1 /* 2 * message.c - synchronous message handling 3 */ 4 5 #include <linux/pci.h> /* for scatterlist macros */ 6 #include <linux/usb.h> 7 #include <linux/module.h> 8 #include <linux/slab.h> 9 #include <linux/init.h> 10 #include <linux/mm.h> 11 #include <linux/timer.h> 12 #include <linux/ctype.h> 13 #include <linux/nls.h> 14 #include <linux/device.h> 15 #include <linux/scatterlist.h> 16 #include <linux/usb/quirks.h> 17 #include <linux/usb/hcd.h> /* for usbcore internals */ 18 #include <asm/byteorder.h> 19 20 #include "usb.h" 21 22 static void cancel_async_set_config(struct usb_device *udev); 23 24 struct api_context { 25 struct completion done; 26 int status; 27 }; 28 29 static void usb_api_blocking_completion(struct urb *urb) 30 { 31 struct api_context *ctx = urb->context; 32 33 ctx->status = urb->status; 34 complete(&ctx->done); 35 } 36 37 38 /* 39 * Starts urb and waits for completion or timeout. Note that this call 40 * is NOT interruptible. Many device driver i/o requests should be 41 * interruptible and therefore these drivers should implement their 42 * own interruptible routines. 43 */ 44 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length) 45 { 46 struct api_context ctx; 47 unsigned long expire; 48 int retval; 49 50 init_completion(&ctx.done); 51 urb->context = &ctx; 52 urb->actual_length = 0; 53 retval = usb_submit_urb(urb, GFP_NOIO); 54 if (unlikely(retval)) 55 goto out; 56 57 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT; 58 if (!wait_for_completion_timeout(&ctx.done, expire)) { 59 usb_kill_urb(urb); 60 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status); 61 62 dev_dbg(&urb->dev->dev, 63 "%s timed out on ep%d%s len=%u/%u\n", 64 current->comm, 65 usb_endpoint_num(&urb->ep->desc), 66 usb_urb_dir_in(urb) ? "in" : "out", 67 urb->actual_length, 68 urb->transfer_buffer_length); 69 } else 70 retval = ctx.status; 71 out: 72 if (actual_length) 73 *actual_length = urb->actual_length; 74 75 usb_free_urb(urb); 76 return retval; 77 } 78 79 /*-------------------------------------------------------------------*/ 80 /* returns status (negative) or length (positive) */ 81 static int usb_internal_control_msg(struct usb_device *usb_dev, 82 unsigned int pipe, 83 struct usb_ctrlrequest *cmd, 84 void *data, int len, int timeout) 85 { 86 struct urb *urb; 87 int retv; 88 int length; 89 90 urb = usb_alloc_urb(0, GFP_NOIO); 91 if (!urb) 92 return -ENOMEM; 93 94 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data, 95 len, usb_api_blocking_completion, NULL); 96 97 retv = usb_start_wait_urb(urb, timeout, &length); 98 if (retv < 0) 99 return retv; 100 else 101 return length; 102 } 103 104 /** 105 * usb_control_msg - Builds a control urb, sends it off and waits for completion 106 * @dev: pointer to the usb device to send the message to 107 * @pipe: endpoint "pipe" to send the message to 108 * @request: USB message request value 109 * @requesttype: USB message request type value 110 * @value: USB message value 111 * @index: USB message index value 112 * @data: pointer to the data to send 113 * @size: length in bytes of the data to send 114 * @timeout: time in msecs to wait for the message to complete before timing 115 * out (if 0 the wait is forever) 116 * 117 * Context: !in_interrupt () 118 * 119 * This function sends a simple control message to a specified endpoint and 120 * waits for the message to complete, or timeout. 121 * 122 * If successful, it returns the number of bytes transferred, otherwise a 123 * negative error number. 124 * 125 * Don't use this function from within an interrupt context, like a bottom half 126 * handler. If you need an asynchronous message, or need to send a message 127 * from within interrupt context, use usb_submit_urb(). 128 * If a thread in your driver uses this call, make sure your disconnect() 129 * method can wait for it to complete. Since you don't have a handle on the 130 * URB used, you can't cancel the request. 131 */ 132 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, 133 __u8 requesttype, __u16 value, __u16 index, void *data, 134 __u16 size, int timeout) 135 { 136 struct usb_ctrlrequest *dr; 137 int ret; 138 139 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO); 140 if (!dr) 141 return -ENOMEM; 142 143 dr->bRequestType = requesttype; 144 dr->bRequest = request; 145 dr->wValue = cpu_to_le16(value); 146 dr->wIndex = cpu_to_le16(index); 147 dr->wLength = cpu_to_le16(size); 148 149 /* dbg("usb_control_msg"); */ 150 151 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout); 152 153 kfree(dr); 154 155 return ret; 156 } 157 EXPORT_SYMBOL_GPL(usb_control_msg); 158 159 /** 160 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion 161 * @usb_dev: pointer to the usb device to send the message to 162 * @pipe: endpoint "pipe" to send the message to 163 * @data: pointer to the data to send 164 * @len: length in bytes of the data to send 165 * @actual_length: pointer to a location to put the actual length transferred 166 * in bytes 167 * @timeout: time in msecs to wait for the message to complete before 168 * timing out (if 0 the wait is forever) 169 * 170 * Context: !in_interrupt () 171 * 172 * This function sends a simple interrupt message to a specified endpoint and 173 * waits for the message to complete, or timeout. 174 * 175 * If successful, it returns 0, otherwise a negative error number. The number 176 * of actual bytes transferred will be stored in the actual_length paramater. 177 * 178 * Don't use this function from within an interrupt context, like a bottom half 179 * handler. If you need an asynchronous message, or need to send a message 180 * from within interrupt context, use usb_submit_urb() If a thread in your 181 * driver uses this call, make sure your disconnect() method can wait for it to 182 * complete. Since you don't have a handle on the URB used, you can't cancel 183 * the request. 184 */ 185 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 186 void *data, int len, int *actual_length, int timeout) 187 { 188 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout); 189 } 190 EXPORT_SYMBOL_GPL(usb_interrupt_msg); 191 192 /** 193 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion 194 * @usb_dev: pointer to the usb device to send the message to 195 * @pipe: endpoint "pipe" to send the message to 196 * @data: pointer to the data to send 197 * @len: length in bytes of the data to send 198 * @actual_length: pointer to a location to put the actual length transferred 199 * in bytes 200 * @timeout: time in msecs to wait for the message to complete before 201 * timing out (if 0 the wait is forever) 202 * 203 * Context: !in_interrupt () 204 * 205 * This function sends a simple bulk message to a specified endpoint 206 * and waits for the message to complete, or timeout. 207 * 208 * If successful, it returns 0, otherwise a negative error number. The number 209 * of actual bytes transferred will be stored in the actual_length paramater. 210 * 211 * Don't use this function from within an interrupt context, like a bottom half 212 * handler. If you need an asynchronous message, or need to send a message 213 * from within interrupt context, use usb_submit_urb() If a thread in your 214 * driver uses this call, make sure your disconnect() method can wait for it to 215 * complete. Since you don't have a handle on the URB used, you can't cancel 216 * the request. 217 * 218 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl, 219 * users are forced to abuse this routine by using it to submit URBs for 220 * interrupt endpoints. We will take the liberty of creating an interrupt URB 221 * (with the default interval) if the target is an interrupt endpoint. 