xref: /openbmc/linux/drivers/usb/core/message.c (revision 63dc02bd)
1 /*
2  * message.c - synchronous message handling
3  */
4 
5 #include <linux/pci.h>	/* for scatterlist macros */
6 #include <linux/usb.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/timer.h>
12 #include <linux/ctype.h>
13 #include <linux/nls.h>
14 #include <linux/device.h>
15 #include <linux/scatterlist.h>
16 #include <linux/usb/quirks.h>
17 #include <linux/usb/hcd.h>	/* for usbcore internals */
18 #include <asm/byteorder.h>
19 
20 #include "usb.h"
21 
22 static void cancel_async_set_config(struct usb_device *udev);
23 
24 struct api_context {
25 	struct completion	done;
26 	int			status;
27 };
28 
29 static void usb_api_blocking_completion(struct urb *urb)
30 {
31 	struct api_context *ctx = urb->context;
32 
33 	ctx->status = urb->status;
34 	complete(&ctx->done);
35 }
36 
37 
38 /*
39  * Starts urb and waits for completion or timeout. Note that this call
40  * is NOT interruptible. Many device driver i/o requests should be
41  * interruptible and therefore these drivers should implement their
42  * own interruptible routines.
43  */
44 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
45 {
46 	struct api_context ctx;
47 	unsigned long expire;
48 	int retval;
49 
50 	init_completion(&ctx.done);
51 	urb->context = &ctx;
52 	urb->actual_length = 0;
53 	retval = usb_submit_urb(urb, GFP_NOIO);
54 	if (unlikely(retval))
55 		goto out;
56 
57 	expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
58 	if (!wait_for_completion_timeout(&ctx.done, expire)) {
59 		usb_kill_urb(urb);
60 		retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
61 
62 		dev_dbg(&urb->dev->dev,
63 			"%s timed out on ep%d%s len=%u/%u\n",
64 			current->comm,
65 			usb_endpoint_num(&urb->ep->desc),
66 			usb_urb_dir_in(urb) ? "in" : "out",
67 			urb->actual_length,
68 			urb->transfer_buffer_length);
69 	} else
70 		retval = ctx.status;
71 out:
72 	if (actual_length)
73 		*actual_length = urb->actual_length;
74 
75 	usb_free_urb(urb);
76 	return retval;
77 }
78 
79 /*-------------------------------------------------------------------*/
80 /* returns status (negative) or length (positive) */
81 static int usb_internal_control_msg(struct usb_device *usb_dev,
82 				    unsigned int pipe,
83 				    struct usb_ctrlrequest *cmd,
84 				    void *data, int len, int timeout)
85 {
86 	struct urb *urb;
87 	int retv;
88 	int length;
89 
90 	urb = usb_alloc_urb(0, GFP_NOIO);
91 	if (!urb)
92 		return -ENOMEM;
93 
94 	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
95 			     len, usb_api_blocking_completion, NULL);
96 
97 	retv = usb_start_wait_urb(urb, timeout, &length);
98 	if (retv < 0)
99 		return retv;
100 	else
101 		return length;
102 }
103 
104 /**
105  * usb_control_msg - Builds a control urb, sends it off and waits for completion
106  * @dev: pointer to the usb device to send the message to
107  * @pipe: endpoint "pipe" to send the message to
108  * @request: USB message request value
109  * @requesttype: USB message request type value
110  * @value: USB message value
111  * @index: USB message index value
112  * @data: pointer to the data to send
113  * @size: length in bytes of the data to send
114  * @timeout: time in msecs to wait for the message to complete before timing
115  *	out (if 0 the wait is forever)
116  *
117  * Context: !in_interrupt ()
118  *
119  * This function sends a simple control message to a specified endpoint and
120  * waits for the message to complete, or timeout.
121  *
122  * If successful, it returns the number of bytes transferred, otherwise a
123  * negative error number.
124  *
125  * Don't use this function from within an interrupt context, like a bottom half
126  * handler.  If you need an asynchronous message, or need to send a message
127  * from within interrupt context, use usb_submit_urb().
128  * If a thread in your driver uses this call, make sure your disconnect()
129  * method can wait for it to complete.  Since you don't have a handle on the
130  * URB used, you can't cancel the request.
131  */
132 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
133 		    __u8 requesttype, __u16 value, __u16 index, void *data,
134 		    __u16 size, int timeout)
135 {
136 	struct usb_ctrlrequest *dr;
137 	int ret;
138 
139 	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
140 	if (!dr)
141 		return -ENOMEM;
142 
143 	dr->bRequestType = requesttype;
144 	dr->bRequest = request;
145 	dr->wValue = cpu_to_le16(value);
146 	dr->wIndex = cpu_to_le16(index);
147 	dr->wLength = cpu_to_le16(size);
148 
149 	/* dbg("usb_control_msg"); */
150 
151 	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
152 
153 	kfree(dr);
154 
155 	return ret;
156 }
157 EXPORT_SYMBOL_GPL(usb_control_msg);
158 
159 /**
160  * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
161  * @usb_dev: pointer to the usb device to send the message to
162  * @pipe: endpoint "pipe" to send the message to
163  * @data: pointer to the data to send
164  * @len: length in bytes of the data to send
165  * @actual_length: pointer to a location to put the actual length transferred
166  *	in bytes
167  * @timeout: time in msecs to wait for the message to complete before
168  *	timing out (if 0 the wait is forever)
169  *
170  * Context: !in_interrupt ()
171  *
172  * This function sends a simple interrupt message to a specified endpoint and
173  * waits for the message to complete, or timeout.
174  *
175  * If successful, it returns 0, otherwise a negative error number.  The number
176  * of actual bytes transferred will be stored in the actual_length paramater.
177  *
178  * Don't use this function from within an interrupt context, like a bottom half
179  * handler.  If you need an asynchronous message, or need to send a message
180  * from within interrupt context, use usb_submit_urb() If a thread in your
181  * driver uses this call, make sure your disconnect() method can wait for it to
182  * complete.  Since you don't have a handle on the URB used, you can't cancel
183  * the request.
184  */
185 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
186 		      void *data, int len, int *actual_length, int timeout)
187 {
188 	return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
189 }
190 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
191 
192 /**
193  * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
194  * @usb_dev: pointer to the usb device to send the message to
195  * @pipe: endpoint "pipe" to send the message to
196  * @data: pointer to the data to send
197  * @len: length in bytes of the data to send
198  * @actual_length: pointer to a location to put the actual length transferred
199  *	in bytes
200  * @timeout: time in msecs to wait for the message to complete before
201  *	timing out (if 0 the wait is forever)
202  *
203  * Context: !in_interrupt ()
204  *
205  * This function sends a simple bulk message to a specified endpoint
206  * and waits for the message to complete, or timeout.
207  *
208  * If successful, it returns 0, otherwise a negative error number.  The number
209  * of actual bytes transferred will be stored in the actual_length paramater.
210  *
211  * Don't use this function from within an interrupt context, like a bottom half
212  * handler.  If you need an asynchronous message, or need to send a message
213  * from within interrupt context, use usb_submit_urb() If a thread in your
214  * driver uses this call, make sure your disconnect() method can wait for it to
215  * complete.  Since you don't have a handle on the URB used, you can't cancel
216  * the request.
217  *
218  * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
219  * users are forced to abuse this routine by using it to submit URBs for
220  * interrupt endpoints.  We will take the liberty of creating an interrupt URB
221  * (with the default interval) if the target is an interrupt endpoint.
222  */
223 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
224 		 void *data, int len, int *actual_length, int timeout)
225 {
226 	struct urb *urb;
227 	struct usb_host_endpoint *ep;
228 
229 	ep = usb_pipe_endpoint(usb_dev, pipe);
230 	if (!ep || len < 0)
231 		return -EINVAL;
232 
233 	urb = usb_alloc_urb(0, GFP_KERNEL);
234 	if (!urb)
235 		return -ENOMEM;
236 
237 	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
238 			USB_ENDPOINT_XFER_INT) {
239 		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
240 		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
241 				usb_api_blocking_completion, NULL,
242 				ep->desc.bInterval);
243 	} else
244 		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
245 				usb_api_blocking_completion, NULL);
246 
247 	return usb_start_wait_urb(urb, timeout, actual_length);
248 }
249 EXPORT_SYMBOL_GPL(usb_bulk_msg);
250 
251 /*-------------------------------------------------------------------*/
252 
253 static void sg_clean(struct usb_sg_request *io)
254 {
255 	if (io->urbs) {
256 		while (io->entries--)
257 			usb_free_urb(io->urbs [io->entries]);
258 		kfree(io->urbs);
259 		io->urbs = NULL;
260 	}
261 	io->dev = NULL;
262 }
263 
264 static void sg_complete(struct urb *urb)
265 {
266 	struct usb_sg_request *io = urb->context;
267 	int status = urb->status;
268 
269 	spin_lock(&io->lock);
270 
271 	/* In 2.5 we require hcds' endpoint queues not to progress after fault
272 	 * reports, until the completion callback (this!) returns.  That lets
273 	 * device driver code (like this routine) unlink queued urbs first,
274 	 * if it needs to, since the HC won't work on them at all.  So it's
275 	 * not possible for page N+1 to overwrite page N, and so on.
