1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * message.c - synchronous message handling 4 * 5 * Released under the GPLv2 only. 6 */ 7 8 #include <linux/pci.h> /* for scatterlist macros */ 9 #include <linux/usb.h> 10 #include <linux/module.h> 11 #include <linux/slab.h> 12 #include <linux/mm.h> 13 #include <linux/timer.h> 14 #include <linux/ctype.h> 15 #include <linux/nls.h> 16 #include <linux/device.h> 17 #include <linux/scatterlist.h> 18 #include <linux/usb/cdc.h> 19 #include <linux/usb/quirks.h> 20 #include <linux/usb/hcd.h> /* for usbcore internals */ 21 #include <linux/usb/of.h> 22 #include <asm/byteorder.h> 23 24 #include "usb.h" 25 26 static void cancel_async_set_config(struct usb_device *udev); 27 28 struct api_context { 29 struct completion done; 30 int status; 31 }; 32 33 static void usb_api_blocking_completion(struct urb *urb) 34 { 35 struct api_context *ctx = urb->context; 36 37 ctx->status = urb->status; 38 complete(&ctx->done); 39 } 40 41 42 /* 43 * Starts urb and waits for completion or timeout. Note that this call 44 * is NOT interruptible. Many device driver i/o requests should be 45 * interruptible and therefore these drivers should implement their 46 * own interruptible routines. 47 */ 48 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length) 49 { 50 struct api_context ctx; 51 unsigned long expire; 52 int retval; 53 54 init_completion(&ctx.done); 55 urb->context = &ctx; 56 urb->actual_length = 0; 57 retval = usb_submit_urb(urb, GFP_NOIO); 58 if (unlikely(retval)) 59 goto out; 60 61 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT; 62 if (!wait_for_completion_timeout(&ctx.done, expire)) { 63 usb_kill_urb(urb); 64 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status); 65 66 dev_dbg(&urb->dev->dev, 67 "%s timed out on ep%d%s len=%u/%u\n", 68 current->comm, 69 usb_endpoint_num(&urb->ep->desc), 70 usb_urb_dir_in(urb) ? "in" : "out", 71 urb->actual_length, 72 urb->transfer_buffer_length); 73 } else 74 retval = ctx.status; 75 out: 76 if (actual_length) 77 *actual_length = urb->actual_length; 78 79 usb_free_urb(urb); 80 return retval; 81 } 82 83 /*-------------------------------------------------------------------*/ 84 /* returns status (negative) or length (positive) */ 85 static int usb_internal_control_msg(struct usb_device *usb_dev, 86 unsigned int pipe, 87 struct usb_ctrlrequest *cmd, 88 void *data, int len, int timeout) 89 { 90 struct urb *urb; 91 int retv; 92 int length; 93 94 urb = usb_alloc_urb(0, GFP_NOIO); 95 if (!urb) 96 return -ENOMEM; 97 98 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data, 99 len, usb_api_blocking_completion, NULL); 100 101 retv = usb_start_wait_urb(urb, timeout, &length); 102 if (retv < 0) 103 return retv; 104 else 105 return length; 106 } 107 108 /** 109 * usb_control_msg - Builds a control urb, sends it off and waits for completion 110 * @dev: pointer to the usb device to send the message to 111 * @pipe: endpoint "pipe" to send the message to 112 * @request: USB message request value 113 * @requesttype: USB message request type value 114 * @value: USB message value 115 * @index: USB message index value 116 * @data: pointer to the data to send 117 * @size: length in bytes of the data to send 118 * @timeout: time in msecs to wait for the message to complete before timing 119 * out (if 0 the wait is forever) 120 * 121 * Context: !in_interrupt () 122 * 123 * This function sends a simple control message to a specified endpoint and 124 * waits for the message to complete, or timeout. 125 * 126 * Don't use this function from within an interrupt context. If you need 127 * an asynchronous message, or need to send a message from within interrupt 128 * context, use usb_submit_urb(). If a thread in your driver uses this call, 129 * make sure your disconnect() method can wait for it to complete. Since you 130 * don't have a handle on the URB used, you can't cancel the request. 131 * 132 * Return: If successful, the number of bytes transferred. Otherwise, a negative 133 * error number. 134 */ 135 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, 136 __u8 requesttype, __u16 value, __u16 index, void *data, 137 __u16 size, int timeout) 138 { 139 struct usb_ctrlrequest *dr; 140 int ret; 141 142 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO); 143 if (!dr) 144 return -ENOMEM; 145 146 dr->bRequestType = requesttype; 147 dr->bRequest = request; 148 dr->wValue = cpu_to_le16(value); 149 dr->wIndex = cpu_to_le16(index); 150 dr->wLength = cpu_to_le16(size); 151 152 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout); 153 154 /* Linger a bit, prior to the next control message. */ 155 if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG) 156 msleep(200); 157 158 kfree(dr); 159 160 return ret; 161 } 162 EXPORT_SYMBOL_GPL(usb_control_msg); 163 164 /** 165 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion 166 * @usb_dev: pointer to the usb device to send the message to 167 * @pipe: endpoint "pipe" to send the message to 168 * @data: pointer to the data to send 169 * @len: length in bytes of the data to send 170 * @actual_length: pointer to a location to put the actual length transferred 171 * in bytes 172 * @timeout: time in msecs to wait for the message to complete before 173 * timing out (if 0 the wait is forever) 174 * 175 * Context: !in_interrupt () 176 * 177 * This function sends a simple interrupt message to a specified endpoint and 178 * waits for the message to complete, or timeout. 179 * 180 * Don't use this function from within an interrupt context. If you need 181 * an asynchronous message, or need to send a message from within interrupt 182 * context, use usb_submit_urb() If a thread in your driver uses this call, 183 * make sure your disconnect() method can wait for it to complete. Since you 184 * don't have a handle on the URB used, you can't cancel the request. 185 * 186 * Return: 187 * If successful, 0. Otherwise a negative error number. The number of actual 188 * bytes transferred will be stored in the @actual_length parameter. 189 */ 190 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 191 void *data, int len, int *actual_length, int timeout) 192 { 193 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout); 194 } 195 EXPORT_SYMBOL_GPL(usb_interrupt_msg); 196 197 /** 198 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion 199 * @usb_dev: pointer to the usb device to send the message to 200 * @pipe: endpoint "pipe" to send the message to 201 * @data: pointer to the data to send 202 * @len: length in bytes of the data to send 203 * @actual_length: pointer to a location to put the actual length transferred 204 * in bytes 205 * @timeout: time in msecs to wait for the message to complete before 206 * timing out (if 0 the wait is forever) 207 * 208 * Context: !in_interrupt () 209 * 210 * This function sends a simple bulk message to a specified endpoint 211 * and waits for the message to complete, or timeout. 212 * 213 * Don't use this function from within an interrupt context. If you need 214 * an asynchronous message, or need to send a message from within interrupt 215 * context, use usb_submit_urb() If a thread in your driver uses this call, 216 * make sure your disconnect() method can wait for it to complete. Since you 217 * don't have a handle on the URB used, you can't cancel the request. 218 * 219 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl, 220 * users are forced to abuse this routine by using it to submit URBs for 221 * interrupt endpoints. We will take the liberty of creating an interrupt URB 222 * (with the default interval) if the target is an interrupt endpoint. 223 * 224 * Return: 225 * If successful, 0. Otherwise a negative error number. The number of actual 226 * bytes transferred will be stored in the @actual_length parameter. 227 * 228 */ 229 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 230 void *data, int len, int *actual_length, int timeout) 231 { 232 struct urb *urb; 233 struct usb_host_endpoint *ep; 234 235 ep = usb_pipe_endpoint(usb_dev, pipe); 236 if (!ep || len < 0) 237 return -EINVAL; 238 239 urb = usb_alloc_urb(0, GFP_KERNEL); 240 if (!urb) 241 return -ENOMEM; 242 243 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 244 USB_ENDPOINT_XFER_INT) { 245 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30); 246 usb_fill_int_urb(urb, usb_dev, pipe, data, len, 247 usb_api_blocking_completion, NULL, 248 ep->desc.bInterval); 249 } else 250 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len, 251 usb_api_blocking_completion, NULL); 252 253 return usb_start_wait_urb(urb, timeout, actual_length); 254 } 255 EXPORT_SYMBOL_GPL(usb_bulk_msg); 256 257 /*-------------------------------------------------------------------*/ 258 259 static void sg_clean(struct usb_sg_request *io) 260 { 261 if (io->urbs) { 262 while (io->entries--) 263 usb_free_urb(io->urbs[io->entries]); 264 kfree(io->urbs); 265 io->urbs = NULL; 266 } 267 io->dev = NULL; 268 } 269 270 static void sg_complete(struct urb *urb) 271 { 272 struct usb_sg_request *io = urb->context; 273 int status = urb->status; 274 275 spin_lock(&io->lock); 276 277 /* In 2.5 we require hcds' endpoint queues not to progress after fault 278 * reports, until the completion callback (this!) returns. That lets 279 * device driver code (like this routine) unlink queued urbs first, 280 * if it needs to, since the HC won't work on them at all. So it's 281 * not possible for page N+1 to overwrite page N, and so on. 282 * 283 * That's only for "hard" faults; "soft" faults (unlinks) sometimes 284 * complete before the HCD can get requests away from hardware, 285 * though never during cleanup after a hard fault. 