1 /* 2 * message.c - synchronous message handling 3 */ 4 5 #include <linux/pci.h> /* for scatterlist macros */ 6 #include <linux/usb.h> 7 #include <linux/module.h> 8 #include <linux/slab.h> 9 #include <linux/init.h> 10 #include <linux/mm.h> 11 #include <linux/timer.h> 12 #include <linux/ctype.h> 13 #include <linux/nls.h> 14 #include <linux/device.h> 15 #include <linux/scatterlist.h> 16 #include <linux/usb/quirks.h> 17 #include <linux/usb/hcd.h> /* for usbcore internals */ 18 #include <asm/byteorder.h> 19 20 #include "usb.h" 21 22 static void cancel_async_set_config(struct usb_device *udev); 23 24 struct api_context { 25 struct completion done; 26 int status; 27 }; 28 29 static void usb_api_blocking_completion(struct urb *urb) 30 { 31 struct api_context *ctx = urb->context; 32 33 ctx->status = urb->status; 34 complete(&ctx->done); 35 } 36 37 38 /* 39 * Starts urb and waits for completion or timeout. Note that this call 40 * is NOT interruptible. Many device driver i/o requests should be 41 * interruptible and therefore these drivers should implement their 42 * own interruptible routines. 43 */ 44 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length) 45 { 46 struct api_context ctx; 47 unsigned long expire; 48 int retval; 49 50 init_completion(&ctx.done); 51 urb->context = &ctx; 52 urb->actual_length = 0; 53 retval = usb_submit_urb(urb, GFP_NOIO); 54 if (unlikely(retval)) 55 goto out; 56 57 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT; 58 if (!wait_for_completion_timeout(&ctx.done, expire)) { 59 usb_kill_urb(urb); 60 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status); 61 62 dev_dbg(&urb->dev->dev, 63 "%s timed out on ep%d%s len=%u/%u\n", 64 current->comm, 65 usb_endpoint_num(&urb->ep->desc), 66 usb_urb_dir_in(urb) ? "in" : "out", 67 urb->actual_length, 68 urb->transfer_buffer_length); 69 } else 70 retval = ctx.status; 71 out: 72 if (actual_length) 73 *actual_length = urb->actual_length; 74 75 usb_free_urb(urb); 76 return retval; 77 } 78 79 /*-------------------------------------------------------------------*/ 80 /* returns status (negative) or length (positive) */ 81 static int usb_internal_control_msg(struct usb_device *usb_dev, 82 unsigned int pipe, 83 struct usb_ctrlrequest *cmd, 84 void *data, int len, int timeout) 85 { 86 struct urb *urb; 87 int retv; 88 int length; 89 90 urb = usb_alloc_urb(0, GFP_NOIO); 91 if (!urb) 92 return -ENOMEM; 93 94 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data, 95 len, usb_api_blocking_completion, NULL); 96 97 retv = usb_start_wait_urb(urb, timeout, &length); 98 if (retv < 0) 99 return retv; 100 else 101 return length; 102 } 103 104 /** 105 * usb_control_msg - Builds a control urb, sends it off and waits for completion 106 * @dev: pointer to the usb device to send the message to 107 * @pipe: endpoint "pipe" to send the message to 108 * @request: USB message request value 109 * @requesttype: USB message request type value 110 * @value: USB message value 111 * @index: USB message index value 112 * @data: pointer to the data to send 113 * @size: length in bytes of the data to send 114 * @timeout: time in msecs to wait for the message to complete before timing 115 * out (if 0 the wait is forever) 116 * 117 * Context: !in_interrupt () 118 * 119 * This function sends a simple control message to a specified endpoint and 120 * waits for the message to complete, or timeout. 121 * 122 * Don't use this function from within an interrupt context, like a bottom half 123 * handler. If you need an asynchronous message, or need to send a message 124 * from within interrupt context, use usb_submit_urb(). 125 * If a thread in your driver uses this call, make sure your disconnect() 126 * method can wait for it to complete. Since you don't have a handle on the 127 * URB used, you can't cancel the request. 128 * 129 * Return: If successful, the number of bytes transferred. Otherwise, a negative 130 * error number. 131 */ 132 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, 133 __u8 requesttype, __u16 value, __u16 index, void *data, 134 __u16 size, int timeout) 135 { 136 struct usb_ctrlrequest *dr; 137 int ret; 138 139 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO); 140 if (!dr) 141 return -ENOMEM; 142 143 dr->bRequestType = requesttype; 144 dr->bRequest = request; 145 dr->wValue = cpu_to_le16(value); 146 dr->wIndex = cpu_to_le16(index); 147 dr->wLength = cpu_to_le16(size); 148 149 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout); 150 151 kfree(dr); 152 153 return ret; 154 } 155 EXPORT_SYMBOL_GPL(usb_control_msg); 156 157 /** 158 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion 159 * @usb_dev: pointer to the usb device to send the message to 160 * @pipe: endpoint "pipe" to send the message to 161 * @data: pointer to the data to send 162 * @len: length in bytes of the data to send 163 * @actual_length: pointer to a location to put the actual length transferred 164 * in bytes 165 * @timeout: time in msecs to wait for the message to complete before 166 * timing out (if 0 the wait is forever) 167 * 168 * Context: !in_interrupt () 169 * 170 * This function sends a simple interrupt message to a specified endpoint and 171 * waits for the message to complete, or timeout. 172 * 173 * Don't use this function from within an interrupt context, like a bottom half 174 * handler. If you need an asynchronous message, or need to send a message 175 * from within interrupt context, use usb_submit_urb() If a thread in your 176 * driver uses this call, make sure your disconnect() method can wait for it to 177 * complete. Since you don't have a handle on the URB used, you can't cancel 178 * the request. 179 * 180 * Return: 181 * If successful, 0. Otherwise a negative error number. The number of actual 182 * bytes transferred will be stored in the @actual_length paramater. 183 */ 184 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 185 void *data, int len, int *actual_length, int timeout) 186 { 187 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout); 188 } 189 EXPORT_SYMBOL_GPL(usb_interrupt_msg); 190 191 /** 192 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion 193 * @usb_dev: pointer to the usb device to send the message to 194 * @pipe: endpoint "pipe" to send the message to 195 * @data: pointer to the data to send 196 * @len: length in bytes of the data to send 197 * @actual_length: pointer to a location to put the actual length transferred 198 * in bytes 199 * @timeout: time in msecs to wait for the message to complete before 200 * timing out (if 0 the wait is forever) 201 * 202 * Context: !in_interrupt () 203 * 204 * This function sends a simple bulk message to a specified endpoint 205 * and waits for the message to complete, or timeout. 206 * 207 * Don't use this function from within an interrupt context, like a bottom half 208 * handler. If you need an asynchronous message, or need to send a message 209 * from within interrupt context, use usb_submit_urb() If a thread in your 210 * driver uses this call, make sure your disconnect() method can wait for it to 211 * complete. Since you don't have a handle on the URB used, you can't cancel 212 * the request. 213 * 214 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl, 215 * users are forced to abuse this routine by using it to submit URBs for 216 * interrupt endpoints. We will take the liberty of creating an interrupt URB 217 * (with the default interval) if the target is an interrupt endpoint. 218 * 219 * Return: 220 * If successful, 0. Otherwise a negative error number. The number of actual 221 * bytes transferred will be stored in the @actual_length paramater. 