276 	 *
277 	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
278 	 * complete before the HCD can get requests away from hardware,
279 	 * though never during cleanup after a hard fault.
280 	 */
281 	if (io->status
282 			&& (io->status != -ECONNRESET
283 				|| status != -ECONNRESET)
284 			&& urb->actual_length) {
285 		dev_err(io->dev->bus->controller,
286 			"dev %s ep%d%s scatterlist error %d/%d\n",
287 			io->dev->devpath,
288 			usb_endpoint_num(&urb->ep->desc),
289 			usb_urb_dir_in(urb) ? "in" : "out",
290 			status, io->status);
291 		/* BUG (); */
292 	}
293 
294 	if (io->status == 0 && status && status != -ECONNRESET) {
295 		int i, found, retval;
296 
297 		io->status = status;
298 
299 		/* the previous urbs, and this one, completed already.
300 		 * unlink pending urbs so they won't rx/tx bad data.
301 		 * careful: unlink can sometimes be synchronous...
302 		 */
303 		spin_unlock(&io->lock);
304 		for (i = 0, found = 0; i < io->entries; i++) {
305 			if (!io->urbs [i] || !io->urbs [i]->dev)
306 				continue;
307 			if (found) {
308 				retval = usb_unlink_urb(io->urbs [i]);
309 				if (retval != -EINPROGRESS &&
310 				    retval != -ENODEV &&
311 				    retval != -EBUSY &&
312 				    retval != -EIDRM)
313 					dev_err(&io->dev->dev,
314 						"%s, unlink --> %d\n",
315 						__func__, retval);
316 			} else if (urb == io->urbs [i])
317 				found = 1;
318 		}
319 		spin_lock(&io->lock);
320 	}
321 
322 	/* on the last completion, signal usb_sg_wait() */
323 	io->bytes += urb->actual_length;
324 	io->count--;
325 	if (!io->count)
326 		complete(&io->complete);
327 
328 	spin_unlock(&io->lock);
329 }
330 
331 
332 /**
333  * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
334  * @io: request block being initialized.  until usb_sg_wait() returns,
335  *	treat this as a pointer to an opaque block of memory,
336  * @dev: the usb device that will send or receive the data
337  * @pipe: endpoint "pipe" used to transfer the data
338  * @period: polling rate for interrupt endpoints, in frames or
339  * 	(for high speed endpoints) microframes; ignored for bulk
340  * @sg: scatterlist entries
341  * @nents: how many entries in the scatterlist
342  * @length: how many bytes to send from the scatterlist, or zero to
343  * 	send every byte identified in the list.
344  * @mem_flags: SLAB_* flags affecting memory allocations in this call
345  *
346  * Returns zero for success, else a negative errno value.  This initializes a
347  * scatter/gather request, allocating resources such as I/O mappings and urb
348  * memory (except maybe memory used by USB controller drivers).
349  *
350  * The request must be issued using usb_sg_wait(), which waits for the I/O to
351  * complete (or to be canceled) and then cleans up all resources allocated by
352  * usb_sg_init().
353  *
354  * The request may be canceled with usb_sg_cancel(), either before or after
355  * usb_sg_wait() is called.
356  */
357 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
358 		unsigned pipe, unsigned	period, struct scatterlist *sg,
359 		int nents, size_t length, gfp_t mem_flags)
360 {
361 	int i;
362 	int urb_flags;
363 	int use_sg;
364 
365 	if (!io || !dev || !sg
366 			|| usb_pipecontrol(pipe)
367 			|| usb_pipeisoc(pipe)
368 			|| nents <= 0)
369 		return -EINVAL;
370 
371 	spin_lock_init(&io->lock);
372 	io->dev = dev;
373 	io->pipe = pipe;
374 
375 	if (dev->bus->sg_tablesize > 0) {
376 		use_sg = true;
377 		io->entries = 1;
378 	} else {
379 		use_sg = false;
380 		io->entries = nents;
381 	}
382 
383 	/* initialize all the urbs we'll use */
384 	io->urbs = kmalloc(io->entries * sizeof *io->urbs, mem_flags);
385 	if (!io->urbs)
386 		goto nomem;
387 
388 	urb_flags = URB_NO_INTERRUPT;
389 	if (usb_pipein(pipe))
390 		urb_flags |= URB_SHORT_NOT_OK;
391 
392 	for_each_sg(sg, sg, io->entries, i) {
393 		struct urb *urb;
394 		unsigned len;
395 
396 		urb = usb_alloc_urb(0, mem_flags);
397 		if (!urb) {
398 			io->entries = i;
399 			goto nomem;
400 		}
401 		io->urbs[i] = urb;
402 
403 		urb->dev = NULL;
404 		urb->pipe = pipe;
405 		urb->interval = period;
406 		urb->transfer_flags = urb_flags;
407 		urb->complete = sg_complete;
408 		urb->context = io;
409 		urb->sg = sg;
410 
411 		if (use_sg) {
412 			/* There is no single transfer buffer */
413 			urb->transfer_buffer = NULL;
414 			urb->num_sgs = nents;
415 
416 			/* A length of zero means transfer the whole sg list */
417 			len = length;
418 			if (len == 0) {
419 				struct scatterlist	*sg2;
420 				int			j;
421 
422 				for_each_sg(sg, sg2, nents, j)
423 					len += sg2->length;
424 			}
425 		} else {
426 			/*
427 			 * Some systems can't use DMA; they use PIO instead.
428 			 * For their sakes, transfer_buffer is set whenever
429 			 * possible.
430 			 */
431 			if (!PageHighMem(sg_page(sg)))
432 				urb->transfer_buffer = sg_virt(sg);
433 			else
434 				urb->transfer_buffer = NULL;
435 
436 			len = sg->length;
437 			if (length) {
438 				len = min_t(size_t, len, length);
439 				length -= len;
440 				if (length == 0)
441 					io->entries = i + 1;
442 			}
443 		}
444 		urb->transfer_buffer_length = len;
445 	}
446 	io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
447 
448 	/* transaction state */
449 	io->count = io->entries;
450 	io->status = 0;
451 	io->bytes = 0;
452 	init_completion(&io->complete);
453 	return 0;
454 
455 nomem:
456 	sg_clean(io);
457 	return -ENOMEM;
458 }
459 EXPORT_SYMBOL_GPL(usb_sg_init);
460 
461 /**
462  * usb_sg_wait - synchronously execute scatter/gather request
463  * @io: request block handle, as initialized with usb_sg_init().
464  * 	some fields become accessible when this call returns.
465  * Context: !in_interrupt ()
466  *
467  * This function blocks until the specified I/O operation completes.  It
468  * leverages the grouping of the related I/O requests to get good transfer
469  * rates, by queueing the requests.  At higher speeds, such queuing can
470  * significantly improve USB throughput.
471  *
472  * There are three kinds of completion for this function.
473  * (1) success, where io->status is zero.  The number of io->bytes
474  *     transferred is as requested.
475  * (2) error, where io->status is a negative errno value.  The number
476  *     of io->bytes transferred before the error is usually less
477  *     than requested, and can be nonzero.
478  * (3) cancellation, a type of error with status -ECONNRESET that
479  *     is initiated by usb_sg_cancel().
480  *
481  * When this function returns, all memory allocated through usb_sg_init() or
482  * this call will have been freed.  The request block parameter may still be
483  * passed to usb_sg_cancel(), or it may be freed.  It could also be
484  * reinitialized and then reused.
485  *
486  * Data Transfer Rates:
487  *
488  * Bulk transfers are valid for full or high speed endpoints.
489  * The best full speed data rate is 19 packets of 64 bytes each
490  * per frame, or 1216 bytes per millisecond.
491  * The best high speed data rate is 13 packets of 512 bytes each
492  * per microframe, or 52 KBytes per millisecond.
493  *
494  * The reason to use interrupt transfers through this API would most likely
495  * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
496  * could be transferred.  That capability is less useful for low or full
497  * speed interrupt endpoints, which allow at most one packet per millisecond,
498  * of at most 8 or 64 bytes (respectively).
499  *
500  * It is not necessary to call this function to reserve bandwidth for devices
501  * under an xHCI host controller, as the bandwidth is reserved when the
502  * configuration or interface alt setting is selected.
