xref: /openbmc/linux/drivers/usb/core/message.c (revision 7dd65feb)
1 /*
2  * message.c - synchronous message handling
3  */
4 
5 #include <linux/pci.h>	/* for scatterlist macros */
6 #include <linux/usb.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/timer.h>
12 #include <linux/ctype.h>
13 #include <linux/nls.h>
14 #include <linux/device.h>
15 #include <linux/scatterlist.h>
16 #include <linux/usb/quirks.h>
17 #include <asm/byteorder.h>
18 
19 #include "hcd.h"	/* for usbcore internals */
20 #include "usb.h"
21 
22 static void cancel_async_set_config(struct usb_device *udev);
23 
24 struct api_context {
25 	struct completion	done;
26 	int			status;
27 };
28 
29 static void usb_api_blocking_completion(struct urb *urb)
30 {
31 	struct api_context *ctx = urb->context;
32 
33 	ctx->status = urb->status;
34 	complete(&ctx->done);
35 }
36 
37 
38 /*
39  * Starts urb and waits for completion or timeout. Note that this call
40  * is NOT interruptible. Many device driver i/o requests should be
41  * interruptible and therefore these drivers should implement their
42  * own interruptible routines.
43  */
44 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
45 {
46 	struct api_context ctx;
47 	unsigned long expire;
48 	int retval;
49 
50 	init_completion(&ctx.done);
51 	urb->context = &ctx;
52 	urb->actual_length = 0;
53 	retval = usb_submit_urb(urb, GFP_NOIO);
54 	if (unlikely(retval))
55 		goto out;
56 
57 	expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
58 	if (!wait_for_completion_timeout(&ctx.done, expire)) {
59 		usb_kill_urb(urb);
60 		retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
61 
62 		dev_dbg(&urb->dev->dev,
63 			"%s timed out on ep%d%s len=%u/%u\n",
64 			current->comm,
65 			usb_endpoint_num(&urb->ep->desc),
66 			usb_urb_dir_in(urb) ? "in" : "out",
67 			urb->actual_length,
68 			urb->transfer_buffer_length);
69 	} else
70 		retval = ctx.status;
71 out:
72 	if (actual_length)
73 		*actual_length = urb->actual_length;
74 
75 	usb_free_urb(urb);
76 	return retval;
77 }
78 
79 /*-------------------------------------------------------------------*/
80 /* returns status (negative) or length (positive) */
81 static int usb_internal_control_msg(struct usb_device *usb_dev,
82 				    unsigned int pipe,
83 				    struct usb_ctrlrequest *cmd,
84 				    void *data, int len, int timeout)
85 {
86 	struct urb *urb;
87 	int retv;
88 	int length;
89 
90 	urb = usb_alloc_urb(0, GFP_NOIO);
91 	if (!urb)
92 		return -ENOMEM;
93 
94 	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
95 			     len, usb_api_blocking_completion, NULL);
96 
97 	retv = usb_start_wait_urb(urb, timeout, &length);
98 	if (retv < 0)
99 		return retv;
100 	else
101 		return length;
102 }
103 
104 /**
105  * usb_control_msg - Builds a control urb, sends it off and waits for completion
106  * @dev: pointer to the usb device to send the message to
107  * @pipe: endpoint "pipe" to send the message to
108  * @request: USB message request value
109  * @requesttype: USB message request type value
110  * @value: USB message value
111  * @index: USB message index value
112  * @data: pointer to the data to send
113  * @size: length in bytes of the data to send
114  * @timeout: time in msecs to wait for the message to complete before timing
115  *	out (if 0 the wait is forever)
116  *
117  * Context: !in_interrupt ()
118  *
119  * This function sends a simple control message to a specified endpoint and
120  * waits for the message to complete, or timeout.
121  *
122  * If successful, it returns the number of bytes transferred, otherwise a
123  * negative error number.
124  *
125  * Don't use this function from within an interrupt context, like a bottom half
126  * handler.  If you need an asynchronous message, or need to send a message
127  * from within interrupt context, use usb_submit_urb().
128  * If a thread in your driver uses this call, make sure your disconnect()
129  * method can wait for it to complete.  Since you don't have a handle on the
130  * URB used, you can't cancel the request.
131  */
132 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
133 		    __u8 requesttype, __u16 value, __u16 index, void *data,
134 		    __u16 size, int timeout)
135 {
136 	struct usb_ctrlrequest *dr;
137 	int ret;
138 
139 	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
140 	if (!dr)
141 		return -ENOMEM;
142 
143 	dr->bRequestType = requesttype;
144 	dr->bRequest = request;
145 	dr->wValue = cpu_to_le16(value);
146 	dr->wIndex = cpu_to_le16(index);
147 	dr->wLength = cpu_to_le16(size);
148 
149 	/* dbg("usb_control_msg"); */
150 
151 	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
152 
153 	kfree(dr);
154 
155 	return ret;
156 }
157 EXPORT_SYMBOL_GPL(usb_control_msg);
158 
159 /**
160  * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
161  * @usb_dev: pointer to the usb device to send the message to
162  * @pipe: endpoint "pipe" to send the message to
163  * @data: pointer to the data to send
164  * @len: length in bytes of the data to send
165  * @actual_length: pointer to a location to put the actual length transferred
166  *	in bytes
167  * @timeout: time in msecs to wait for the message to complete before
168  *	timing out (if 0 the wait is forever)
169  *
170  * Context: !in_interrupt ()
171  *
172  * This function sends a simple interrupt message to a specified endpoint and
173  * waits for the message to complete, or timeout.
174  *
175  * If successful, it returns 0, otherwise a negative error number.  The number
176  * of actual bytes transferred will be stored in the actual_length paramater.
177  *
178  * Don't use this function from within an interrupt context, like a bottom half
179  * handler.  If you need an asynchronous message, or need to send a message
180  * from within interrupt context, use usb_submit_urb() If a thread in your
181  * driver uses this call, make sure your disconnect() method can wait for it to
182  * complete.  Since you don't have a handle on the URB used, you can't cancel
183  * the request.
184  */
185 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
186 		      void *data, int len, int *actual_length, int timeout)
187 {
188 	return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
189 }
190 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
191 
192 /**
193  * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
194  * @usb_dev: pointer to the usb device to send the message to
195  * @pipe: endpoint "pipe" to send the message to
196  * @data: pointer to the data to send
197  * @len: length in bytes of the data to send
198  * @actual_length: pointer to a location to put the actual length transferred
199  *	in bytes
200  * @timeout: time in msecs to wait for the message to complete before
201  *	timing out (if 0 the wait is forever)
202  *
203  * Context: !in_interrupt ()
204  *
205  * This function sends a simple bulk message to a specified endpoint
206  * and waits for the message to complete, or timeout.
207  *
208  * If successful, it returns 0, otherwise a negative error number.  The number
209  * of actual bytes transferred will be stored in the actual_length paramater.
210  *
211  * Don't use this function from within an interrupt context, like a bottom half
212  * handler.  If you need an asynchronous message, or need to send a message
213  * from within interrupt context, use usb_submit_urb() If a thread in your
214  * driver uses this call, make sure your disconnect() method can wait for it to
215  * complete.  Since you don't have a handle on the URB used, you can't cancel
216  * the request.
217  *
218  * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
219  * users are forced to abuse this routine by using it to submit URBs for
220  * interrupt endpoints.  We will take the liberty of creating an interrupt URB
221  * (with the default interval) if the target is an interrupt endpoint.
222  */
223 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
224 		 void *data, int len, int *actual_length, int timeout)
225 {
226 	struct urb *urb;
227 	struct usb_host_endpoint *ep;
228 
229 	ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out)
230 			[usb_pipeendpoint(pipe)];
231 	if (!ep || len < 0)
232 		return -EINVAL;
233 
234 	urb = usb_alloc_urb(0, GFP_KERNEL);
235 	if (!urb)
236 		return -ENOMEM;
237 
238 	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
239 			USB_ENDPOINT_XFER_INT) {
240 		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
241 		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
242 				usb_api_blocking_completion, NULL,
243 				ep->desc.bInterval);
244 	} else
245 		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
246 				usb_api_blocking_completion, NULL);
247 
248 	return usb_start_wait_urb(urb, timeout, actual_length);
249 }
250 EXPORT_SYMBOL_GPL(usb_bulk_msg);
251 
252 /*-------------------------------------------------------------------*/
253 
254 static void sg_clean(struct usb_sg_request *io)
255 {
256 	if (io->urbs) {
257 		while (io->entries--)
258 			usb_free_urb(io->urbs [io->entries]);
259 		kfree(io->urbs);
260 		io->urbs = NULL;
261 	}
262 	if (io->dev->dev.dma_mask != NULL)
263 		usb_buffer_unmap_sg(io->dev, usb_pipein(io->pipe),
264 				    io->sg, io->nents);
265 	io->dev = NULL;
266 }
267 
268 static void sg_complete(struct urb *urb)
269 {
270 	struct usb_sg_request *io = urb->context;
271 	int status = urb->status;
272 
273 	spin_lock(&io->lock);
274 
275 	/* In 2.5 we require hcds' endpoint queues not to progress after fault
276 	 * reports, until the completion callback (this!) returns.  That lets
277 	 * device driver code (like this routine) unlink queued urbs first,
278 	 * if it needs to, since the HC won't work on them at all.  So it's
279 	 * not possible for page N+1 to overwrite page N, and so on.