286 */ 287 if (io->status 288 && (io->status != -ECONNRESET 289 || status != -ECONNRESET) 290 && urb->actual_length) { 291 dev_err(io->dev->bus->controller, 292 "dev %s ep%d%s scatterlist error %d/%d\n", 293 io->dev->devpath, 294 usb_endpoint_num(&urb->ep->desc), 295 usb_urb_dir_in(urb) ? "in" : "out", 296 status, io->status); 297 /* BUG (); */ 298 } 299 300 if (io->status == 0 && status && status != -ECONNRESET) { 301 int i, found, retval; 302 303 io->status = status; 304 305 /* the previous urbs, and this one, completed already. 306 * unlink pending urbs so they won't rx/tx bad data. 307 * careful: unlink can sometimes be synchronous... 308 */ 309 spin_unlock(&io->lock); 310 for (i = 0, found = 0; i < io->entries; i++) { 311 if (!io->urbs[i]) 312 continue; 313 if (found) { 314 usb_block_urb(io->urbs[i]); 315 retval = usb_unlink_urb(io->urbs[i]); 316 if (retval != -EINPROGRESS && 317 retval != -ENODEV && 318 retval != -EBUSY && 319 retval != -EIDRM) 320 dev_err(&io->dev->dev, 321 "%s, unlink --> %d\n", 322 __func__, retval); 323 } else if (urb == io->urbs[i]) 324 found = 1; 325 } 326 spin_lock(&io->lock); 327 } 328 329 /* on the last completion, signal usb_sg_wait() */ 330 io->bytes += urb->actual_length; 331 io->count--; 332 if (!io->count) 333 complete(&io->complete); 334 335 spin_unlock(&io->lock); 336 } 337 338 339 /** 340 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request 341 * @io: request block being initialized. until usb_sg_wait() returns, 342 * treat this as a pointer to an opaque block of memory, 343 * @dev: the usb device that will send or receive the data 344 * @pipe: endpoint "pipe" used to transfer the data 345 * @period: polling rate for interrupt endpoints, in frames or 346 * (for high speed endpoints) microframes; ignored for bulk 347 * @sg: scatterlist entries 348 * @nents: how many entries in the scatterlist 349 * @length: how many bytes to send from the scatterlist, or zero to 350 * send every byte identified in the list. 351 * @mem_flags: SLAB_* flags affecting memory allocations in this call 352 * 353 * This initializes a scatter/gather request, allocating resources such as 354 * I/O mappings and urb memory (except maybe memory used by USB controller 355 * drivers). 356 * 357 * The request must be issued using usb_sg_wait(), which waits for the I/O to 358 * complete (or to be canceled) and then cleans up all resources allocated by 359 * usb_sg_init(). 360 * 361 * The request may be canceled with usb_sg_cancel(), either before or after 362 * usb_sg_wait() is called. 363 * 364 * Return: Zero for success, else a negative errno value. 365 */ 366 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev, 367 unsigned pipe, unsigned period, struct scatterlist *sg, 368 int nents, size_t length, gfp_t mem_flags) 369 { 370 int i; 371 int urb_flags; 372 int use_sg; 373 374 if (!io || !dev || !sg 375 || usb_pipecontrol(pipe) 376 || usb_pipeisoc(pipe) 377 || nents <= 0) 378 return -EINVAL; 379 380 spin_lock_init(&io->lock); 381 io->dev = dev; 382 io->pipe = pipe; 383 384 if (dev->bus->sg_tablesize > 0) { 385 use_sg = true; 386 io->entries = 1; 387 } else { 388 use_sg = false; 389 io->entries = nents; 390 } 391 392 /* initialize all the urbs we'll use */ 393 io->urbs = kmalloc(io->entries * sizeof(*io->urbs), mem_flags); 394 if (!io->urbs) 395 goto nomem; 396 397 urb_flags = URB_NO_INTERRUPT; 398 if (usb_pipein(pipe)) 399 urb_flags |= URB_SHORT_NOT_OK; 400 401 for_each_sg(sg, sg, io->entries, i) { 402 struct urb *urb; 403 unsigned len; 404 405 urb = usb_alloc_urb(0, mem_flags); 406 if (!urb) { 407 io->entries = i; 408 goto nomem; 409 } 410 io->urbs[i] = urb; 411 412 urb->dev = NULL; 413 urb->pipe = pipe; 414 urb->interval = period; 415 urb->transfer_flags = urb_flags; 416 urb->complete = sg_complete; 417 urb->context = io; 418 urb->sg = sg; 419 420 if (use_sg) { 421 /* There is no single transfer buffer */ 422 urb->transfer_buffer = NULL; 423 urb->num_sgs = nents; 424 425 /* A length of zero means transfer the whole sg list */ 426 len = length; 427 if (len == 0) { 428 struct scatterlist *sg2; 429 int j; 430 431 for_each_sg(sg, sg2, nents, j) 432 len += sg2->length; 433 } 434 } else { 435 /* 436 * Some systems can't use DMA; they use PIO instead. 437 * For their sakes, transfer_buffer is set whenever 438 * possible. 439 */ 440 if (!PageHighMem(sg_page(sg))) 441 urb->transfer_buffer = sg_virt(sg); 442 else 443 urb->transfer_buffer = NULL; 444 445 len = sg->length; 446 if (length) { 447 len = min_t(size_t, len, length); 448 length -= len; 449 if (length == 0) 450 io->entries = i + 1; 451 } 452 } 453 urb->transfer_buffer_length = len; 454 } 455 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT; 456 457 /* transaction state */ 458 io->count = io->entries; 459 io->status = 0; 460 io->bytes = 0; 461 init_completion(&io->complete); 462 return 0; 463 464 nomem: 465 sg_clean(io); 466 return -ENOMEM; 467 } 468 EXPORT_SYMBOL_GPL(usb_sg_init); 469 470 /** 471 * usb_sg_wait - synchronously execute scatter/gather request 472 * @io: request block handle, as initialized with usb_sg_init(). 473 * some fields become accessible when this call returns. 474 * Context: !in_interrupt () 475 * 476 * This function blocks until the specified I/O operation completes. It 477 * leverages the grouping of the related I/O requests to get good transfer 478 * rates, by queueing the requests. At higher speeds, such queuing can 479 * significantly improve USB throughput. 480 * 481 * There are three kinds of completion for this function. 482 * 483 * (1) success, where io->status is zero. The number of io->bytes 484 * transferred is as requested. 485 * (2) error, where io->status is a negative errno value. The number 486 * of io->bytes transferred before the error is usually less 487 * than requested, and can be nonzero. 488 * (3) cancellation, a type of error with status -ECONNRESET that 489 * is initiated by usb_sg_cancel(). 490 * 491 * When this function returns, all memory allocated through usb_sg_init() or 492 * this call will have been freed. The request block parameter may still be 493 * passed to usb_sg_cancel(), or it may be freed. It could also be 494 * reinitialized and then reused. 495 * 496 * Data Transfer Rates: 497 * 498 * Bulk transfers are valid for full or high speed endpoints. 499 * The best full speed data rate is 19 packets of 64 bytes each 500 * per frame, or 1216 bytes per millisecond. 501 * The best high speed data rate is 13 packets of 512 bytes each 502 * per microframe, or 52 KBytes per millisecond. 503 * 504 * The reason to use interrupt transfers through this API would most likely 505 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond 506 * could be transferred. That capability is less useful for low or full 507 * speed interrupt endpoints, which allow at most one packet per millisecond, 508 * of at most 8 or 64 bytes (respectively). 509 * 510 * It is not necessary to call this function to reserve bandwidth for devices 511 * under an xHCI host controller, as the bandwidth is reserved when the 512 * configuration or interface alt setting is selected. 513 */ 514 void usb_sg_wait(struct usb_sg_request *io) 515 { 516 int i; 517 int entries = io->entries; 518 519 /* queue the urbs. */ 520 spin_lock_irq(&io->lock); 521 i = 0; 522 while (i < entries && !io->status) { 523 int retval; 524 525 io->urbs[i]->dev = io->dev; 526 spin_unlock_irq(&io->lock); 527 528 retval = usb_submit_urb(io->urbs[i], GFP_NOIO); 529 530 switch (retval) { 531 /* maybe we retrying will recover */ 532 case -ENXIO: /* hc didn't queue this one */ 533 case -EAGAIN: 534 case -ENOMEM: 535 retval = 0; 536 yield(); 537 break; 538 539 /* no error? continue immediately. 540 * 541 * NOTE: to work better with UHCI (4K I/O buffer may 542 * need 3K of TDs) it may be good to limit how many 543 * URBs are queued at once; N milliseconds? 544 */ 545 case 0: 546 ++i; 547 cpu_relax(); 548 break; 549 550 /* fail any uncompleted urbs */ 551 default: 552 io->urbs[i]->status = retval; 553 dev_dbg(&io->dev->dev, "%s, submit --> %d\n", 554 __func__, retval); 555 usb_sg_cancel(io); 556 } 557 spin_lock_irq(&io->lock); 558 if (retval && (io->status == 0 || io->status == -ECONNRESET)) 559 io->status = retval; 560 } 561 io->count -= entries - i; 562 if (io->count == 0) 563 complete(&io->complete); 564 spin_unlock_irq(&io->lock); 565 566 /* OK, yes, this could be packaged as non-blocking. 567 * So could the submit loop above ... but it's easier to 568 * solve neither problem than to solve both! 569 */ 570 wait_for_completion(&io->complete); 571 572 sg_clean(io); 573 } 574 EXPORT_SYMBOL_GPL(usb_sg_wait); 575 576 /** 577 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait() 578 * @io: request block, initialized with usb_sg_init() 579 * 580 * This stops a request after it has been started by usb_sg_wait(). 581 * It can also prevents one initialized by usb_sg_init() from starting, 582 * so that call just frees resources allocated to the request. 