xref: /openbmc/linux/drivers/usb/core/message.c (revision 5ed132db5ad4f58156ae9d28219396b6f764a9cb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * message.c - synchronous message handling
4  *
5  * Released under the GPLv2 only.
6  */
7 
8 #include <linux/acpi.h>
9 #include <linux/pci.h>	/* for scatterlist macros */
10 #include <linux/usb.h>
11 #include <linux/module.h>
12 #include <linux/slab.h>
13 #include <linux/mm.h>
14 #include <linux/timer.h>
15 #include <linux/ctype.h>
16 #include <linux/nls.h>
17 #include <linux/device.h>
18 #include <linux/scatterlist.h>
19 #include <linux/usb/cdc.h>
20 #include <linux/usb/quirks.h>
21 #include <linux/usb/hcd.h>	/* for usbcore internals */
22 #include <linux/usb/of.h>
23 #include <asm/byteorder.h>
24 
25 #include "usb.h"
26 
27 static void cancel_async_set_config(struct usb_device *udev);
28 
29 struct api_context {
30 	struct completion	done;
31 	int			status;
32 };
33 
34 static void usb_api_blocking_completion(struct urb *urb)
35 {
36 	struct api_context *ctx = urb->context;
37 
38 	ctx->status = urb->status;
39 	complete(&ctx->done);
40 }
41 
42 
43 /*
44  * Starts urb and waits for completion or timeout. Note that this call
45  * is NOT interruptible. Many device driver i/o requests should be
46  * interruptible and therefore these drivers should implement their
47  * own interruptible routines.
48  */
49 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
50 {
51 	struct api_context ctx;
52 	unsigned long expire;
53 	int retval;
54 
55 	init_completion(&ctx.done);
56 	urb->context = &ctx;
57 	urb->actual_length = 0;
58 	retval = usb_submit_urb(urb, GFP_NOIO);
59 	if (unlikely(retval))
60 		goto out;
61 
62 	expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
63 	if (!wait_for_completion_timeout(&ctx.done, expire)) {
64 		usb_kill_urb(urb);
65 		retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
66 
67 		dev_dbg(&urb->dev->dev,
68 			"%s timed out on ep%d%s len=%u/%u\n",
69 			current->comm,
70 			usb_endpoint_num(&urb->ep->desc),
71 			usb_urb_dir_in(urb) ? "in" : "out",
72 			urb->actual_length,
73 			urb->transfer_buffer_length);
74 	} else
75 		retval = ctx.status;
76 out:
77 	if (actual_length)
78 		*actual_length = urb->actual_length;
79 
80 	usb_free_urb(urb);
81 	return retval;
82 }
83 
84 /*-------------------------------------------------------------------*/
85 /* returns status (negative) or length (positive) */
86 static int usb_internal_control_msg(struct usb_device *usb_dev,
87 				    unsigned int pipe,
88 				    struct usb_ctrlrequest *cmd,
89 				    void *data, int len, int timeout)
90 {
91 	struct urb *urb;
92 	int retv;
93 	int length;
94 
95 	urb = usb_alloc_urb(0, GFP_NOIO);
96 	if (!urb)
97 		return -ENOMEM;
98 
99 	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
100 			     len, usb_api_blocking_completion, NULL);
101 
102 	retv = usb_start_wait_urb(urb, timeout, &length);
103 	if (retv < 0)
104 		return retv;
105 	else
106 		return length;
107 }
108 
109 /**
110  * usb_control_msg - Builds a control urb, sends it off and waits for completion
111  * @dev: pointer to the usb device to send the message to
112  * @pipe: endpoint "pipe" to send the message to
113  * @request: USB message request value
114  * @requesttype: USB message request type value
115  * @value: USB message value
116  * @index: USB message index value
117  * @data: pointer to the data to send
118  * @size: length in bytes of the data to send
119  * @timeout: time in msecs to wait for the message to complete before timing
120  *	out (if 0 the wait is forever)
121  *
122  * Context: task context, might sleep.
123  *
124  * This function sends a simple control message to a specified endpoint and
125  * waits for the message to complete, or timeout.
126  *
127  * Don't use this function from within an interrupt context. If you need
128  * an asynchronous message, or need to send a message from within interrupt
129  * context, use usb_submit_urb(). If a thread in your driver uses this call,
130  * make sure your disconnect() method can wait for it to complete. Since you
131  * don't have a handle on the URB used, you can't cancel the request.
132  *
133  * Return: If successful, the number of bytes transferred. Otherwise, a negative
134  * error number.
135  */
136 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
137 		    __u8 requesttype, __u16 value, __u16 index, void *data,
138 		    __u16 size, int timeout)
139 {
140 	struct usb_ctrlrequest *dr;
141 	int ret;
142 
143 	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
144 	if (!dr)
145 		return -ENOMEM;
146 
147 	dr->bRequestType = requesttype;
148 	dr->bRequest = request;
149 	dr->wValue = cpu_to_le16(value);
150 	dr->wIndex = cpu_to_le16(index);
151 	dr->wLength = cpu_to_le16(size);
152 
153 	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
154 
155 	/* Linger a bit, prior to the next control message. */
156 	if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG)
157 		msleep(200);
158 
159 	kfree(dr);
160 
161 	return ret;
162 }
163 EXPORT_SYMBOL_GPL(usb_control_msg);
164 
165 /**
166  * usb_control_msg_send - Builds a control "send" message, sends it off and waits for completion
167  * @dev: pointer to the usb device to send the message to
168  * @endpoint: endpoint to send the message to
169  * @request: USB message request value
170  * @requesttype: USB message request type value
171  * @value: USB message value
172  * @index: USB message index value
173  * @driver_data: pointer to the data to send
174  * @size: length in bytes of the data to send
175  * @timeout: time in msecs to wait for the message to complete before timing
176  *	out (if 0 the wait is forever)
177  * @memflags: the flags for memory allocation for buffers
178  *
179  * Context: !in_interrupt ()
180  *
181  * This function sends a control message to a specified endpoint that is not
182  * expected to fill in a response (i.e. a "send message") and waits for the
183  * message to complete, or timeout.
184  *
185  * Do not use this function from within an interrupt context. If you need
186  * an asynchronous message, or need to send a message from within interrupt
187  * context, use usb_submit_urb(). If a thread in your driver uses this call,
188  * make sure your disconnect() method can wait for it to complete. Since you
189  * don't have a handle on the URB used, you can't cancel the request.
190  *
191  * The data pointer can be made to a reference on the stack, or anywhere else,
192  * as it will not be modified at all.  This does not have the restriction that
193  * usb_control_msg() has where the data pointer must be to dynamically allocated
194  * memory (i.e. memory that can be successfully DMAed to a device).
195  *
196  * Return: If successful, 0 is returned, Otherwise, a negative error number.
197  */
198 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
199 			 __u8 requesttype, __u16 value, __u16 index,
200 			 const void *driver_data, __u16 size, int timeout,
201 			 gfp_t memflags)
202 {
203 	unsigned int pipe = usb_sndctrlpipe(dev, endpoint);
204 	int ret;
205 	u8 *data = NULL;
206 
207 	if (usb_pipe_type_check(dev, pipe))
208 		return -EINVAL;
209 
210 	if (size) {
211 		data = kmemdup(driver_data, size, memflags);
212 		if (!data)
213 			return -ENOMEM;
214 	}
215 
216 	ret = usb_control_msg(dev, pipe, request, requesttype, value, index,
217 			      data, size, timeout);
218 	kfree(data);
219 
220 	if (ret < 0)
221 		return ret;
222 	if (ret == size)
223 		return 0;
224 	return -EINVAL;
225 }
226 EXPORT_SYMBOL_GPL(usb_control_msg_send);
227 
228 /**
229  * usb_control_msg_recv - Builds a control "receive" message, sends it off and waits for completion
230  * @dev: pointer to the usb device to send the message to
231  * @endpoint: endpoint to send the message to
232  * @request: USB message request value
233  * @requesttype: USB message request type value
234  * @value: USB message value
235  * @index: USB message index value
236  * @driver_data: pointer to the data to be filled in by the message
237  * @size: length in bytes of the data to be received
238  * @timeout: time in msecs to wait for the message to complete before timing
239  *	out (if 0 the wait is forever)
240  * @memflags: the flags for memory allocation for buffers
241  *
242  * Context: !in_interrupt ()
243  *
244  * This function sends a control message to a specified endpoint that is
245  * expected to fill in a response (i.e. a "receive message") and waits for the
246  * message to complete, or timeout.
247  *
248  * Do not use this function from within an interrupt context. If you need
249  * an asynchronous message, or need to send a message from within interrupt
250  * context, use usb_submit_urb(). If a thread in your driver uses this call,
251  * make sure your disconnect() method can wait for it to complete. Since you
252  * don't have a handle on the URB used, you can't cancel the request.
253  *
254  * The data pointer can be made to a reference on the stack, or anywhere else
255  * that can be successfully written to.  This function does not have the
256  * restriction that usb_control_msg() has where the data pointer must be to
257  * dynamically allocated memory (i.e. memory that can be successfully DMAed to a
258  * device).
259  *
260  * The "whole" message must be properly received from the device in order for
261  * this function to be successful.  If a device returns less than the expected
262  * amount of data, then the function will fail.  Do not use this for messages
263  * where a variable amount of data might be returned.
264  *
265  * Return: If successful, 0 is returned, Otherwise, a negative error number.
266  */
267 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
268 			 __u8 requesttype, __u16 value, __u16 index,
269 			 void *driver_data, __u16 size, int timeout,
270 			 gfp_t memflags)
271 {
272 	unsigned int pipe = usb_rcvctrlpipe(dev, endpoint);
273 	int ret;
274 	u8 *data;
275 
276 	if (!size || !driver_data || usb_pipe_type_check(dev, pipe))
277 		return -EINVAL;
278 
279 	data = kmalloc(size, memflags);
280 	if (!data)
281 		return -ENOMEM;
282 
283 	ret = usb_control_msg(dev, pipe, request, requesttype, value, index,
284 			      data, size, timeout);
285 
286 	if (ret < 0)
287 		goto exit;
288 
289 	if (ret == size) {
290 		memcpy(driver_data, data, size);
291 		ret = 0;
292 	} else {
293 		ret = -EINVAL;
294 	}
295 
296 exit:
297 	kfree(data);
298 	return ret;
299 }
300 EXPORT_SYMBOL_GPL(usb_control_msg_recv);
301 
302 /**
303  * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
304  * @usb_dev: pointer to the usb device to send the message to
305  * @pipe: endpoint "pipe" to send the message to
306  * @data: pointer to the data to send
307  * @len: length in bytes of the data to send
308  * @actual_length: pointer to a location to put the actual length transferred
309  *	in bytes
310  * @timeout: time in msecs to wait for the message to complete before
311  *	timing out (if 0 the wait is forever)
312  *
313  * Context: task context, might sleep.
314  *
315  * This function sends a simple interrupt message to a specified endpoint and
316  * waits for the message to complete, or timeout.