280 	 *
281 	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
282 	 * complete before the HCD can get requests away from hardware,
283 	 * though never during cleanup after a hard fault.
284 	 */
285 	if (io->status
286 			&& (io->status != -ECONNRESET
287 				|| status != -ECONNRESET)
288 			&& urb->actual_length) {
289 		dev_err(io->dev->bus->controller,
290 			"dev %s ep%d%s scatterlist error %d/%d\n",
291 			io->dev->devpath,
292 			usb_endpoint_num(&urb->ep->desc),
293 			usb_urb_dir_in(urb) ? "in" : "out",
294 			status, io->status);
295 		/* BUG (); */
296 	}
297 
298 	if (io->status == 0 && status && status != -ECONNRESET) {
299 		int i, found, retval;
300 
301 		io->status = status;
302 
303 		/* the previous urbs, and this one, completed already.
304 		 * unlink pending urbs so they won't rx/tx bad data.
305 		 * careful: unlink can sometimes be synchronous...
306 		 */
307 		spin_unlock(&io->lock);
308 		for (i = 0, found = 0; i < io->entries; i++) {
309 			if (!io->urbs [i] || !io->urbs [i]->dev)
310 				continue;
311 			if (found) {
312 				retval = usb_unlink_urb(io->urbs [i]);
313 				if (retval != -EINPROGRESS &&
314 				    retval != -ENODEV &&
315 				    retval != -EBUSY)
316 					dev_err(&io->dev->dev,
317 						"%s, unlink --> %d\n",
318 						__func__, retval);
319 			} else if (urb == io->urbs [i])
320 				found = 1;
321 		}
322 		spin_lock(&io->lock);
323 	}
324 	urb->dev = NULL;
325 
326 	/* on the last completion, signal usb_sg_wait() */
327 	io->bytes += urb->actual_length;
328 	io->count--;
329 	if (!io->count)
330 		complete(&io->complete);
331 
332 	spin_unlock(&io->lock);
333 }
334 
335 
336 /**
337  * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
338  * @io: request block being initialized.  until usb_sg_wait() returns,
339  *	treat this as a pointer to an opaque block of memory,
340  * @dev: the usb device that will send or receive the data
341  * @pipe: endpoint "pipe" used to transfer the data
342  * @period: polling rate for interrupt endpoints, in frames or
343  * 	(for high speed endpoints) microframes; ignored for bulk
344  * @sg: scatterlist entries
345  * @nents: how many entries in the scatterlist
346  * @length: how many bytes to send from the scatterlist, or zero to
347  * 	send every byte identified in the list.
348  * @mem_flags: SLAB_* flags affecting memory allocations in this call
349  *
350  * Returns zero for success, else a negative errno value.  This initializes a
351  * scatter/gather request, allocating resources such as I/O mappings and urb
352  * memory (except maybe memory used by USB controller drivers).
353  *
354  * The request must be issued using usb_sg_wait(), which waits for the I/O to
355  * complete (or to be canceled) and then cleans up all resources allocated by
356  * usb_sg_init().
357  *
358  * The request may be canceled with usb_sg_cancel(), either before or after
359  * usb_sg_wait() is called.
360  */
361 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
362 		unsigned pipe, unsigned	period, struct scatterlist *sg,
363 		int nents, size_t length, gfp_t mem_flags)
364 {
365 	int i;
366 	int urb_flags;
367 	int dma;
368 	int use_sg;
369 
370 	if (!io || !dev || !sg
371 			|| usb_pipecontrol(pipe)
372 			|| usb_pipeisoc(pipe)
373 			|| nents <= 0)
374 		return -EINVAL;
375 
376 	spin_lock_init(&io->lock);
377 	io->dev = dev;
378 	io->pipe = pipe;
379 	io->sg = sg;
380 	io->nents = nents;
381 
382 	/* not all host controllers use DMA (like the mainstream pci ones);
383 	 * they can use PIO (sl811) or be software over another transport.
384 	 */
385 	dma = (dev->dev.dma_mask != NULL);
386 	if (dma)
387 		io->entries = usb_buffer_map_sg(dev, usb_pipein(pipe),
388 						sg, nents);
389 	else
390 		io->entries = nents;
391 
392 	/* initialize all the urbs we'll use */
393 	if (io->entries <= 0)
394 		return io->entries;
395 
396 	if (dev->bus->sg_tablesize > 0) {
397 		io->urbs = kmalloc(sizeof *io->urbs, mem_flags);
398 		use_sg = true;
399 	} else {
400 		io->urbs = kmalloc(io->entries * sizeof *io->urbs, mem_flags);
401 		use_sg = false;
402 	}
403 	if (!io->urbs)
404 		goto nomem;
405 
406 	urb_flags = 0;
407 	if (dma)
408 		urb_flags |= URB_NO_TRANSFER_DMA_MAP;
409 	if (usb_pipein(pipe))
410 		urb_flags |= URB_SHORT_NOT_OK;
411 
412 	if (use_sg) {
413 		io->urbs[0] = usb_alloc_urb(0, mem_flags);
414 		if (!io->urbs[0]) {
415 			io->entries = 0;
416 			goto nomem;
417 		}
418 
419 		io->urbs[0]->dev = NULL;
420 		io->urbs[0]->pipe = pipe;
421 		io->urbs[0]->interval = period;
422 		io->urbs[0]->transfer_flags = urb_flags;
423 
424 		io->urbs[0]->complete = sg_complete;
425 		io->urbs[0]->context = io;
426 		/* A length of zero means transfer the whole sg list */
427 		io->urbs[0]->transfer_buffer_length = length;
428 		if (length == 0) {
429 			for_each_sg(sg, sg, io->entries, i) {
430 				io->urbs[0]->transfer_buffer_length +=
431 					sg_dma_len(sg);
432 			}
433 		}
434 		io->urbs[0]->sg = io;
435 		io->urbs[0]->num_sgs = io->entries;
436 		io->entries = 1;
437 	} else {
438 		urb_flags |= URB_NO_INTERRUPT;
439 		for_each_sg(sg, sg, io->entries, i) {
440 			unsigned len;
441 
442 			io->urbs[i] = usb_alloc_urb(0, mem_flags);
443 			if (!io->urbs[i]) {
444 				io->entries = i;
445 				goto nomem;
446 			}
447 
448 			io->urbs[i]->dev = NULL;
449 			io->urbs[i]->pipe = pipe;
450 			io->urbs[i]->interval = period;
451 			io->urbs[i]->transfer_flags = urb_flags;
452 
453 			io->urbs[i]->complete = sg_complete;
454 			io->urbs[i]->context = io;
455 
456 			/*
457 			 * Some systems need to revert to PIO when DMA is temporarily
458 			 * unavailable.  For their sakes, both transfer_buffer and
459 			 * transfer_dma are set when possible.
460 			 *
461 			 * Note that if IOMMU coalescing occurred, we cannot
462 			 * trust sg_page anymore, so check if S/G list shrunk.
463 			 */
464 			if (io->nents == io->entries && !PageHighMem(sg_page(sg)))
465 				io->urbs[i]->transfer_buffer = sg_virt(sg);
466 			else
467 				io->urbs[i]->transfer_buffer = NULL;
468 
469 			if (dma) {
470 				io->urbs[i]->transfer_dma = sg_dma_address(sg);
471 				len = sg_dma_len(sg);
472 			} else {
473 				/* hc may use _only_ transfer_buffer */
474 				len = sg->length;
475 			}
476 
477 			if (length) {
478 				len = min_t(unsigned, len, length);
479 				length -= len;
480 				if (length == 0)
481 					io->entries = i + 1;
482 			}
483 			io->urbs[i]->transfer_buffer_length = len;
484 		}
485 		io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
486 	}
487 
488 	/* transaction state */
489 	io->count = io->entries;
490 	io->status = 0;
491 	io->bytes = 0;
492 	init_completion(&io->complete);
493 	return 0;
494 
495 nomem:
496 	sg_clean(io);
497 	return -ENOMEM;
498 }
499 EXPORT_SYMBOL_GPL(usb_sg_init);
500 
501 /**
502  * usb_sg_wait - synchronously execute scatter/gather request
503  * @io: request block handle, as initialized with usb_sg_init().
504  * 	some fields become accessible when this call returns.