503  */
504 void usb_sg_wait(struct usb_sg_request *io)
505 {
506 	int i;
507 	int entries = io->entries;
508 
509 	/* queue the urbs.  */
510 	spin_lock_irq(&io->lock);
511 	i = 0;
512 	while (i < entries && !io->status) {
513 		int retval;
514 
515 		io->urbs[i]->dev = io->dev;
516 		retval = usb_submit_urb(io->urbs [i], GFP_ATOMIC);
517 
518 		/* after we submit, let completions or cancelations fire;
519 		 * we handshake using io->status.
520 		 */
521 		spin_unlock_irq(&io->lock);
522 		switch (retval) {
523 			/* maybe we retrying will recover */
524 		case -ENXIO:	/* hc didn't queue this one */
525 		case -EAGAIN:
526 		case -ENOMEM:
527 			retval = 0;
528 			yield();
529 			break;
530 
531 			/* no error? continue immediately.
532 			 *
533 			 * NOTE: to work better with UHCI (4K I/O buffer may
534 			 * need 3K of TDs) it may be good to limit how many
535 			 * URBs are queued at once; N milliseconds?
536 			 */
537 		case 0:
538 			++i;
539 			cpu_relax();
540 			break;
541 
542 			/* fail any uncompleted urbs */
543 		default:
544 			io->urbs[i]->status = retval;
545 			dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
546 				__func__, retval);
547 			usb_sg_cancel(io);
548 		}
549 		spin_lock_irq(&io->lock);
550 		if (retval && (io->status == 0 || io->status == -ECONNRESET))
551 			io->status = retval;
552 	}
553 	io->count -= entries - i;
554 	if (io->count == 0)
555 		complete(&io->complete);
556 	spin_unlock_irq(&io->lock);
557 
558 	/* OK, yes, this could be packaged as non-blocking.
559 	 * So could the submit loop above ... but it's easier to
560 	 * solve neither problem than to solve both!
561 	 */
562 	wait_for_completion(&io->complete);
563 
564 	sg_clean(io);
565 }
566 EXPORT_SYMBOL_GPL(usb_sg_wait);
567 
568 /**
569  * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
570  * @io: request block, initialized with usb_sg_init()
571  *
572  * This stops a request after it has been started by usb_sg_wait().
573  * It can also prevents one initialized by usb_sg_init() from starting,
574  * so that call just frees resources allocated to the request.
575  */
576 void usb_sg_cancel(struct usb_sg_request *io)
577 {
578 	unsigned long flags;
579 
580 	spin_lock_irqsave(&io->lock, flags);
581 
582 	/* shut everything down, if it didn't already */
583 	if (!io->status) {
584 		int i;
585 
586 		io->status = -ECONNRESET;
587 		spin_unlock(&io->lock);
588 		for (i = 0; i < io->entries; i++) {
589 			int retval;
590 
591 			if (!io->urbs [i]->dev)
592 				continue;
593 			retval = usb_unlink_urb(io->urbs [i]);
594 			if (retval != -EINPROGRESS
595 					&& retval != -ENODEV
596 					&& retval != -EBUSY
597 					&& retval != -EIDRM)
598 				dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
599 					__func__, retval);
600 		}
601 		spin_lock(&io->lock);
602 	}
603 	spin_unlock_irqrestore(&io->lock, flags);
604 }
605 EXPORT_SYMBOL_GPL(usb_sg_cancel);
606 
607 /*-------------------------------------------------------------------*/
608 
609 /**
610  * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
611  * @dev: the device whose descriptor is being retrieved
612  * @type: the descriptor type (USB_DT_*)
613  * @index: the number of the descriptor
614  * @buf: where to put the descriptor
615  * @size: how big is "buf"?
616  * Context: !in_interrupt ()
617  *
618  * Gets a USB descriptor.  Convenience functions exist to simplify
619  * getting some types of descriptors.  Use
620  * usb_get_string() or usb_string() for USB_DT_STRING.
621  * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
622  * are part of the device structure.
623  * In addition to a number of USB-standard descriptors, some
624  * devices also use class-specific or vendor-specific descriptors.
625  *
626  * This call is synchronous, and may not be used in an interrupt context.
627  *
628  * Returns the number of bytes received on success, or else the status code
629  * returned by the underlying usb_control_msg() call.
630  */
631 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
632 		       unsigned char index, void *buf, int size)
633 {
634 	int i;
635 	int result;
636 
637 	memset(buf, 0, size);	/* Make sure we parse really received data */
638 
639 	for (i = 0; i < 3; ++i) {
640 		/* retry on length 0 or error; some devices are flakey */
641 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
642 				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
643 				(type << 8) + index, 0, buf, size,
644 				USB_CTRL_GET_TIMEOUT);
645 		if (result <= 0 && result != -ETIMEDOUT)
646 			continue;
647 		if (result > 1 && ((u8 *)buf)[1] != type) {
648 			result = -ENODATA;
649 			continue;
650 		}
651 		break;
652 	}
653 	return result;
654 }
655 EXPORT_SYMBOL_GPL(usb_get_descriptor);
656 
657 /**
658  * usb_get_string - gets a string descriptor
659  * @dev: the device whose string descriptor is being retrieved
660  * @langid: code for language chosen (from string descriptor zero)
661  * @index: the number of the descriptor
662  * @buf: where to put the string
663  * @size: how big is "buf"?
664  * Context: !in_interrupt ()
665  *
666  * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
667  * in little-endian byte order).
668  * The usb_string() function will often be a convenient way to turn
669  * these strings into kernel-printable form.
670  *
671  * Strings may be referenced in device, configuration, interface, or other
672  * descriptors, and could also be used in vendor-specific ways.
673  *
674  * This call is synchronous, and may not be used in an interrupt context.
675  *
676  * Returns the number of bytes received on success, or else the status code
677  * returned by the underlying usb_control_msg() call.
678  */
679 static int usb_get_string(struct usb_device *dev, unsigned short langid,
680 			  unsigned char index, void *buf, int size)
681 {
682 	int i;
683 	int result;
684 
685 	for (i = 0; i < 3; ++i) {
686 		/* retry on length 0 or stall; some devices are flakey */
687 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
688 			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
689 			(USB_DT_STRING << 8) + index, langid, buf, size,
690 			USB_CTRL_GET_TIMEOUT);
691 		if (result == 0 || result == -EPIPE)
692 			continue;
693 		if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
694 			result = -ENODATA;
695 			continue;
696 		}
697 		break;
698 	}
699 	return result;
700 }
701 
702 static void usb_try_string_workarounds(unsigned char *buf, int *length)
703 {
704 	int newlength, oldlength = *length;
705 
706 	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
707 		if (!isprint(buf[newlength]) || buf[newlength + 1])
708 			break;
709 
710 	if (newlength > 2) {
711 		buf[0] = newlength;
712 		*length = newlength;
713 	}
714 }
715 
716 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
717 			  unsigned int index, unsigned char *buf)
718 {
719 	int rc;
720 
721 	/* Try to read the string descriptor by asking for the maximum
722 	 * possible number of bytes */
723 	if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
724 		rc = -EIO;
725 	else
726 		rc = usb_get_string(dev, langid, index, buf, 255);
727 
728 	/* If that failed try to read the descriptor length, then
729 	 * ask for just that many bytes */
730 	if (rc < 2) {
731 		rc = usb_get_string(dev, langid, index, buf, 2);
732 		if (rc == 2)
733 			rc = usb_get_string(dev, langid, index, buf, buf[0]);
734 	}
735 
736 	if (rc >= 2) {
737 		if (!buf[0] && !buf[1])
738 			usb_try_string_workarounds(buf, &rc);
739 
740 		/* There might be extra junk at the end of the descriptor */
741 		if (buf[0] < rc)
742 			rc = buf[0];
743 
744 		rc = rc - (rc & 1); /* force a multiple of two */
745 	}
746 
747 	if (rc < 2)
748 		rc = (rc < 0 ? rc : -EINVAL);
749 
750 	return rc;
751 }
752 
753 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
754 {
755 	int err;
756 
757 	if (dev->have_langid)
758 		return 0;
759 
760 	if (dev->string_langid < 0)
761 		return -EPIPE;
762 
763 	err = usb_string_sub(dev, 0, 0, tbuf);
764 
765 	/* If the string was reported but is malformed, default to english
766 	 * (0x0409) */
767 	if (err == -ENODATA || (err > 0 && err < 4)) {
768 		dev->string_langid = 0x0409;
769 		dev->have_langid = 1;
770 		dev_err(&dev->dev,
771 			"string descriptor 0 malformed (err = %d), "
772 			"defaulting to 0x%04x\n",
773 				err, dev->string_langid);
774 		return 0;
775 	}
776 
777 	/* In case of all other errors, we assume the device is not able to
778 	 * deal with strings at all. Set string_langid to -1 in order to
779 	 * prevent any string to be retrieved from the device */
780 	if (err < 0) {
781 		dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
782 					err);
783 		dev->string_langid = -1;
784 		return -EPIPE;
785 	}
786 
787 	/* always use the first langid listed */
788 	dev->string_langid = tbuf[2] | (tbuf[3] << 8);
789 	dev->have_langid = 1;
790 	dev_dbg(&dev->dev, "default language 0x%04x\n",
791 				dev->string_langid);
792 	return 0;
793 }
794 
795 /**
796  * usb_string - returns UTF-8 version of a string descriptor
797  * @dev: the device whose string descriptor is being retrieved
798  * @index: the number of the descriptor
799  * @buf: where to put the string
800  * @size: how big is "buf"?