317  *
318  * Don't use this function from within an interrupt context. If you need
319  * an asynchronous message, or need to send a message from within interrupt
320  * context, use usb_submit_urb() If a thread in your driver uses this call,
321  * make sure your disconnect() method can wait for it to complete. Since you
322  * don't have a handle on the URB used, you can't cancel the request.
323  *
324  * Return:
325  * If successful, 0. Otherwise a negative error number. The number of actual
326  * bytes transferred will be stored in the @actual_length parameter.
327  */
328 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
329 		      void *data, int len, int *actual_length, int timeout)
330 {
331 	return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
332 }
333 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
334 
335 /**
336  * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
337  * @usb_dev: pointer to the usb device to send the message to
338  * @pipe: endpoint "pipe" to send the message to
339  * @data: pointer to the data to send
340  * @len: length in bytes of the data to send
341  * @actual_length: pointer to a location to put the actual length transferred
342  *	in bytes
343  * @timeout: time in msecs to wait for the message to complete before
344  *	timing out (if 0 the wait is forever)
345  *
346  * Context: task context, might sleep.
347  *
348  * This function sends a simple bulk message to a specified endpoint
349  * and waits for the message to complete, or timeout.
350  *
351  * Don't use this function from within an interrupt context. If you need
352  * an asynchronous message, or need to send a message from within interrupt
353  * context, use usb_submit_urb() If a thread in your driver uses this call,
354  * make sure your disconnect() method can wait for it to complete. Since you
355  * don't have a handle on the URB used, you can't cancel the request.
356  *
357  * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
358  * users are forced to abuse this routine by using it to submit URBs for
359  * interrupt endpoints.  We will take the liberty of creating an interrupt URB
360  * (with the default interval) if the target is an interrupt endpoint.
361  *
362  * Return:
363  * If successful, 0. Otherwise a negative error number. The number of actual
364  * bytes transferred will be stored in the @actual_length parameter.
365  *
366  */
367 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
368 		 void *data, int len, int *actual_length, int timeout)
369 {
370 	struct urb *urb;
371 	struct usb_host_endpoint *ep;
372 
373 	ep = usb_pipe_endpoint(usb_dev, pipe);
374 	if (!ep || len < 0)
375 		return -EINVAL;
376 
377 	urb = usb_alloc_urb(0, GFP_KERNEL);
378 	if (!urb)
379 		return -ENOMEM;
380 
381 	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
382 			USB_ENDPOINT_XFER_INT) {
383 		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
384 		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
385 				usb_api_blocking_completion, NULL,
386 				ep->desc.bInterval);
387 	} else
388 		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
389 				usb_api_blocking_completion, NULL);
390 
391 	return usb_start_wait_urb(urb, timeout, actual_length);
392 }
393 EXPORT_SYMBOL_GPL(usb_bulk_msg);
394 
395 /*-------------------------------------------------------------------*/
396 
397 static void sg_clean(struct usb_sg_request *io)
398 {
399 	if (io->urbs) {
400 		while (io->entries--)
401 			usb_free_urb(io->urbs[io->entries]);
402 		kfree(io->urbs);
403 		io->urbs = NULL;
404 	}
405 	io->dev = NULL;
406 }
407 
408 static void sg_complete(struct urb *urb)
409 {
410 	unsigned long flags;
411 	struct usb_sg_request *io = urb->context;
412 	int status = urb->status;
413 
414 	spin_lock_irqsave(&io->lock, flags);
415 
416 	/* In 2.5 we require hcds' endpoint queues not to progress after fault
417 	 * reports, until the completion callback (this!) returns.  That lets
418 	 * device driver code (like this routine) unlink queued urbs first,
419 	 * if it needs to, since the HC won't work on them at all.  So it's
420 	 * not possible for page N+1 to overwrite page N, and so on.
421 	 *
422 	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
423 	 * complete before the HCD can get requests away from hardware,
424 	 * though never during cleanup after a hard fault.
425 	 */
426 	if (io->status
427 			&& (io->status != -ECONNRESET
428 				|| status != -ECONNRESET)
429 			&& urb->actual_length) {
430 		dev_err(io->dev->bus->controller,
431 			"dev %s ep%d%s scatterlist error %d/%d\n",
432 			io->dev->devpath,
433 			usb_endpoint_num(&urb->ep->desc),
434 			usb_urb_dir_in(urb) ? "in" : "out",
435 			status, io->status);
436 		/* BUG (); */
437 	}
438 
439 	if (io->status == 0 && status && status != -ECONNRESET) {
440 		int i, found, retval;
441 
442 		io->status = status;
443 
444 		/* the previous urbs, and this one, completed already.
445 		 * unlink pending urbs so they won't rx/tx bad data.
446 		 * careful: unlink can sometimes be synchronous...
447 		 */
448 		spin_unlock_irqrestore(&io->lock, flags);
449 		for (i = 0, found = 0; i < io->entries; i++) {
450 			if (!io->urbs[i])
451 				continue;
452 			if (found) {
453 				usb_block_urb(io->urbs[i]);
454 				retval = usb_unlink_urb(io->urbs[i]);
455 				if (retval != -EINPROGRESS &&
456 				    retval != -ENODEV &&
457 				    retval != -EBUSY &&
458 				    retval != -EIDRM)
459 					dev_err(&io->dev->dev,
460 						"%s, unlink --> %d\n",
461 						__func__, retval);
462 			} else if (urb == io->urbs[i])
463 				found = 1;
464 		}
465 		spin_lock_irqsave(&io->lock, flags);
466 	}
467 
468 	/* on the last completion, signal usb_sg_wait() */
469 	io->bytes += urb->actual_length;
470 	io->count--;
471 	if (!io->count)
472 		complete(&io->complete);
473 
474 	spin_unlock_irqrestore(&io->lock, flags);
475 }
476 
477 
478 /**
479  * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
480  * @io: request block being initialized.  until usb_sg_wait() returns,
481  *	treat this as a pointer to an opaque block of memory,
482  * @dev: the usb device that will send or receive the data
483  * @pipe: endpoint "pipe" used to transfer the data
484  * @period: polling rate for interrupt endpoints, in frames or
485  * 	(for high speed endpoints) microframes; ignored for bulk
486  * @sg: scatterlist entries
487  * @nents: how many entries in the scatterlist
488  * @length: how many bytes to send from the scatterlist, or zero to
489  * 	send every byte identified in the list.
490  * @mem_flags: SLAB_* flags affecting memory allocations in this call
491  *
492  * This initializes a scatter/gather request, allocating resources such as
493  * I/O mappings and urb memory (except maybe memory used by USB controller
494  * drivers).
495  *
496  * The request must be issued using usb_sg_wait(), which waits for the I/O to
497  * complete (or to be canceled) and then cleans up all resources allocated by
498  * usb_sg_init().
499  *
500  * The request may be canceled with usb_sg_cancel(), either before or after
501  * usb_sg_wait() is called.
502  *
503  * Return: Zero for success, else a negative errno value.
504  */
505 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
506 		unsigned pipe, unsigned	period, struct scatterlist *sg,
507 		int nents, size_t length, gfp_t mem_flags)
508 {
509 	int i;
510 	int urb_flags;
511 	int use_sg;
512 
513 	if (!io || !dev || !sg
514 			|| usb_pipecontrol(pipe)
515 			|| usb_pipeisoc(pipe)
516 			|| nents <= 0)
517 		return -EINVAL;
518 
519 	spin_lock_init(&io->lock);
520 	io->dev = dev;
521 	io->pipe = pipe;
522 
523 	if (dev->bus->sg_tablesize > 0) {
524 		use_sg = true;
525 		io->entries = 1;
526 	} else {
527 		use_sg = false;
528 		io->entries = nents;
529 	}
530 
531 	/* initialize all the urbs we'll use */
532 	io->urbs = kmalloc_array(io->entries, sizeof(*io->urbs), mem_flags);
533 	if (!io->urbs)
534 		goto nomem;
535 
536 	urb_flags = URB_NO_INTERRUPT;
537 	if (usb_pipein(pipe))
538 		urb_flags |= URB_SHORT_NOT_OK;
539 
540 	for_each_sg(sg, sg, io->entries, i) {
541 		struct urb *urb;
542 		unsigned len;
543 
544 		urb = usb_alloc_urb(0, mem_flags);
545 		if (!urb) {
546 			io->entries = i;
547 			goto nomem;
548 		}
549 		io->urbs[i] = urb;
550 
551 		urb->dev = NULL;
552 		urb->pipe = pipe;
553 		urb->interval = period;
554 		urb->transfer_flags = urb_flags;
555 		urb->complete = sg_complete;
556 		urb->context = io;
557 		urb->sg = sg;
558 
559 		if (use_sg) {
560 			/* There is no single transfer buffer */
561 			urb->transfer_buffer = NULL;
562 			urb->num_sgs = nents;
563 
564 			/* A length of zero means transfer the whole sg list */
565 			len = length;
566 			if (len == 0) {
567 				struct scatterlist	*sg2;
568 				int			j;
569 
570 				for_each_sg(sg, sg2, nents, j)
571 					len += sg2->length;
572 			}
573 		} else {
574 			/*
575 			 * Some systems can't use DMA; they use PIO instead.
576 			 * For their sakes, transfer_buffer is set whenever
577 			 * possible.
578 			 */
579 			if (!PageHighMem(sg_page(sg)))
580 				urb->transfer_buffer = sg_virt(sg);
581 			else
582 				urb->transfer_buffer = NULL;
583 
584 			len = sg->length;
585 			if (length) {
586 				len = min_t(size_t, len, length);
587 				length -= len;
588 				if (length == 0)
589 					io->entries = i + 1;
590 			}
591 		}
592 		urb->transfer_buffer_length = len;
593 	}
594 	io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
595 
596 	/* transaction state */
597 	io->count = io->entries;
598 	io->status = 0;
599 	io->bytes = 0;
600 	init_completion(&io->complete);
601 	return 0;
602 
603 nomem:
604 	sg_clean(io);
605 	return -ENOMEM;
606 }
607 EXPORT_SYMBOL_GPL(usb_sg_init);
608 
609 /**
610  * usb_sg_wait - synchronously execute scatter/gather request
611  * @io: request block handle, as initialized with usb_sg_init().
612  * 	some fields become accessible when this call returns.
613  *
614  * Context: task context, might sleep.
615  *
616  * This function blocks until the specified I/O operation completes.  It
617  * leverages the grouping of the related I/O requests to get good transfer
618  * rates, by queueing the requests.  At higher speeds, such queuing can
619  * significantly improve USB throughput.
620  *
621  * There are three kinds of completion for this function.
622  *
623  * (1) success, where io->status is zero.  The number of io->bytes
624  *     transferred is as requested.
625  * (2) error, where io->status is a negative errno value.  The number
626  *     of io->bytes transferred before the error is usually less
627  *     than requested, and can be nonzero.
628  * (3) cancellation, a type of error with status -ECONNRESET that
629  *     is initiated by usb_sg_cancel().
630  *
631  * When this function returns, all memory allocated through usb_sg_init() or
632  * this call will have been freed.  The request block parameter may still be
633  * passed to usb_sg_cancel(), or it may be freed.  It could also be
634  * reinitialized and then reused.
