xref: /openbmc/linux/drivers/usb/core/message.c (revision 68198dca)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * message.c - synchronous message handling
4  *
5  * Released under the GPLv2 only.
6  */
7 
8 #include <linux/pci.h>	/* for scatterlist macros */
9 #include <linux/usb.h>
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 #include <linux/mm.h>
13 #include <linux/timer.h>
14 #include <linux/ctype.h>
15 #include <linux/nls.h>
16 #include <linux/device.h>
17 #include <linux/scatterlist.h>
18 #include <linux/usb/cdc.h>
19 #include <linux/usb/quirks.h>
20 #include <linux/usb/hcd.h>	/* for usbcore internals */
21 #include <asm/byteorder.h>
22 
23 #include "usb.h"
24 
25 static void cancel_async_set_config(struct usb_device *udev);
26 
27 struct api_context {
28 	struct completion	done;
29 	int			status;
30 };
31 
32 static void usb_api_blocking_completion(struct urb *urb)
33 {
34 	struct api_context *ctx = urb->context;
35 
36 	ctx->status = urb->status;
37 	complete(&ctx->done);
38 }
39 
40 
41 /*
42  * Starts urb and waits for completion or timeout. Note that this call
43  * is NOT interruptible. Many device driver i/o requests should be
44  * interruptible and therefore these drivers should implement their
45  * own interruptible routines.
46  */
47 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
48 {
49 	struct api_context ctx;
50 	unsigned long expire;
51 	int retval;
52 
53 	init_completion(&ctx.done);
54 	urb->context = &ctx;
55 	urb->actual_length = 0;
56 	retval = usb_submit_urb(urb, GFP_NOIO);
57 	if (unlikely(retval))
58 		goto out;
59 
60 	expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
61 	if (!wait_for_completion_timeout(&ctx.done, expire)) {
62 		usb_kill_urb(urb);
63 		retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
64 
65 		dev_dbg(&urb->dev->dev,
66 			"%s timed out on ep%d%s len=%u/%u\n",
67 			current->comm,
68 			usb_endpoint_num(&urb->ep->desc),
69 			usb_urb_dir_in(urb) ? "in" : "out",
70 			urb->actual_length,
71 			urb->transfer_buffer_length);
72 	} else
73 		retval = ctx.status;
74 out:
75 	if (actual_length)
76 		*actual_length = urb->actual_length;
77 
78 	usb_free_urb(urb);
79 	return retval;
80 }
81 
82 /*-------------------------------------------------------------------*/
83 /* returns status (negative) or length (positive) */
84 static int usb_internal_control_msg(struct usb_device *usb_dev,
85 				    unsigned int pipe,
86 				    struct usb_ctrlrequest *cmd,
87 				    void *data, int len, int timeout)
88 {
89 	struct urb *urb;
90 	int retv;
91 	int length;
92 
93 	urb = usb_alloc_urb(0, GFP_NOIO);
94 	if (!urb)
95 		return -ENOMEM;
96 
97 	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
98 			     len, usb_api_blocking_completion, NULL);
99 
100 	retv = usb_start_wait_urb(urb, timeout, &length);
101 	if (retv < 0)
102 		return retv;
103 	else
104 		return length;
105 }
106 
107 /**
108  * usb_control_msg - Builds a control urb, sends it off and waits for completion
109  * @dev: pointer to the usb device to send the message to
110  * @pipe: endpoint "pipe" to send the message to
111  * @request: USB message request value
112  * @requesttype: USB message request type value
113  * @value: USB message value
114  * @index: USB message index value
115  * @data: pointer to the data to send
116  * @size: length in bytes of the data to send
117  * @timeout: time in msecs to wait for the message to complete before timing
118  *	out (if 0 the wait is forever)
119  *
120  * Context: !in_interrupt ()
121  *
122  * This function sends a simple control message to a specified endpoint and
123  * waits for the message to complete, or timeout.
124  *
125  * Don't use this function from within an interrupt context. If you need
126  * an asynchronous message, or need to send a message from within interrupt
127  * context, use usb_submit_urb(). If a thread in your driver uses this call,
128  * make sure your disconnect() method can wait for it to complete. Since you
129  * don't have a handle on the URB used, you can't cancel the request.
130  *
131  * Return: If successful, the number of bytes transferred. Otherwise, a negative
132  * error number.
133  */
134 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
135 		    __u8 requesttype, __u16 value, __u16 index, void *data,
136 		    __u16 size, int timeout)
137 {
138 	struct usb_ctrlrequest *dr;
139 	int ret;
140 
141 	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
142 	if (!dr)
143 		return -ENOMEM;
144 
145 	dr->bRequestType = requesttype;
146 	dr->bRequest = request;
147 	dr->wValue = cpu_to_le16(value);
148 	dr->wIndex = cpu_to_le16(index);
149 	dr->wLength = cpu_to_le16(size);
150 
151 	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
152 
153 	kfree(dr);
154 
155 	return ret;
156 }
157 EXPORT_SYMBOL_GPL(usb_control_msg);
158 
159 /**
160  * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
161  * @usb_dev: pointer to the usb device to send the message to
162  * @pipe: endpoint "pipe" to send the message to
163  * @data: pointer to the data to send
164  * @len: length in bytes of the data to send
165  * @actual_length: pointer to a location to put the actual length transferred
166  *	in bytes
167  * @timeout: time in msecs to wait for the message to complete before
168  *	timing out (if 0 the wait is forever)
169  *
170  * Context: !in_interrupt ()
171  *
172  * This function sends a simple interrupt message to a specified endpoint and
173  * waits for the message to complete, or timeout.
174  *
175  * Don't use this function from within an interrupt context. If you need
176  * an asynchronous message, or need to send a message from within interrupt
177  * context, use usb_submit_urb() If a thread in your driver uses this call,
178  * make sure your disconnect() method can wait for it to complete. Since you
179  * don't have a handle on the URB used, you can't cancel the request.
180  *
181  * Return:
182  * If successful, 0. Otherwise a negative error number. The number of actual
183  * bytes transferred will be stored in the @actual_length parameter.
184  */
185 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
186 		      void *data, int len, int *actual_length, int timeout)
187 {
188 	return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
189 }
190 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
191 
192 /**
193  * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
194  * @usb_dev: pointer to the usb device to send the message to
195  * @pipe: endpoint "pipe" to send the message to
196  * @data: pointer to the data to send
197  * @len: length in bytes of the data to send
198  * @actual_length: pointer to a location to put the actual length transferred
199  *	in bytes
200  * @timeout: time in msecs to wait for the message to complete before
201  *	timing out (if 0 the wait is forever)
202  *
203  * Context: !in_interrupt ()
204  *
205  * This function sends a simple bulk message to a specified endpoint
206  * and waits for the message to complete, or timeout.
207  *
208  * Don't use this function from within an interrupt context. If you need
209  * an asynchronous message, or need to send a message from within interrupt
210  * context, use usb_submit_urb() If a thread in your driver uses this call,
211  * make sure your disconnect() method can wait for it to complete. Since you
212  * don't have a handle on the URB used, you can't cancel the request.
213  *
214  * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
215  * users are forced to abuse this routine by using it to submit URBs for
216  * interrupt endpoints.  We will take the liberty of creating an interrupt URB
217  * (with the default interval) if the target is an interrupt endpoint.
218  *
219  * Return:
220  * If successful, 0. Otherwise a negative error number. The number of actual
221  * bytes transferred will be stored in the @actual_length parameter.
222  *
223  */
224 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
225 		 void *data, int len, int *actual_length, int timeout)
226 {
227 	struct urb *urb;
228 	struct usb_host_endpoint *ep;
229 
230 	ep = usb_pipe_endpoint(usb_dev, pipe);
231 	if (!ep || len < 0)
232 		return -EINVAL;
233 
234 	urb = usb_alloc_urb(0, GFP_KERNEL);
235 	if (!urb)
236 		return -ENOMEM;
237 
238 	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
239 			USB_ENDPOINT_XFER_INT) {
240 		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
241 		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
242 				usb_api_blocking_completion, NULL,
243 				ep->desc.bInterval);
244 	} else
245 		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
246 				usb_api_blocking_completion, NULL);
247 
248 	return usb_start_wait_urb(urb, timeout, actual_length);
249 }
250 EXPORT_SYMBOL_GPL(usb_bulk_msg);
251 
252 /*-------------------------------------------------------------------*/
253 
254 static void sg_clean(struct usb_sg_request *io)
255 {
256 	if (io->urbs) {
257 		while (io->entries--)
258 			usb_free_urb(io->urbs[io->entries]);
259 		kfree(io->urbs);
260 		io->urbs = NULL;
261 	}
262 	io->dev = NULL;
263 }
264 
265 static void sg_complete(struct urb *urb)
266 {
267 	struct usb_sg_request *io = urb->context;
268 	int status = urb->status;
269 
270 	spin_lock(&io->lock);
271 
272 	/* In 2.5 we require hcds' endpoint queues not to progress after fault
273 	 * reports, until the completion callback (this!) returns.  That lets
274 	 * device driver code (like this routine) unlink queued urbs first,
275 	 * if it needs to, since the HC won't work on them at all.  So it's
276 	 * not possible for page N+1 to overwrite page N, and so on.
277 	 *
278 	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
279 	 * complete before the HCD can get requests away from hardware,
280 	 * though never during cleanup after a hard fault.
281 	 */
282 	if (io->status
283 			&& (io->status != -ECONNRESET
284 				|| status != -ECONNRESET)
285 			&& urb->actual_length) {
286 		dev_err(io->dev->bus->controller,
287 			"dev %s ep%d%s scatterlist error %d/%d\n",
288 			io->dev->devpath,
289 			usb_endpoint_num(&urb->ep->desc),
290 			usb_urb_dir_in(urb) ? "in" : "out",
291 			status, io->status);
292 		/* BUG (); */
293 	}
294 
295 	if (io->status == 0 && status && status != -ECONNRESET) {
296 		int i, found, retval;
297 
298 		io->status = status;
299 
300 		/* the previous urbs, and this one, completed already.