801  * Context: !in_interrupt ()
802  *
803  * This converts the UTF-16LE encoded strings returned by devices, from
804  * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
805  * that are more usable in most kernel contexts.  Note that this function
806  * chooses strings in the first language supported by the device.
807  *
808  * This call is synchronous, and may not be used in an interrupt context.
809  *
810  * Returns length of the string (>= 0) or usb_control_msg status (< 0).
811  */
812 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
813 {
814 	unsigned char *tbuf;
815 	int err;
816 
817 	if (dev->state == USB_STATE_SUSPENDED)
818 		return -EHOSTUNREACH;
819 	if (size <= 0 || !buf || !index)
820 		return -EINVAL;
821 	buf[0] = 0;
822 	tbuf = kmalloc(256, GFP_NOIO);
823 	if (!tbuf)
824 		return -ENOMEM;
825 
826 	err = usb_get_langid(dev, tbuf);
827 	if (err < 0)
828 		goto errout;
829 
830 	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
831 	if (err < 0)
832 		goto errout;
833 
834 	size--;		/* leave room for trailing NULL char in output buffer */
835 	err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
836 			UTF16_LITTLE_ENDIAN, buf, size);
837 	buf[err] = 0;
838 
839 	if (tbuf[1] != USB_DT_STRING)
840 		dev_dbg(&dev->dev,
841 			"wrong descriptor type %02x for string %d (\"%s\")\n",
842 			tbuf[1], index, buf);
843 
844  errout:
845 	kfree(tbuf);
846 	return err;
847 }
848 EXPORT_SYMBOL_GPL(usb_string);
849 
850 /* one UTF-8-encoded 16-bit character has at most three bytes */
851 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
852 
853 /**
854  * usb_cache_string - read a string descriptor and cache it for later use
855  * @udev: the device whose string descriptor is being read
856  * @index: the descriptor index
857  *
858  * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
859  * or NULL if the index is 0 or the string could not be read.
860  */
861 char *usb_cache_string(struct usb_device *udev, int index)
862 {
863 	char *buf;
864 	char *smallbuf = NULL;
865 	int len;
866 
867 	if (index <= 0)
868 		return NULL;
869 
870 	buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
871 	if (buf) {
872 		len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
873 		if (len > 0) {
874 			smallbuf = kmalloc(++len, GFP_NOIO);
875 			if (!smallbuf)
876 				return buf;
877 			memcpy(smallbuf, buf, len);
878 		}
879 		kfree(buf);
880 	}
881 	return smallbuf;
882 }
883 
884 /*
885  * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
886  * @dev: the device whose device descriptor is being updated
887  * @size: how much of the descriptor to read
888  * Context: !in_interrupt ()
889  *
890  * Updates the copy of the device descriptor stored in the device structure,
891  * which dedicates space for this purpose.
892  *
893  * Not exported, only for use by the core.  If drivers really want to read
894  * the device descriptor directly, they can call usb_get_descriptor() with
895  * type = USB_DT_DEVICE and index = 0.
896  *
897  * This call is synchronous, and may not be used in an interrupt context.
898  *
899  * Returns the number of bytes received on success, or else the status code
900  * returned by the underlying usb_control_msg() call.
901  */
902 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
903 {
904 	struct usb_device_descriptor *desc;
905 	int ret;
906 
907 	if (size > sizeof(*desc))
908 		return -EINVAL;
909 	desc = kmalloc(sizeof(*desc), GFP_NOIO);
910 	if (!desc)
911 		return -ENOMEM;
912 
913 	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
914 	if (ret >= 0)
915 		memcpy(&dev->descriptor, desc, size);
916 	kfree(desc);
917 	return ret;
918 }
919 
920 /**
921  * usb_get_status - issues a GET_STATUS call
922  * @dev: the device whose status is being checked
923  * @type: USB_RECIP_*; for device, interface, or endpoint
924  * @target: zero (for device), else interface or endpoint number
925  * @data: pointer to two bytes of bitmap data
926  * Context: !in_interrupt ()
927  *
928  * Returns device, interface, or endpoint status.  Normally only of
929  * interest to see if the device is self powered, or has enabled the
930  * remote wakeup facility; or whether a bulk or interrupt endpoint
931  * is halted ("stalled").
932  *
933  * Bits in these status bitmaps are set using the SET_FEATURE request,
934  * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
935  * function should be used to clear halt ("stall") status.
936  *
937  * This call is synchronous, and may not be used in an interrupt context.
938  *
939  * Returns the number of bytes received on success, or else the status code
940  * returned by the underlying usb_control_msg() call.
941  */
942 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
943 {
944 	int ret;
945 	u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
946 
947 	if (!status)
948 		return -ENOMEM;
949 
950 	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
951 		USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
952 		sizeof(*status), USB_CTRL_GET_TIMEOUT);
953 
954 	*(u16 *)data = *status;
955 	kfree(status);
956 	return ret;
957 }
958 EXPORT_SYMBOL_GPL(usb_get_status);
959 
960 /**
961  * usb_clear_halt - tells device to clear endpoint halt/stall condition
962  * @dev: device whose endpoint is halted
963  * @pipe: endpoint "pipe" being cleared
964  * Context: !in_interrupt ()
965  *
966  * This is used to clear halt conditions for bulk and interrupt endpoints,
967  * as reported by URB completion status.  Endpoints that are halted are
968  * sometimes referred to as being "stalled".  Such endpoints are unable
969  * to transmit or receive data until the halt status is cleared.  Any URBs
970  * queued for such an endpoint should normally be unlinked by the driver
971  * before clearing the halt condition, as described in sections 5.7.5
972  * and 5.8.5 of the USB 2.0 spec.
973  *
974  * Note that control and isochronous endpoints don't halt, although control
975  * endpoints report "protocol stall" (for unsupported requests) using the
976  * same status code used to report a true stall.
977  *
978  * This call is synchronous, and may not be used in an interrupt context.
979  *
980  * Returns zero on success, or else the status code returned by the
981  * underlying usb_control_msg() call.
982  */
983 int usb_clear_halt(struct usb_device *dev, int pipe)
984 {
985 	int result;
986 	int endp = usb_pipeendpoint(pipe);
987 
988 	if (usb_pipein(pipe))
989 		endp |= USB_DIR_IN;
990 
991 	/* we don't care if it wasn't halted first. in fact some devices
992 	 * (like some ibmcam model 1 units) seem to expect hosts to make
993 	 * this request for iso endpoints, which can't halt!
994 	 */
995 	result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
996 		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
997 		USB_ENDPOINT_HALT, endp, NULL, 0,
998 		USB_CTRL_SET_TIMEOUT);
999 
1000 	/* don't un-halt or force to DATA0 except on success */
1001 	if (result < 0)
1002 		return result;
1003 
1004 	/* NOTE:  seems like Microsoft and Apple don't bother verifying
1005 	 * the clear "took", so some devices could lock up if you check...
1006 	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
1007 	 *
1008 	 * NOTE:  make sure the logic here doesn't diverge much from
1009 	 * the copy in usb-storage, for as long as we need two copies.
1010 	 */
1011 
1012 	usb_reset_endpoint(dev, endp);
1013 
1014 	return 0;
1015 }
1016 EXPORT_SYMBOL_GPL(usb_clear_halt);
1017 
1018 static int create_intf_ep_devs(struct usb_interface *intf)
1019 {
1020 	struct usb_device *udev = interface_to_usbdev(intf);
1021 	struct usb_host_interface *alt = intf->cur_altsetting;
1022 	int i;
1023 
1024 	if (intf->ep_devs_created || intf->unregistering)
1025 		return 0;
1026 
1027 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1028 		(void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1029 	intf->ep_devs_created = 1;
1030 	return 0;
1031 }
1032 
1033 static void remove_intf_ep_devs(struct usb_interface *intf)
1034 {
1035 	struct usb_host_interface *alt = intf->cur_altsetting;
1036 	int i;
1037 
1038 	if (!intf->ep_devs_created)
1039 		return;
1040 
1041 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1042 		usb_remove_ep_devs(&alt->endpoint[i]);
1043 	intf->ep_devs_created = 0;
1044 }
1045 
1046 /**
1047  * usb_disable_endpoint -- Disable an endpoint by address
1048  * @dev: the device whose endpoint is being disabled
1049  * @epaddr: the endpoint's address.  Endpoint number for output,
1050  *	endpoint number + USB_DIR_IN for input
1051  * @reset_hardware: flag to erase any endpoint state stored in the
1052  *	controller hardware
1053  *
1054  * Disables the endpoint for URB submission and nukes all pending URBs.
