1 /* 2 * message.c - synchronous message handling 3 */ 4 5 #include <linux/pci.h> /* for scatterlist macros */ 6 #include <linux/usb.h> 7 #include <linux/module.h> 8 #include <linux/slab.h> 9 #include <linux/init.h> 10 #include <linux/mm.h> 11 #include <linux/timer.h> 12 #include <linux/ctype.h> 13 #include <linux/device.h> 14 #include <linux/usb/quirks.h> 15 #include <asm/byteorder.h> 16 #include <asm/scatterlist.h> 17 18 #include "hcd.h" /* for usbcore internals */ 19 #include "usb.h" 20 21 static void usb_api_blocking_completion(struct urb *urb) 22 { 23 complete((struct completion *)urb->context); 24 } 25 26 27 /* 28 * Starts urb and waits for completion or timeout. Note that this call 29 * is NOT interruptible. Many device driver i/o requests should be 30 * interruptible and therefore these drivers should implement their 31 * own interruptible routines. 32 */ 33 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length) 34 { 35 struct completion done; 36 unsigned long expire; 37 int status; 38 39 init_completion(&done); 40 urb->context = &done; 41 urb->actual_length = 0; 42 status = usb_submit_urb(urb, GFP_NOIO); 43 if (unlikely(status)) 44 goto out; 45 46 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT; 47 if (!wait_for_completion_timeout(&done, expire)) { 48 49 dev_dbg(&urb->dev->dev, 50 "%s timed out on ep%d%s len=%d/%d\n", 51 current->comm, 52 usb_pipeendpoint(urb->pipe), 53 usb_pipein(urb->pipe) ? "in" : "out", 54 urb->actual_length, 55 urb->transfer_buffer_length); 56 57 usb_kill_urb(urb); 58 status = urb->status == -ENOENT ? -ETIMEDOUT : urb->status; 59 } else 60 status = urb->status; 61 out: 62 if (actual_length) 63 *actual_length = urb->actual_length; 64 65 usb_free_urb(urb); 66 return status; 67 } 68 69 /*-------------------------------------------------------------------*/ 70 // returns status (negative) or length (positive) 71 static int usb_internal_control_msg(struct usb_device *usb_dev, 72 unsigned int pipe, 73 struct usb_ctrlrequest *cmd, 74 void *data, int len, int timeout) 75 { 76 struct urb *urb; 77 int retv; 78 int length; 79 80 urb = usb_alloc_urb(0, GFP_NOIO); 81 if (!urb) 82 return -ENOMEM; 83 84 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data, 85 len, usb_api_blocking_completion, NULL); 86 87 retv = usb_start_wait_urb(urb, timeout, &length); 88 if (retv < 0) 89 return retv; 90 else 91 return length; 92 } 93 94 /** 95 * usb_control_msg - Builds a control urb, sends it off and waits for completion 96 * @dev: pointer to the usb device to send the message to 97 * @pipe: endpoint "pipe" to send the message to 98 * @request: USB message request value 99 * @requesttype: USB message request type value 100 * @value: USB message value 101 * @index: USB message index value 102 * @data: pointer to the data to send 103 * @size: length in bytes of the data to send 104 * @timeout: time in msecs to wait for the message to complete before 105 * timing out (if 0 the wait is forever) 106 * Context: !in_interrupt () 107 * 108 * This function sends a simple control message to a specified endpoint 109 * and waits for the message to complete, or timeout. 110 * 111 * If successful, it returns the number of bytes transferred, otherwise a negative error number. 112 * 113 * Don't use this function from within an interrupt context, like a 114 * bottom half handler. If you need an asynchronous message, or need to send 115 * a message from within interrupt context, use usb_submit_urb() 116 * If a thread in your driver uses this call, make sure your disconnect() 117 * method can wait for it to complete. Since you don't have a handle on 118 * the URB used, you can't cancel the request. 119 */ 120 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, __u8 requesttype, 121 __u16 value, __u16 index, void *data, __u16 size, int timeout) 122 { 123 struct usb_ctrlrequest *dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO); 124 int ret; 125 126 if (!dr) 127 return -ENOMEM; 128 129 dr->bRequestType= requesttype; 130 dr->bRequest = request; 131 dr->wValue = cpu_to_le16p(&value); 132 dr->wIndex = cpu_to_le16p(&index); 133 dr->wLength = cpu_to_le16p(&size); 134 135 //dbg("usb_control_msg"); 136 137 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout); 138 139 kfree(dr); 140 141 return ret; 142 } 143 144 145 /** 146 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion 147 * @usb_dev: pointer to the usb device to send the message to 148 * @pipe: endpoint "pipe" to send the message to 149 * @data: pointer to the data to send 150 * @len: length in bytes of the data to send 151 * @actual_length: pointer to a location to put the actual length transferred in bytes 152 * @timeout: time in msecs to wait for the message to complete before 153 * timing out (if 0 the wait is forever) 154 * Context: !in_interrupt () 155 * 156 * This function sends a simple interrupt message to a specified endpoint and 157 * waits for the message to complete, or timeout. 158 * 159 * If successful, it returns 0, otherwise a negative error number. The number 160 * of actual bytes transferred will be stored in the actual_length paramater. 161 * 162 * Don't use this function from within an interrupt context, like a bottom half 163 * handler. If you need an asynchronous message, or need to send a message 164 * from within interrupt context, use usb_submit_urb() If a thread in your 165 * driver uses this call, make sure your disconnect() method can wait for it to 166 * complete. Since you don't have a handle on the URB used, you can't cancel 167 * the request. 168 */ 169 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 170 void *data, int len, int *actual_length, int timeout) 171 { 172 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout); 173 } 174 EXPORT_SYMBOL_GPL(usb_interrupt_msg); 175 176 /** 177 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion 178 * @usb_dev: pointer to the usb device to send the message to 179 * @pipe: endpoint "pipe" to send the message to 180 * @data: pointer to the data to send 181 * @len: length in bytes of the data to send 182 * @actual_length: pointer to a location to put the actual length transferred in bytes 183 * @timeout: time in msecs to wait for the message to complete before 184 * timing out (if 0 the wait is forever) 185 * Context: !in_interrupt () 186 * 187 * This function sends a simple bulk message to a specified endpoint 188 * and waits for the message to complete, or timeout. 189 * 190 * If successful, it returns 0, otherwise a negative error number. 191 * The number of actual bytes transferred will be stored in the 192 * actual_length paramater. 193 * 194 * Don't use this function from within an interrupt context, like a 195 * bottom half handler. If you need an asynchronous message, or need to 196 * send a message from within interrupt context, use usb_submit_urb() 197 * If a thread in your driver uses this call, make sure your disconnect() 198 * method can wait for it to complete. Since you don't have a handle on 199 * the URB used, you can't cancel the request. 