222 * 223 */ 224 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 225 void *data, int len, int *actual_length, int timeout) 226 { 227 struct urb *urb; 228 struct usb_host_endpoint *ep; 229 230 ep = usb_pipe_endpoint(usb_dev, pipe); 231 if (!ep || len < 0) 232 return -EINVAL; 233 234 urb = usb_alloc_urb(0, GFP_KERNEL); 235 if (!urb) 236 return -ENOMEM; 237 238 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 239 USB_ENDPOINT_XFER_INT) { 240 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30); 241 usb_fill_int_urb(urb, usb_dev, pipe, data, len, 242 usb_api_blocking_completion, NULL, 243 ep->desc.bInterval); 244 } else 245 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len, 246 usb_api_blocking_completion, NULL); 247 248 return usb_start_wait_urb(urb, timeout, actual_length); 249 } 250 EXPORT_SYMBOL_GPL(usb_bulk_msg); 251 252 /*-------------------------------------------------------------------*/ 253 254 static void sg_clean(struct usb_sg_request *io) 255 { 256 if (io->urbs) { 257 while (io->entries--) 258 usb_free_urb(io->urbs[io->entries]); 259 kfree(io->urbs); 260 io->urbs = NULL; 261 } 262 io->dev = NULL; 263 } 264 265 static void sg_complete(struct urb *urb) 266 { 267 struct usb_sg_request *io = urb->context; 268 int status = urb->status; 269 270 spin_lock(&io->lock); 271 272 /* In 2.5 we require hcds' endpoint queues not to progress after fault 273 * reports, until the completion callback (this!) returns. That lets 274 * device driver code (like this routine) unlink queued urbs first, 275 * if it needs to, since the HC won't work on them at all. So it's 276 * not possible for page N+1 to overwrite page N, and so on. 277 * 278 * That's only for "hard" faults; "soft" faults (unlinks) sometimes 279 * complete before the HCD can get requests away from hardware, 280 * though never during cleanup after a hard fault. 281 */ 282 if (io->status 283 && (io->status != -ECONNRESET 284 || status != -ECONNRESET) 285 && urb->actual_length) { 286 dev_err(io->dev->bus->controller, 287 "dev %s ep%d%s scatterlist error %d/%d\n", 288 io->dev->devpath, 289 usb_endpoint_num(&urb->ep->desc), 290 usb_urb_dir_in(urb) ? "in" : "out", 291 status, io->status); 292 /* BUG (); */ 293 } 294 295 if (io->status == 0 && status && status != -ECONNRESET) { 296 int i, found, retval; 297 298 io->status = status; 299 300 /* the previous urbs, and this one, completed already. 301 * unlink pending urbs so they won't rx/tx bad data. 302 * careful: unlink can sometimes be synchronous... 303 */ 304 spin_unlock(&io->lock); 305 for (i = 0, found = 0; i < io->entries; i++) { 306 if (!io->urbs[i] || !io->urbs[i]->dev) 307 continue; 308 if (found) { 309 retval = usb_unlink_urb(io->urbs[i]); 310 if (retval != -EINPROGRESS && 311 retval != -ENODEV && 312 retval != -EBUSY && 313 retval != -EIDRM) 314 dev_err(&io->dev->dev, 315 "%s, unlink --> %d\n", 316 __func__, retval); 317 } else if (urb == io->urbs[i]) 318 found = 1; 319 } 320 spin_lock(&io->lock); 321 } 322 323 /* on the last completion, signal usb_sg_wait() */ 324 io->bytes += urb->actual_length; 325 io->count--; 326 if (!io->count) 327 complete(&io->complete); 328 329 spin_unlock(&io->lock); 330 } 331 332 333 /** 334 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request 335 * @io: request block being initialized. until usb_sg_wait() returns, 336 * treat this as a pointer to an opaque block of memory, 337 * @dev: the usb device that will send or receive the data 338 * @pipe: endpoint "pipe" used to transfer the data 339 * @period: polling rate for interrupt endpoints, in frames or 340 * (for high speed endpoints) microframes; ignored for bulk 341 * @sg: scatterlist entries 342 * @nents: how many entries in the scatterlist 343 * @length: how many bytes to send from the scatterlist, or zero to 344 * send every byte identified in the list. 345 * @mem_flags: SLAB_* flags affecting memory allocations in this call 346 * 347 * This initializes a scatter/gather request, allocating resources such as 348 * I/O mappings and urb memory (except maybe memory used by USB controller 349 * drivers). 350 * 351 * The request must be issued using usb_sg_wait(), which waits for the I/O to 352 * complete (or to be canceled) and then cleans up all resources allocated by 353 * usb_sg_init(). 354 * 355 * The request may be canceled with usb_sg_cancel(), either before or after 356 * usb_sg_wait() is called. 357 * 358 * Return: Zero for success, else a negative errno value. 359 */ 360 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev, 361 unsigned pipe, unsigned period, struct scatterlist *sg, 362 int nents, size_t length, gfp_t mem_flags) 363 { 364 int i; 365 int urb_flags; 366 int use_sg; 367 368 if (!io || !dev || !sg 369 || usb_pipecontrol(pipe) 370 || usb_pipeisoc(pipe) 371 || nents <= 0) 372 return -EINVAL; 373 374 spin_lock_init(&io->lock); 375 io->dev = dev; 376 io->pipe = pipe; 377 378 if (dev->bus->sg_tablesize > 0) { 379 use_sg = true; 380 io->entries = 1; 381 } else { 382 use_sg = false; 383 io->entries = nents; 384 } 385 386 /* initialize all the urbs we'll use */ 387 io->urbs = kmalloc(io->entries * sizeof(*io->urbs), mem_flags); 388 if (!io->urbs) 389 goto nomem; 390 391 urb_flags = URB_NO_INTERRUPT; 392 if (usb_pipein(pipe)) 393 urb_flags |= URB_SHORT_NOT_OK; 394 395 for_each_sg(sg, sg, io->entries, i) { 396 struct urb *urb; 397 unsigned len; 398 399 urb = usb_alloc_urb(0, mem_flags); 400 if (!urb) { 401 io->entries = i; 402 goto nomem; 403 } 404 io->urbs[i] = urb; 405 406 urb->dev = NULL; 407 urb->pipe = pipe; 408 urb->interval = period; 409 urb->transfer_flags = urb_flags; 410 urb->complete = sg_complete; 411 urb->context = io; 412 urb->sg = sg; 413 414 if (use_sg) { 415 /* There is no single transfer buffer */ 416 urb->transfer_buffer = NULL; 417 urb->num_sgs = nents; 418 419 /* A length of zero means transfer the whole sg list */ 420 len = length; 421 if (len == 0) { 422 struct scatterlist *sg2; 423 int j; 424 425 for_each_sg(sg, sg2, nents, j) 426 len += sg2->length; 427 } 428 } else { 429 /* 430 * Some systems can't use DMA; they use PIO instead. 431 * For their sakes, transfer_buffer is set whenever 432 * possible. 433 */ 434 if (!PageHighMem(sg_page(sg))) 435 urb->transfer_buffer = sg_virt(sg); 436 else 437 urb->transfer_buffer = NULL; 438 439 len = sg->length; 440 if (length) { 441 len = min_t(size_t, len, length); 442 length -= len; 443 if (length == 0) 444 io->entries = i + 1; 445 } 446 } 447 urb->transfer_buffer_length = len; 448 } 449 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT; 450 451 /* transaction state */ 452 io->count = io->entries; 453 io->status = 0; 454 io->bytes = 0; 455 init_completion(&io->complete); 456 return 0; 457 458 nomem: 459 sg_clean(io); 460 return -ENOMEM; 461 } 462 EXPORT_SYMBOL_GPL(usb_sg_init); 463 464 /** 465 * usb_sg_wait - synchronously execute scatter/gather request 466 * @io: request block handle, as initialized with usb_sg_init(). 467 * some fields become accessible when this call returns. 468 * Context: !in_interrupt () 469 * 470 * This function blocks until the specified I/O operation completes. It 471 * leverages the grouping of the related I/O requests to get good transfer 472 * rates, by queueing the requests. At higher speeds, such queuing can 473 * significantly improve USB throughput. 474 * 475 * There are three kinds of completion for this function. 476 * (1) success, where io->status is zero. The number of io->bytes 477 * transferred is as requested. 478 * (2) error, where io->status is a negative errno value. The number 479 * of io->bytes transferred before the error is usually less 480 * than requested, and can be nonzero. 481 * (3) cancellation, a type of error with status -ECONNRESET that 482 * is initiated by usb_sg_cancel(). 483 * 484 * When this function returns, all memory allocated through usb_sg_init() or 485 * this call will have been freed. The request block parameter may still be 486 * passed to usb_sg_cancel(), or it may be freed. It could also be 487 * reinitialized and then reused. 488 * 489 * Data Transfer Rates: 490 * 491 * Bulk transfers are valid for full or high speed endpoints. 492 * The best full speed data rate is 19 packets of 64 bytes each 493 * per frame, or 1216 bytes per millisecond. 494 * The best high speed data rate is 13 packets of 512 bytes each 495 * per microframe, or 52 KBytes per millisecond. 496 * 497 * The reason to use interrupt transfers through this API would most likely 498 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond 499 * could be transferred. That capability is less useful for low or full 500 * speed interrupt endpoints, which allow at most one packet per millisecond, 501 * of at most 8 or 64 bytes (respectively). 502 * 503 * It is not necessary to call this function to reserve bandwidth for devices 504 * under an xHCI host controller, as the bandwidth is reserved when the 505 * configuration or interface alt setting is selected. 506 */ 507 void usb_sg_wait(struct usb_sg_request *io) 508 { 509 int i; 510 int entries = io->entries; 511 512 /* queue the urbs. */ 513 spin_lock_irq(&io->lock); 514 i = 0; 515 while (i < entries && !io->status) { 516 int retval; 517 518 io->urbs[i]->dev = io->dev; 519 retval = usb_submit_urb(io->urbs[i], GFP_ATOMIC); 520 521 /* after we submit, let completions or cancelations fire; 522 * we handshake using io->status. 