301 		 * unlink pending urbs so they won't rx/tx bad data.
302 		 * careful: unlink can sometimes be synchronous...
303 		 */
304 		spin_unlock(&io->lock);
305 		for (i = 0, found = 0; i < io->entries; i++) {
306 			if (!io->urbs[i])
307 				continue;
308 			if (found) {
309 				usb_block_urb(io->urbs[i]);
310 				retval = usb_unlink_urb(io->urbs[i]);
311 				if (retval != -EINPROGRESS &&
312 				    retval != -ENODEV &&
313 				    retval != -EBUSY &&
314 				    retval != -EIDRM)
315 					dev_err(&io->dev->dev,
316 						"%s, unlink --> %d\n",
317 						__func__, retval);
318 			} else if (urb == io->urbs[i])
319 				found = 1;
320 		}
321 		spin_lock(&io->lock);
322 	}
323 
324 	/* on the last completion, signal usb_sg_wait() */
325 	io->bytes += urb->actual_length;
326 	io->count--;
327 	if (!io->count)
328 		complete(&io->complete);
329 
330 	spin_unlock(&io->lock);
331 }
332 
333 
334 /**
335  * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
336  * @io: request block being initialized.  until usb_sg_wait() returns,
337  *	treat this as a pointer to an opaque block of memory,
338  * @dev: the usb device that will send or receive the data
339  * @pipe: endpoint "pipe" used to transfer the data
340  * @period: polling rate for interrupt endpoints, in frames or
341  * 	(for high speed endpoints) microframes; ignored for bulk
342  * @sg: scatterlist entries
343  * @nents: how many entries in the scatterlist
344  * @length: how many bytes to send from the scatterlist, or zero to
345  * 	send every byte identified in the list.
346  * @mem_flags: SLAB_* flags affecting memory allocations in this call
347  *
348  * This initializes a scatter/gather request, allocating resources such as
349  * I/O mappings and urb memory (except maybe memory used by USB controller
350  * drivers).
351  *
352  * The request must be issued using usb_sg_wait(), which waits for the I/O to
353  * complete (or to be canceled) and then cleans up all resources allocated by
354  * usb_sg_init().
355  *
356  * The request may be canceled with usb_sg_cancel(), either before or after
357  * usb_sg_wait() is called.
358  *
359  * Return: Zero for success, else a negative errno value.
360  */
361 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
362 		unsigned pipe, unsigned	period, struct scatterlist *sg,
363 		int nents, size_t length, gfp_t mem_flags)
364 {
365 	int i;
366 	int urb_flags;
367 	int use_sg;
368 
369 	if (!io || !dev || !sg
370 			|| usb_pipecontrol(pipe)
371 			|| usb_pipeisoc(pipe)
372 			|| nents <= 0)
373 		return -EINVAL;
374 
375 	spin_lock_init(&io->lock);
376 	io->dev = dev;
377 	io->pipe = pipe;
378 
379 	if (dev->bus->sg_tablesize > 0) {
380 		use_sg = true;
381 		io->entries = 1;
382 	} else {
383 		use_sg = false;
384 		io->entries = nents;
385 	}
386 
387 	/* initialize all the urbs we'll use */
388 	io->urbs = kmalloc(io->entries * sizeof(*io->urbs), mem_flags);
389 	if (!io->urbs)
390 		goto nomem;
391 
392 	urb_flags = URB_NO_INTERRUPT;
393 	if (usb_pipein(pipe))
394 		urb_flags |= URB_SHORT_NOT_OK;
395 
396 	for_each_sg(sg, sg, io->entries, i) {
397 		struct urb *urb;
398 		unsigned len;
399 
400 		urb = usb_alloc_urb(0, mem_flags);
401 		if (!urb) {
402 			io->entries = i;
403 			goto nomem;
404 		}
405 		io->urbs[i] = urb;
406 
407 		urb->dev = NULL;
408 		urb->pipe = pipe;
409 		urb->interval = period;
410 		urb->transfer_flags = urb_flags;
411 		urb->complete = sg_complete;
412 		urb->context = io;
413 		urb->sg = sg;
414 
415 		if (use_sg) {
416 			/* There is no single transfer buffer */
417 			urb->transfer_buffer = NULL;
418 			urb->num_sgs = nents;
419 
420 			/* A length of zero means transfer the whole sg list */
421 			len = length;
422 			if (len == 0) {
423 				struct scatterlist	*sg2;
424 				int			j;
425 
426 				for_each_sg(sg, sg2, nents, j)
427 					len += sg2->length;
428 			}
429 		} else {
430 			/*
431 			 * Some systems can't use DMA; they use PIO instead.
432 			 * For their sakes, transfer_buffer is set whenever
433 			 * possible.
434 			 */
435 			if (!PageHighMem(sg_page(sg)))
436 				urb->transfer_buffer = sg_virt(sg);
437 			else
438 				urb->transfer_buffer = NULL;
439 
440 			len = sg->length;
441 			if (length) {
442 				len = min_t(size_t, len, length);
443 				length -= len;
444 				if (length == 0)
445 					io->entries = i + 1;
446 			}
447 		}
448 		urb->transfer_buffer_length = len;
449 	}
450 	io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
451 
452 	/* transaction state */
453 	io->count = io->entries;
454 	io->status = 0;
455 	io->bytes = 0;
456 	init_completion(&io->complete);
457 	return 0;
458 
459 nomem:
460 	sg_clean(io);
461 	return -ENOMEM;
462 }
463 EXPORT_SYMBOL_GPL(usb_sg_init);
464 
465 /**
466  * usb_sg_wait - synchronously execute scatter/gather request
467  * @io: request block handle, as initialized with usb_sg_init().
468  * 	some fields become accessible when this call returns.
469  * Context: !in_interrupt ()
470  *
471  * This function blocks until the specified I/O operation completes.  It
472  * leverages the grouping of the related I/O requests to get good transfer
473  * rates, by queueing the requests.  At higher speeds, such queuing can
474  * significantly improve USB throughput.
475  *
476  * There are three kinds of completion for this function.
477  *
478  * (1) success, where io->status is zero.  The number of io->bytes
479  *     transferred is as requested.
480  * (2) error, where io->status is a negative errno value.  The number
481  *     of io->bytes transferred before the error is usually less
482  *     than requested, and can be nonzero.
483  * (3) cancellation, a type of error with status -ECONNRESET that
484  *     is initiated by usb_sg_cancel().
485  *
486  * When this function returns, all memory allocated through usb_sg_init() or
487  * this call will have been freed.  The request block parameter may still be
488  * passed to usb_sg_cancel(), or it may be freed.  It could also be
489  * reinitialized and then reused.
490  *
491  * Data Transfer Rates:
492  *
493  * Bulk transfers are valid for full or high speed endpoints.
494  * The best full speed data rate is 19 packets of 64 bytes each
495  * per frame, or 1216 bytes per millisecond.
496  * The best high speed data rate is 13 packets of 512 bytes each
497  * per microframe, or 52 KBytes per millisecond.
498  *
499  * The reason to use interrupt transfers through this API would most likely
500  * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
501  * could be transferred.  That capability is less useful for low or full
502  * speed interrupt endpoints, which allow at most one packet per millisecond,
503  * of at most 8 or 64 bytes (respectively).
504  *
505  * It is not necessary to call this function to reserve bandwidth for devices
506  * under an xHCI host controller, as the bandwidth is reserved when the
507  * configuration or interface alt setting is selected.
508  */
509 void usb_sg_wait(struct usb_sg_request *io)
510 {
511 	int i;
512 	int entries = io->entries;
513 
514 	/* queue the urbs.  */
515 	spin_lock_irq(&io->lock);
516 	i = 0;
517 	while (i < entries && !io->status) {
518 		int retval;
519 
520 		io->urbs[i]->dev = io->dev;
521 		spin_unlock_irq(&io->lock);
522 
523 		retval = usb_submit_urb(io->urbs[i], GFP_NOIO);
524 
525 		switch (retval) {
526 			/* maybe we retrying will recover */
527 		case -ENXIO:	/* hc didn't queue this one */
528 		case -EAGAIN:
529 		case -ENOMEM:
530 			retval = 0;
531 			yield();
532 			break;
533 
534 			/* no error? continue immediately.
535 			 *
536 			 * NOTE: to work better with UHCI (4K I/O buffer may
537 			 * need 3K of TDs) it may be good to limit how many
538 			 * URBs are queued at once; N milliseconds?
539 			 */
540 		case 0:
541 			++i;
542 			cpu_relax();
543 			break;
544 
545 			/* fail any uncompleted urbs */
546 		default:
547 			io->urbs[i]->status = retval;
548 			dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
549 				__func__, retval);
550 			usb_sg_cancel(io);
551 		}
552 		spin_lock_irq(&io->lock);
553 		if (retval && (io->status == 0 || io->status == -ECONNRESET))
554 			io->status = retval;
555 	}
556 	io->count -= entries - i;
557 	if (io->count == 0)
558 		complete(&io->complete);
559 	spin_unlock_irq(&io->lock);
560 
561 	/* OK, yes, this could be packaged as non-blocking.
562 	 * So could the submit loop above ... but it's easier to
563 	 * solve neither problem than to solve both!
564 	 */
565 	wait_for_completion(&io->complete);
566 
567 	sg_clean(io);
568 }
569 EXPORT_SYMBOL_GPL(usb_sg_wait);
570 
571 /**
572  * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
573  * @io: request block, initialized with usb_sg_init()
574  *
575  * This stops a request after it has been started by usb_sg_wait().
576  * It can also prevents one initialized by usb_sg_init() from starting,
577  * so that call just frees resources allocated to the request.