200 * 201 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT 202 * ioctl, users are forced to abuse this routine by using it to submit 203 * URBs for interrupt endpoints. We will take the liberty of creating 204 * an interrupt URB (with the default interval) if the target is an 205 * interrupt endpoint. 206 */ 207 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 208 void *data, int len, int *actual_length, int timeout) 209 { 210 struct urb *urb; 211 struct usb_host_endpoint *ep; 212 213 ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out) 214 [usb_pipeendpoint(pipe)]; 215 if (!ep || len < 0) 216 return -EINVAL; 217 218 urb = usb_alloc_urb(0, GFP_KERNEL); 219 if (!urb) 220 return -ENOMEM; 221 222 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 223 USB_ENDPOINT_XFER_INT) { 224 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30); 225 usb_fill_int_urb(urb, usb_dev, pipe, data, len, 226 usb_api_blocking_completion, NULL, 227 ep->desc.bInterval); 228 } else 229 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len, 230 usb_api_blocking_completion, NULL); 231 232 return usb_start_wait_urb(urb, timeout, actual_length); 233 } 234 235 /*-------------------------------------------------------------------*/ 236 237 static void sg_clean (struct usb_sg_request *io) 238 { 239 if (io->urbs) { 240 while (io->entries--) 241 usb_free_urb (io->urbs [io->entries]); 242 kfree (io->urbs); 243 io->urbs = NULL; 244 } 245 if (io->dev->dev.dma_mask != NULL) 246 usb_buffer_unmap_sg (io->dev, io->pipe, io->sg, io->nents); 247 io->dev = NULL; 248 } 249 250 static void sg_complete (struct urb *urb) 251 { 252 struct usb_sg_request *io = urb->context; 253 254 spin_lock (&io->lock); 255 256 /* In 2.5 we require hcds' endpoint queues not to progress after fault 257 * reports, until the completion callback (this!) returns. That lets 258 * device driver code (like this routine) unlink queued urbs first, 259 * if it needs to, since the HC won't work on them at all. So it's 260 * not possible for page N+1 to overwrite page N, and so on. 261 * 262 * That's only for "hard" faults; "soft" faults (unlinks) sometimes 263 * complete before the HCD can get requests away from hardware, 264 * though never during cleanup after a hard fault. 265 */ 266 if (io->status 267 && (io->status != -ECONNRESET 268 || urb->status != -ECONNRESET) 269 && urb->actual_length) { 270 dev_err (io->dev->bus->controller, 271 "dev %s ep%d%s scatterlist error %d/%d\n", 272 io->dev->devpath, 273 usb_pipeendpoint (urb->pipe), 274 usb_pipein (urb->pipe) ? "in" : "out", 275 urb->status, io->status); 276 // BUG (); 277 } 278 279 if (io->status == 0 && urb->status && urb->status != -ECONNRESET) { 280 int i, found, status; 281 282 io->status = urb->status; 283 284 /* the previous urbs, and this one, completed already. 285 * unlink pending urbs so they won't rx/tx bad data. 286 * careful: unlink can sometimes be synchronous... 287 */ 288 spin_unlock (&io->lock); 289 for (i = 0, found = 0; i < io->entries; i++) { 290 if (!io->urbs [i] || !io->urbs [i]->dev) 291 continue; 292 if (found) { 293 status = usb_unlink_urb (io->urbs [i]); 294 if (status != -EINPROGRESS 295 && status != -ENODEV 296 && status != -EBUSY) 297 dev_err (&io->dev->dev, 298 "%s, unlink --> %d\n", 299 __FUNCTION__, status); 300 } else if (urb == io->urbs [i]) 301 found = 1; 302 } 303 spin_lock (&io->lock); 304 } 305 urb->dev = NULL; 306 307 /* on the last completion, signal usb_sg_wait() */ 308 io->bytes += urb->actual_length; 309 io->count--; 310 if (!io->count) 311 complete (&io->complete); 312 313 spin_unlock (&io->lock); 314 } 315 316 317 /** 318 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request 319 * @io: request block being initialized. until usb_sg_wait() returns, 320 * treat this as a pointer to an opaque block of memory, 321 * @dev: the usb device that will send or receive the data 322 * @pipe: endpoint "pipe" used to transfer the data 323 * @period: polling rate for interrupt endpoints, in frames or 324 * (for high speed endpoints) microframes; ignored for bulk 325 * @sg: scatterlist entries 326 * @nents: how many entries in the scatterlist 327 * @length: how many bytes to send from the scatterlist, or zero to 328 * send every byte identified in the list. 329 * @mem_flags: SLAB_* flags affecting memory allocations in this call 330 * 331 * Returns zero for success, else a negative errno value. This initializes a 332 * scatter/gather request, allocating resources such as I/O mappings and urb 333 * memory (except maybe memory used by USB controller drivers). 334 * 335 * The request must be issued using usb_sg_wait(), which waits for the I/O to 336 * complete (or to be canceled) and then cleans up all resources allocated by 337 * usb_sg_init(). 338 * 339 * The request may be canceled with usb_sg_cancel(), either before or after 340 * usb_sg_wait() is called. 341 */ 342 int usb_sg_init ( 343 struct usb_sg_request *io, 344 struct usb_device *dev, 345 unsigned pipe, 346 unsigned period, 347 struct scatterlist *sg, 348 int nents, 349 size_t length, 350 gfp_t mem_flags 351 ) 352 { 353 int i; 354 int urb_flags; 355 int dma; 356 357 if (!io || !dev || !sg 358 || usb_pipecontrol (pipe) 359 || usb_pipeisoc (pipe) 360 || nents <= 0) 361 return -EINVAL; 362 363 spin_lock_init (&io->lock); 364 io->dev = dev; 365 io->pipe = pipe; 366 io->sg = sg; 367 io->nents = nents; 368 369 /* not all host controllers use DMA (like the mainstream pci ones); 370 * they can use PIO (sl811) or be software over another transport. 371 */ 372 dma = (dev->dev.dma_mask != NULL); 373 if (dma) 374 io->entries = usb_buffer_map_sg (dev, pipe, sg, nents); 375 else 376 io->entries = nents; 377 378 /* initialize all the urbs we'll use */ 379 if (io->entries <= 0) 380 return io->entries; 381 382 io->count = io->entries; 383 io->urbs = kmalloc (io->entries * sizeof *io->urbs, mem_flags); 384 if (!io->urbs) 385 goto nomem; 386 387 urb_flags = URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT; 388 if (usb_pipein (pipe)) 389 urb_flags |= URB_SHORT_NOT_OK; 390 391 for (i = 0; i < io->entries; i++) { 392 unsigned len; 393 394 io->urbs [i] = usb_alloc_urb (0, mem_flags); 395 if (!io->urbs [i]) { 396 io->entries = i; 397 goto nomem; 398 } 399 400 io->urbs [i]->dev = NULL; 401 io->urbs [i]->pipe = pipe; 402 io->urbs [i]->interval = period; 403 io->urbs [i]->transfer_flags = urb_flags; 404 405 io->urbs [i]->complete = sg_complete; 406 io->urbs [i]->context = io; 407 io->urbs [i]->status = -EINPROGRESS; 408 io->urbs [i]->actual_length = 0; 409 410 /* 411 * Some systems need to revert to PIO when DMA is temporarily 412 * unavailable. For their sakes, both transfer_buffer and 413 * transfer_dma are set when possible. However this can only 414 * work on systems without HIGHMEM, since DMA buffers located 415 * in high memory are not directly addressable by the CPU for 416 * PIO ... so when HIGHMEM is in use, transfer_buffer is NULL 417 * to prevent stale pointers and to help spot bugs. 418 */ 419 if (dma) { 420 io->urbs [i]->transfer_dma = sg_dma_address (sg + i); 421 len = sg_dma_len (sg + i); 422 #ifdef CONFIG_HIGHMEM 423 io->urbs[i]->transfer_buffer = NULL; 424 #else 425 io->urbs[i]->transfer_buffer = 426 page_address(sg[i].page) + sg[i].offset; 427 #endif 428 } else { 429 /* hc may use _only_ transfer_buffer */ 430 io->urbs [i]->transfer_buffer = 431 page_address (sg [i].page) + sg [i].offset; 432 len = sg [i].length; 433 } 434 435 if (length) { 436 len = min_t (unsigned, len, length); 437 length -= len; 438 if (length == 0) 439 io->entries = i + 1; 440 } 441 io->urbs [i]->transfer_buffer_length = len; 442 } 443 io->urbs [--i]->transfer_flags &= ~URB_NO_INTERRUPT; 444 445 /* transaction state */ 446 io->status = 0; 447 io->bytes = 0; 448 init_completion (&io->complete); 449 return 0; 450 451 nomem: 452 sg_clean (io); 453 return -ENOMEM; 454 } 455 456 457 /** 458 * usb_sg_wait - synchronously execute scatter/gather request 459 * @io: request block handle, as initialized with usb_sg_init(). 