1433 kref_put(&intfc->ref, usb_release_interface_cache); 1434 kfree(intf); 1435 } 1436 1437 #ifdef CONFIG_HOTPLUG 1438 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env) 1439 { 1440 struct usb_device *usb_dev; 1441 struct usb_interface *intf; 1442 struct usb_host_interface *alt; 1443 1444 intf = to_usb_interface(dev); 1445 usb_dev = interface_to_usbdev(intf); 1446 alt = intf->cur_altsetting; 1447 1448 if (add_uevent_var(env, "INTERFACE=%d/%d/%d", 1449 alt->desc.bInterfaceClass, 1450 alt->desc.bInterfaceSubClass, 1451 alt->desc.bInterfaceProtocol)) 1452 return -ENOMEM; 1453 1454 if (add_uevent_var(env, 1455 "MODALIAS=usb:" 1456 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X", 1457 le16_to_cpu(usb_dev->descriptor.idVendor), 1458 le16_to_cpu(usb_dev->descriptor.idProduct), 1459 le16_to_cpu(usb_dev->descriptor.bcdDevice), 1460 usb_dev->descriptor.bDeviceClass, 1461 usb_dev->descriptor.bDeviceSubClass, 1462 usb_dev->descriptor.bDeviceProtocol, 1463 alt->desc.bInterfaceClass, 1464 alt->desc.bInterfaceSubClass, 1465 alt->desc.bInterfaceProtocol)) 1466 return -ENOMEM; 1467 1468 return 0; 1469 } 1470 1471 #else 1472 1473 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env) 1474 { 1475 return -ENODEV; 1476 } 1477 #endif /* CONFIG_HOTPLUG */ 1478 1479 struct device_type usb_if_device_type = { 1480 .name = "usb_interface", 1481 .release = usb_release_interface, 1482 .uevent = usb_if_uevent, 1483 }; 1484 1485 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev, 1486 struct usb_host_config *config, 1487 u8 inum) 1488 { 1489 struct usb_interface_assoc_descriptor *retval = NULL; 1490 struct usb_interface_assoc_descriptor *intf_assoc; 1491 int first_intf; 1492 int last_intf; 1493 int i; 1494 1495 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) { 1496 intf_assoc = config->intf_assoc[i]; 1497 if (intf_assoc->bInterfaceCount == 0) 1498 continue; 1499 1500 first_intf = intf_assoc->bFirstInterface; 1501 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1); 1502 if (inum >= first_intf && inum <= last_intf) { 1503 if (!retval) 1504 retval = intf_assoc; 1505 else 1506 dev_err(&dev->dev, "Interface #%d referenced" 1507 " by multiple IADs\n", inum); 1508 } 1509 } 1510 1511 return retval; 1512 } 1513 1514 1515 /* 1516 * Internal function to queue a device reset 1517 * 1518 * This is initialized into the workstruct in 'struct 1519 * usb_device->reset_ws' that is launched by 1520 * message.c:usb_set_configuration() when initializing each 'struct 1521 * usb_interface'. 1522 * 1523 * It is safe to get the USB device without reference counts because 1524 * the life cycle of @iface is bound to the life cycle of @udev. Then, 1525 * this function will be ran only if @iface is alive (and before 1526 * freeing it any scheduled instances of it will have been cancelled). 1527 * 1528 * We need to set a flag (usb_dev->reset_running) because when we call 1529 * the reset, the interfaces might be unbound. The current interface 1530 * cannot try to remove the queued work as it would cause a deadlock 1531 * (you cannot remove your work from within your executing 1532 * workqueue). This flag lets it know, so that 1533 * usb_cancel_queued_reset() doesn't try to do it. 1534 * 1535 * See usb_queue_reset_device() for more details 1536 */ 1537 void __usb_queue_reset_device(struct work_struct *ws) 1538 { 1539 int rc; 1540 struct usb_interface *iface = 1541 container_of(ws, struct usb_interface, reset_ws); 1542 struct usb_device *udev = interface_to_usbdev(iface); 1543 1544 rc = usb_lock_device_for_reset(udev, iface); 1545 if (rc >= 0) { 1546 iface->reset_running = 1; 1547 usb_reset_device(udev); 1548 iface->reset_running = 0; 1549 usb_unlock_device(udev); 1550 } 1551 } 1552 1553 1554 /* 1555 * usb_set_configuration - Makes a particular device setting be current 1556 * @dev: the device whose configuration is being updated 1557 * @configuration: the configuration being chosen. 