523 */ 524 spin_unlock_irq(&io->lock); 525 switch (retval) { 526 /* maybe we retrying will recover */ 527 case -ENXIO: /* hc didn't queue this one */ 528 case -EAGAIN: 529 case -ENOMEM: 530 retval = 0; 531 yield(); 532 break; 533 534 /* no error? continue immediately. 535 * 536 * NOTE: to work better with UHCI (4K I/O buffer may 537 * need 3K of TDs) it may be good to limit how many 538 * URBs are queued at once; N milliseconds? 539 */ 540 case 0: 541 ++i; 542 cpu_relax(); 543 break; 544 545 /* fail any uncompleted urbs */ 546 default: 547 io->urbs[i]->status = retval; 548 dev_dbg(&io->dev->dev, "%s, submit --> %d\n", 549 __func__, retval); 550 usb_sg_cancel(io); 551 } 552 spin_lock_irq(&io->lock); 553 if (retval && (io->status == 0 || io->status == -ECONNRESET)) 554 io->status = retval; 555 } 556 io->count -= entries - i; 557 if (io->count == 0) 558 complete(&io->complete); 559 spin_unlock_irq(&io->lock); 560 561 /* OK, yes, this could be packaged as non-blocking. 562 * So could the submit loop above ... but it's easier to 563 * solve neither problem than to solve both! 564 */ 565 wait_for_completion(&io->complete); 566 567 sg_clean(io); 568 } 569 EXPORT_SYMBOL_GPL(usb_sg_wait); 570 571 /** 572 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait() 573 * @io: request block, initialized with usb_sg_init() 574 * 575 * This stops a request after it has been started by usb_sg_wait(). 576 * It can also prevents one initialized by usb_sg_init() from starting, 577 * so that call just frees resources allocated to the request. 578 */ 579 void usb_sg_cancel(struct usb_sg_request *io) 580 { 581 unsigned long flags; 582 583 spin_lock_irqsave(&io->lock, flags); 584 585 /* shut everything down, if it didn't already */ 586 if (!io->status) { 587 int i; 588 589 io->status = -ECONNRESET; 590 spin_unlock(&io->lock); 591 for (i = 0; i < io->entries; i++) { 592 int retval; 593 594 if (!io->urbs[i]->dev) 595 continue; 596 retval = usb_unlink_urb(io->urbs[i]); 597 if (retval != -EINPROGRESS 598 && retval != -ENODEV 599 && retval != -EBUSY 600 && retval != -EIDRM) 601 dev_warn(&io->dev->dev, "%s, unlink --> %d\n", 602 __func__, retval); 603 } 604 spin_lock(&io->lock); 605 } 606 spin_unlock_irqrestore(&io->lock, flags); 607 } 608 EXPORT_SYMBOL_GPL(usb_sg_cancel); 609 610 /*-------------------------------------------------------------------*/ 611 612 /** 613 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request 614 * @dev: the device whose descriptor is being retrieved 615 * @type: the descriptor type (USB_DT_*) 616 * @index: the number of the descriptor 617 * @buf: where to put the descriptor 618 * @size: how big is "buf"? 619 * Context: !in_interrupt () 620 * 621 * Gets a USB descriptor. Convenience functions exist to simplify 622 * getting some types of descriptors. Use 623 * usb_get_string() or usb_string() for USB_DT_STRING. 624 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG) 625 * are part of the device structure. 626 * In addition to a number of USB-standard descriptors, some 627 * devices also use class-specific or vendor-specific descriptors. 628 * 629 * This call is synchronous, and may not be used in an interrupt context. 630 * 631 * Return: The number of bytes received on success, or else the status code 632 * returned by the underlying usb_control_msg() call. 633 */ 634 int usb_get_descriptor(struct usb_device *dev, unsigned char type, 635 unsigned char index, void *buf, int size) 636 { 637 int i; 638 int result; 639 640 memset(buf, 0, size); /* Make sure we parse really received data */ 641 642 for (i = 0; i < 3; ++i) { 643 /* retry on length 0 or error; some devices are flakey */ 644 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 645 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 646 (type << 8) + index, 0, buf, size, 647 USB_CTRL_GET_TIMEOUT); 648 if (result <= 0 && result != -ETIMEDOUT) 649 continue; 650 if (result > 1 && ((u8 *)buf)[1] != type) { 651 result = -ENODATA; 652 continue; 653 } 654 break; 655 } 656 return result; 657 } 658 EXPORT_SYMBOL_GPL(usb_get_descriptor); 659 660 /** 661 * usb_get_string - gets a string descriptor 662 * @dev: the device whose string descriptor is being retrieved 663 * @langid: code for language chosen (from string descriptor zero) 664 * @index: the number of the descriptor 665 * @buf: where to put the string 666 * @size: how big is "buf"? 667 * Context: !in_interrupt () 668 * 669 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character, 670 * in little-endian byte order). 671 * The usb_string() function will often be a convenient way to turn 672 * these strings into kernel-printable form. 673 * 674 * Strings may be referenced in device, configuration, interface, or other 675 * descriptors, and could also be used in vendor-specific ways. 676 * 677 * This call is synchronous, and may not be used in an interrupt context. 678 * 679 * Return: The number of bytes received on success, or else the status code 680 * returned by the underlying usb_control_msg() call. 681 */ 682 static int usb_get_string(struct usb_device *dev, unsigned short langid, 683 unsigned char index, void *buf, int size) 684 { 685 int i; 686 int result; 687 688 for (i = 0; i < 3; ++i) { 689 /* retry on length 0 or stall; some devices are flakey */ 690 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 691 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 692 (USB_DT_STRING << 8) + index, langid, buf, size, 693 USB_CTRL_GET_TIMEOUT); 694 if (result == 0 || result == -EPIPE) 695 continue; 696 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) { 697 result = -ENODATA; 698 continue; 699 } 700 break; 701 } 702 return result; 703 } 704 705 static void usb_try_string_workarounds(unsigned char *buf, int *length) 706 { 707 int newlength, oldlength = *length; 708 709 for (newlength = 2; newlength + 1 < oldlength; newlength += 2) 710 if (!isprint(buf[newlength]) || buf[newlength + 1]) 711 break; 712 713 if (newlength > 2) { 714 buf[0] = newlength; 715 *length = newlength; 716 } 717 } 718 719 static int usb_string_sub(struct usb_device *dev, unsigned int langid, 720 unsigned int index, unsigned char *buf) 721 { 722 int rc; 723 724 /* Try to read the string descriptor by asking for the maximum 725 * possible number of bytes */ 726 if (dev->quirks & USB_QUIRK_STRING_FETCH_255) 727 rc = -EIO; 728 else 729 rc = usb_get_string(dev, langid, index, buf, 255); 730 731 /* If that failed try to read the descriptor length, then 732 * ask for just that many bytes */ 733 if (rc < 2) { 734 rc = usb_get_string(dev, langid, index, buf, 2); 735 if (rc == 2) 736 rc = usb_get_string(dev, langid, index, buf, buf[0]); 737 } 738 739 if (rc >= 2) { 740 if (!buf[0] && !buf[1]) 741 usb_try_string_workarounds(buf, &rc); 742 743 /* There might be extra junk at the end of the descriptor */ 744 if (buf[0] < rc) 745 rc = buf[0]; 746 747 rc = rc - (rc & 1); /* force a multiple of two */ 748 } 749 750 if (rc < 2) 751 rc = (rc < 0 ? rc : -EINVAL); 752 753 return rc; 754 } 755 756 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf) 757 { 758 int err; 759 760 if (dev->have_langid) 761 return 0; 762 763 if (dev->string_langid < 0) 764 return -EPIPE; 765 766 err = usb_string_sub(dev, 0, 0, tbuf); 767 768 /* If the string was reported but is malformed, default to english 769 * (0x0409) */ 770 if (err == -ENODATA || (err > 0 && err < 4)) { 771 dev->string_langid = 0x0409; 772 dev->have_langid = 1; 773 dev_err(&dev->dev, 774 "string descriptor 0 malformed (err = %d), " 775 "defaulting to 0x%04x\n", 776 err, dev->string_langid); 777 return 0; 778 } 779 780 /* In case of all other errors, we assume the device is not able to 781 * deal with strings at all. Set string_langid to -1 in order to 782 * prevent any string to be retrieved from the device */ 783 if (err < 0) { 784 dev_err(&dev->dev, "string descriptor 0 read error: %d\n", 785 err); 786 dev->string_langid = -1; 787 return -EPIPE; 788 } 789 790 /* always use the first langid listed */ 791 dev->string_langid = tbuf[2] | (tbuf[3] << 8); 792 dev->have_langid = 1; 793 dev_dbg(&dev->dev, "default language 0x%04x\n", 794 dev->string_langid); 795 return 0; 796 } 797 798 /** 799 * usb_string - returns UTF-8 version of a string descriptor 800 * @dev: the device whose string descriptor is being retrieved 801 * @index: the number of the descriptor 802 * @buf: where to put the string 803 * @size: how big is "buf"? 