635  *
636  * Data Transfer Rates:
637  *
638  * Bulk transfers are valid for full or high speed endpoints.
639  * The best full speed data rate is 19 packets of 64 bytes each
640  * per frame, or 1216 bytes per millisecond.
641  * The best high speed data rate is 13 packets of 512 bytes each
642  * per microframe, or 52 KBytes per millisecond.
643  *
644  * The reason to use interrupt transfers through this API would most likely
645  * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
646  * could be transferred.  That capability is less useful for low or full
647  * speed interrupt endpoints, which allow at most one packet per millisecond,
648  * of at most 8 or 64 bytes (respectively).
649  *
650  * It is not necessary to call this function to reserve bandwidth for devices
651  * under an xHCI host controller, as the bandwidth is reserved when the
652  * configuration or interface alt setting is selected.
653  */
654 void usb_sg_wait(struct usb_sg_request *io)
655 {
656 	int i;
657 	int entries = io->entries;
658 
659 	/* queue the urbs.  */
660 	spin_lock_irq(&io->lock);
661 	i = 0;
662 	while (i < entries && !io->status) {
663 		int retval;
664 
665 		io->urbs[i]->dev = io->dev;
666 		spin_unlock_irq(&io->lock);
667 
668 		retval = usb_submit_urb(io->urbs[i], GFP_NOIO);
669 
670 		switch (retval) {
671 			/* maybe we retrying will recover */
672 		case -ENXIO:	/* hc didn't queue this one */
673 		case -EAGAIN:
674 		case -ENOMEM:
675 			retval = 0;
676 			yield();
677 			break;
678 
679 			/* no error? continue immediately.
680 			 *
681 			 * NOTE: to work better with UHCI (4K I/O buffer may
682 			 * need 3K of TDs) it may be good to limit how many
683 			 * URBs are queued at once; N milliseconds?
684 			 */
685 		case 0:
686 			++i;
687 			cpu_relax();
688 			break;
689 
690 			/* fail any uncompleted urbs */
691 		default:
692 			io->urbs[i]->status = retval;
693 			dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
694 				__func__, retval);
695 			usb_sg_cancel(io);
696 		}
697 		spin_lock_irq(&io->lock);
698 		if (retval && (io->status == 0 || io->status == -ECONNRESET))
699 			io->status = retval;
700 	}
701 	io->count -= entries - i;
702 	if (io->count == 0)
703 		complete(&io->complete);
704 	spin_unlock_irq(&io->lock);
705 
706 	/* OK, yes, this could be packaged as non-blocking.
707 	 * So could the submit loop above ... but it's easier to
708 	 * solve neither problem than to solve both!
709 	 */
710 	wait_for_completion(&io->complete);
711 
712 	sg_clean(io);
713 }
714 EXPORT_SYMBOL_GPL(usb_sg_wait);
715 
716 /**
717  * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
718  * @io: request block, initialized with usb_sg_init()
719  *
720  * This stops a request after it has been started by usb_sg_wait().
721  * It can also prevents one initialized by usb_sg_init() from starting,
722  * so that call just frees resources allocated to the request.
723  */
724 void usb_sg_cancel(struct usb_sg_request *io)
725 {
726 	unsigned long flags;
727 	int i, retval;
728 
729 	spin_lock_irqsave(&io->lock, flags);
730 	if (io->status || io->count == 0) {
731 		spin_unlock_irqrestore(&io->lock, flags);
732 		return;
733 	}
734 	/* shut everything down */
735 	io->status = -ECONNRESET;
736 	io->count++;		/* Keep the request alive until we're done */
737 	spin_unlock_irqrestore(&io->lock, flags);
738 
739 	for (i = io->entries - 1; i >= 0; --i) {
740 		usb_block_urb(io->urbs[i]);
741 
742 		retval = usb_unlink_urb(io->urbs[i]);
743 		if (retval != -EINPROGRESS
744 		    && retval != -ENODEV
745 		    && retval != -EBUSY
746 		    && retval != -EIDRM)
747 			dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
748 				 __func__, retval);
749 	}
750 
751 	spin_lock_irqsave(&io->lock, flags);
752 	io->count--;
753 	if (!io->count)
754 		complete(&io->complete);
755 	spin_unlock_irqrestore(&io->lock, flags);
756 }
757 EXPORT_SYMBOL_GPL(usb_sg_cancel);
758 
759 /*-------------------------------------------------------------------*/
760 
761 /**
762  * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
763  * @dev: the device whose descriptor is being retrieved
764  * @type: the descriptor type (USB_DT_*)
765  * @index: the number of the descriptor
766  * @buf: where to put the descriptor
767  * @size: how big is "buf"?
768  *
769  * Context: task context, might sleep.
770  *
771  * Gets a USB descriptor.  Convenience functions exist to simplify
772  * getting some types of descriptors.  Use
773  * usb_get_string() or usb_string() for USB_DT_STRING.
774  * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
775  * are part of the device structure.
776  * In addition to a number of USB-standard descriptors, some
777  * devices also use class-specific or vendor-specific descriptors.
778  *
779  * This call is synchronous, and may not be used in an interrupt context.
780  *
781  * Return: The number of bytes received on success, or else the status code
782  * returned by the underlying usb_control_msg() call.
783  */
784 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
785 		       unsigned char index, void *buf, int size)
786 {
787 	int i;
788 	int result;
789 
790 	memset(buf, 0, size);	/* Make sure we parse really received data */
791 
792 	for (i = 0; i < 3; ++i) {
793 		/* retry on length 0 or error; some devices are flakey */
794 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
795 				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
796 				(type << 8) + index, 0, buf, size,
797 				USB_CTRL_GET_TIMEOUT);
798 		if (result <= 0 && result != -ETIMEDOUT)
799 			continue;
800 		if (result > 1 && ((u8 *)buf)[1] != type) {
801 			result = -ENODATA;
802 			continue;
803 		}
804 		break;
805 	}
806 	return result;
807 }
808 EXPORT_SYMBOL_GPL(usb_get_descriptor);
809 
810 /**
811  * usb_get_string - gets a string descriptor
812  * @dev: the device whose string descriptor is being retrieved
813  * @langid: code for language chosen (from string descriptor zero)
814  * @index: the number of the descriptor
815  * @buf: where to put the string
816  * @size: how big is "buf"?
817  *
818  * Context: task context, might sleep.
819  *
820  * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
821  * in little-endian byte order).
822  * The usb_string() function will often be a convenient way to turn
823  * these strings into kernel-printable form.
824  *
825  * Strings may be referenced in device, configuration, interface, or other
826  * descriptors, and could also be used in vendor-specific ways.
827  *
828  * This call is synchronous, and may not be used in an interrupt context.
829  *
830  * Return: The number of bytes received on success, or else the status code
831  * returned by the underlying usb_control_msg() call.
832  */
833 static int usb_get_string(struct usb_device *dev, unsigned short langid,
834 			  unsigned char index, void *buf, int size)
835 {
836 	int i;
837 	int result;
838 
839 	for (i = 0; i < 3; ++i) {
840 		/* retry on length 0 or stall; some devices are flakey */
841 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
842 			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
843 			(USB_DT_STRING << 8) + index, langid, buf, size,
844 			USB_CTRL_GET_TIMEOUT);
845 		if (result == 0 || result == -EPIPE)
846 			continue;
847 		if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
848 			result = -ENODATA;
849 			continue;
850 		}
851 		break;
852 	}
853 	return result;
854 }
855 
856 static void usb_try_string_workarounds(unsigned char *buf, int *length)
857 {
858 	int newlength, oldlength = *length;
859 
860 	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
861 		if (!isprint(buf[newlength]) || buf[newlength + 1])
862 			break;
863 
864 	if (newlength > 2) {
865 		buf[0] = newlength;
866 		*length = newlength;
867 	}
868 }
869 
870 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
871 			  unsigned int index, unsigned char *buf)
872 {
873 	int rc;
874 
875 	/* Try to read the string descriptor by asking for the maximum
876 	 * possible number of bytes */
877 	if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
878 		rc = -EIO;
879 	else
880 		rc = usb_get_string(dev, langid, index, buf, 255);
881 
882 	/* If that failed try to read the descriptor length, then
883 	 * ask for just that many bytes */
884 	if (rc < 2) {
885 		rc = usb_get_string(dev, langid, index, buf, 2);
886 		if (rc == 2)
887 			rc = usb_get_string(dev, langid, index, buf, buf[0]);
888 	}
889 
890 	if (rc >= 2) {
891 		if (!buf[0] && !buf[1])
892 			usb_try_string_workarounds(buf, &rc);
893 
894 		/* There might be extra junk at the end of the descriptor */
895 		if (buf[0] < rc)
896 			rc = buf[0];
897 
898 		rc = rc - (rc & 1); /* force a multiple of two */
899 	}
900 
901 	if (rc < 2)
902 		rc = (rc < 0 ? rc : -EINVAL);
903 
904 	return rc;
905 }
906 
907 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
908 {
909 	int err;
910 
911 	if (dev->have_langid)
912 		return 0;
913 
914 	if (dev->string_langid < 0)
915 		return -EPIPE;
916 
917 	err = usb_string_sub(dev, 0, 0, tbuf);
918 
919 	/* If the string was reported but is malformed, default to english
920 	 * (0x0409) */
921 	if (err == -ENODATA || (err > 0 && err < 4)) {
922 		dev->string_langid = 0x0409;
923 		dev->have_langid = 1;
924 		dev_err(&dev->dev,
925 			"language id specifier not provided by device, defaulting to English\n");
926 		return 0;
927 	}
928 
929 	/* In case of all other errors, we assume the device is not able to
930 	 * deal with strings at all. Set string_langid to -1 in order to
931 	 * prevent any string to be retrieved from the device */
932 	if (err < 0) {
933 		dev_info(&dev->dev, "string descriptor 0 read error: %d\n",
934 					err);
935 		dev->string_langid = -1;
936 		return -EPIPE;
937 	}
938 
939 	/* always use the first langid listed */
940 	dev->string_langid = tbuf[2] | (tbuf[3] << 8);
941 	dev->have_langid = 1;
942 	dev_dbg(&dev->dev, "default language 0x%04x\n",
943 				dev->string_langid);
944 	return 0;
945 }
946 
947 /**
948  * usb_string - returns UTF-8 version of a string descriptor
949  * @dev: the device whose string descriptor is being retrieved
950  * @index: the number of the descriptor
951  * @buf: where to put the string
952  * @size: how big is "buf"?
953  *
954  * Context: task context, might sleep.
955  *
956  * This converts the UTF-16LE encoded strings returned by devices, from
957  * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
958  * that are more usable in most kernel contexts.  Note that this function
959  * chooses strings in the first language supported by the device.
960  *
961  * This call is synchronous, and may not be used in an interrupt context.
962  *
963  * Return: length of the string (>= 0) or usb_control_msg status (< 0).