1558 * Context: !in_interrupt(), caller owns the device lock 1559 * 1560 * This is used to enable non-default device modes. Not all devices 1561 * use this kind of configurability; many devices only have one 1562 * configuration. 1563 * 1564 * @configuration is the value of the configuration to be installed. 1565 * According to the USB spec (e.g. section 9.1.1.5), configuration values 1566 * must be non-zero; a value of zero indicates that the device in 1567 * unconfigured. However some devices erroneously use 0 as one of their 1568 * configuration values. To help manage such devices, this routine will 1569 * accept @configuration = -1 as indicating the device should be put in 1570 * an unconfigured state. 1571 * 1572 * USB device configurations may affect Linux interoperability, 1573 * power consumption and the functionality available. For example, 1574 * the default configuration is limited to using 100mA of bus power, 1575 * so that when certain device functionality requires more power, 1576 * and the device is bus powered, that functionality should be in some 1577 * non-default device configuration. Other device modes may also be 1578 * reflected as configuration options, such as whether two ISDN 1579 * channels are available independently; and choosing between open 1580 * standard device protocols (like CDC) or proprietary ones. 1581 * 1582 * Note that a non-authorized device (dev->authorized == 0) will only 1583 * be put in unconfigured mode. 1584 * 1585 * Note that USB has an additional level of device configurability, 1586 * associated with interfaces. That configurability is accessed using 1587 * usb_set_interface(). 1588 * 1589 * This call is synchronous. The calling context must be able to sleep, 1590 * must own the device lock, and must not hold the driver model's USB 1591 * bus mutex; usb interface driver probe() methods cannot use this routine. 1592 * 1593 * Returns zero on success, or else the status code returned by the 1594 * underlying call that failed. On successful completion, each interface 1595 * in the original device configuration has been destroyed, and each one 1596 * in the new configuration has been probed by all relevant usb device 1597 * drivers currently known to the kernel. 1598 */ 1599 int usb_set_configuration(struct usb_device *dev, int configuration) 1600 { 1601 int i, ret; 1602 struct usb_host_config *cp = NULL; 1603 struct usb_interface **new_interfaces = NULL; 1604 int n, nintf; 1605 1606 if (dev->authorized == 0 || configuration == -1) 1607 configuration = 0; 1608 else { 1609 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) { 1610 if (dev->config[i].desc.bConfigurationValue == 1611 configuration) { 1612 cp = &dev->config[i]; 1613 break; 1614 } 1615 } 1616 } 1617 if ((!cp && configuration != 0)) 1618 return -EINVAL; 1619 1620 /* The USB spec says configuration 0 means unconfigured. 1621 * But if a device includes a configuration numbered 0, 1622 * we will accept it as a correctly configured state. 1623 * Use -1 if you really want to unconfigure the device. 1624 */ 1625 if (cp && configuration == 0) 1626 dev_warn(&dev->dev, "config 0 descriptor??