460 * some fields become accessible when this call returns. 461 * Context: !in_interrupt () 462 * 463 * This function blocks until the specified I/O operation completes. It 464 * leverages the grouping of the related I/O requests to get good transfer 465 * rates, by queueing the requests. At higher speeds, such queuing can 466 * significantly improve USB throughput. 467 * 468 * There are three kinds of completion for this function. 469 * (1) success, where io->status is zero. The number of io->bytes 470 * transferred is as requested. 471 * (2) error, where io->status is a negative errno value. The number 472 * of io->bytes transferred before the error is usually less 473 * than requested, and can be nonzero. 474 * (3) cancellation, a type of error with status -ECONNRESET that 475 * is initiated by usb_sg_cancel(). 476 * 477 * When this function returns, all memory allocated through usb_sg_init() or 478 * this call will have been freed. The request block parameter may still be 479 * passed to usb_sg_cancel(), or it may be freed. It could also be 480 * reinitialized and then reused. 481 * 482 * Data Transfer Rates: 483 * 484 * Bulk transfers are valid for full or high speed endpoints. 485 * The best full speed data rate is 19 packets of 64 bytes each 486 * per frame, or 1216 bytes per millisecond. 487 * The best high speed data rate is 13 packets of 512 bytes each 488 * per microframe, or 52 KBytes per millisecond. 489 * 490 * The reason to use interrupt transfers through this API would most likely 491 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond 492 * could be transferred. That capability is less useful for low or full 493 * speed interrupt endpoints, which allow at most one packet per millisecond, 494 * of at most 8 or 64 bytes (respectively). 495 */ 496 void usb_sg_wait (struct usb_sg_request *io) 497 { 498 int i, entries = io->entries; 499 500 /* queue the urbs. */ 501 spin_lock_irq (&io->lock); 502 for (i = 0; i < entries && !io->status; i++) { 503 int retval; 504 505 io->urbs [i]->dev = io->dev; 506 retval = usb_submit_urb (io->urbs [i], GFP_ATOMIC); 507 508 /* after we submit, let completions or cancelations fire; 509 * we handshake using io->status. 510 */ 511 spin_unlock_irq (&io->lock); 512 switch (retval) { 513 /* maybe we retrying will recover */ 514 case -ENXIO: // hc didn't queue this one 515 case -EAGAIN: 516 case -ENOMEM: 517 io->urbs[i]->dev = NULL; 518 retval = 0; 519 i--; 520 yield (); 521 break; 522 523 /* no error? continue immediately. 524 * 525 * NOTE: to work better with UHCI (4K I/O buffer may 526 * need 3K of TDs) it may be good to limit how many 527 * URBs are queued at once; N milliseconds? 528 */ 529 case 0: 530 cpu_relax (); 531 break; 532 533 /* fail any uncompleted urbs */ 534 default: 535 io->urbs [i]->dev = NULL; 536 io->urbs [i]->status = retval; 537 dev_dbg (&io->dev->dev, "%s, submit --> %d\n", 538 __FUNCTION__, retval); 539 usb_sg_cancel (io); 540 } 541 spin_lock_irq (&io->lock); 542 if (retval && (io->status == 0 || io->status == -ECONNRESET)) 543 io->status = retval; 544 } 545 io->count -= entries - i; 546 if (io->count == 0) 547 complete (&io->complete); 548 spin_unlock_irq (&io->lock); 549 550 /* OK, yes, this could be packaged as non-blocking. 551 * So could the submit loop above ... but it's easier to 552 * solve neither problem than to solve both! 553 */ 554 wait_for_completion (&io->complete); 555 556 sg_clean (io); 557 } 558 559 /** 560 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait() 561 * @io: request block, initialized with usb_sg_init() 562 * 563 * This stops a request after it has been started by usb_sg_wait(). 564 * It can also prevents one initialized by usb_sg_init() from starting, 565 * so that call just frees resources allocated to the request. 566 */ 567 void usb_sg_cancel (struct usb_sg_request *io) 568 { 569 unsigned long flags; 570 571 spin_lock_irqsave (&io->lock, flags); 572 573 /* shut everything down, if it didn't already */ 574 if (!io->status) { 575 int i; 576 577 io->status = -ECONNRESET; 578 spin_unlock (&io->lock); 579 for (i = 0; i < io->entries; i++) { 580 int retval; 581 582 if (!io->urbs [i]->dev) 583 continue; 584 retval = usb_unlink_urb (io->urbs [i]); 585 if (retval != -EINPROGRESS && retval != -EBUSY) 586 dev_warn (&io->dev->dev, "%s, unlink --> %d\n", 587 __FUNCTION__, retval); 588 } 589 spin_lock (&io->lock); 590 } 591 spin_unlock_irqrestore (&io->lock, flags); 592 } 593 594 /*-------------------------------------------------------------------*/ 595 596 /** 597 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request 598 * @dev: the device whose descriptor is being retrieved 599 * @type: the descriptor type (USB_DT_*) 600 * @index: the number of the descriptor 601 * @buf: where to put the descriptor 602 * @size: how big is "buf"? 603 * Context: !in_interrupt () 604 * 605 * Gets a USB descriptor. Convenience functions exist to simplify 606 * getting some types of descriptors. Use 607 * usb_get_string() or usb_string() for USB_DT_STRING. 608 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG) 609 * are part of the device structure. 610 * In addition to a number of USB-standard descriptors, some 611 * devices also use class-specific or vendor-specific descriptors. 612 * 613 * This call is synchronous, and may not be used in an interrupt context. 614 * 615 * Returns the number of bytes received on success, or else the status code 616 * returned by the underlying usb_control_msg() call. 617 */ 618 int usb_get_descriptor(struct usb_device *dev, unsigned char type, unsigned char index, void *buf, int size) 619 { 620 int i; 621 int result; 622 623 memset(buf,0,size); // Make sure we parse really received data 624 625 for (i = 0; i < 3; ++i) { 626 /* retry on length 0 or stall; some devices are flakey */ 627 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 628 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 629 (type << 8) + index, 0, buf, size, 630 USB_CTRL_GET_TIMEOUT); 631 if (result == 0 || result == -EPIPE) 632 continue; 633 if (result > 1 && ((u8 *)buf)[1] != type) { 634 result = -EPROTO; 635 continue; 636 } 637 break; 638 } 639 return result; 640 } 641 642 /** 643 * usb_get_string - gets a string descriptor 644 * @dev: the device whose string descriptor is being retrieved 645 * @langid: code for language chosen (from string descriptor zero) 646 * @index: the number of the descriptor 647 * @buf: where to put the string 648 * @size: how big is "buf"? 