578  */
579 void usb_sg_cancel(struct usb_sg_request *io)
580 {
581 	unsigned long flags;
582 	int i, retval;
583 
584 	spin_lock_irqsave(&io->lock, flags);
585 	if (io->status) {
586 		spin_unlock_irqrestore(&io->lock, flags);
587 		return;
588 	}
589 	/* shut everything down */
590 	io->status = -ECONNRESET;
591 	spin_unlock_irqrestore(&io->lock, flags);
592 
593 	for (i = io->entries - 1; i >= 0; --i) {
594 		usb_block_urb(io->urbs[i]);
595 
596 		retval = usb_unlink_urb(io->urbs[i]);
597 		if (retval != -EINPROGRESS
598 		    && retval != -ENODEV
599 		    && retval != -EBUSY
600 		    && retval != -EIDRM)
601 			dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
602 				 __func__, retval);
603 	}
604 }
605 EXPORT_SYMBOL_GPL(usb_sg_cancel);
606 
607 /*-------------------------------------------------------------------*/
608 
609 /**
610  * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
611  * @dev: the device whose descriptor is being retrieved
612  * @type: the descriptor type (USB_DT_*)
613  * @index: the number of the descriptor
614  * @buf: where to put the descriptor
615  * @size: how big is "buf"?
616  * Context: !in_interrupt ()
617  *
618  * Gets a USB descriptor.  Convenience functions exist to simplify
619  * getting some types of descriptors.  Use
620  * usb_get_string() or usb_string() for USB_DT_STRING.
621  * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
622  * are part of the device structure.
623  * In addition to a number of USB-standard descriptors, some
624  * devices also use class-specific or vendor-specific descriptors.
625  *
626  * This call is synchronous, and may not be used in an interrupt context.
627  *
628  * Return: The number of bytes received on success, or else the status code
629  * returned by the underlying usb_control_msg() call.
630  */
631 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
632 		       unsigned char index, void *buf, int size)
633 {
634 	int i;
635 	int result;
636 
637 	memset(buf, 0, size);	/* Make sure we parse really received data */
638 
639 	for (i = 0; i < 3; ++i) {
640 		/* retry on length 0 or error; some devices are flakey */
641 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
642 				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
643 				(type << 8) + index, 0, buf, size,
644 				USB_CTRL_GET_TIMEOUT);
645 		if (result <= 0 && result != -ETIMEDOUT)
646 			continue;
647 		if (result > 1 && ((u8 *)buf)[1] != type) {
648 			result = -ENODATA;
649 			continue;
650 		}
651 		break;
652 	}
653 	return result;
654 }
655 EXPORT_SYMBOL_GPL(usb_get_descriptor);
656 
657 /**
658  * usb_get_string - gets a string descriptor
659  * @dev: the device whose string descriptor is being retrieved
660  * @langid: code for language chosen (from string descriptor zero)
661  * @index: the number of the descriptor
662  * @buf: where to put the string
663  * @size: how big is "buf"?
664  * Context: !in_interrupt ()
665  *
666  * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
667  * in little-endian byte order).
668  * The usb_string() function will often be a convenient way to turn
669  * these strings into kernel-printable form.
670  *
671  * Strings may be referenced in device, configuration, interface, or other
672  * descriptors, and could also be used in vendor-specific ways.
673  *
674  * This call is synchronous, and may not be used in an interrupt context.
675  *
676  * Return: The number of bytes received on success, or else the status code
677  * returned by the underlying usb_control_msg() call.
678  */
679 static int usb_get_string(struct usb_device *dev, unsigned short langid,
680 			  unsigned char index, void *buf, int size)
681 {
682 	int i;
683 	int result;
684 
685 	for (i = 0; i < 3; ++i) {
686 		/* retry on length 0 or stall; some devices are flakey */
687 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
688 			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
689 			(USB_DT_STRING << 8) + index, langid, buf, size,
690 			USB_CTRL_GET_TIMEOUT);
691 		if (result == 0 || result == -EPIPE)
692 			continue;
693 		if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
694 			result = -ENODATA;
695 			continue;
696 		}
697 		break;
698 	}
699 	return result;
700 }
701 
702 static void usb_try_string_workarounds(unsigned char *buf, int *length)
703 {
704 	int newlength, oldlength = *length;
705 
706 	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
707 		if (!isprint(buf[newlength]) || buf[newlength + 1])
708 			break;
709 
710 	if (newlength > 2) {
711 		buf[0] = newlength;
712 		*length = newlength;
713 	}
714 }
715 
716 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
717 			  unsigned int index, unsigned char *buf)
718 {
719 	int rc;
720 
721 	/* Try to read the string descriptor by asking for the maximum
722 	 * possible number of bytes */
723 	if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
724 		rc = -EIO;
725 	else
726 		rc = usb_get_string(dev, langid, index, buf, 255);
727 
728 	/* If that failed try to read the descriptor length, then
729 	 * ask for just that many bytes */
730 	if (rc < 2) {
731 		rc = usb_get_string(dev, langid, index, buf, 2);
732 		if (rc == 2)
733 			rc = usb_get_string(dev, langid, index, buf, buf[0]);
734 	}
735 
736 	if (rc >= 2) {
737 		if (!buf[0] && !buf[1])
738 			usb_try_string_workarounds(buf, &rc);
739 
740 		/* There might be extra junk at the end of the descriptor */
741 		if (buf[0] < rc)
742 			rc = buf[0];
743 
744 		rc = rc - (rc & 1); /* force a multiple of two */
745 	}
746 
747 	if (rc < 2)
748 		rc = (rc < 0 ? rc : -EINVAL);
749 
750 	return rc;
751 }
752 
753 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
754 {
755 	int err;
756 
757 	if (dev->have_langid)
758 		return 0;
759 
760 	if (dev->string_langid < 0)
761 		return -EPIPE;
762 
763 	err = usb_string_sub(dev, 0, 0, tbuf);
764 
765 	/* If the string was reported but is malformed, default to english
766 	 * (0x0409) */
767 	if (err == -ENODATA || (err > 0 && err < 4)) {
768 		dev->string_langid = 0x0409;
769 		dev->have_langid = 1;
770 		dev_err(&dev->dev,
771 			"language id specifier not provided by device, defaulting to English\n");
772 		return 0;
773 	}
774 
775 	/* In case of all other errors, we assume the device is not able to
776 	 * deal with strings at all. Set string_langid to -1 in order to
777 	 * prevent any string to be retrieved from the device */
778 	if (err < 0) {
779 		dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
780 					err);
781 		dev->string_langid = -1;
782 		return -EPIPE;
783 	}
784 
785 	/* always use the first langid listed */
786 	dev->string_langid = tbuf[2] | (tbuf[3] << 8);
787 	dev->have_langid = 1;
788 	dev_dbg(&dev->dev, "default language 0x%04x\n",
789 				dev->string_langid);
790 	return 0;
791 }
792 
793 /**
794  * usb_string - returns UTF-8 version of a string descriptor
795  * @dev: the device whose string descriptor is being retrieved
796  * @index: the number of the descriptor
797  * @buf: where to put the string
798  * @size: how big is "buf"?
799  * Context: !in_interrupt ()
800  *
801  * This converts the UTF-16LE encoded strings returned by devices, from
802  * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
803  * that are more usable in most kernel contexts.  Note that this function
804  * chooses strings in the first language supported by the device.
805  *
806  * This call is synchronous, and may not be used in an interrupt context.
807  *
808  * Return: length of the string (>= 0) or usb_control_msg status (< 0).
809  */
810 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
811 {
812 	unsigned char *tbuf;
813 	int err;
814 
815 	if (dev->state == USB_STATE_SUSPENDED)
816 		return -EHOSTUNREACH;
817 	if (size <= 0 || !buf || !index)
818 		return -EINVAL;
819 	buf[0] = 0;
820 	tbuf = kmalloc(256, GFP_NOIO);
821 	if (!tbuf)
822 		return -ENOMEM;
823 
824 	err = usb_get_langid(dev, tbuf);
825 	if (err < 0)
826 		goto errout;
827 
828 	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
829 	if (err < 0)
830 		goto errout;
831 
832 	size--;		/* leave room for trailing NULL char in output buffer */
833 	err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
834 			UTF16_LITTLE_ENDIAN, buf, size);
835 	buf[err] = 0;
836 
837 	if (tbuf[1] != USB_DT_STRING)
838 		dev_dbg(&dev->dev,
839 			"wrong descriptor type %02x for string %d (\"%s\")\n",
840 			tbuf[1], index, buf);
841 
842  errout:
843 	kfree(tbuf);
844 	return err;
845 }
846 EXPORT_SYMBOL_GPL(usb_string);
847 
848 /* one UTF-8-encoded 16-bit character has at most three bytes */
849 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
850 
851 /**
852  * usb_cache_string - read a string descriptor and cache it for later use
853  * @udev: the device whose string descriptor is being read
854  * @index: the descriptor index
855  *
856  * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
857  * or %NULL if the index is 0 or the string could not be read.
858  */
859 char *usb_cache_string(struct usb_device *udev, int index)
860 {
861 	char *buf;
862 	char *smallbuf = NULL;
863 	int len;
864 
865 	if (index <= 0)
866 		return NULL;
867 
868 	buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
869 	if (buf) {
870 		len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
871 		if (len > 0) {
872 			smallbuf = kmalloc(++len, GFP_NOIO);
873 			if (!smallbuf)
874 				return buf;
875 			memcpy(smallbuf, buf, len);
876 		}
877 		kfree(buf);
878 	}
879 	return smallbuf;
880 }
881 
882 /*
883  * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
884  * @dev: the device whose device descriptor is being updated
885  * @size: how much of the descriptor to read
886  * Context: !in_interrupt ()
887  *
888  * Updates the copy of the device descriptor stored in the device structure,
889  * which dedicates space for this purpose.
890  *
891  * Not exported, only for use by the core.  If drivers really want to read
892  * the device descriptor directly, they can call usb_get_descriptor() with
893  * type = USB_DT_DEVICE and index = 0.
894  *
895  * This call is synchronous, and may not be used in an interrupt context.
896  *
897  * Return: The number of bytes received on success, or else the status code
898  * returned by the underlying usb_control_msg() call.