222 */ 223 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 224 void *data, int len, int *actual_length, int timeout) 225 { 226 struct urb *urb; 227 struct usb_host_endpoint *ep; 228 229 ep = usb_pipe_endpoint(usb_dev, pipe); 230 if (!ep || len < 0) 231 return -EINVAL; 232 233 urb = usb_alloc_urb(0, GFP_KERNEL); 234 if (!urb) 235 return -ENOMEM; 236 237 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 238 USB_ENDPOINT_XFER_INT) { 239 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30); 240 usb_fill_int_urb(urb, usb_dev, pipe, data, len, 241 usb_api_blocking_completion, NULL, 242 ep->desc.bInterval); 243 } else 244 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len, 245 usb_api_blocking_completion, NULL); 246 247 return usb_start_wait_urb(urb, timeout, actual_length); 248 } 249 EXPORT_SYMBOL_GPL(usb_bulk_msg); 250 251 /*-------------------------------------------------------------------*/ 252 253 static void sg_clean(struct usb_sg_request *io) 254 { 255 if (io->urbs) { 256 while (io->entries--) 257 usb_free_urb(io->urbs [io->entries]); 258 kfree(io->urbs); 259 io->urbs = NULL; 260 } 261 io->dev = NULL; 262 } 263 264 static void sg_complete(struct urb *urb) 265 { 266 struct usb_sg_request *io = urb->context; 267 int status = urb->status; 268 269 spin_lock(&io->lock); 270 271 /* In 2.5 we require hcds' endpoint queues not to progress after fault 272 * reports, until the completion callback (this!) returns. That lets 273 * device driver code (like this routine) unlink queued urbs first, 274 * if it needs to, since the HC won't work on them at all. So it's 275 * not possible for page N+1 to overwrite page N, and so on. 276 * 277 * That's only for "hard" faults; "soft" faults (unlinks) sometimes 278 * complete before the HCD can get requests away from hardware, 279 * though never during cleanup after a hard fault. 280 */ 281 if (io->status 282 && (io->status != -ECONNRESET 283 || status != -ECONNRESET) 284 && urb->actual_length) { 285 dev_err(io->dev->bus->controller, 286 "dev %s ep%d%s scatterlist error %d/%d\n", 287 io->dev->devpath, 288 usb_endpoint_num(&urb->ep->desc), 289 usb_urb_dir_in(urb) ? "in" : "out", 290 status, io->status); 291 /* BUG (); */ 292 } 293 294 if (io->status == 0 && status && status != -ECONNRESET) { 295 int i, found, retval; 296 297 io->status = status; 298 299 /* the previous urbs, and this one, completed already. 300 * unlink pending urbs so they won't rx/tx bad data. 301 * careful: unlink can sometimes be synchronous... 302 */ 303 spin_unlock(&io->lock); 304 for (i = 0, found = 0; i < io->entries; i++) { 305 if (!io->urbs [i] || !io->urbs [i]->dev) 306 continue; 307 if (found) { 308 retval = usb_unlink_urb(io->urbs [i]); 309 if (retval != -EINPROGRESS && 310 retval != -ENODEV && 311 retval != -EBUSY && 312 retval != -EIDRM) 313 dev_err(&io->dev->dev, 314 "%s, unlink --> %d\n", 315 __func__, retval); 316 } else if (urb == io->urbs [i]) 317 found = 1; 318 } 319 spin_lock(&io->lock); 320 } 321 322 /* on the last completion, signal usb_sg_wait() */ 323 io->bytes += urb->actual_length; 324 io->count--; 325 if (!io->count) 326 complete(&io->complete); 327 328 spin_unlock(&io->lock); 329 } 330 331 332 /** 333 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request 334 * @io: request block being initialized. until usb_sg_wait() returns, 335 * treat this as a pointer to an opaque block of memory, 336 * @dev: the usb device that will send or receive the data 337 * @pipe: endpoint "pipe" used to transfer the data 338 * @period: polling rate for interrupt endpoints, in frames or 339 * (for high speed endpoints) microframes; ignored for bulk 340 * @sg: scatterlist entries 341 * @nents: how many entries in the scatterlist 342 * @length: how many bytes to send from the scatterlist, or zero to 343 * send every byte identified in the list. 344 * @mem_flags: SLAB_* flags affecting memory allocations in this call 345 * 346 * Returns zero for success, else a negative errno value. This initializes a 347 * scatter/gather request, allocating resources such as I/O mappings and urb 348 * memory (except maybe memory used by USB controller drivers). 349 * 350 * The request must be issued using usb_sg_wait(), which waits for the I/O to 351 * complete (or to be canceled) and then cleans up all resources allocated by 352 * usb_sg_init(). 353 * 354 * The request may be canceled with usb_sg_cancel(), either before or after 355 * usb_sg_wait() is called. 356 */ 357 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev, 358 unsigned pipe, unsigned period, struct scatterlist *sg, 359 int nents, size_t length, gfp_t mem_flags) 360 { 361 int i; 362 int urb_flags; 363 int use_sg; 364 365 if (!io || !dev || !sg 366 || usb_pipecontrol(pipe) 367 || usb_pipeisoc(pipe) 368 || nents <= 0) 369 return -EINVAL; 370 371 spin_lock_init(&io->lock); 372 io->dev = dev; 373 io->pipe = pipe; 374 375 if (dev->bus->sg_tablesize > 0) { 376 use_sg = true; 377 io->entries = 1; 378 } else { 379 use_sg = false; 380 io->entries = nents; 381 } 382 383 /* initialize all the urbs we'll use */ 384 io->urbs = kmalloc(io->entries * sizeof *io->urbs, mem_flags); 385 if (!io->urbs) 386 goto nomem; 387 388 urb_flags = URB_NO_INTERRUPT; 389 if (usb_pipein(pipe)) 390 urb_flags |= URB_SHORT_NOT_OK; 391 392 for_each_sg(sg, sg, io->entries, i) { 393 struct urb *urb; 394 unsigned len; 395 396 urb = usb_alloc_urb(0, mem_flags); 397 if (!urb) { 398 io->entries = i; 399 goto nomem; 400 } 401 io->urbs[i] = urb; 402 403 urb->dev = NULL; 404 urb->pipe = pipe; 405 urb->interval = period; 406 urb->transfer_flags = urb_flags; 407 urb->complete = sg_complete; 408 urb->context = io; 409 urb->sg = sg; 410 411 if (use_sg) { 412 /* There is no single transfer buffer */ 413 urb->transfer_buffer = NULL; 414 urb->num_sgs = nents; 415 416 /* A length of zero means transfer the whole sg list */ 417 len = length; 418 if (len == 0) { 419 struct scatterlist *sg2; 420 int j; 421 422 for_each_sg(sg, sg2, nents, j) 423 len += sg2->length; 424 } 425 } else { 426 /* 427 * Some systems can't use DMA; they use PIO instead. 428 * For their sakes, transfer_buffer is set whenever 429 * possible. 430 */ 431 if (!PageHighMem(sg_page(sg))) 432 urb->transfer_buffer = sg_virt(sg); 433 else 434 urb->transfer_buffer = NULL; 435 436 len = sg->length; 437 if (length) { 438 len = min_t(size_t, len, length); 439 length -= len; 440 if (length == 0) 441 io->entries = i + 1; 442 } 443 } 444 urb->transfer_buffer_length = len; 445 } 446 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT; 447 448 /* transaction state */ 449 io->count = io->entries; 450 io->status = 0; 451 io->bytes = 0; 452 init_completion(&io->complete); 453 return 0; 454 455 nomem: 456 sg_clean(io); 457 return -ENOMEM; 458 } 459 EXPORT_SYMBOL_GPL(usb_sg_init); 460 461 /** 462 * usb_sg_wait - synchronously execute scatter/gather request 463 * @io: request block handle, as initialized with usb_sg_init(). 464 * some fields become accessible when this call returns. 465 * Context: !in_interrupt () 466 * 467 * This function blocks until the specified I/O operation completes. It 468 * leverages the grouping of the related I/O requests to get good transfer 469 * rates, by queueing the requests. At higher speeds, such queuing can 470 * significantly improve USB throughput. 471 * 472 * There are three kinds of completion for this function. 473 * (1) success, where io->status is zero. The number of io->bytes 474 * transferred is as requested. 475 * (2) error, where io->status is a negative errno value. The number 476 * of io->bytes transferred before the error is usually less 477 * than requested, and can be nonzero. 478 * (3) cancellation, a type of error with status -ECONNRESET that 479 * is initiated by usb_sg_cancel(). 480 * 481 * When this function returns, all memory allocated through usb_sg_init() or 482 * this call will have been freed. The request block parameter may still be 483 * passed to usb_sg_cancel(), or it may be freed. It could also be 484 * reinitialized and then reused. 485 * 486 * Data Transfer Rates: 487 * 488 * Bulk transfers are valid for full or high speed endpoints. 489 * The best full speed data rate is 19 packets of 64 bytes each 490 * per frame, or 1216 bytes per millisecond. 491 * The best high speed data rate is 13 packets of 512 bytes each 492 * per microframe, or 52 KBytes per millisecond. 493 * 494 * The reason to use interrupt transfers through this API would most likely 495 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond 496 * could be transferred. That capability is less useful for low or full 497 * speed interrupt endpoints, which allow at most one packet per millisecond, 498 * of at most 8 or 64 bytes (respectively). 