583 */ 584 void usb_sg_cancel(struct usb_sg_request *io) 585 { 586 unsigned long flags; 587 int i, retval; 588 589 spin_lock_irqsave(&io->lock, flags); 590 if (io->status) { 591 spin_unlock_irqrestore(&io->lock, flags); 592 return; 593 } 594 /* shut everything down */ 595 io->status = -ECONNRESET; 596 spin_unlock_irqrestore(&io->lock, flags); 597 598 for (i = io->entries - 1; i >= 0; --i) { 599 usb_block_urb(io->urbs[i]); 600 601 retval = usb_unlink_urb(io->urbs[i]); 602 if (retval != -EINPROGRESS 603 && retval != -ENODEV 604 && retval != -EBUSY 605 && retval != -EIDRM) 606 dev_warn(&io->dev->dev, "%s, unlink --> %d\n", 607 __func__, retval); 608 } 609 } 610 EXPORT_SYMBOL_GPL(usb_sg_cancel); 611 612 /*-------------------------------------------------------------------*/ 613 614 /** 615 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request 616 * @dev: the device whose descriptor is being retrieved 617 * @type: the descriptor type (USB_DT_*) 618 * @index: the number of the descriptor 619 * @buf: where to put the descriptor 620 * @size: how big is "buf"? 621 * Context: !in_interrupt () 622 * 623 * Gets a USB descriptor. Convenience functions exist to simplify 624 * getting some types of descriptors. Use 625 * usb_get_string() or usb_string() for USB_DT_STRING. 626 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG) 627 * are part of the device structure. 628 * In addition to a number of USB-standard descriptors, some 629 * devices also use class-specific or vendor-specific descriptors. 630 * 631 * This call is synchronous, and may not be used in an interrupt context. 632 * 633 * Return: The number of bytes received on success, or else the status code 634 * returned by the underlying usb_control_msg() call. 635 */ 636 int usb_get_descriptor(struct usb_device *dev, unsigned char type, 637 unsigned char index, void *buf, int size) 638 { 639 int i; 640 int result; 641 642 memset(buf, 0, size); /* Make sure we parse really received data */ 643 644 for (i = 0; i < 3; ++i) { 645 /* retry on length 0 or error; some devices are flakey */ 646 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 647 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 648 (type << 8) + index, 0, buf, size, 649 USB_CTRL_GET_TIMEOUT); 650 if (result <= 0 && result != -ETIMEDOUT) 651 continue; 652 if (result > 1 && ((u8 *)buf)[1] != type) { 653 result = -ENODATA; 654 continue; 655 } 656 break; 657 } 658 return result; 659 } 660 EXPORT_SYMBOL_GPL(usb_get_descriptor); 661 662 /** 663 * usb_get_string - gets a string descriptor 664 * @dev: the device whose string descriptor is being retrieved 665 * @langid: code for language chosen (from string descriptor zero) 666 * @index: the number of the descriptor 667 * @buf: where to put the string 668 * @size: how big is "buf"? 669 * Context: !in_interrupt () 670 * 671 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character, 672 * in little-endian byte order). 673 * The usb_string() function will often be a convenient way to turn 674 * these strings into kernel-printable form. 675 * 676 * Strings may be referenced in device, configuration, interface, or other 677 * descriptors, and could also be used in vendor-specific ways. 678 * 679 * This call is synchronous, and may not be used in an interrupt context. 680 * 681 * Return: The number of bytes received on success, or else the status code 682 * returned by the underlying usb_control_msg() call. 683 */ 684 static int usb_get_string(struct usb_device *dev, unsigned short langid, 685 unsigned char index, void *buf, int size) 686 { 687 int i; 688 int result; 689 690 for (i = 0; i < 3; ++i) { 691 /* retry on length 0 or stall; some devices are flakey */ 692 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 693 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 694 (USB_DT_STRING << 8) + index, langid, buf, size, 695 USB_CTRL_GET_TIMEOUT); 696 if (result == 0 || result == -EPIPE) 697 continue; 698 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) { 699 result = -ENODATA; 700 continue; 701 } 702 break; 703 } 704 return result; 705 } 706 707 static void usb_try_string_workarounds(unsigned char *buf, int *length) 708 { 709 int newlength, oldlength = *length; 710 711 for (newlength = 2; newlength + 1 < oldlength; newlength += 2) 712 if (!isprint(buf[newlength]) || buf[newlength + 1]) 713 break; 714 715 if (newlength > 2) { 716 buf[0] = newlength; 717 *length = newlength; 718 } 719 } 720 721 static int usb_string_sub(struct usb_device *dev, unsigned int langid, 722 unsigned int index, unsigned char *buf) 723 { 724 int rc; 725 726 /* Try to read the string descriptor by asking for the maximum 727 * possible number of bytes */ 728 if (dev->quirks & USB_QUIRK_STRING_FETCH_255) 729 rc = -EIO; 730 else 731 rc = usb_get_string(dev, langid, index, buf, 255); 732 733 /* If that failed try to read the descriptor length, then 734 * ask for just that many bytes */ 735 if (rc < 2) { 736 rc = usb_get_string(dev, langid, index, buf, 2); 737 if (rc == 2) 738 rc = usb_get_string(dev, langid, index, buf, buf[0]); 739 } 740 741 if (rc >= 2) { 742 if (!buf[0] && !buf[1]) 743 usb_try_string_workarounds(buf, &rc); 744 745 /* There might be extra junk at the end of the descriptor */ 746 if (buf[0] < rc) 747 rc = buf[0]; 748 749 rc = rc - (rc & 1); /* force a multiple of two */ 750 } 751 752 if (rc < 2) 753 rc = (rc < 0 ? rc : -EINVAL); 754 755 return rc; 756 } 757 758 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf) 759 { 760 int err; 761 762 if (dev->have_langid) 763 return 0; 764 765 if (dev->string_langid < 0) 766 return -EPIPE; 767 768 err = usb_string_sub(dev, 0, 0, tbuf); 769 770 /* If the string was reported but is malformed, default to english 771 * (0x0409) */ 772 if (err == -ENODATA || (err > 0 && err < 4)) { 773 dev->string_langid = 0x0409; 774 dev->have_langid = 1; 775 dev_err(&dev->dev, 776 "language id specifier not provided by device, defaulting to English\n"); 777 return 0; 778 } 779 780 /* In case of all other errors, we assume the device is not able to 781 * deal with strings at all. Set string_langid to -1 in order to 782 * prevent any string to be retrieved from the device */ 783 if (err < 0) { 784 dev_info(&dev->dev, "string descriptor 0 read error: %d\n", 785 err); 786 dev->string_langid = -1; 787 return -EPIPE; 788 } 789 790 /* always use the first langid listed */ 791 dev->string_langid = tbuf[2] | (tbuf[3] << 8); 792 dev->have_langid = 1; 793 dev_dbg(&dev->dev, "default language 0x%04x\n", 794 dev->string_langid); 795 return 0; 796 } 797 798 /** 799 * usb_string - returns UTF-8 version of a string descriptor 800 * @dev: the device whose string descriptor is being retrieved 801 * @index: the number of the descriptor 802 * @buf: where to put the string 803 * @size: how big is "buf"? 804 * Context: !in_interrupt () 805 * 806 * This converts the UTF-16LE encoded strings returned by devices, from 807 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones 808 * that are more usable in most kernel contexts. Note that this function 809 * chooses strings in the first language supported by the device. 810 * 811 * This call is synchronous, and may not be used in an interrupt context. 812 * 813 * Return: length of the string (>= 0) or usb_control_msg status (< 0). 814 */ 815 int usb_string(struct usb_device *dev, int index, char *buf, size_t size) 816 { 817 unsigned char *tbuf; 818 int err; 819 820 if (dev->state == USB_STATE_SUSPENDED) 821 return -EHOSTUNREACH; 822 if (size <= 0 || !buf || !index) 823 return -EINVAL; 824 buf[0] = 0; 825 tbuf = kmalloc(256, GFP_NOIO); 826 if (!tbuf) 827 return -ENOMEM; 828 829 err = usb_get_langid(dev, tbuf); 830 if (err < 0) 831 goto errout; 832 833 err = usb_string_sub(dev, dev->string_langid, index, tbuf); 834 if (err < 0) 835 goto errout; 836 837 size--; /* leave room for trailing NULL char in output buffer */ 838 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2, 839 UTF16_LITTLE_ENDIAN, buf, size); 840 buf[err] = 0; 841 842 if (tbuf[1] != USB_DT_STRING) 843 dev_dbg(&dev->dev, 844 "wrong descriptor type %02x for string %d (\"%s\")\n", 845 tbuf[1], index, buf); 846 847 errout: 848 kfree(tbuf); 849 return err; 850 } 851 EXPORT_SYMBOL_GPL(usb_string); 852 853 /* one UTF-8-encoded 16-bit character has at most three bytes */ 854 #define MAX_USB_STRING_SIZE (127 * 3 + 1) 855 856 /** 857 * usb_cache_string - read a string descriptor and cache it for later use 858 * @udev: the device whose string descriptor is being read 859 * @index: the descriptor index 860 * 861 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string, 862 * or %NULL if the index is 0 or the string could not be read. 863 */ 864 char *usb_cache_string(struct usb_device *udev, int index) 865 { 866 char *buf; 867 char *smallbuf = NULL; 868 int len; 869 870 if (index <= 0) 871 return NULL; 872 873 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO); 874 if (buf) { 875 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE); 876 if (len > 0) { 877 smallbuf = kmalloc(++len, GFP_NOIO); 878 if (!smallbuf) 879 return buf; 880 memcpy(smallbuf, buf, len); 881 } 882 kfree(buf); 883 } 884 return smallbuf; 885 } 886 887 /* 888 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore) 889 * @dev: the device whose device descriptor is being updated 890 * @size: how much of the descriptor to read 891 * Context: !in_interrupt () 892 * 893 * Updates the copy of the device descriptor stored in the device structure, 894 * which dedicates space for this purpose. 