\n"); 1627 1628 /* Allocate memory for new interfaces before doing anything else, 1629 * so that if we run out then nothing will have changed. */ 1630 n = nintf = 0; 1631 if (cp) { 1632 nintf = cp->desc.bNumInterfaces; 1633 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces), 1634 GFP_KERNEL); 1635 if (!new_interfaces) { 1636 dev_err(&dev->dev, "Out of memory\n"); 1637 return -ENOMEM; 1638 } 1639 1640 for (; n < nintf; ++n) { 1641 new_interfaces[n] = kzalloc( 1642 sizeof(struct usb_interface), 1643 GFP_KERNEL); 1644 if (!new_interfaces[n]) { 1645 dev_err(&dev->dev, "Out of memory\n"); 1646 ret = -ENOMEM; 1647 free_interfaces: 1648 while (--n >= 0) 1649 kfree(new_interfaces[n]); 1650 kfree(new_interfaces); 1651 return ret; 1652 } 1653 } 1654 1655 i = dev->bus_mA - cp->desc.bMaxPower * 2; 1656 if (i < 0) 1657 dev_warn(&dev->dev, "new config #%d exceeds power " 1658 "limit by %dmA\n", 1659 configuration, -i); 1660 } 1661 1662 /* Wake up the device so we can send it the Set-Config request */ 1663 ret = usb_autoresume_device(dev); 1664 if (ret) 1665 goto free_interfaces; 1666 1667 /* if it's already configured, clear out old state first. 1668 * getting rid of old interfaces means unbinding their drivers. 1669 */ 1670 if (dev->state != USB_STATE_ADDRESS) 1671 usb_disable_device(dev, 1); /* Skip ep0 */ 1672 1673 /* Get rid of pending async Set-Config requests for this device */ 1674 cancel_async_set_config(dev); 1675 1676 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1677 USB_REQ_SET_CONFIGURATION, 0, configuration, 0, 1678 NULL, 0, USB_CTRL_SET_TIMEOUT); 1679 if (ret < 0) { 1680 /* All the old state is gone, so what else can we do? 1681 * The device is probably useless now anyway. 1682 */ 1683 cp = NULL; 1684 } 1685 1686 dev->actconfig = cp; 1687 if (!cp) { 1688 usb_set_device_state(dev, USB_STATE_ADDRESS); 1689 usb_autosuspend_device(dev); 1690 goto free_interfaces; 1691 } 1692 usb_set_device_state(dev, USB_STATE_CONFIGURED); 1693 1694 /* Initialize the new interface structures and the 1695 * hc/hcd/usbcore interface/endpoint state. 1696 */ 1697 for (i = 0; i < nintf; ++i) { 1698 struct usb_interface_cache *intfc; 1699 struct usb_interface *intf; 1700 struct usb_host_interface *alt; 1701 1702 cp->interface[i] = intf = new_interfaces[i]; 1703 intfc = cp->intf_cache[i]; 1704 intf->altsetting = intfc->altsetting; 1705 intf->num_altsetting = intfc->num_altsetting; 1706 intf->intf_assoc = find_iad(dev, cp, i); 1707 kref_get(&intfc->ref); 1708 1709 alt = usb_altnum_to_altsetting(intf, 0); 1710 1711 /* No altsetting 0? We'll assume the first altsetting. 1712 * We could use a GetInterface call, but if a device is 1713 * so non-compliant that it doesn't have altsetting 0 1714 * then I wouldn't trust its reply anyway. 1715 */ 1716 if (!alt) 1717 alt = &intf->altsetting[0]; 1718 1719 intf->cur_altsetting = alt; 1720 usb_enable_interface(dev, intf, true); 1721 intf->dev.parent = &dev->dev; 1722 intf->dev.driver = NULL; 1723 intf->dev.bus = &usb_bus_type; 1724 intf->dev.type = &usb_if_device_type; 1725 intf->dev.groups = usb_interface_groups; 1726 intf->dev.dma_mask = dev->dev.dma_mask; 1727 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device); 1728 device_initialize(&intf->dev); 1729 mark_quiesced(intf); 1730 dev_set_name(&intf->dev, "%d-%s:%d.