1055  * If @reset_hardware is set then also deallocates hcd/hardware state
1056  * for the endpoint.
1057  */
1058 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1059 		bool reset_hardware)
1060 {
1061 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1062 	struct usb_host_endpoint *ep;
1063 
1064 	if (!dev)
1065 		return;
1066 
1067 	if (usb_endpoint_out(epaddr)) {
1068 		ep = dev->ep_out[epnum];
1069 		if (reset_hardware)
1070 			dev->ep_out[epnum] = NULL;
1071 	} else {
1072 		ep = dev->ep_in[epnum];
1073 		if (reset_hardware)
1074 			dev->ep_in[epnum] = NULL;
1075 	}
1076 	if (ep) {
1077 		ep->enabled = 0;
1078 		usb_hcd_flush_endpoint(dev, ep);
1079 		if (reset_hardware)
1080 			usb_hcd_disable_endpoint(dev, ep);
1081 	}
1082 }
1083 
1084 /**
1085  * usb_reset_endpoint - Reset an endpoint's state.
1086  * @dev: the device whose endpoint is to be reset
1087  * @epaddr: the endpoint's address.  Endpoint number for output,
1088  *	endpoint number + USB_DIR_IN for input
1089  *
1090  * Resets any host-side endpoint state such as the toggle bit,
1091  * sequence number or current window.
1092  */
1093 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1094 {
1095 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1096 	struct usb_host_endpoint *ep;
1097 
1098 	if (usb_endpoint_out(epaddr))
1099 		ep = dev->ep_out[epnum];
1100 	else
1101 		ep = dev->ep_in[epnum];
1102 	if (ep)
1103 		usb_hcd_reset_endpoint(dev, ep);
1104 }
1105 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1106 
1107 
1108 /**
1109  * usb_disable_interface -- Disable all endpoints for an interface
1110  * @dev: the device whose interface is being disabled
1111  * @intf: pointer to the interface descriptor
1112  * @reset_hardware: flag to erase any endpoint state stored in the
1113  *	controller hardware
1114  *
1115  * Disables all the endpoints for the interface's current altsetting.
1116  */
1117 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1118 		bool reset_hardware)
1119 {
1120 	struct usb_host_interface *alt = intf->cur_altsetting;
1121 	int i;
1122 
1123 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1124 		usb_disable_endpoint(dev,
1125 				alt->endpoint[i].desc.bEndpointAddress,
1126 				reset_hardware);
1127 	}
1128 }
1129 
1130 /**
1131  * usb_disable_device - Disable all the endpoints for a USB device
1132  * @dev: the device whose endpoints are being disabled
1133  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1134  *
1135  * Disables all the device's endpoints, potentially including endpoint 0.
1136  * Deallocates hcd/hardware state for the endpoints (nuking all or most
1137  * pending urbs) and usbcore state for the interfaces, so that usbcore
1138  * must usb_set_configuration() before any interfaces could be used.
1139  */
1140 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1141 {
1142 	int i;
1143 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1144 
1145 	/* getting rid of interfaces will disconnect
1146 	 * any drivers bound to them (a key side effect)
1147 	 */
1148 	if (dev->actconfig) {
1149 		/*
1150 		 * FIXME: In order to avoid self-deadlock involving the
1151 		 * bandwidth_mutex, we have to mark all the interfaces
1152 		 * before unregistering any of them.
1153 		 */
1154 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1155 			dev->actconfig->interface[i]->unregistering = 1;
1156 
1157 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1158 			struct usb_interface	*interface;
1159 
1160 			/* remove this interface if it has been registered */
1161 			interface = dev->actconfig->interface[i];
1162 			if (!device_is_registered(&interface->dev))
1163 				continue;
1164 			dev_dbg(&dev->dev, "unregistering interface %s\n",
1165 				dev_name(&interface->dev));
1166 			remove_intf_ep_devs(interface);
1167 			device_del(&interface->dev);
1168 		}
1169 
1170 		/* Now that the interfaces are unbound, nobody should
1171 		 * try to access them.
1172 		 */
1173 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1174 			put_device(&dev->actconfig->interface[i]->dev);
1175 			dev->actconfig->interface[i] = NULL;
1176 		}
1177 		dev->actconfig = NULL;
1178 		if (dev->state == USB_STATE_CONFIGURED)
1179 			usb_set_device_state(dev, USB_STATE_ADDRESS);
1180 	}
1181 
1182 	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1183 		skip_ep0 ? "non-ep0" : "all");
1184 	if (hcd->driver->check_bandwidth) {
1185 		/* First pass: Cancel URBs, leave endpoint pointers intact. */
1186 		for (i = skip_ep0; i < 16; ++i) {
1187 			usb_disable_endpoint(dev, i, false);
1188 			usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1189 		}
1190 		/* Remove endpoints from the host controller internal state */
1191 		mutex_lock(hcd->bandwidth_mutex);
1192 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1193 		mutex_unlock(hcd->bandwidth_mutex);
1194 		/* Second pass: remove endpoint pointers */
1195 	}
1196 	for (i = skip_ep0; i < 16; ++i) {
1197 		usb_disable_endpoint(dev, i, true);
1198 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1199 	}
1200 }
1201 
1202 /**
1203  * usb_enable_endpoint - Enable an endpoint for USB communications
1204  * @dev: the device whose interface is being enabled
1205  * @ep: the endpoint
1206  * @reset_ep: flag to reset the endpoint state
1207  *
1208  * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1209  * For control endpoints, both the input and output sides are handled.
1210  */
1211 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1212 		bool reset_ep)
1213 {
1214 	int epnum = usb_endpoint_num(&ep->desc);
1215 	int is_out = usb_endpoint_dir_out(&ep->desc);
1216 	int is_control = usb_endpoint_xfer_control(&ep->desc);
1217 
1218 	if (reset_ep)
1219 		usb_hcd_reset_endpoint(dev, ep);
1220 	if (is_out || is_control)
1221 		dev->ep_out[epnum] = ep;
1222 	if (!is_out || is_control)
1223 		dev->ep_in[epnum] = ep;
1224 	ep->enabled = 1;
1225 }
1226 
1227 /**
1228  * usb_enable_interface - Enable all the endpoints for an interface
1229  * @dev: the device whose interface is being enabled
1230  * @intf: pointer to the interface descriptor
1231  * @reset_eps: flag to reset the endpoints' state
1232  *
1233  * Enables all the endpoints for the interface's current altsetting.
1234  */
1235 void usb_enable_interface(struct usb_device *dev,
1236 		struct usb_interface *intf, bool reset_eps)
1237 {
1238 	struct usb_host_interface *alt = intf->cur_altsetting;
1239 	int i;
1240 
1241 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1242 		usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1243 }
1244 
1245 /**
1246  * usb_set_interface - Makes a particular alternate setting be current
1247  * @dev: the device whose interface is being updated
1248  * @interface: the interface being updated
1249  * @alternate: the setting being chosen.
1250  * Context: !in_interrupt ()
1251  *
1252  * This is used to enable data transfers on interfaces that may not
1253  * be enabled by default.  Not all devices support such configurability.
1254  * Only the driver bound to an interface may change its setting.
1255  *
1256  * Within any given configuration, each interface may have several
1257  * alternative settings.  These are often used to control levels of
1258  * bandwidth consumption.  For example, the default setting for a high
1259  * speed interrupt endpoint may not send more than 64 bytes per microframe,
1260  * while interrupt transfers of up to 3KBytes per microframe are legal.
1261  * Also, isochronous endpoints may never be part of an
1262  * interface's default setting.  To access such bandwidth, alternate
1263  * interface settings must be made current.
1264  *
1265  * Note that in the Linux USB subsystem, bandwidth associated with
1266  * an endpoint in a given alternate setting is not reserved until an URB
1267  * is submitted that needs that bandwidth.  Some other operating systems
1268  * allocate bandwidth early, when a configuration is chosen.
1269  *
1270  * This call is synchronous, and may not be used in an interrupt context.
1271  * Also, drivers must not change altsettings while urbs are scheduled for
1272  * endpoints in that interface; all such urbs must first be completed
1273  * (perhaps forced by unlinking).