804 * Context: !in_interrupt () 805 * 806 * This converts the UTF-16LE encoded strings returned by devices, from 807 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones 808 * that are more usable in most kernel contexts. Note that this function 809 * chooses strings in the first language supported by the device. 810 * 811 * This call is synchronous, and may not be used in an interrupt context. 812 * 813 * Return: length of the string (>= 0) or usb_control_msg status (< 0). 814 */ 815 int usb_string(struct usb_device *dev, int index, char *buf, size_t size) 816 { 817 unsigned char *tbuf; 818 int err; 819 820 if (dev->state == USB_STATE_SUSPENDED) 821 return -EHOSTUNREACH; 822 if (size <= 0 || !buf || !index) 823 return -EINVAL; 824 buf[0] = 0; 825 tbuf = kmalloc(256, GFP_NOIO); 826 if (!tbuf) 827 return -ENOMEM; 828 829 err = usb_get_langid(dev, tbuf); 830 if (err < 0) 831 goto errout; 832 833 err = usb_string_sub(dev, dev->string_langid, index, tbuf); 834 if (err < 0) 835 goto errout; 836 837 size--; /* leave room for trailing NULL char in output buffer */ 838 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2, 839 UTF16_LITTLE_ENDIAN, buf, size); 840 buf[err] = 0; 841 842 if (tbuf[1] != USB_DT_STRING) 843 dev_dbg(&dev->dev, 844 "wrong descriptor type %02x for string %d (\"%s\")\n", 845 tbuf[1], index, buf); 846 847 errout: 848 kfree(tbuf); 849 return err; 850 } 851 EXPORT_SYMBOL_GPL(usb_string); 852 853 /* one UTF-8-encoded 16-bit character has at most three bytes */ 854 #define MAX_USB_STRING_SIZE (127 * 3 + 1) 855 856 /** 857 * usb_cache_string - read a string descriptor and cache it for later use 858 * @udev: the device whose string descriptor is being read 859 * @index: the descriptor index 860 * 861 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string, 862 * or %NULL if the index is 0 or the string could not be read. 863 */ 864 char *usb_cache_string(struct usb_device *udev, int index) 865 { 866 char *buf; 867 char *smallbuf = NULL; 868 int len; 869 870 if (index <= 0) 871 return NULL; 872 873 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO); 874 if (buf) { 875 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE); 876 if (len > 0) { 877 smallbuf = kmalloc(++len, GFP_NOIO); 878 if (!smallbuf) 879 return buf; 880 memcpy(smallbuf, buf, len); 881 } 882 kfree(buf); 883 } 884 return smallbuf; 885 } 886 887 /* 888 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore) 889 * @dev: the device whose device descriptor is being updated 890 * @size: how much of the descriptor to read 891 * Context: !in_interrupt () 892 * 893 * Updates the copy of the device descriptor stored in the device structure, 894 * which dedicates space for this purpose. 895 * 896 * Not exported, only for use by the core. If drivers really want to read 897 * the device descriptor directly, they can call usb_get_descriptor() with 898 * type = USB_DT_DEVICE and index = 0. 899 * 900 * This call is synchronous, and may not be used in an interrupt context. 901 * 902 * Return: The number of bytes received on success, or else the status code 903 * returned by the underlying usb_control_msg() call. 904 */ 905 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size) 906 { 907 struct usb_device_descriptor *desc; 908 int ret; 909 910 if (size > sizeof(*desc)) 911 return -EINVAL; 912 desc = kmalloc(sizeof(*desc), GFP_NOIO); 913 if (!desc) 914 return -ENOMEM; 915 916 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size); 917 if (ret >= 0) 918 memcpy(&dev->descriptor, desc, size); 919 kfree(desc); 920 return ret; 921 } 922 923 /** 924 * usb_get_status - issues a GET_STATUS call 925 * @dev: the device whose status is being checked 926 * @type: USB_RECIP_*; for device, interface, or endpoint 927 * @target: zero (for device), else interface or endpoint number 928 * @data: pointer to two bytes of bitmap data 929 * Context: !in_interrupt () 930 * 931 * Returns device, interface, or endpoint status. Normally only of 932 * interest to see if the device is self powered, or has enabled the 933 * remote wakeup facility; or whether a bulk or interrupt endpoint 934 * is halted ("stalled"). 935 * 936 * Bits in these status bitmaps are set using the SET_FEATURE request, 937 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt() 938 * function should be used to clear halt ("stall") status. 939 * 940 * This call is synchronous, and may not be used in an interrupt context. 941 * 942 * Returns 0 and the status value in *@data (in host byte order) on success, 943 * or else the status code from the underlying usb_control_msg() call. 944 */ 945 int usb_get_status(struct usb_device *dev, int type, int target, void *data) 946 { 947 int ret; 948 __le16 *status = kmalloc(sizeof(*status), GFP_KERNEL); 949 950 if (!status) 951 return -ENOMEM; 952 953 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 954 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status, 955 sizeof(*status), USB_CTRL_GET_TIMEOUT); 956 957 if (ret == 2) { 958 *(u16 *) data = le16_to_cpu(*status); 959 ret = 0; 960 } else if (ret >= 0) { 961 ret = -EIO; 962 } 963 kfree(status); 964 return ret; 965 } 966 EXPORT_SYMBOL_GPL(usb_get_status); 967 968 /** 969 * usb_clear_halt - tells device to clear endpoint halt/stall condition 970 * @dev: device whose endpoint is halted 971 * @pipe: endpoint "pipe" being cleared 972 * Context: !in_interrupt () 973 * 974 * This is used to clear halt conditions for bulk and interrupt endpoints, 975 * as reported by URB completion status. Endpoints that are halted are 976 * sometimes referred to as being "stalled". Such endpoints are unable 977 * to transmit or receive data until the halt status is cleared. Any URBs 978 * queued for such an endpoint should normally be unlinked by the driver 979 * before clearing the halt condition, as described in sections 5.7.5 980 * and 5.8.5 of the USB 2.0 spec. 981 * 982 * Note that control and isochronous endpoints don't halt, although control 983 * endpoints report "protocol stall" (for unsupported requests) using the 984 * same status code used to report a true stall. 985 * 986 * This call is synchronous, and may not be used in an interrupt context. 987 * 988 * Return: Zero on success, or else the status code returned by the 989 * underlying usb_control_msg() call. 990 */ 991 int usb_clear_halt(struct usb_device *dev, int pipe) 992 { 993 int result; 994 int endp = usb_pipeendpoint(pipe); 995 996 if (usb_pipein(pipe)) 997 endp |= USB_DIR_IN; 998 999 /* we don't care if it wasn't halted first. in fact some devices 1000 * (like some ibmcam model 1 units) seem to expect hosts to make 1001 * this request for iso endpoints, which can't halt! 1002 */ 1003 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1004 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 1005 USB_ENDPOINT_HALT, endp, NULL, 0, 1006 USB_CTRL_SET_TIMEOUT); 1007 1008 /* don't un-halt or force to DATA0 except on success */ 1009 if (result < 0) 1010 return result; 1011 1012 /* NOTE: seems like Microsoft and Apple don't bother verifying 1013 * the clear "took", so some devices could lock up if you check... 1014 * such as the Hagiwara FlashGate DUAL. So we won't bother. 1015 * 1016 * NOTE: make sure the logic here doesn't diverge much from 1017 * the copy in usb-storage, for as long as we need two copies. 1018 */ 1019 1020 usb_reset_endpoint(dev, endp); 1021 1022 return 0; 1023 } 1024 EXPORT_SYMBOL_GPL(usb_clear_halt); 1025 1026 static int create_intf_ep_devs(struct usb_interface *intf) 1027 { 1028 struct usb_device *udev = interface_to_usbdev(intf); 1029 struct usb_host_interface *alt = intf->cur_altsetting; 1030 int i; 1031 1032 if (intf->ep_devs_created || intf->unregistering) 1033 return 0; 1034 1035 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1036 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev); 1037 intf->ep_devs_created = 1; 1038 return 0; 1039 } 1040 1041 static void remove_intf_ep_devs(struct usb_interface *intf) 1042 { 1043 struct usb_host_interface *alt = intf->cur_altsetting; 1044 int i; 1045 1046 if (!intf->ep_devs_created) 1047 return; 1048 1049 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1050 usb_remove_ep_devs(&alt->endpoint[i]); 1051 intf->ep_devs_created = 0; 1052 } 1053 1054 /** 1055 * usb_disable_endpoint -- Disable an endpoint by address 1056 * @dev: the device whose endpoint is being disabled 1057 * @epaddr: the endpoint's address. Endpoint number for output, 1058 * endpoint number + USB_DIR_IN for input 1059 * @reset_hardware: flag to erase any endpoint state stored in the 1060 * controller hardware 1061 * 1062 * Disables the endpoint for URB submission and nukes all pending URBs. 1063 * If @reset_hardware is set then also deallocates hcd/hardware state 1064 * for the endpoint. 