649 * Context: !in_interrupt () 650 * 651 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character, 652 * in little-endian byte order). 653 * The usb_string() function will often be a convenient way to turn 654 * these strings into kernel-printable form. 655 * 656 * Strings may be referenced in device, configuration, interface, or other 657 * descriptors, and could also be used in vendor-specific ways. 658 * 659 * This call is synchronous, and may not be used in an interrupt context. 660 * 661 * Returns the number of bytes received on success, or else the status code 662 * returned by the underlying usb_control_msg() call. 663 */ 664 static int usb_get_string(struct usb_device *dev, unsigned short langid, 665 unsigned char index, void *buf, int size) 666 { 667 int i; 668 int result; 669 670 for (i = 0; i < 3; ++i) { 671 /* retry on length 0 or stall; some devices are flakey */ 672 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 673 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 674 (USB_DT_STRING << 8) + index, langid, buf, size, 675 USB_CTRL_GET_TIMEOUT); 676 if (!(result == 0 || result == -EPIPE)) 677 break; 678 } 679 return result; 680 } 681 682 static void usb_try_string_workarounds(unsigned char *buf, int *length) 683 { 684 int newlength, oldlength = *length; 685 686 for (newlength = 2; newlength + 1 < oldlength; newlength += 2) 687 if (!isprint(buf[newlength]) || buf[newlength + 1]) 688 break; 689 690 if (newlength > 2) { 691 buf[0] = newlength; 692 *length = newlength; 693 } 694 } 695 696 static int usb_string_sub(struct usb_device *dev, unsigned int langid, 697 unsigned int index, unsigned char *buf) 698 { 699 int rc; 700 701 /* Try to read the string descriptor by asking for the maximum 702 * possible number of bytes */ 703 if (dev->quirks & USB_QUIRK_STRING_FETCH_255) 704 rc = -EIO; 705 else 706 rc = usb_get_string(dev, langid, index, buf, 255); 707 708 /* If that failed try to read the descriptor length, then 709 * ask for just that many bytes */ 710 if (rc < 2) { 711 rc = usb_get_string(dev, langid, index, buf, 2); 712 if (rc == 2) 713 rc = usb_get_string(dev, langid, index, buf, buf[0]); 714 } 715 716 if (rc >= 2) { 717 if (!buf[0] && !buf[1]) 718 usb_try_string_workarounds(buf, &rc); 719 720 /* There might be extra junk at the end of the descriptor */ 721 if (buf[0] < rc) 722 rc = buf[0]; 723 724 rc = rc - (rc & 1); /* force a multiple of two */ 725 } 726 727 if (rc < 2) 728 rc = (rc < 0 ? rc : -EINVAL); 729 730 return rc; 731 } 732 733 /** 734 * usb_string - returns ISO 8859-1 version of a string descriptor 735 * @dev: the device whose string descriptor is being retrieved 736 * @index: the number of the descriptor 737 * @buf: where to put the string 738 * @size: how big is "buf"? 739 * Context: !in_interrupt () 740 * 741 * This converts the UTF-16LE encoded strings returned by devices, from 742 * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones 743 * that are more usable in most kernel contexts. Note that all characters 744 * in the chosen descriptor that can't be encoded using ISO-8859-1 745 * are converted to the question mark ("?") character, and this function 746 * chooses strings in the first language supported by the device. 747 * 748 * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit 749 * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode, 750 * and is appropriate for use many uses of English and several other 751 * Western European languages. (But it doesn't include the "Euro" symbol.) 752 * 753 * This call is synchronous, and may not be used in an interrupt context. 754 * 755 * Returns length of the string (>= 0) or usb_control_msg status (< 0). 756 */ 757 int usb_string(struct usb_device *dev, int index, char *buf, size_t size) 758 { 759 unsigned char *tbuf; 760 int err; 761 unsigned int u, idx; 762 763 if (dev->state == USB_STATE_SUSPENDED) 764 return -EHOSTUNREACH; 765 if (size <= 0 || !buf || !index) 766 return -EINVAL; 767 buf[0] = 0; 768 tbuf = kmalloc(256, GFP_KERNEL); 769 if (!tbuf) 770 return -ENOMEM; 771 772 /* get langid for strings if it's not yet known */ 773 if (!dev->have_langid) { 774 err = usb_string_sub(dev, 0, 0, tbuf); 775 if (err < 0) { 776 dev_err (&dev->dev, 777 "string descriptor 0 read error: %d\n", 778 err); 779 goto errout; 780 } else if (err < 4) { 781 dev_err (&dev->dev, "string descriptor 0 too short\n"); 782 err = -EINVAL; 783 goto errout; 784 } else { 785 dev->have_langid = 1; 786 dev->string_langid = tbuf[2] | (tbuf[3]<< 8); 787 /* always use the first langid listed */ 788 dev_dbg (&dev->dev, "default language 0x%04x\n", 789 dev->string_langid); 790 } 791 } 792 793 err = usb_string_sub(dev, dev->string_langid, index, tbuf); 794 if (err < 0) 795 goto errout; 796 797 size--; /* leave room for trailing NULL char in output buffer */ 798 for (idx = 0, u = 2; u < err; u += 2) { 799 if (idx >= size) 800 break; 801 if (tbuf[u+1]) /* high byte */ 802 buf[idx++] = '?'; /* non ISO-8859-1 character */ 803 else 804 buf[idx++] = tbuf[u]; 805 } 806 buf[idx] = 0; 807 err = idx; 808 809 if (tbuf[1] != USB_DT_STRING) 810 dev_dbg(&dev->dev, "wrong descriptor type %02x for string %d (\"%s\")\n", tbuf[1], index, buf); 811 812 errout: 813 kfree(tbuf); 814 return err; 815 } 816 817 /** 818 * usb_cache_string - read a string descriptor and cache it for later use 819 * @udev: the device whose string descriptor is being read 820 * @index: the descriptor index 821 * 822 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string, 823 * or NULL if the index is 0 or the string could not be read. 824 */ 825 char *usb_cache_string(struct usb_device *udev, int index) 826 { 827 char *buf; 828 char *smallbuf = NULL; 829 int len; 830 831 if (index > 0 && (buf = kmalloc(256, GFP_KERNEL)) != NULL) { 832 if ((len = usb_string(udev, index, buf, 256)) > 0) { 833 if ((smallbuf = kmalloc(++len, GFP_KERNEL)) == NULL) 834 return buf; 835 memcpy(smallbuf, buf, len); 836 } 837 kfree(buf); 838 } 839 return smallbuf; 840 } 841 842 /* 843 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore) 844 * @dev: the device whose device descriptor is being updated 845 * @size: how much of the descriptor to read 846 * Context: !in_interrupt () 847 * 848 * Updates the copy of the device descriptor stored in the device structure, 849 * which dedicates space for this purpose. 850 * 851 * Not exported, only for use by the core. If drivers really want to read 852 * the device descriptor directly, they can call usb_get_descriptor() with 853 * type = USB_DT_DEVICE and index = 0. 854 * 855 * This call is synchronous, and may not be used in an interrupt context. 