1 /* 2 * message.c - synchronous message handling 3 */ 4 5 #include <linux/pci.h> /* for scatterlist macros */ 6 #include <linux/usb.h> 7 #include <linux/module.h> 8 #include <linux/slab.h> 9 #include <linux/init.h> 10 #include <linux/mm.h> 11 #include <linux/timer.h> 12 #include <linux/ctype.h> 13 #include <linux/nls.h> 14 #include <linux/device.h> 15 #include <linux/scatterlist.h> 16 #include <linux/usb/quirks.h> 17 #include <asm/byteorder.h> 18 19 #include "hcd.h" /* for usbcore internals */ 20 #include "usb.h" 21 22 static void cancel_async_set_config(struct usb_device *udev); 23 24 struct api_context { 25 struct completion done; 26 int status; 27 }; 28 29 static void usb_api_blocking_completion(struct urb *urb) 30 { 31 struct api_context *ctx = urb->context; 32 33 ctx->status = urb->status; 34 complete(&ctx->done); 35 } 36 37 38 /* 39 * Starts urb and waits for completion or timeout. Note that this call 40 * is NOT interruptible. Many device driver i/o requests should be 41 * interruptible and therefore these drivers should implement their 42 * own interruptible routines. 43 */ 44 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length) 45 { 46 struct api_context ctx; 47 unsigned long expire; 48 int retval; 49 50 init_completion(&ctx.done); 51 urb->context = &ctx; 52 urb->actual_length = 0; 53 retval = usb_submit_urb(urb, GFP_NOIO); 54 if (unlikely(retval)) 55 goto out; 56 57 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT; 58 if (!wait_for_completion_timeout(&ctx.done, expire)) { 59 usb_kill_urb(urb); 60 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status); 61 62 dev_dbg(&urb->dev->dev, 63 "%s timed out on ep%d%s len=%u/%u\n", 64 current->comm, 65 usb_endpoint_num(&urb->ep->desc), 66 usb_urb_dir_in(urb) ? "in" : "out", 67 urb->actual_length, 68 urb->transfer_buffer_length); 69 } else 70 retval = ctx.status; 71 out: 72 if (actual_length) 73 *actual_length = urb->actual_length; 74 75 usb_free_urb(urb); 76 return retval; 77 } 78 79 /*-------------------------------------------------------------------*/ 80 /* returns status (negative) or length (positive) */ 81 static int usb_internal_control_msg(struct usb_device *usb_dev, 82 unsigned int pipe, 83 struct usb_ctrlrequest *cmd, 84 void *data, int len, int timeout) 85 { 86 struct urb *urb; 87 int retv; 88 int length; 89 90 urb = usb_alloc_urb(0, GFP_NOIO); 91 if (!urb) 92 return -ENOMEM; 93 94 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data, 95 len, usb_api_blocking_completion, NULL); 96 97 retv = usb_start_wait_urb(urb, timeout, &length); 98 if (retv < 0) 99 return retv; 100 else 101 return length; 102 } 103 104 /** 105 * usb_control_msg - Builds a control urb, sends it off and waits for completion 106 * @dev: pointer to the usb device to send the message to 107 * @pipe: endpoint "pipe" to send the message to 108 * @request: USB message request value 109 * @requesttype: USB message request type value 110 * @value: USB message value 111 * @index: USB message index value 112 * @data: pointer to the data to send 113 * @size: length in bytes of the data to send 114 * @timeout: time in msecs to wait for the message to complete before timing 115 * out (if 0 the wait is forever) 116 * 117 * Context: !in_interrupt () 118 * 119 * This function sends a simple control message to a specified endpoint and 120 * waits for the message to complete, or timeout. 121 * 122 * If successful, it returns the number of bytes transferred, otherwise a 123 * negative error number. 124 * 125 * Don't use this function from within an interrupt context, like a bottom half 126 * handler. If you need an asynchronous message, or need to send a message 127 * from within interrupt context, use usb_submit_urb(). 128 * If a thread in your driver uses this call, make sure your disconnect() 129 * method can wait for it to complete. Since you don't have a handle on the 130 * URB used, you can't cancel the request. 131 */ 132 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, 133 __u8 requesttype, __u16 value, __u16 index, void *data, 134 __u16 size, int timeout) 135 { 136 struct usb_ctrlrequest *dr; 137 int ret; 138 139 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO); 140 if (!dr) 141 return -ENOMEM; 142 143 dr->bRequestType = requesttype; 144 dr->bRequest = request; 145 dr->wValue = cpu_to_le16(value); 146 dr->wIndex = cpu_to_le16(index); 147 dr->wLength = cpu_to_le16(size); 148 149 /* dbg("usb_control_msg"); */ 150 151 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout); 152 153 kfree(dr); 154 155 return ret; 156 } 157 EXPORT_SYMBOL_GPL(usb_control_msg); 158 159 /** 160 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion 161 * @usb_dev: pointer to the usb device to send the message to 162 * @pipe: endpoint "pipe" to send the message to 163 * @data: pointer to the data to send 164 * @len: length in bytes of the data to send 165 * @actual_length: pointer to a location to put the actual length transferred 166 * in bytes 167 * @timeout: time in msecs to wait for the message to complete before 168 * timing out (if 0 the wait is forever) 169 * 170 * Context: !in_interrupt () 171 * 172 * This function sends a simple interrupt message to a specified endpoint and 173 * waits for the message to complete, or timeout. 174 * 175 * If successful, it returns 0, otherwise a negative error number. The number 176 * of actual bytes transferred will be stored in the actual_length paramater. 177 * 178 * Don't use this function from within an interrupt context, like a bottom half 179 * handler. If you need an asynchronous message, or need to send a message 180 * from within interrupt context, use usb_submit_urb() If a thread in your 181 * driver uses this call, make sure your disconnect() method can wait for it to 182 * complete. Since you don't have a handle on the URB used, you can't cancel 183 * the request. 184 */ 185 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 186 void *data, int len, int *actual_length, int timeout) 187 { 188 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout); 189 } 190 EXPORT_SYMBOL_GPL(usb_interrupt_msg); 191 192 /** 193 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion 194 * @usb_dev: pointer to the usb device to send the message to 195 * @pipe: endpoint "pipe" to send the message to 196 * @data: pointer to the data to send 197 * @len: length in bytes of the data to send 198 * @actual_length: pointer to a location to put the actual length transferred 199 * in bytes 200 * @timeout: time in msecs to wait for the message to complete before 201 * timing out (if 0 the wait is forever) 202 * 203 * Context: !in_interrupt () 204 * 205 * This function sends a simple bulk message to a specified endpoint 206 * and waits for the message to complete, or timeout. 207 * 208 * If successful, it returns 0, otherwise a negative error number. The number 209 * of actual bytes transferred will be stored in the actual_length paramater. 210 * 211 * Don't use this function from within an interrupt context, like a bottom half 212 * handler. If you need an asynchronous message, or need to send a message 213 * from within interrupt context, use usb_submit_urb() If a thread in your 214 * driver uses this call, make sure your disconnect() method can wait for it to 215 * complete. Since you don't have a handle on the URB used, you can't cancel 216 * the request. 217 * 218 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl, 219 * users are forced to abuse this routine by using it to submit URBs for 220 * interrupt endpoints. We will take the liberty of creating an interrupt URB 221 * (with the default interval) if the target is an interrupt endpoint. 