505  * Context: !in_interrupt ()
506  *
507  * This function blocks until the specified I/O operation completes.  It
508  * leverages the grouping of the related I/O requests to get good transfer
509  * rates, by queueing the requests.  At higher speeds, such queuing can
510  * significantly improve USB throughput.
511  *
512  * There are three kinds of completion for this function.
513  * (1) success, where io->status is zero.  The number of io->bytes
514  *     transferred is as requested.
515  * (2) error, where io->status is a negative errno value.  The number
516  *     of io->bytes transferred before the error is usually less
517  *     than requested, and can be nonzero.
518  * (3) cancellation, a type of error with status -ECONNRESET that
519  *     is initiated by usb_sg_cancel().
520  *
521  * When this function returns, all memory allocated through usb_sg_init() or
522  * this call will have been freed.  The request block parameter may still be
523  * passed to usb_sg_cancel(), or it may be freed.  It could also be
524  * reinitialized and then reused.
525  *
526  * Data Transfer Rates:
527  *
528  * Bulk transfers are valid for full or high speed endpoints.
529  * The best full speed data rate is 19 packets of 64 bytes each
530  * per frame, or 1216 bytes per millisecond.
531  * The best high speed data rate is 13 packets of 512 bytes each
532  * per microframe, or 52 KBytes per millisecond.
533  *
534  * The reason to use interrupt transfers through this API would most likely
535  * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
536  * could be transferred.  That capability is less useful for low or full
537  * speed interrupt endpoints, which allow at most one packet per millisecond,
538  * of at most 8 or 64 bytes (respectively).
539  *
540  * It is not necessary to call this function to reserve bandwidth for devices
541  * under an xHCI host controller, as the bandwidth is reserved when the
542  * configuration or interface alt setting is selected.
543  */
544 void usb_sg_wait(struct usb_sg_request *io)
545 {
546 	int i;
547 	int entries = io->entries;
548 
549 	/* queue the urbs.  */
550 	spin_lock_irq(&io->lock);
551 	i = 0;
552 	while (i < entries && !io->status) {
553 		int retval;
554 
555 		io->urbs[i]->dev = io->dev;
556 		retval = usb_submit_urb(io->urbs [i], GFP_ATOMIC);
557 
558 		/* after we submit, let completions or cancelations fire;
559 		 * we handshake using io->status.
560 		 */
561 		spin_unlock_irq(&io->lock);
562 		switch (retval) {
563 			/* maybe we retrying will recover */
564 		case -ENXIO:	/* hc didn't queue this one */
565 		case -EAGAIN:
566 		case -ENOMEM:
567 			io->urbs[i]->dev = NULL;
568 			retval = 0;
569 			yield();
570 			break;
571 
572 			/* no error? continue immediately.
573 			 *
574 			 * NOTE: to work better with UHCI (4K I/O buffer may
575 			 * need 3K of TDs) it may be good to limit how many
576 			 * URBs are queued at once; N milliseconds?
577 			 */
578 		case 0:
579 			++i;
580 			cpu_relax();
581 			break;
582 
583 			/* fail any uncompleted urbs */
584 		default:
585 			io->urbs[i]->dev = NULL;
586 			io->urbs[i]->status = retval;
587 			dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
588 				__func__, retval);
589 			usb_sg_cancel(io);
590 		}
591 		spin_lock_irq(&io->lock);
592 		if (retval && (io->status == 0 || io->status == -ECONNRESET))
593 			io->status = retval;
594 	}
595 	io->count -= entries - i;
596 	if (io->count == 0)
597 		complete(&io->complete);
598 	spin_unlock_irq(&io->lock);
599 
600 	/* OK, yes, this could be packaged as non-blocking.
601 	 * So could the submit loop above ... but it's easier to
602 	 * solve neither problem than to solve both!
603 	 */
604 	wait_for_completion(&io->complete);
605 
606 	sg_clean(io);
607 }
608 EXPORT_SYMBOL_GPL(usb_sg_wait);
609 
610 /**
611  * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
612  * @io: request block, initialized with usb_sg_init()
613  *
614  * This stops a request after it has been started by usb_sg_wait().
615  * It can also prevents one initialized by usb_sg_init() from starting,
616  * so that call just frees resources allocated to the request.
617  */
618 void usb_sg_cancel(struct usb_sg_request *io)
619 {
620 	unsigned long flags;
621 
622 	spin_lock_irqsave(&io->lock, flags);
623 
624 	/* shut everything down, if it didn't already */
625 	if (!io->status) {
626 		int i;
627 
628 		io->status = -ECONNRESET;
629 		spin_unlock(&io->lock);
630 		for (i = 0; i < io->entries; i++) {
631 			int retval;
632 
633 			if (!io->urbs [i]->dev)
634 				continue;
635 			retval = usb_unlink_urb(io->urbs [i]);
636 			if (retval != -EINPROGRESS && retval != -EBUSY)
637 				dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
638 					__func__, retval);
639 		}
640 		spin_lock(&io->lock);
641 	}
642 	spin_unlock_irqrestore(&io->lock, flags);
643 }
644 EXPORT_SYMBOL_GPL(usb_sg_cancel);
645 
646 /*-------------------------------------------------------------------*/
647 
648 /**
649  * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
650  * @dev: the device whose descriptor is being retrieved
651  * @type: the descriptor type (USB_DT_*)
652  * @index: the number of the descriptor
653  * @buf: where to put the descriptor
654  * @size: how big is "buf"?
655  * Context: !in_interrupt ()
656  *
657  * Gets a USB descriptor.  Convenience functions exist to simplify
658  * getting some types of descriptors.  Use
659  * usb_get_string() or usb_string() for USB_DT_STRING.
660  * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
661  * are part of the device structure.
662  * In addition to a number of USB-standard descriptors, some
663  * devices also use class-specific or vendor-specific descriptors.
664  *
665  * This call is synchronous, and may not be used in an interrupt context.
666  *
667  * Returns the number of bytes received on success, or else the status code
668  * returned by the underlying usb_control_msg() call.
669  */
670 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
671 		       unsigned char index, void *buf, int size)
672 {
673 	int i;
674 	int result;
675 
676 	memset(buf, 0, size);	/* Make sure we parse really received data */
677 
678 	for (i = 0; i < 3; ++i) {
679 		/* retry on length 0 or error; some devices are flakey */
680 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
681 				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
682 				(type << 8) + index, 0, buf, size,
683 				USB_CTRL_GET_TIMEOUT);
684 		if (result <= 0 && result != -ETIMEDOUT)
685 			continue;
686 		if (result > 1 && ((u8 *)buf)[1] != type) {
687 			result = -ENODATA;
688 			continue;
689 		}
690 		break;
691 	}
692 	return result;
693 }
694 EXPORT_SYMBOL_GPL(usb_get_descriptor);
695 
696 /**
697  * usb_get_string - gets a string descriptor
698  * @dev: the device whose string descriptor is being retrieved
699  * @langid: code for language chosen (from string descriptor zero)
700  * @index: the number of the descriptor
701  * @buf: where to put the string
702  * @size: how big is "buf"?
703  * Context: !in_interrupt ()
704  *
705  * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
706  * in little-endian byte order).
707  * The usb_string() function will often be a convenient way to turn
708  * these strings into kernel-printable form.
709  *
710  * Strings may be referenced in device, configuration, interface, or other
711  * descriptors, and could also be used in vendor-specific ways.
712  *
713  * This call is synchronous, and may not be used in an interrupt context.
714  *
715  * Returns the number of bytes received on success, or else the status code
716  * returned by the underlying usb_control_msg() call.