856 * 857 * Returns the number of bytes received on success, or else the status code 858 * returned by the underlying usb_control_msg() call. 859 */ 860 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size) 861 { 862 struct usb_device_descriptor *desc; 863 int ret; 864 865 if (size > sizeof(*desc)) 866 return -EINVAL; 867 desc = kmalloc(sizeof(*desc), GFP_NOIO); 868 if (!desc) 869 return -ENOMEM; 870 871 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size); 872 if (ret >= 0) 873 memcpy(&dev->descriptor, desc, size); 874 kfree(desc); 875 return ret; 876 } 877 878 /** 879 * usb_get_status - issues a GET_STATUS call 880 * @dev: the device whose status is being checked 881 * @type: USB_RECIP_*; for device, interface, or endpoint 882 * @target: zero (for device), else interface or endpoint number 883 * @data: pointer to two bytes of bitmap data 884 * Context: !in_interrupt () 885 * 886 * Returns device, interface, or endpoint status. Normally only of 887 * interest to see if the device is self powered, or has enabled the 888 * remote wakeup facility; or whether a bulk or interrupt endpoint 889 * is halted ("stalled"). 890 * 891 * Bits in these status bitmaps are set using the SET_FEATURE request, 892 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt() 893 * function should be used to clear halt ("stall") status. 894 * 895 * This call is synchronous, and may not be used in an interrupt context. 896 * 897 * Returns the number of bytes received on success, or else the status code 898 * returned by the underlying usb_control_msg() call. 899 */ 900 int usb_get_status(struct usb_device *dev, int type, int target, void *data) 901 { 902 int ret; 903 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL); 904 905 if (!status) 906 return -ENOMEM; 907 908 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 909 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status, 910 sizeof(*status), USB_CTRL_GET_TIMEOUT); 911 912 *(u16 *)data = *status; 913 kfree(status); 914 return ret; 915 } 916 917 /** 918 * usb_clear_halt - tells device to clear endpoint halt/stall condition 919 * @dev: device whose endpoint is halted 920 * @pipe: endpoint "pipe" being cleared 921 * Context: !in_interrupt () 922 * 923 * This is used to clear halt conditions for bulk and interrupt endpoints, 924 * as reported by URB completion status. Endpoints that are halted are 925 * sometimes referred to as being "stalled". Such endpoints are unable 926 * to transmit or receive data until the halt status is cleared. Any URBs 927 * queued for such an endpoint should normally be unlinked by the driver 928 * before clearing the halt condition, as described in sections 5.7.5 929 * and 5.8.5 of the USB 2.0 spec. 930 * 931 * Note that control and isochronous endpoints don't halt, although control 932 * endpoints report "protocol stall" (for unsupported requests) using the 933 * same status code used to report a true stall. 934 * 935 * This call is synchronous, and may not be used in an interrupt context. 936 * 937 * Returns zero on success, or else the status code returned by the 938 * underlying usb_control_msg() call. 939 */ 940 int usb_clear_halt(struct usb_device *dev, int pipe) 941 { 942 int result; 943 int endp = usb_pipeendpoint(pipe); 944 945 if (usb_pipein (pipe)) 946 endp |= USB_DIR_IN; 947 948 /* we don't care if it wasn't halted first. in fact some devices 949 * (like some ibmcam model 1 units) seem to expect hosts to make 950 * this request for iso endpoints, which can't halt! 951 */ 952 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 953 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 954 USB_ENDPOINT_HALT, endp, NULL, 0, 955 USB_CTRL_SET_TIMEOUT); 956 957 /* don't un-halt or force to DATA0 except on success */ 958 if (result < 0) 959 return result; 960 961 /* NOTE: seems like Microsoft and Apple don't bother verifying 962 * the clear "took", so some devices could lock up if you check... 963 * such as the Hagiwara FlashGate DUAL. So we won't bother. 964 * 965 * NOTE: make sure the logic here doesn't diverge much from 966 * the copy in usb-storage, for as long as we need two copies. 967 */ 968 969 /* toggle was reset by the clear */ 970 usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0); 971 972 return 0; 973 } 974 975 /** 976 * usb_disable_endpoint -- Disable an endpoint by address 977 * @dev: the device whose endpoint is being disabled 978 * @epaddr: the endpoint's address. Endpoint number for output, 979 * endpoint number + USB_DIR_IN for input 980 * 981 * Deallocates hcd/hardware state for this endpoint ... and nukes all 982 * pending urbs. 983 * 984 * If the HCD hasn't registered a disable() function, this sets the 985 * endpoint's maxpacket size to 0 to prevent further submissions. 986 */ 987 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr) 988 { 989 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 990 struct usb_host_endpoint *ep; 991 992 if (!dev) 993 return; 994 995 if (usb_endpoint_out(epaddr)) { 996 ep = dev->ep_out[epnum]; 997 dev->ep_out[epnum] = NULL; 998 } else { 999 ep = dev->ep_in[epnum]; 1000 dev->ep_in[epnum] = NULL; 1001 } 1002 if (ep && dev->bus) 1003 usb_hcd_endpoint_disable(dev, ep); 1004 } 1005 1006 /** 1007 * usb_disable_interface -- Disable all endpoints for an interface 1008 * @dev: the device whose interface is being disabled 1009 * @intf: pointer to the interface descriptor 1010 * 1011 * Disables all the endpoints for the interface's current altsetting. 1012 */ 1013 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf) 1014 { 1015 struct usb_host_interface *alt = intf->cur_altsetting; 1016 int i; 1017 1018 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 1019 usb_disable_endpoint(dev, 1020 alt->endpoint[i].desc.bEndpointAddress); 1021 } 1022 } 1023 1024 /* 1025 * usb_disable_device - Disable all the endpoints for a USB device 1026 * @dev: the device whose endpoints are being disabled 1027 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. 1028 * 1029 * Disables all the device's endpoints, potentially including endpoint 0. 1030 * Deallocates hcd/hardware state for the endpoints (nuking all or most 1031 * pending urbs) and usbcore state for the interfaces, so that usbcore 1032 * must usb_set_configuration() before any interfaces could be used. 1033 */ 1034 void usb_disable_device(struct usb_device *dev, int skip_ep0) 1035 { 1036 int i; 1037 1038 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __FUNCTION__, 1039 skip_ep0 ? "non-ep0" : "all"); 1040 for (i = skip_ep0; i < 16; ++i) { 1041 usb_disable_endpoint(dev, i); 1042 usb_disable_endpoint(dev, i + USB_DIR_IN); 1043 } 1044 dev->toggle[0] = dev->toggle[1] = 0; 1045 1046 /* getting rid of interfaces will disconnect 1047 * any drivers bound to them (a key side effect) 1048 */ 1049 if (dev->actconfig) { 1050 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1051 struct usb_interface *interface; 1052 1053 /* remove this interface if it has been registered */ 1054 interface = dev->actconfig->interface[i]; 1055 if (!device_is_registered(&interface->dev)) 1056 continue; 1057 dev_dbg (&dev->dev, "unregistering interface %s\n", 1058 interface->dev.bus_id); 1059 usb_remove_sysfs_intf_files(interface); 1060 device_del (&interface->dev); 1061 } 1062 1063 /* Now that the interfaces are unbound, nobody should 1064 * try to access them. 1065 */ 1066 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1067 put_device (&dev->actconfig->interface[i]->dev); 1068 dev->actconfig->interface[i] = NULL; 1069 } 1070 dev->actconfig = NULL; 1071 if (dev->state == USB_STATE_CONFIGURED) 1072 usb_set_device_state(dev, USB_STATE_ADDRESS); 1073 } 1074 } 1075 1076 1077 /* 1078 * usb_enable_endpoint - Enable an endpoint for USB communications 1079 * @dev: the device whose interface is being enabled 1080 * @ep: the endpoint 1081 * 1082 * Resets the endpoint toggle, and sets dev->ep_{in,out} pointers. 