964  */
965 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
966 {
967 	unsigned char *tbuf;
968 	int err;
969 
970 	if (dev->state == USB_STATE_SUSPENDED)
971 		return -EHOSTUNREACH;
972 	if (size <= 0 || !buf)
973 		return -EINVAL;
974 	buf[0] = 0;
975 	if (index <= 0 || index >= 256)
976 		return -EINVAL;
977 	tbuf = kmalloc(256, GFP_NOIO);
978 	if (!tbuf)
979 		return -ENOMEM;
980 
981 	err = usb_get_langid(dev, tbuf);
982 	if (err < 0)
983 		goto errout;
984 
985 	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
986 	if (err < 0)
987 		goto errout;
988 
989 	size--;		/* leave room for trailing NULL char in output buffer */
990 	err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
991 			UTF16_LITTLE_ENDIAN, buf, size);
992 	buf[err] = 0;
993 
994 	if (tbuf[1] != USB_DT_STRING)
995 		dev_dbg(&dev->dev,
996 			"wrong descriptor type %02x for string %d (\"%s\")\n",
997 			tbuf[1], index, buf);
998 
999  errout:
1000 	kfree(tbuf);
1001 	return err;
1002 }
1003 EXPORT_SYMBOL_GPL(usb_string);
1004 
1005 /* one UTF-8-encoded 16-bit character has at most three bytes */
1006 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
1007 
1008 /**
1009  * usb_cache_string - read a string descriptor and cache it for later use
1010  * @udev: the device whose string descriptor is being read
1011  * @index: the descriptor index
1012  *
1013  * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
1014  * or %NULL if the index is 0 or the string could not be read.
1015  */
1016 char *usb_cache_string(struct usb_device *udev, int index)
1017 {
1018 	char *buf;
1019 	char *smallbuf = NULL;
1020 	int len;
1021 
1022 	if (index <= 0)
1023 		return NULL;
1024 
1025 	buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
1026 	if (buf) {
1027 		len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
1028 		if (len > 0) {
1029 			smallbuf = kmalloc(++len, GFP_NOIO);
1030 			if (!smallbuf)
1031 				return buf;
1032 			memcpy(smallbuf, buf, len);
1033 		}
1034 		kfree(buf);
1035 	}
1036 	return smallbuf;
1037 }
1038 
1039 /*
1040  * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
1041  * @dev: the device whose device descriptor is being updated
1042  * @size: how much of the descriptor to read
1043  *
1044  * Context: task context, might sleep.
1045  *
1046  * Updates the copy of the device descriptor stored in the device structure,
1047  * which dedicates space for this purpose.
1048  *
1049  * Not exported, only for use by the core.  If drivers really want to read
1050  * the device descriptor directly, they can call usb_get_descriptor() with
1051  * type = USB_DT_DEVICE and index = 0.
1052  *
1053  * This call is synchronous, and may not be used in an interrupt context.
1054  *
1055  * Return: The number of bytes received on success, or else the status code
1056  * returned by the underlying usb_control_msg() call.
1057  */
1058 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
1059 {
1060 	struct usb_device_descriptor *desc;
1061 	int ret;
1062 
1063 	if (size > sizeof(*desc))
1064 		return -EINVAL;
1065 	desc = kmalloc(sizeof(*desc), GFP_NOIO);
1066 	if (!desc)
1067 		return -ENOMEM;
1068 
1069 	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
1070 	if (ret >= 0)
1071 		memcpy(&dev->descriptor, desc, size);
1072 	kfree(desc);
1073 	return ret;
1074 }
1075 
1076 /*
1077  * usb_set_isoch_delay - informs the device of the packet transmit delay
1078  * @dev: the device whose delay is to be informed
1079  * Context: task context, might sleep
1080  *
1081  * Since this is an optional request, we don't bother if it fails.
1082  */
1083 int usb_set_isoch_delay(struct usb_device *dev)
1084 {
1085 	/* skip hub devices */
1086 	if (dev->descriptor.bDeviceClass == USB_CLASS_HUB)
1087 		return 0;
1088 
1089 	/* skip non-SS/non-SSP devices */
1090 	if (dev->speed < USB_SPEED_SUPER)
1091 		return 0;
1092 
1093 	return usb_control_msg_send(dev, 0,
1094 			USB_REQ_SET_ISOCH_DELAY,
1095 			USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE,
1096 			dev->hub_delay, 0, NULL, 0,
1097 			USB_CTRL_SET_TIMEOUT,
1098 			GFP_NOIO);
1099 }
1100 
1101 /**
1102  * usb_get_status - issues a GET_STATUS call
1103  * @dev: the device whose status is being checked
1104  * @recip: USB_RECIP_*; for device, interface, or endpoint
1105  * @type: USB_STATUS_TYPE_*; for standard or PTM status types
1106  * @target: zero (for device), else interface or endpoint number
1107  * @data: pointer to two bytes of bitmap data
1108  *
1109  * Context: task context, might sleep.
1110  *
1111  * Returns device, interface, or endpoint status.  Normally only of
1112  * interest to see if the device is self powered, or has enabled the
1113  * remote wakeup facility; or whether a bulk or interrupt endpoint
1114  * is halted ("stalled").
1115  *
1116  * Bits in these status bitmaps are set using the SET_FEATURE request,
1117  * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
1118  * function should be used to clear halt ("stall") status.
1119  *
1120  * This call is synchronous, and may not be used in an interrupt context.
1121  *
1122  * Returns 0 and the status value in *@data (in host byte order) on success,
1123  * or else the status code from the underlying usb_control_msg() call.
1124  */
1125 int usb_get_status(struct usb_device *dev, int recip, int type, int target,
1126 		void *data)
1127 {
1128 	int ret;
1129 	void *status;
1130 	int length;
1131 
1132 	switch (type) {
1133 	case USB_STATUS_TYPE_STANDARD:
1134 		length = 2;
1135 		break;
1136 	case USB_STATUS_TYPE_PTM:
1137 		if (recip != USB_RECIP_DEVICE)
1138 			return -EINVAL;
1139 
1140 		length = 4;
1141 		break;
1142 	default:
1143 		return -EINVAL;
1144 	}
1145 
1146 	status =  kmalloc(length, GFP_KERNEL);
1147 	if (!status)
1148 		return -ENOMEM;
1149 
1150 	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
1151 		USB_REQ_GET_STATUS, USB_DIR_IN | recip, USB_STATUS_TYPE_STANDARD,
1152 		target, status, length, USB_CTRL_GET_TIMEOUT);
1153 
1154 	switch (ret) {
1155 	case 4:
1156 		if (type != USB_STATUS_TYPE_PTM) {
1157 			ret = -EIO;
1158 			break;
1159 		}
1160 
1161 		*(u32 *) data = le32_to_cpu(*(__le32 *) status);
1162 		ret = 0;
1163 		break;
1164 	case 2:
1165 		if (type != USB_STATUS_TYPE_STANDARD) {
1166 			ret = -EIO;
1167 			break;
1168 		}
1169 
1170 		*(u16 *) data = le16_to_cpu(*(__le16 *) status);
1171 		ret = 0;
1172 		break;
1173 	default:
1174 		ret = -EIO;
1175 	}
1176 
1177 	kfree(status);
1178 	return ret;
1179 }
1180 EXPORT_SYMBOL_GPL(usb_get_status);
1181 
1182 /**
1183  * usb_clear_halt - tells device to clear endpoint halt/stall condition
1184  * @dev: device whose endpoint is halted
1185  * @pipe: endpoint "pipe" being cleared
1186  *
1187  * Context: task context, might sleep.
1188  *
1189  * This is used to clear halt conditions for bulk and interrupt endpoints,
1190  * as reported by URB completion status.  Endpoints that are halted are
1191  * sometimes referred to as being "stalled".  Such endpoints are unable
1192  * to transmit or receive data until the halt status is cleared.  Any URBs
1193  * queued for such an endpoint should normally be unlinked by the driver
1194  * before clearing the halt condition, as described in sections 5.7.5
1195  * and 5.8.5 of the USB 2.0 spec.
1196  *
1197  * Note that control and isochronous endpoints don't halt, although control
1198  * endpoints report "protocol stall" (for unsupported requests) using the
1199  * same status code used to report a true stall.
1200  *
1201  * This call is synchronous, and may not be used in an interrupt context.
1202  *
1203  * Return: Zero on success, or else the status code returned by the
1204  * underlying usb_control_msg() call.
1205  */
1206 int usb_clear_halt(struct usb_device *dev, int pipe)
1207 {
1208 	int result;
1209 	int endp = usb_pipeendpoint(pipe);
1210 
1211 	if (usb_pipein(pipe))
1212 		endp |= USB_DIR_IN;
1213 
1214 	/* we don't care if it wasn't halted first. in fact some devices
1215 	 * (like some ibmcam model 1 units) seem to expect hosts to make
1216 	 * this request for iso endpoints, which can't halt!
1217 	 */
1218 	result = usb_control_msg_send(dev, 0,
1219 				      USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1220 				      USB_ENDPOINT_HALT, endp, NULL, 0,
1221 				      USB_CTRL_SET_TIMEOUT, GFP_NOIO);
1222 
1223 	/* don't un-halt or force to DATA0 except on success */
1224 	if (result)
1225 		return result;
1226 
1227 	/* NOTE:  seems like Microsoft and Apple don't bother verifying
1228 	 * the clear "took", so some devices could lock up if you check...
1229 	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
1230 	 *
1231 	 * NOTE:  make sure the logic here doesn't diverge much from
1232 	 * the copy in usb-storage, for as long as we need two copies.
1233 	 */
1234 
1235 	usb_reset_endpoint(dev, endp);
1236 
1237 	return 0;
1238 }
1239 EXPORT_SYMBOL_GPL(usb_clear_halt);
1240 
1241 static int create_intf_ep_devs(struct usb_interface *intf)
1242 {
1243 	struct usb_device *udev = interface_to_usbdev(intf);
1244 	struct usb_host_interface *alt = intf->cur_altsetting;
1245 	int i;
1246 
1247 	if (intf->ep_devs_created || intf->unregistering)
1248 		return 0;
1249 
1250 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1251 		(void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1252 	intf->ep_devs_created = 1;
1253 	return 0;
1254 }
1255 
1256 static void remove_intf_ep_devs(struct usb_interface *intf)
1257 {
1258 	struct usb_host_interface *alt = intf->cur_altsetting;
1259 	int i;
1260 
1261 	if (!intf->ep_devs_created)
1262 		return;
1263 
1264 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1265 		usb_remove_ep_devs(&alt->endpoint[i]);
1266 	intf->ep_devs_created = 0;
1267 }
1268 
1269 /**
1270  * usb_disable_endpoint -- Disable an endpoint by address
1271  * @dev: the device whose endpoint is being disabled
1272  * @epaddr: the endpoint's address.  Endpoint number for output,
1273  *	endpoint number + USB_DIR_IN for input
1274  * @reset_hardware: flag to erase any endpoint state stored in the
1275  *	controller hardware
1276  *
1277  * Disables the endpoint for URB submission and nukes all pending URBs.
1278  * If @reset_hardware is set then also deallocates hcd/hardware state
1279  * for the endpoint.