499 * 500 * It is not necessary to call this function to reserve bandwidth for devices 501 * under an xHCI host controller, as the bandwidth is reserved when the 502 * configuration or interface alt setting is selected. 503 */ 504 void usb_sg_wait(struct usb_sg_request *io) 505 { 506 int i; 507 int entries = io->entries; 508 509 /* queue the urbs. */ 510 spin_lock_irq(&io->lock); 511 i = 0; 512 while (i < entries && !io->status) { 513 int retval; 514 515 io->urbs[i]->dev = io->dev; 516 retval = usb_submit_urb(io->urbs [i], GFP_ATOMIC); 517 518 /* after we submit, let completions or cancelations fire; 519 * we handshake using io->status. 520 */ 521 spin_unlock_irq(&io->lock); 522 switch (retval) { 523 /* maybe we retrying will recover */ 524 case -ENXIO: /* hc didn't queue this one */ 525 case -EAGAIN: 526 case -ENOMEM: 527 retval = 0; 528 yield(); 529 break; 530 531 /* no error? continue immediately. 532 * 533 * NOTE: to work better with UHCI (4K I/O buffer may 534 * need 3K of TDs) it may be good to limit how many 535 * URBs are queued at once; N milliseconds? 536 */ 537 case 0: 538 ++i; 539 cpu_relax(); 540 break; 541 542 /* fail any uncompleted urbs */ 543 default: 544 io->urbs[i]->status = retval; 545 dev_dbg(&io->dev->dev, "%s, submit --> %d\n", 546 __func__, retval); 547 usb_sg_cancel(io); 548 } 549 spin_lock_irq(&io->lock); 550 if (retval && (io->status == 0 || io->status == -ECONNRESET)) 551 io->status = retval; 552 } 553 io->count -= entries - i; 554 if (io->count == 0) 555 complete(&io->complete); 556 spin_unlock_irq(&io->lock); 557 558 /* OK, yes, this could be packaged as non-blocking. 559 * So could the submit loop above ... but it's easier to 560 * solve neither problem than to solve both! 561 */ 562 wait_for_completion(&io->complete); 563 564 sg_clean(io); 565 } 566 EXPORT_SYMBOL_GPL(usb_sg_wait); 567 568 /** 569 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait() 570 * @io: request block, initialized with usb_sg_init() 571 * 572 * This stops a request after it has been started by usb_sg_wait(). 573 * It can also prevents one initialized by usb_sg_init() from starting, 574 * so that call just frees resources allocated to the request. 575 */ 576 void usb_sg_cancel(struct usb_sg_request *io) 577 { 578 unsigned long flags; 579 580 spin_lock_irqsave(&io->lock, flags); 581 582 /* shut everything down, if it didn't already */ 583 if (!io->status) { 584 int i; 585 586 io->status = -ECONNRESET; 587 spin_unlock(&io->lock); 588 for (i = 0; i < io->entries; i++) { 589 int retval; 590 591 if (!io->urbs [i]->dev) 592 continue; 593 retval = usb_unlink_urb(io->urbs [i]); 594 if (retval != -EINPROGRESS 595 && retval != -ENODEV 596 && retval != -EBUSY 597 && retval != -EIDRM) 598 dev_warn(&io->dev->dev, "%s, unlink --> %d\n", 599 __func__, retval); 600 } 601 spin_lock(&io->lock); 602 } 603 spin_unlock_irqrestore(&io->lock, flags); 604 } 605 EXPORT_SYMBOL_GPL(usb_sg_cancel); 606 607 /*-------------------------------------------------------------------*/ 608 609 /** 610 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request 611 * @dev: the device whose descriptor is being retrieved 612 * @type: the descriptor type (USB_DT_*) 613 * @index: the number of the descriptor 614 * @buf: where to put the descriptor 615 * @size: how big is "buf"? 616 * Context: !in_interrupt () 617 * 618 * Gets a USB descriptor. Convenience functions exist to simplify 619 * getting some types of descriptors. Use 620 * usb_get_string() or usb_string() for USB_DT_STRING. 621 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG) 622 * are part of the device structure. 623 * In addition to a number of USB-standard descriptors, some 624 * devices also use class-specific or vendor-specific descriptors. 625 * 626 * This call is synchronous, and may not be used in an interrupt context. 627 * 628 * Returns the number of bytes received on success, or else the status code 629 * returned by the underlying usb_control_msg() call. 630 */ 631 int usb_get_descriptor(struct usb_device *dev, unsigned char type, 632 unsigned char index, void *buf, int size) 633 { 634 int i; 635 int result; 636 637 memset(buf, 0, size); /* Make sure we parse really received data */ 638 639 for (i = 0; i < 3; ++i) { 640 /* retry on length 0 or error; some devices are flakey */ 641 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 642 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 643 (type << 8) + index, 0, buf, size, 644 USB_CTRL_GET_TIMEOUT); 645 if (result <= 0 && result != -ETIMEDOUT) 646 continue; 647 if (result > 1 && ((u8 *)buf)[1] != type) { 648 result = -ENODATA; 649 continue; 650 } 651 break; 652 } 653 return result; 654 } 655 EXPORT_SYMBOL_GPL(usb_get_descriptor); 656 657 /** 658 * usb_get_string - gets a string descriptor 659 * @dev: the device whose string descriptor is being retrieved 660 * @langid: code for language chosen (from string descriptor zero) 661 * @index: the number of the descriptor 662 * @buf: where to put the string 663 * @size: how big is "buf"? 664 * Context: !in_interrupt () 665 * 666 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character, 667 * in little-endian byte order). 668 * The usb_string() function will often be a convenient way to turn 669 * these strings into kernel-printable form. 670 * 671 * Strings may be referenced in device, configuration, interface, or other 672 * descriptors, and could also be used in vendor-specific ways. 673 * 674 * This call is synchronous, and may not be used in an interrupt context. 675 * 676 * Returns the number of bytes received on success, or else the status code 677 * returned by the underlying usb_control_msg() call. 678 */ 679 static int usb_get_string(struct usb_device *dev, unsigned short langid, 680 unsigned char index, void *buf, int size) 681 { 682 int i; 683 int result; 684 685 for (i = 0; i < 3; ++i) { 686 /* retry on length 0 or stall; some devices are flakey */ 687 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 688 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 689 (USB_DT_STRING << 8) + index, langid, buf, size, 690 USB_CTRL_GET_TIMEOUT); 691 if (result == 0 || result == -EPIPE) 692 continue; 693 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) { 694 result = -ENODATA; 695 continue; 696 } 697 break; 698 } 699 return result; 700 } 701 702 static void usb_try_string_workarounds(unsigned char *buf, int *length) 703 { 704 int newlength, oldlength = *length; 705 706 for (newlength = 2; newlength + 1 < oldlength; newlength += 2) 707 if (!isprint(buf[newlength]) || buf[newlength + 1]) 708 break; 709 710 if (newlength > 2) { 711 buf[0] = newlength; 712 *length = newlength; 713 } 714 } 715 716 static int usb_string_sub(struct usb_device *dev, unsigned int langid, 717 unsigned int index, unsigned char *buf) 718 { 719 int rc; 720 721 /* Try to read the string descriptor by asking for the maximum 722 * possible number of bytes */ 723 if (dev->quirks & USB_QUIRK_STRING_FETCH_255) 724 rc = -EIO; 725 else 726 rc = usb_get_string(dev, langid, index, buf, 255); 727 728 /* If that failed try to read the descriptor length, then 729 * ask for just that many bytes */ 730 if (rc < 2) { 731 rc = usb_get_string(dev, langid, index, buf, 2); 732 if (rc == 2) 733 rc = usb_get_string(dev, langid, index, buf, buf[0]); 734 } 735 736 if (rc >= 2) { 737 if (!buf[0] && !buf[1]) 738 usb_try_string_workarounds(buf, &rc); 739 740 /* There might be extra junk at the end of the descriptor */ 741 if (buf[0] < rc) 742 rc = buf[0]; 743 744 rc = rc - (rc & 1); /* force a multiple of two */ 745 } 746 747 if (rc < 2) 748 rc = (rc < 0 ? rc : -EINVAL); 749 750 return rc; 751 } 752 753 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf) 754 { 755 int err; 756 757 if (dev->have_langid) 758 return 0; 759 760 if (dev->string_langid < 0) 761 return -EPIPE; 762 763 err = usb_string_sub(dev, 0, 0, tbuf); 764 765 /* If the string was reported but is malformed, default to english 766 * (0x0409) */ 767 if (err == -ENODATA || (err > 0 && err < 4)) { 768 dev->string_langid = 0x0409; 769 dev->have_langid = 1; 770 dev_err(&dev->dev, 771 "string descriptor 0 malformed (err = %d), " 772 "defaulting to 0x%04x\n", 773 err, dev->string_langid); 774 return 0; 775 } 776 777 /* In case of all other errors, we assume the device is not able to 778 * deal with strings at all. Set string_langid to -1 in order to 779 * prevent any string to be retrieved from the device */ 780 if (err < 0) { 781 dev_err(&dev->dev, "string descriptor 0 read error: %d\n", 782 err); 783 dev->string_langid = -1; 784 return -EPIPE; 785 } 786 787 /* always use the first langid listed */ 788 dev->string_langid = tbuf[2] | (tbuf[3] << 8); 789 dev->have_langid = 1; 790 dev_dbg(&dev->dev, "default language 0x%04x\n", 791 dev->string_langid); 792 return 0; 793 } 794 795 /** 796 * usb_string - returns UTF-8 version of a string descriptor 797 * @dev: the device whose string descriptor is being retrieved 798 * @index: the number of the descriptor 799 * @buf: where to put the string 800 * @size: how big is "buf"? 