222 */ 223 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 224 void *data, int len, int *actual_length, int timeout) 225 { 226 struct urb *urb; 227 struct usb_host_endpoint *ep; 228 229 ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out) 230 [usb_pipeendpoint(pipe)]; 231 if (!ep || len < 0) 232 return -EINVAL; 233 234 urb = usb_alloc_urb(0, GFP_KERNEL); 235 if (!urb) 236 return -ENOMEM; 237 238 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 239 USB_ENDPOINT_XFER_INT) { 240 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30); 241 usb_fill_int_urb(urb, usb_dev, pipe, data, len, 242 usb_api_blocking_completion, NULL, 243 ep->desc.bInterval); 244 } else 245 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len, 246 usb_api_blocking_completion, NULL); 247 248 return usb_start_wait_urb(urb, timeout, actual_length); 249 } 250 EXPORT_SYMBOL_GPL(usb_bulk_msg); 251 252 /*-------------------------------------------------------------------*/ 253 254 static void sg_clean(struct usb_sg_request *io) 255 { 256 if (io->urbs) { 257 while (io->entries--) 258 usb_free_urb(io->urbs [io->entries]); 259 kfree(io->urbs); 260 io->urbs = NULL; 261 } 262 if (io->dev->dev.dma_mask != NULL) 263 usb_buffer_unmap_sg(io->dev, usb_pipein(io->pipe), 264 io->sg, io->nents); 265 io->dev = NULL; 266 } 267 268 static void sg_complete(struct urb *urb) 269 { 270 struct usb_sg_request *io = urb->context; 271 int status = urb->status; 272 273 spin_lock(&io->lock); 274 275 /* In 2.5 we require hcds' endpoint queues not to progress after fault 276 * reports, until the completion callback (this!) returns. That lets 277 * device driver code (like this routine) unlink queued urbs first, 278 * if it needs to, since the HC won't work on them at all. So it's 279 * not possible for page N+1 to overwrite page N, and so on. 280 * 281 * That's only for "hard" faults; "soft" faults (unlinks) sometimes 282 * complete before the HCD can get requests away from hardware, 283 * though never during cleanup after a hard fault. 284 */ 285 if (io->status 286 && (io->status != -ECONNRESET 287 || status != -ECONNRESET) 288 && urb->actual_length) { 289 dev_err(io->dev->bus->controller, 290 "dev %s ep%d%s scatterlist error %d/%d\n", 291 io->dev->devpath, 292 usb_endpoint_num(&urb->ep->desc), 293 usb_urb_dir_in(urb) ? "in" : "out", 294 status, io->status); 295 /* BUG (); */ 296 } 297 298 if (io->status == 0 && status && status != -ECONNRESET) { 299 int i, found, retval; 300 301 io->status = status; 302 303 /* the previous urbs, and this one, completed already. 304 * unlink pending urbs so they won't rx/tx bad data. 305 * careful: unlink can sometimes be synchronous... 306 */ 307 spin_unlock(&io->lock); 308 for (i = 0, found = 0; i < io->entries; i++) { 309 if (!io->urbs [i] || !io->urbs [i]->dev) 310 continue; 311 if (found) { 312 retval = usb_unlink_urb(io->urbs [i]); 313 if (retval != -EINPROGRESS && 314 retval != -ENODEV && 315 retval != -EBUSY) 316 dev_err(&io->dev->dev, 317 "%s, unlink --> %d\n", 318 __func__, retval); 319 } else if (urb == io->urbs [i]) 320 found = 1; 321 } 322 spin_lock(&io->lock); 323 } 324 urb->dev = NULL; 325 326 /* on the last completion, signal usb_sg_wait() */ 327 io->bytes += urb->actual_length; 328 io->count--; 329 if (!io->count) 330 complete(&io->complete); 331 332 spin_unlock(&io->lock); 333 } 334 335 336 /** 337 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request 338 * @io: request block being initialized. until usb_sg_wait() returns, 339 * treat this as a pointer to an opaque block of memory, 340 * @dev: the usb device that will send or receive the data 341 * @pipe: endpoint "pipe" used to transfer the data 342 * @period: polling rate for interrupt endpoints, in frames or 343 * (for high speed endpoints) microframes; ignored for bulk 344 * @sg: scatterlist entries 345 * @nents: how many entries in the scatterlist 346 * @length: how many bytes to send from the scatterlist, or zero to 347 * send every byte identified in the list. 348 * @mem_flags: SLAB_* flags affecting memory allocations in this call 349 * 350 * Returns zero for success, else a negative errno value. This initializes a 351 * scatter/gather request, allocating resources such as I/O mappings and urb 352 * memory (except maybe memory used by USB controller drivers). 353 * 354 * The request must be issued using usb_sg_wait(), which waits for the I/O to 355 * complete (or to be canceled) and then cleans up all resources allocated by 356 * usb_sg_init(). 357 * 358 * The request may be canceled with usb_sg_cancel(), either before or after 359 * usb_sg_wait() is called. 360 */ 361 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev, 362 unsigned pipe, unsigned period, struct scatterlist *sg, 363 int nents, size_t length, gfp_t mem_flags) 364 { 365 int i; 366 int urb_flags; 367 int dma; 368 int use_sg; 369 370 if (!io || !dev || !sg 371 || usb_pipecontrol(pipe) 372 || usb_pipeisoc(pipe) 373 || nents <= 0) 374 return -EINVAL; 375 376 spin_lock_init(&io->lock); 377 io->dev = dev; 378 io->pipe = pipe; 379 io->sg = sg; 380 io->nents = nents; 381 382 /* not all host controllers use DMA (like the mainstream pci ones); 383 * they can use PIO (sl811) or be software over another transport. 384 */ 385 dma = (dev->dev.dma_mask != NULL); 386 if (dma) 387 io->entries = usb_buffer_map_sg(dev, usb_pipein(pipe), 388 sg, nents); 389 else 390 io->entries = nents; 391 392 /* initialize all the urbs we'll use */ 393 if (io->entries <= 0) 394 return io->entries; 395 396 if (dev->bus->sg_tablesize > 0) { 397 io->urbs = kmalloc(sizeof *io->urbs, mem_flags); 398 use_sg = true; 399 } else { 400 io->urbs = kmalloc(io->entries * sizeof *io->urbs, mem_flags); 401 use_sg = false; 402 } 403 if (!io->urbs) 404 goto nomem; 405 406 urb_flags = 0; 407 if (dma) 408 urb_flags |= URB_NO_TRANSFER_DMA_MAP; 409 if (usb_pipein(pipe)) 410 urb_flags |= URB_SHORT_NOT_OK; 411 412 if (use_sg) { 413 io->urbs[0] = usb_alloc_urb(0, mem_flags); 414 if (!io->urbs[0]) { 415 io->entries = 0; 416 goto nomem; 417 } 418 419 io->urbs[0]->dev = NULL; 420 io->urbs[0]->pipe = pipe; 421 io->urbs[0]->interval = period; 422 io->urbs[0]->transfer_flags = urb_flags; 423 424 io->urbs[0]->complete = sg_complete; 425 io->urbs[0]->context = io; 426 /* A length of zero means transfer the whole sg list */ 427 io->urbs[0]->transfer_buffer_length = length; 428 if (length == 0) { 429 for_each_sg(sg, sg, io->entries, i) { 430 io->urbs[0]->transfer_buffer_length += 431 sg_dma_len(sg); 432 } 433 } 434 io->urbs[0]->sg = io; 435 io->urbs[0]->num_sgs = io->entries; 436 io->entries = 1; 437 } else { 438 urb_flags |= URB_NO_INTERRUPT; 439 for_each_sg(sg, sg, io->entries, i) { 440 unsigned len; 441 442 io->urbs[i] = usb_alloc_urb(0, mem_flags); 443 if (!io->urbs[i]) { 444 io->entries = i; 445 goto nomem; 446 } 447 448 io->urbs[i]->dev = NULL; 449 io->urbs[i]->pipe = pipe; 450 io->urbs[i]->interval = period; 451 io->urbs[i]->transfer_flags = urb_flags; 452 453 io->urbs[i]->complete = sg_complete; 454 io->urbs[i]->context = io; 455 456 /* 457 * Some systems need to revert to PIO when DMA is temporarily 458 * unavailable. For their sakes, both transfer_buffer and 459 * transfer_dma are set when possible. 460 * 461 * Note that if IOMMU coalescing occurred, we cannot 462 * trust sg_page anymore, so check if S/G list shrunk. 463 */ 464 if (io->nents == io->entries && !PageHighMem(sg_page(sg))) 465 io->urbs[i]->transfer_buffer = sg_virt(sg); 466 else 467 io->urbs[i]->transfer_buffer = NULL; 468 469 if (dma) { 470 io->urbs[i]->transfer_dma = sg_dma_address(sg); 471 len = sg_dma_len(sg); 472 } else { 473 /* hc may use _only_ transfer_buffer */ 474 len = sg->length; 475 } 476 477 if (length) { 478 len = min_t(unsigned, len, length); 479 length -= len; 480 if (length == 0) 481 io->entries = i + 1; 482 } 483 io->urbs[i]->transfer_buffer_length = len; 484 } 485 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT; 486 } 487 488 /* transaction state */ 489 io->count = io->entries; 490 io->status = 0; 491 io->bytes = 0; 492 init_completion(&io->complete); 493 return 0; 494 495 nomem: 496 sg_clean(io); 497 return -ENOMEM; 498 } 499 EXPORT_SYMBOL_GPL(usb_sg_init); 500 501 /** 502 * usb_sg_wait - synchronously execute scatter/gather request 503 * @io: request block handle, as initialized with usb_sg_init(). 504 * some fields become accessible when this call returns. 505 * Context: !in_interrupt () 506 * 507 * This function blocks until the specified I/O operation completes. It 508 * leverages the grouping of the related I/O requests to get good transfer 509 * rates, by queueing the requests. At higher speeds, such queuing can 510 * significantly improve USB throughput. 511 * 512 * There are three kinds of completion for this function. 513 * (1) success, where io->status is zero. The number of io->bytes 514 * transferred is as requested. 