1274  *
1275  * Returns zero on success, or else the status code returned by the
1276  * underlying usb_control_msg() call.
1277  */
1278 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1279 {
1280 	struct usb_interface *iface;
1281 	struct usb_host_interface *alt;
1282 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1283 	int ret;
1284 	int manual = 0;
1285 	unsigned int epaddr;
1286 	unsigned int pipe;
1287 
1288 	if (dev->state == USB_STATE_SUSPENDED)
1289 		return -EHOSTUNREACH;
1290 
1291 	iface = usb_ifnum_to_if(dev, interface);
1292 	if (!iface) {
1293 		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1294 			interface);
1295 		return -EINVAL;
1296 	}
1297 	if (iface->unregistering)
1298 		return -ENODEV;
1299 
1300 	alt = usb_altnum_to_altsetting(iface, alternate);
1301 	if (!alt) {
1302 		dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1303 			 alternate);
1304 		return -EINVAL;
1305 	}
1306 
1307 	/* Make sure we have enough bandwidth for this alternate interface.
1308 	 * Remove the current alt setting and add the new alt setting.
1309 	 */
1310 	mutex_lock(hcd->bandwidth_mutex);
1311 	ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1312 	if (ret < 0) {
1313 		dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1314 				alternate);
1315 		mutex_unlock(hcd->bandwidth_mutex);
1316 		return ret;
1317 	}
1318 
1319 	if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1320 		ret = -EPIPE;
1321 	else
1322 		ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1323 				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1324 				   alternate, interface, NULL, 0, 5000);
1325 
1326 	/* 9.4.10 says devices don't need this and are free to STALL the
1327 	 * request if the interface only has one alternate setting.
1328 	 */
1329 	if (ret == -EPIPE && iface->num_altsetting == 1) {
1330 		dev_dbg(&dev->dev,
1331 			"manual set_interface for iface %d, alt %d\n",
1332 			interface, alternate);
1333 		manual = 1;
1334 	} else if (ret < 0) {
1335 		/* Re-instate the old alt setting */
1336 		usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1337 		mutex_unlock(hcd->bandwidth_mutex);
1338 		return ret;
1339 	}
1340 	mutex_unlock(hcd->bandwidth_mutex);
1341 
1342 	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1343 	 * when they implement async or easily-killable versions of this or
1344 	 * other "should-be-internal" functions (like clear_halt).
1345 	 * should hcd+usbcore postprocess control requests?
1346 	 */
1347 
1348 	/* prevent submissions using previous endpoint settings */
1349 	if (iface->cur_altsetting != alt) {
1350 		remove_intf_ep_devs(iface);
1351 		usb_remove_sysfs_intf_files(iface);
1352 	}
1353 	usb_disable_interface(dev, iface, true);
1354 
1355 	iface->cur_altsetting = alt;
1356 
1357 	/* If the interface only has one altsetting and the device didn't
1358 	 * accept the request, we attempt to carry out the equivalent action
1359 	 * by manually clearing the HALT feature for each endpoint in the
1360 	 * new altsetting.
1361 	 */
1362 	if (manual) {
1363 		int i;
1364 
1365 		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1366 			epaddr = alt->endpoint[i].desc.bEndpointAddress;
1367 			pipe = __create_pipe(dev,
1368 					USB_ENDPOINT_NUMBER_MASK & epaddr) |
1369 					(usb_endpoint_out(epaddr) ?
1370 					USB_DIR_OUT : USB_DIR_IN);
1371 
1372 			usb_clear_halt(dev, pipe);
1373 		}
1374 	}
1375 
1376 	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1377 	 *
1378 	 * Note:
1379 	 * Despite EP0 is always present in all interfaces/AS, the list of
1380 	 * endpoints from the descriptor does not contain EP0. Due to its
1381 	 * omnipresence one might expect EP0 being considered "affected" by
1382 	 * any SetInterface request and hence assume toggles need to be reset.
1383 	 * However, EP0 toggles are re-synced for every individual transfer
1384 	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1385 	 * (Likewise, EP0 never "halts" on well designed devices.)
1386 	 */
1387 	usb_enable_interface(dev, iface, true);
1388 	if (device_is_registered(&iface->dev)) {
1389 		usb_create_sysfs_intf_files(iface);
1390 		create_intf_ep_devs(iface);
1391 	}
1392 	return 0;
1393 }
1394 EXPORT_SYMBOL_GPL(usb_set_interface);
1395 
1396 /**
1397  * usb_reset_configuration - lightweight device reset
1398  * @dev: the device whose configuration is being reset
1399  *
1400  * This issues a standard SET_CONFIGURATION request to the device using
1401  * the current configuration.  The effect is to reset most USB-related
1402  * state in the device, including interface altsettings (reset to zero),
1403  * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1404  * endpoints).  Other usbcore state is unchanged, including bindings of
1405  * usb device drivers to interfaces.
1406  *
1407  * Because this affects multiple interfaces, avoid using this with composite
1408  * (multi-interface) devices.  Instead, the driver for each interface may
1409  * use usb_set_interface() on the interfaces it claims.  Be careful though;
1410  * some devices don't support the SET_INTERFACE request, and others won't
1411  * reset all the interface state (notably endpoint state).  Resetting the whole
1412  * configuration would affect other drivers' interfaces.
1413  *
1414  * The caller must own the device lock.
1415  *
1416  * Returns zero on success, else a negative error code.
1417  */
1418 int usb_reset_configuration(struct usb_device *dev)
1419 {
1420 	int			i, retval;
1421 	struct usb_host_config	*config;
1422 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1423 
1424 	if (dev->state == USB_STATE_SUSPENDED)
1425 		return -EHOSTUNREACH;
1426 
1427 	/* caller must have locked the device and must own
1428 	 * the usb bus readlock (so driver bindings are stable);
1429 	 * calls during probe() are fine
1430 	 */
1431 
1432 	for (i = 1; i < 16; ++i) {
1433 		usb_disable_endpoint(dev, i, true);
1434 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1435 	}
1436 
1437 	config = dev->actconfig;
1438 	retval = 0;
1439 	mutex_lock(hcd->bandwidth_mutex);
1440 	/* Make sure we have enough bandwidth for each alternate setting 0 */
1441 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1442 		struct usb_interface *intf = config->interface[i];
1443 		struct usb_host_interface *alt;
1444 
1445 		alt = usb_altnum_to_altsetting(intf, 0);
1446 		if (!alt)
1447 			alt = &intf->altsetting[0];
1448 		if (alt != intf->cur_altsetting)
1449 			retval = usb_hcd_alloc_bandwidth(dev, NULL,
1450 					intf->cur_altsetting, alt);
1451 		if (retval < 0)
1452 			break;
1453 	}
1454 	/* If not, reinstate the old alternate settings */
1455 	if (retval < 0) {
1456 reset_old_alts:
1457 		for (i--; i >= 0; i--) {
1458 			struct usb_interface *intf = config->interface[i];
1459 			struct usb_host_interface *alt;
1460 
1461 			alt = usb_altnum_to_altsetting(intf, 0);
1462 			if (!alt)
1463 				alt = &intf->altsetting[0];
1464 			if (alt != intf->cur_altsetting)
1465 				usb_hcd_alloc_bandwidth(dev, NULL,
1466 						alt, intf->cur_altsetting);
1467 		}
1468 		mutex_unlock(hcd->bandwidth_mutex);
1469 		return retval;
1470 	}
1471 	retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1472 			USB_REQ_SET_CONFIGURATION, 0,
1473 			config->desc.bConfigurationValue, 0,
1474 			NULL, 0, USB_CTRL_SET_TIMEOUT);
1475 	if (retval < 0)
1476 		goto reset_old_alts;
1477 	mutex_unlock(hcd->bandwidth_mutex);
1478 
1479 	/* re-init hc/hcd interface/endpoint state */
1480 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1481 		struct usb_interface *intf = config->interface[i];
1482 		struct usb_host_interface *alt;
1483 
1484 		alt = usb_altnum_to_altsetting(intf, 0);
1485 
1486 		/* No altsetting 0?  We'll assume the first altsetting.
1487 		 * We could use a GetInterface call, but if a device is
1488 		 * so non-compliant that it doesn't have altsetting 0
1489 		 * then I wouldn't trust its reply anyway.