895 * 896 * Not exported, only for use by the core. If drivers really want to read 897 * the device descriptor directly, they can call usb_get_descriptor() with 898 * type = USB_DT_DEVICE and index = 0. 899 * 900 * This call is synchronous, and may not be used in an interrupt context. 901 * 902 * Return: The number of bytes received on success, or else the status code 903 * returned by the underlying usb_control_msg() call. 904 */ 905 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size) 906 { 907 struct usb_device_descriptor *desc; 908 int ret; 909 910 if (size > sizeof(*desc)) 911 return -EINVAL; 912 desc = kmalloc(sizeof(*desc), GFP_NOIO); 913 if (!desc) 914 return -ENOMEM; 915 916 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size); 917 if (ret >= 0) 918 memcpy(&dev->descriptor, desc, size); 919 kfree(desc); 920 return ret; 921 } 922 923 /* 924 * usb_set_isoch_delay - informs the device of the packet transmit delay 925 * @dev: the device whose delay is to be informed 926 * Context: !in_interrupt() 927 * 928 * Since this is an optional request, we don't bother if it fails. 929 */ 930 int usb_set_isoch_delay(struct usb_device *dev) 931 { 932 /* skip hub devices */ 933 if (dev->descriptor.bDeviceClass == USB_CLASS_HUB) 934 return 0; 935 936 /* skip non-SS/non-SSP devices */ 937 if (dev->speed < USB_SPEED_SUPER) 938 return 0; 939 940 return usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 941 USB_REQ_SET_ISOCH_DELAY, 942 USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE, 943 dev->hub_delay, 0, NULL, 0, 944 USB_CTRL_SET_TIMEOUT); 945 } 946 947 /** 948 * usb_get_status - issues a GET_STATUS call 949 * @dev: the device whose status is being checked 950 * @recip: USB_RECIP_*; for device, interface, or endpoint 951 * @type: USB_STATUS_TYPE_*; for standard or PTM status types 952 * @target: zero (for device), else interface or endpoint number 953 * @data: pointer to two bytes of bitmap data 954 * Context: !in_interrupt () 955 * 956 * Returns device, interface, or endpoint status. Normally only of 957 * interest to see if the device is self powered, or has enabled the 958 * remote wakeup facility; or whether a bulk or interrupt endpoint 959 * is halted ("stalled"). 960 * 961 * Bits in these status bitmaps are set using the SET_FEATURE request, 962 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt() 963 * function should be used to clear halt ("stall") status. 964 * 965 * This call is synchronous, and may not be used in an interrupt context. 966 * 967 * Returns 0 and the status value in *@data (in host byte order) on success, 968 * or else the status code from the underlying usb_control_msg() call. 969 */ 970 int usb_get_status(struct usb_device *dev, int recip, int type, int target, 971 void *data) 972 { 973 int ret; 974 void *status; 975 int length; 976 977 switch (type) { 978 case USB_STATUS_TYPE_STANDARD: 979 length = 2; 980 break; 981 case USB_STATUS_TYPE_PTM: 982 if (recip != USB_RECIP_DEVICE) 983 return -EINVAL; 984 985 length = 4; 986 break; 987 default: 988 return -EINVAL; 989 } 990 991 status = kmalloc(length, GFP_KERNEL); 992 if (!status) 993 return -ENOMEM; 994 995 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 996 USB_REQ_GET_STATUS, USB_DIR_IN | recip, USB_STATUS_TYPE_STANDARD, 997 target, status, length, USB_CTRL_GET_TIMEOUT); 998 999 switch (ret) { 1000 case 4: 1001 if (type != USB_STATUS_TYPE_PTM) { 1002 ret = -EIO; 1003 break; 1004 } 1005 1006 *(u32 *) data = le32_to_cpu(*(__le32 *) status); 1007 ret = 0; 1008 break; 1009 case 2: 1010 if (type != USB_STATUS_TYPE_STANDARD) { 1011 ret = -EIO; 1012 break; 1013 } 1014 1015 *(u16 *) data = le16_to_cpu(*(__le16 *) status); 1016 ret = 0; 1017 break; 1018 default: 1019 ret = -EIO; 1020 } 1021 1022 kfree(status); 1023 return ret; 1024 } 1025 EXPORT_SYMBOL_GPL(usb_get_status); 1026 1027 /** 1028 * usb_clear_halt - tells device to clear endpoint halt/stall condition 1029 * @dev: device whose endpoint is halted 1030 * @pipe: endpoint "pipe" being cleared 1031 * Context: !in_interrupt () 1032 * 1033 * This is used to clear halt conditions for bulk and interrupt endpoints, 1034 * as reported by URB completion status. Endpoints that are halted are 1035 * sometimes referred to as being "stalled". Such endpoints are unable 1036 * to transmit or receive data until the halt status is cleared. Any URBs 1037 * queued for such an endpoint should normally be unlinked by the driver 1038 * before clearing the halt condition, as described in sections 5.7.5 1039 * and 5.8.5 of the USB 2.0 spec. 1040 * 1041 * Note that control and isochronous endpoints don't halt, although control 1042 * endpoints report "protocol stall" (for unsupported requests) using the 1043 * same status code used to report a true stall. 1044 * 1045 * This call is synchronous, and may not be used in an interrupt context. 1046 * 1047 * Return: Zero on success, or else the status code returned by the 1048 * underlying usb_control_msg() call. 1049 */ 1050 int usb_clear_halt(struct usb_device *dev, int pipe) 1051 { 1052 int result; 1053 int endp = usb_pipeendpoint(pipe); 1054 1055 if (usb_pipein(pipe)) 1056 endp |= USB_DIR_IN; 1057 1058 /* we don't care if it wasn't halted first. in fact some devices 1059 * (like some ibmcam model 1 units) seem to expect hosts to make 1060 * this request for iso endpoints, which can't halt! 1061 */ 1062 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1063 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 1064 USB_ENDPOINT_HALT, endp, NULL, 0, 1065 USB_CTRL_SET_TIMEOUT); 1066 1067 /* don't un-halt or force to DATA0 except on success */ 1068 if (result < 0) 1069 return result; 1070 1071 /* NOTE: seems like Microsoft and Apple don't bother verifying 1072 * the clear "took", so some devices could lock up if you check... 1073 * such as the Hagiwara FlashGate DUAL. So we won't bother. 1074 * 1075 * NOTE: make sure the logic here doesn't diverge much from 1076 * the copy in usb-storage, for as long as we need two copies. 1077 */ 1078 1079 usb_reset_endpoint(dev, endp); 1080 1081 return 0; 1082 } 1083 EXPORT_SYMBOL_GPL(usb_clear_halt); 1084 1085 static int create_intf_ep_devs(struct usb_interface *intf) 1086 { 1087 struct usb_device *udev = interface_to_usbdev(intf); 1088 struct usb_host_interface *alt = intf->cur_altsetting; 1089 int i; 1090 1091 if (intf->ep_devs_created || intf->unregistering) 1092 return 0; 1093 1094 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1095 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev); 1096 intf->ep_devs_created = 1; 1097 return 0; 1098 } 1099 1100 static void remove_intf_ep_devs(struct usb_interface *intf) 1101 { 1102 struct usb_host_interface *alt = intf->cur_altsetting; 1103 int i; 1104 1105 if (!intf->ep_devs_created) 1106 return; 1107 1108 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1109 usb_remove_ep_devs(&alt->endpoint[i]); 1110 intf->ep_devs_created = 0; 1111 } 1112 1113 /** 1114 * usb_disable_endpoint -- Disable an endpoint by address 1115 * @dev: the device whose endpoint is being disabled 1116 * @epaddr: the endpoint's address. Endpoint number for output, 1117 * endpoint number + USB_DIR_IN for input 1118 * @reset_hardware: flag to erase any endpoint state stored in the 1119 * controller hardware 1120 * 1121 * Disables the endpoint for URB submission and nukes all pending URBs. 1122 * If @reset_hardware is set then also deallocates hcd/hardware state 1123 * for the endpoint. 1124 */ 1125 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr, 1126 bool reset_hardware) 1127 { 1128 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1129 struct usb_host_endpoint *ep; 1130 1131 if (!dev) 1132 return; 1133 1134 if (usb_endpoint_out(epaddr)) { 1135 ep = dev->ep_out[epnum]; 1136 if (reset_hardware) 1137 dev->ep_out[epnum] = NULL; 1138 } else { 1139 ep = dev->ep_in[epnum]; 1140 if (reset_hardware) 1141 dev->ep_in[epnum] = NULL; 1142 } 1143 if (ep) { 1144 ep->enabled = 0; 1145 usb_hcd_flush_endpoint(dev, ep); 1146 if (reset_hardware) 1147 usb_hcd_disable_endpoint(dev, ep); 1148 } 1149 } 1150 1151 /** 1152 * usb_reset_endpoint - Reset an endpoint's state. 1153 * @dev: the device whose endpoint is to be reset 1154 * @epaddr: the endpoint's address. Endpoint number for output, 1155 * endpoint number + USB_DIR_IN for input 1156 * 1157 * Resets any host-side endpoint state such as the toggle bit, 1158 * sequence number or current window. 1159 */ 1160 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr) 1161 { 1162 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1163 struct usb_host_endpoint *ep; 1164 1165 if (usb_endpoint_out(epaddr)) 1166 ep = dev->ep_out[epnum]; 1167 else 1168 ep = dev->ep_in[epnum]; 1169 if (ep) 1170 usb_hcd_reset_endpoint(dev, ep); 1171 } 1172 EXPORT_SYMBOL_GPL(usb_reset_endpoint); 1173 1174 1175 /** 1176 * usb_disable_interface -- Disable all endpoints for an interface 1177 * @dev: the device whose interface is being disabled 1178 * @intf: pointer to the interface descriptor 1179 * @reset_hardware: flag to erase any endpoint state stored in the 1180 * controller hardware 1181 * 1182 * Disables all the endpoints for the interface's current altsetting. 