1065 */ 1066 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr, 1067 bool reset_hardware) 1068 { 1069 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1070 struct usb_host_endpoint *ep; 1071 1072 if (!dev) 1073 return; 1074 1075 if (usb_endpoint_out(epaddr)) { 1076 ep = dev->ep_out[epnum]; 1077 if (reset_hardware) 1078 dev->ep_out[epnum] = NULL; 1079 } else { 1080 ep = dev->ep_in[epnum]; 1081 if (reset_hardware) 1082 dev->ep_in[epnum] = NULL; 1083 } 1084 if (ep) { 1085 ep->enabled = 0; 1086 usb_hcd_flush_endpoint(dev, ep); 1087 if (reset_hardware) 1088 usb_hcd_disable_endpoint(dev, ep); 1089 } 1090 } 1091 1092 /** 1093 * usb_reset_endpoint - Reset an endpoint's state. 1094 * @dev: the device whose endpoint is to be reset 1095 * @epaddr: the endpoint's address. Endpoint number for output, 1096 * endpoint number + USB_DIR_IN for input 1097 * 1098 * Resets any host-side endpoint state such as the toggle bit, 1099 * sequence number or current window. 1100 */ 1101 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr) 1102 { 1103 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1104 struct usb_host_endpoint *ep; 1105 1106 if (usb_endpoint_out(epaddr)) 1107 ep = dev->ep_out[epnum]; 1108 else 1109 ep = dev->ep_in[epnum]; 1110 if (ep) 1111 usb_hcd_reset_endpoint(dev, ep); 1112 } 1113 EXPORT_SYMBOL_GPL(usb_reset_endpoint); 1114 1115 1116 /** 1117 * usb_disable_interface -- Disable all endpoints for an interface 1118 * @dev: the device whose interface is being disabled 1119 * @intf: pointer to the interface descriptor 1120 * @reset_hardware: flag to erase any endpoint state stored in the 1121 * controller hardware 1122 * 1123 * Disables all the endpoints for the interface's current altsetting. 1124 */ 1125 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf, 1126 bool reset_hardware) 1127 { 1128 struct usb_host_interface *alt = intf->cur_altsetting; 1129 int i; 1130 1131 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 1132 usb_disable_endpoint(dev, 1133 alt->endpoint[i].desc.bEndpointAddress, 1134 reset_hardware); 1135 } 1136 } 1137 1138 /** 1139 * usb_disable_device - Disable all the endpoints for a USB device 1140 * @dev: the device whose endpoints are being disabled 1141 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. 1142 * 1143 * Disables all the device's endpoints, potentially including endpoint 0. 1144 * Deallocates hcd/hardware state for the endpoints (nuking all or most 1145 * pending urbs) and usbcore state for the interfaces, so that usbcore 1146 * must usb_set_configuration() before any interfaces could be used. 1147 */ 1148 void usb_disable_device(struct usb_device *dev, int skip_ep0) 1149 { 1150 int i; 1151 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1152 1153 /* getting rid of interfaces will disconnect 1154 * any drivers bound to them (a key side effect) 1155 */ 1156 if (dev->actconfig) { 1157 /* 1158 * FIXME: In order to avoid self-deadlock involving the 1159 * bandwidth_mutex, we have to mark all the interfaces 1160 * before unregistering any of them. 1161 */ 1162 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) 1163 dev->actconfig->interface[i]->unregistering = 1; 1164 1165 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1166 struct usb_interface *interface; 1167 1168 /* remove this interface if it has been registered */ 1169 interface = dev->actconfig->interface[i]; 1170 if (!device_is_registered(&interface->dev)) 1171 continue; 1172 dev_dbg(&dev->dev, "unregistering interface %s\n", 1173 dev_name(&interface->dev)); 1174 remove_intf_ep_devs(interface); 1175 device_del(&interface->dev); 1176 } 1177 1178 /* Now that the interfaces are unbound, nobody should 1179 * try to access them. 1180 */ 1181 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1182 put_device(&dev->actconfig->interface[i]->dev); 1183 dev->actconfig->interface[i] = NULL; 1184 } 1185 1186 if (dev->usb2_hw_lpm_enabled == 1) 1187 usb_set_usb2_hardware_lpm(dev, 0); 1188 usb_unlocked_disable_lpm(dev); 1189 usb_disable_ltm(dev); 1190 1191 dev->actconfig = NULL; 1192 if (dev->state == USB_STATE_CONFIGURED) 1193 usb_set_device_state(dev, USB_STATE_ADDRESS); 1194 } 1195 1196 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__, 1197 skip_ep0 ? "non-ep0" : "all"); 1198 if (hcd->driver->check_bandwidth) { 1199 /* First pass: Cancel URBs, leave endpoint pointers intact. */ 1200 for (i = skip_ep0; i < 16; ++i) { 1201 usb_disable_endpoint(dev, i, false); 1202 usb_disable_endpoint(dev, i + USB_DIR_IN, false); 1203 } 1204 /* Remove endpoints from the host controller internal state */ 1205 mutex_lock(hcd->bandwidth_mutex); 1206 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); 1207 mutex_unlock(hcd->bandwidth_mutex); 1208 /* Second pass: remove endpoint pointers */ 1209 } 1210 for (i = skip_ep0; i < 16; ++i) { 1211 usb_disable_endpoint(dev, i, true); 1212 usb_disable_endpoint(dev, i + USB_DIR_IN, true); 1213 } 1214 } 1215 1216 /** 1217 * usb_enable_endpoint - Enable an endpoint for USB communications 1218 * @dev: the device whose interface is being enabled 1219 * @ep: the endpoint 1220 * @reset_ep: flag to reset the endpoint state 1221 * 1222 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers. 1223 * For control endpoints, both the input and output sides are handled. 1224 */ 1225 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep, 1226 bool reset_ep) 1227 { 1228 int epnum = usb_endpoint_num(&ep->desc); 1229 int is_out = usb_endpoint_dir_out(&ep->desc); 1230 int is_control = usb_endpoint_xfer_control(&ep->desc); 1231 1232 if (reset_ep) 1233 usb_hcd_reset_endpoint(dev, ep); 1234 if (is_out || is_control) 1235 dev->ep_out[epnum] = ep; 1236 if (!is_out || is_control) 1237 dev->ep_in[epnum] = ep; 1238 ep->enabled = 1; 1239 } 1240 1241 /** 1242 * usb_enable_interface - Enable all the endpoints for an interface 1243 * @dev: the device whose interface is being enabled 1244 * @intf: pointer to the interface descriptor 1245 * @reset_eps: flag to reset the endpoints' state 1246 * 1247 * Enables all the endpoints for the interface's current altsetting. 1248 */ 1249 void usb_enable_interface(struct usb_device *dev, 1250 struct usb_interface *intf, bool reset_eps) 1251 { 1252 struct usb_host_interface *alt = intf->cur_altsetting; 1253 int i; 1254 1255 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1256 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps); 1257 } 1258 1259 /** 1260 * usb_set_interface - Makes a particular alternate setting be current 1261 * @dev: the device whose interface is being updated 1262 * @interface: the interface being updated 1263 * @alternate: the setting being chosen. 1264 * Context: !in_interrupt () 1265 * 1266 * This is used to enable data transfers on interfaces that may not 1267 * be enabled by default. Not all devices support such configurability. 1268 * Only the driver bound to an interface may change its setting. 1269 * 1270 * Within any given configuration, each interface may have several 1271 * alternative settings. These are often used to control levels of 1272 * bandwidth consumption. For example, the default setting for a high 1273 * speed interrupt endpoint may not send more than 64 bytes per microframe, 1274 * while interrupt transfers of up to 3KBytes per microframe are legal. 1275 * Also, isochronous endpoints may never be part of an 1276 * interface's default setting. To access such bandwidth, alternate 1277 * interface settings must be made current. 1278 * 1279 * Note that in the Linux USB subsystem, bandwidth associated with 1280 * an endpoint in a given alternate setting is not reserved until an URB 1281 * is submitted that needs that bandwidth. Some other operating systems 1282 * allocate bandwidth early, when a configuration is chosen. 1283 * 1284 * This call is synchronous, and may not be used in an interrupt context. 1285 * Also, drivers must not change altsettings while urbs are scheduled for 1286 * endpoints in that interface; all such urbs must first be completed 1287 * (perhaps forced by unlinking). 