1280  */
1281 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1282 		bool reset_hardware)
1283 {
1284 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1285 	struct usb_host_endpoint *ep;
1286 
1287 	if (!dev)
1288 		return;
1289 
1290 	if (usb_endpoint_out(epaddr)) {
1291 		ep = dev->ep_out[epnum];
1292 		if (reset_hardware && epnum != 0)
1293 			dev->ep_out[epnum] = NULL;
1294 	} else {
1295 		ep = dev->ep_in[epnum];
1296 		if (reset_hardware && epnum != 0)
1297 			dev->ep_in[epnum] = NULL;
1298 	}
1299 	if (ep) {
1300 		ep->enabled = 0;
1301 		usb_hcd_flush_endpoint(dev, ep);
1302 		if (reset_hardware)
1303 			usb_hcd_disable_endpoint(dev, ep);
1304 	}
1305 }
1306 
1307 /**
1308  * usb_reset_endpoint - Reset an endpoint's state.
1309  * @dev: the device whose endpoint is to be reset
1310  * @epaddr: the endpoint's address.  Endpoint number for output,
1311  *	endpoint number + USB_DIR_IN for input
1312  *
1313  * Resets any host-side endpoint state such as the toggle bit,
1314  * sequence number or current window.
1315  */
1316 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1317 {
1318 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1319 	struct usb_host_endpoint *ep;
1320 
1321 	if (usb_endpoint_out(epaddr))
1322 		ep = dev->ep_out[epnum];
1323 	else
1324 		ep = dev->ep_in[epnum];
1325 	if (ep)
1326 		usb_hcd_reset_endpoint(dev, ep);
1327 }
1328 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1329 
1330 
1331 /**
1332  * usb_disable_interface -- Disable all endpoints for an interface
1333  * @dev: the device whose interface is being disabled
1334  * @intf: pointer to the interface descriptor
1335  * @reset_hardware: flag to erase any endpoint state stored in the
1336  *	controller hardware
1337  *
1338  * Disables all the endpoints for the interface's current altsetting.
1339  */
1340 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1341 		bool reset_hardware)
1342 {
1343 	struct usb_host_interface *alt = intf->cur_altsetting;
1344 	int i;
1345 
1346 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1347 		usb_disable_endpoint(dev,
1348 				alt->endpoint[i].desc.bEndpointAddress,
1349 				reset_hardware);
1350 	}
1351 }
1352 
1353 /*
1354  * usb_disable_device_endpoints -- Disable all endpoints for a device
1355  * @dev: the device whose endpoints are being disabled
1356  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1357  */
1358 static void usb_disable_device_endpoints(struct usb_device *dev, int skip_ep0)
1359 {
1360 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1361 	int i;
1362 
1363 	if (hcd->driver->check_bandwidth) {
1364 		/* First pass: Cancel URBs, leave endpoint pointers intact. */
1365 		for (i = skip_ep0; i < 16; ++i) {
1366 			usb_disable_endpoint(dev, i, false);
1367 			usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1368 		}
1369 		/* Remove endpoints from the host controller internal state */
1370 		mutex_lock(hcd->bandwidth_mutex);
1371 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1372 		mutex_unlock(hcd->bandwidth_mutex);
1373 	}
1374 	/* Second pass: remove endpoint pointers */
1375 	for (i = skip_ep0; i < 16; ++i) {
1376 		usb_disable_endpoint(dev, i, true);
1377 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1378 	}
1379 }
1380 
1381 /**
1382  * usb_disable_device - Disable all the endpoints for a USB device
1383  * @dev: the device whose endpoints are being disabled
1384  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1385  *
1386  * Disables all the device's endpoints, potentially including endpoint 0.
1387  * Deallocates hcd/hardware state for the endpoints (nuking all or most
1388  * pending urbs) and usbcore state for the interfaces, so that usbcore
1389  * must usb_set_configuration() before any interfaces could be used.
1390  */
1391 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1392 {
1393 	int i;
1394 
1395 	/* getting rid of interfaces will disconnect
1396 	 * any drivers bound to them (a key side effect)
1397 	 */
1398 	if (dev->actconfig) {
1399 		/*
1400 		 * FIXME: In order to avoid self-deadlock involving the
1401 		 * bandwidth_mutex, we have to mark all the interfaces
1402 		 * before unregistering any of them.
1403 		 */
1404 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1405 			dev->actconfig->interface[i]->unregistering = 1;
1406 
1407 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1408 			struct usb_interface	*interface;
1409 
1410 			/* remove this interface if it has been registered */
1411 			interface = dev->actconfig->interface[i];
1412 			if (!device_is_registered(&interface->dev))
1413 				continue;
1414 			dev_dbg(&dev->dev, "unregistering interface %s\n",
1415 				dev_name(&interface->dev));
1416 			remove_intf_ep_devs(interface);
1417 			device_del(&interface->dev);
1418 		}
1419 
1420 		/* Now that the interfaces are unbound, nobody should
1421 		 * try to access them.
1422 		 */
1423 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1424 			put_device(&dev->actconfig->interface[i]->dev);
1425 			dev->actconfig->interface[i] = NULL;
1426 		}
1427 
1428 		usb_disable_usb2_hardware_lpm(dev);
1429 		usb_unlocked_disable_lpm(dev);
1430 		usb_disable_ltm(dev);
1431 
1432 		dev->actconfig = NULL;
1433 		if (dev->state == USB_STATE_CONFIGURED)
1434 			usb_set_device_state(dev, USB_STATE_ADDRESS);
1435 	}
1436 
1437 	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1438 		skip_ep0 ? "non-ep0" : "all");
1439 
1440 	usb_disable_device_endpoints(dev, skip_ep0);
1441 }
1442 
1443 /**
1444  * usb_enable_endpoint - Enable an endpoint for USB communications
1445  * @dev: the device whose interface is being enabled
1446  * @ep: the endpoint
1447  * @reset_ep: flag to reset the endpoint state
1448  *
1449  * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1450  * For control endpoints, both the input and output sides are handled.
1451  */
1452 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1453 		bool reset_ep)
1454 {
1455 	int epnum = usb_endpoint_num(&ep->desc);
1456 	int is_out = usb_endpoint_dir_out(&ep->desc);
1457 	int is_control = usb_endpoint_xfer_control(&ep->desc);
1458 
1459 	if (reset_ep)
1460 		usb_hcd_reset_endpoint(dev, ep);
1461 	if (is_out || is_control)
1462 		dev->ep_out[epnum] = ep;
1463 	if (!is_out || is_control)
1464 		dev->ep_in[epnum] = ep;
1465 	ep->enabled = 1;
1466 }
1467 
1468 /**
1469  * usb_enable_interface - Enable all the endpoints for an interface
1470  * @dev: the device whose interface is being enabled
1471  * @intf: pointer to the interface descriptor
1472  * @reset_eps: flag to reset the endpoints' state
1473  *
1474  * Enables all the endpoints for the interface's current altsetting.
1475  */
1476 void usb_enable_interface(struct usb_device *dev,
1477 		struct usb_interface *intf, bool reset_eps)
1478 {
1479 	struct usb_host_interface *alt = intf->cur_altsetting;
1480 	int i;
1481 
1482 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1483 		usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1484 }
1485 
1486 /**
1487  * usb_set_interface - Makes a particular alternate setting be current
1488  * @dev: the device whose interface is being updated
1489  * @interface: the interface being updated
1490  * @alternate: the setting being chosen.
1491  *
1492  * Context: task context, might sleep.
1493  *
1494  * This is used to enable data transfers on interfaces that may not
1495  * be enabled by default.  Not all devices support such configurability.
1496  * Only the driver bound to an interface may change its setting.
1497  *
1498  * Within any given configuration, each interface may have several
1499  * alternative settings.  These are often used to control levels of
1500  * bandwidth consumption.  For example, the default setting for a high
1501  * speed interrupt endpoint may not send more than 64 bytes per microframe,
1502  * while interrupt transfers of up to 3KBytes per microframe are legal.
1503  * Also, isochronous endpoints may never be part of an
1504  * interface's default setting.  To access such bandwidth, alternate
1505  * interface settings must be made current.
1506  *
1507  * Note that in the Linux USB subsystem, bandwidth associated with
1508  * an endpoint in a given alternate setting is not reserved until an URB
1509  * is submitted that needs that bandwidth.  Some other operating systems
1510  * allocate bandwidth early, when a configuration is chosen.
1511  *
1512  * xHCI reserves bandwidth and configures the alternate setting in
1513  * usb_hcd_alloc_bandwidth(). If it fails the original interface altsetting
1514  * may be disabled. Drivers cannot rely on any particular alternate
1515  * setting being in effect after a failure.
1516  *
1517  * This call is synchronous, and may not be used in an interrupt context.
1518  * Also, drivers must not change altsettings while urbs are scheduled for
1519  * endpoints in that interface; all such urbs must first be completed
1520  * (perhaps forced by unlinking).
1521  *
1522  * Return: Zero on success, or else the status code returned by the
1523  * underlying usb_control_msg() call.
1524  */
1525 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1526 {
1527 	struct usb_interface *iface;
1528 	struct usb_host_interface *alt;
1529 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1530 	int i, ret, manual = 0;
1531 	unsigned int epaddr;
1532 	unsigned int pipe;
1533 
1534 	if (dev->state == USB_STATE_SUSPENDED)
1535 		return -EHOSTUNREACH;
1536 
1537 	iface = usb_ifnum_to_if(dev, interface);
1538 	if (!iface) {
1539 		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1540 			interface);
1541 		return -EINVAL;
1542 	}
1543 	if (iface->unregistering)
1544 		return -ENODEV;
1545 
1546 	alt = usb_altnum_to_altsetting(iface, alternate);
1547 	if (!alt) {
1548 		dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1549 			 alternate);
1550 		return -EINVAL;
1551 	}
1552 	/*
1553 	 * usb3 hosts configure the interface in usb_hcd_alloc_bandwidth,
1554 	 * including freeing dropped endpoint ring buffers.
1555 	 * Make sure the interface endpoints are flushed before that
1556 	 */
1557 	usb_disable_interface(dev, iface, false);
1558 
1559 	/* Make sure we have enough bandwidth for this alternate interface.
1560 	 * Remove the current alt setting and add the new alt setting.
1561 	 */
1562 	mutex_lock(hcd->bandwidth_mutex);
1563 	/* Disable LPM, and re-enable it once the new alt setting is installed,
1564 	 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1565 	 */
1566 	if (usb_disable_lpm(dev)) {
1567 		dev_err(&iface->dev, "%s Failed to disable LPM\n", __func__);
1568 		mutex_unlock(hcd->bandwidth_mutex);
1569 		return -ENOMEM;
1570 	}
1571 	/* Changing alt-setting also frees any allocated streams */
1572 	for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1573 		iface->cur_altsetting->endpoint[i].streams = 0;
1574 
1575 	ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1576 	if (ret < 0) {
1577 		dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1578 				alternate);
1579 		usb_enable_lpm(dev);
1580 		mutex_unlock(hcd->bandwidth_mutex);
1581 		return ret;
1582 	}
1583 
1584 	if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1585 		ret = -EPIPE;
1586 	else
1587 		ret = usb_control_msg_send(dev, 0,
1588 					   USB_REQ_SET_INTERFACE,
1589 					   USB_RECIP_INTERFACE, alternate,
1590 					   interface, NULL, 0, 5000,
1591 					   GFP_NOIO);
1592 
1593 	/* 9.4.10 says devices don't need this and are free to STALL the
1594 	 * request if the interface only has one alternate setting.