717  */
718 static int usb_get_string(struct usb_device *dev, unsigned short langid,
719 			  unsigned char index, void *buf, int size)
720 {
721 	int i;
722 	int result;
723 
724 	for (i = 0; i < 3; ++i) {
725 		/* retry on length 0 or stall; some devices are flakey */
726 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
727 			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
728 			(USB_DT_STRING << 8) + index, langid, buf, size,
729 			USB_CTRL_GET_TIMEOUT);
730 		if (result == 0 || result == -EPIPE)
731 			continue;
732 		if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
733 			result = -ENODATA;
734 			continue;
735 		}
736 		break;
737 	}
738 	return result;
739 }
740 
741 static void usb_try_string_workarounds(unsigned char *buf, int *length)
742 {
743 	int newlength, oldlength = *length;
744 
745 	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
746 		if (!isprint(buf[newlength]) || buf[newlength + 1])
747 			break;
748 
749 	if (newlength > 2) {
750 		buf[0] = newlength;
751 		*length = newlength;
752 	}
753 }
754 
755 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
756 			  unsigned int index, unsigned char *buf)
757 {
758 	int rc;
759 
760 	/* Try to read the string descriptor by asking for the maximum
761 	 * possible number of bytes */
762 	if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
763 		rc = -EIO;
764 	else
765 		rc = usb_get_string(dev, langid, index, buf, 255);
766 
767 	/* If that failed try to read the descriptor length, then
768 	 * ask for just that many bytes */
769 	if (rc < 2) {
770 		rc = usb_get_string(dev, langid, index, buf, 2);
771 		if (rc == 2)
772 			rc = usb_get_string(dev, langid, index, buf, buf[0]);
773 	}
774 
775 	if (rc >= 2) {
776 		if (!buf[0] && !buf[1])
777 			usb_try_string_workarounds(buf, &rc);
778 
779 		/* There might be extra junk at the end of the descriptor */
780 		if (buf[0] < rc)
781 			rc = buf[0];
782 
783 		rc = rc - (rc & 1); /* force a multiple of two */
784 	}
785 
786 	if (rc < 2)
787 		rc = (rc < 0 ? rc : -EINVAL);
788 
789 	return rc;
790 }
791 
792 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
793 {
794 	int err;
795 
796 	if (dev->have_langid)
797 		return 0;
798 
799 	if (dev->string_langid < 0)
800 		return -EPIPE;
801 
802 	err = usb_string_sub(dev, 0, 0, tbuf);
803 
804 	/* If the string was reported but is malformed, default to english
805 	 * (0x0409) */
806 	if (err == -ENODATA || (err > 0 && err < 4)) {
807 		dev->string_langid = 0x0409;
808 		dev->have_langid = 1;
809 		dev_err(&dev->dev,
810 			"string descriptor 0 malformed (err = %d), "
811 			"defaulting to 0x%04x\n",
812 				err, dev->string_langid);
813 		return 0;
814 	}
815 
816 	/* In case of all other errors, we assume the device is not able to
817 	 * deal with strings at all. Set string_langid to -1 in order to
818 	 * prevent any string to be retrieved from the device */
819 	if (err < 0) {
820 		dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
821 					err);
822 		dev->string_langid = -1;
823 		return -EPIPE;
824 	}
825 
826 	/* always use the first langid listed */
827 	dev->string_langid = tbuf[2] | (tbuf[3] << 8);
828 	dev->have_langid = 1;
829 	dev_dbg(&dev->dev, "default language 0x%04x\n",
830 				dev->string_langid);
831 	return 0;
832 }
833 
834 /**
835  * usb_string - returns UTF-8 version of a string descriptor
836  * @dev: the device whose string descriptor is being retrieved
837  * @index: the number of the descriptor
838  * @buf: where to put the string
839  * @size: how big is "buf"?
840  * Context: !in_interrupt ()
841  *
842  * This converts the UTF-16LE encoded strings returned by devices, from
843  * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
844  * that are more usable in most kernel contexts.  Note that this function
845  * chooses strings in the first language supported by the device.
846  *
847  * This call is synchronous, and may not be used in an interrupt context.
848  *
849  * Returns length of the string (>= 0) or usb_control_msg status (< 0).
850  */
851 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
852 {
853 	unsigned char *tbuf;
854 	int err;
855 
856 	if (dev->state == USB_STATE_SUSPENDED)
857 		return -EHOSTUNREACH;
858 	if (size <= 0 || !buf || !index)
859 		return -EINVAL;
860 	buf[0] = 0;
861 	tbuf = kmalloc(256, GFP_NOIO);
862 	if (!tbuf)
863 		return -ENOMEM;
864 
865 	err = usb_get_langid(dev, tbuf);
866 	if (err < 0)
867 		goto errout;
868 
869 	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
870 	if (err < 0)
871 		goto errout;
872 
873 	size--;		/* leave room for trailing NULL char in output buffer */
874 	err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
875 			UTF16_LITTLE_ENDIAN, buf, size);
876 	buf[err] = 0;
877 
878 	if (tbuf[1] != USB_DT_STRING)
879 		dev_dbg(&dev->dev,
880 			"wrong descriptor type %02x for string %d (\"%s\")\n",
881 			tbuf[1], index, buf);
882 
883  errout:
884 	kfree(tbuf);
885 	return err;
886 }
887 EXPORT_SYMBOL_GPL(usb_string);
888 
889 /* one UTF-8-encoded 16-bit character has at most three bytes */
890 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
891 
892 /**
893  * usb_cache_string - read a string descriptor and cache it for later use
894  * @udev: the device whose string descriptor is being read
895  * @index: the descriptor index
896  *
897  * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
898  * or NULL if the index is 0 or the string could not be read.
899  */
900 char *usb_cache_string(struct usb_device *udev, int index)
901 {
902 	char *buf;
903 	char *smallbuf = NULL;
904 	int len;
905 
906 	if (index <= 0)
907 		return NULL;
908 
909 	buf = kmalloc(MAX_USB_STRING_SIZE, GFP_KERNEL);
910 	if (buf) {
911 		len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
912 		if (len > 0) {
913 			smallbuf = kmalloc(++len, GFP_KERNEL);
914 			if (!smallbuf)
915 				return buf;
916 			memcpy(smallbuf, buf, len);
917 		}
918 		kfree(buf);
919 	}
920 	return smallbuf;
921 }
922 
923 /*
924  * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
925  * @dev: the device whose device descriptor is being updated
926  * @size: how much of the descriptor to read
927  * Context: !in_interrupt ()
928  *
929  * Updates the copy of the device descriptor stored in the device structure,
930  * which dedicates space for this purpose.
931  *
932  * Not exported, only for use by the core.  If drivers really want to read
933  * the device descriptor directly, they can call usb_get_descriptor() with
934  * type = USB_DT_DEVICE and index = 0.
935  *
936  * This call is synchronous, and may not be used in an interrupt context.
937  *
938  * Returns the number of bytes received on success, or else the status code
939  * returned by the underlying usb_control_msg() call.
940  */
941 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
942 {
943 	struct usb_device_descriptor *desc;
944 	int ret;
945 
946 	if (size > sizeof(*desc))
947 		return -EINVAL;
948 	desc = kmalloc(sizeof(*desc), GFP_NOIO);
949 	if (!desc)
950 		return -ENOMEM;
951 
952 	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
953 	if (ret >= 0)
954 		memcpy(&dev->descriptor, desc, size);
955 	kfree(desc);
956 	return ret;
957 }
958 
959 /**
960  * usb_get_status - issues a GET_STATUS call
961  * @dev: the device whose status is being checked
962  * @type: USB_RECIP_*; for device, interface, or endpoint
963  * @target: zero (for device), else interface or endpoint number
964  * @data: pointer to two bytes of bitmap data
965  * Context: !in_interrupt ()
966  *
967  * Returns device, interface, or endpoint status.  Normally only of
968  * interest to see if the device is self powered, or has enabled the
969  * remote wakeup facility; or whether a bulk or interrupt endpoint
970  * is halted ("stalled").
971  *
972  * Bits in these status bitmaps are set using the SET_FEATURE request,
973  * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
974  * function should be used to clear halt ("stall") status.
975  *
976  * This call is synchronous, and may not be used in an interrupt context.
977  *
978  * Returns the number of bytes received on success, or else the status code
979  * returned by the underlying usb_control_msg() call.
980  */
981 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
982 {
983 	int ret;
984 	u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
985 
986 	if (!status)
987 		return -ENOMEM;
988 
989 	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
990 		USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
991 		sizeof(*status), USB_CTRL_GET_TIMEOUT);
992 
993 	*(u16 *)data = *status;
994 	kfree(status);
995 	return ret;
996 }
997 EXPORT_SYMBOL_GPL(usb_get_status);
998 
999 /**
1000  * usb_clear_halt - tells device to clear endpoint halt/stall condition
1001  * @dev: device whose endpoint is halted
1002  * @pipe: endpoint "pipe" being cleared
1003  * Context: !in_interrupt ()
1004  *
1005  * This is used to clear halt conditions for bulk and interrupt endpoints,
1006  * as reported by URB completion status.  Endpoints that are halted are
1007  * sometimes referred to as being "stalled".  Such endpoints are unable
1008  * to transmit or receive data until the halt status is cleared.  Any URBs
1009  * queued for such an endpoint should normally be unlinked by the driver
1010  * before clearing the halt condition, as described in sections 5.7.5
1011  * and 5.8.5 of the USB 2.0 spec.
1012  *
1013  * Note that control and isochronous endpoints don't halt, although control
1014  * endpoints report "protocol stall" (for unsupported requests) using the
1015  * same status code used to report a true stall.
1016  *
1017  * This call is synchronous, and may not be used in an interrupt context.
1018  *
1019  * Returns zero on success, or else the status code returned by the
1020  * underlying usb_control_msg() call.
1021  */
1022 int usb_clear_halt(struct usb_device *dev, int pipe)
1023 {
1024 	int result;
1025 	int endp = usb_pipeendpoint(pipe);
1026 
1027 	if (usb_pipein(pipe))
1028 		endp |= USB_DIR_IN;
1029 
1030 	/* we don't care if it wasn't halted first. in fact some devices
1031 	 * (like some ibmcam model 1 units) seem to expect hosts to make
1032 	 * this request for iso endpoints, which can't halt!