1183 */ 1184 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf, 1185 bool reset_hardware) 1186 { 1187 struct usb_host_interface *alt = intf->cur_altsetting; 1188 int i; 1189 1190 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 1191 usb_disable_endpoint(dev, 1192 alt->endpoint[i].desc.bEndpointAddress, 1193 reset_hardware); 1194 } 1195 } 1196 1197 /** 1198 * usb_disable_device - Disable all the endpoints for a USB device 1199 * @dev: the device whose endpoints are being disabled 1200 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. 1201 * 1202 * Disables all the device's endpoints, potentially including endpoint 0. 1203 * Deallocates hcd/hardware state for the endpoints (nuking all or most 1204 * pending urbs) and usbcore state for the interfaces, so that usbcore 1205 * must usb_set_configuration() before any interfaces could be used. 1206 */ 1207 void usb_disable_device(struct usb_device *dev, int skip_ep0) 1208 { 1209 int i; 1210 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1211 1212 /* getting rid of interfaces will disconnect 1213 * any drivers bound to them (a key side effect) 1214 */ 1215 if (dev->actconfig) { 1216 /* 1217 * FIXME: In order to avoid self-deadlock involving the 1218 * bandwidth_mutex, we have to mark all the interfaces 1219 * before unregistering any of them. 1220 */ 1221 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) 1222 dev->actconfig->interface[i]->unregistering = 1; 1223 1224 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1225 struct usb_interface *interface; 1226 1227 /* remove this interface if it has been registered */ 1228 interface = dev->actconfig->interface[i]; 1229 if (!device_is_registered(&interface->dev)) 1230 continue; 1231 dev_dbg(&dev->dev, "unregistering interface %s\n", 1232 dev_name(&interface->dev)); 1233 remove_intf_ep_devs(interface); 1234 device_del(&interface->dev); 1235 } 1236 1237 /* Now that the interfaces are unbound, nobody should 1238 * try to access them. 1239 */ 1240 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1241 put_device(&dev->actconfig->interface[i]->dev); 1242 dev->actconfig->interface[i] = NULL; 1243 } 1244 1245 if (dev->usb2_hw_lpm_enabled == 1) 1246 usb_set_usb2_hardware_lpm(dev, 0); 1247 usb_unlocked_disable_lpm(dev); 1248 usb_disable_ltm(dev); 1249 1250 dev->actconfig = NULL; 1251 if (dev->state == USB_STATE_CONFIGURED) 1252 usb_set_device_state(dev, USB_STATE_ADDRESS); 1253 } 1254 1255 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__, 1256 skip_ep0 ? "non-ep0" : "all"); 1257 if (hcd->driver->check_bandwidth) { 1258 /* First pass: Cancel URBs, leave endpoint pointers intact. */ 1259 for (i = skip_ep0; i < 16; ++i) { 1260 usb_disable_endpoint(dev, i, false); 1261 usb_disable_endpoint(dev, i + USB_DIR_IN, false); 1262 } 1263 /* Remove endpoints from the host controller internal state */ 1264 mutex_lock(hcd->bandwidth_mutex); 1265 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); 1266 mutex_unlock(hcd->bandwidth_mutex); 1267 /* Second pass: remove endpoint pointers */ 1268 } 1269 for (i = skip_ep0; i < 16; ++i) { 1270 usb_disable_endpoint(dev, i, true); 1271 usb_disable_endpoint(dev, i + USB_DIR_IN, true); 1272 } 1273 } 1274 1275 /** 1276 * usb_enable_endpoint - Enable an endpoint for USB communications 1277 * @dev: the device whose interface is being enabled 1278 * @ep: the endpoint 1279 * @reset_ep: flag to reset the endpoint state 1280 * 1281 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers. 1282 * For control endpoints, both the input and output sides are handled. 1283 */ 1284 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep, 1285 bool reset_ep) 1286 { 1287 int epnum = usb_endpoint_num(&ep->desc); 1288 int is_out = usb_endpoint_dir_out(&ep->desc); 1289 int is_control = usb_endpoint_xfer_control(&ep->desc); 1290 1291 if (reset_ep) 1292 usb_hcd_reset_endpoint(dev, ep); 1293 if (is_out || is_control) 1294 dev->ep_out[epnum] = ep; 1295 if (!is_out || is_control) 1296 dev->ep_in[epnum] = ep; 1297 ep->enabled = 1; 1298 } 1299 1300 /** 1301 * usb_enable_interface - Enable all the endpoints for an interface 1302 * @dev: the device whose interface is being enabled 1303 * @intf: pointer to the interface descriptor 1304 * @reset_eps: flag to reset the endpoints' state 1305 * 1306 * Enables all the endpoints for the interface's current altsetting. 1307 */ 1308 void usb_enable_interface(struct usb_device *dev, 1309 struct usb_interface *intf, bool reset_eps) 1310 { 1311 struct usb_host_interface *alt = intf->cur_altsetting; 1312 int i; 1313 1314 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1315 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps); 1316 } 1317 1318 /** 1319 * usb_set_interface - Makes a particular alternate setting be current 1320 * @dev: the device whose interface is being updated 1321 * @interface: the interface being updated 1322 * @alternate: the setting being chosen. 1323 * Context: !in_interrupt () 1324 * 1325 * This is used to enable data transfers on interfaces that may not 1326 * be enabled by default. Not all devices support such configurability. 1327 * Only the driver bound to an interface may change its setting. 1328 * 1329 * Within any given configuration, each interface may have several 1330 * alternative settings. These are often used to control levels of 1331 * bandwidth consumption. For example, the default setting for a high 1332 * speed interrupt endpoint may not send more than 64 bytes per microframe, 1333 * while interrupt transfers of up to 3KBytes per microframe are legal. 1334 * Also, isochronous endpoints may never be part of an 1335 * interface's default setting. To access such bandwidth, alternate 1336 * interface settings must be made current. 1337 * 1338 * Note that in the Linux USB subsystem, bandwidth associated with 1339 * an endpoint in a given alternate setting is not reserved until an URB 1340 * is submitted that needs that bandwidth. Some other operating systems 1341 * allocate bandwidth early, when a configuration is chosen. 1342 * 1343 * This call is synchronous, and may not be used in an interrupt context. 1344 * Also, drivers must not change altsettings while urbs are scheduled for 1345 * endpoints in that interface; all such urbs must first be completed 1346 * (perhaps forced by unlinking). 1347 * 1348 * Return: Zero on success, or else the status code returned by the 1349 * underlying usb_control_msg() call. 1350 */ 1351 int usb_set_interface(struct usb_device *dev, int interface, int alternate) 1352 { 1353 struct usb_interface *iface; 1354 struct usb_host_interface *alt; 1355 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1356 int i, ret, manual = 0; 1357 unsigned int epaddr; 1358 unsigned int pipe; 1359 1360 if (dev->state == USB_STATE_SUSPENDED) 1361 return -EHOSTUNREACH; 1362 1363 iface = usb_ifnum_to_if(dev, interface); 1364 if (!iface) { 1365 dev_dbg(&dev->dev, "selecting invalid interface %d\n", 1366 interface); 1367 return -EINVAL; 1368 } 1369 if (iface->unregistering) 1370 return -ENODEV; 1371 1372 alt = usb_altnum_to_altsetting(iface, alternate); 1373 if (!alt) { 1374 dev_warn(&dev->dev, "selecting invalid altsetting %d\n", 1375 alternate); 1376 return -EINVAL; 1377 } 1378 1379 /* Make sure we have enough bandwidth for this alternate interface. 1380 * Remove the current alt setting and add the new alt setting. 1381 */ 1382 mutex_lock(hcd->bandwidth_mutex); 1383 /* Disable LPM, and re-enable it once the new alt setting is installed, 1384 * so that the xHCI driver can recalculate the U1/U2 timeouts. 1385 */ 1386 if (usb_disable_lpm(dev)) { 1387 dev_err(&iface->dev, "%s Failed to disable LPM\n", __func__); 1388 mutex_unlock(hcd->bandwidth_mutex); 1389 return -ENOMEM; 1390 } 1391 /* Changing alt-setting also frees any allocated streams */ 1392 for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++) 1393 iface->cur_altsetting->endpoint[i].streams = 0; 1394 1395 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt); 1396 if (ret < 0) { 1397 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n", 1398 alternate); 1399 usb_enable_lpm(dev); 1400 mutex_unlock(hcd->bandwidth_mutex); 1401 return ret; 1402 } 1403 1404 if (dev->quirks & USB_QUIRK_NO_SET_INTF) 1405 ret = -EPIPE; 1406 else 1407 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1408 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE, 1409 alternate, interface, NULL, 0, 5000); 1410 1411 /* 9.4.10 says devices don't need this and are free to STALL the 1412 * request if the interface only has one alternate setting. 1413 */ 1414 if (ret == -EPIPE && iface->num_altsetting == 1) { 1415 dev_dbg(&dev->dev, 1416 "manual set_interface for iface %d, alt %d\n", 1417 interface, alternate); 1418 manual = 1; 1419 } else if (ret < 0) { 1420 /* Re-instate the old alt setting */ 1421 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting); 1422 usb_enable_lpm(dev); 1423 mutex_unlock(hcd->bandwidth_mutex); 1424 return ret; 1425 } 1426 mutex_unlock(hcd->bandwidth_mutex); 1427 1428 /* FIXME drivers shouldn't need to replicate/bugfix the logic here 1429 * when they implement async or easily-killable versions of this or 1430 * other "should-be-internal" functions (like clear_halt). 