1490 		 */
1491 		if (!alt)
1492 			alt = &intf->altsetting[0];
1493 
1494 		if (alt != intf->cur_altsetting) {
1495 			remove_intf_ep_devs(intf);
1496 			usb_remove_sysfs_intf_files(intf);
1497 		}
1498 		intf->cur_altsetting = alt;
1499 		usb_enable_interface(dev, intf, true);
1500 		if (device_is_registered(&intf->dev)) {
1501 			usb_create_sysfs_intf_files(intf);
1502 			create_intf_ep_devs(intf);
1503 		}
1504 	}
1505 	return 0;
1506 }
1507 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1508 
1509 static void usb_release_interface(struct device *dev)
1510 {
1511 	struct usb_interface *intf = to_usb_interface(dev);
1512 	struct usb_interface_cache *intfc =
1513 			altsetting_to_usb_interface_cache(intf->altsetting);
1514 
1515 	kref_put(&intfc->ref, usb_release_interface_cache);
1516 	kfree(intf);
1517 }
1518 
1519 #ifdef	CONFIG_HOTPLUG
1520 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1521 {
1522 	struct usb_device *usb_dev;
1523 	struct usb_interface *intf;
1524 	struct usb_host_interface *alt;
1525 
1526 	intf = to_usb_interface(dev);
1527 	usb_dev = interface_to_usbdev(intf);
1528 	alt = intf->cur_altsetting;
1529 
1530 	if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1531 		   alt->desc.bInterfaceClass,
1532 		   alt->desc.bInterfaceSubClass,
1533 		   alt->desc.bInterfaceProtocol))
1534 		return -ENOMEM;
1535 
1536 	if (add_uevent_var(env,
1537 		   "MODALIAS=usb:"
1538 		   "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
1539 		   le16_to_cpu(usb_dev->descriptor.idVendor),
1540 		   le16_to_cpu(usb_dev->descriptor.idProduct),
1541 		   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1542 		   usb_dev->descriptor.bDeviceClass,
1543 		   usb_dev->descriptor.bDeviceSubClass,
1544 		   usb_dev->descriptor.bDeviceProtocol,
1545 		   alt->desc.bInterfaceClass,
1546 		   alt->desc.bInterfaceSubClass,
1547 		   alt->desc.bInterfaceProtocol))
1548 		return -ENOMEM;
1549 
1550 	return 0;
1551 }
1552 
1553 #else
1554 
1555 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1556 {
1557 	return -ENODEV;
1558 }
1559 #endif	/* CONFIG_HOTPLUG */
1560 
1561 struct device_type usb_if_device_type = {
1562 	.name =		"usb_interface",
1563 	.release =	usb_release_interface,
1564 	.uevent =	usb_if_uevent,
1565 };
1566 
1567 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1568 						struct usb_host_config *config,
1569 						u8 inum)
1570 {
1571 	struct usb_interface_assoc_descriptor *retval = NULL;
1572 	struct usb_interface_assoc_descriptor *intf_assoc;
1573 	int first_intf;
1574 	int last_intf;
1575 	int i;
1576 
1577 	for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1578 		intf_assoc = config->intf_assoc[i];
1579 		if (intf_assoc->bInterfaceCount == 0)
1580 			continue;
1581 
1582 		first_intf = intf_assoc->bFirstInterface;
1583 		last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1584 		if (inum >= first_intf && inum <= last_intf) {
1585 			if (!retval)
1586 				retval = intf_assoc;
1587 			else
1588 				dev_err(&dev->dev, "Interface #%d referenced"
1589 					" by multiple IADs\n", inum);
1590 		}
1591 	}
1592 
1593 	return retval;
1594 }
1595 
1596 
1597 /*
1598  * Internal function to queue a device reset
1599  *
1600  * This is initialized into the workstruct in 'struct
1601  * usb_device->reset_ws' that is launched by
1602  * message.c:usb_set_configuration() when initializing each 'struct
1603  * usb_interface'.
1604  *
1605  * It is safe to get the USB device without reference counts because
1606  * the life cycle of @iface is bound to the life cycle of @udev. Then,
1607  * this function will be ran only if @iface is alive (and before
1608  * freeing it any scheduled instances of it will have been cancelled).
1609  *
1610  * We need to set a flag (usb_dev->reset_running) because when we call
1611  * the reset, the interfaces might be unbound. The current interface
1612  * cannot try to remove the queued work as it would cause a deadlock
1613  * (you cannot remove your work from within your executing
1614  * workqueue). This flag lets it know, so that
1615  * usb_cancel_queued_reset() doesn't try to do it.
1616  *
1617  * See usb_queue_reset_device() for more details
1618  */
1619 static void __usb_queue_reset_device(struct work_struct *ws)
1620 {
1621 	int rc;
1622 	struct usb_interface *iface =
1623 		container_of(ws, struct usb_interface, reset_ws);
1624 	struct usb_device *udev = interface_to_usbdev(iface);
1625 
1626 	rc = usb_lock_device_for_reset(udev, iface);
1627 	if (rc >= 0) {
1628 		iface->reset_running = 1;
1629 		usb_reset_device(udev);
1630 		iface->reset_running = 0;
1631 		usb_unlock_device(udev);
1632 	}
1633 }
1634 
1635 
1636 /*
1637  * usb_set_configuration - Makes a particular device setting be current
1638  * @dev: the device whose configuration is being updated
1639  * @configuration: the configuration being chosen.
1640  * Context: !in_interrupt(), caller owns the device lock
1641  *
1642  * This is used to enable non-default device modes.  Not all devices
1643  * use this kind of configurability; many devices only have one
1644  * configuration.
1645  *
1646  * @configuration is the value of the configuration to be installed.
1647  * According to the USB spec (e.g. section 9.1.1.5), configuration values
1648  * must be non-zero; a value of zero indicates that the device in
1649  * unconfigured.  However some devices erroneously use 0 as one of their
1650  * configuration values.  To help manage such devices, this routine will
1651  * accept @configuration = -1 as indicating the device should be put in
1652  * an unconfigured state.
1653  *
1654  * USB device configurations may affect Linux interoperability,
1655  * power consumption and the functionality available.  For example,
1656  * the default configuration is limited to using 100mA of bus power,
1657  * so that when certain device functionality requires more power,
1658  * and the device is bus powered, that functionality should be in some
1659  * non-default device configuration.  Other device modes may also be
1660  * reflected as configuration options, such as whether two ISDN
1661  * channels are available independently; and choosing between open
1662  * standard device protocols (like CDC) or proprietary ones.
1663  *
1664  * Note that a non-authorized device (dev->authorized == 0) will only
1665  * be put in unconfigured mode.
1666  *
1667  * Note that USB has an additional level of device configurability,
1668  * associated with interfaces.  That configurability is accessed using
1669  * usb_set_interface().
1670  *
1671  * This call is synchronous. The calling context must be able to sleep,
1672  * must own the device lock, and must not hold the driver model's USB
1673  * bus mutex; usb interface driver probe() methods cannot use this routine.
1674  *
1675  * Returns zero on success, or else the status code returned by the
1676  * underlying call that failed.  On successful completion, each interface
1677  * in the original device configuration has been destroyed, and each one
1678  * in the new configuration has been probed by all relevant usb device
1679  * drivers currently known to the kernel.
1680  */
1681 int usb_set_configuration(struct usb_device *dev, int configuration)
1682 {
1683 	int i, ret;
1684 	struct usb_host_config *cp = NULL;
1685 	struct usb_interface **new_interfaces = NULL;
1686 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1687 	int n, nintf;
1688 
1689 	if (dev->authorized == 0 || configuration == -1)
1690 		configuration = 0;
1691 	else {
1692 		for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1693 			if (dev->config[i].desc.bConfigurationValue ==
1694 					configuration) {
1695 				cp = &dev->config[i];
1696 				break;
1697 			}
1698 		}
1699 	}
1700 	if ((!cp && configuration != 0))
1701 		return -EINVAL;
1702 
1703 	/* The USB spec says configuration 0 means unconfigured.
1704 	 * But if a device includes a configuration numbered 0,
1705 	 * we will accept it as a correctly configured state.
1706 	 * Use -1 if you really want to unconfigure the device.
1707 	 */
1708 	if (cp && configuration == 0)
1709 		dev_warn(&dev->dev, "config 0 descriptor??\n");
1710 
1711 	/* Allocate memory for new interfaces before doing anything else,
1712 	 * so that if we run out then nothing will have changed. */
1713 	n = nintf = 0;
1714 	if (cp) {
1715 		nintf = cp->desc.bNumInterfaces;
1716 		new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1717 				GFP_NOIO);
1718 		if (!new_interfaces) {
1719 			dev_err(&dev->dev, "Out of memory\n");
1720 			return -ENOMEM;
1721 		}
1722 
1723 		for (; n < nintf; ++n) {
1724 			new_interfaces[n] = kzalloc(
1725 					sizeof(struct usb_interface),
1726 					GFP_NOIO);
1727 			if (!new_interfaces[n]) {
1728 				dev_err(&dev->dev, "Out of memory\n");
1729 				ret = -ENOMEM;
1730 free_interfaces:
1731 				while (--n >= 0)
1732 					kfree(new_interfaces[n]);
1733 				kfree(new_interfaces);
1734 				return ret;
1735 			}
1736 		}
1737 
1738 		i = dev->bus_mA - cp->desc.bMaxPower * 2;
1739 		if (i < 0)
1740 			dev_warn(&dev->dev, "new config #%d exceeds power "
1741 					"limit by %dmA\n",
1742 					configuration, -i);
1743 	}
1744 
1745 	/* Wake up the device so we can send it the Set-Config request */
1746 	ret = usb_autoresume_device(dev);
1747 	if (ret)
1748 		goto free_interfaces;
1749 
1750 	/* if it's already configured, clear out old state first.