515 * (2) error, where io->status is a negative errno value. The number 516 * of io->bytes transferred before the error is usually less 517 * than requested, and can be nonzero. 518 * (3) cancellation, a type of error with status -ECONNRESET that 519 * is initiated by usb_sg_cancel(). 520 * 521 * When this function returns, all memory allocated through usb_sg_init() or 522 * this call will have been freed. The request block parameter may still be 523 * passed to usb_sg_cancel(), or it may be freed. It could also be 524 * reinitialized and then reused. 525 * 526 * Data Transfer Rates: 527 * 528 * Bulk transfers are valid for full or high speed endpoints. 529 * The best full speed data rate is 19 packets of 64 bytes each 530 * per frame, or 1216 bytes per millisecond. 531 * The best high speed data rate is 13 packets of 512 bytes each 532 * per microframe, or 52 KBytes per millisecond. 533 * 534 * The reason to use interrupt transfers through this API would most likely 535 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond 536 * could be transferred. That capability is less useful for low or full 537 * speed interrupt endpoints, which allow at most one packet per millisecond, 538 * of at most 8 or 64 bytes (respectively). 539 * 540 * It is not necessary to call this function to reserve bandwidth for devices 541 * under an xHCI host controller, as the bandwidth is reserved when the 542 * configuration or interface alt setting is selected. 543 */ 544 void usb_sg_wait(struct usb_sg_request *io) 545 { 546 int i; 547 int entries = io->entries; 548 549 /* queue the urbs. */ 550 spin_lock_irq(&io->lock); 551 i = 0; 552 while (i < entries && !io->status) { 553 int retval; 554 555 io->urbs[i]->dev = io->dev; 556 retval = usb_submit_urb(io->urbs [i], GFP_ATOMIC); 557 558 /* after we submit, let completions or cancelations fire; 559 * we handshake using io->status. 560 */ 561 spin_unlock_irq(&io->lock); 562 switch (retval) { 563 /* maybe we retrying will recover */ 564 case -ENXIO: /* hc didn't queue this one */ 565 case -EAGAIN: 566 case -ENOMEM: 567 io->urbs[i]->dev = NULL; 568 retval = 0; 569 yield(); 570 break; 571 572 /* no error? continue immediately. 573 * 574 * NOTE: to work better with UHCI (4K I/O buffer may 575 * need 3K of TDs) it may be good to limit how many 576 * URBs are queued at once; N milliseconds? 577 */ 578 case 0: 579 ++i; 580 cpu_relax(); 581 break; 582 583 /* fail any uncompleted urbs */ 584 default: 585 io->urbs[i]->dev = NULL; 586 io->urbs[i]->status = retval; 587 dev_dbg(&io->dev->dev, "%s, submit --> %d\n", 588 __func__, retval); 589 usb_sg_cancel(io); 590 } 591 spin_lock_irq(&io->lock); 592 if (retval && (io->status == 0 || io->status == -ECONNRESET)) 593 io->status = retval; 594 } 595 io->count -= entries - i; 596 if (io->count == 0) 597 complete(&io->complete); 598 spin_unlock_irq(&io->lock); 599 600 /* OK, yes, this could be packaged as non-blocking. 601 * So could the submit loop above ... but it's easier to 602 * solve neither problem than to solve both! 603 */ 604 wait_for_completion(&io->complete); 605 606 sg_clean(io); 607 } 608 EXPORT_SYMBOL_GPL(usb_sg_wait); 609 610 /** 611 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait() 612 * @io: request block, initialized with usb_sg_init() 613 * 614 * This stops a request after it has been started by usb_sg_wait(). 615 * It can also prevents one initialized by usb_sg_init() from starting, 616 * so that call just frees resources allocated to the request. 617 */ 618 void usb_sg_cancel(struct usb_sg_request *io) 619 { 620 unsigned long flags; 621 622 spin_lock_irqsave(&io->lock, flags); 623 624 /* shut everything down, if it didn't already */ 625 if (!io->status) { 626 int i; 627 628 io->status = -ECONNRESET; 629 spin_unlock(&io->lock); 630 for (i = 0; i < io->entries; i++) { 631 int retval; 632 633 if (!io->urbs [i]->dev) 634 continue; 635 retval = usb_unlink_urb(io->urbs [i]); 636 if (retval != -EINPROGRESS && retval != -EBUSY) 637 dev_warn(&io->dev->dev, "%s, unlink --> %d\n", 638 __func__, retval); 639 } 640 spin_lock(&io->lock); 641 } 642 spin_unlock_irqrestore(&io->lock, flags); 643 } 644 EXPORT_SYMBOL_GPL(usb_sg_cancel); 645 646 /*-------------------------------------------------------------------*/ 647 648 /** 649 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request 650 * @dev: the device whose descriptor is being retrieved 651 * @type: the descriptor type (USB_DT_*) 652 * @index: the number of the descriptor 653 * @buf: where to put the descriptor 654 * @size: how big is "buf"? 655 * Context: !in_interrupt () 656 * 657 * Gets a USB descriptor. Convenience functions exist to simplify 658 * getting some types of descriptors. Use 659 * usb_get_string() or usb_string() for USB_DT_STRING. 660 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG) 661 * are part of the device structure. 662 * In addition to a number of USB-standard descriptors, some 663 * devices also use class-specific or vendor-specific descriptors. 664 * 665 * This call is synchronous, and may not be used in an interrupt context. 666 * 667 * Returns the number of bytes received on success, or else the status code 668 * returned by the underlying usb_control_msg() call. 669 */ 670 int usb_get_descriptor(struct usb_device *dev, unsigned char type, 671 unsigned char index, void *buf, int size) 672 { 673 int i; 674 int result; 675 676 memset(buf, 0, size); /* Make sure we parse really received data */ 677 678 for (i = 0; i < 3; ++i) { 679 /* retry on length 0 or error; some devices are flakey */ 680 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 681 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 682 (type << 8) + index, 0, buf, size, 683 USB_CTRL_GET_TIMEOUT); 684 if (result <= 0 && result != -ETIMEDOUT) 685 continue; 686 if (result > 1 && ((u8 *)buf)[1] != type) { 687 result = -ENODATA; 688 continue; 689 } 690 break; 691 } 692 return result; 693 } 694 EXPORT_SYMBOL_GPL(usb_get_descriptor); 695 696 /** 697 * usb_get_string - gets a string descriptor 698 * @dev: the device whose string descriptor is being retrieved 699 * @langid: code for language chosen (from string descriptor zero) 700 * @index: the number of the descriptor 701 * @buf: where to put the string 702 * @size: how big is "buf"? 703 * Context: !in_interrupt () 704 * 705 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character, 706 * in little-endian byte order). 707 * The usb_string() function will often be a convenient way to turn 708 * these strings into kernel-printable form. 709 * 710 * Strings may be referenced in device, configuration, interface, or other 711 * descriptors, and could also be used in vendor-specific ways. 712 * 713 * This call is synchronous, and may not be used in an interrupt context. 714 * 715 * Returns the number of bytes received on success, or else the status code 716 * returned by the underlying usb_control_msg() call. 717 */ 718 static int usb_get_string(struct usb_device *dev, unsigned short langid, 719 unsigned char index, void *buf, int size) 720 { 721 int i; 722 int result; 723 724 for (i = 0; i < 3; ++i) { 725 /* retry on length 0 or stall; some devices are flakey */ 726 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 727 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 728 (USB_DT_STRING << 8) + index, langid, buf, size, 729 USB_CTRL_GET_TIMEOUT); 730 if (result == 0 || result == -EPIPE) 731 continue; 732 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) { 733 result = -ENODATA; 734 continue; 735 } 736 break; 737 } 738 return result; 739 } 740 741 static void usb_try_string_workarounds(unsigned char *buf, int *length) 742 { 743 int newlength, oldlength = *length; 744 745 for (newlength = 2; newlength + 1 < oldlength; newlength += 2) 746 if (!isprint(buf[newlength]) || buf[newlength + 1]) 747 break; 748 749 if (newlength > 2) { 750 buf[0] = newlength; 751 *length = newlength; 752 } 753 } 754 755 static int usb_string_sub(struct usb_device *dev, unsigned int langid, 756 unsigned int index, unsigned char *buf) 757 { 758 int rc; 759 760 /* Try to read the string descriptor by asking for the maximum 761 * possible number of bytes */ 762 if (dev->quirks & USB_QUIRK_STRING_FETCH_255) 