1033 	 */
1034 	result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1035 		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1036 		USB_ENDPOINT_HALT, endp, NULL, 0,
1037 		USB_CTRL_SET_TIMEOUT);
1038 
1039 	/* don't un-halt or force to DATA0 except on success */
1040 	if (result < 0)
1041 		return result;
1042 
1043 	/* NOTE:  seems like Microsoft and Apple don't bother verifying
1044 	 * the clear "took", so some devices could lock up if you check...
1045 	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
1046 	 *
1047 	 * NOTE:  make sure the logic here doesn't diverge much from
1048 	 * the copy in usb-storage, for as long as we need two copies.
1049 	 */
1050 
1051 	usb_reset_endpoint(dev, endp);
1052 
1053 	return 0;
1054 }
1055 EXPORT_SYMBOL_GPL(usb_clear_halt);
1056 
1057 static int create_intf_ep_devs(struct usb_interface *intf)
1058 {
1059 	struct usb_device *udev = interface_to_usbdev(intf);
1060 	struct usb_host_interface *alt = intf->cur_altsetting;
1061 	int i;
1062 
1063 	if (intf->ep_devs_created || intf->unregistering)
1064 		return 0;
1065 
1066 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1067 		(void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1068 	intf->ep_devs_created = 1;
1069 	return 0;
1070 }
1071 
1072 static void remove_intf_ep_devs(struct usb_interface *intf)
1073 {
1074 	struct usb_host_interface *alt = intf->cur_altsetting;
1075 	int i;
1076 
1077 	if (!intf->ep_devs_created)
1078 		return;
1079 
1080 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1081 		usb_remove_ep_devs(&alt->endpoint[i]);
1082 	intf->ep_devs_created = 0;
1083 }
1084 
1085 /**
1086  * usb_disable_endpoint -- Disable an endpoint by address
1087  * @dev: the device whose endpoint is being disabled
1088  * @epaddr: the endpoint's address.  Endpoint number for output,
1089  *	endpoint number + USB_DIR_IN for input
1090  * @reset_hardware: flag to erase any endpoint state stored in the
1091  *	controller hardware
1092  *
1093  * Disables the endpoint for URB submission and nukes all pending URBs.
1094  * If @reset_hardware is set then also deallocates hcd/hardware state
1095  * for the endpoint.
1096  */
1097 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1098 		bool reset_hardware)
1099 {
1100 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1101 	struct usb_host_endpoint *ep;
1102 
1103 	if (!dev)
1104 		return;
1105 
1106 	if (usb_endpoint_out(epaddr)) {
1107 		ep = dev->ep_out[epnum];
1108 		if (reset_hardware)
1109 			dev->ep_out[epnum] = NULL;
1110 	} else {
1111 		ep = dev->ep_in[epnum];
1112 		if (reset_hardware)
1113 			dev->ep_in[epnum] = NULL;
1114 	}
1115 	if (ep) {
1116 		ep->enabled = 0;
1117 		usb_hcd_flush_endpoint(dev, ep);
1118 		if (reset_hardware)
1119 			usb_hcd_disable_endpoint(dev, ep);
1120 	}
1121 }
1122 
1123 /**
1124  * usb_reset_endpoint - Reset an endpoint's state.
1125  * @dev: the device whose endpoint is to be reset
1126  * @epaddr: the endpoint's address.  Endpoint number for output,
1127  *	endpoint number + USB_DIR_IN for input
1128  *
1129  * Resets any host-side endpoint state such as the toggle bit,
1130  * sequence number or current window.
1131  */
1132 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1133 {
1134 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1135 	struct usb_host_endpoint *ep;
1136 
1137 	if (usb_endpoint_out(epaddr))
1138 		ep = dev->ep_out[epnum];
1139 	else
1140 		ep = dev->ep_in[epnum];
1141 	if (ep)
1142 		usb_hcd_reset_endpoint(dev, ep);
1143 }
1144 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1145 
1146 
1147 /**
1148  * usb_disable_interface -- Disable all endpoints for an interface
1149  * @dev: the device whose interface is being disabled
1150  * @intf: pointer to the interface descriptor
1151  * @reset_hardware: flag to erase any endpoint state stored in the
1152  *	controller hardware
1153  *
1154  * Disables all the endpoints for the interface's current altsetting.
1155  */
1156 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1157 		bool reset_hardware)
1158 {
1159 	struct usb_host_interface *alt = intf->cur_altsetting;
1160 	int i;
1161 
1162 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1163 		usb_disable_endpoint(dev,
1164 				alt->endpoint[i].desc.bEndpointAddress,
1165 				reset_hardware);
1166 	}
1167 }
1168 
1169 /**
1170  * usb_disable_device - Disable all the endpoints for a USB device
1171  * @dev: the device whose endpoints are being disabled
1172  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1173  *
1174  * Disables all the device's endpoints, potentially including endpoint 0.
1175  * Deallocates hcd/hardware state for the endpoints (nuking all or most
1176  * pending urbs) and usbcore state for the interfaces, so that usbcore
1177  * must usb_set_configuration() before any interfaces could be used.
1178  */
1179 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1180 {
1181 	int i;
1182 
1183 	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1184 		skip_ep0 ? "non-ep0" : "all");
1185 	for (i = skip_ep0; i < 16; ++i) {
1186 		usb_disable_endpoint(dev, i, true);
1187 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1188 	}
1189 
1190 	/* getting rid of interfaces will disconnect
1191 	 * any drivers bound to them (a key side effect)
1192 	 */
1193 	if (dev->actconfig) {
1194 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1195 			struct usb_interface	*interface;
1196 
1197 			/* remove this interface if it has been registered */
1198 			interface = dev->actconfig->interface[i];
1199 			if (!device_is_registered(&interface->dev))
1200 				continue;
1201 			dev_dbg(&dev->dev, "unregistering interface %s\n",
1202 				dev_name(&interface->dev));
1203 			interface->unregistering = 1;
1204 			remove_intf_ep_devs(interface);
1205 			device_del(&interface->dev);
1206 		}
1207 
1208 		/* Now that the interfaces are unbound, nobody should
1209 		 * try to access them.
1210 		 */
1211 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1212 			put_device(&dev->actconfig->interface[i]->dev);
1213 			dev->actconfig->interface[i] = NULL;
1214 		}
1215 		dev->actconfig = NULL;
1216 		if (dev->state == USB_STATE_CONFIGURED)
1217 			usb_set_device_state(dev, USB_STATE_ADDRESS);
1218 	}
1219 }
1220 
1221 /**
1222  * usb_enable_endpoint - Enable an endpoint for USB communications
1223  * @dev: the device whose interface is being enabled
1224  * @ep: the endpoint
1225  * @reset_ep: flag to reset the endpoint state
1226  *
1227  * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1228  * For control endpoints, both the input and output sides are handled.
1229  */
1230 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1231 		bool reset_ep)
1232 {
1233 	int epnum = usb_endpoint_num(&ep->desc);
1234 	int is_out = usb_endpoint_dir_out(&ep->desc);
1235 	int is_control = usb_endpoint_xfer_control(&ep->desc);
1236 
1237 	if (reset_ep)
1238 		usb_hcd_reset_endpoint(dev, ep);
1239 	if (is_out || is_control)
1240 		dev->ep_out[epnum] = ep;
1241 	if (!is_out || is_control)
1242 		dev->ep_in[epnum] = ep;
1243 	ep->enabled = 1;
1244 }
1245 
1246 /**
1247  * usb_enable_interface - Enable all the endpoints for an interface
1248  * @dev: the device whose interface is being enabled
1249  * @intf: pointer to the interface descriptor
1250  * @reset_eps: flag to reset the endpoints' state
1251  *
1252  * Enables all the endpoints for the interface's current altsetting.
1253  */
1254 void usb_enable_interface(struct usb_device *dev,
1255 		struct usb_interface *intf, bool reset_eps)
1256 {
1257 	struct usb_host_interface *alt = intf->cur_altsetting;
1258 	int i;
1259 
1260 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1261 		usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1262 }
1263 
1264 /**
1265  * usb_set_interface - Makes a particular alternate setting be current
1266  * @dev: the device whose interface is being updated
1267  * @interface: the interface being updated
1268  * @alternate: the setting being chosen.
1269  * Context: !in_interrupt ()
1270  *
1271  * This is used to enable data transfers on interfaces that may not
1272  * be enabled by default.  Not all devices support such configurability.
1273  * Only the driver bound to an interface may change its setting.
1274  *
1275  * Within any given configuration, each interface may have several
1276  * alternative settings.  These are often used to control levels of
1277  * bandwidth consumption.  For example, the default setting for a high
1278  * speed interrupt endpoint may not send more than 64 bytes per microframe,
1279  * while interrupt transfers of up to 3KBytes per microframe are legal.