1288 * 1289 * Return: Zero on success, or else the status code returned by the 1290 * underlying usb_control_msg() call. 1291 */ 1292 int usb_set_interface(struct usb_device *dev, int interface, int alternate) 1293 { 1294 struct usb_interface *iface; 1295 struct usb_host_interface *alt; 1296 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1297 int ret; 1298 int manual = 0; 1299 unsigned int epaddr; 1300 unsigned int pipe; 1301 1302 if (dev->state == USB_STATE_SUSPENDED) 1303 return -EHOSTUNREACH; 1304 1305 iface = usb_ifnum_to_if(dev, interface); 1306 if (!iface) { 1307 dev_dbg(&dev->dev, "selecting invalid interface %d\n", 1308 interface); 1309 return -EINVAL; 1310 } 1311 if (iface->unregistering) 1312 return -ENODEV; 1313 1314 alt = usb_altnum_to_altsetting(iface, alternate); 1315 if (!alt) { 1316 dev_warn(&dev->dev, "selecting invalid altsetting %d\n", 1317 alternate); 1318 return -EINVAL; 1319 } 1320 1321 /* Make sure we have enough bandwidth for this alternate interface. 1322 * Remove the current alt setting and add the new alt setting. 1323 */ 1324 mutex_lock(hcd->bandwidth_mutex); 1325 /* Disable LPM, and re-enable it once the new alt setting is installed, 1326 * so that the xHCI driver can recalculate the U1/U2 timeouts. 1327 */ 1328 if (usb_disable_lpm(dev)) { 1329 dev_err(&iface->dev, "%s Failed to disable LPM\n.", __func__); 1330 mutex_unlock(hcd->bandwidth_mutex); 1331 return -ENOMEM; 1332 } 1333 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt); 1334 if (ret < 0) { 1335 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n", 1336 alternate); 1337 usb_enable_lpm(dev); 1338 mutex_unlock(hcd->bandwidth_mutex); 1339 return ret; 1340 } 1341 1342 if (dev->quirks & USB_QUIRK_NO_SET_INTF) 1343 ret = -EPIPE; 1344 else 1345 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1346 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE, 1347 alternate, interface, NULL, 0, 5000); 1348 1349 /* 9.4.10 says devices don't need this and are free to STALL the 1350 * request if the interface only has one alternate setting. 1351 */ 1352 if (ret == -EPIPE && iface->num_altsetting == 1) { 1353 dev_dbg(&dev->dev, 1354 "manual set_interface for iface %d, alt %d\n", 1355 interface, alternate); 1356 manual = 1; 1357 } else if (ret < 0) { 1358 /* Re-instate the old alt setting */ 1359 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting); 1360 usb_enable_lpm(dev); 1361 mutex_unlock(hcd->bandwidth_mutex); 1362 return ret; 1363 } 1364 mutex_unlock(hcd->bandwidth_mutex); 1365 1366 /* FIXME drivers shouldn't need to replicate/bugfix the logic here 1367 * when they implement async or easily-killable versions of this or 1368 * other "should-be-internal" functions (like clear_halt). 1369 * should hcd+usbcore postprocess control requests? 1370 */ 1371 1372 /* prevent submissions using previous endpoint settings */ 1373 if (iface->cur_altsetting != alt) { 1374 remove_intf_ep_devs(iface); 1375 usb_remove_sysfs_intf_files(iface); 1376 } 1377 usb_disable_interface(dev, iface, true); 1378 1379 iface->cur_altsetting = alt; 1380 1381 /* Now that the interface is installed, re-enable LPM. */ 1382 usb_unlocked_enable_lpm(dev); 1383 1384 /* If the interface only has one altsetting and the device didn't 1385 * accept the request, we attempt to carry out the equivalent action 1386 * by manually clearing the HALT feature for each endpoint in the 1387 * new altsetting. 1388 */ 1389 if (manual) { 1390 int i; 1391 1392 for (i = 0; i < alt->desc.bNumEndpoints; i++) { 1393 epaddr = alt->endpoint[i].desc.bEndpointAddress; 1394 pipe = __create_pipe(dev, 1395 USB_ENDPOINT_NUMBER_MASK & epaddr) | 1396 (usb_endpoint_out(epaddr) ? 1397 USB_DIR_OUT : USB_DIR_IN); 1398 1399 usb_clear_halt(dev, pipe); 1400 } 1401 } 1402 1403 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting 1404 * 1405 * Note: 1406 * Despite EP0 is always present in all interfaces/AS, the list of 1407 * endpoints from the descriptor does not contain EP0. Due to its 1408 * omnipresence one might expect EP0 being considered "affected" by 1409 * any SetInterface request and hence assume toggles need to be reset. 1410 * However, EP0 toggles are re-synced for every individual transfer 1411 * during the SETUP stage - hence EP0 toggles are "don't care" here. 1412 * (Likewise, EP0 never "halts" on well designed devices.) 1413 */ 1414 usb_enable_interface(dev, iface, true); 1415 if (device_is_registered(&iface->dev)) { 1416 usb_create_sysfs_intf_files(iface); 1417 create_intf_ep_devs(iface); 1418 } 1419 return 0; 1420 } 1421 EXPORT_SYMBOL_GPL(usb_set_interface); 1422 1423 /** 1424 * usb_reset_configuration - lightweight device reset 1425 * @dev: the device whose configuration is being reset 1426 * 1427 * This issues a standard SET_CONFIGURATION request to the device using 1428 * the current configuration. The effect is to reset most USB-related 1429 * state in the device, including interface altsettings (reset to zero), 1430 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt 1431 * endpoints). Other usbcore state is unchanged, including bindings of 1432 * usb device drivers to interfaces. 1433 * 1434 * Because this affects multiple interfaces, avoid using this with composite 1435 * (multi-interface) devices. Instead, the driver for each interface may 1436 * use usb_set_interface() on the interfaces it claims. Be careful though; 1437 * some devices don't support the SET_INTERFACE request, and others won't 1438 * reset all the interface state (notably endpoint state). Resetting the whole 1439 * configuration would affect other drivers' interfaces. 1440 * 1441 * The caller must own the device lock. 1442 * 1443 * Return: Zero on success, else a negative error code. 1444 */ 1445 int usb_reset_configuration(struct usb_device *dev) 1446 { 1447 int i, retval; 1448 struct usb_host_config *config; 1449 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1450 1451 if (dev->state == USB_STATE_SUSPENDED) 1452 return -EHOSTUNREACH; 1453 1454 /* caller must have locked the device and must own 1455 * the usb bus readlock (so driver bindings are stable); 1456 * calls during probe() are fine 1457 */ 1458 1459 for (i = 1; i < 16; ++i) { 1460 usb_disable_endpoint(dev, i, true); 1461 usb_disable_endpoint(dev, i + USB_DIR_IN, true); 1462 } 1463 1464 config = dev->actconfig; 1465 retval = 0; 1466 mutex_lock(hcd->bandwidth_mutex); 1467 /* Disable LPM, and re-enable it once the configuration is reset, so 1468 * that the xHCI driver can recalculate the U1/U2 timeouts. 1469 */ 1470 if (usb_disable_lpm(dev)) { 1471 dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__); 1472 mutex_unlock(hcd->bandwidth_mutex); 1473 return -ENOMEM; 1474 } 1475 /* Make sure we have enough bandwidth for each alternate setting 0 */ 1476 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1477 struct usb_interface *intf = config->interface[i]; 1478 struct usb_host_interface *alt; 1479 1480 alt = usb_altnum_to_altsetting(intf, 0); 1481 if (!alt) 1482 alt = &intf->altsetting[0]; 1483 if (alt != intf->cur_altsetting) 1484 retval = usb_hcd_alloc_bandwidth(dev, NULL, 1485 intf->cur_altsetting, alt); 1486 if (retval < 0) 1487 break; 1488 } 1489 /* If not, reinstate the old alternate settings */ 1490 if (retval < 0) { 1491 reset_old_alts: 1492 for (i--; i >= 0; i--) { 1493 struct usb_interface *intf = config->interface[i]; 1494 struct usb_host_interface *alt; 1495 1496 alt = usb_altnum_to_altsetting(intf, 0); 1497 if (!alt) 1498 alt = &intf->altsetting[0]; 1499 if (alt != intf->cur_altsetting) 1500 usb_hcd_alloc_bandwidth(dev, NULL, 1501 alt, intf->cur_altsetting); 1502 } 1503 usb_enable_lpm(dev); 1504 mutex_unlock(hcd->bandwidth_mutex); 1505 return retval; 1506 } 1507 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1508 USB_REQ_SET_CONFIGURATION, 0, 1509 config->desc.bConfigurationValue, 0, 1510 NULL, 0, USB_CTRL_SET_TIMEOUT); 1511 if (retval < 0) 1512 goto reset_old_alts; 1513 mutex_unlock(hcd->bandwidth_mutex); 1514 1515 /* re-init hc/hcd interface/endpoint state */ 1516 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1517 struct usb_interface *intf = config->interface[i]; 1518 struct usb_host_interface *alt; 1519 1520 alt = usb_altnum_to_altsetting(intf, 0); 1521 1522 /* No altsetting 0? We'll assume the first altsetting. 