1083 * For control endpoints, both the input and output sides are handled. 1084 */ 1085 static void 1086 usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep) 1087 { 1088 unsigned int epaddr = ep->desc.bEndpointAddress; 1089 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1090 int is_control; 1091 1092 is_control = ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) 1093 == USB_ENDPOINT_XFER_CONTROL); 1094 if (usb_endpoint_out(epaddr) || is_control) { 1095 usb_settoggle(dev, epnum, 1, 0); 1096 dev->ep_out[epnum] = ep; 1097 } 1098 if (!usb_endpoint_out(epaddr) || is_control) { 1099 usb_settoggle(dev, epnum, 0, 0); 1100 dev->ep_in[epnum] = ep; 1101 } 1102 } 1103 1104 /* 1105 * usb_enable_interface - Enable all the endpoints for an interface 1106 * @dev: the device whose interface is being enabled 1107 * @intf: pointer to the interface descriptor 1108 * 1109 * Enables all the endpoints for the interface's current altsetting. 1110 */ 1111 static void usb_enable_interface(struct usb_device *dev, 1112 struct usb_interface *intf) 1113 { 1114 struct usb_host_interface *alt = intf->cur_altsetting; 1115 int i; 1116 1117 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1118 usb_enable_endpoint(dev, &alt->endpoint[i]); 1119 } 1120 1121 /** 1122 * usb_set_interface - Makes a particular alternate setting be current 1123 * @dev: the device whose interface is being updated 1124 * @interface: the interface being updated 1125 * @alternate: the setting being chosen. 1126 * Context: !in_interrupt () 1127 * 1128 * This is used to enable data transfers on interfaces that may not 1129 * be enabled by default. Not all devices support such configurability. 1130 * Only the driver bound to an interface may change its setting. 1131 * 1132 * Within any given configuration, each interface may have several 1133 * alternative settings. These are often used to control levels of 1134 * bandwidth consumption. For example, the default setting for a high 1135 * speed interrupt endpoint may not send more than 64 bytes per microframe, 1136 * while interrupt transfers of up to 3KBytes per microframe are legal. 1137 * Also, isochronous endpoints may never be part of an 1138 * interface's default setting. To access such bandwidth, alternate 1139 * interface settings must be made current. 1140 * 1141 * Note that in the Linux USB subsystem, bandwidth associated with 1142 * an endpoint in a given alternate setting is not reserved until an URB 1143 * is submitted that needs that bandwidth. Some other operating systems 1144 * allocate bandwidth early, when a configuration is chosen. 1145 * 1146 * This call is synchronous, and may not be used in an interrupt context. 1147 * Also, drivers must not change altsettings while urbs are scheduled for 1148 * endpoints in that interface; all such urbs must first be completed 1149 * (perhaps forced by unlinking). 1150 * 1151 * Returns zero on success, or else the status code returned by the 1152 * underlying usb_control_msg() call. 1153 */ 1154 int usb_set_interface(struct usb_device *dev, int interface, int alternate) 1155 { 1156 struct usb_interface *iface; 1157 struct usb_host_interface *alt; 1158 int ret; 1159 int manual = 0; 1160 1161 if (dev->state == USB_STATE_SUSPENDED) 1162 return -EHOSTUNREACH; 1163 1164 iface = usb_ifnum_to_if(dev, interface); 1165 if (!iface) { 1166 dev_dbg(&dev->dev, "selecting invalid interface %d\n", 1167 interface); 1168 return -EINVAL; 1169 } 1170 1171 alt = usb_altnum_to_altsetting(iface, alternate); 1172 if (!alt) { 1173 warn("selecting invalid altsetting %d", alternate); 1174 return -EINVAL; 1175 } 1176 1177 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1178 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE, 1179 alternate, interface, NULL, 0, 5000); 1180 1181 /* 9.4.10 says devices don't need this and are free to STALL the 1182 * request if the interface only has one alternate setting. 1183 */ 1184 if (ret == -EPIPE && iface->num_altsetting == 1) { 1185 dev_dbg(&dev->dev, 1186 "manual set_interface for iface %d, alt %d\n", 1187 interface, alternate); 1188 manual = 1; 1189 } else if (ret < 0) 1190 return ret; 1191 1192 /* FIXME drivers shouldn't need to replicate/bugfix the logic here 1193 * when they implement async or easily-killable versions of this or 1194 * other "should-be-internal" functions (like clear_halt). 1195 * should hcd+usbcore postprocess control requests? 1196 */ 1197 1198 /* prevent submissions using previous endpoint settings */ 1199 if (device_is_registered(&iface->dev)) 1200 usb_remove_sysfs_intf_files(iface); 1201 usb_disable_interface(dev, iface); 1202 1203 iface->cur_altsetting = alt; 1204 1205 /* If the interface only has one altsetting and the device didn't 1206 * accept the request, we attempt to carry out the equivalent action 1207 * by manually clearing the HALT feature for each endpoint in the 1208 * new altsetting. 1209 */ 1210 if (manual) { 1211 int i; 1212 1213 for (i = 0; i < alt->desc.bNumEndpoints; i++) { 1214 unsigned int epaddr = 1215 alt->endpoint[i].desc.bEndpointAddress; 1216 unsigned int pipe = 1217 __create_pipe(dev, USB_ENDPOINT_NUMBER_MASK & epaddr) 1218 | (usb_endpoint_out(epaddr) ? USB_DIR_OUT : USB_DIR_IN); 1219 1220 usb_clear_halt(dev, pipe); 1221 } 1222 } 1223 1224 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting 1225 * 1226 * Note: 1227 * Despite EP0 is always present in all interfaces/AS, the list of 1228 * endpoints from the descriptor does not contain EP0. Due to its 1229 * omnipresence one might expect EP0 being considered "affected" by 1230 * any SetInterface request and hence assume toggles need to be reset. 1231 * However, EP0 toggles are re-synced for every individual transfer 1232 * during the SETUP stage - hence EP0 toggles are "don't care" here. 1233 * (Likewise, EP0 never "halts" on well designed devices.) 1234 */ 1235 usb_enable_interface(dev, iface); 1236 if (device_is_registered(&iface->dev)) 1237 usb_create_sysfs_intf_files(iface); 1238 1239 return 0; 1240 } 1241 1242 /** 1243 * usb_reset_configuration - lightweight device reset 1244 * @dev: the device whose configuration is being reset 1245 * 1246 * This issues a standard SET_CONFIGURATION request to the device using 1247 * the current configuration. The effect is to reset most USB-related 1248 * state in the device, including interface altsettings (reset to zero), 1249 * endpoint halts (cleared), and data toggle (only for bulk and interrupt 1250 * endpoints). Other usbcore state is unchanged, including bindings of 1251 * usb device drivers to interfaces. 