1431 * should hcd+usbcore postprocess control requests? 1432 */ 1433 1434 /* prevent submissions using previous endpoint settings */ 1435 if (iface->cur_altsetting != alt) { 1436 remove_intf_ep_devs(iface); 1437 usb_remove_sysfs_intf_files(iface); 1438 } 1439 usb_disable_interface(dev, iface, true); 1440 1441 iface->cur_altsetting = alt; 1442 1443 /* Now that the interface is installed, re-enable LPM. */ 1444 usb_unlocked_enable_lpm(dev); 1445 1446 /* If the interface only has one altsetting and the device didn't 1447 * accept the request, we attempt to carry out the equivalent action 1448 * by manually clearing the HALT feature for each endpoint in the 1449 * new altsetting. 1450 */ 1451 if (manual) { 1452 for (i = 0; i < alt->desc.bNumEndpoints; i++) { 1453 epaddr = alt->endpoint[i].desc.bEndpointAddress; 1454 pipe = __create_pipe(dev, 1455 USB_ENDPOINT_NUMBER_MASK & epaddr) | 1456 (usb_endpoint_out(epaddr) ? 1457 USB_DIR_OUT : USB_DIR_IN); 1458 1459 usb_clear_halt(dev, pipe); 1460 } 1461 } 1462 1463 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting 1464 * 1465 * Note: 1466 * Despite EP0 is always present in all interfaces/AS, the list of 1467 * endpoints from the descriptor does not contain EP0. Due to its 1468 * omnipresence one might expect EP0 being considered "affected" by 1469 * any SetInterface request and hence assume toggles need to be reset. 1470 * However, EP0 toggles are re-synced for every individual transfer 1471 * during the SETUP stage - hence EP0 toggles are "don't care" here. 1472 * (Likewise, EP0 never "halts" on well designed devices.) 1473 */ 1474 usb_enable_interface(dev, iface, true); 1475 if (device_is_registered(&iface->dev)) { 1476 usb_create_sysfs_intf_files(iface); 1477 create_intf_ep_devs(iface); 1478 } 1479 return 0; 1480 } 1481 EXPORT_SYMBOL_GPL(usb_set_interface); 1482 1483 /** 1484 * usb_reset_configuration - lightweight device reset 1485 * @dev: the device whose configuration is being reset 1486 * 1487 * This issues a standard SET_CONFIGURATION request to the device using 1488 * the current configuration. The effect is to reset most USB-related 1489 * state in the device, including interface altsettings (reset to zero), 1490 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt 1491 * endpoints). Other usbcore state is unchanged, including bindings of 1492 * usb device drivers to interfaces. 1493 * 1494 * Because this affects multiple interfaces, avoid using this with composite 1495 * (multi-interface) devices. Instead, the driver for each interface may 1496 * use usb_set_interface() on the interfaces it claims. Be careful though; 1497 * some devices don't support the SET_INTERFACE request, and others won't 1498 * reset all the interface state (notably endpoint state). Resetting the whole 1499 * configuration would affect other drivers' interfaces. 1500 * 1501 * The caller must own the device lock. 1502 * 1503 * Return: Zero on success, else a negative error code. 1504 */ 1505 int usb_reset_configuration(struct usb_device *dev) 1506 { 1507 int i, retval; 1508 struct usb_host_config *config; 1509 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1510 1511 if (dev->state == USB_STATE_SUSPENDED) 1512 return -EHOSTUNREACH; 1513 1514 /* caller must have locked the device and must own 1515 * the usb bus readlock (so driver bindings are stable); 1516 * calls during probe() are fine 1517 */ 1518 1519 for (i = 1; i < 16; ++i) { 1520 usb_disable_endpoint(dev, i, true); 1521 usb_disable_endpoint(dev, i + USB_DIR_IN, true); 1522 } 1523 1524 config = dev->actconfig; 1525 retval = 0; 1526 mutex_lock(hcd->bandwidth_mutex); 1527 /* Disable LPM, and re-enable it once the configuration is reset, so 1528 * that the xHCI driver can recalculate the U1/U2 timeouts. 1529 */ 1530 if (usb_disable_lpm(dev)) { 1531 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__); 1532 mutex_unlock(hcd->bandwidth_mutex); 1533 return -ENOMEM; 1534 } 1535 /* Make sure we have enough bandwidth for each alternate setting 0 */ 1536 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1537 struct usb_interface *intf = config->interface[i]; 1538 struct usb_host_interface *alt; 1539 1540 alt = usb_altnum_to_altsetting(intf, 0); 1541 if (!alt) 1542 alt = &intf->altsetting[0]; 1543 if (alt != intf->cur_altsetting) 1544 retval = usb_hcd_alloc_bandwidth(dev, NULL, 1545 intf->cur_altsetting, alt); 1546 if (retval < 0) 1547 break; 1548 } 1549 /* If not, reinstate the old alternate settings */ 1550 if (retval < 0) { 1551 reset_old_alts: 1552 for (i--; i >= 0; i--) { 1553 struct usb_interface *intf = config->interface[i]; 1554 struct usb_host_interface *alt; 1555 1556 alt = usb_altnum_to_altsetting(intf, 0); 1557 if (!alt) 1558 alt = &intf->altsetting[0]; 1559 if (alt != intf->cur_altsetting) 1560 usb_hcd_alloc_bandwidth(dev, NULL, 1561 alt, intf->cur_altsetting); 1562 } 1563 usb_enable_lpm(dev); 1564 mutex_unlock(hcd->bandwidth_mutex); 1565 return retval; 1566 } 1567 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1568 USB_REQ_SET_CONFIGURATION, 0, 1569 config->desc.bConfigurationValue, 0, 1570 NULL, 0, USB_CTRL_SET_TIMEOUT); 1571 if (retval < 0) 1572 goto reset_old_alts; 1573 mutex_unlock(hcd->bandwidth_mutex); 1574 1575 /* re-init hc/hcd interface/endpoint state */ 1576 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1577 struct usb_interface *intf = config->interface[i]; 1578 struct usb_host_interface *alt; 1579 1580 alt = usb_altnum_to_altsetting(intf, 0); 1581 1582 /* No altsetting 0? We'll assume the first altsetting. 1583 * We could use a GetInterface call, but if a device is 1584 * so non-compliant that it doesn't have altsetting 0 1585 * then I wouldn't trust its reply anyway. 1586 */ 1587 if (!alt) 1588 alt = &intf->altsetting[0]; 1589 1590 if (alt != intf->cur_altsetting) { 1591 remove_intf_ep_devs(intf); 1592 usb_remove_sysfs_intf_files(intf); 1593 } 1594 intf->cur_altsetting = alt; 1595 usb_enable_interface(dev, intf, true); 1596 if (device_is_registered(&intf->dev)) { 1597 usb_create_sysfs_intf_files(intf); 1598 create_intf_ep_devs(intf); 1599 } 1600 } 1601 /* Now that the interfaces are installed, re-enable LPM. */ 1602 usb_unlocked_enable_lpm(dev); 1603 return 0; 1604 } 1605 EXPORT_SYMBOL_GPL(usb_reset_configuration); 1606 1607 static void usb_release_interface(struct device *dev) 1608 { 1609 struct usb_interface *intf = to_usb_interface(dev); 1610 struct usb_interface_cache *intfc = 1611 altsetting_to_usb_interface_cache(intf->altsetting); 1612 1613 kref_put(&intfc->ref, usb_release_interface_cache); 1614 usb_put_dev(interface_to_usbdev(intf)); 1615 of_node_put(dev->of_node); 1616 kfree(intf); 1617 } 1618 1619 /* 1620 * usb_deauthorize_interface - deauthorize an USB interface 1621 * 1622 * @intf: USB interface structure 1623 */ 1624 void usb_deauthorize_interface(struct usb_interface *intf) 1625 { 1626 struct device *dev = &intf->dev; 1627 1628 device_lock(dev->parent); 1629 1630 if (intf->authorized) { 1631 device_lock(dev); 1632 intf->authorized = 0; 1633 device_unlock(dev); 1634 1635 usb_forced_unbind_intf(intf); 1636 } 1637 1638 device_unlock(dev->parent); 1639 } 1640 1641 /* 1642 * usb_authorize_interface - authorize an USB interface 1643 * 1644 * @intf: USB interface structure 1645 */ 1646 void usb_authorize_interface(struct usb_interface *intf) 1647 { 1648 struct device *dev = &intf->dev; 1649 1650 if (!intf->authorized) { 1651 device_lock(dev); 1652 intf->authorized = 1; /* authorize interface */ 1653 device_unlock(dev); 1654 } 1655 } 1656 1657 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env) 1658 { 1659 struct usb_device *usb_dev; 1660 struct usb_interface *intf; 1661 struct usb_host_interface *alt; 1662 1663 intf = to_usb_interface(dev); 1664 usb_dev = interface_to_usbdev(intf); 1665 alt = intf->cur_altsetting; 1666 1667 if (add_uevent_var(env, "INTERFACE=%d/%d/%d", 1668 alt->desc.bInterfaceClass, 1669 alt->desc.bInterfaceSubClass, 1670 alt->desc.bInterfaceProtocol)) 1671 return -ENOMEM; 1672 1673 if (add_uevent_var(env, 1674 "MODALIAS=usb:" 1675 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X", 1676 le16_to_cpu(usb_dev->descriptor.idVendor), 1677 le16_to_cpu(usb_dev->descriptor.idProduct), 1678 le16_to_cpu(usb_dev->descriptor.bcdDevice), 1679 usb_dev->descriptor.bDeviceClass, 1680 usb_dev->descriptor.bDeviceSubClass, 1681 usb_dev->descriptor.bDeviceProtocol, 1682 alt->desc.bInterfaceClass, 1683 alt->desc.bInterfaceSubClass, 1684 alt->desc.bInterfaceProtocol, 1685 alt->desc.bInterfaceNumber)) 1686 return -ENOMEM; 1687 1688 return 0; 1689 } 1690 1691 struct device_type usb_if_device_type = { 1692 .name = "usb_interface", 1693 .release = usb_release_interface, 1694 .uevent = usb_if_uevent, 1695 }; 1696 1697 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev, 1698 struct usb_host_config *config, 1699 u8 inum) 1700 { 1701 struct usb_interface_assoc_descriptor *retval = NULL; 1702 struct usb_interface_assoc_descriptor *intf_assoc; 1703 int first_intf; 1704 int last_intf; 1705 int i; 1706 1707 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) { 1708 intf_assoc = config->intf_assoc[i]; 1709 if (intf_assoc->bInterfaceCount == 0) 1710 continue; 1711 1712 first_intf = intf_assoc->bFirstInterface; 1713 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1); 1714 if (inum >= first_intf && inum <= last_intf) { 1715 if (!retval) 1716 retval = intf_assoc; 1717 else 1718 dev_err(&dev->dev, "Interface #%d referenced" 1719 " by multiple IADs\n", inum); 1720 } 1721 } 1722 1723 return retval; 1724 } 1725 1726 1727 /* 1728 * Internal function to queue a device reset 1729 * See usb_queue_reset_device() for more details 1730 */ 1731 static void __usb_queue_reset_device(struct work_struct *ws) 1732 { 1733 int rc; 1734 struct usb_interface *iface = 1735 container_of(ws, struct usb_interface, reset_ws); 1736 struct usb_device *udev = interface_to_usbdev(iface); 1737 1738 rc = usb_lock_device_for_reset(udev, iface); 1739 if (rc >= 0) { 1740 usb_reset_device(udev); 1741 usb_unlock_device(udev); 1742 } 1743 usb_put_intf(iface); /* Undo _get_ in usb_queue_reset_device() */ 1744 } 1745 1746 1747 /* 1748 * usb_set_configuration - Makes a particular device setting be current 1749 * @dev: the device whose configuration is being updated 1750 * @configuration: the configuration being chosen. 