1523 * We could use a GetInterface call, but if a device is 1524 * so non-compliant that it doesn't have altsetting 0 1525 * then I wouldn't trust its reply anyway. 1526 */ 1527 if (!alt) 1528 alt = &intf->altsetting[0]; 1529 1530 if (alt != intf->cur_altsetting) { 1531 remove_intf_ep_devs(intf); 1532 usb_remove_sysfs_intf_files(intf); 1533 } 1534 intf->cur_altsetting = alt; 1535 usb_enable_interface(dev, intf, true); 1536 if (device_is_registered(&intf->dev)) { 1537 usb_create_sysfs_intf_files(intf); 1538 create_intf_ep_devs(intf); 1539 } 1540 } 1541 /* Now that the interfaces are installed, re-enable LPM. */ 1542 usb_unlocked_enable_lpm(dev); 1543 return 0; 1544 } 1545 EXPORT_SYMBOL_GPL(usb_reset_configuration); 1546 1547 static void usb_release_interface(struct device *dev) 1548 { 1549 struct usb_interface *intf = to_usb_interface(dev); 1550 struct usb_interface_cache *intfc = 1551 altsetting_to_usb_interface_cache(intf->altsetting); 1552 1553 kref_put(&intfc->ref, usb_release_interface_cache); 1554 kfree(intf); 1555 } 1556 1557 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env) 1558 { 1559 struct usb_device *usb_dev; 1560 struct usb_interface *intf; 1561 struct usb_host_interface *alt; 1562 1563 intf = to_usb_interface(dev); 1564 usb_dev = interface_to_usbdev(intf); 1565 alt = intf->cur_altsetting; 1566 1567 if (add_uevent_var(env, "INTERFACE=%d/%d/%d", 1568 alt->desc.bInterfaceClass, 1569 alt->desc.bInterfaceSubClass, 1570 alt->desc.bInterfaceProtocol)) 1571 return -ENOMEM; 1572 1573 if (add_uevent_var(env, 1574 "MODALIAS=usb:" 1575 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X", 1576 le16_to_cpu(usb_dev->descriptor.idVendor), 1577 le16_to_cpu(usb_dev->descriptor.idProduct), 1578 le16_to_cpu(usb_dev->descriptor.bcdDevice), 1579 usb_dev->descriptor.bDeviceClass, 1580 usb_dev->descriptor.bDeviceSubClass, 1581 usb_dev->descriptor.bDeviceProtocol, 1582 alt->desc.bInterfaceClass, 1583 alt->desc.bInterfaceSubClass, 1584 alt->desc.bInterfaceProtocol, 1585 alt->desc.bInterfaceNumber)) 1586 return -ENOMEM; 1587 1588 return 0; 1589 } 1590 1591 struct device_type usb_if_device_type = { 1592 .name = "usb_interface", 1593 .release = usb_release_interface, 1594 .uevent = usb_if_uevent, 1595 }; 1596 1597 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev, 1598 struct usb_host_config *config, 1599 u8 inum) 1600 { 1601 struct usb_interface_assoc_descriptor *retval = NULL; 1602 struct usb_interface_assoc_descriptor *intf_assoc; 1603 int first_intf; 1604 int last_intf; 1605 int i; 1606 1607 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) { 1608 intf_assoc = config->intf_assoc[i]; 1609 if (intf_assoc->bInterfaceCount == 0) 1610 continue; 1611 1612 first_intf = intf_assoc->bFirstInterface; 1613 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1); 1614 if (inum >= first_intf && inum <= last_intf) { 1615 if (!retval) 1616 retval = intf_assoc; 1617 else 1618 dev_err(&dev->dev, "Interface #%d referenced" 1619 " by multiple IADs\n", inum); 1620 } 1621 } 1622 1623 return retval; 1624 } 1625 1626 1627 /* 1628 * Internal function to queue a device reset 1629 * 1630 * This is initialized into the workstruct in 'struct 1631 * usb_device->reset_ws' that is launched by 1632 * message.c:usb_set_configuration() when initializing each 'struct 1633 * usb_interface'. 1634 * 1635 * It is safe to get the USB device without reference counts because 1636 * the life cycle of @iface is bound to the life cycle of @udev. Then, 1637 * this function will be ran only if @iface is alive (and before 1638 * freeing it any scheduled instances of it will have been cancelled). 1639 * 1640 * We need to set a flag (usb_dev->reset_running) because when we call 1641 * the reset, the interfaces might be unbound. The current interface 1642 * cannot try to remove the queued work as it would cause a deadlock 1643 * (you cannot remove your work from within your executing 1644 * workqueue). This flag lets it know, so that 1645 * usb_cancel_queued_reset() doesn't try to do it. 1646 * 1647 * See usb_queue_reset_device() for more details 1648 */ 1649 static void __usb_queue_reset_device(struct work_struct *ws) 1650 { 1651 int rc; 1652 struct usb_interface *iface = 1653 container_of(ws, struct usb_interface, reset_ws); 1654 struct usb_device *udev = interface_to_usbdev(iface); 1655 1656 rc = usb_lock_device_for_reset(udev, iface); 1657 if (rc >= 0) { 1658 iface->reset_running = 1; 1659 usb_reset_device(udev); 1660 iface->reset_running = 0; 1661 usb_unlock_device(udev); 1662 } 1663 } 1664 1665 1666 /* 1667 * usb_set_configuration - Makes a particular device setting be current 1668 * @dev: the device whose configuration is being updated 1669 * @configuration: the configuration being chosen. 1670 * Context: !in_interrupt(), caller owns the device lock 1671 * 1672 * This is used to enable non-default device modes. Not all devices 1673 * use this kind of configurability; many devices only have one 1674 * configuration. 1675 * 1676 * @configuration is the value of the configuration to be installed. 1677 * According to the USB spec (e.g. section 9.1.1.5), configuration values 1678 * must be non-zero; a value of zero indicates that the device in 1679 * unconfigured. However some devices erroneously use 0 as one of their 1680 * configuration values. To help manage such devices, this routine will 1681 * accept @configuration = -1 as indicating the device should be put in 1682 * an unconfigured state. 1683 * 1684 * USB device configurations may affect Linux interoperability, 1685 * power consumption and the functionality available. For example, 1686 * the default configuration is limited to using 100mA of bus power, 1687 * so that when certain device functionality requires more power, 1688 * and the device is bus powered, that functionality should be in some 1689 * non-default device configuration. Other device modes may also be 1690 * reflected as configuration options, such as whether two ISDN 1691 * channels are available independently; and choosing between open 1692 * standard device protocols (like CDC) or proprietary ones. 1693 * 1694 * Note that a non-authorized device (dev->authorized == 0) will only 1695 * be put in unconfigured mode. 1696 * 1697 * Note that USB has an additional level of device configurability, 1698 * associated with interfaces. That configurability is accessed using 1699 * usb_set_interface(). 1700 * 1701 * This call is synchronous. The calling context must be able to sleep, 1702 * must own the device lock, and must not hold the driver model's USB 1703 * bus mutex; usb interface driver probe() methods cannot use this routine. 1704 * 1705 * Returns zero on success, or else the status code returned by the 1706 * underlying call that failed. On successful completion, each interface 1707 * in the original device configuration has been destroyed, and each one 1708 * in the new configuration has been probed by all relevant usb device 1709 * drivers currently known to the kernel. 1710 */ 1711 int usb_set_configuration(struct usb_device *dev, int configuration) 1712 { 1713 int i, ret; 1714 struct usb_host_config *cp = NULL; 1715 struct usb_interface **new_interfaces = NULL; 1716 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1717 int n, nintf; 1718 1719 if (dev->authorized == 0 || configuration == -1) 1720 configuration = 0; 1721 else { 1722 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) { 1723 if (dev->config[i].desc.bConfigurationValue == 1724 configuration) { 1725 cp = &dev->config[i]; 1726 break; 1727 } 1728 } 1729 } 1730 if ((!cp && configuration != 0)) 1731 return -EINVAL; 1732 1733 /* The USB spec says configuration 0 means unconfigured. 1734 * But if a device includes a configuration numbered 0, 1735 * we will accept it as a correctly configured state. 1736 * Use -1 if you really want to unconfigure the device. 1737 */ 1738 if (cp && configuration == 0) 1739 dev_warn(&dev->dev, "config 0 descriptor??