801 * Context: !in_interrupt () 802 * 803 * This converts the UTF-16LE encoded strings returned by devices, from 804 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones 805 * that are more usable in most kernel contexts. Note that this function 806 * chooses strings in the first language supported by the device. 807 * 808 * This call is synchronous, and may not be used in an interrupt context. 809 * 810 * Returns length of the string (>= 0) or usb_control_msg status (< 0). 811 */ 812 int usb_string(struct usb_device *dev, int index, char *buf, size_t size) 813 { 814 unsigned char *tbuf; 815 int err; 816 817 if (dev->state == USB_STATE_SUSPENDED) 818 return -EHOSTUNREACH; 819 if (size <= 0 || !buf || !index) 820 return -EINVAL; 821 buf[0] = 0; 822 tbuf = kmalloc(256, GFP_NOIO); 823 if (!tbuf) 824 return -ENOMEM; 825 826 err = usb_get_langid(dev, tbuf); 827 if (err < 0) 828 goto errout; 829 830 err = usb_string_sub(dev, dev->string_langid, index, tbuf); 831 if (err < 0) 832 goto errout; 833 834 size--; /* leave room for trailing NULL char in output buffer */ 835 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2, 836 UTF16_LITTLE_ENDIAN, buf, size); 837 buf[err] = 0; 838 839 if (tbuf[1] != USB_DT_STRING) 840 dev_dbg(&dev->dev, 841 "wrong descriptor type %02x for string %d (\"%s\")\n", 842 tbuf[1], index, buf); 843 844 errout: 845 kfree(tbuf); 846 return err; 847 } 848 EXPORT_SYMBOL_GPL(usb_string); 849 850 /* one UTF-8-encoded 16-bit character has at most three bytes */ 851 #define MAX_USB_STRING_SIZE (127 * 3 + 1) 852 853 /** 854 * usb_cache_string - read a string descriptor and cache it for later use 855 * @udev: the device whose string descriptor is being read 856 * @index: the descriptor index 857 * 858 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string, 859 * or NULL if the index is 0 or the string could not be read. 860 */ 861 char *usb_cache_string(struct usb_device *udev, int index) 862 { 863 char *buf; 864 char *smallbuf = NULL; 865 int len; 866 867 if (index <= 0) 868 return NULL; 869 870 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO); 871 if (buf) { 872 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE); 873 if (len > 0) { 874 smallbuf = kmalloc(++len, GFP_NOIO); 875 if (!smallbuf) 876 return buf; 877 memcpy(smallbuf, buf, len); 878 } 879 kfree(buf); 880 } 881 return smallbuf; 882 } 883 884 /* 885 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore) 886 * @dev: the device whose device descriptor is being updated 887 * @size: how much of the descriptor to read 888 * Context: !in_interrupt () 889 * 890 * Updates the copy of the device descriptor stored in the device structure, 891 * which dedicates space for this purpose. 892 * 893 * Not exported, only for use by the core. If drivers really want to read 894 * the device descriptor directly, they can call usb_get_descriptor() with 895 * type = USB_DT_DEVICE and index = 0. 896 * 897 * This call is synchronous, and may not be used in an interrupt context. 898 * 899 * Returns the number of bytes received on success, or else the status code 900 * returned by the underlying usb_control_msg() call. 901 */ 902 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size) 903 { 904 struct usb_device_descriptor *desc; 905 int ret; 906 907 if (size > sizeof(*desc)) 908 return -EINVAL; 909 desc = kmalloc(sizeof(*desc), GFP_NOIO); 910 if (!desc) 911 return -ENOMEM; 912 913 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size); 914 if (ret >= 0) 915 memcpy(&dev->descriptor, desc, size); 916 kfree(desc); 917 return ret; 918 } 919 920 /** 921 * usb_get_status - issues a GET_STATUS call 922 * @dev: the device whose status is being checked 923 * @type: USB_RECIP_*; for device, interface, or endpoint 924 * @target: zero (for device), else interface or endpoint number 925 * @data: pointer to two bytes of bitmap data 926 * Context: !in_interrupt () 927 * 928 * Returns device, interface, or endpoint status. Normally only of 929 * interest to see if the device is self powered, or has enabled the 930 * remote wakeup facility; or whether a bulk or interrupt endpoint 931 * is halted ("stalled"). 932 * 933 * Bits in these status bitmaps are set using the SET_FEATURE request, 934 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt() 935 * function should be used to clear halt ("stall") status. 936 * 937 * This call is synchronous, and may not be used in an interrupt context. 938 * 939 * Returns the number of bytes received on success, or else the status code 940 * returned by the underlying usb_control_msg() call. 941 */ 942 int usb_get_status(struct usb_device *dev, int type, int target, void *data) 943 { 944 int ret; 945 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL); 946 947 if (!status) 948 return -ENOMEM; 949 950 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 951 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status, 952 sizeof(*status), USB_CTRL_GET_TIMEOUT); 953 954 *(u16 *)data = *status; 955 kfree(status); 956 return ret; 957 } 958 EXPORT_SYMBOL_GPL(usb_get_status); 959 960 /** 961 * usb_clear_halt - tells device to clear endpoint halt/stall condition 962 * @dev: device whose endpoint is halted 963 * @pipe: endpoint "pipe" being cleared 964 * Context: !in_interrupt () 965 * 966 * This is used to clear halt conditions for bulk and interrupt endpoints, 967 * as reported by URB completion status. Endpoints that are halted are 968 * sometimes referred to as being "stalled". Such endpoints are unable 969 * to transmit or receive data until the halt status is cleared. Any URBs 970 * queued for such an endpoint should normally be unlinked by the driver 971 * before clearing the halt condition, as described in sections 5.7.5 972 * and 5.8.5 of the USB 2.0 spec. 973 * 974 * Note that control and isochronous endpoints don't halt, although control 975 * endpoints report "protocol stall" (for unsupported requests) using the 976 * same status code used to report a true stall. 977 * 978 * This call is synchronous, and may not be used in an interrupt context. 979 * 980 * Returns zero on success, or else the status code returned by the 981 * underlying usb_control_msg() call. 982 */ 983 int usb_clear_halt(struct usb_device *dev, int pipe) 984 { 985 int result; 986 int endp = usb_pipeendpoint(pipe); 987 988 if (usb_pipein(pipe)) 989 endp |= USB_DIR_IN; 990 991 /* we don't care if it wasn't halted first. in fact some devices 992 * (like some ibmcam model 1 units) seem to expect hosts to make 993 * this request for iso endpoints, which can't halt! 994 */ 995 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 996 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 997 USB_ENDPOINT_HALT, endp, NULL, 0, 998 USB_CTRL_SET_TIMEOUT); 999 1000 /* don't un-halt or force to DATA0 except on success */ 1001 if (result < 0) 1002 return result; 1003 1004 /* NOTE: seems like Microsoft and Apple don't bother verifying 1005 * the clear "took", so some devices could lock up if you check... 1006 * such as the Hagiwara FlashGate DUAL. So we won't bother. 1007 * 1008 * NOTE: make sure the logic here doesn't diverge much from 1009 * the copy in usb-storage, for as long as we need two copies. 