1252 * 1253 * Because this affects multiple interfaces, avoid using this with composite 1254 * (multi-interface) devices. Instead, the driver for each interface may 1255 * use usb_set_interface() on the interfaces it claims. Be careful though; 1256 * some devices don't support the SET_INTERFACE request, and others won't 1257 * reset all the interface state (notably data toggles). Resetting the whole 1258 * configuration would affect other drivers' interfaces. 1259 * 1260 * The caller must own the device lock. 1261 * 1262 * Returns zero on success, else a negative error code. 1263 */ 1264 int usb_reset_configuration(struct usb_device *dev) 1265 { 1266 int i, retval; 1267 struct usb_host_config *config; 1268 1269 if (dev->state == USB_STATE_SUSPENDED) 1270 return -EHOSTUNREACH; 1271 1272 /* caller must have locked the device and must own 1273 * the usb bus readlock (so driver bindings are stable); 1274 * calls during probe() are fine 1275 */ 1276 1277 for (i = 1; i < 16; ++i) { 1278 usb_disable_endpoint(dev, i); 1279 usb_disable_endpoint(dev, i + USB_DIR_IN); 1280 } 1281 1282 config = dev->actconfig; 1283 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1284 USB_REQ_SET_CONFIGURATION, 0, 1285 config->desc.bConfigurationValue, 0, 1286 NULL, 0, USB_CTRL_SET_TIMEOUT); 1287 if (retval < 0) 1288 return retval; 1289 1290 dev->toggle[0] = dev->toggle[1] = 0; 1291 1292 /* re-init hc/hcd interface/endpoint state */ 1293 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1294 struct usb_interface *intf = config->interface[i]; 1295 struct usb_host_interface *alt; 1296 1297 if (device_is_registered(&intf->dev)) 1298 usb_remove_sysfs_intf_files(intf); 1299 alt = usb_altnum_to_altsetting(intf, 0); 1300 1301 /* No altsetting 0? We'll assume the first altsetting. 1302 * We could use a GetInterface call, but if a device is 1303 * so non-compliant that it doesn't have altsetting 0 1304 * then I wouldn't trust its reply anyway. 1305 */ 1306 if (!alt) 1307 alt = &intf->altsetting[0]; 1308 1309 intf->cur_altsetting = alt; 1310 usb_enable_interface(dev, intf); 1311 if (device_is_registered(&intf->dev)) 1312 usb_create_sysfs_intf_files(intf); 1313 } 1314 return 0; 1315 } 1316 1317 void usb_release_interface(struct device *dev) 1318 { 1319 struct usb_interface *intf = to_usb_interface(dev); 1320 struct usb_interface_cache *intfc = 1321 altsetting_to_usb_interface_cache(intf->altsetting); 1322 1323 kref_put(&intfc->ref, usb_release_interface_cache); 1324 kfree(intf); 1325 } 1326 1327 #ifdef CONFIG_HOTPLUG 1328 static int usb_if_uevent(struct device *dev, char **envp, int num_envp, 1329 char *buffer, int buffer_size) 1330 { 1331 struct usb_device *usb_dev; 1332 struct usb_interface *intf; 1333 struct usb_host_interface *alt; 1334 int i = 0; 1335 int length = 0; 1336 1337 if (!dev) 1338 return -ENODEV; 1339 1340 /* driver is often null here; dev_dbg() would oops */ 1341 pr_debug ("usb %s: uevent\n", dev->bus_id); 1342 1343 intf = to_usb_interface(dev); 1344 usb_dev = interface_to_usbdev(intf); 1345 alt = intf->cur_altsetting; 1346 1347 if (add_uevent_var(envp, num_envp, &i, 1348 buffer, buffer_size, &length, 1349 "INTERFACE=%d/%d/%d", 1350 alt->desc.bInterfaceClass, 1351 alt->desc.bInterfaceSubClass, 1352 alt->desc.bInterfaceProtocol)) 1353 return -ENOMEM; 1354 1355 if (add_uevent_var(envp, num_envp, &i, 1356 buffer, buffer_size, &length, 1357 "MODALIAS=usb:v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X", 1358 le16_to_cpu(usb_dev->descriptor.idVendor), 1359 le16_to_cpu(usb_dev->descriptor.idProduct), 1360 le16_to_cpu(usb_dev->descriptor.bcdDevice), 1361 usb_dev->descriptor.bDeviceClass, 1362 usb_dev->descriptor.bDeviceSubClass, 1363 usb_dev->descriptor.bDeviceProtocol, 1364 alt->desc.bInterfaceClass, 1365 alt->desc.bInterfaceSubClass, 1366 alt->desc.bInterfaceProtocol)) 1367 return -ENOMEM; 1368 1369 envp[i] = NULL; 1370 return 0; 1371 } 1372 1373 #else 1374 1375 static int usb_if_uevent(struct device *dev, char **envp, 1376 int num_envp, char *buffer, int buffer_size) 1377 { 1378 return -ENODEV; 1379 } 1380 #endif /* CONFIG_HOTPLUG */ 1381 1382 struct device_type usb_if_device_type = { 1383 .name = "usb_interface", 1384 .release = usb_release_interface, 1385 .uevent = usb_if_uevent, 1386 }; 1387 1388 /* 1389 * usb_set_configuration - Makes a particular device setting be current 1390 * @dev: the device whose configuration is being updated 1391 * @configuration: the configuration being chosen. 1392 * Context: !in_interrupt(), caller owns the device lock 1393 * 1394 * This is used to enable non-default device modes. Not all devices 1395 * use this kind of configurability; many devices only have one 1396 * configuration. 1397 * 1398 * @configuration is the value of the configuration to be installed. 1399 * According to the USB spec (e.g. section 9.1.1.5), configuration values 1400 * must be non-zero; a value of zero indicates that the device in 1401 * unconfigured. However some devices erroneously use 0 as one of their 1402 * configuration values. To help manage such devices, this routine will 1403 * accept @configuration = -1 as indicating the device should be put in 1404 * an unconfigured state. 1405 * 1406 * USB device configurations may affect Linux interoperability, 1407 * power consumption and the functionality available. For example, 1408 * the default configuration is limited to using 100mA of bus power, 1409 * so that when certain device functionality requires more power, 1410 * and the device is bus powered, that functionality should be in some 1411 * non-default device configuration. Other device modes may also be 1412 * reflected as configuration options, such as whether two ISDN 1413 * channels are available independently; and choosing between open 1414 * standard device protocols (like CDC) or proprietary ones. 1415 * 1416 * Note that USB has an additional level of device configurability, 1417 * associated with interfaces. That configurability is accessed using 1418 * usb_set_interface(). 1419 * 1420 * This call is synchronous. The calling context must be able to sleep, 1421 * must own the device lock, and must not hold the driver model's USB 1422 * bus mutex; usb device driver probe() methods cannot use this routine. 1423 * 1424 * Returns zero on success, or else the status code returned by the 1425 * underlying call that failed. On successful completion, each interface 1426 * in the original device configuration has been destroyed, and each one 1427 * in the new configuration has been probed by all relevant usb device 1428 * drivers currently known to the kernel. 1429 */ 1430 int usb_set_configuration(struct usb_device *dev, int configuration) 1431 { 1432 int i, ret; 1433 struct usb_host_config *cp = NULL; 1434 struct usb_interface **new_interfaces = NULL; 1435 int n, nintf; 1436 1437 if (configuration == -1) 1438 configuration = 0; 1439 else { 1440 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) { 1441 if (dev->config[i].desc.bConfigurationValue == 1442 configuration) { 1443 cp = &dev->config[i]; 1444 break; 1445 } 1446 } 1447 } 1448 if ((!cp && configuration != 0)) 1449 return -EINVAL; 1450 1451 /* The USB spec says configuration 0 means unconfigured. 