1280  * Also, isochronous endpoints may never be part of an
1281  * interface's default setting.  To access such bandwidth, alternate
1282  * interface settings must be made current.
1283  *
1284  * Note that in the Linux USB subsystem, bandwidth associated with
1285  * an endpoint in a given alternate setting is not reserved until an URB
1286  * is submitted that needs that bandwidth.  Some other operating systems
1287  * allocate bandwidth early, when a configuration is chosen.
1288  *
1289  * This call is synchronous, and may not be used in an interrupt context.
1290  * Also, drivers must not change altsettings while urbs are scheduled for
1291  * endpoints in that interface; all such urbs must first be completed
1292  * (perhaps forced by unlinking).
1293  *
1294  * Returns zero on success, or else the status code returned by the
1295  * underlying usb_control_msg() call.
1296  */
1297 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1298 {
1299 	struct usb_interface *iface;
1300 	struct usb_host_interface *alt;
1301 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1302 	int ret;
1303 	int manual = 0;
1304 	unsigned int epaddr;
1305 	unsigned int pipe;
1306 
1307 	if (dev->state == USB_STATE_SUSPENDED)
1308 		return -EHOSTUNREACH;
1309 
1310 	iface = usb_ifnum_to_if(dev, interface);
1311 	if (!iface) {
1312 		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1313 			interface);
1314 		return -EINVAL;
1315 	}
1316 
1317 	alt = usb_altnum_to_altsetting(iface, alternate);
1318 	if (!alt) {
1319 		dev_warn(&dev->dev, "selecting invalid altsetting %d",
1320 			 alternate);
1321 		return -EINVAL;
1322 	}
1323 
1324 	/* Make sure we have enough bandwidth for this alternate interface.
1325 	 * Remove the current alt setting and add the new alt setting.
1326 	 */
1327 	mutex_lock(&hcd->bandwidth_mutex);
1328 	ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1329 	if (ret < 0) {
1330 		dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1331 				alternate);
1332 		mutex_unlock(&hcd->bandwidth_mutex);
1333 		return ret;
1334 	}
1335 
1336 	if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1337 		ret = -EPIPE;
1338 	else
1339 		ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1340 				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1341 				   alternate, interface, NULL, 0, 5000);
1342 
1343 	/* 9.4.10 says devices don't need this and are free to STALL the
1344 	 * request if the interface only has one alternate setting.
1345 	 */
1346 	if (ret == -EPIPE && iface->num_altsetting == 1) {
1347 		dev_dbg(&dev->dev,
1348 			"manual set_interface for iface %d, alt %d\n",
1349 			interface, alternate);
1350 		manual = 1;
1351 	} else if (ret < 0) {
1352 		/* Re-instate the old alt setting */
1353 		usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1354 		mutex_unlock(&hcd->bandwidth_mutex);
1355 		return ret;
1356 	}
1357 	mutex_unlock(&hcd->bandwidth_mutex);
1358 
1359 	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1360 	 * when they implement async or easily-killable versions of this or
1361 	 * other "should-be-internal" functions (like clear_halt).
1362 	 * should hcd+usbcore postprocess control requests?
1363 	 */
1364 
1365 	/* prevent submissions using previous endpoint settings */
1366 	if (iface->cur_altsetting != alt) {
1367 		remove_intf_ep_devs(iface);
1368 		usb_remove_sysfs_intf_files(iface);
1369 	}
1370 	usb_disable_interface(dev, iface, true);
1371 
1372 	iface->cur_altsetting = alt;
1373 
1374 	/* If the interface only has one altsetting and the device didn't
1375 	 * accept the request, we attempt to carry out the equivalent action
1376 	 * by manually clearing the HALT feature for each endpoint in the
1377 	 * new altsetting.
1378 	 */
1379 	if (manual) {
1380 		int i;
1381 
1382 		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1383 			epaddr = alt->endpoint[i].desc.bEndpointAddress;
1384 			pipe = __create_pipe(dev,
1385 					USB_ENDPOINT_NUMBER_MASK & epaddr) |
1386 					(usb_endpoint_out(epaddr) ?
1387 					USB_DIR_OUT : USB_DIR_IN);
1388 
1389 			usb_clear_halt(dev, pipe);
1390 		}
1391 	}
1392 
1393 	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1394 	 *
1395 	 * Note:
1396 	 * Despite EP0 is always present in all interfaces/AS, the list of
1397 	 * endpoints from the descriptor does not contain EP0. Due to its
1398 	 * omnipresence one might expect EP0 being considered "affected" by
1399 	 * any SetInterface request and hence assume toggles need to be reset.
1400 	 * However, EP0 toggles are re-synced for every individual transfer
1401 	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1402 	 * (Likewise, EP0 never "halts" on well designed devices.)
1403 	 */
1404 	usb_enable_interface(dev, iface, true);
1405 	if (device_is_registered(&iface->dev)) {
1406 		usb_create_sysfs_intf_files(iface);
1407 		create_intf_ep_devs(iface);
1408 	}
1409 	return 0;
1410 }
1411 EXPORT_SYMBOL_GPL(usb_set_interface);
1412 
1413 /**
1414  * usb_reset_configuration - lightweight device reset
1415  * @dev: the device whose configuration is being reset
1416  *
1417  * This issues a standard SET_CONFIGURATION request to the device using
1418  * the current configuration.  The effect is to reset most USB-related
1419  * state in the device, including interface altsettings (reset to zero),
1420  * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1421  * endpoints).  Other usbcore state is unchanged, including bindings of
1422  * usb device drivers to interfaces.
1423  *
1424  * Because this affects multiple interfaces, avoid using this with composite
1425  * (multi-interface) devices.  Instead, the driver for each interface may
1426  * use usb_set_interface() on the interfaces it claims.  Be careful though;
1427  * some devices don't support the SET_INTERFACE request, and others won't
1428  * reset all the interface state (notably endpoint state).  Resetting the whole
1429  * configuration would affect other drivers' interfaces.
1430  *
1431  * The caller must own the device lock.
1432  *
1433  * Returns zero on success, else a negative error code.
1434  */
1435 int usb_reset_configuration(struct usb_device *dev)
1436 {
1437 	int			i, retval;
1438 	struct usb_host_config	*config;
1439 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1440 
1441 	if (dev->state == USB_STATE_SUSPENDED)
1442 		return -EHOSTUNREACH;
1443 
1444 	/* caller must have locked the device and must own
1445 	 * the usb bus readlock (so driver bindings are stable);
1446 	 * calls during probe() are fine
1447 	 */
1448 
1449 	for (i = 1; i < 16; ++i) {
1450 		usb_disable_endpoint(dev, i, true);
1451 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1452 	}
1453 
1454 	config = dev->actconfig;
1455 	retval = 0;
1456 	mutex_lock(&hcd->bandwidth_mutex);
1457 	/* Make sure we have enough bandwidth for each alternate setting 0 */
1458 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1459 		struct usb_interface *intf = config->interface[i];
1460 		struct usb_host_interface *alt;
1461 
1462 		alt = usb_altnum_to_altsetting(intf, 0);
1463 		if (!alt)
1464 			alt = &intf->altsetting[0];
1465 		if (alt != intf->cur_altsetting)
1466 			retval = usb_hcd_alloc_bandwidth(dev, NULL,
1467 					intf->cur_altsetting, alt);
1468 		if (retval < 0)
1469 			break;
1470 	}
1471 	/* If not, reinstate the old alternate settings */
1472 	if (retval < 0) {
1473 reset_old_alts:
1474 		for (; i >= 0; i--) {
1475 			struct usb_interface *intf = config->interface[i];
1476 			struct usb_host_interface *alt;
1477 
1478 			alt = usb_altnum_to_altsetting(intf, 0);
1479 			if (!alt)
1480 				alt = &intf->altsetting[0];
1481 			if (alt != intf->cur_altsetting)
1482 				usb_hcd_alloc_bandwidth(dev, NULL,
1483 						alt, intf->cur_altsetting);
1484 		}
1485 		mutex_unlock(&hcd->bandwidth_mutex);
1486 		return retval;
1487 	}
1488 	retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1489 			USB_REQ_SET_CONFIGURATION, 0,
1490 			config->desc.bConfigurationValue, 0,
1491 			NULL, 0, USB_CTRL_SET_TIMEOUT);
1492 	if (retval < 0)
1493 		goto reset_old_alts;
1494 	mutex_unlock(&hcd->bandwidth_mutex);
1495 
1496 	/* re-init hc/hcd interface/endpoint state */
1497 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1498 		struct usb_interface *intf = config->interface[i];
1499 		struct usb_host_interface *alt;
1500 
1501 		alt = usb_altnum_to_altsetting(intf, 0);
1502 
1503 		/* No altsetting 0?  We'll assume the first altsetting.
1504 		 * We could use a GetInterface call, but if a device is
1505 		 * so non-compliant that it doesn't have altsetting 0
1506 		 * then I wouldn't trust its reply anyway.