1010 */ 1011 1012 usb_reset_endpoint(dev, endp); 1013 1014 return 0; 1015 } 1016 EXPORT_SYMBOL_GPL(usb_clear_halt); 1017 1018 static int create_intf_ep_devs(struct usb_interface *intf) 1019 { 1020 struct usb_device *udev = interface_to_usbdev(intf); 1021 struct usb_host_interface *alt = intf->cur_altsetting; 1022 int i; 1023 1024 if (intf->ep_devs_created || intf->unregistering) 1025 return 0; 1026 1027 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1028 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev); 1029 intf->ep_devs_created = 1; 1030 return 0; 1031 } 1032 1033 static void remove_intf_ep_devs(struct usb_interface *intf) 1034 { 1035 struct usb_host_interface *alt = intf->cur_altsetting; 1036 int i; 1037 1038 if (!intf->ep_devs_created) 1039 return; 1040 1041 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1042 usb_remove_ep_devs(&alt->endpoint[i]); 1043 intf->ep_devs_created = 0; 1044 } 1045 1046 /** 1047 * usb_disable_endpoint -- Disable an endpoint by address 1048 * @dev: the device whose endpoint is being disabled 1049 * @epaddr: the endpoint's address. Endpoint number for output, 1050 * endpoint number + USB_DIR_IN for input 1051 * @reset_hardware: flag to erase any endpoint state stored in the 1052 * controller hardware 1053 * 1054 * Disables the endpoint for URB submission and nukes all pending URBs. 1055 * If @reset_hardware is set then also deallocates hcd/hardware state 1056 * for the endpoint. 1057 */ 1058 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr, 1059 bool reset_hardware) 1060 { 1061 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1062 struct usb_host_endpoint *ep; 1063 1064 if (!dev) 1065 return; 1066 1067 if (usb_endpoint_out(epaddr)) { 1068 ep = dev->ep_out[epnum]; 1069 if (reset_hardware) 1070 dev->ep_out[epnum] = NULL; 1071 } else { 1072 ep = dev->ep_in[epnum]; 1073 if (reset_hardware) 1074 dev->ep_in[epnum] = NULL; 1075 } 1076 if (ep) { 1077 ep->enabled = 0; 1078 usb_hcd_flush_endpoint(dev, ep); 1079 if (reset_hardware) 1080 usb_hcd_disable_endpoint(dev, ep); 1081 } 1082 } 1083 1084 /** 1085 * usb_reset_endpoint - Reset an endpoint's state. 1086 * @dev: the device whose endpoint is to be reset 1087 * @epaddr: the endpoint's address. Endpoint number for output, 1088 * endpoint number + USB_DIR_IN for input 1089 * 1090 * Resets any host-side endpoint state such as the toggle bit, 1091 * sequence number or current window. 1092 */ 1093 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr) 1094 { 1095 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1096 struct usb_host_endpoint *ep; 1097 1098 if (usb_endpoint_out(epaddr)) 1099 ep = dev->ep_out[epnum]; 1100 else 1101 ep = dev->ep_in[epnum]; 1102 if (ep) 1103 usb_hcd_reset_endpoint(dev, ep); 1104 } 1105 EXPORT_SYMBOL_GPL(usb_reset_endpoint); 1106 1107 1108 /** 1109 * usb_disable_interface -- Disable all endpoints for an interface 1110 * @dev: the device whose interface is being disabled 1111 * @intf: pointer to the interface descriptor 1112 * @reset_hardware: flag to erase any endpoint state stored in the 1113 * controller hardware 1114 * 1115 * Disables all the endpoints for the interface's current altsetting. 1116 */ 1117 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf, 1118 bool reset_hardware) 1119 { 1120 struct usb_host_interface *alt = intf->cur_altsetting; 1121 int i; 1122 1123 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 1124 usb_disable_endpoint(dev, 1125 alt->endpoint[i].desc.bEndpointAddress, 1126 reset_hardware); 1127 } 1128 } 1129 1130 /** 1131 * usb_disable_device - Disable all the endpoints for a USB device 1132 * @dev: the device whose endpoints are being disabled 1133 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. 1134 * 1135 * Disables all the device's endpoints, potentially including endpoint 0. 1136 * Deallocates hcd/hardware state for the endpoints (nuking all or most 1137 * pending urbs) and usbcore state for the interfaces, so that usbcore 1138 * must usb_set_configuration() before any interfaces could be used. 1139 */ 1140 void usb_disable_device(struct usb_device *dev, int skip_ep0) 1141 { 1142 int i; 1143 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1144 1145 /* getting rid of interfaces will disconnect 1146 * any drivers bound to them (a key side effect) 1147 */ 1148 if (dev->actconfig) { 1149 /* 1150 * FIXME: In order to avoid self-deadlock involving the 1151 * bandwidth_mutex, we have to mark all the interfaces 1152 * before unregistering any of them. 1153 */ 1154 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) 1155 dev->actconfig->interface[i]->unregistering = 1; 1156 1157 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1158 struct usb_interface *interface; 1159 1160 /* remove this interface if it has been registered */ 1161 interface = dev->actconfig->interface[i]; 1162 if (!device_is_registered(&interface->dev)) 1163 continue; 1164 dev_dbg(&dev->dev, "unregistering interface %s\n", 1165 dev_name(&interface->dev)); 1166 remove_intf_ep_devs(interface); 1167 device_del(&interface->dev); 1168 } 1169 1170 /* Now that the interfaces are unbound, nobody should 1171 * try to access them. 1172 */ 1173 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1174 put_device(&dev->actconfig->interface[i]->dev); 1175 dev->actconfig->interface[i] = NULL; 1176 } 1177 dev->actconfig = NULL; 1178 if (dev->state == USB_STATE_CONFIGURED) 1179 usb_set_device_state(dev, USB_STATE_ADDRESS); 1180 } 1181 1182 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__, 1183 skip_ep0 ? "non-ep0" : "all"); 1184 if (hcd->driver->check_bandwidth) { 1185 /* First pass: Cancel URBs, leave endpoint pointers intact. */ 1186 for (i = skip_ep0; i < 16; ++i) { 1187 usb_disable_endpoint(dev, i, false); 1188 usb_disable_endpoint(dev, i + USB_DIR_IN, false); 1189 } 1190 /* Remove endpoints from the host controller internal state */ 1191 mutex_lock(hcd->bandwidth_mutex); 1192 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); 1193 mutex_unlock(hcd->bandwidth_mutex); 1194 /* Second pass: remove endpoint pointers */ 1195 } 1196 for (i = skip_ep0; i < 16; ++i) { 1197 usb_disable_endpoint(dev, i, true); 1198 usb_disable_endpoint(dev, i + USB_DIR_IN, true); 1199 } 1200 } 1201 1202 /** 1203 * usb_enable_endpoint - Enable an endpoint for USB communications 1204 * @dev: the device whose interface is being enabled 1205 * @ep: the endpoint 1206 * @reset_ep: flag to reset the endpoint state 1207 * 1208 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers. 1209 * For control endpoints, both the input and output sides are handled. 1210 */ 1211 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep, 1212 bool reset_ep) 1213 { 1214 int epnum = usb_endpoint_num(&ep->desc); 1215 int is_out = usb_endpoint_dir_out(&ep->desc); 1216 int is_control = usb_endpoint_xfer_control(&ep->desc); 1217 1218 if (reset_ep) 1219 usb_hcd_reset_endpoint(dev, ep); 1220 if (is_out || is_control) 1221 dev->ep_out[epnum] = ep; 1222 if (!is_out || is_control) 1223 dev->ep_in[epnum] = ep; 1224 ep->enabled = 1; 1225 } 1226 1227 /** 1228 * usb_enable_interface - Enable all the endpoints for an interface 1229 * @dev: the device whose interface is being enabled 1230 * @intf: pointer to the interface descriptor 1231 * @reset_eps: flag to reset the endpoints' state 1232 * 1233 * Enables all the endpoints for the interface's current altsetting. 1234 */ 1235 void usb_enable_interface(struct usb_device *dev, 1236 struct usb_interface *intf, bool reset_eps) 1237 { 1238 struct usb_host_interface *alt = intf->cur_altsetting; 1239 int i; 1240 1241 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1242 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps); 1243 } 1244 1245 /** 1246 * usb_set_interface - Makes a particular alternate setting be current 1247 * @dev: the device whose interface is being updated 1248 * @interface: the interface being updated 1249 * @alternate: the setting being chosen. 1250 * Context: !in_interrupt () 1251 * 1252 * This is used to enable data transfers on interfaces that may not 1253 * be enabled by default. Not all devices support such configurability. 1254 * Only the driver bound to an interface may change its setting. 