899  */
900 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
901 {
902 	struct usb_device_descriptor *desc;
903 	int ret;
904 
905 	if (size > sizeof(*desc))
906 		return -EINVAL;
907 	desc = kmalloc(sizeof(*desc), GFP_NOIO);
908 	if (!desc)
909 		return -ENOMEM;
910 
911 	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
912 	if (ret >= 0)
913 		memcpy(&dev->descriptor, desc, size);
914 	kfree(desc);
915 	return ret;
916 }
917 
918 /**
919  * usb_get_status - issues a GET_STATUS call
920  * @dev: the device whose status is being checked
921  * @recip: USB_RECIP_*; for device, interface, or endpoint
922  * @type: USB_STATUS_TYPE_*; for standard or PTM status types
923  * @target: zero (for device), else interface or endpoint number
924  * @data: pointer to two bytes of bitmap data
925  * Context: !in_interrupt ()
926  *
927  * Returns device, interface, or endpoint status.  Normally only of
928  * interest to see if the device is self powered, or has enabled the
929  * remote wakeup facility; or whether a bulk or interrupt endpoint
930  * is halted ("stalled").
931  *
932  * Bits in these status bitmaps are set using the SET_FEATURE request,
933  * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
934  * function should be used to clear halt ("stall") status.
935  *
936  * This call is synchronous, and may not be used in an interrupt context.
937  *
938  * Returns 0 and the status value in *@data (in host byte order) on success,
939  * or else the status code from the underlying usb_control_msg() call.
940  */
941 int usb_get_status(struct usb_device *dev, int recip, int type, int target,
942 		void *data)
943 {
944 	int ret;
945 	void *status;
946 	int length;
947 
948 	switch (type) {
949 	case USB_STATUS_TYPE_STANDARD:
950 		length = 2;
951 		break;
952 	case USB_STATUS_TYPE_PTM:
953 		if (recip != USB_RECIP_DEVICE)
954 			return -EINVAL;
955 
956 		length = 4;
957 		break;
958 	default:
959 		return -EINVAL;
960 	}
961 
962 	status =  kmalloc(length, GFP_KERNEL);
963 	if (!status)
964 		return -ENOMEM;
965 
966 	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
967 		USB_REQ_GET_STATUS, USB_DIR_IN | recip, USB_STATUS_TYPE_STANDARD,
968 		target, status, length, USB_CTRL_GET_TIMEOUT);
969 
970 	switch (ret) {
971 	case 4:
972 		if (type != USB_STATUS_TYPE_PTM) {
973 			ret = -EIO;
974 			break;
975 		}
976 
977 		*(u32 *) data = le32_to_cpu(*(__le32 *) status);
978 		ret = 0;
979 		break;
980 	case 2:
981 		if (type != USB_STATUS_TYPE_STANDARD) {
982 			ret = -EIO;
983 			break;
984 		}
985 
986 		*(u16 *) data = le16_to_cpu(*(__le16 *) status);
987 		ret = 0;
988 		break;
989 	default:
990 		ret = -EIO;
991 	}
992 
993 	kfree(status);
994 	return ret;
995 }
996 EXPORT_SYMBOL_GPL(usb_get_status);
997 
998 /**
999  * usb_clear_halt - tells device to clear endpoint halt/stall condition
1000  * @dev: device whose endpoint is halted
1001  * @pipe: endpoint "pipe" being cleared
1002  * Context: !in_interrupt ()
1003  *
1004  * This is used to clear halt conditions for bulk and interrupt endpoints,
1005  * as reported by URB completion status.  Endpoints that are halted are
1006  * sometimes referred to as being "stalled".  Such endpoints are unable
1007  * to transmit or receive data until the halt status is cleared.  Any URBs
1008  * queued for such an endpoint should normally be unlinked by the driver
1009  * before clearing the halt condition, as described in sections 5.7.5
1010  * and 5.8.5 of the USB 2.0 spec.
1011  *
1012  * Note that control and isochronous endpoints don't halt, although control
1013  * endpoints report "protocol stall" (for unsupported requests) using the
1014  * same status code used to report a true stall.
1015  *
1016  * This call is synchronous, and may not be used in an interrupt context.
1017  *
1018  * Return: Zero on success, or else the status code returned by the
1019  * underlying usb_control_msg() call.
1020  */
1021 int usb_clear_halt(struct usb_device *dev, int pipe)
1022 {
1023 	int result;
1024 	int endp = usb_pipeendpoint(pipe);
1025 
1026 	if (usb_pipein(pipe))
1027 		endp |= USB_DIR_IN;
1028 
1029 	/* we don't care if it wasn't halted first. in fact some devices
1030 	 * (like some ibmcam model 1 units) seem to expect hosts to make
1031 	 * this request for iso endpoints, which can't halt!
1032 	 */
1033 	result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1034 		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1035 		USB_ENDPOINT_HALT, endp, NULL, 0,
1036 		USB_CTRL_SET_TIMEOUT);
1037 
1038 	/* don't un-halt or force to DATA0 except on success */
1039 	if (result < 0)
1040 		return result;
1041 
1042 	/* NOTE:  seems like Microsoft and Apple don't bother verifying
1043 	 * the clear "took", so some devices could lock up if you check...
1044 	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
1045 	 *
1046 	 * NOTE:  make sure the logic here doesn't diverge much from
1047 	 * the copy in usb-storage, for as long as we need two copies.
1048 	 */
1049 
1050 	usb_reset_endpoint(dev, endp);
1051 
1052 	return 0;
1053 }
1054 EXPORT_SYMBOL_GPL(usb_clear_halt);
1055 
1056 static int create_intf_ep_devs(struct usb_interface *intf)
1057 {
1058 	struct usb_device *udev = interface_to_usbdev(intf);
1059 	struct usb_host_interface *alt = intf->cur_altsetting;
1060 	int i;
1061 
1062 	if (intf->ep_devs_created || intf->unregistering)
1063 		return 0;
1064 
1065 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1066 		(void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1067 	intf->ep_devs_created = 1;
1068 	return 0;
1069 }
1070 
1071 static void remove_intf_ep_devs(struct usb_interface *intf)
1072 {
1073 	struct usb_host_interface *alt = intf->cur_altsetting;
1074 	int i;
1075 
1076 	if (!intf->ep_devs_created)
1077 		return;
1078 
1079 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1080 		usb_remove_ep_devs(&alt->endpoint[i]);
1081 	intf->ep_devs_created = 0;
1082 }
1083 
1084 /**
1085  * usb_disable_endpoint -- Disable an endpoint by address
1086  * @dev: the device whose endpoint is being disabled
1087  * @epaddr: the endpoint's address.  Endpoint number for output,
1088  *	endpoint number + USB_DIR_IN for input
1089  * @reset_hardware: flag to erase any endpoint state stored in the
1090  *	controller hardware
1091  *
1092  * Disables the endpoint for URB submission and nukes all pending URBs.
1093  * If @reset_hardware is set then also deallocates hcd/hardware state
1094  * for the endpoint.
1095  */
1096 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1097 		bool reset_hardware)
1098 {
1099 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1100 	struct usb_host_endpoint *ep;
1101 
1102 	if (!dev)
1103 		return;
1104 
1105 	if (usb_endpoint_out(epaddr)) {
1106 		ep = dev->ep_out[epnum];
1107 		if (reset_hardware)
1108 			dev->ep_out[epnum] = NULL;
1109 	} else {
1110 		ep = dev->ep_in[epnum];
1111 		if (reset_hardware)
1112 			dev->ep_in[epnum] = NULL;
1113 	}
1114 	if (ep) {
1115 		ep->enabled = 0;
1116 		usb_hcd_flush_endpoint(dev, ep);
1117 		if (reset_hardware)
1118 			usb_hcd_disable_endpoint(dev, ep);
1119 	}
1120 }
1121 
1122 /**
1123  * usb_reset_endpoint - Reset an endpoint's state.
1124  * @dev: the device whose endpoint is to be reset
1125  * @epaddr: the endpoint's address.  Endpoint number for output,
1126  *	endpoint number + USB_DIR_IN for input
1127  *
1128  * Resets any host-side endpoint state such as the toggle bit,
1129  * sequence number or current window.
1130  */
1131 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1132 {
1133 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1134 	struct usb_host_endpoint *ep;
1135 
1136 	if (usb_endpoint_out(epaddr))
1137 		ep = dev->ep_out[epnum];
1138 	else
1139 		ep = dev->ep_in[epnum];
1140 	if (ep)
1141 		usb_hcd_reset_endpoint(dev, ep);
1142 }
1143 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1144 
1145 
1146 /**
1147  * usb_disable_interface -- Disable all endpoints for an interface
1148  * @dev: the device whose interface is being disabled
1149  * @intf: pointer to the interface descriptor
1150  * @reset_hardware: flag to erase any endpoint state stored in the
1151  *	controller hardware
1152  *
1153  * Disables all the endpoints for the interface's current altsetting.
1154  */
1155 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1156 		bool reset_hardware)
1157 {
1158 	struct usb_host_interface *alt = intf->cur_altsetting;
1159 	int i;
1160 
1161 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1162 		usb_disable_endpoint(dev,
1163 				alt->endpoint[i].desc.bEndpointAddress,
1164 				reset_hardware);
1165 	}
1166 }
1167 
1168 /**
1169  * usb_disable_device - Disable all the endpoints for a USB device
1170  * @dev: the device whose endpoints are being disabled
1171  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1172  *
1173  * Disables all the device's endpoints, potentially including endpoint 0.
1174  * Deallocates hcd/hardware state for the endpoints (nuking all or most
1175  * pending urbs) and usbcore state for the interfaces, so that usbcore
1176  * must usb_set_configuration() before any interfaces could be used.
1177  */
1178 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1179 {
1180 	int i;
1181 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1182 
1183 	/* getting rid of interfaces will disconnect
1184 	 * any drivers bound to them (a key side effect)
1185 	 */
1186 	if (dev->actconfig) {
1187 		/*
1188 		 * FIXME: In order to avoid self-deadlock involving the
1189 		 * bandwidth_mutex, we have to mark all the interfaces
1190 		 * before unregistering any of them.