1507 		 */
1508 		if (!alt)
1509 			alt = &intf->altsetting[0];
1510 
1511 		if (alt != intf->cur_altsetting) {
1512 			remove_intf_ep_devs(intf);
1513 			usb_remove_sysfs_intf_files(intf);
1514 		}
1515 		intf->cur_altsetting = alt;
1516 		usb_enable_interface(dev, intf, true);
1517 		if (device_is_registered(&intf->dev)) {
1518 			usb_create_sysfs_intf_files(intf);
1519 			create_intf_ep_devs(intf);
1520 		}
1521 	}
1522 	return 0;
1523 }
1524 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1525 
1526 static void usb_release_interface(struct device *dev)
1527 {
1528 	struct usb_interface *intf = to_usb_interface(dev);
1529 	struct usb_interface_cache *intfc =
1530 			altsetting_to_usb_interface_cache(intf->altsetting);
1531 
1532 	kref_put(&intfc->ref, usb_release_interface_cache);
1533 	kfree(intf);
1534 }
1535 
1536 #ifdef	CONFIG_HOTPLUG
1537 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1538 {
1539 	struct usb_device *usb_dev;
1540 	struct usb_interface *intf;
1541 	struct usb_host_interface *alt;
1542 
1543 	intf = to_usb_interface(dev);
1544 	usb_dev = interface_to_usbdev(intf);
1545 	alt = intf->cur_altsetting;
1546 
1547 	if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1548 		   alt->desc.bInterfaceClass,
1549 		   alt->desc.bInterfaceSubClass,
1550 		   alt->desc.bInterfaceProtocol))
1551 		return -ENOMEM;
1552 
1553 	if (add_uevent_var(env,
1554 		   "MODALIAS=usb:"
1555 		   "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
1556 		   le16_to_cpu(usb_dev->descriptor.idVendor),
1557 		   le16_to_cpu(usb_dev->descriptor.idProduct),
1558 		   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1559 		   usb_dev->descriptor.bDeviceClass,
1560 		   usb_dev->descriptor.bDeviceSubClass,
1561 		   usb_dev->descriptor.bDeviceProtocol,
1562 		   alt->desc.bInterfaceClass,
1563 		   alt->desc.bInterfaceSubClass,
1564 		   alt->desc.bInterfaceProtocol))
1565 		return -ENOMEM;
1566 
1567 	return 0;
1568 }
1569 
1570 #else
1571 
1572 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1573 {
1574 	return -ENODEV;
1575 }
1576 #endif	/* CONFIG_HOTPLUG */
1577 
1578 struct device_type usb_if_device_type = {
1579 	.name =		"usb_interface",
1580 	.release =	usb_release_interface,
1581 	.uevent =	usb_if_uevent,
1582 };
1583 
1584 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1585 						struct usb_host_config *config,
1586 						u8 inum)
1587 {
1588 	struct usb_interface_assoc_descriptor *retval = NULL;
1589 	struct usb_interface_assoc_descriptor *intf_assoc;
1590 	int first_intf;
1591 	int last_intf;
1592 	int i;
1593 
1594 	for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1595 		intf_assoc = config->intf_assoc[i];
1596 		if (intf_assoc->bInterfaceCount == 0)
1597 			continue;
1598 
1599 		first_intf = intf_assoc->bFirstInterface;
1600 		last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1601 		if (inum >= first_intf && inum <= last_intf) {
1602 			if (!retval)
1603 				retval = intf_assoc;
1604 			else
1605 				dev_err(&dev->dev, "Interface #%d referenced"
1606 					" by multiple IADs\n", inum);
1607 		}
1608 	}
1609 
1610 	return retval;
1611 }
1612 
1613 
1614 /*
1615  * Internal function to queue a device reset
1616  *
1617  * This is initialized into the workstruct in 'struct
1618  * usb_device->reset_ws' that is launched by
1619  * message.c:usb_set_configuration() when initializing each 'struct
1620  * usb_interface'.
1621  *
1622  * It is safe to get the USB device without reference counts because
1623  * the life cycle of @iface is bound to the life cycle of @udev. Then,
1624  * this function will be ran only if @iface is alive (and before
1625  * freeing it any scheduled instances of it will have been cancelled).
1626  *
1627  * We need to set a flag (usb_dev->reset_running) because when we call
1628  * the reset, the interfaces might be unbound. The current interface
1629  * cannot try to remove the queued work as it would cause a deadlock
1630  * (you cannot remove your work from within your executing
1631  * workqueue). This flag lets it know, so that
1632  * usb_cancel_queued_reset() doesn't try to do it.
1633  *
1634  * See usb_queue_reset_device() for more details
1635  */
1636 static void __usb_queue_reset_device(struct work_struct *ws)
1637 {
1638 	int rc;
1639 	struct usb_interface *iface =
1640 		container_of(ws, struct usb_interface, reset_ws);
1641 	struct usb_device *udev = interface_to_usbdev(iface);
1642 
1643 	rc = usb_lock_device_for_reset(udev, iface);
1644 	if (rc >= 0) {
1645 		iface->reset_running = 1;
1646 		usb_reset_device(udev);
1647 		iface->reset_running = 0;
1648 		usb_unlock_device(udev);
1649 	}
1650 }
1651 
1652 
1653 /*
1654  * usb_set_configuration - Makes a particular device setting be current
1655  * @dev: the device whose configuration is being updated
1656  * @configuration: the configuration being chosen.
1657  * Context: !in_interrupt(), caller owns the device lock
1658  *
1659  * This is used to enable non-default device modes.  Not all devices
1660  * use this kind of configurability; many devices only have one
1661  * configuration.
1662  *
1663  * @configuration is the value of the configuration to be installed.
1664  * According to the USB spec (e.g. section 9.1.1.5), configuration values
1665  * must be non-zero; a value of zero indicates that the device in
1666  * unconfigured.  However some devices erroneously use 0 as one of their
1667  * configuration values.  To help manage such devices, this routine will
1668  * accept @configuration = -1 as indicating the device should be put in
1669  * an unconfigured state.
1670  *
1671  * USB device configurations may affect Linux interoperability,
1672  * power consumption and the functionality available.  For example,
1673  * the default configuration is limited to using 100mA of bus power,
1674  * so that when certain device functionality requires more power,
1675  * and the device is bus powered, that functionality should be in some
1676  * non-default device configuration.  Other device modes may also be
1677  * reflected as configuration options, such as whether two ISDN
1678  * channels are available independently; and choosing between open
1679  * standard device protocols (like CDC) or proprietary ones.
1680  *
1681  * Note that a non-authorized device (dev->authorized == 0) will only
1682  * be put in unconfigured mode.
1683  *
1684  * Note that USB has an additional level of device configurability,
1685  * associated with interfaces.  That configurability is accessed using
1686  * usb_set_interface().
1687  *
1688  * This call is synchronous. The calling context must be able to sleep,
1689  * must own the device lock, and must not hold the driver model's USB
1690  * bus mutex; usb interface driver probe() methods cannot use this routine.
1691  *
1692  * Returns zero on success, or else the status code returned by the
1693  * underlying call that failed.  On successful completion, each interface
1694  * in the original device configuration has been destroyed, and each one
1695  * in the new configuration has been probed by all relevant usb device
1696  * drivers currently known to the kernel.
1697  */
1698 int usb_set_configuration(struct usb_device *dev, int configuration)
1699 {
1700 	int i, ret;
1701 	struct usb_host_config *cp = NULL;
1702 	struct usb_interface **new_interfaces = NULL;
1703 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1704 	int n, nintf;
1705 
1706 	if (dev->authorized == 0 || configuration == -1)
1707 		configuration = 0;
1708 	else {
1709 		for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1710 			if (dev->config[i].desc.bConfigurationValue ==
1711 					configuration) {
1712 				cp = &dev->config[i];
1713 				break;
1714 			}
1715 		}
1716 	}
1717 	if ((!cp && configuration != 0))
1718 		return -EINVAL;
1719 
1720 	/* The USB spec says configuration 0 means unconfigured.
1721 	 * But if a device includes a configuration numbered 0,
1722 	 * we will accept it as a correctly configured state.
1723 	 * Use -1 if you really want to unconfigure the device.