1255 * 1256 * Within any given configuration, each interface may have several 1257 * alternative settings. These are often used to control levels of 1258 * bandwidth consumption. For example, the default setting for a high 1259 * speed interrupt endpoint may not send more than 64 bytes per microframe, 1260 * while interrupt transfers of up to 3KBytes per microframe are legal. 1261 * Also, isochronous endpoints may never be part of an 1262 * interface's default setting. To access such bandwidth, alternate 1263 * interface settings must be made current. 1264 * 1265 * Note that in the Linux USB subsystem, bandwidth associated with 1266 * an endpoint in a given alternate setting is not reserved until an URB 1267 * is submitted that needs that bandwidth. Some other operating systems 1268 * allocate bandwidth early, when a configuration is chosen. 1269 * 1270 * This call is synchronous, and may not be used in an interrupt context. 1271 * Also, drivers must not change altsettings while urbs are scheduled for 1272 * endpoints in that interface; all such urbs must first be completed 1273 * (perhaps forced by unlinking). 1274 * 1275 * Returns zero on success, or else the status code returned by the 1276 * underlying usb_control_msg() call. 1277 */ 1278 int usb_set_interface(struct usb_device *dev, int interface, int alternate) 1279 { 1280 struct usb_interface *iface; 1281 struct usb_host_interface *alt; 1282 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1283 int ret; 1284 int manual = 0; 1285 unsigned int epaddr; 1286 unsigned int pipe; 1287 1288 if (dev->state == USB_STATE_SUSPENDED) 1289 return -EHOSTUNREACH; 1290 1291 iface = usb_ifnum_to_if(dev, interface); 1292 if (!iface) { 1293 dev_dbg(&dev->dev, "selecting invalid interface %d\n", 1294 interface); 1295 return -EINVAL; 1296 } 1297 if (iface->unregistering) 1298 return -ENODEV; 1299 1300 alt = usb_altnum_to_altsetting(iface, alternate); 1301 if (!alt) { 1302 dev_warn(&dev->dev, "selecting invalid altsetting %d\n", 1303 alternate); 1304 return -EINVAL; 1305 } 1306 1307 /* Make sure we have enough bandwidth for this alternate interface. 1308 * Remove the current alt setting and add the new alt setting. 1309 */ 1310 mutex_lock(hcd->bandwidth_mutex); 1311 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt); 1312 if (ret < 0) { 1313 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n", 1314 alternate); 1315 mutex_unlock(hcd->bandwidth_mutex); 1316 return ret; 1317 } 1318 1319 if (dev->quirks & USB_QUIRK_NO_SET_INTF) 1320 ret = -EPIPE; 1321 else 1322 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1323 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE, 1324 alternate, interface, NULL, 0, 5000); 1325 1326 /* 9.4.10 says devices don't need this and are free to STALL the 1327 * request if the interface only has one alternate setting. 1328 */ 1329 if (ret == -EPIPE && iface->num_altsetting == 1) { 1330 dev_dbg(&dev->dev, 1331 "manual set_interface for iface %d, alt %d\n", 1332 interface, alternate); 1333 manual = 1; 1334 } else if (ret < 0) { 1335 /* Re-instate the old alt setting */ 1336 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting); 1337 mutex_unlock(hcd->bandwidth_mutex); 1338 return ret; 1339 } 1340 mutex_unlock(hcd->bandwidth_mutex); 1341 1342 /* FIXME drivers shouldn't need to replicate/bugfix the logic here 1343 * when they implement async or easily-killable versions of this or 1344 * other "should-be-internal" functions (like clear_halt). 1345 * should hcd+usbcore postprocess control requests? 1346 */ 1347 1348 /* prevent submissions using previous endpoint settings */ 1349 if (iface->cur_altsetting != alt) { 1350 remove_intf_ep_devs(iface); 1351 usb_remove_sysfs_intf_files(iface); 1352 } 1353 usb_disable_interface(dev, iface, true); 1354 1355 iface->cur_altsetting = alt; 1356 1357 /* If the interface only has one altsetting and the device didn't 1358 * accept the request, we attempt to carry out the equivalent action 1359 * by manually clearing the HALT feature for each endpoint in the 1360 * new altsetting. 1361 */ 1362 if (manual) { 1363 int i; 1364 1365 for (i = 0; i < alt->desc.bNumEndpoints; i++) { 1366 epaddr = alt->endpoint[i].desc.bEndpointAddress; 1367 pipe = __create_pipe(dev, 1368 USB_ENDPOINT_NUMBER_MASK & epaddr) | 1369 (usb_endpoint_out(epaddr) ? 1370 USB_DIR_OUT : USB_DIR_IN); 1371 1372 usb_clear_halt(dev, pipe); 1373 } 1374 } 1375 1376 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting 1377 * 1378 * Note: 1379 * Despite EP0 is always present in all interfaces/AS, the list of 1380 * endpoints from the descriptor does not contain EP0. Due to its 1381 * omnipresence one might expect EP0 being considered "affected" by 1382 * any SetInterface request and hence assume toggles need to be reset. 1383 * However, EP0 toggles are re-synced for every individual transfer 1384 * during the SETUP stage - hence EP0 toggles are "don't care" here. 1385 * (Likewise, EP0 never "halts" on well designed devices.) 1386 */ 1387 usb_enable_interface(dev, iface, true); 1388 if (device_is_registered(&iface->dev)) { 1389 usb_create_sysfs_intf_files(iface); 1390 create_intf_ep_devs(iface); 1391 } 1392 return 0; 1393 } 1394 EXPORT_SYMBOL_GPL(usb_set_interface); 1395 1396 /** 1397 * usb_reset_configuration - lightweight device reset 1398 * @dev: the device whose configuration is being reset 1399 * 1400 * This issues a standard SET_CONFIGURATION request to the device using 1401 * the current configuration. The effect is to reset most USB-related 1402 * state in the device, including interface altsettings (reset to zero), 1403 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt 1404 * endpoints). Other usbcore state is unchanged, including bindings of 1405 * usb device drivers to interfaces. 1406 * 1407 * Because this affects multiple interfaces, avoid using this with composite 1408 * (multi-interface) devices. Instead, the driver for each interface may 1409 * use usb_set_interface() on the interfaces it claims. Be careful though; 1410 * some devices don't support the SET_INTERFACE request, and others won't 1411 * reset all the interface state (notably endpoint state). Resetting the whole 1412 * configuration would affect other drivers' interfaces. 1413 * 1414 * The caller must own the device lock. 1415 * 1416 * Returns zero on success, else a negative error code. 1417 */ 1418 int usb_reset_configuration(struct usb_device *dev) 1419 { 1420 int i, retval; 1421 struct usb_host_config *config; 1422 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1423 1424 if (dev->state == USB_STATE_SUSPENDED) 1425 return -EHOSTUNREACH; 1426 1427 /* caller must have locked the device and must own 1428 * the usb bus readlock (so driver bindings are stable); 1429 * calls during probe() are fine 1430 */ 1431 1432 for (i = 1; i < 16; ++i) { 1433 usb_disable_endpoint(dev, i, true); 1434 usb_disable_endpoint(dev, i + USB_DIR_IN, true); 1435 } 1436 1437 config = dev->actconfig; 1438 retval = 0; 1439 mutex_lock(hcd->bandwidth_mutex); 1440 /* Make sure we have enough bandwidth for each alternate setting 0 */ 1441 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1442 struct usb_interface *intf = config->interface[i]; 1443 struct usb_host_interface *alt; 1444 1445 alt = usb_altnum_to_altsetting(intf, 0); 1446 if (!alt) 1447 alt = &intf->altsetting[0]; 1448 if (alt != intf->cur_altsetting) 1449 retval = usb_hcd_alloc_bandwidth(dev, NULL, 1450 intf->cur_altsetting, alt); 1451 if (retval < 0) 1452 break; 1453 } 1454 /* If not, reinstate the old alternate settings */ 1455 if (retval < 0) { 1456 reset_old_alts: 1457 for (i--; i >= 0; i--) { 1458 struct usb_interface *intf = config->interface[i]; 1459 struct usb_host_interface *alt; 1460 1461 alt = usb_altnum_to_altsetting(intf, 0); 1462 if (!alt) 1463 alt = &intf->altsetting[0]; 1464 if (alt != intf->cur_altsetting) 1465 usb_hcd_alloc_bandwidth(dev, NULL, 1466 alt, intf->cur_altsetting); 1467 } 1468 mutex_unlock(hcd->bandwidth_mutex); 1469 return retval; 1470 } 1471 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1472 USB_REQ_SET_CONFIGURATION, 0, 1473 config->desc.bConfigurationValue, 0, 1474 NULL, 0, USB_CTRL_SET_TIMEOUT); 1475 if (retval < 0) 1476 goto reset_old_alts; 1477 mutex_unlock(hcd->bandwidth_mutex); 1478 1479 /* re-init hc/hcd interface/endpoint state */ 1480 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1481 struct usb_interface *intf = config->interface[i]; 1482 struct usb_host_interface *alt; 1483 1484 alt = usb_altnum_to_altsetting(intf, 0); 1485 1486 /* No altsetting 0? We'll assume the first altsetting. 