1191 		 */
1192 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1193 			dev->actconfig->interface[i]->unregistering = 1;
1194 
1195 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1196 			struct usb_interface	*interface;
1197 
1198 			/* remove this interface if it has been registered */
1199 			interface = dev->actconfig->interface[i];
1200 			if (!device_is_registered(&interface->dev))
1201 				continue;
1202 			dev_dbg(&dev->dev, "unregistering interface %s\n",
1203 				dev_name(&interface->dev));
1204 			remove_intf_ep_devs(interface);
1205 			device_del(&interface->dev);
1206 		}
1207 
1208 		/* Now that the interfaces are unbound, nobody should
1209 		 * try to access them.
1210 		 */
1211 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1212 			put_device(&dev->actconfig->interface[i]->dev);
1213 			dev->actconfig->interface[i] = NULL;
1214 		}
1215 
1216 		if (dev->usb2_hw_lpm_enabled == 1)
1217 			usb_set_usb2_hardware_lpm(dev, 0);
1218 		usb_unlocked_disable_lpm(dev);
1219 		usb_disable_ltm(dev);
1220 
1221 		dev->actconfig = NULL;
1222 		if (dev->state == USB_STATE_CONFIGURED)
1223 			usb_set_device_state(dev, USB_STATE_ADDRESS);
1224 	}
1225 
1226 	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1227 		skip_ep0 ? "non-ep0" : "all");
1228 	if (hcd->driver->check_bandwidth) {
1229 		/* First pass: Cancel URBs, leave endpoint pointers intact. */
1230 		for (i = skip_ep0; i < 16; ++i) {
1231 			usb_disable_endpoint(dev, i, false);
1232 			usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1233 		}
1234 		/* Remove endpoints from the host controller internal state */
1235 		mutex_lock(hcd->bandwidth_mutex);
1236 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1237 		mutex_unlock(hcd->bandwidth_mutex);
1238 		/* Second pass: remove endpoint pointers */
1239 	}
1240 	for (i = skip_ep0; i < 16; ++i) {
1241 		usb_disable_endpoint(dev, i, true);
1242 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1243 	}
1244 }
1245 
1246 /**
1247  * usb_enable_endpoint - Enable an endpoint for USB communications
1248  * @dev: the device whose interface is being enabled
1249  * @ep: the endpoint
1250  * @reset_ep: flag to reset the endpoint state
1251  *
1252  * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1253  * For control endpoints, both the input and output sides are handled.
1254  */
1255 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1256 		bool reset_ep)
1257 {
1258 	int epnum = usb_endpoint_num(&ep->desc);
1259 	int is_out = usb_endpoint_dir_out(&ep->desc);
1260 	int is_control = usb_endpoint_xfer_control(&ep->desc);
1261 
1262 	if (reset_ep)
1263 		usb_hcd_reset_endpoint(dev, ep);
1264 	if (is_out || is_control)
1265 		dev->ep_out[epnum] = ep;
1266 	if (!is_out || is_control)
1267 		dev->ep_in[epnum] = ep;
1268 	ep->enabled = 1;
1269 }
1270 
1271 /**
1272  * usb_enable_interface - Enable all the endpoints for an interface
1273  * @dev: the device whose interface is being enabled
1274  * @intf: pointer to the interface descriptor
1275  * @reset_eps: flag to reset the endpoints' state
1276  *
1277  * Enables all the endpoints for the interface's current altsetting.
1278  */
1279 void usb_enable_interface(struct usb_device *dev,
1280 		struct usb_interface *intf, bool reset_eps)
1281 {
1282 	struct usb_host_interface *alt = intf->cur_altsetting;
1283 	int i;
1284 
1285 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1286 		usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1287 }
1288 
1289 /**
1290  * usb_set_interface - Makes a particular alternate setting be current
1291  * @dev: the device whose interface is being updated
1292  * @interface: the interface being updated
1293  * @alternate: the setting being chosen.
1294  * Context: !in_interrupt ()
1295  *
1296  * This is used to enable data transfers on interfaces that may not
1297  * be enabled by default.  Not all devices support such configurability.
1298  * Only the driver bound to an interface may change its setting.
1299  *
1300  * Within any given configuration, each interface may have several
1301  * alternative settings.  These are often used to control levels of
1302  * bandwidth consumption.  For example, the default setting for a high
1303  * speed interrupt endpoint may not send more than 64 bytes per microframe,
1304  * while interrupt transfers of up to 3KBytes per microframe are legal.
1305  * Also, isochronous endpoints may never be part of an
1306  * interface's default setting.  To access such bandwidth, alternate
1307  * interface settings must be made current.
1308  *
1309  * Note that in the Linux USB subsystem, bandwidth associated with
1310  * an endpoint in a given alternate setting is not reserved until an URB
1311  * is submitted that needs that bandwidth.  Some other operating systems
1312  * allocate bandwidth early, when a configuration is chosen.
1313  *
1314  * This call is synchronous, and may not be used in an interrupt context.
1315  * Also, drivers must not change altsettings while urbs are scheduled for
1316  * endpoints in that interface; all such urbs must first be completed
1317  * (perhaps forced by unlinking).
1318  *
1319  * Return: Zero on success, or else the status code returned by the
1320  * underlying usb_control_msg() call.
1321  */
1322 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1323 {
1324 	struct usb_interface *iface;
1325 	struct usb_host_interface *alt;
1326 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1327 	int i, ret, manual = 0;
1328 	unsigned int epaddr;
1329 	unsigned int pipe;
1330 
1331 	if (dev->state == USB_STATE_SUSPENDED)
1332 		return -EHOSTUNREACH;
1333 
1334 	iface = usb_ifnum_to_if(dev, interface);
1335 	if (!iface) {
1336 		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1337 			interface);
1338 		return -EINVAL;
1339 	}
1340 	if (iface->unregistering)
1341 		return -ENODEV;
1342 
1343 	alt = usb_altnum_to_altsetting(iface, alternate);
1344 	if (!alt) {
1345 		dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1346 			 alternate);
1347 		return -EINVAL;
1348 	}
1349 
1350 	/* Make sure we have enough bandwidth for this alternate interface.
1351 	 * Remove the current alt setting and add the new alt setting.
1352 	 */
1353 	mutex_lock(hcd->bandwidth_mutex);
1354 	/* Disable LPM, and re-enable it once the new alt setting is installed,
1355 	 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1356 	 */
1357 	if (usb_disable_lpm(dev)) {
1358 		dev_err(&iface->dev, "%s Failed to disable LPM\n.", __func__);
1359 		mutex_unlock(hcd->bandwidth_mutex);
1360 		return -ENOMEM;
1361 	}
1362 	/* Changing alt-setting also frees any allocated streams */
1363 	for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1364 		iface->cur_altsetting->endpoint[i].streams = 0;
1365 
1366 	ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1367 	if (ret < 0) {
1368 		dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1369 				alternate);
1370 		usb_enable_lpm(dev);
1371 		mutex_unlock(hcd->bandwidth_mutex);
1372 		return ret;
1373 	}
1374 
1375 	if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1376 		ret = -EPIPE;
1377 	else
1378 		ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1379 				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1380 				   alternate, interface, NULL, 0, 5000);
1381 
1382 	/* 9.4.10 says devices don't need this and are free to STALL the
1383 	 * request if the interface only has one alternate setting.
1384 	 */
1385 	if (ret == -EPIPE && iface->num_altsetting == 1) {
1386 		dev_dbg(&dev->dev,
1387 			"manual set_interface for iface %d, alt %d\n",
1388 			interface, alternate);
1389 		manual = 1;
1390 	} else if (ret < 0) {
1391 		/* Re-instate the old alt setting */
1392 		usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1393 		usb_enable_lpm(dev);
1394 		mutex_unlock(hcd->bandwidth_mutex);
1395 		return ret;
1396 	}
1397 	mutex_unlock(hcd->bandwidth_mutex);
1398 
1399 	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1400 	 * when they implement async or easily-killable versions of this or
1401 	 * other "should-be-internal" functions (like clear_halt).
1402 	 * should hcd+usbcore postprocess control requests?
1403 	 */
1404 
1405 	/* prevent submissions using previous endpoint settings */
1406 	if (iface->cur_altsetting != alt) {
1407 		remove_intf_ep_devs(iface);
1408 		usb_remove_sysfs_intf_files(iface);
1409 	}
1410 	usb_disable_interface(dev, iface, true);
1411 
1412 	iface->cur_altsetting = alt;
1413 
1414 	/* Now that the interface is installed, re-enable LPM. */
1415 	usb_unlocked_enable_lpm(dev);
1416 
1417 	/* If the interface only has one altsetting and the device didn't
1418 	 * accept the request, we attempt to carry out the equivalent action
1419 	 * by manually clearing the HALT feature for each endpoint in the
1420 	 * new altsetting.
1421 	 */
1422 	if (manual) {
1423 		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1424 			epaddr = alt->endpoint[i].desc.bEndpointAddress;
1425 			pipe = __create_pipe(dev,
1426 					USB_ENDPOINT_NUMBER_MASK & epaddr) |
1427 					(usb_endpoint_out(epaddr) ?
1428 					USB_DIR_OUT : USB_DIR_IN);
1429 
1430 			usb_clear_halt(dev, pipe);
1431 		}
1432 	}
1433 
1434 	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1435 	 *
1436 	 * Note:
1437 	 * Despite EP0 is always present in all interfaces/AS, the list of
1438 	 * endpoints from the descriptor does not contain EP0. Due to its
1439 	 * omnipresence one might expect EP0 being considered "affected" by
1440 	 * any SetInterface request and hence assume toggles need to be reset.
1441 	 * However, EP0 toggles are re-synced for every individual transfer
1442 	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1443 	 * (Likewise, EP0 never "halts" on well designed devices.)
1444 	 */
1445 	usb_enable_interface(dev, iface, true);
1446 	if (device_is_registered(&iface->dev)) {
1447 		usb_create_sysfs_intf_files(iface);
1448 		create_intf_ep_devs(iface);
1449 	}
1450 	return 0;
1451 }
1452 EXPORT_SYMBOL_GPL(usb_set_interface);
1453 
1454 /**
1455  * usb_reset_configuration - lightweight device reset
1456  * @dev: the device whose configuration is being reset
1457  *
1458  * This issues a standard SET_CONFIGURATION request to the device using
1459  * the current configuration.  The effect is to reset most USB-related
1460  * state in the device, including interface altsettings (reset to zero),
1461  * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1462  * endpoints).  Other usbcore state is unchanged, including bindings of
1463  * usb device drivers to interfaces.