1595 	 */
1596 	if (ret == -EPIPE && iface->num_altsetting == 1) {
1597 		dev_dbg(&dev->dev,
1598 			"manual set_interface for iface %d, alt %d\n",
1599 			interface, alternate);
1600 		manual = 1;
1601 	} else if (ret) {
1602 		/* Re-instate the old alt setting */
1603 		usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1604 		usb_enable_lpm(dev);
1605 		mutex_unlock(hcd->bandwidth_mutex);
1606 		return ret;
1607 	}
1608 	mutex_unlock(hcd->bandwidth_mutex);
1609 
1610 	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1611 	 * when they implement async or easily-killable versions of this or
1612 	 * other "should-be-internal" functions (like clear_halt).
1613 	 * should hcd+usbcore postprocess control requests?
1614 	 */
1615 
1616 	/* prevent submissions using previous endpoint settings */
1617 	if (iface->cur_altsetting != alt) {
1618 		remove_intf_ep_devs(iface);
1619 		usb_remove_sysfs_intf_files(iface);
1620 	}
1621 	usb_disable_interface(dev, iface, true);
1622 
1623 	iface->cur_altsetting = alt;
1624 
1625 	/* Now that the interface is installed, re-enable LPM. */
1626 	usb_unlocked_enable_lpm(dev);
1627 
1628 	/* If the interface only has one altsetting and the device didn't
1629 	 * accept the request, we attempt to carry out the equivalent action
1630 	 * by manually clearing the HALT feature for each endpoint in the
1631 	 * new altsetting.
1632 	 */
1633 	if (manual) {
1634 		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1635 			epaddr = alt->endpoint[i].desc.bEndpointAddress;
1636 			pipe = __create_pipe(dev,
1637 					USB_ENDPOINT_NUMBER_MASK & epaddr) |
1638 					(usb_endpoint_out(epaddr) ?
1639 					USB_DIR_OUT : USB_DIR_IN);
1640 
1641 			usb_clear_halt(dev, pipe);
1642 		}
1643 	}
1644 
1645 	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1646 	 *
1647 	 * Note:
1648 	 * Despite EP0 is always present in all interfaces/AS, the list of
1649 	 * endpoints from the descriptor does not contain EP0. Due to its
1650 	 * omnipresence one might expect EP0 being considered "affected" by
1651 	 * any SetInterface request and hence assume toggles need to be reset.
1652 	 * However, EP0 toggles are re-synced for every individual transfer
1653 	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1654 	 * (Likewise, EP0 never "halts" on well designed devices.)
1655 	 */
1656 	usb_enable_interface(dev, iface, true);
1657 	if (device_is_registered(&iface->dev)) {
1658 		usb_create_sysfs_intf_files(iface);
1659 		create_intf_ep_devs(iface);
1660 	}
1661 	return 0;
1662 }
1663 EXPORT_SYMBOL_GPL(usb_set_interface);
1664 
1665 /**
1666  * usb_reset_configuration - lightweight device reset
1667  * @dev: the device whose configuration is being reset
1668  *
1669  * This issues a standard SET_CONFIGURATION request to the device using
1670  * the current configuration.  The effect is to reset most USB-related
1671  * state in the device, including interface altsettings (reset to zero),
1672  * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1673  * endpoints).  Other usbcore state is unchanged, including bindings of
1674  * usb device drivers to interfaces.
1675  *
1676  * Because this affects multiple interfaces, avoid using this with composite
1677  * (multi-interface) devices.  Instead, the driver for each interface may
1678  * use usb_set_interface() on the interfaces it claims.  Be careful though;
1679  * some devices don't support the SET_INTERFACE request, and others won't
1680  * reset all the interface state (notably endpoint state).  Resetting the whole
1681  * configuration would affect other drivers' interfaces.
1682  *
1683  * The caller must own the device lock.
1684  *
1685  * Return: Zero on success, else a negative error code.
1686  *
1687  * If this routine fails the device will probably be in an unusable state
1688  * with endpoints disabled, and interfaces only partially enabled.
1689  */
1690 int usb_reset_configuration(struct usb_device *dev)
1691 {
1692 	int			i, retval;
1693 	struct usb_host_config	*config;
1694 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1695 
1696 	if (dev->state == USB_STATE_SUSPENDED)
1697 		return -EHOSTUNREACH;
1698 
1699 	/* caller must have locked the device and must own
1700 	 * the usb bus readlock (so driver bindings are stable);
1701 	 * calls during probe() are fine
1702 	 */
1703 
1704 	usb_disable_device_endpoints(dev, 1); /* skip ep0*/
1705 
1706 	config = dev->actconfig;
1707 	retval = 0;
1708 	mutex_lock(hcd->bandwidth_mutex);
1709 	/* Disable LPM, and re-enable it once the configuration is reset, so
1710 	 * that the xHCI driver can recalculate the U1/U2 timeouts.
1711 	 */
1712 	if (usb_disable_lpm(dev)) {
1713 		dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1714 		mutex_unlock(hcd->bandwidth_mutex);
1715 		return -ENOMEM;
1716 	}
1717 
1718 	/* xHCI adds all endpoints in usb_hcd_alloc_bandwidth */
1719 	retval = usb_hcd_alloc_bandwidth(dev, config, NULL, NULL);
1720 	if (retval < 0) {
1721 		usb_enable_lpm(dev);
1722 		mutex_unlock(hcd->bandwidth_mutex);
1723 		return retval;
1724 	}
1725 	retval = usb_control_msg_send(dev, 0, USB_REQ_SET_CONFIGURATION, 0,
1726 				      config->desc.bConfigurationValue, 0,
1727 				      NULL, 0, USB_CTRL_SET_TIMEOUT,
1728 				      GFP_NOIO);
1729 	if (retval) {
1730 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1731 		usb_enable_lpm(dev);
1732 		mutex_unlock(hcd->bandwidth_mutex);
1733 		return retval;
1734 	}
1735 	mutex_unlock(hcd->bandwidth_mutex);
1736 
1737 	/* re-init hc/hcd interface/endpoint state */
1738 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1739 		struct usb_interface *intf = config->interface[i];
1740 		struct usb_host_interface *alt;
1741 
1742 		alt = usb_altnum_to_altsetting(intf, 0);
1743 
1744 		/* No altsetting 0?  We'll assume the first altsetting.
1745 		 * We could use a GetInterface call, but if a device is
1746 		 * so non-compliant that it doesn't have altsetting 0
1747 		 * then I wouldn't trust its reply anyway.
1748 		 */
1749 		if (!alt)
1750 			alt = &intf->altsetting[0];
1751 
1752 		if (alt != intf->cur_altsetting) {
1753 			remove_intf_ep_devs(intf);
1754 			usb_remove_sysfs_intf_files(intf);
1755 		}
1756 		intf->cur_altsetting = alt;
1757 		usb_enable_interface(dev, intf, true);
1758 		if (device_is_registered(&intf->dev)) {
1759 			usb_create_sysfs_intf_files(intf);
1760 			create_intf_ep_devs(intf);
1761 		}
1762 	}
1763 	/* Now that the interfaces are installed, re-enable LPM. */
1764 	usb_unlocked_enable_lpm(dev);
1765 	return 0;
1766 }
1767 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1768 
1769 static void usb_release_interface(struct device *dev)
1770 {
1771 	struct usb_interface *intf = to_usb_interface(dev);
1772 	struct usb_interface_cache *intfc =
1773 			altsetting_to_usb_interface_cache(intf->altsetting);
1774 
1775 	kref_put(&intfc->ref, usb_release_interface_cache);
1776 	usb_put_dev(interface_to_usbdev(intf));
1777 	of_node_put(dev->of_node);
1778 	kfree(intf);
1779 }
1780 
1781 /*
1782  * usb_deauthorize_interface - deauthorize an USB interface
1783  *
1784  * @intf: USB interface structure
1785  */
1786 void usb_deauthorize_interface(struct usb_interface *intf)
1787 {
1788 	struct device *dev = &intf->dev;
1789 
1790 	device_lock(dev->parent);
1791 
1792 	if (intf->authorized) {
1793 		device_lock(dev);
1794 		intf->authorized = 0;
1795 		device_unlock(dev);
1796 
1797 		usb_forced_unbind_intf(intf);
1798 	}
1799 
1800 	device_unlock(dev->parent);
1801 }
1802 
1803 /*
1804  * usb_authorize_interface - authorize an USB interface
1805  *
1806  * @intf: USB interface structure
1807  */
1808 void usb_authorize_interface(struct usb_interface *intf)
1809 {
1810 	struct device *dev = &intf->dev;
1811 
1812 	if (!intf->authorized) {
1813 		device_lock(dev);
1814 		intf->authorized = 1; /* authorize interface */
1815 		device_unlock(dev);
1816 	}
1817 }
1818 
1819 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1820 {
1821 	struct usb_device *usb_dev;
1822 	struct usb_interface *intf;
1823 	struct usb_host_interface *alt;
1824 
1825 	intf = to_usb_interface(dev);
1826 	usb_dev = interface_to_usbdev(intf);
1827 	alt = intf->cur_altsetting;
1828 
1829 	if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1830 		   alt->desc.bInterfaceClass,
1831 		   alt->desc.bInterfaceSubClass,
1832 		   alt->desc.bInterfaceProtocol))
1833 		return -ENOMEM;
1834 
1835 	if (add_uevent_var(env,
1836 		   "MODALIAS=usb:"
1837 		   "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1838 		   le16_to_cpu(usb_dev->descriptor.idVendor),
1839 		   le16_to_cpu(usb_dev->descriptor.idProduct),
1840 		   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1841 		   usb_dev->descriptor.bDeviceClass,
1842 		   usb_dev->descriptor.bDeviceSubClass,
1843 		   usb_dev->descriptor.bDeviceProtocol,
1844 		   alt->desc.bInterfaceClass,
1845 		   alt->desc.bInterfaceSubClass,
1846 		   alt->desc.bInterfaceProtocol,
1847 		   alt->desc.bInterfaceNumber))
1848 		return -ENOMEM;
1849 
1850 	return 0;
1851 }
1852 
1853 struct device_type usb_if_device_type = {
1854 	.name =		"usb_interface",
1855 	.release =	usb_release_interface,
1856 	.uevent =	usb_if_uevent,
1857 };
1858 
1859 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1860 						struct usb_host_config *config,
1861 						u8 inum)
1862 {
1863 	struct usb_interface_assoc_descriptor *retval = NULL;
1864 	struct usb_interface_assoc_descriptor *intf_assoc;
1865 	int first_intf;
1866 	int last_intf;
1867 	int i;
1868 
1869 	for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1870 		intf_assoc = config->intf_assoc[i];
1871 		if (intf_assoc->bInterfaceCount == 0)
1872 			continue;
1873 
1874 		first_intf = intf_assoc->bFirstInterface;
1875 		last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1876 		if (inum >= first_intf && inum <= last_intf) {
1877 			if (!retval)
1878 				retval = intf_assoc;
1879 			else
1880 				dev_err(&dev->dev, "Interface #%d referenced"
1881 					" by multiple IADs\n", inum);
1882 		}
1883 	}
1884 
1885 	return retval;
1886 }
1887 
1888 
1889 /*
1890  * Internal function to queue a device reset
1891  * See usb_queue_reset_device() for more details
1892  */
1893 static void __usb_queue_reset_device(struct work_struct *ws)
1894 {
1895 	int rc;
1896 	struct usb_interface *iface =
1897 		container_of(ws, struct usb_interface, reset_ws);
1898 	struct usb_device *udev = interface_to_usbdev(iface);
1899 
1900 	rc = usb_lock_device_for_reset(udev, iface);
1901 	if (rc >= 0) {
1902 		usb_reset_device(udev);
1903 		usb_unlock_device(udev);
1904 	}
1905 	usb_put_intf(iface);	/* Undo _get_ in usb_queue_reset_device() */
1906 }
1907 
1908 
1909 /*
1910  * usb_set_configuration - Makes a particular device setting be current
1911  * @dev: the device whose configuration is being updated
1912  * @configuration: the configuration being chosen.