1487 * We could use a GetInterface call, but if a device is 1488 * so non-compliant that it doesn't have altsetting 0 1489 * then I wouldn't trust its reply anyway. 1490 */ 1491 if (!alt) 1492 alt = &intf->altsetting[0]; 1493 1494 if (alt != intf->cur_altsetting) { 1495 remove_intf_ep_devs(intf); 1496 usb_remove_sysfs_intf_files(intf); 1497 } 1498 intf->cur_altsetting = alt; 1499 usb_enable_interface(dev, intf, true); 1500 if (device_is_registered(&intf->dev)) { 1501 usb_create_sysfs_intf_files(intf); 1502 create_intf_ep_devs(intf); 1503 } 1504 } 1505 return 0; 1506 } 1507 EXPORT_SYMBOL_GPL(usb_reset_configuration); 1508 1509 static void usb_release_interface(struct device *dev) 1510 { 1511 struct usb_interface *intf = to_usb_interface(dev); 1512 struct usb_interface_cache *intfc = 1513 altsetting_to_usb_interface_cache(intf->altsetting); 1514 1515 kref_put(&intfc->ref, usb_release_interface_cache); 1516 kfree(intf); 1517 } 1518 1519 #ifdef CONFIG_HOTPLUG 1520 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env) 1521 { 1522 struct usb_device *usb_dev; 1523 struct usb_interface *intf; 1524 struct usb_host_interface *alt; 1525 1526 intf = to_usb_interface(dev); 1527 usb_dev = interface_to_usbdev(intf); 1528 alt = intf->cur_altsetting; 1529 1530 if (add_uevent_var(env, "INTERFACE=%d/%d/%d", 1531 alt->desc.bInterfaceClass, 1532 alt->desc.bInterfaceSubClass, 1533 alt->desc.bInterfaceProtocol)) 1534 return -ENOMEM; 1535 1536 if (add_uevent_var(env, 1537 "MODALIAS=usb:" 1538 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X", 1539 le16_to_cpu(usb_dev->descriptor.idVendor), 1540 le16_to_cpu(usb_dev->descriptor.idProduct), 1541 le16_to_cpu(usb_dev->descriptor.bcdDevice), 1542 usb_dev->descriptor.bDeviceClass, 1543 usb_dev->descriptor.bDeviceSubClass, 1544 usb_dev->descriptor.bDeviceProtocol, 1545 alt->desc.bInterfaceClass, 1546 alt->desc.bInterfaceSubClass, 1547 alt->desc.bInterfaceProtocol)) 1548 return -ENOMEM; 1549 1550 return 0; 1551 } 1552 1553 #else 1554 1555 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env) 1556 { 1557 return -ENODEV; 1558 } 1559 #endif /* CONFIG_HOTPLUG */ 1560 1561 struct device_type usb_if_device_type = { 1562 .name = "usb_interface", 1563 .release = usb_release_interface, 1564 .uevent = usb_if_uevent, 1565 }; 1566 1567 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev, 1568 struct usb_host_config *config, 1569 u8 inum) 1570 { 1571 struct usb_interface_assoc_descriptor *retval = NULL; 1572 struct usb_interface_assoc_descriptor *intf_assoc; 1573 int first_intf; 1574 int last_intf; 1575 int i; 1576 1577 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) { 1578 intf_assoc = config->intf_assoc[i]; 1579 if (intf_assoc->bInterfaceCount == 0) 1580 continue; 1581 1582 first_intf = intf_assoc->bFirstInterface; 1583 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1); 1584 if (inum >= first_intf && inum <= last_intf) { 1585 if (!retval) 1586 retval = intf_assoc; 1587 else 1588 dev_err(&dev->dev, "Interface #%d referenced" 1589 " by multiple IADs\n", inum); 1590 } 1591 } 1592 1593 return retval; 1594 } 1595 1596 1597 /* 1598 * Internal function to queue a device reset 1599 * 1600 * This is initialized into the workstruct in 'struct 1601 * usb_device->reset_ws' that is launched by 1602 * message.c:usb_set_configuration() when initializing each 'struct 1603 * usb_interface'. 1604 * 1605 * It is safe to get the USB device without reference counts because 1606 * the life cycle of @iface is bound to the life cycle of @udev. Then, 1607 * this function will be ran only if @iface is alive (and before 1608 * freeing it any scheduled instances of it will have been cancelled). 1609 * 1610 * We need to set a flag (usb_dev->reset_running) because when we call 1611 * the reset, the interfaces might be unbound. The current interface 1612 * cannot try to remove the queued work as it would cause a deadlock 1613 * (you cannot remove your work from within your executing 1614 * workqueue). This flag lets it know, so that 1615 * usb_cancel_queued_reset() doesn't try to do it. 1616 * 1617 * See usb_queue_reset_device() for more details 1618 */ 1619 static void __usb_queue_reset_device(struct work_struct *ws) 1620 { 1621 int rc; 1622 struct usb_interface *iface = 1623 container_of(ws, struct usb_interface, reset_ws); 1624 struct usb_device *udev = interface_to_usbdev(iface); 1625 1626 rc = usb_lock_device_for_reset(udev, iface); 1627 if (rc >= 0) { 1628 iface->reset_running = 1; 1629 usb_reset_device(udev); 1630 iface->reset_running = 0; 1631 usb_unlock_device(udev); 1632 } 1633 } 1634 1635 1636 /* 1637 * usb_set_configuration - Makes a particular device setting be current 1638 * @dev: the device whose configuration is being updated 1639 * @configuration: the configuration being chosen. 1640 * Context: !in_interrupt(), caller owns the device lock 1641 * 1642 * This is used to enable non-default device modes. Not all devices 1643 * use this kind of configurability; many devices only have one 1644 * configuration. 1645 * 1646 * @configuration is the value of the configuration to be installed. 1647 * According to the USB spec (e.g. section 9.1.1.5), configuration values 1648 * must be non-zero; a value of zero indicates that the device in 1649 * unconfigured. However some devices erroneously use 0 as one of their 1650 * configuration values. To help manage such devices, this routine will 1651 * accept @configuration = -1 as indicating the device should be put in 1652 * an unconfigured state. 1653 * 1654 * USB device configurations may affect Linux interoperability, 1655 * power consumption and the functionality available. For example, 1656 * the default configuration is limited to using 100mA of bus power, 1657 * so that when certain device functionality requires more power, 1658 * and the device is bus powered, that functionality should be in some 1659 * non-default device configuration. Other device modes may also be 1660 * reflected as configuration options, such as whether two ISDN 1661 * channels are available independently; and choosing between open 1662 * standard device protocols (like CDC) or proprietary ones. 1663 * 1664 * Note that a non-authorized device (dev->authorized == 0) will only 1665 * be put in unconfigured mode. 1666 * 1667 * Note that USB has an additional level of device configurability, 1668 * associated with interfaces. That configurability is accessed using 1669 * usb_set_interface(). 1670 * 1671 * This call is synchronous. The calling context must be able to sleep, 1672 * must own the device lock, and must not hold the driver model's USB 1673 * bus mutex; usb interface driver probe() methods cannot use this routine. 1674 * 1675 * Returns zero on success, or else the status code returned by the 1676 * underlying call that failed. On successful completion, each interface 1677 * in the original device configuration has been destroyed, and each one 1678 * in the new configuration has been probed by all relevant usb device 1679 * drivers currently known to the kernel. 1680 */ 1681 int usb_set_configuration(struct usb_device *dev, int configuration) 1682 { 1683 int i, ret; 1684 struct usb_host_config *cp = NULL; 1685 struct usb_interface **new_interfaces = NULL; 1686 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1687 int n, nintf; 1688 1689 if (dev->authorized == 0 || configuration == -1) 1690 configuration = 0; 1691 else { 1692 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) { 1693 if (dev->config[i].desc.bConfigurationValue == 1694 configuration) { 1695 cp = &dev->config[i]; 1696 break; 1697 } 1698 } 1699 } 1700 if ((!cp && configuration != 0)) 1701 return -EINVAL; 1702 1703 /* The USB spec says configuration 0 means unconfigured. 1704 * But if a device includes a configuration numbered 0, 1705 * we will accept it as a correctly configured state. 1706 * Use -1 if you really want to unconfigure the device. 