1724 	 */
1725 	if (cp && configuration == 0)
1726 		dev_warn(&dev->dev, "config 0 descriptor??\n");
1727 
1728 	/* Allocate memory for new interfaces before doing anything else,
1729 	 * so that if we run out then nothing will have changed. */
1730 	n = nintf = 0;
1731 	if (cp) {
1732 		nintf = cp->desc.bNumInterfaces;
1733 		new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1734 				GFP_KERNEL);
1735 		if (!new_interfaces) {
1736 			dev_err(&dev->dev, "Out of memory\n");
1737 			return -ENOMEM;
1738 		}
1739 
1740 		for (; n < nintf; ++n) {
1741 			new_interfaces[n] = kzalloc(
1742 					sizeof(struct usb_interface),
1743 					GFP_KERNEL);
1744 			if (!new_interfaces[n]) {
1745 				dev_err(&dev->dev, "Out of memory\n");
1746 				ret = -ENOMEM;
1747 free_interfaces:
1748 				while (--n >= 0)
1749 					kfree(new_interfaces[n]);
1750 				kfree(new_interfaces);
1751 				return ret;
1752 			}
1753 		}
1754 
1755 		i = dev->bus_mA - cp->desc.bMaxPower * 2;
1756 		if (i < 0)
1757 			dev_warn(&dev->dev, "new config #%d exceeds power "
1758 					"limit by %dmA\n",
1759 					configuration, -i);
1760 	}
1761 
1762 	/* Wake up the device so we can send it the Set-Config request */
1763 	ret = usb_autoresume_device(dev);
1764 	if (ret)
1765 		goto free_interfaces;
1766 
1767 	/* Make sure we have bandwidth (and available HCD resources) for this
1768 	 * configuration.  Remove endpoints from the schedule if we're dropping
1769 	 * this configuration to set configuration 0.  After this point, the
1770 	 * host controller will not allow submissions to dropped endpoints.  If
1771 	 * this call fails, the device state is unchanged.
1772 	 */
1773 	mutex_lock(&hcd->bandwidth_mutex);
1774 	ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1775 	if (ret < 0) {
1776 		usb_autosuspend_device(dev);
1777 		mutex_unlock(&hcd->bandwidth_mutex);
1778 		goto free_interfaces;
1779 	}
1780 
1781 	/* if it's already configured, clear out old state first.
1782 	 * getting rid of old interfaces means unbinding their drivers.
1783 	 */
1784 	if (dev->state != USB_STATE_ADDRESS)
1785 		usb_disable_device(dev, 1);	/* Skip ep0 */
1786 
1787 	/* Get rid of pending async Set-Config requests for this device */
1788 	cancel_async_set_config(dev);
1789 
1790 	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1791 			      USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1792 			      NULL, 0, USB_CTRL_SET_TIMEOUT);
1793 	if (ret < 0) {
1794 		/* All the old state is gone, so what else can we do?
1795 		 * The device is probably useless now anyway.
1796 		 */
1797 		cp = NULL;
1798 	}
1799 
1800 	dev->actconfig = cp;
1801 	if (!cp) {
1802 		usb_set_device_state(dev, USB_STATE_ADDRESS);
1803 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1804 		usb_autosuspend_device(dev);
1805 		mutex_unlock(&hcd->bandwidth_mutex);
1806 		goto free_interfaces;
1807 	}
1808 	mutex_unlock(&hcd->bandwidth_mutex);
1809 	usb_set_device_state(dev, USB_STATE_CONFIGURED);
1810 
1811 	/* Initialize the new interface structures and the
1812 	 * hc/hcd/usbcore interface/endpoint state.
1813 	 */
1814 	for (i = 0; i < nintf; ++i) {
1815 		struct usb_interface_cache *intfc;
1816 		struct usb_interface *intf;
1817 		struct usb_host_interface *alt;
1818 
1819 		cp->interface[i] = intf = new_interfaces[i];
1820 		intfc = cp->intf_cache[i];
1821 		intf->altsetting = intfc->altsetting;
1822 		intf->num_altsetting = intfc->num_altsetting;
1823 		intf->intf_assoc = find_iad(dev, cp, i);
1824 		kref_get(&intfc->ref);
1825 
1826 		alt = usb_altnum_to_altsetting(intf, 0);
1827 
1828 		/* No altsetting 0?  We'll assume the first altsetting.
1829 		 * We could use a GetInterface call, but if a device is
1830 		 * so non-compliant that it doesn't have altsetting 0
1831 		 * then I wouldn't trust its reply anyway.
1832 		 */
1833 		if (!alt)
1834 			alt = &intf->altsetting[0];
1835 
1836 		intf->cur_altsetting = alt;
1837 		usb_enable_interface(dev, intf, true);
1838 		intf->dev.parent = &dev->dev;
1839 		intf->dev.driver = NULL;
1840 		intf->dev.bus = &usb_bus_type;
1841 		intf->dev.type = &usb_if_device_type;
1842 		intf->dev.groups = usb_interface_groups;
1843 		intf->dev.dma_mask = dev->dev.dma_mask;
1844 		INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1845 		device_initialize(&intf->dev);
1846 		mark_quiesced(intf);
1847 		dev_set_name(&intf->dev, "%d-%s:%d.%d",
1848 			dev->bus->busnum, dev->devpath,
1849 			configuration, alt->desc.bInterfaceNumber);
1850 	}
1851 	kfree(new_interfaces);
1852 
1853 	if (cp->string == NULL &&
1854 			!(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1855 		cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1856 
1857 	/* Now that all the interfaces are set up, register them
1858 	 * to trigger binding of drivers to interfaces.  probe()
1859 	 * routines may install different altsettings and may
1860 	 * claim() any interfaces not yet bound.  Many class drivers
1861 	 * need that: CDC, audio, video, etc.
1862 	 */
1863 	for (i = 0; i < nintf; ++i) {
1864 		struct usb_interface *intf = cp->interface[i];
1865 
1866 		dev_dbg(&dev->dev,
1867 			"adding %s (config #%d, interface %d)\n",
1868 			dev_name(&intf->dev), configuration,
1869 			intf->cur_altsetting->desc.bInterfaceNumber);
1870 		ret = device_add(&intf->dev);
1871 		if (ret != 0) {
1872 			dev_err(&dev->dev, "device_add(%s) --> %d\n",
1873 				dev_name(&intf->dev), ret);
1874 			continue;
1875 		}
1876 		create_intf_ep_devs(intf);
1877 	}
1878 
1879 	usb_autosuspend_device(dev);
1880 	return 0;
1881 }
1882 
1883 static LIST_HEAD(set_config_list);
1884 static DEFINE_SPINLOCK(set_config_lock);
1885 
1886 struct set_config_request {
1887 	struct usb_device	*udev;
1888 	int			config;
1889 	struct work_struct	work;
1890 	struct list_head	node;
1891 };
1892 
1893 /* Worker routine for usb_driver_set_configuration() */
1894 static void driver_set_config_work(struct work_struct *work)
1895 {
1896 	struct set_config_request *req =
1897 		container_of(work, struct set_config_request, work);
1898 	struct usb_device *udev = req->udev;
1899 
1900 	usb_lock_device(udev);
1901 	spin_lock(&set_config_lock);
1902 	list_del(&req->node);
1903 	spin_unlock(&set_config_lock);
1904 
1905 	if (req->config >= -1)		/* Is req still valid? */
1906 		usb_set_configuration(udev, req->config);
1907 	usb_unlock_device(udev);
1908 	usb_put_dev(udev);
1909 	kfree(req);
1910 }
1911 
1912 /* Cancel pending Set-Config requests for a device whose configuration
1913  * was just changed
1914  */
1915 static void cancel_async_set_config(struct usb_device *udev)
1916 {
1917 	struct set_config_request *req;
1918 
1919 	spin_lock(&set_config_lock);
1920 	list_for_each_entry(req, &set_config_list, node) {
1921 		if (req->udev == udev)
1922 			req->config = -999;	/* Mark as cancelled */
1923 	}
1924 	spin_unlock(&set_config_lock);
1925 }
1926 
1927 /**
1928  * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1929  * @udev: the device whose configuration is being updated
1930  * @config: the configuration being chosen.
1931  * Context: In process context, must be able to sleep
1932  *
1933  * Device interface drivers are not allowed to change device configurations.
1934  * This is because changing configurations will destroy the interface the
1935  * driver is bound to and create new ones; it would be like a floppy-disk
1936  * driver telling the computer to replace the floppy-disk drive with a
1937  * tape drive!
1938  *
1939  * Still, in certain specialized circumstances the need may arise.  This
1940  * routine gets around the normal restrictions by using a work thread to
1941  * submit the change-config request.
1942  *
1943  * Returns 0 if the request was successfully queued, error code otherwise.
1944  * The caller has no way to know whether the queued request will eventually
1945  * succeed.
1946  */
1947 int usb_driver_set_configuration(struct usb_device *udev, int config)
1948 {
1949 	struct set_config_request *req;
1950 
1951 	req = kmalloc(sizeof(*req), GFP_KERNEL);
1952 	if (!req)
1953 		return -ENOMEM;
1954 	req->udev = udev;
1955 	req->config = config;
1956 	INIT_WORK(&req->work, driver_set_config_work);
1957 
1958 	spin_lock(&set_config_lock);
1959 	list_add(&req->node, &set_config_list);
1960 	spin_unlock(&set_config_lock);
1961 
1962 	usb_get_dev(udev);
1963 	schedule_work(&req->work);
1964 	return 0;
1965 }
1966 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
1967