763 rc = -EIO; 764 else 765 rc = usb_get_string(dev, langid, index, buf, 255); 766 767 /* If that failed try to read the descriptor length, then 768 * ask for just that many bytes */ 769 if (rc < 2) { 770 rc = usb_get_string(dev, langid, index, buf, 2); 771 if (rc == 2) 772 rc = usb_get_string(dev, langid, index, buf, buf[0]); 773 } 774 775 if (rc >= 2) { 776 if (!buf[0] && !buf[1]) 777 usb_try_string_workarounds(buf, &rc); 778 779 /* There might be extra junk at the end of the descriptor */ 780 if (buf[0] < rc) 781 rc = buf[0]; 782 783 rc = rc - (rc & 1); /* force a multiple of two */ 784 } 785 786 if (rc < 2) 787 rc = (rc < 0 ? rc : -EINVAL); 788 789 return rc; 790 } 791 792 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf) 793 { 794 int err; 795 796 if (dev->have_langid) 797 return 0; 798 799 if (dev->string_langid < 0) 800 return -EPIPE; 801 802 err = usb_string_sub(dev, 0, 0, tbuf); 803 804 /* If the string was reported but is malformed, default to english 805 * (0x0409) */ 806 if (err == -ENODATA || (err > 0 && err < 4)) { 807 dev->string_langid = 0x0409; 808 dev->have_langid = 1; 809 dev_err(&dev->dev, 810 "string descriptor 0 malformed (err = %d), " 811 "defaulting to 0x%04x\n", 812 err, dev->string_langid); 813 return 0; 814 } 815 816 /* In case of all other errors, we assume the device is not able to 817 * deal with strings at all. Set string_langid to -1 in order to 818 * prevent any string to be retrieved from the device */ 819 if (err < 0) { 820 dev_err(&dev->dev, "string descriptor 0 read error: %d\n", 821 err); 822 dev->string_langid = -1; 823 return -EPIPE; 824 } 825 826 /* always use the first langid listed */ 827 dev->string_langid = tbuf[2] | (tbuf[3] << 8); 828 dev->have_langid = 1; 829 dev_dbg(&dev->dev, "default language 0x%04x\n", 830 dev->string_langid); 831 return 0; 832 } 833 834 /** 835 * usb_string - returns UTF-8 version of a string descriptor 836 * @dev: the device whose string descriptor is being retrieved 837 * @index: the number of the descriptor 838 * @buf: where to put the string 839 * @size: how big is "buf"? 840 * Context: !in_interrupt () 841 * 842 * This converts the UTF-16LE encoded strings returned by devices, from 843 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones 844 * that are more usable in most kernel contexts. Note that this function 845 * chooses strings in the first language supported by the device. 846 * 847 * This call is synchronous, and may not be used in an interrupt context. 848 * 849 * Returns length of the string (>= 0) or usb_control_msg status (< 0). 850 */ 851 int usb_string(struct usb_device *dev, int index, char *buf, size_t size) 852 { 853 unsigned char *tbuf; 854 int err; 855 856 if (dev->state == USB_STATE_SUSPENDED) 857 return -EHOSTUNREACH; 858 if (size <= 0 || !buf || !index) 859 return -EINVAL; 860 buf[0] = 0; 861 tbuf = kmalloc(256, GFP_NOIO); 862 if (!tbuf) 863 return -ENOMEM; 864 865 err = usb_get_langid(dev, tbuf); 866 if (err < 0) 867 goto errout; 868 869 err = usb_string_sub(dev, dev->string_langid, index, tbuf); 870 if (err < 0) 871 goto errout; 872 873 size--; /* leave room for trailing NULL char in output buffer */ 874 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2, 875 UTF16_LITTLE_ENDIAN, buf, size); 876 buf[err] = 0; 877 878 if (tbuf[1] != USB_DT_STRING) 879 dev_dbg(&dev->dev, 880 "wrong descriptor type %02x for string %d (\"%s\")\n", 881 tbuf[1], index, buf); 882 883 errout: 884 kfree(tbuf); 885 return err; 886 } 887 EXPORT_SYMBOL_GPL(usb_string); 888 889 /* one UTF-8-encoded 16-bit character has at most three bytes */ 890 #define MAX_USB_STRING_SIZE (127 * 3 + 1) 891 892 /** 893 * usb_cache_string - read a string descriptor and cache it for later use 894 * @udev: the device whose string descriptor is being read 895 * @index: the descriptor index 896 * 897 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string, 898 * or NULL if the index is 0 or the string could not be read. 899 */ 900 char *usb_cache_string(struct usb_device *udev, int index) 901 { 902 char *buf; 903 char *smallbuf = NULL; 904 int len; 905 906 if (index <= 0) 907 return NULL; 908 909 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_KERNEL); 910 if (buf) { 911 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE); 912 if (len > 0) { 913 smallbuf = kmalloc(++len, GFP_KERNEL); 914 if (!smallbuf) 915 return buf; 916 memcpy(smallbuf, buf, len); 917 } 918 kfree(buf); 919 } 920 return smallbuf; 921 } 922 923 /* 924 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore) 925 * @dev: the device whose device descriptor is being updated 926 * @size: how much of the descriptor to read 927 * Context: !in_interrupt () 928 * 929 * Updates the copy of the device descriptor stored in the device structure, 930 * which dedicates space for this purpose. 931 * 932 * Not exported, only for use by the core. If drivers really want to read 933 * the device descriptor directly, they can call usb_get_descriptor() with 934 * type = USB_DT_DEVICE and index = 0. 935 * 936 * This call is synchronous, and may not be used in an interrupt context. 937 * 938 * Returns the number of bytes received on success, or else the status code 939 * returned by the underlying usb_control_msg() call. 940 */ 941 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size) 942 { 943 struct usb_device_descriptor *desc; 944 int ret; 945 946 if (size > sizeof(*desc)) 947 return -EINVAL; 948 desc = kmalloc(sizeof(*desc), GFP_NOIO); 949 if (!desc) 950 return -ENOMEM; 951 952 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size); 953 if (ret >= 0) 954 memcpy(&dev->descriptor, desc, size); 955 kfree(desc); 956 return ret; 957 } 958 959 /** 960 * usb_get_status - issues a GET_STATUS call 961 * @dev: the device whose status is being checked 962 * @type: USB_RECIP_*; for device, interface, or endpoint 963 * @target: zero (for device), else interface or endpoint number 964 * @data: pointer to two bytes of bitmap data 965 * Context: !in_interrupt () 966 * 967 * Returns device, interface, or endpoint status. Normally only of 968 * interest to see if the device is self powered, or has enabled the 969 * remote wakeup facility; or whether a bulk or interrupt endpoint 970 * is halted ("stalled"). 971 * 972 * Bits in these status bitmaps are set using the SET_FEATURE request, 973 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt() 974 * function should be used to clear halt ("stall") status. 975 * 976 * This call is synchronous, and may not be used in an interrupt context. 977 * 978 * Returns the number of bytes received on success, or else the status code 979 * returned by the underlying usb_control_msg() call. 980 */ 981 int usb_get_status(struct usb_device *dev, int type, int target, void *data) 982 { 983 int ret; 984 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL); 985 986 if (!status) 987 return -ENOMEM; 988 989 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 990 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status, 991 sizeof(*status), USB_CTRL_GET_TIMEOUT); 992 993 *(u16 *)data = *status; 994 kfree(status); 995 return ret; 996 } 997 EXPORT_SYMBOL_GPL(usb_get_status); 998 999 /** 1000 * usb_clear_halt - tells device to clear endpoint halt/stall condition 1001 * @dev: device whose endpoint is halted 1002 * @pipe: endpoint "pipe" being cleared 1003 * Context: !in_interrupt () 1004 * 1005 * This is used to clear halt conditions for bulk and interrupt endpoints, 1006 * as reported by URB completion status. Endpoints that are halted are 1007 * sometimes referred to as being "stalled". Such endpoints are unable 1008 * to transmit or receive data until the halt status is cleared. Any URBs 1009 * queued for such an endpoint should normally be unlinked by the driver 1010 * before clearing the halt condition, as described in sections 5.7.5 1011 * and 5.8.5 of the USB 2.0 spec. 1012 * 1013 * Note that control and isochronous endpoints don't halt, although control 1014 * endpoints report "protocol stall" (for unsupported requests) using the 1015 * same status code used to report a true stall. 1016 * 1017 * This call is synchronous, and may not be used in an interrupt context. 