1913  *
1914  * Context: task context, might sleep. Caller holds device lock.
1915  *
1916  * This is used to enable non-default device modes.  Not all devices
1917  * use this kind of configurability; many devices only have one
1918  * configuration.
1919  *
1920  * @configuration is the value of the configuration to be installed.
1921  * According to the USB spec (e.g. section 9.1.1.5), configuration values
1922  * must be non-zero; a value of zero indicates that the device in
1923  * unconfigured.  However some devices erroneously use 0 as one of their
1924  * configuration values.  To help manage such devices, this routine will
1925  * accept @configuration = -1 as indicating the device should be put in
1926  * an unconfigured state.
1927  *
1928  * USB device configurations may affect Linux interoperability,
1929  * power consumption and the functionality available.  For example,
1930  * the default configuration is limited to using 100mA of bus power,
1931  * so that when certain device functionality requires more power,
1932  * and the device is bus powered, that functionality should be in some
1933  * non-default device configuration.  Other device modes may also be
1934  * reflected as configuration options, such as whether two ISDN
1935  * channels are available independently; and choosing between open
1936  * standard device protocols (like CDC) or proprietary ones.
1937  *
1938  * Note that a non-authorized device (dev->authorized == 0) will only
1939  * be put in unconfigured mode.
1940  *
1941  * Note that USB has an additional level of device configurability,
1942  * associated with interfaces.  That configurability is accessed using
1943  * usb_set_interface().
1944  *
1945  * This call is synchronous. The calling context must be able to sleep,
1946  * must own the device lock, and must not hold the driver model's USB
1947  * bus mutex; usb interface driver probe() methods cannot use this routine.
1948  *
1949  * Returns zero on success, or else the status code returned by the
1950  * underlying call that failed.  On successful completion, each interface
1951  * in the original device configuration has been destroyed, and each one
1952  * in the new configuration has been probed by all relevant usb device
1953  * drivers currently known to the kernel.
1954  */
1955 int usb_set_configuration(struct usb_device *dev, int configuration)
1956 {
1957 	int i, ret;
1958 	struct usb_host_config *cp = NULL;
1959 	struct usb_interface **new_interfaces = NULL;
1960 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1961 	int n, nintf;
1962 
1963 	if (dev->authorized == 0 || configuration == -1)
1964 		configuration = 0;
1965 	else {
1966 		for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1967 			if (dev->config[i].desc.bConfigurationValue ==
1968 					configuration) {
1969 				cp = &dev->config[i];
1970 				break;
1971 			}
1972 		}
1973 	}
1974 	if ((!cp && configuration != 0))
1975 		return -EINVAL;
1976 
1977 	/* The USB spec says configuration 0 means unconfigured.
1978 	 * But if a device includes a configuration numbered 0,
1979 	 * we will accept it as a correctly configured state.
1980 	 * Use -1 if you really want to unconfigure the device.
1981 	 */
1982 	if (cp && configuration == 0)
1983 		dev_warn(&dev->dev, "config 0 descriptor??\n");
1984 
1985 	/* Allocate memory for new interfaces before doing anything else,
1986 	 * so that if we run out then nothing will have changed. */
1987 	n = nintf = 0;
1988 	if (cp) {
1989 		nintf = cp->desc.bNumInterfaces;
1990 		new_interfaces = kmalloc_array(nintf, sizeof(*new_interfaces),
1991 					       GFP_NOIO);
1992 		if (!new_interfaces)
1993 			return -ENOMEM;
1994 
1995 		for (; n < nintf; ++n) {
1996 			new_interfaces[n] = kzalloc(
1997 					sizeof(struct usb_interface),
1998 					GFP_NOIO);
1999 			if (!new_interfaces[n]) {
2000 				ret = -ENOMEM;
2001 free_interfaces:
2002 				while (--n >= 0)
2003 					kfree(new_interfaces[n]);
2004 				kfree(new_interfaces);
2005 				return ret;
2006 			}
2007 		}
2008 
2009 		i = dev->bus_mA - usb_get_max_power(dev, cp);
2010 		if (i < 0)
2011 			dev_warn(&dev->dev, "new config #%d exceeds power "
2012 					"limit by %dmA\n",
2013 					configuration, -i);
2014 	}
2015 
2016 	/* Wake up the device so we can send it the Set-Config request */
2017 	ret = usb_autoresume_device(dev);
2018 	if (ret)
2019 		goto free_interfaces;
2020 
2021 	/* if it's already configured, clear out old state first.
2022 	 * getting rid of old interfaces means unbinding their drivers.
2023 	 */
2024 	if (dev->state != USB_STATE_ADDRESS)
2025 		usb_disable_device(dev, 1);	/* Skip ep0 */
2026 
2027 	/* Get rid of pending async Set-Config requests for this device */
2028 	cancel_async_set_config(dev);
2029 
2030 	/* Make sure we have bandwidth (and available HCD resources) for this
2031 	 * configuration.  Remove endpoints from the schedule if we're dropping
2032 	 * this configuration to set configuration 0.  After this point, the
2033 	 * host controller will not allow submissions to dropped endpoints.  If
2034 	 * this call fails, the device state is unchanged.
2035 	 */
2036 	mutex_lock(hcd->bandwidth_mutex);
2037 	/* Disable LPM, and re-enable it once the new configuration is
2038 	 * installed, so that the xHCI driver can recalculate the U1/U2
2039 	 * timeouts.
2040 	 */
2041 	if (dev->actconfig && usb_disable_lpm(dev)) {
2042 		dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
2043 		mutex_unlock(hcd->bandwidth_mutex);
2044 		ret = -ENOMEM;
2045 		goto free_interfaces;
2046 	}
2047 	ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
2048 	if (ret < 0) {
2049 		if (dev->actconfig)
2050 			usb_enable_lpm(dev);
2051 		mutex_unlock(hcd->bandwidth_mutex);
2052 		usb_autosuspend_device(dev);
2053 		goto free_interfaces;
2054 	}
2055 
2056 	/*
2057 	 * Initialize the new interface structures and the
2058 	 * hc/hcd/usbcore interface/endpoint state.
2059 	 */
2060 	for (i = 0; i < nintf; ++i) {
2061 		struct usb_interface_cache *intfc;
2062 		struct usb_interface *intf;
2063 		struct usb_host_interface *alt;
2064 		u8 ifnum;
2065 
2066 		cp->interface[i] = intf = new_interfaces[i];
2067 		intfc = cp->intf_cache[i];
2068 		intf->altsetting = intfc->altsetting;
2069 		intf->num_altsetting = intfc->num_altsetting;
2070 		intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
2071 		kref_get(&intfc->ref);
2072 
2073 		alt = usb_altnum_to_altsetting(intf, 0);
2074 
2075 		/* No altsetting 0?  We'll assume the first altsetting.
2076 		 * We could use a GetInterface call, but if a device is
2077 		 * so non-compliant that it doesn't have altsetting 0
2078 		 * then I wouldn't trust its reply anyway.
2079 		 */
2080 		if (!alt)
2081 			alt = &intf->altsetting[0];
2082 
2083 		ifnum = alt->desc.bInterfaceNumber;
2084 		intf->intf_assoc = find_iad(dev, cp, ifnum);
2085 		intf->cur_altsetting = alt;
2086 		usb_enable_interface(dev, intf, true);
2087 		intf->dev.parent = &dev->dev;
2088 		if (usb_of_has_combined_node(dev)) {
2089 			device_set_of_node_from_dev(&intf->dev, &dev->dev);
2090 		} else {
2091 			intf->dev.of_node = usb_of_get_interface_node(dev,
2092 					configuration, ifnum);
2093 		}
2094 		ACPI_COMPANION_SET(&intf->dev, ACPI_COMPANION(&dev->dev));
2095 		intf->dev.driver = NULL;
2096 		intf->dev.bus = &usb_bus_type;
2097 		intf->dev.type = &usb_if_device_type;
2098 		intf->dev.groups = usb_interface_groups;
2099 		INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
2100 		intf->minor = -1;
2101 		device_initialize(&intf->dev);
2102 		pm_runtime_no_callbacks(&intf->dev);
2103 		dev_set_name(&intf->dev, "%d-%s:%d.%d", dev->bus->busnum,
2104 				dev->devpath, configuration, ifnum);
2105 		usb_get_dev(dev);
2106 	}
2107 	kfree(new_interfaces);
2108 
2109 	ret = usb_control_msg_send(dev, 0, USB_REQ_SET_CONFIGURATION, 0,
2110 				   configuration, 0, NULL, 0,
2111 				   USB_CTRL_SET_TIMEOUT, GFP_NOIO);
2112 	if (ret && cp) {
2113 		/*
2114 		 * All the old state is gone, so what else can we do?
2115 		 * The device is probably useless now anyway.
2116 		 */
2117 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
2118 		for (i = 0; i < nintf; ++i) {
2119 			usb_disable_interface(dev, cp->interface[i], true);
2120 			put_device(&cp->interface[i]->dev);
2121 			cp->interface[i] = NULL;
2122 		}
2123 		cp = NULL;
2124 	}
2125 
2126 	dev->actconfig = cp;
2127 	mutex_unlock(hcd->bandwidth_mutex);
2128 
2129 	if (!cp) {
2130 		usb_set_device_state(dev, USB_STATE_ADDRESS);
2131 
2132 		/* Leave LPM disabled while the device is unconfigured. */
2133 		usb_autosuspend_device(dev);
2134 		return ret;
2135 	}
2136 	usb_set_device_state(dev, USB_STATE_CONFIGURED);
2137 
2138 	if (cp->string == NULL &&
2139 			!(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
2140 		cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
2141 
2142 	/* Now that the interfaces are installed, re-enable LPM. */
2143 	usb_unlocked_enable_lpm(dev);
2144 	/* Enable LTM if it was turned off by usb_disable_device. */
2145 	usb_enable_ltm(dev);
2146 
2147 	/* Now that all the interfaces are set up, register them
2148 	 * to trigger binding of drivers to interfaces.  probe()
2149 	 * routines may install different altsettings and may
2150 	 * claim() any interfaces not yet bound.  Many class drivers
2151 	 * need that: CDC, audio, video, etc.