1464  *
1465  * Because this affects multiple interfaces, avoid using this with composite
1466  * (multi-interface) devices.  Instead, the driver for each interface may
1467  * use usb_set_interface() on the interfaces it claims.  Be careful though;
1468  * some devices don't support the SET_INTERFACE request, and others won't
1469  * reset all the interface state (notably endpoint state).  Resetting the whole
1470  * configuration would affect other drivers' interfaces.
1471  *
1472  * The caller must own the device lock.
1473  *
1474  * Return: Zero on success, else a negative error code.
1475  */
1476 int usb_reset_configuration(struct usb_device *dev)
1477 {
1478 	int			i, retval;
1479 	struct usb_host_config	*config;
1480 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1481 
1482 	if (dev->state == USB_STATE_SUSPENDED)
1483 		return -EHOSTUNREACH;
1484 
1485 	/* caller must have locked the device and must own
1486 	 * the usb bus readlock (so driver bindings are stable);
1487 	 * calls during probe() are fine
1488 	 */
1489 
1490 	for (i = 1; i < 16; ++i) {
1491 		usb_disable_endpoint(dev, i, true);
1492 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1493 	}
1494 
1495 	config = dev->actconfig;
1496 	retval = 0;
1497 	mutex_lock(hcd->bandwidth_mutex);
1498 	/* Disable LPM, and re-enable it once the configuration is reset, so
1499 	 * that the xHCI driver can recalculate the U1/U2 timeouts.
1500 	 */
1501 	if (usb_disable_lpm(dev)) {
1502 		dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1503 		mutex_unlock(hcd->bandwidth_mutex);
1504 		return -ENOMEM;
1505 	}
1506 	/* Make sure we have enough bandwidth for each alternate setting 0 */
1507 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1508 		struct usb_interface *intf = config->interface[i];
1509 		struct usb_host_interface *alt;
1510 
1511 		alt = usb_altnum_to_altsetting(intf, 0);
1512 		if (!alt)
1513 			alt = &intf->altsetting[0];
1514 		if (alt != intf->cur_altsetting)
1515 			retval = usb_hcd_alloc_bandwidth(dev, NULL,
1516 					intf->cur_altsetting, alt);
1517 		if (retval < 0)
1518 			break;
1519 	}
1520 	/* If not, reinstate the old alternate settings */
1521 	if (retval < 0) {
1522 reset_old_alts:
1523 		for (i--; i >= 0; i--) {
1524 			struct usb_interface *intf = config->interface[i];
1525 			struct usb_host_interface *alt;
1526 
1527 			alt = usb_altnum_to_altsetting(intf, 0);
1528 			if (!alt)
1529 				alt = &intf->altsetting[0];
1530 			if (alt != intf->cur_altsetting)
1531 				usb_hcd_alloc_bandwidth(dev, NULL,
1532 						alt, intf->cur_altsetting);
1533 		}
1534 		usb_enable_lpm(dev);
1535 		mutex_unlock(hcd->bandwidth_mutex);
1536 		return retval;
1537 	}
1538 	retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1539 			USB_REQ_SET_CONFIGURATION, 0,
1540 			config->desc.bConfigurationValue, 0,
1541 			NULL, 0, USB_CTRL_SET_TIMEOUT);
1542 	if (retval < 0)
1543 		goto reset_old_alts;
1544 	mutex_unlock(hcd->bandwidth_mutex);
1545 
1546 	/* re-init hc/hcd interface/endpoint state */
1547 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1548 		struct usb_interface *intf = config->interface[i];
1549 		struct usb_host_interface *alt;
1550 
1551 		alt = usb_altnum_to_altsetting(intf, 0);
1552 
1553 		/* No altsetting 0?  We'll assume the first altsetting.
1554 		 * We could use a GetInterface call, but if a device is
1555 		 * so non-compliant that it doesn't have altsetting 0
1556 		 * then I wouldn't trust its reply anyway.
1557 		 */
1558 		if (!alt)
1559 			alt = &intf->altsetting[0];
1560 
1561 		if (alt != intf->cur_altsetting) {
1562 			remove_intf_ep_devs(intf);
1563 			usb_remove_sysfs_intf_files(intf);
1564 		}
1565 		intf->cur_altsetting = alt;
1566 		usb_enable_interface(dev, intf, true);
1567 		if (device_is_registered(&intf->dev)) {
1568 			usb_create_sysfs_intf_files(intf);
1569 			create_intf_ep_devs(intf);
1570 		}
1571 	}
1572 	/* Now that the interfaces are installed, re-enable LPM. */
1573 	usb_unlocked_enable_lpm(dev);
1574 	return 0;
1575 }
1576 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1577 
1578 static void usb_release_interface(struct device *dev)
1579 {
1580 	struct usb_interface *intf = to_usb_interface(dev);
1581 	struct usb_interface_cache *intfc =
1582 			altsetting_to_usb_interface_cache(intf->altsetting);
1583 
1584 	kref_put(&intfc->ref, usb_release_interface_cache);
1585 	usb_put_dev(interface_to_usbdev(intf));
1586 	kfree(intf);
1587 }
1588 
1589 /*
1590  * usb_deauthorize_interface - deauthorize an USB interface
1591  *
1592  * @intf: USB interface structure
1593  */
1594 void usb_deauthorize_interface(struct usb_interface *intf)
1595 {
1596 	struct device *dev = &intf->dev;
1597 
1598 	device_lock(dev->parent);
1599 
1600 	if (intf->authorized) {
1601 		device_lock(dev);
1602 		intf->authorized = 0;
1603 		device_unlock(dev);
1604 
1605 		usb_forced_unbind_intf(intf);
1606 	}
1607 
1608 	device_unlock(dev->parent);
1609 }
1610 
1611 /*
1612  * usb_authorize_interface - authorize an USB interface
1613  *
1614  * @intf: USB interface structure
1615  */
1616 void usb_authorize_interface(struct usb_interface *intf)
1617 {
1618 	struct device *dev = &intf->dev;
1619 
1620 	if (!intf->authorized) {
1621 		device_lock(dev);
1622 		intf->authorized = 1; /* authorize interface */
1623 		device_unlock(dev);
1624 	}
1625 }
1626 
1627 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1628 {
1629 	struct usb_device *usb_dev;
1630 	struct usb_interface *intf;
1631 	struct usb_host_interface *alt;
1632 
1633 	intf = to_usb_interface(dev);
1634 	usb_dev = interface_to_usbdev(intf);
1635 	alt = intf->cur_altsetting;
1636 
1637 	if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1638 		   alt->desc.bInterfaceClass,
1639 		   alt->desc.bInterfaceSubClass,
1640 		   alt->desc.bInterfaceProtocol))
1641 		return -ENOMEM;
1642 
1643 	if (add_uevent_var(env,
1644 		   "MODALIAS=usb:"
1645 		   "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1646 		   le16_to_cpu(usb_dev->descriptor.idVendor),
1647 		   le16_to_cpu(usb_dev->descriptor.idProduct),
1648 		   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1649 		   usb_dev->descriptor.bDeviceClass,
1650 		   usb_dev->descriptor.bDeviceSubClass,
1651 		   usb_dev->descriptor.bDeviceProtocol,
1652 		   alt->desc.bInterfaceClass,
1653 		   alt->desc.bInterfaceSubClass,
1654 		   alt->desc.bInterfaceProtocol,
1655 		   alt->desc.bInterfaceNumber))
1656 		return -ENOMEM;
1657 
1658 	return 0;
1659 }
1660 
1661 struct device_type usb_if_device_type = {
1662 	.name =		"usb_interface",
1663 	.release =	usb_release_interface,
1664 	.uevent =	usb_if_uevent,
1665 };
1666 
1667 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1668 						struct usb_host_config *config,
1669 						u8 inum)
1670 {
1671 	struct usb_interface_assoc_descriptor *retval = NULL;
1672 	struct usb_interface_assoc_descriptor *intf_assoc;
1673 	int first_intf;
1674 	int last_intf;
1675 	int i;
1676 
1677 	for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1678 		intf_assoc = config->intf_assoc[i];
1679 		if (intf_assoc->bInterfaceCount == 0)
1680 			continue;
1681 
1682 		first_intf = intf_assoc->bFirstInterface;
1683 		last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1684 		if (inum >= first_intf && inum <= last_intf) {
1685 			if (!retval)
1686 				retval = intf_assoc;
1687 			else
1688 				dev_err(&dev->dev, "Interface #%d referenced"
1689 					" by multiple IADs\n", inum);
1690 		}
1691 	}
1692 
1693 	return retval;
1694 }
1695 
1696 
1697 /*
1698  * Internal function to queue a device reset
1699  * See usb_queue_reset_device() for more details
1700  */
1701 static void __usb_queue_reset_device(struct work_struct *ws)
1702 {
1703 	int rc;
1704 	struct usb_interface *iface =
1705 		container_of(ws, struct usb_interface, reset_ws);
1706 	struct usb_device *udev = interface_to_usbdev(iface);
1707 
1708 	rc = usb_lock_device_for_reset(udev, iface);
1709 	if (rc >= 0) {
1710 		usb_reset_device(udev);
1711 		usb_unlock_device(udev);
1712 	}
1713 	usb_put_intf(iface);	/* Undo _get_ in usb_queue_reset_device() */
1714 }
1715 
1716 
1717 /*
1718  * usb_set_configuration - Makes a particular device setting be current
1719  * @dev: the device whose configuration is being updated
1720  * @configuration: the configuration being chosen.
1721  * Context: !in_interrupt(), caller owns the device lock
1722  *
1723  * This is used to enable non-default device modes.  Not all devices
1724  * use this kind of configurability; many devices only have one
1725  * configuration.
1726  *
1727  * @configuration is the value of the configuration to be installed.