1018 * 1019 * Returns zero on success, or else the status code returned by the 1020 * underlying usb_control_msg() call. 1021 */ 1022 int usb_clear_halt(struct usb_device *dev, int pipe) 1023 { 1024 int result; 1025 int endp = usb_pipeendpoint(pipe); 1026 1027 if (usb_pipein(pipe)) 1028 endp |= USB_DIR_IN; 1029 1030 /* we don't care if it wasn't halted first. in fact some devices 1031 * (like some ibmcam model 1 units) seem to expect hosts to make 1032 * this request for iso endpoints, which can't halt! 1033 */ 1034 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1035 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 1036 USB_ENDPOINT_HALT, endp, NULL, 0, 1037 USB_CTRL_SET_TIMEOUT); 1038 1039 /* don't un-halt or force to DATA0 except on success */ 1040 if (result < 0) 1041 return result; 1042 1043 /* NOTE: seems like Microsoft and Apple don't bother verifying 1044 * the clear "took", so some devices could lock up if you check... 1045 * such as the Hagiwara FlashGate DUAL. So we won't bother. 1046 * 1047 * NOTE: make sure the logic here doesn't diverge much from 1048 * the copy in usb-storage, for as long as we need two copies. 1049 */ 1050 1051 usb_reset_endpoint(dev, endp); 1052 1053 return 0; 1054 } 1055 EXPORT_SYMBOL_GPL(usb_clear_halt); 1056 1057 static int create_intf_ep_devs(struct usb_interface *intf) 1058 { 1059 struct usb_device *udev = interface_to_usbdev(intf); 1060 struct usb_host_interface *alt = intf->cur_altsetting; 1061 int i; 1062 1063 if (intf->ep_devs_created || intf->unregistering) 1064 return 0; 1065 1066 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1067 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev); 1068 intf->ep_devs_created = 1; 1069 return 0; 1070 } 1071 1072 static void remove_intf_ep_devs(struct usb_interface *intf) 1073 { 1074 struct usb_host_interface *alt = intf->cur_altsetting; 1075 int i; 1076 1077 if (!intf->ep_devs_created) 1078 return; 1079 1080 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1081 usb_remove_ep_devs(&alt->endpoint[i]); 1082 intf->ep_devs_created = 0; 1083 } 1084 1085 /** 1086 * usb_disable_endpoint -- Disable an endpoint by address 1087 * @dev: the device whose endpoint is being disabled 1088 * @epaddr: the endpoint's address. Endpoint number for output, 1089 * endpoint number + USB_DIR_IN for input 1090 * @reset_hardware: flag to erase any endpoint state stored in the 1091 * controller hardware 1092 * 1093 * Disables the endpoint for URB submission and nukes all pending URBs. 1094 * If @reset_hardware is set then also deallocates hcd/hardware state 1095 * for the endpoint. 1096 */ 1097 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr, 1098 bool reset_hardware) 1099 { 1100 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1101 struct usb_host_endpoint *ep; 1102 1103 if (!dev) 1104 return; 1105 1106 if (usb_endpoint_out(epaddr)) { 1107 ep = dev->ep_out[epnum]; 1108 if (reset_hardware) 1109 dev->ep_out[epnum] = NULL; 1110 } else { 1111 ep = dev->ep_in[epnum]; 1112 if (reset_hardware) 1113 dev->ep_in[epnum] = NULL; 1114 } 1115 if (ep) { 1116 ep->enabled = 0; 1117 usb_hcd_flush_endpoint(dev, ep); 1118 if (reset_hardware) 1119 usb_hcd_disable_endpoint(dev, ep); 1120 } 1121 } 1122 1123 /** 1124 * usb_reset_endpoint - Reset an endpoint's state. 1125 * @dev: the device whose endpoint is to be reset 1126 * @epaddr: the endpoint's address. Endpoint number for output, 1127 * endpoint number + USB_DIR_IN for input 1128 * 1129 * Resets any host-side endpoint state such as the toggle bit, 1130 * sequence number or current window. 1131 */ 1132 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr) 1133 { 1134 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1135 struct usb_host_endpoint *ep; 1136 1137 if (usb_endpoint_out(epaddr)) 1138 ep = dev->ep_out[epnum]; 1139 else 1140 ep = dev->ep_in[epnum]; 1141 if (ep) 1142 usb_hcd_reset_endpoint(dev, ep); 1143 } 1144 EXPORT_SYMBOL_GPL(usb_reset_endpoint); 1145 1146 1147 /** 1148 * usb_disable_interface -- Disable all endpoints for an interface 1149 * @dev: the device whose interface is being disabled 1150 * @intf: pointer to the interface descriptor 1151 * @reset_hardware: flag to erase any endpoint state stored in the 1152 * controller hardware 1153 * 1154 * Disables all the endpoints for the interface's current altsetting. 1155 */ 1156 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf, 1157 bool reset_hardware) 1158 { 1159 struct usb_host_interface *alt = intf->cur_altsetting; 1160 int i; 1161 1162 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 1163 usb_disable_endpoint(dev, 1164 alt->endpoint[i].desc.bEndpointAddress, 1165 reset_hardware); 1166 } 1167 } 1168 1169 /** 1170 * usb_disable_device - Disable all the endpoints for a USB device 1171 * @dev: the device whose endpoints are being disabled 1172 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. 1173 * 1174 * Disables all the device's endpoints, potentially including endpoint 0. 1175 * Deallocates hcd/hardware state for the endpoints (nuking all or most 1176 * pending urbs) and usbcore state for the interfaces, so that usbcore 1177 * must usb_set_configuration() before any interfaces could be used. 1178 */ 1179 void usb_disable_device(struct usb_device *dev, int skip_ep0) 1180 { 1181 int i; 1182 1183 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__, 1184 skip_ep0 ? "non-ep0" : "all"); 1185 for (i = skip_ep0; i < 16; ++i) { 1186 usb_disable_endpoint(dev, i, true); 1187 usb_disable_endpoint(dev, i + USB_DIR_IN, true); 1188 } 1189 1190 /* getting rid of interfaces will disconnect 1191 * any drivers bound to them (a key side effect) 1192 */ 1193 if (dev->actconfig) { 1194 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1195 struct usb_interface *interface; 1196 1197 /* remove this interface if it has been registered */ 1198 interface = dev->actconfig->interface[i]; 1199 if (!device_is_registered(&interface->dev)) 1200 continue; 1201 dev_dbg(&dev->dev, "unregistering interface %s\n", 1202 dev_name(&interface->dev)); 1203 interface->unregistering = 1; 1204 remove_intf_ep_devs(interface); 1205 device_del(&interface->dev); 1206 } 1207 1208 /* Now that the interfaces are unbound, nobody should 1209 * try to access them. 1210 */ 1211 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1212 put_device(&dev->actconfig->interface[i]->dev); 1213 dev->actconfig->interface[i] = NULL; 1214 } 1215 dev->actconfig = NULL; 1216 if (dev->state == USB_STATE_CONFIGURED) 1217 usb_set_device_state(dev, USB_STATE_ADDRESS); 1218 } 1219 } 1220 1221 /** 1222 * usb_enable_endpoint - Enable an endpoint for USB communications 1223 * @dev: the device whose interface is being enabled 1224 * @ep: the endpoint 1225 * @reset_ep: flag to reset the endpoint state 1226 * 1227 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers. 1228 * For control endpoints, both the input and output sides are handled. 1229 */ 1230 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep, 1231 bool reset_ep) 1232 { 1233 int epnum = usb_endpoint_num(&ep->desc); 1234 int is_out = usb_endpoint_dir_out(&ep->desc); 1235 int is_control = usb_endpoint_xfer_control(&ep->desc); 1236 1237 if (reset_ep) 1238 usb_hcd_reset_endpoint(dev, ep); 1239 if (is_out || is_control) 1240 dev->ep_out[epnum] = ep; 1241 if (!is_out || is_control) 1242 dev->ep_in[epnum] = ep; 1243 ep->enabled = 1; 1244 } 1245 1246 /** 1247 * usb_enable_interface - Enable all the endpoints for an interface 1248 * @dev: the device whose interface is being enabled 1249 * @intf: pointer to the interface descriptor 1250 * @reset_eps: flag to reset the endpoints' state 1251 * 1252 * Enables all the endpoints for the interface's current altsetting. 1253 */ 1254 void usb_enable_interface(struct usb_device *dev, 1255 struct usb_interface *intf, bool reset_eps) 1256 { 1257 struct usb_host_interface *alt = intf->cur_altsetting; 1258 int i; 1259 1260 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1261 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps); 1262 } 1263 1264 /** 1265 * usb_set_interface - Makes a particular alternate setting be current 1266 * @dev: the device whose interface is being updated 1267 * @interface: the interface being updated 1268 * @alternate: the setting being chosen. 