2152 	 */
2153 	for (i = 0; i < nintf; ++i) {
2154 		struct usb_interface *intf = cp->interface[i];
2155 
2156 		if (intf->dev.of_node &&
2157 		    !of_device_is_available(intf->dev.of_node)) {
2158 			dev_info(&dev->dev, "skipping disabled interface %d\n",
2159 				 intf->cur_altsetting->desc.bInterfaceNumber);
2160 			continue;
2161 		}
2162 
2163 		dev_dbg(&dev->dev,
2164 			"adding %s (config #%d, interface %d)\n",
2165 			dev_name(&intf->dev), configuration,
2166 			intf->cur_altsetting->desc.bInterfaceNumber);
2167 		device_enable_async_suspend(&intf->dev);
2168 		ret = device_add(&intf->dev);
2169 		if (ret != 0) {
2170 			dev_err(&dev->dev, "device_add(%s) --> %d\n",
2171 				dev_name(&intf->dev), ret);
2172 			continue;
2173 		}
2174 		create_intf_ep_devs(intf);
2175 	}
2176 
2177 	usb_autosuspend_device(dev);
2178 	return 0;
2179 }
2180 EXPORT_SYMBOL_GPL(usb_set_configuration);
2181 
2182 static LIST_HEAD(set_config_list);
2183 static DEFINE_SPINLOCK(set_config_lock);
2184 
2185 struct set_config_request {
2186 	struct usb_device	*udev;
2187 	int			config;
2188 	struct work_struct	work;
2189 	struct list_head	node;
2190 };
2191 
2192 /* Worker routine for usb_driver_set_configuration() */
2193 static void driver_set_config_work(struct work_struct *work)
2194 {
2195 	struct set_config_request *req =
2196 		container_of(work, struct set_config_request, work);
2197 	struct usb_device *udev = req->udev;
2198 
2199 	usb_lock_device(udev);
2200 	spin_lock(&set_config_lock);
2201 	list_del(&req->node);
2202 	spin_unlock(&set_config_lock);
2203 
2204 	if (req->config >= -1)		/* Is req still valid? */
2205 		usb_set_configuration(udev, req->config);
2206 	usb_unlock_device(udev);
2207 	usb_put_dev(udev);
2208 	kfree(req);
2209 }
2210 
2211 /* Cancel pending Set-Config requests for a device whose configuration
2212  * was just changed
2213  */
2214 static void cancel_async_set_config(struct usb_device *udev)
2215 {
2216 	struct set_config_request *req;
2217 
2218 	spin_lock(&set_config_lock);
2219 	list_for_each_entry(req, &set_config_list, node) {
2220 		if (req->udev == udev)
2221 			req->config = -999;	/* Mark as cancelled */
2222 	}
2223 	spin_unlock(&set_config_lock);
2224 }
2225 
2226 /**
2227  * usb_driver_set_configuration - Provide a way for drivers to change device configurations
2228  * @udev: the device whose configuration is being updated
2229  * @config: the configuration being chosen.
2230  * Context: In process context, must be able to sleep
2231  *
2232  * Device interface drivers are not allowed to change device configurations.
2233  * This is because changing configurations will destroy the interface the
2234  * driver is bound to and create new ones; it would be like a floppy-disk
2235  * driver telling the computer to replace the floppy-disk drive with a
2236  * tape drive!
2237  *
2238  * Still, in certain specialized circumstances the need may arise.  This
2239  * routine gets around the normal restrictions by using a work thread to
2240  * submit the change-config request.
2241  *
2242  * Return: 0 if the request was successfully queued, error code otherwise.
2243  * The caller has no way to know whether the queued request will eventually
2244  * succeed.
2245  */
2246 int usb_driver_set_configuration(struct usb_device *udev, int config)
2247 {
2248 	struct set_config_request *req;
2249 
2250 	req = kmalloc(sizeof(*req), GFP_KERNEL);
2251 	if (!req)
2252 		return -ENOMEM;
2253 	req->udev = udev;
2254 	req->config = config;
2255 	INIT_WORK(&req->work, driver_set_config_work);
2256 
2257 	spin_lock(&set_config_lock);
2258 	list_add(&req->node, &set_config_list);
2259 	spin_unlock(&set_config_lock);
2260 
2261 	usb_get_dev(udev);
2262 	schedule_work(&req->work);
2263 	return 0;
2264 }
2265 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2266 
2267 /**
2268  * cdc_parse_cdc_header - parse the extra headers present in CDC devices
2269  * @hdr: the place to put the results of the parsing
2270  * @intf: the interface for which parsing is requested
2271  * @buffer: pointer to the extra headers to be parsed
2272  * @buflen: length of the extra headers
2273  *
2274  * This evaluates the extra headers present in CDC devices which
2275  * bind the interfaces for data and control and provide details
2276  * about the capabilities of the device.
2277  *
2278  * Return: number of descriptors parsed or -EINVAL
2279  * if the header is contradictory beyond salvage
2280  */
2281 
2282 int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr,
2283 				struct usb_interface *intf,
2284 				u8 *buffer,
2285 				int buflen)
2286 {
2287 	/* duplicates are ignored */
2288 	struct usb_cdc_union_desc *union_header = NULL;
2289 
2290 	/* duplicates are not tolerated */
2291 	struct usb_cdc_header_desc *header = NULL;
2292 	struct usb_cdc_ether_desc *ether = NULL;
2293 	struct usb_cdc_mdlm_detail_desc *detail = NULL;
2294 	struct usb_cdc_mdlm_desc *desc = NULL;
2295 
2296 	unsigned int elength;
2297 	int cnt = 0;
2298 
2299 	memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header));
2300 	hdr->phonet_magic_present = false;
2301 	while (buflen > 0) {
2302 		elength = buffer[0];
2303 		if (!elength) {
2304 			dev_err(&intf->dev, "skipping garbage byte\n");
2305 			elength = 1;
2306 			goto next_desc;
2307 		}
2308 		if ((buflen < elength) || (elength < 3)) {
2309 			dev_err(&intf->dev, "invalid descriptor buffer length\n");
2310 			break;
2311 		}
2312 		if (buffer[1] != USB_DT_CS_INTERFACE) {
2313 			dev_err(&intf->dev, "skipping garbage\n");
2314 			goto next_desc;
2315 		}
2316 
2317 		switch (buffer[2]) {
2318 		case USB_CDC_UNION_TYPE: /* we've found it */
2319 			if (elength < sizeof(struct usb_cdc_union_desc))
2320 				goto next_desc;
2321 			if (union_header) {
2322 				dev_err(&intf->dev, "More than one union descriptor, skipping ...\n");
2323 				goto next_desc;
2324 			}
2325 			union_header = (struct usb_cdc_union_desc *)buffer;
2326 			break;
2327 		case USB_CDC_COUNTRY_TYPE:
2328 			if (elength < sizeof(struct usb_cdc_country_functional_desc))
2329 				goto next_desc;
2330 			hdr->usb_cdc_country_functional_desc =
2331 				(struct usb_cdc_country_functional_desc *)buffer;
2332 			break;
2333 		case USB_CDC_HEADER_TYPE:
2334 			if (elength != sizeof(struct usb_cdc_header_desc))
2335 				goto next_desc;
2336 			if (header)
2337 				return -EINVAL;
2338 			header = (struct usb_cdc_header_desc *)buffer;
2339 			break;
2340 		case USB_CDC_ACM_TYPE:
2341 			if (elength < sizeof(struct usb_cdc_acm_descriptor))
2342 				goto next_desc;
2343 			hdr->usb_cdc_acm_descriptor =
2344 				(struct usb_cdc_acm_descriptor *)buffer;
2345 			break;
2346 		case USB_CDC_ETHERNET_TYPE:
2347 			if (elength != sizeof(struct usb_cdc_ether_desc))
2348 				goto next_desc;
2349 			if (ether)
2350 				return -EINVAL;
2351 			ether = (struct usb_cdc_ether_desc *)buffer;
2352 			break;
2353 		case USB_CDC_CALL_MANAGEMENT_TYPE:
2354 			if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor))
2355 				goto next_desc;
2356 			hdr->usb_cdc_call_mgmt_descriptor =
2357 				(struct usb_cdc_call_mgmt_descriptor *)buffer;
2358 			break;
2359 		case USB_CDC_DMM_TYPE:
2360 			if (elength < sizeof(struct usb_cdc_dmm_desc))
2361 				goto next_desc;
2362 			hdr->usb_cdc_dmm_desc =
2363 				(struct usb_cdc_dmm_desc *)buffer;
2364 			break;
2365 		case USB_CDC_MDLM_TYPE:
2366 			if (elength < sizeof(struct usb_cdc_mdlm_desc))
2367 				goto next_desc;
2368 			if (desc)
2369 				return -EINVAL;
2370 			desc = (struct usb_cdc_mdlm_desc *)buffer;
2371 			break;
2372 		case USB_CDC_MDLM_DETAIL_TYPE:
2373 			if (elength < sizeof(struct usb_cdc_mdlm_detail_desc))
2374 				goto next_desc;
2375 			if (detail)
2376 				return -EINVAL;
2377 			detail = (struct usb_cdc_mdlm_detail_desc *)buffer;
2378 			break;
2379 		case USB_CDC_NCM_TYPE:
2380 			if (elength < sizeof(struct usb_cdc_ncm_desc))
2381 				goto next_desc;
2382 			hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer;
2383 			break;
2384 		case USB_CDC_MBIM_TYPE:
2385 			if (elength < sizeof(struct usb_cdc_mbim_desc))
2386 				goto next_desc;
2387 
2388 			hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer;
2389 			break;
2390 		case USB_CDC_MBIM_EXTENDED_TYPE:
2391 			if (elength < sizeof(struct usb_cdc_mbim_extended_desc))
2392 				break;
2393 			hdr->usb_cdc_mbim_extended_desc =
2394 				(struct usb_cdc_mbim_extended_desc *)buffer;
2395 			break;
2396 		case CDC_PHONET_MAGIC_NUMBER:
2397 			hdr->phonet_magic_present = true;
2398 			break;
2399 		default:
2400 			/*
2401 			 * there are LOTS more CDC descriptors that
2402 			 * could legitimately be found here.
2403 			 */
2404 			dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n",
2405 					buffer[2], elength);
2406 			goto next_desc;
2407 		}
2408 		cnt++;
2409 next_desc:
2410 		buflen -= elength;
2411 		buffer += elength;
2412 	}
2413 	hdr->usb_cdc_union_desc = union_header;
2414 	hdr->usb_cdc_header_desc = header;
2415 	hdr->usb_cdc_mdlm_detail_desc = detail;
2416 	hdr->usb_cdc_mdlm_desc = desc;
2417 	hdr->usb_cdc_ether_desc = ether;
2418 	return cnt;
2419 }
2420 
2421 EXPORT_SYMBOL(cdc_parse_cdc_header);
2422