1751 * Context: !in_interrupt(), caller owns the device lock 1752 * 1753 * This is used to enable non-default device modes. Not all devices 1754 * use this kind of configurability; many devices only have one 1755 * configuration. 1756 * 1757 * @configuration is the value of the configuration to be installed. 1758 * According to the USB spec (e.g. section 9.1.1.5), configuration values 1759 * must be non-zero; a value of zero indicates that the device in 1760 * unconfigured. However some devices erroneously use 0 as one of their 1761 * configuration values. To help manage such devices, this routine will 1762 * accept @configuration = -1 as indicating the device should be put in 1763 * an unconfigured state. 1764 * 1765 * USB device configurations may affect Linux interoperability, 1766 * power consumption and the functionality available. For example, 1767 * the default configuration is limited to using 100mA of bus power, 1768 * so that when certain device functionality requires more power, 1769 * and the device is bus powered, that functionality should be in some 1770 * non-default device configuration. Other device modes may also be 1771 * reflected as configuration options, such as whether two ISDN 1772 * channels are available independently; and choosing between open 1773 * standard device protocols (like CDC) or proprietary ones. 1774 * 1775 * Note that a non-authorized device (dev->authorized == 0) will only 1776 * be put in unconfigured mode. 1777 * 1778 * Note that USB has an additional level of device configurability, 1779 * associated with interfaces. That configurability is accessed using 1780 * usb_set_interface(). 1781 * 1782 * This call is synchronous. The calling context must be able to sleep, 1783 * must own the device lock, and must not hold the driver model's USB 1784 * bus mutex; usb interface driver probe() methods cannot use this routine. 1785 * 1786 * Returns zero on success, or else the status code returned by the 1787 * underlying call that failed. On successful completion, each interface 1788 * in the original device configuration has been destroyed, and each one 1789 * in the new configuration has been probed by all relevant usb device 1790 * drivers currently known to the kernel. 1791 */ 1792 int usb_set_configuration(struct usb_device *dev, int configuration) 1793 { 1794 int i, ret; 1795 struct usb_host_config *cp = NULL; 1796 struct usb_interface **new_interfaces = NULL; 1797 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1798 int n, nintf; 1799 1800 if (dev->authorized == 0 || configuration == -1) 1801 configuration = 0; 1802 else { 1803 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) { 1804 if (dev->config[i].desc.bConfigurationValue == 1805 configuration) { 1806 cp = &dev->config[i]; 1807 break; 1808 } 1809 } 1810 } 1811 if ((!cp && configuration != 0)) 1812 return -EINVAL; 1813 1814 /* The USB spec says configuration 0 means unconfigured. 1815 * But if a device includes a configuration numbered 0, 1816 * we will accept it as a correctly configured state. 1817 * Use -1 if you really want to unconfigure the device. 1818 */ 1819 if (cp && configuration == 0) 1820 dev_warn(&dev->dev, "config 0 descriptor??\n"); 1821 1822 /* Allocate memory for new interfaces before doing anything else, 1823 * so that if we run out then nothing will have changed. */ 1824 n = nintf = 0; 1825 if (cp) { 1826 nintf = cp->desc.bNumInterfaces; 1827 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces), 1828 GFP_NOIO); 1829 if (!new_interfaces) 1830 return -ENOMEM; 1831 1832 for (; n < nintf; ++n) { 1833 new_interfaces[n] = kzalloc( 1834 sizeof(struct usb_interface), 1835 GFP_NOIO); 1836 if (!new_interfaces[n]) { 1837 ret = -ENOMEM; 1838 free_interfaces: 1839 while (--n >= 0) 1840 kfree(new_interfaces[n]); 1841 kfree(new_interfaces); 1842 return ret; 1843 } 1844 } 1845 1846 i = dev->bus_mA - usb_get_max_power(dev, cp); 1847 if (i < 0) 1848 dev_warn(&dev->dev, "new config #%d exceeds power " 1849 "limit by %dmA\n", 1850 configuration, -i); 1851 } 1852 1853 /* Wake up the device so we can send it the Set-Config request */ 1854 ret = usb_autoresume_device(dev); 1855 if (ret) 1856 goto free_interfaces; 1857 1858 /* if it's already configured, clear out old state first. 1859 * getting rid of old interfaces means unbinding their drivers. 1860 */ 1861 if (dev->state != USB_STATE_ADDRESS) 1862 usb_disable_device(dev, 1); /* Skip ep0 */ 1863 1864 /* Get rid of pending async Set-Config requests for this device */ 1865 cancel_async_set_config(dev); 1866 1867 /* Make sure we have bandwidth (and available HCD resources) for this 1868 * configuration. Remove endpoints from the schedule if we're dropping 1869 * this configuration to set configuration 0. After this point, the 1870 * host controller will not allow submissions to dropped endpoints. If 1871 * this call fails, the device state is unchanged. 1872 */ 1873 mutex_lock(hcd->bandwidth_mutex); 1874 /* Disable LPM, and re-enable it once the new configuration is 1875 * installed, so that the xHCI driver can recalculate the U1/U2 1876 * timeouts. 1877 */ 1878 if (dev->actconfig && usb_disable_lpm(dev)) { 1879 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__); 1880 mutex_unlock(hcd->bandwidth_mutex); 1881 ret = -ENOMEM; 1882 goto free_interfaces; 1883 } 1884 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL); 1885 if (ret < 0) { 1886 if (dev->actconfig) 1887 usb_enable_lpm(dev); 1888 mutex_unlock(hcd->bandwidth_mutex); 1889 usb_autosuspend_device(dev); 1890 goto free_interfaces; 1891 } 1892 1893 /* 1894 * Initialize the new interface structures and the 1895 * hc/hcd/usbcore interface/endpoint state. 1896 */ 1897 for (i = 0; i < nintf; ++i) { 1898 struct usb_interface_cache *intfc; 1899 struct usb_interface *intf; 1900 struct usb_host_interface *alt; 1901 u8 ifnum; 1902 1903 cp->interface[i] = intf = new_interfaces[i]; 1904 intfc = cp->intf_cache[i]; 1905 intf->altsetting = intfc->altsetting; 1906 intf->num_altsetting = intfc->num_altsetting; 1907 intf->authorized = !!HCD_INTF_AUTHORIZED(hcd); 1908 kref_get(&intfc->ref); 1909 1910 alt = usb_altnum_to_altsetting(intf, 0); 1911 1912 /* No altsetting 0? We'll assume the first altsetting. 1913 * We could use a GetInterface call, but if a device is 1914 * so non-compliant that it doesn't have altsetting 0 1915 * then I wouldn't trust its reply anyway. 1916 */ 1917 if (!alt) 1918 alt = &intf->altsetting[0]; 1919 1920 ifnum = alt->desc.bInterfaceNumber; 1921 intf->intf_assoc = find_iad(dev, cp, ifnum); 1922 intf->cur_altsetting = alt; 1923 usb_enable_interface(dev, intf, true); 1924 intf->dev.parent = &dev->dev; 1925 if (usb_of_has_combined_node(dev)) { 1926 device_set_of_node_from_dev(&intf->dev, &dev->dev); 1927 } else { 1928 intf->dev.of_node = usb_of_get_interface_node(dev, 1929 configuration, ifnum); 1930 } 1931 intf->dev.driver = NULL; 1932 intf->dev.bus = &usb_bus_type; 1933 intf->dev.type = &usb_if_device_type; 1934 intf->dev.groups = usb_interface_groups; 1935 /* 1936 * Please refer to usb_alloc_dev() to see why we set 1937 * dma_mask and dma_pfn_offset. 1938 */ 1939 intf->dev.dma_mask = dev->dev.dma_mask; 1940 intf->dev.dma_pfn_offset = dev->dev.dma_pfn_offset; 1941 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device); 1942 intf->minor = -1; 1943 device_initialize(&intf->dev); 1944 pm_runtime_no_callbacks(&intf->dev); 1945 dev_set_name(&intf->dev, "%d-%s:%d.%d", dev->bus->busnum, 1946 dev->devpath, configuration, ifnum); 1947 usb_get_dev(dev); 1948 } 1949 kfree(new_interfaces); 1950 1951 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1952 USB_REQ_SET_CONFIGURATION, 0, configuration, 0, 1953 NULL, 0, USB_CTRL_SET_TIMEOUT); 1954 if (ret < 0 && cp) { 1955 /* 1956 * All the old state is gone, so what else can we do? 1957 * The device is probably useless now anyway. 