1269 * Context: !in_interrupt () 1270 * 1271 * This is used to enable data transfers on interfaces that may not 1272 * be enabled by default. Not all devices support such configurability. 1273 * Only the driver bound to an interface may change its setting. 1274 * 1275 * Within any given configuration, each interface may have several 1276 * alternative settings. These are often used to control levels of 1277 * bandwidth consumption. For example, the default setting for a high 1278 * speed interrupt endpoint may not send more than 64 bytes per microframe, 1279 * while interrupt transfers of up to 3KBytes per microframe are legal. 1280 * Also, isochronous endpoints may never be part of an 1281 * interface's default setting. To access such bandwidth, alternate 1282 * interface settings must be made current. 1283 * 1284 * Note that in the Linux USB subsystem, bandwidth associated with 1285 * an endpoint in a given alternate setting is not reserved until an URB 1286 * is submitted that needs that bandwidth. Some other operating systems 1287 * allocate bandwidth early, when a configuration is chosen. 1288 * 1289 * This call is synchronous, and may not be used in an interrupt context. 1290 * Also, drivers must not change altsettings while urbs are scheduled for 1291 * endpoints in that interface; all such urbs must first be completed 1292 * (perhaps forced by unlinking). 1293 * 1294 * Returns zero on success, or else the status code returned by the 1295 * underlying usb_control_msg() call. 1296 */ 1297 int usb_set_interface(struct usb_device *dev, int interface, int alternate) 1298 { 1299 struct usb_interface *iface; 1300 struct usb_host_interface *alt; 1301 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1302 int ret; 1303 int manual = 0; 1304 unsigned int epaddr; 1305 unsigned int pipe; 1306 1307 if (dev->state == USB_STATE_SUSPENDED) 1308 return -EHOSTUNREACH; 1309 1310 iface = usb_ifnum_to_if(dev, interface); 1311 if (!iface) { 1312 dev_dbg(&dev->dev, "selecting invalid interface %d\n", 1313 interface); 1314 return -EINVAL; 1315 } 1316 1317 alt = usb_altnum_to_altsetting(iface, alternate); 1318 if (!alt) { 1319 dev_warn(&dev->dev, "selecting invalid altsetting %d", 1320 alternate); 1321 return -EINVAL; 1322 } 1323 1324 /* Make sure we have enough bandwidth for this alternate interface. 1325 * Remove the current alt setting and add the new alt setting. 1326 */ 1327 mutex_lock(&hcd->bandwidth_mutex); 1328 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt); 1329 if (ret < 0) { 1330 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n", 1331 alternate); 1332 mutex_unlock(&hcd->bandwidth_mutex); 1333 return ret; 1334 } 1335 1336 if (dev->quirks & USB_QUIRK_NO_SET_INTF) 1337 ret = -EPIPE; 1338 else 1339 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1340 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE, 1341 alternate, interface, NULL, 0, 5000); 1342 1343 /* 9.4.10 says devices don't need this and are free to STALL the 1344 * request if the interface only has one alternate setting. 1345 */ 1346 if (ret == -EPIPE && iface->num_altsetting == 1) { 1347 dev_dbg(&dev->dev, 1348 "manual set_interface for iface %d, alt %d\n", 1349 interface, alternate); 1350 manual = 1; 1351 } else if (ret < 0) { 1352 /* Re-instate the old alt setting */ 1353 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting); 1354 mutex_unlock(&hcd->bandwidth_mutex); 1355 return ret; 1356 } 1357 mutex_unlock(&hcd->bandwidth_mutex); 1358 1359 /* FIXME drivers shouldn't need to replicate/bugfix the logic here 1360 * when they implement async or easily-killable versions of this or 1361 * other "should-be-internal" functions (like clear_halt). 1362 * should hcd+usbcore postprocess control requests? 1363 */ 1364 1365 /* prevent submissions using previous endpoint settings */ 1366 if (iface->cur_altsetting != alt) { 1367 remove_intf_ep_devs(iface); 1368 usb_remove_sysfs_intf_files(iface); 1369 } 1370 usb_disable_interface(dev, iface, true); 1371 1372 iface->cur_altsetting = alt; 1373 1374 /* If the interface only has one altsetting and the device didn't 1375 * accept the request, we attempt to carry out the equivalent action 1376 * by manually clearing the HALT feature for each endpoint in the 1377 * new altsetting. 1378 */ 1379 if (manual) { 1380 int i; 1381 1382 for (i = 0; i < alt->desc.bNumEndpoints; i++) { 1383 epaddr = alt->endpoint[i].desc.bEndpointAddress; 1384 pipe = __create_pipe(dev, 1385 USB_ENDPOINT_NUMBER_MASK & epaddr) | 1386 (usb_endpoint_out(epaddr) ? 1387 USB_DIR_OUT : USB_DIR_IN); 1388 1389 usb_clear_halt(dev, pipe); 1390 } 1391 } 1392 1393 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting 1394 * 1395 * Note: 1396 * Despite EP0 is always present in all interfaces/AS, the list of 1397 * endpoints from the descriptor does not contain EP0. Due to its 1398 * omnipresence one might expect EP0 being considered "affected" by 1399 * any SetInterface request and hence assume toggles need to be reset. 1400 * However, EP0 toggles are re-synced for every individual transfer 1401 * during the SETUP stage - hence EP0 toggles are "don't care" here. 1402 * (Likewise, EP0 never "halts" on well designed devices.) 1403 */ 1404 usb_enable_interface(dev, iface, true); 1405 if (device_is_registered(&iface->dev)) { 1406 usb_create_sysfs_intf_files(iface); 1407 create_intf_ep_devs(iface); 1408 } 1409 return 0; 1410 } 1411 EXPORT_SYMBOL_GPL(usb_set_interface); 1412 1413 /** 1414 * usb_reset_configuration - lightweight device reset 1415 * @dev: the device whose configuration is being reset 1416 * 1417 * This issues a standard SET_CONFIGURATION request to the device using 1418 * the current configuration. The effect is to reset most USB-related 1419 * state in the device, including interface altsettings (reset to zero), 1420 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt 1421 * endpoints). Other usbcore state is unchanged, including bindings of 1422 * usb device drivers to interfaces. 1423 * 1424 * Because this affects multiple interfaces, avoid using this with composite 1425 * (multi-interface) devices. Instead, the driver for each interface may 1426 * use usb_set_interface() on the interfaces it claims. Be careful though; 1427 * some devices don't support the SET_INTERFACE request, and others won't 1428 * reset all the interface state (notably endpoint state). Resetting the whole 1429 * configuration would affect other drivers' interfaces. 1430 * 1431 * The caller must own the device lock. 1432 * 1433 * Returns zero on success, else a negative error code. 1434 */ 1435 int usb_reset_configuration(struct usb_device *dev) 1436 { 1437 int i, retval; 1438 struct usb_host_config *config; 1439 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1440 1441 if (dev->state == USB_STATE_SUSPENDED) 1442 return -EHOSTUNREACH; 1443 1444 /* caller must have locked the device and must own 1445 * the usb bus readlock (so driver bindings are stable); 1446 * calls during probe() are fine 1447 */ 1448 1449 for (i = 1; i < 16; ++i) { 1450 usb_disable_endpoint(dev, i, true); 1451 usb_disable_endpoint(dev, i + USB_DIR_IN, true); 1452 } 1453 1454 config = dev->actconfig; 1455 retval = 0; 1456 mutex_lock(&hcd->bandwidth_mutex); 1457 /* Make sure we have enough bandwidth for each alternate setting 0 */ 1458 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1459 struct usb_interface *intf = config->interface[i]; 1460 struct usb_host_interface *alt; 1461 1462 alt = usb_altnum_to_altsetting(intf, 0); 1463 if (!alt) 1464 alt = &intf->altsetting[0]; 1465 if (alt != intf->cur_altsetting) 1466 retval = usb_hcd_alloc_bandwidth(dev, NULL, 1467 intf->cur_altsetting, alt); 1468 if (retval < 0) 1469 break; 1470 } 1471 /* If not, reinstate the old alternate settings */ 1472 if (retval < 0) { 1473 reset_old_alts: 1474 for (; i >= 0; i--) { 1475 struct usb_interface *intf = config->interface[i]; 1476 struct usb_host_interface *alt; 1477 1478 alt = usb_altnum_to_altsetting(intf, 0); 1479 if (!alt) 1480 alt = &intf->altsetting[0]; 1481 if (alt != intf->cur_altsetting) 1482 usb_hcd_alloc_bandwidth(dev, NULL, 1483 alt, intf->cur_altsetting); 1484 } 1485 mutex_unlock(&hcd->bandwidth_mutex); 1486 return retval; 1487 } 1488 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1489 USB_REQ_SET_CONFIGURATION, 0, 1490 config->desc.bConfigurationValue, 0, 1491 NULL, 0, USB_CTRL_SET_TIMEOUT); 1492 if (retval < 0) 1493 goto reset_old_alts; 1494 mutex_unlock(&hcd->bandwidth_mutex); 1495 1496 /* re-init hc/hcd interface/endpoint state */ 1497 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1498 struct usb_interface *intf = config->interface[i]; 1499 struct usb_host_interface *alt; 1500 1501 alt = usb_altnum_to_altsetting(intf, 0); 1502 1503 /* No altsetting 0? We'll assume the first altsetting. 