1707 */ 1708 if (cp && configuration == 0) 1709 dev_warn(&dev->dev, "config 0 descriptor??\n"); 1710 1711 /* Allocate memory for new interfaces before doing anything else, 1712 * so that if we run out then nothing will have changed. */ 1713 n = nintf = 0; 1714 if (cp) { 1715 nintf = cp->desc.bNumInterfaces; 1716 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces), 1717 GFP_NOIO); 1718 if (!new_interfaces) { 1719 dev_err(&dev->dev, "Out of memory\n"); 1720 return -ENOMEM; 1721 } 1722 1723 for (; n < nintf; ++n) { 1724 new_interfaces[n] = kzalloc( 1725 sizeof(struct usb_interface), 1726 GFP_NOIO); 1727 if (!new_interfaces[n]) { 1728 dev_err(&dev->dev, "Out of memory\n"); 1729 ret = -ENOMEM; 1730 free_interfaces: 1731 while (--n >= 0) 1732 kfree(new_interfaces[n]); 1733 kfree(new_interfaces); 1734 return ret; 1735 } 1736 } 1737 1738 i = dev->bus_mA - cp->desc.bMaxPower * 2; 1739 if (i < 0) 1740 dev_warn(&dev->dev, "new config #%d exceeds power " 1741 "limit by %dmA\n", 1742 configuration, -i); 1743 } 1744 1745 /* Wake up the device so we can send it the Set-Config request */ 1746 ret = usb_autoresume_device(dev); 1747 if (ret) 1748 goto free_interfaces; 1749 1750 /* if it's already configured, clear out old state first. 1751 * getting rid of old interfaces means unbinding their drivers. 1752 */ 1753 if (dev->state != USB_STATE_ADDRESS) 1754 usb_disable_device(dev, 1); /* Skip ep0 */ 1755 1756 /* Get rid of pending async Set-Config requests for this device */ 1757 cancel_async_set_config(dev); 1758 1759 /* Make sure we have bandwidth (and available HCD resources) for this 1760 * configuration. Remove endpoints from the schedule if we're dropping 1761 * this configuration to set configuration 0. After this point, the 1762 * host controller will not allow submissions to dropped endpoints. If 1763 * this call fails, the device state is unchanged. 1764 */ 1765 mutex_lock(hcd->bandwidth_mutex); 1766 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL); 1767 if (ret < 0) { 1768 mutex_unlock(hcd->bandwidth_mutex); 1769 usb_autosuspend_device(dev); 1770 goto free_interfaces; 1771 } 1772 1773 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1774 USB_REQ_SET_CONFIGURATION, 0, configuration, 0, 1775 NULL, 0, USB_CTRL_SET_TIMEOUT); 1776 if (ret < 0) { 1777 /* All the old state is gone, so what else can we do? 1778 * The device is probably useless now anyway. 1779 */ 1780 cp = NULL; 1781 } 1782 1783 dev->actconfig = cp; 1784 if (!cp) { 1785 usb_set_device_state(dev, USB_STATE_ADDRESS); 1786 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); 1787 mutex_unlock(hcd->bandwidth_mutex); 1788 usb_autosuspend_device(dev); 1789 goto free_interfaces; 1790 } 1791 mutex_unlock(hcd->bandwidth_mutex); 1792 usb_set_device_state(dev, USB_STATE_CONFIGURED); 1793 1794 /* Initialize the new interface structures and the 1795 * hc/hcd/usbcore interface/endpoint state. 1796 */ 1797 for (i = 0; i < nintf; ++i) { 1798 struct usb_interface_cache *intfc; 1799 struct usb_interface *intf; 1800 struct usb_host_interface *alt; 1801 1802 cp->interface[i] = intf = new_interfaces[i]; 1803 intfc = cp->intf_cache[i]; 1804 intf->altsetting = intfc->altsetting; 1805 intf->num_altsetting = intfc->num_altsetting; 1806 intf->intf_assoc = find_iad(dev, cp, i); 1807 kref_get(&intfc->ref); 1808 1809 alt = usb_altnum_to_altsetting(intf, 0); 1810 1811 /* No altsetting 0? We'll assume the first altsetting. 1812 * We could use a GetInterface call, but if a device is 1813 * so non-compliant that it doesn't have altsetting 0 1814 * then I wouldn't trust its reply anyway. 1815 */ 1816 if (!alt) 1817 alt = &intf->altsetting[0]; 1818 1819 intf->cur_altsetting = alt; 1820 usb_enable_interface(dev, intf, true); 1821 intf->dev.parent = &dev->dev; 1822 intf->dev.driver = NULL; 1823 intf->dev.bus = &usb_bus_type; 1824 intf->dev.type = &usb_if_device_type; 1825 intf->dev.groups = usb_interface_groups; 1826 intf->dev.dma_mask = dev->dev.dma_mask; 1827 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device); 1828 intf->minor = -1; 1829 device_initialize(&intf->dev); 1830 pm_runtime_no_callbacks(&intf->dev); 1831 dev_set_name(&intf->dev, "%d-%s:%d.%d", 1832 dev->bus->busnum, dev->devpath, 1833 configuration, alt->desc.bInterfaceNumber); 1834 } 1835 kfree(new_interfaces); 1836 1837 if (cp->string == NULL && 1838 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS)) 1839 cp->string = usb_cache_string(dev, cp->desc.iConfiguration); 1840 1841 /* Now that all the interfaces are set up, register them 1842 * to trigger binding of drivers to interfaces. probe() 1843 * routines may install different altsettings and may 1844 * claim() any interfaces not yet bound. Many class drivers 1845 * need that: CDC, audio, video, etc. 1846 */ 1847 for (i = 0; i < nintf; ++i) { 1848 struct usb_interface *intf = cp->interface[i]; 1849 1850 dev_dbg(&dev->dev, 1851 "adding %s (config #%d, interface %d)\n", 1852 dev_name(&intf->dev), configuration, 1853 intf->cur_altsetting->desc.bInterfaceNumber); 1854 device_enable_async_suspend(&intf->dev); 1855 ret = device_add(&intf->dev); 1856 if (ret != 0) { 1857 dev_err(&dev->dev, "device_add(%s) --> %d\n", 1858 dev_name(&intf->dev), ret); 1859 continue; 1860 } 1861 create_intf_ep_devs(intf); 1862 } 1863 1864 usb_autosuspend_device(dev); 1865 return 0; 1866 } 1867 1868 static LIST_HEAD(set_config_list); 1869 static DEFINE_SPINLOCK(set_config_lock); 1870 1871 struct set_config_request { 1872 struct usb_device *udev; 1873 int config; 1874 struct work_struct work; 1875 struct list_head node; 1876 }; 1877 1878 /* Worker routine for usb_driver_set_configuration() */ 1879 static void driver_set_config_work(struct work_struct *work) 1880 { 1881 struct set_config_request *req = 1882 container_of(work, struct set_config_request, work); 1883 struct usb_device *udev = req->udev; 1884 1885 usb_lock_device(udev); 1886 spin_lock(&set_config_lock); 1887 list_del(&req->node); 1888 spin_unlock(&set_config_lock); 1889 1890 if (req->config >= -1) /* Is req still valid? */ 1891 usb_set_configuration(udev, req->config); 1892 usb_unlock_device(udev); 1893 usb_put_dev(udev); 1894 kfree(req); 1895 } 1896 1897 /* Cancel pending Set-Config requests for a device whose configuration 1898 * was just changed 1899 */ 1900 static void cancel_async_set_config(struct usb_device *udev) 1901 { 1902 struct set_config_request *req; 1903 1904 spin_lock(&set_config_lock); 1905 list_for_each_entry(req, &set_config_list, node) { 1906 if (req->udev == udev) 1907 req->config = -999; /* Mark as cancelled */ 1908 } 1909 spin_unlock(&set_config_lock); 1910 } 1911 1912 /** 1913 * usb_driver_set_configuration - Provide a way for drivers to change device configurations 1914 * @udev: the device whose configuration is being updated 1915 * @config: the configuration being chosen. 1916 * Context: In process context, must be able to sleep 1917 * 1918 * Device interface drivers are not allowed to change device configurations. 1919 * This is because changing configurations will destroy the interface the 1920 * driver is bound to and create new ones; it would be like a floppy-disk 1921 * driver telling the computer to replace the floppy-disk drive with a 1922 * tape drive! 1923 * 1924 * Still, in certain specialized circumstances the need may arise. This 1925 * routine gets around the normal restrictions by using a work thread to 1926 * submit the change-config request. 1927 * 1928 * Returns 0 if the request was successfully queued, error code otherwise. 1929 * The caller has no way to know whether the queued request will eventually 1930 * succeed. 1931 */ 1932 int usb_driver_set_configuration(struct usb_device *udev, int config) 1933 { 1934 struct set_config_request *req; 1935 1936 req = kmalloc(sizeof(*req), GFP_KERNEL); 1937 if (!req) 1938 return -ENOMEM; 1939 req->udev = udev; 1940 req->config = config; 1941 INIT_WORK(&req->work, driver_set_config_work); 1942 1943 spin_lock(&set_config_lock); 1944 list_add(&req->node, &set_config_list); 1945 spin_unlock(&set_config_lock); 1946 1947 usb_get_dev(udev); 1948 schedule_work(&req->work); 1949 return 0; 1950 } 1951 EXPORT_SYMBOL_GPL(usb_driver_set_configuration); 1952