1452 * But if a device includes a configuration numbered 0, 1453 * we will accept it as a correctly configured state. 1454 * Use -1 if you really want to unconfigure the device. 1455 */ 1456 if (cp && configuration == 0) 1457 dev_warn(&dev->dev, "config 0 descriptor??\n"); 1458 1459 /* Allocate memory for new interfaces before doing anything else, 1460 * so that if we run out then nothing will have changed. */ 1461 n = nintf = 0; 1462 if (cp) { 1463 nintf = cp->desc.bNumInterfaces; 1464 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces), 1465 GFP_KERNEL); 1466 if (!new_interfaces) { 1467 dev_err(&dev->dev, "Out of memory"); 1468 return -ENOMEM; 1469 } 1470 1471 for (; n < nintf; ++n) { 1472 new_interfaces[n] = kzalloc( 1473 sizeof(struct usb_interface), 1474 GFP_KERNEL); 1475 if (!new_interfaces[n]) { 1476 dev_err(&dev->dev, "Out of memory"); 1477 ret = -ENOMEM; 1478 free_interfaces: 1479 while (--n >= 0) 1480 kfree(new_interfaces[n]); 1481 kfree(new_interfaces); 1482 return ret; 1483 } 1484 } 1485 1486 i = dev->bus_mA - cp->desc.bMaxPower * 2; 1487 if (i < 0) 1488 dev_warn(&dev->dev, "new config #%d exceeds power " 1489 "limit by %dmA\n", 1490 configuration, -i); 1491 } 1492 1493 /* Wake up the device so we can send it the Set-Config request */ 1494 ret = usb_autoresume_device(dev); 1495 if (ret) 1496 goto free_interfaces; 1497 1498 /* if it's already configured, clear out old state first. 1499 * getting rid of old interfaces means unbinding their drivers. 1500 */ 1501 if (dev->state != USB_STATE_ADDRESS) 1502 usb_disable_device (dev, 1); // Skip ep0 1503 1504 if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1505 USB_REQ_SET_CONFIGURATION, 0, configuration, 0, 1506 NULL, 0, USB_CTRL_SET_TIMEOUT)) < 0) { 1507 1508 /* All the old state is gone, so what else can we do? 1509 * The device is probably useless now anyway. 1510 */ 1511 cp = NULL; 1512 } 1513 1514 dev->actconfig = cp; 1515 if (!cp) { 1516 usb_set_device_state(dev, USB_STATE_ADDRESS); 1517 usb_autosuspend_device(dev); 1518 goto free_interfaces; 1519 } 1520 usb_set_device_state(dev, USB_STATE_CONFIGURED); 1521 1522 /* Initialize the new interface structures and the 1523 * hc/hcd/usbcore interface/endpoint state. 1524 */ 1525 for (i = 0; i < nintf; ++i) { 1526 struct usb_interface_cache *intfc; 1527 struct usb_interface *intf; 1528 struct usb_host_interface *alt; 1529 1530 cp->interface[i] = intf = new_interfaces[i]; 1531 intfc = cp->intf_cache[i]; 1532 intf->altsetting = intfc->altsetting; 1533 intf->num_altsetting = intfc->num_altsetting; 1534 kref_get(&intfc->ref); 1535 1536 alt = usb_altnum_to_altsetting(intf, 0); 1537 1538 /* No altsetting 0? We'll assume the first altsetting. 1539 * We could use a GetInterface call, but if a device is 1540 * so non-compliant that it doesn't have altsetting 0 1541 * then I wouldn't trust its reply anyway. 1542 */ 1543 if (!alt) 1544 alt = &intf->altsetting[0]; 1545 1546 intf->cur_altsetting = alt; 1547 usb_enable_interface(dev, intf); 1548 intf->dev.parent = &dev->dev; 1549 intf->dev.driver = NULL; 1550 intf->dev.bus = &usb_bus_type; 1551 intf->dev.type = &usb_if_device_type; 1552 intf->dev.dma_mask = dev->dev.dma_mask; 1553 device_initialize (&intf->dev); 1554 mark_quiesced(intf); 1555 sprintf (&intf->dev.bus_id[0], "%d-%s:%d.%d", 1556 dev->bus->busnum, dev->devpath, 1557 configuration, alt->desc.bInterfaceNumber); 1558 } 1559 kfree(new_interfaces); 1560 1561 if (cp->string == NULL) 1562 cp->string = usb_cache_string(dev, cp->desc.iConfiguration); 1563 1564 /* Now that all the interfaces are set up, register them 1565 * to trigger binding of drivers to interfaces. probe() 1566 * routines may install different altsettings and may 1567 * claim() any interfaces not yet bound. Many class drivers 1568 * need that: CDC, audio, video, etc. 1569 */ 1570 for (i = 0; i < nintf; ++i) { 1571 struct usb_interface *intf = cp->interface[i]; 1572 1573 dev_dbg (&dev->dev, 1574 "adding %s (config #%d, interface %d)\n", 1575 intf->dev.bus_id, configuration, 1576 intf->cur_altsetting->desc.bInterfaceNumber); 1577 ret = device_add (&intf->dev); 1578 if (ret != 0) { 1579 dev_err(&dev->dev, "device_add(%s) --> %d\n", 1580 intf->dev.bus_id, ret); 1581 continue; 1582 } 1583 usb_create_sysfs_intf_files (intf); 1584 } 1585 1586 usb_autosuspend_device(dev); 1587 return 0; 1588 } 1589 1590 struct set_config_request { 1591 struct usb_device *udev; 1592 int config; 1593 struct work_struct work; 1594 }; 1595 1596 /* Worker routine for usb_driver_set_configuration() */ 1597 static void driver_set_config_work(struct work_struct *work) 1598 { 1599 struct set_config_request *req = 1600 container_of(work, struct set_config_request, work); 1601 1602 usb_lock_device(req->udev); 1603 usb_set_configuration(req->udev, req->config); 1604 usb_unlock_device(req->udev); 1605 usb_put_dev(req->udev); 1606 kfree(req); 1607 } 1608 1609 /** 1610 * usb_driver_set_configuration - Provide a way for drivers to change device configurations 1611 * @udev: the device whose configuration is being updated 1612 * @config: the configuration being chosen. 1613 * Context: In process context, must be able to sleep 1614 * 1615 * Device interface drivers are not allowed to change device configurations. 1616 * This is because changing configurations will destroy the interface the 1617 * driver is bound to and create new ones; it would be like a floppy-disk 1618 * driver telling the computer to replace the floppy-disk drive with a 1619 * tape drive! 1620 * 1621 * Still, in certain specialized circumstances the need may arise. This 1622 * routine gets around the normal restrictions by using a work thread to 1623 * submit the change-config request. 1624 * 1625 * Returns 0 if the request was succesfully queued, error code otherwise. 1626 * The caller has no way to know whether the queued request will eventually 1627 * succeed. 1628 */ 1629 int usb_driver_set_configuration(struct usb_device *udev, int config) 1630 { 1631 struct set_config_request *req; 1632 1633 req = kmalloc(sizeof(*req), GFP_KERNEL); 1634 if (!req) 1635 return -ENOMEM; 1636 req->udev = udev; 1637 req->config = config; 1638 INIT_WORK(&req->work, driver_set_config_work); 1639 1640 usb_get_dev(udev); 1641 schedule_work(&req->work); 1642 return 0; 1643 } 1644 EXPORT_SYMBOL_GPL(usb_driver_set_configuration); 1645 1646 // synchronous request completion model 1647 EXPORT_SYMBOL(usb_control_msg); 1648 EXPORT_SYMBOL(usb_bulk_msg); 1649 1650 EXPORT_SYMBOL(usb_sg_init); 1651 EXPORT_SYMBOL(usb_sg_cancel); 1652 EXPORT_SYMBOL(usb_sg_wait); 1653 1654 // synchronous control message convenience routines 1655 EXPORT_SYMBOL(usb_get_descriptor); 1656 EXPORT_SYMBOL(usb_get_status); 1657 EXPORT_SYMBOL(usb_string); 1658 1659 // synchronous calls that also maintain usbcore state 1660 EXPORT_SYMBOL(usb_clear_halt); 1661 EXPORT_SYMBOL(usb_reset_configuration); 1662 EXPORT_SYMBOL(usb_set_interface); 1663 1664