1504 * We could use a GetInterface call, but if a device is 1505 * so non-compliant that it doesn't have altsetting 0 1506 * then I wouldn't trust its reply anyway. 1507 */ 1508 if (!alt) 1509 alt = &intf->altsetting[0]; 1510 1511 if (alt != intf->cur_altsetting) { 1512 remove_intf_ep_devs(intf); 1513 usb_remove_sysfs_intf_files(intf); 1514 } 1515 intf->cur_altsetting = alt; 1516 usb_enable_interface(dev, intf, true); 1517 if (device_is_registered(&intf->dev)) { 1518 usb_create_sysfs_intf_files(intf); 1519 create_intf_ep_devs(intf); 1520 } 1521 } 1522 return 0; 1523 } 1524 EXPORT_SYMBOL_GPL(usb_reset_configuration); 1525 1526 static void usb_release_interface(struct device *dev) 1527 { 1528 struct usb_interface *intf = to_usb_interface(dev); 1529 struct usb_interface_cache *intfc = 1530 altsetting_to_usb_interface_cache(intf->altsetting); 1531 1532 kref_put(&intfc->ref, usb_release_interface_cache); 1533 kfree(intf); 1534 } 1535 1536 #ifdef CONFIG_HOTPLUG 1537 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env) 1538 { 1539 struct usb_device *usb_dev; 1540 struct usb_interface *intf; 1541 struct usb_host_interface *alt; 1542 1543 intf = to_usb_interface(dev); 1544 usb_dev = interface_to_usbdev(intf); 1545 alt = intf->cur_altsetting; 1546 1547 if (add_uevent_var(env, "INTERFACE=%d/%d/%d", 1548 alt->desc.bInterfaceClass, 1549 alt->desc.bInterfaceSubClass, 1550 alt->desc.bInterfaceProtocol)) 1551 return -ENOMEM; 1552 1553 if (add_uevent_var(env, 1554 "MODALIAS=usb:" 1555 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X", 1556 le16_to_cpu(usb_dev->descriptor.idVendor), 1557 le16_to_cpu(usb_dev->descriptor.idProduct), 1558 le16_to_cpu(usb_dev->descriptor.bcdDevice), 1559 usb_dev->descriptor.bDeviceClass, 1560 usb_dev->descriptor.bDeviceSubClass, 1561 usb_dev->descriptor.bDeviceProtocol, 1562 alt->desc.bInterfaceClass, 1563 alt->desc.bInterfaceSubClass, 1564 alt->desc.bInterfaceProtocol)) 1565 return -ENOMEM; 1566 1567 return 0; 1568 } 1569 1570 #else 1571 1572 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env) 1573 { 1574 return -ENODEV; 1575 } 1576 #endif /* CONFIG_HOTPLUG */ 1577 1578 struct device_type usb_if_device_type = { 1579 .name = "usb_interface", 1580 .release = usb_release_interface, 1581 .uevent = usb_if_uevent, 1582 }; 1583 1584 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev, 1585 struct usb_host_config *config, 1586 u8 inum) 1587 { 1588 struct usb_interface_assoc_descriptor *retval = NULL; 1589 struct usb_interface_assoc_descriptor *intf_assoc; 1590 int first_intf; 1591 int last_intf; 1592 int i; 1593 1594 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) { 1595 intf_assoc = config->intf_assoc[i]; 1596 if (intf_assoc->bInterfaceCount == 0) 1597 continue; 1598 1599 first_intf = intf_assoc->bFirstInterface; 1600 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1); 1601 if (inum >= first_intf && inum <= last_intf) { 1602 if (!retval) 1603 retval = intf_assoc; 1604 else 1605 dev_err(&dev->dev, "Interface #%d referenced" 1606 " by multiple IADs\n", inum); 1607 } 1608 } 1609 1610 return retval; 1611 } 1612 1613 1614 /* 1615 * Internal function to queue a device reset 1616 * 1617 * This is initialized into the workstruct in 'struct 1618 * usb_device->reset_ws' that is launched by 1619 * message.c:usb_set_configuration() when initializing each 'struct 1620 * usb_interface'. 1621 * 1622 * It is safe to get the USB device without reference counts because 1623 * the life cycle of @iface is bound to the life cycle of @udev. Then, 1624 * this function will be ran only if @iface is alive (and before 1625 * freeing it any scheduled instances of it will have been cancelled). 1626 * 1627 * We need to set a flag (usb_dev->reset_running) because when we call 1628 * the reset, the interfaces might be unbound. The current interface 1629 * cannot try to remove the queued work as it would cause a deadlock 1630 * (you cannot remove your work from within your executing 1631 * workqueue). This flag lets it know, so that 1632 * usb_cancel_queued_reset() doesn't try to do it. 1633 * 1634 * See usb_queue_reset_device() for more details 1635 */ 1636 static void __usb_queue_reset_device(struct work_struct *ws) 1637 { 1638 int rc; 1639 struct usb_interface *iface = 1640 container_of(ws, struct usb_interface, reset_ws); 1641 struct usb_device *udev = interface_to_usbdev(iface); 1642 1643 rc = usb_lock_device_for_reset(udev, iface); 1644 if (rc >= 0) { 1645 iface->reset_running = 1; 1646 usb_reset_device(udev); 1647 iface->reset_running = 0; 1648 usb_unlock_device(udev); 1649 } 1650 } 1651 1652 1653 /* 1654 * usb_set_configuration - Makes a particular device setting be current 1655 * @dev: the device whose configuration is being updated 1656 * @configuration: the configuration being chosen. 1657 * Context: !in_interrupt(), caller owns the device lock 1658 * 1659 * This is used to enable non-default device modes. Not all devices 1660 * use this kind of configurability; many devices only have one 1661 * configuration. 1662 * 1663 * @configuration is the value of the configuration to be installed. 1664 * According to the USB spec (e.g. section 9.1.1.5), configuration values 1665 * must be non-zero; a value of zero indicates that the device in 1666 * unconfigured. However some devices erroneously use 0 as one of their 1667 * configuration values. To help manage such devices, this routine will 1668 * accept @configuration = -1 as indicating the device should be put in 1669 * an unconfigured state. 1670 * 1671 * USB device configurations may affect Linux interoperability, 1672 * power consumption and the functionality available. For example, 1673 * the default configuration is limited to using 100mA of bus power, 1674 * so that when certain device functionality requires more power, 1675 * and the device is bus powered, that functionality should be in some 1676 * non-default device configuration. Other device modes may also be 1677 * reflected as configuration options, such as whether two ISDN 1678 * channels are available independently; and choosing between open 1679 * standard device protocols (like CDC) or proprietary ones. 1680 * 1681 * Note that a non-authorized device (dev->authorized == 0) will only 1682 * be put in unconfigured mode. 1683 * 1684 * Note that USB has an additional level of device configurability, 1685 * associated with interfaces. That configurability is accessed using 1686 * usb_set_interface(). 1687 * 1688 * This call is synchronous. The calling context must be able to sleep, 1689 * must own the device lock, and must not hold the driver model's USB 1690 * bus mutex; usb interface driver probe() methods cannot use this routine. 1691 * 1692 * Returns zero on success, or else the status code returned by the 1693 * underlying call that failed. On successful completion, each interface 1694 * in the original device configuration has been destroyed, and each one 1695 * in the new configuration has been probed by all relevant usb device 1696 * drivers currently known to the kernel. 1697 */ 1698 int usb_set_configuration(struct usb_device *dev, int configuration) 1699 { 1700 int i, ret; 1701 struct usb_host_config *cp = NULL; 1702 struct usb_interface **new_interfaces = NULL; 1703 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1704 int n, nintf; 1705 1706 if (dev->authorized == 0 || configuration == -1) 1707 configuration = 0; 1708 else { 1709 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) { 1710 if (dev->config[i].desc.bConfigurationValue == 1711 configuration) { 1712 cp = &dev->config[i]; 1713 break; 1714 } 1715 } 1716 } 1717 if ((!cp && configuration != 0)) 1718 return -EINVAL; 1719 1720 /* The USB spec says configuration 0 means unconfigured. 