1728  * According to the USB spec (e.g. section 9.1.1.5), configuration values
1729  * must be non-zero; a value of zero indicates that the device in
1730  * unconfigured.  However some devices erroneously use 0 as one of their
1731  * configuration values.  To help manage such devices, this routine will
1732  * accept @configuration = -1 as indicating the device should be put in
1733  * an unconfigured state.
1734  *
1735  * USB device configurations may affect Linux interoperability,
1736  * power consumption and the functionality available.  For example,
1737  * the default configuration is limited to using 100mA of bus power,
1738  * so that when certain device functionality requires more power,
1739  * and the device is bus powered, that functionality should be in some
1740  * non-default device configuration.  Other device modes may also be
1741  * reflected as configuration options, such as whether two ISDN
1742  * channels are available independently; and choosing between open
1743  * standard device protocols (like CDC) or proprietary ones.
1744  *
1745  * Note that a non-authorized device (dev->authorized == 0) will only
1746  * be put in unconfigured mode.
1747  *
1748  * Note that USB has an additional level of device configurability,
1749  * associated with interfaces.  That configurability is accessed using
1750  * usb_set_interface().
1751  *
1752  * This call is synchronous. The calling context must be able to sleep,
1753  * must own the device lock, and must not hold the driver model's USB
1754  * bus mutex; usb interface driver probe() methods cannot use this routine.
1755  *
1756  * Returns zero on success, or else the status code returned by the
1757  * underlying call that failed.  On successful completion, each interface
1758  * in the original device configuration has been destroyed, and each one
1759  * in the new configuration has been probed by all relevant usb device
1760  * drivers currently known to the kernel.
1761  */
1762 int usb_set_configuration(struct usb_device *dev, int configuration)
1763 {
1764 	int i, ret;
1765 	struct usb_host_config *cp = NULL;
1766 	struct usb_interface **new_interfaces = NULL;
1767 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1768 	int n, nintf;
1769 
1770 	if (dev->authorized == 0 || configuration == -1)
1771 		configuration = 0;
1772 	else {
1773 		for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1774 			if (dev->config[i].desc.bConfigurationValue ==
1775 					configuration) {
1776 				cp = &dev->config[i];
1777 				break;
1778 			}
1779 		}
1780 	}
1781 	if ((!cp && configuration != 0))
1782 		return -EINVAL;
1783 
1784 	/* The USB spec says configuration 0 means unconfigured.
1785 	 * But if a device includes a configuration numbered 0,
1786 	 * we will accept it as a correctly configured state.
1787 	 * Use -1 if you really want to unconfigure the device.
1788 	 */
1789 	if (cp && configuration == 0)
1790 		dev_warn(&dev->dev, "config 0 descriptor??\n");
1791 
1792 	/* Allocate memory for new interfaces before doing anything else,
1793 	 * so that if we run out then nothing will have changed. */
1794 	n = nintf = 0;
1795 	if (cp) {
1796 		nintf = cp->desc.bNumInterfaces;
1797 		new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1798 				GFP_NOIO);
1799 		if (!new_interfaces)
1800 			return -ENOMEM;
1801 
1802 		for (; n < nintf; ++n) {
1803 			new_interfaces[n] = kzalloc(
1804 					sizeof(struct usb_interface),
1805 					GFP_NOIO);
1806 			if (!new_interfaces[n]) {
1807 				ret = -ENOMEM;
1808 free_interfaces:
1809 				while (--n >= 0)
1810 					kfree(new_interfaces[n]);
1811 				kfree(new_interfaces);
1812 				return ret;
1813 			}
1814 		}
1815 
1816 		i = dev->bus_mA - usb_get_max_power(dev, cp);
1817 		if (i < 0)
1818 			dev_warn(&dev->dev, "new config #%d exceeds power "
1819 					"limit by %dmA\n",
1820 					configuration, -i);
1821 	}
1822 
1823 	/* Wake up the device so we can send it the Set-Config request */
1824 	ret = usb_autoresume_device(dev);
1825 	if (ret)
1826 		goto free_interfaces;
1827 
1828 	/* if it's already configured, clear out old state first.
1829 	 * getting rid of old interfaces means unbinding their drivers.
1830 	 */
1831 	if (dev->state != USB_STATE_ADDRESS)
1832 		usb_disable_device(dev, 1);	/* Skip ep0 */
1833 
1834 	/* Get rid of pending async Set-Config requests for this device */
1835 	cancel_async_set_config(dev);
1836 
1837 	/* Make sure we have bandwidth (and available HCD resources) for this
1838 	 * configuration.  Remove endpoints from the schedule if we're dropping
1839 	 * this configuration to set configuration 0.  After this point, the
1840 	 * host controller will not allow submissions to dropped endpoints.  If
1841 	 * this call fails, the device state is unchanged.
1842 	 */
1843 	mutex_lock(hcd->bandwidth_mutex);
1844 	/* Disable LPM, and re-enable it once the new configuration is
1845 	 * installed, so that the xHCI driver can recalculate the U1/U2
1846 	 * timeouts.
1847 	 */
1848 	if (dev->actconfig && usb_disable_lpm(dev)) {
1849 		dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1850 		mutex_unlock(hcd->bandwidth_mutex);
1851 		ret = -ENOMEM;
1852 		goto free_interfaces;
1853 	}
1854 	ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1855 	if (ret < 0) {
1856 		if (dev->actconfig)
1857 			usb_enable_lpm(dev);
1858 		mutex_unlock(hcd->bandwidth_mutex);
1859 		usb_autosuspend_device(dev);
1860 		goto free_interfaces;
1861 	}
1862 
1863 	/*
1864 	 * Initialize the new interface structures and the
1865 	 * hc/hcd/usbcore interface/endpoint state.
1866 	 */
1867 	for (i = 0; i < nintf; ++i) {
1868 		struct usb_interface_cache *intfc;
1869 		struct usb_interface *intf;
1870 		struct usb_host_interface *alt;
1871 
1872 		cp->interface[i] = intf = new_interfaces[i];
1873 		intfc = cp->intf_cache[i];
1874 		intf->altsetting = intfc->altsetting;
1875 		intf->num_altsetting = intfc->num_altsetting;
1876 		intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
1877 		kref_get(&intfc->ref);
1878 
1879 		alt = usb_altnum_to_altsetting(intf, 0);
1880 
1881 		/* No altsetting 0?  We'll assume the first altsetting.
1882 		 * We could use a GetInterface call, but if a device is
1883 		 * so non-compliant that it doesn't have altsetting 0
1884 		 * then I wouldn't trust its reply anyway.
1885 		 */
1886 		if (!alt)
1887 			alt = &intf->altsetting[0];
1888 
1889 		intf->intf_assoc =
1890 			find_iad(dev, cp, alt->desc.bInterfaceNumber);
1891 		intf->cur_altsetting = alt;
1892 		usb_enable_interface(dev, intf, true);
1893 		intf->dev.parent = &dev->dev;
1894 		intf->dev.driver = NULL;
1895 		intf->dev.bus = &usb_bus_type;
1896 		intf->dev.type = &usb_if_device_type;
1897 		intf->dev.groups = usb_interface_groups;
1898 		/*
1899 		 * Please refer to usb_alloc_dev() to see why we set
1900 		 * dma_mask and dma_pfn_offset.
1901 		 */
1902 		intf->dev.dma_mask = dev->dev.dma_mask;
1903 		intf->dev.dma_pfn_offset = dev->dev.dma_pfn_offset;
1904 		INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1905 		intf->minor = -1;
1906 		device_initialize(&intf->dev);
1907 		pm_runtime_no_callbacks(&intf->dev);
1908 		dev_set_name(&intf->dev, "%d-%s:%d.%d",
1909 			dev->bus->busnum, dev->devpath,
1910 			configuration, alt->desc.bInterfaceNumber);
1911 		usb_get_dev(dev);
1912 	}
1913 	kfree(new_interfaces);
1914 
1915 	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1916 			      USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1917 			      NULL, 0, USB_CTRL_SET_TIMEOUT);
1918 	if (ret < 0 && cp) {
1919 		/*
1920 		 * All the old state is gone, so what else can we do?
1921 		 * The device is probably useless now anyway.
1922 		 */
1923 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1924 		for (i = 0; i < nintf; ++i) {
1925 			usb_disable_interface(dev, cp->interface[i], true);
1926 			put_device(&cp->interface[i]->dev);
1927 			cp->interface[i] = NULL;
1928 		}
1929 		cp = NULL;
1930 	}
1931 
1932 	dev->actconfig = cp;
1933 	mutex_unlock(hcd->bandwidth_mutex);
1934 
1935 	if (!cp) {
1936 		usb_set_device_state(dev, USB_STATE_ADDRESS);
1937 
1938 		/* Leave LPM disabled while the device is unconfigured. */
1939 		usb_autosuspend_device(dev);
1940 		return ret;
1941 	}
1942 	usb_set_device_state(dev, USB_STATE_CONFIGURED);
1943 
1944 	if (cp->string == NULL &&
1945 			!(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1946 		cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1947 
1948 	/* Now that the interfaces are installed, re-enable LPM. */
1949 	usb_unlocked_enable_lpm(dev);
1950 	/* Enable LTM if it was turned off by usb_disable_device. */
1951 	usb_enable_ltm(dev);
1952 
1953 	/* Now that all the interfaces are set up, register them
1954 	 * to trigger binding of drivers to interfaces.  probe()
1955 	 * routines may install different altsettings and may
1956 	 * claim() any interfaces not yet bound.  Many class drivers
1957 	 * need that: CDC, audio, video, etc.