1958 */ 1959 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); 1960 for (i = 0; i < nintf; ++i) { 1961 usb_disable_interface(dev, cp->interface[i], true); 1962 put_device(&cp->interface[i]->dev); 1963 cp->interface[i] = NULL; 1964 } 1965 cp = NULL; 1966 } 1967 1968 dev->actconfig = cp; 1969 mutex_unlock(hcd->bandwidth_mutex); 1970 1971 if (!cp) { 1972 usb_set_device_state(dev, USB_STATE_ADDRESS); 1973 1974 /* Leave LPM disabled while the device is unconfigured. */ 1975 usb_autosuspend_device(dev); 1976 return ret; 1977 } 1978 usb_set_device_state(dev, USB_STATE_CONFIGURED); 1979 1980 if (cp->string == NULL && 1981 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS)) 1982 cp->string = usb_cache_string(dev, cp->desc.iConfiguration); 1983 1984 /* Now that the interfaces are installed, re-enable LPM. */ 1985 usb_unlocked_enable_lpm(dev); 1986 /* Enable LTM if it was turned off by usb_disable_device. */ 1987 usb_enable_ltm(dev); 1988 1989 /* Now that all the interfaces are set up, register them 1990 * to trigger binding of drivers to interfaces. probe() 1991 * routines may install different altsettings and may 1992 * claim() any interfaces not yet bound. Many class drivers 1993 * need that: CDC, audio, video, etc. 1994 */ 1995 for (i = 0; i < nintf; ++i) { 1996 struct usb_interface *intf = cp->interface[i]; 1997 1998 dev_dbg(&dev->dev, 1999 "adding %s (config #%d, interface %d)\n", 2000 dev_name(&intf->dev), configuration, 2001 intf->cur_altsetting->desc.bInterfaceNumber); 2002 device_enable_async_suspend(&intf->dev); 2003 ret = device_add(&intf->dev); 2004 if (ret != 0) { 2005 dev_err(&dev->dev, "device_add(%s) --> %d\n", 2006 dev_name(&intf->dev), ret); 2007 continue; 2008 } 2009 create_intf_ep_devs(intf); 2010 } 2011 2012 usb_autosuspend_device(dev); 2013 return 0; 2014 } 2015 EXPORT_SYMBOL_GPL(usb_set_configuration); 2016 2017 static LIST_HEAD(set_config_list); 2018 static DEFINE_SPINLOCK(set_config_lock); 2019 2020 struct set_config_request { 2021 struct usb_device *udev; 2022 int config; 2023 struct work_struct work; 2024 struct list_head node; 2025 }; 2026 2027 /* Worker routine for usb_driver_set_configuration() */ 2028 static void driver_set_config_work(struct work_struct *work) 2029 { 2030 struct set_config_request *req = 2031 container_of(work, struct set_config_request, work); 2032 struct usb_device *udev = req->udev; 2033 2034 usb_lock_device(udev); 2035 spin_lock(&set_config_lock); 2036 list_del(&req->node); 2037 spin_unlock(&set_config_lock); 2038 2039 if (req->config >= -1) /* Is req still valid? */ 2040 usb_set_configuration(udev, req->config); 2041 usb_unlock_device(udev); 2042 usb_put_dev(udev); 2043 kfree(req); 2044 } 2045 2046 /* Cancel pending Set-Config requests for a device whose configuration 2047 * was just changed 2048 */ 2049 static void cancel_async_set_config(struct usb_device *udev) 2050 { 2051 struct set_config_request *req; 2052 2053 spin_lock(&set_config_lock); 2054 list_for_each_entry(req, &set_config_list, node) { 2055 if (req->udev == udev) 2056 req->config = -999; /* Mark as cancelled */ 2057 } 2058 spin_unlock(&set_config_lock); 2059 } 2060 2061 /** 2062 * usb_driver_set_configuration - Provide a way for drivers to change device configurations 2063 * @udev: the device whose configuration is being updated 2064 * @config: the configuration being chosen. 2065 * Context: In process context, must be able to sleep 2066 * 2067 * Device interface drivers are not allowed to change device configurations. 2068 * This is because changing configurations will destroy the interface the 2069 * driver is bound to and create new ones; it would be like a floppy-disk 2070 * driver telling the computer to replace the floppy-disk drive with a 2071 * tape drive! 2072 * 2073 * Still, in certain specialized circumstances the need may arise. This 2074 * routine gets around the normal restrictions by using a work thread to 2075 * submit the change-config request. 2076 * 2077 * Return: 0 if the request was successfully queued, error code otherwise. 2078 * The caller has no way to know whether the queued request will eventually 2079 * succeed. 2080 */ 2081 int usb_driver_set_configuration(struct usb_device *udev, int config) 2082 { 2083 struct set_config_request *req; 2084 2085 req = kmalloc(sizeof(*req), GFP_KERNEL); 2086 if (!req) 2087 return -ENOMEM; 2088 req->udev = udev; 2089 req->config = config; 2090 INIT_WORK(&req->work, driver_set_config_work); 2091 2092 spin_lock(&set_config_lock); 2093 list_add(&req->node, &set_config_list); 2094 spin_unlock(&set_config_lock); 2095 2096 usb_get_dev(udev); 2097 schedule_work(&req->work); 2098 return 0; 2099 } 2100 EXPORT_SYMBOL_GPL(usb_driver_set_configuration); 2101 2102 /** 2103 * cdc_parse_cdc_header - parse the extra headers present in CDC devices 2104 * @hdr: the place to put the results of the parsing 2105 * @intf: the interface for which parsing is requested 2106 * @buffer: pointer to the extra headers to be parsed 2107 * @buflen: length of the extra headers 2108 * 2109 * This evaluates the extra headers present in CDC devices which 2110 * bind the interfaces for data and control and provide details 2111 * about the capabilities of the device. 2112 * 2113 * Return: number of descriptors parsed or -EINVAL 2114 * if the header is contradictory beyond salvage 2115 */ 2116 2117 int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr, 2118 struct usb_interface *intf, 2119 u8 *buffer, 2120 int buflen) 2121 { 2122 /* duplicates are ignored */ 2123 struct usb_cdc_union_desc *union_header = NULL; 2124 2125 /* duplicates are not tolerated */ 2126 struct usb_cdc_header_desc *header = NULL; 2127 struct usb_cdc_ether_desc *ether = NULL; 2128 struct usb_cdc_mdlm_detail_desc *detail = NULL; 2129 struct usb_cdc_mdlm_desc *desc = NULL; 2130 2131 unsigned int elength; 2132 int cnt = 0; 2133 2134 memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header)); 2135 hdr->phonet_magic_present = false; 2136 while (buflen > 0) { 2137 elength = buffer[0]; 2138 if (!elength) { 2139 dev_err(&intf->dev, "skipping garbage byte\n"); 2140 elength = 1; 2141 goto next_desc; 2142 } 2143 if ((buflen < elength) || (elength < 3)) { 2144 dev_err(&intf->dev, "invalid descriptor buffer length\n"); 2145 break; 2146 } 2147 if (buffer[1] != USB_DT_CS_INTERFACE) { 2148 dev_err(&intf->dev, "skipping garbage\n"); 2149 goto next_desc; 2150 } 2151 2152 switch (buffer[2]) { 2153 case USB_CDC_UNION_TYPE: /* we've found it */ 2154 if (elength < sizeof(struct usb_cdc_union_desc)) 2155 goto next_desc; 2156 if (union_header) { 2157 dev_err(&intf->dev, "More than one union descriptor, skipping ...\n"); 2158 goto next_desc; 2159 } 2160 union_header = (struct usb_cdc_union_desc *)buffer; 2161 break; 2162 case USB_CDC_COUNTRY_TYPE: 2163 if (elength < sizeof(struct usb_cdc_country_functional_desc)) 2164 goto next_desc; 2165 hdr->usb_cdc_country_functional_desc = 2166 (struct usb_cdc_country_functional_desc *)buffer; 2167 break; 2168 case USB_CDC_HEADER_TYPE: 2169 if (elength != sizeof(struct usb_cdc_header_desc)) 2170 goto next_desc; 2171 if (header) 2172 return -EINVAL; 2173 header = (struct usb_cdc_header_desc *)buffer; 2174 break; 2175 case USB_CDC_ACM_TYPE: 2176 if (elength < sizeof(struct usb_cdc_acm_descriptor)) 2177 goto next_desc; 2178 hdr->usb_cdc_acm_descriptor = 2179 (struct usb_cdc_acm_descriptor *)buffer; 2180 break; 2181 case USB_CDC_ETHERNET_TYPE: 2182 if (elength != sizeof(struct usb_cdc_ether_desc)) 2183 goto next_desc; 2184 if (ether) 2185 return -EINVAL; 2186 ether = (struct usb_cdc_ether_desc *)buffer; 2187 break; 2188 case USB_CDC_CALL_MANAGEMENT_TYPE: 2189 if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor)) 2190 goto next_desc; 2191 hdr->usb_cdc_call_mgmt_descriptor = 2192 (struct usb_cdc_call_mgmt_descriptor *)buffer; 2193 break; 2194 case USB_CDC_DMM_TYPE: 2195 if (elength < sizeof(struct usb_cdc_dmm_desc)) 2196 goto next_desc; 2197 hdr->usb_cdc_dmm_desc = 2198 (struct usb_cdc_dmm_desc *)buffer; 2199 break; 2200 case USB_CDC_MDLM_TYPE: 2201 if (elength < sizeof(struct usb_cdc_mdlm_desc *)) 2202 goto next_desc; 2203 if (desc) 2204 return -EINVAL; 2205 desc = (struct usb_cdc_mdlm_desc *)buffer; 2206 break; 2207 case USB_CDC_MDLM_DETAIL_TYPE: 2208 if (elength < sizeof(struct usb_cdc_mdlm_detail_desc *)) 2209 goto next_desc; 2210 if (detail) 2211 return -EINVAL; 2212 detail = (struct usb_cdc_mdlm_detail_desc *)buffer; 2213 break; 2214 case USB_CDC_NCM_TYPE: 2215 if (elength < sizeof(struct usb_cdc_ncm_desc)) 2216 goto next_desc; 2217 hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer; 2218 break; 2219 case USB_CDC_MBIM_TYPE: 2220 if (elength < sizeof(struct usb_cdc_mbim_desc)) 2221 goto next_desc; 2222 2223 hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer; 2224 break; 2225 case USB_CDC_MBIM_EXTENDED_TYPE: 2226 if (elength < sizeof(struct usb_cdc_mbim_extended_desc)) 2227 break; 2228 hdr->usb_cdc_mbim_extended_desc = 2229 (struct usb_cdc_mbim_extended_desc *)buffer; 2230 break; 2231 case CDC_PHONET_MAGIC_NUMBER: 2232 hdr->phonet_magic_present = true; 2233 break; 2234 default: 2235 /* 2236 * there are LOTS more CDC descriptors that 2237 * could legitimately be found here. 2238 */ 2239 dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n", 2240 buffer[2], elength); 2241 goto next_desc; 2242 } 2243 cnt++; 2244 next_desc: 2245 buflen -= elength; 2246 buffer += elength; 2247 } 2248 hdr->usb_cdc_union_desc = union_header; 2249 hdr->usb_cdc_header_desc = header; 2250 hdr->usb_cdc_mdlm_detail_desc = detail; 2251 hdr->usb_cdc_mdlm_desc = desc; 2252 hdr->usb_cdc_ether_desc = ether; 2253 return cnt; 2254 } 2255 2256 EXPORT_SYMBOL(cdc_parse_cdc_header); 2257