1721 * But if a device includes a configuration numbered 0, 1722 * we will accept it as a correctly configured state. 1723 * Use -1 if you really want to unconfigure the device. 1724 */ 1725 if (cp && configuration == 0) 1726 dev_warn(&dev->dev, "config 0 descriptor??\n"); 1727 1728 /* Allocate memory for new interfaces before doing anything else, 1729 * so that if we run out then nothing will have changed. */ 1730 n = nintf = 0; 1731 if (cp) { 1732 nintf = cp->desc.bNumInterfaces; 1733 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces), 1734 GFP_KERNEL); 1735 if (!new_interfaces) { 1736 dev_err(&dev->dev, "Out of memory\n"); 1737 return -ENOMEM; 1738 } 1739 1740 for (; n < nintf; ++n) { 1741 new_interfaces[n] = kzalloc( 1742 sizeof(struct usb_interface), 1743 GFP_KERNEL); 1744 if (!new_interfaces[n]) { 1745 dev_err(&dev->dev, "Out of memory\n"); 1746 ret = -ENOMEM; 1747 free_interfaces: 1748 while (--n >= 0) 1749 kfree(new_interfaces[n]); 1750 kfree(new_interfaces); 1751 return ret; 1752 } 1753 } 1754 1755 i = dev->bus_mA - cp->desc.bMaxPower * 2; 1756 if (i < 0) 1757 dev_warn(&dev->dev, "new config #%d exceeds power " 1758 "limit by %dmA\n", 1759 configuration, -i); 1760 } 1761 1762 /* Wake up the device so we can send it the Set-Config request */ 1763 ret = usb_autoresume_device(dev); 1764 if (ret) 1765 goto free_interfaces; 1766 1767 /* Make sure we have bandwidth (and available HCD resources) for this 1768 * configuration. Remove endpoints from the schedule if we're dropping 1769 * this configuration to set configuration 0. After this point, the 1770 * host controller will not allow submissions to dropped endpoints. If 1771 * this call fails, the device state is unchanged. 1772 */ 1773 mutex_lock(&hcd->bandwidth_mutex); 1774 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL); 1775 if (ret < 0) { 1776 usb_autosuspend_device(dev); 1777 mutex_unlock(&hcd->bandwidth_mutex); 1778 goto free_interfaces; 1779 } 1780 1781 /* if it's already configured, clear out old state first. 1782 * getting rid of old interfaces means unbinding their drivers. 1783 */ 1784 if (dev->state != USB_STATE_ADDRESS) 1785 usb_disable_device(dev, 1); /* Skip ep0 */ 1786 1787 /* Get rid of pending async Set-Config requests for this device */ 1788 cancel_async_set_config(dev); 1789 1790 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1791 USB_REQ_SET_CONFIGURATION, 0, configuration, 0, 1792 NULL, 0, USB_CTRL_SET_TIMEOUT); 1793 if (ret < 0) { 1794 /* All the old state is gone, so what else can we do? 1795 * The device is probably useless now anyway. 1796 */ 1797 cp = NULL; 1798 } 1799 1800 dev->actconfig = cp; 1801 if (!cp) { 1802 usb_set_device_state(dev, USB_STATE_ADDRESS); 1803 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); 1804 usb_autosuspend_device(dev); 1805 mutex_unlock(&hcd->bandwidth_mutex); 1806 goto free_interfaces; 1807 } 1808 mutex_unlock(&hcd->bandwidth_mutex); 1809 usb_set_device_state(dev, USB_STATE_CONFIGURED); 1810 1811 /* Initialize the new interface structures and the 1812 * hc/hcd/usbcore interface/endpoint state. 1813 */ 1814 for (i = 0; i < nintf; ++i) { 1815 struct usb_interface_cache *intfc; 1816 struct usb_interface *intf; 1817 struct usb_host_interface *alt; 1818 1819 cp->interface[i] = intf = new_interfaces[i]; 1820 intfc = cp->intf_cache[i]; 1821 intf->altsetting = intfc->altsetting; 1822 intf->num_altsetting = intfc->num_altsetting; 1823 intf->intf_assoc = find_iad(dev, cp, i); 1824 kref_get(&intfc->ref); 1825 1826 alt = usb_altnum_to_altsetting(intf, 0); 1827 1828 /* No altsetting 0? We'll assume the first altsetting. 1829 * We could use a GetInterface call, but if a device is 1830 * so non-compliant that it doesn't have altsetting 0 1831 * then I wouldn't trust its reply anyway. 1832 */ 1833 if (!alt) 1834 alt = &intf->altsetting[0]; 1835 1836 intf->cur_altsetting = alt; 1837 usb_enable_interface(dev, intf, true); 1838 intf->dev.parent = &dev->dev; 1839 intf->dev.driver = NULL; 1840 intf->dev.bus = &usb_bus_type; 1841 intf->dev.type = &usb_if_device_type; 1842 intf->dev.groups = usb_interface_groups; 1843 intf->dev.dma_mask = dev->dev.dma_mask; 1844 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device); 1845 device_initialize(&intf->dev); 1846 mark_quiesced(intf); 1847 dev_set_name(&intf->dev, "%d-%s:%d.%d", 1848 dev->bus->busnum, dev->devpath, 1849 configuration, alt->desc.bInterfaceNumber); 1850 } 1851 kfree(new_interfaces); 1852 1853 if (cp->string == NULL && 1854 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS)) 1855 cp->string = usb_cache_string(dev, cp->desc.iConfiguration); 1856 1857 /* Now that all the interfaces are set up, register them 1858 * to trigger binding of drivers to interfaces. probe() 1859 * routines may install different altsettings and may 1860 * claim() any interfaces not yet bound. Many class drivers 1861 * need that: CDC, audio, video, etc. 1862 */ 1863 for (i = 0; i < nintf; ++i) { 1864 struct usb_interface *intf = cp->interface[i]; 1865 1866 dev_dbg(&dev->dev, 1867 "adding %s (config #%d, interface %d)\n", 1868 dev_name(&intf->dev), configuration, 1869 intf->cur_altsetting->desc.bInterfaceNumber); 1870 ret = device_add(&intf->dev); 1871 if (ret != 0) { 1872 dev_err(&dev->dev, "device_add(%s) --> %d\n", 1873 dev_name(&intf->dev), ret); 1874 continue; 1875 } 1876 create_intf_ep_devs(intf); 1877 } 1878 1879 usb_autosuspend_device(dev); 1880 return 0; 1881 } 1882 1883 static LIST_HEAD(set_config_list); 1884 static DEFINE_SPINLOCK(set_config_lock); 1885 1886 struct set_config_request { 1887 struct usb_device *udev; 1888 int config; 1889 struct work_struct work; 1890 struct list_head node; 1891 }; 1892 1893 /* Worker routine for usb_driver_set_configuration() */ 1894 static void driver_set_config_work(struct work_struct *work) 1895 { 1896 struct set_config_request *req = 1897 container_of(work, struct set_config_request, work); 1898 struct usb_device *udev = req->udev; 1899 1900 usb_lock_device(udev); 1901 spin_lock(&set_config_lock); 1902 list_del(&req->node); 1903 spin_unlock(&set_config_lock); 1904 1905 if (req->config >= -1) /* Is req still valid? */ 1906 usb_set_configuration(udev, req->config); 1907 usb_unlock_device(udev); 1908 usb_put_dev(udev); 1909 kfree(req); 1910 } 1911 1912 /* Cancel pending Set-Config requests for a device whose configuration 1913 * was just changed 1914 */ 1915 static void cancel_async_set_config(struct usb_device *udev) 1916 { 1917 struct set_config_request *req; 1918 1919 spin_lock(&set_config_lock); 1920 list_for_each_entry(req, &set_config_list, node) { 1921 if (req->udev == udev) 1922 req->config = -999; /* Mark as cancelled */ 1923 } 1924 spin_unlock(&set_config_lock); 1925 } 1926 1927 /** 1928 * usb_driver_set_configuration - Provide a way for drivers to change device configurations 1929 * @udev: the device whose configuration is being updated 1930 * @config: the configuration being chosen. 1931 * Context: In process context, must be able to sleep 1932 * 1933 * Device interface drivers are not allowed to change device configurations. 1934 * This is because changing configurations will destroy the interface the 1935 * driver is bound to and create new ones; it would be like a floppy-disk 1936 * driver telling the computer to replace the floppy-disk drive with a 1937 * tape drive! 1938 * 1939 * Still, in certain specialized circumstances the need may arise. This 1940 * routine gets around the normal restrictions by using a work thread to 1941 * submit the change-config request. 1942 * 1943 * Returns 0 if the request was successfully queued, error code otherwise. 1944 * The caller has no way to know whether the queued request will eventually 1945 * succeed. 1946 */ 1947 int usb_driver_set_configuration(struct usb_device *udev, int config) 1948 { 1949 struct set_config_request *req; 1950 1951 req = kmalloc(sizeof(*req), GFP_KERNEL); 1952 if (!req) 1953 return -ENOMEM; 1954 req->udev = udev; 1955 req->config = config; 1956 INIT_WORK(&req->work, driver_set_config_work); 1957 1958 spin_lock(&set_config_lock); 1959 list_add(&req->node, &set_config_list); 1960 spin_unlock(&set_config_lock); 1961 1962 usb_get_dev(udev); 1963 schedule_work(&req->work); 1964 return 0; 1965 } 1966 EXPORT_SYMBOL_GPL(usb_driver_set_configuration); 1967