1958 	 */
1959 	for (i = 0; i < nintf; ++i) {
1960 		struct usb_interface *intf = cp->interface[i];
1961 
1962 		dev_dbg(&dev->dev,
1963 			"adding %s (config #%d, interface %d)\n",
1964 			dev_name(&intf->dev), configuration,
1965 			intf->cur_altsetting->desc.bInterfaceNumber);
1966 		device_enable_async_suspend(&intf->dev);
1967 		ret = device_add(&intf->dev);
1968 		if (ret != 0) {
1969 			dev_err(&dev->dev, "device_add(%s) --> %d\n",
1970 				dev_name(&intf->dev), ret);
1971 			continue;
1972 		}
1973 		create_intf_ep_devs(intf);
1974 	}
1975 
1976 	usb_autosuspend_device(dev);
1977 	return 0;
1978 }
1979 EXPORT_SYMBOL_GPL(usb_set_configuration);
1980 
1981 static LIST_HEAD(set_config_list);
1982 static DEFINE_SPINLOCK(set_config_lock);
1983 
1984 struct set_config_request {
1985 	struct usb_device	*udev;
1986 	int			config;
1987 	struct work_struct	work;
1988 	struct list_head	node;
1989 };
1990 
1991 /* Worker routine for usb_driver_set_configuration() */
1992 static void driver_set_config_work(struct work_struct *work)
1993 {
1994 	struct set_config_request *req =
1995 		container_of(work, struct set_config_request, work);
1996 	struct usb_device *udev = req->udev;
1997 
1998 	usb_lock_device(udev);
1999 	spin_lock(&set_config_lock);
2000 	list_del(&req->node);
2001 	spin_unlock(&set_config_lock);
2002 
2003 	if (req->config >= -1)		/* Is req still valid? */
2004 		usb_set_configuration(udev, req->config);
2005 	usb_unlock_device(udev);
2006 	usb_put_dev(udev);
2007 	kfree(req);
2008 }
2009 
2010 /* Cancel pending Set-Config requests for a device whose configuration
2011  * was just changed
2012  */
2013 static void cancel_async_set_config(struct usb_device *udev)
2014 {
2015 	struct set_config_request *req;
2016 
2017 	spin_lock(&set_config_lock);
2018 	list_for_each_entry(req, &set_config_list, node) {
2019 		if (req->udev == udev)
2020 			req->config = -999;	/* Mark as cancelled */
2021 	}
2022 	spin_unlock(&set_config_lock);
2023 }
2024 
2025 /**
2026  * usb_driver_set_configuration - Provide a way for drivers to change device configurations
2027  * @udev: the device whose configuration is being updated
2028  * @config: the configuration being chosen.
2029  * Context: In process context, must be able to sleep
2030  *
2031  * Device interface drivers are not allowed to change device configurations.
2032  * This is because changing configurations will destroy the interface the
2033  * driver is bound to and create new ones; it would be like a floppy-disk
2034  * driver telling the computer to replace the floppy-disk drive with a
2035  * tape drive!
2036  *
2037  * Still, in certain specialized circumstances the need may arise.  This
2038  * routine gets around the normal restrictions by using a work thread to
2039  * submit the change-config request.
2040  *
2041  * Return: 0 if the request was successfully queued, error code otherwise.
2042  * The caller has no way to know whether the queued request will eventually
2043  * succeed.
2044  */
2045 int usb_driver_set_configuration(struct usb_device *udev, int config)
2046 {
2047 	struct set_config_request *req;
2048 
2049 	req = kmalloc(sizeof(*req), GFP_KERNEL);
2050 	if (!req)
2051 		return -ENOMEM;
2052 	req->udev = udev;
2053 	req->config = config;
2054 	INIT_WORK(&req->work, driver_set_config_work);
2055 
2056 	spin_lock(&set_config_lock);
2057 	list_add(&req->node, &set_config_list);
2058 	spin_unlock(&set_config_lock);
2059 
2060 	usb_get_dev(udev);
2061 	schedule_work(&req->work);
2062 	return 0;
2063 }
2064 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2065 
2066 /**
2067  * cdc_parse_cdc_header - parse the extra headers present in CDC devices
2068  * @hdr: the place to put the results of the parsing
2069  * @intf: the interface for which parsing is requested
2070  * @buffer: pointer to the extra headers to be parsed
2071  * @buflen: length of the extra headers
2072  *
2073  * This evaluates the extra headers present in CDC devices which
2074  * bind the interfaces for data and control and provide details
2075  * about the capabilities of the device.
2076  *
2077  * Return: number of descriptors parsed or -EINVAL
2078  * if the header is contradictory beyond salvage
2079  */
2080 
2081 int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr,
2082 				struct usb_interface *intf,
2083 				u8 *buffer,
2084 				int buflen)
2085 {
2086 	/* duplicates are ignored */
2087 	struct usb_cdc_union_desc *union_header = NULL;
2088 
2089 	/* duplicates are not tolerated */
2090 	struct usb_cdc_header_desc *header = NULL;
2091 	struct usb_cdc_ether_desc *ether = NULL;
2092 	struct usb_cdc_mdlm_detail_desc *detail = NULL;
2093 	struct usb_cdc_mdlm_desc *desc = NULL;
2094 
2095 	unsigned int elength;
2096 	int cnt = 0;
2097 
2098 	memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header));
2099 	hdr->phonet_magic_present = false;
2100 	while (buflen > 0) {
2101 		elength = buffer[0];
2102 		if (!elength) {
2103 			dev_err(&intf->dev, "skipping garbage byte\n");
2104 			elength = 1;
2105 			goto next_desc;
2106 		}
2107 		if ((buflen < elength) || (elength < 3)) {
2108 			dev_err(&intf->dev, "invalid descriptor buffer length\n");
2109 			break;
2110 		}
2111 		if (buffer[1] != USB_DT_CS_INTERFACE) {
2112 			dev_err(&intf->dev, "skipping garbage\n");
2113 			goto next_desc;
2114 		}
2115 
2116 		switch (buffer[2]) {
2117 		case USB_CDC_UNION_TYPE: /* we've found it */
2118 			if (elength < sizeof(struct usb_cdc_union_desc))
2119 				goto next_desc;
2120 			if (union_header) {
2121 				dev_err(&intf->dev, "More than one union descriptor, skipping ...\n");
2122 				goto next_desc;
2123 			}
2124 			union_header = (struct usb_cdc_union_desc *)buffer;
2125 			break;
2126 		case USB_CDC_COUNTRY_TYPE:
2127 			if (elength < sizeof(struct usb_cdc_country_functional_desc))
2128 				goto next_desc;
2129 			hdr->usb_cdc_country_functional_desc =
2130 				(struct usb_cdc_country_functional_desc *)buffer;
2131 			break;
2132 		case USB_CDC_HEADER_TYPE:
2133 			if (elength != sizeof(struct usb_cdc_header_desc))
2134 				goto next_desc;
2135 			if (header)
2136 				return -EINVAL;
2137 			header = (struct usb_cdc_header_desc *)buffer;
2138 			break;
2139 		case USB_CDC_ACM_TYPE:
2140 			if (elength < sizeof(struct usb_cdc_acm_descriptor))
2141 				goto next_desc;
2142 			hdr->usb_cdc_acm_descriptor =
2143 				(struct usb_cdc_acm_descriptor *)buffer;
2144 			break;
2145 		case USB_CDC_ETHERNET_TYPE:
2146 			if (elength != sizeof(struct usb_cdc_ether_desc))
2147 				goto next_desc;
2148 			if (ether)
2149 				return -EINVAL;
2150 			ether = (struct usb_cdc_ether_desc *)buffer;
2151 			break;
2152 		case USB_CDC_CALL_MANAGEMENT_TYPE:
2153 			if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor))
2154 				goto next_desc;
2155 			hdr->usb_cdc_call_mgmt_descriptor =
2156 				(struct usb_cdc_call_mgmt_descriptor *)buffer;
2157 			break;
2158 		case USB_CDC_DMM_TYPE:
2159 			if (elength < sizeof(struct usb_cdc_dmm_desc))
2160 				goto next_desc;
2161 			hdr->usb_cdc_dmm_desc =
2162 				(struct usb_cdc_dmm_desc *)buffer;
2163 			break;
2164 		case USB_CDC_MDLM_TYPE:
2165 			if (elength < sizeof(struct usb_cdc_mdlm_desc *))
2166 				goto next_desc;
2167 			if (desc)
2168 				return -EINVAL;
2169 			desc = (struct usb_cdc_mdlm_desc *)buffer;
2170 			break;
2171 		case USB_CDC_MDLM_DETAIL_TYPE:
2172 			if (elength < sizeof(struct usb_cdc_mdlm_detail_desc *))
2173 				goto next_desc;
2174 			if (detail)
2175 				return -EINVAL;
2176 			detail = (struct usb_cdc_mdlm_detail_desc *)buffer;
2177 			break;
2178 		case USB_CDC_NCM_TYPE:
2179 			if (elength < sizeof(struct usb_cdc_ncm_desc))
2180 				goto next_desc;
2181 			hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer;
2182 			break;
2183 		case USB_CDC_MBIM_TYPE:
2184 			if (elength < sizeof(struct usb_cdc_mbim_desc))
2185 				goto next_desc;
2186 
2187 			hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer;
2188 			break;
2189 		case USB_CDC_MBIM_EXTENDED_TYPE:
2190 			if (elength < sizeof(struct usb_cdc_mbim_extended_desc))
2191 				break;
2192 			hdr->usb_cdc_mbim_extended_desc =
2193 				(struct usb_cdc_mbim_extended_desc *)buffer;
2194 			break;
2195 		case CDC_PHONET_MAGIC_NUMBER:
2196 			hdr->phonet_magic_present = true;
2197 			break;
2198 		default:
2199 			/*
2200 			 * there are LOTS more CDC descriptors that
2201 			 * could legitimately be found here.
2202 			 */
2203 			dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n",
2204 					buffer[2], elength);
2205 			goto next_desc;
2206 		}
2207 		cnt++;
2208 next_desc:
2209 		buflen -= elength;
2210 		buffer += elength;
2211 	}
2212 	hdr->usb_cdc_union_desc = union_header;
2213 	hdr->usb_cdc_header_desc = header;
2214 	hdr->usb_cdc_mdlm_detail_desc = detail;
2215 	hdr->usb_cdc_mdlm_desc = desc;
2216 	hdr->usb_cdc_ether_desc = ether;
2217 	return cnt;
2218 }
2219 
2220 EXPORT_SYMBOL(cdc_parse_cdc_header);
2221