\n"); 1740 1741 /* Allocate memory for new interfaces before doing anything else, 1742 * so that if we run out then nothing will have changed. */ 1743 n = nintf = 0; 1744 if (cp) { 1745 nintf = cp->desc.bNumInterfaces; 1746 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces), 1747 GFP_NOIO); 1748 if (!new_interfaces) { 1749 dev_err(&dev->dev, "Out of memory\n"); 1750 return -ENOMEM; 1751 } 1752 1753 for (; n < nintf; ++n) { 1754 new_interfaces[n] = kzalloc( 1755 sizeof(struct usb_interface), 1756 GFP_NOIO); 1757 if (!new_interfaces[n]) { 1758 dev_err(&dev->dev, "Out of memory\n"); 1759 ret = -ENOMEM; 1760 free_interfaces: 1761 while (--n >= 0) 1762 kfree(new_interfaces[n]); 1763 kfree(new_interfaces); 1764 return ret; 1765 } 1766 } 1767 1768 i = dev->bus_mA - usb_get_max_power(dev, cp); 1769 if (i < 0) 1770 dev_warn(&dev->dev, "new config #%d exceeds power " 1771 "limit by %dmA\n", 1772 configuration, -i); 1773 } 1774 1775 /* Wake up the device so we can send it the Set-Config request */ 1776 ret = usb_autoresume_device(dev); 1777 if (ret) 1778 goto free_interfaces; 1779 1780 /* if it's already configured, clear out old state first. 1781 * getting rid of old interfaces means unbinding their drivers. 1782 */ 1783 if (dev->state != USB_STATE_ADDRESS) 1784 usb_disable_device(dev, 1); /* Skip ep0 */ 1785 1786 /* Get rid of pending async Set-Config requests for this device */ 1787 cancel_async_set_config(dev); 1788 1789 /* Make sure we have bandwidth (and available HCD resources) for this 1790 * configuration. Remove endpoints from the schedule if we're dropping 1791 * this configuration to set configuration 0. After this point, the 1792 * host controller will not allow submissions to dropped endpoints. If 1793 * this call fails, the device state is unchanged. 1794 */ 1795 mutex_lock(hcd->bandwidth_mutex); 1796 /* Disable LPM, and re-enable it once the new configuration is 1797 * installed, so that the xHCI driver can recalculate the U1/U2 1798 * timeouts. 1799 */ 1800 if (dev->actconfig && usb_disable_lpm(dev)) { 1801 dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__); 1802 mutex_unlock(hcd->bandwidth_mutex); 1803 ret = -ENOMEM; 1804 goto free_interfaces; 1805 } 1806 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL); 1807 if (ret < 0) { 1808 if (dev->actconfig) 1809 usb_enable_lpm(dev); 1810 mutex_unlock(hcd->bandwidth_mutex); 1811 usb_autosuspend_device(dev); 1812 goto free_interfaces; 1813 } 1814 1815 /* 1816 * Initialize the new interface structures and the 1817 * hc/hcd/usbcore interface/endpoint state. 1818 */ 1819 for (i = 0; i < nintf; ++i) { 1820 struct usb_interface_cache *intfc; 1821 struct usb_interface *intf; 1822 struct usb_host_interface *alt; 1823 1824 cp->interface[i] = intf = new_interfaces[i]; 1825 intfc = cp->intf_cache[i]; 1826 intf->altsetting = intfc->altsetting; 1827 intf->num_altsetting = intfc->num_altsetting; 1828 kref_get(&intfc->ref); 1829 1830 alt = usb_altnum_to_altsetting(intf, 0); 1831 1832 /* No altsetting 0? We'll assume the first altsetting. 1833 * We could use a GetInterface call, but if a device is 1834 * so non-compliant that it doesn't have altsetting 0 1835 * then I wouldn't trust its reply anyway. 1836 */ 1837 if (!alt) 1838 alt = &intf->altsetting[0]; 1839 1840 intf->intf_assoc = 1841 find_iad(dev, cp, alt->desc.bInterfaceNumber); 1842 intf->cur_altsetting = alt; 1843 usb_enable_interface(dev, intf, true); 1844 intf->dev.parent = &dev->dev; 1845 intf->dev.driver = NULL; 1846 intf->dev.bus = &usb_bus_type; 1847 intf->dev.type = &usb_if_device_type; 1848 intf->dev.groups = usb_interface_groups; 1849 intf->dev.dma_mask = dev->dev.dma_mask; 1850 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device); 1851 intf->minor = -1; 1852 device_initialize(&intf->dev); 1853 pm_runtime_no_callbacks(&intf->dev); 1854 dev_set_name(&intf->dev, "%d-%s:%d.%d", 1855 dev->bus->busnum, dev->devpath, 1856 configuration, alt->desc.bInterfaceNumber); 1857 } 1858 kfree(new_interfaces); 1859 1860 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1861 USB_REQ_SET_CONFIGURATION, 0, configuration, 0, 1862 NULL, 0, USB_CTRL_SET_TIMEOUT); 1863 if (ret < 0 && cp) { 1864 /* 1865 * All the old state is gone, so what else can we do? 1866 * The device is probably useless now anyway. 1867 */ 1868 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); 1869 for (i = 0; i < nintf; ++i) { 1870 usb_disable_interface(dev, cp->interface[i], true); 1871 put_device(&cp->interface[i]->dev); 1872 cp->interface[i] = NULL; 1873 } 1874 cp = NULL; 1875 } 1876 1877 dev->actconfig = cp; 1878 mutex_unlock(hcd->bandwidth_mutex); 1879 1880 if (!cp) { 1881 usb_set_device_state(dev, USB_STATE_ADDRESS); 1882 1883 /* Leave LPM disabled while the device is unconfigured. */ 1884 usb_autosuspend_device(dev); 1885 return ret; 1886 } 1887 usb_set_device_state(dev, USB_STATE_CONFIGURED); 1888 1889 if (cp->string == NULL && 1890 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS)) 1891 cp->string = usb_cache_string(dev, cp->desc.iConfiguration); 1892 1893 /* Now that the interfaces are installed, re-enable LPM. */ 1894 usb_unlocked_enable_lpm(dev); 1895 /* Enable LTM if it was turned off by usb_disable_device. */ 1896 usb_enable_ltm(dev); 1897 1898 /* Now that all the interfaces are set up, register them 1899 * to trigger binding of drivers to interfaces. probe() 1900 * routines may install different altsettings and may 1901 * claim() any interfaces not yet bound. Many class drivers 1902 * need that: CDC, audio, video, etc. 1903 */ 1904 for (i = 0; i < nintf; ++i) { 1905 struct usb_interface *intf = cp->interface[i]; 1906 1907 dev_dbg(&dev->dev, 1908 "adding %s (config #%d, interface %d)\n", 1909 dev_name(&intf->dev), configuration, 1910 intf->cur_altsetting->desc.bInterfaceNumber); 1911 device_enable_async_suspend(&intf->dev); 1912 ret = device_add(&intf->dev); 1913 if (ret != 0) { 1914 dev_err(&dev->dev, "device_add(%s) --> %d\n", 1915 dev_name(&intf->dev), ret); 1916 continue; 1917 } 1918 create_intf_ep_devs(intf); 1919 } 1920 1921 usb_autosuspend_device(dev); 1922 return 0; 1923 } 1924 1925 static LIST_HEAD(set_config_list); 1926 static DEFINE_SPINLOCK(set_config_lock); 1927 1928 struct set_config_request { 1929 struct usb_device *udev; 1930 int config; 1931 struct work_struct work; 1932 struct list_head node; 1933 }; 1934 1935 /* Worker routine for usb_driver_set_configuration() */ 1936 static void driver_set_config_work(struct work_struct *work) 1937 { 1938 struct set_config_request *req = 1939 container_of(work, struct set_config_request, work); 1940 struct usb_device *udev = req->udev; 1941 1942 usb_lock_device(udev); 1943 spin_lock(&set_config_lock); 1944 list_del(&req->node); 1945 spin_unlock(&set_config_lock); 1946 1947 if (req->config >= -1) /* Is req still valid? */ 1948 usb_set_configuration(udev, req->config); 1949 usb_unlock_device(udev); 1950 usb_put_dev(udev); 1951 kfree(req); 1952 } 1953 1954 /* Cancel pending Set-Config requests for a device whose configuration 1955 * was just changed 1956 */ 1957 static void cancel_async_set_config(struct usb_device *udev) 1958 { 1959 struct set_config_request *req; 1960 1961 spin_lock(&set_config_lock); 1962 list_for_each_entry(req, &set_config_list, node) { 1963 if (req->udev == udev) 1964 req->config = -999; /* Mark as cancelled */ 1965 } 1966 spin_unlock(&set_config_lock); 1967 } 1968 1969 /** 1970 * usb_driver_set_configuration - Provide a way for drivers to change device configurations 1971 * @udev: the device whose configuration is being updated 1972 * @config: the configuration being chosen. 1973 * Context: In process context, must be able to sleep 1974 * 1975 * Device interface drivers are not allowed to change device configurations. 1976 * This is because changing configurations will destroy the interface the 1977 * driver is bound to and create new ones; it would be like a floppy-disk 1978 * driver telling the computer to replace the floppy-disk drive with a 1979 * tape drive! 1980 * 1981 * Still, in certain specialized circumstances the need may arise. This 1982 * routine gets around the normal restrictions by using a work thread to 1983 * submit the change-config request. 1984 * 1985 * Return: 0 if the request was successfully queued, error code otherwise. 1986 * The caller has no way to know whether the queued request will eventually 1987 * succeed. 1988 */ 1989 int usb_driver_set_configuration(struct usb_device *udev, int config) 1990 { 1991 struct set_config_request *req; 1992 1993 req = kmalloc(sizeof(*req), GFP_KERNEL); 1994 if (!req) 1995 return -ENOMEM; 1996 req->udev = udev; 1997 req->config = config; 1998 INIT_WORK(&req->work, driver_set_config_work); 1999 2000 spin_lock(&set_config_lock); 2001 list_add(&req->node, &set_config_list); 2002 spin_unlock(&set_config_lock); 2003 2004 usb_get_dev(udev); 2005 schedule_work(&req->work); 2006 return 0; 2007 } 2008 EXPORT_SYMBOL_GPL(usb_driver_set_configuration); 2009