%d", 1731 dev->bus->busnum, dev->devpath, 1732 configuration, alt->desc.bInterfaceNumber); 1733 } 1734 kfree(new_interfaces); 1735 1736 if (cp->string == NULL && 1737 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS)) 1738 cp->string = usb_cache_string(dev, cp->desc.iConfiguration); 1739 1740 /* Now that all the interfaces are set up, register them 1741 * to trigger binding of drivers to interfaces. probe() 1742 * routines may install different altsettings and may 1743 * claim() any interfaces not yet bound. Many class drivers 1744 * need that: CDC, audio, video, etc. 1745 */ 1746 for (i = 0; i < nintf; ++i) { 1747 struct usb_interface *intf = cp->interface[i]; 1748 1749 dev_dbg(&dev->dev, 1750 "adding %s (config #%d, interface %d)\n", 1751 dev_name(&intf->dev), configuration, 1752 intf->cur_altsetting->desc.bInterfaceNumber); 1753 ret = device_add(&intf->dev); 1754 if (ret != 0) { 1755 dev_err(&dev->dev, "device_add(%s) --> %d\n", 1756 dev_name(&intf->dev), ret); 1757 continue; 1758 } 1759 create_intf_ep_devs(intf); 1760 } 1761 1762 usb_autosuspend_device(dev); 1763 return 0; 1764 } 1765 1766 static LIST_HEAD(set_config_list); 1767 static DEFINE_SPINLOCK(set_config_lock); 1768 1769 struct set_config_request { 1770 struct usb_device *udev; 1771 int config; 1772 struct work_struct work; 1773 struct list_head node; 1774 }; 1775 1776 /* Worker routine for usb_driver_set_configuration() */ 1777 static void driver_set_config_work(struct work_struct *work) 1778 { 1779 struct set_config_request *req = 1780 container_of(work, struct set_config_request, work); 1781 struct usb_device *udev = req->udev; 1782 1783 usb_lock_device(udev); 1784 spin_lock(&set_config_lock); 1785 list_del(&req->node); 1786 spin_unlock(&set_config_lock); 1787 1788 if (req->config >= -1) /* Is req still valid? */ 1789 usb_set_configuration(udev, req->config); 1790 usb_unlock_device(udev); 1791 usb_put_dev(udev); 1792 kfree(req); 1793 } 1794 1795 /* Cancel pending Set-Config requests for a device whose configuration 1796 * was just changed 1797 */ 1798 static void cancel_async_set_config(struct usb_device *udev) 1799 { 1800 struct set_config_request *req; 1801 1802 spin_lock(&set_config_lock); 1803 list_for_each_entry(req, &set_config_list, node) { 1804 if (req->udev == udev) 1805 req->config = -999; /* Mark as cancelled */ 1806 } 1807 spin_unlock(&set_config_lock); 1808 } 1809 1810 /** 1811 * usb_driver_set_configuration - Provide a way for drivers to change device configurations 1812 * @udev: the device whose configuration is being updated 1813 * @config: the configuration being chosen. 1814 * Context: In process context, must be able to sleep 1815 * 1816 * Device interface drivers are not allowed to change device configurations. 1817 * This is because changing configurations will destroy the interface the 1818 * driver is bound to and create new ones; it would be like a floppy-disk 1819 * driver telling the computer to replace the floppy-disk drive with a 1820 * tape drive! 1821 * 1822 * Still, in certain specialized circumstances the need may arise. This 1823 * routine gets around the normal restrictions by using a work thread to 1824 * submit the change-config request. 1825 * 1826 * Returns 0 if the request was succesfully queued, error code otherwise. 1827 * The caller has no way to know whether the queued request will eventually 1828 * succeed. 1829 */ 1830 int usb_driver_set_configuration(struct usb_device *udev, int config) 1831 { 1832 struct set_config_request *req; 1833 1834 req = kmalloc(sizeof(*req), GFP_KERNEL); 1835 if (!req) 1836 return -ENOMEM; 1837 req->udev = udev; 1838 req->config = config; 1839 INIT_WORK(&req->work, driver_set_config_work); 1840 1841 spin_lock(&set_config_lock); 1842 list_add(&req->node, &set_config_list); 1843 spin_unlock(&set_config_lock); 1844 1845 usb_get_dev(udev); 1846 schedule_work(&req->work); 1847 return 0; 1848 } 1849 EXPORT_SYMBOL_GPL(usb_driver_set_configuration); 1850