1751 	 * getting rid of old interfaces means unbinding their drivers.
1752 	 */
1753 	if (dev->state != USB_STATE_ADDRESS)
1754 		usb_disable_device(dev, 1);	/* Skip ep0 */
1755 
1756 	/* Get rid of pending async Set-Config requests for this device */
1757 	cancel_async_set_config(dev);
1758 
1759 	/* Make sure we have bandwidth (and available HCD resources) for this
1760 	 * configuration.  Remove endpoints from the schedule if we're dropping
1761 	 * this configuration to set configuration 0.  After this point, the
1762 	 * host controller will not allow submissions to dropped endpoints.  If
1763 	 * this call fails, the device state is unchanged.
1764 	 */
1765 	mutex_lock(hcd->bandwidth_mutex);
1766 	ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1767 	if (ret < 0) {
1768 		mutex_unlock(hcd->bandwidth_mutex);
1769 		usb_autosuspend_device(dev);
1770 		goto free_interfaces;
1771 	}
1772 
1773 	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1774 			      USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1775 			      NULL, 0, USB_CTRL_SET_TIMEOUT);
1776 	if (ret < 0) {
1777 		/* All the old state is gone, so what else can we do?
1778 		 * The device is probably useless now anyway.
1779 		 */
1780 		cp = NULL;
1781 	}
1782 
1783 	dev->actconfig = cp;
1784 	if (!cp) {
1785 		usb_set_device_state(dev, USB_STATE_ADDRESS);
1786 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1787 		mutex_unlock(hcd->bandwidth_mutex);
1788 		usb_autosuspend_device(dev);
1789 		goto free_interfaces;
1790 	}
1791 	mutex_unlock(hcd->bandwidth_mutex);
1792 	usb_set_device_state(dev, USB_STATE_CONFIGURED);
1793 
1794 	/* Initialize the new interface structures and the
1795 	 * hc/hcd/usbcore interface/endpoint state.
1796 	 */
1797 	for (i = 0; i < nintf; ++i) {
1798 		struct usb_interface_cache *intfc;
1799 		struct usb_interface *intf;
1800 		struct usb_host_interface *alt;
1801 
1802 		cp->interface[i] = intf = new_interfaces[i];
1803 		intfc = cp->intf_cache[i];
1804 		intf->altsetting = intfc->altsetting;
1805 		intf->num_altsetting = intfc->num_altsetting;
1806 		intf->intf_assoc = find_iad(dev, cp, i);
1807 		kref_get(&intfc->ref);
1808 
1809 		alt = usb_altnum_to_altsetting(intf, 0);
1810 
1811 		/* No altsetting 0?  We'll assume the first altsetting.
1812 		 * We could use a GetInterface call, but if a device is
1813 		 * so non-compliant that it doesn't have altsetting 0
1814 		 * then I wouldn't trust its reply anyway.
1815 		 */
1816 		if (!alt)
1817 			alt = &intf->altsetting[0];
1818 
1819 		intf->cur_altsetting = alt;
1820 		usb_enable_interface(dev, intf, true);
1821 		intf->dev.parent = &dev->dev;
1822 		intf->dev.driver = NULL;
1823 		intf->dev.bus = &usb_bus_type;
1824 		intf->dev.type = &usb_if_device_type;
1825 		intf->dev.groups = usb_interface_groups;
1826 		intf->dev.dma_mask = dev->dev.dma_mask;
1827 		INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1828 		intf->minor = -1;
1829 		device_initialize(&intf->dev);
1830 		pm_runtime_no_callbacks(&intf->dev);
1831 		dev_set_name(&intf->dev, "%d-%s:%d.%d",
1832 			dev->bus->busnum, dev->devpath,
1833 			configuration, alt->desc.bInterfaceNumber);
1834 	}
1835 	kfree(new_interfaces);
1836 
1837 	if (cp->string == NULL &&
1838 			!(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1839 		cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1840 
1841 	/* Now that all the interfaces are set up, register them
1842 	 * to trigger binding of drivers to interfaces.  probe()
1843 	 * routines may install different altsettings and may
1844 	 * claim() any interfaces not yet bound.  Many class drivers
1845 	 * need that: CDC, audio, video, etc.
1846 	 */
1847 	for (i = 0; i < nintf; ++i) {
1848 		struct usb_interface *intf = cp->interface[i];
1849 
1850 		dev_dbg(&dev->dev,
1851 			"adding %s (config #%d, interface %d)\n",
1852 			dev_name(&intf->dev), configuration,
1853 			intf->cur_altsetting->desc.bInterfaceNumber);
1854 		device_enable_async_suspend(&intf->dev);
1855 		ret = device_add(&intf->dev);
1856 		if (ret != 0) {
1857 			dev_err(&dev->dev, "device_add(%s) --> %d\n",
1858 				dev_name(&intf->dev), ret);
1859 			continue;
1860 		}
1861 		create_intf_ep_devs(intf);
1862 	}
1863 
1864 	usb_autosuspend_device(dev);
1865 	return 0;
1866 }
1867 
1868 static LIST_HEAD(set_config_list);
1869 static DEFINE_SPINLOCK(set_config_lock);
1870 
1871 struct set_config_request {
1872 	struct usb_device	*udev;
1873 	int			config;
1874 	struct work_struct	work;
1875 	struct list_head	node;
1876 };
1877 
1878 /* Worker routine for usb_driver_set_configuration() */
1879 static void driver_set_config_work(struct work_struct *work)
1880 {
1881 	struct set_config_request *req =
1882 		container_of(work, struct set_config_request, work);
1883 	struct usb_device *udev = req->udev;
1884 
1885 	usb_lock_device(udev);
1886 	spin_lock(&set_config_lock);
1887 	list_del(&req->node);
1888 	spin_unlock(&set_config_lock);
1889 
1890 	if (req->config >= -1)		/* Is req still valid? */
1891 		usb_set_configuration(udev, req->config);
1892 	usb_unlock_device(udev);
1893 	usb_put_dev(udev);
1894 	kfree(req);
1895 }
1896 
1897 /* Cancel pending Set-Config requests for a device whose configuration
1898  * was just changed
1899  */
1900 static void cancel_async_set_config(struct usb_device *udev)
1901 {
1902 	struct set_config_request *req;
1903 
1904 	spin_lock(&set_config_lock);
1905 	list_for_each_entry(req, &set_config_list, node) {
1906 		if (req->udev == udev)
1907 			req->config = -999;	/* Mark as cancelled */
1908 	}
1909 	spin_unlock(&set_config_lock);
1910 }
1911 
1912 /**
1913  * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1914  * @udev: the device whose configuration is being updated
1915  * @config: the configuration being chosen.
1916  * Context: In process context, must be able to sleep
1917  *
1918  * Device interface drivers are not allowed to change device configurations.
1919  * This is because changing configurations will destroy the interface the
1920  * driver is bound to and create new ones; it would be like a floppy-disk
1921  * driver telling the computer to replace the floppy-disk drive with a
1922  * tape drive!
1923  *
1924  * Still, in certain specialized circumstances the need may arise.  This
1925  * routine gets around the normal restrictions by using a work thread to
1926  * submit the change-config request.
1927  *
1928  * Returns 0 if the request was successfully queued, error code otherwise.
1929  * The caller has no way to know whether the queued request will eventually
1930  * succeed.
1931  */
1932 int usb_driver_set_configuration(struct usb_device *udev, int config)
1933 {
1934 	struct set_config_request *req;
1935 
1936 	req = kmalloc(sizeof(*req), GFP_KERNEL);
1937 	if (!req)
1938 		return -ENOMEM;
1939 	req->udev = udev;
1940 	req->config = config;
1941 	INIT_WORK(&req->work, driver_set_config_work);
1942 
1943 	spin_lock(&set_config_lock);
1944 	list_add(&req->node, &set_config_list);
1945 	spin_unlock(&set_config_lock);
1946 
1947 	usb_get_dev(udev);
1948 	schedule_work(&req->work);
1949 	return 0;
1950 }
1951 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
1952