1 /* 2 * message.c - synchronous message handling 3 */ 4 5 #include <linux/pci.h> /* for scatterlist macros */ 6 #include <linux/usb.h> 7 #include <linux/module.h> 8 #include <linux/slab.h> 9 #include <linux/init.h> 10 #include <linux/mm.h> 11 #include <linux/timer.h> 12 #include <linux/ctype.h> 13 #include <linux/device.h> 14 #include <linux/scatterlist.h> 15 #include <linux/usb/quirks.h> 16 #include <asm/byteorder.h> 17 18 #include "hcd.h" /* for usbcore internals */ 19 #include "usb.h" 20 21 struct api_context { 22 struct completion done; 23 int status; 24 }; 25 26 static void usb_api_blocking_completion(struct urb *urb) 27 { 28 struct api_context *ctx = urb->context; 29 30 ctx->status = urb->status; 31 complete(&ctx->done); 32 } 33 34 35 /* 36 * Starts urb and waits for completion or timeout. Note that this call 37 * is NOT interruptible. Many device driver i/o requests should be 38 * interruptible and therefore these drivers should implement their 39 * own interruptible routines. 40 */ 41 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length) 42 { 43 struct api_context ctx; 44 unsigned long expire; 45 int retval; 46 47 init_completion(&ctx.done); 48 urb->context = &ctx; 49 urb->actual_length = 0; 50 retval = usb_submit_urb(urb, GFP_NOIO); 51 if (unlikely(retval)) 52 goto out; 53 54 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT; 55 if (!wait_for_completion_timeout(&ctx.done, expire)) { 56 usb_kill_urb(urb); 57 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status); 58 59 dev_dbg(&urb->dev->dev, 60 "%s timed out on ep%d%s len=%d/%d\n", 61 current->comm, 62 usb_endpoint_num(&urb->ep->desc), 63 usb_urb_dir_in(urb) ? "in" : "out", 64 urb->actual_length, 65 urb->transfer_buffer_length); 66 } else 67 retval = ctx.status; 68 out: 69 if (actual_length) 70 *actual_length = urb->actual_length; 71 72 usb_free_urb(urb); 73 return retval; 74 } 75 76 /*-------------------------------------------------------------------*/ 77 /* returns status (negative) or length (positive) */ 78 static int usb_internal_control_msg(struct usb_device *usb_dev, 79 unsigned int pipe, 80 struct usb_ctrlrequest *cmd, 81 void *data, int len, int timeout) 82 { 83 struct urb *urb; 84 int retv; 85 int length; 86 87 urb = usb_alloc_urb(0, GFP_NOIO); 88 if (!urb) 89 return -ENOMEM; 90 91 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data, 92 len, usb_api_blocking_completion, NULL); 93 94 retv = usb_start_wait_urb(urb, timeout, &length); 95 if (retv < 0) 96 return retv; 97 else 98 return length; 99 } 100 101 /** 102 * usb_control_msg - Builds a control urb, sends it off and waits for completion 103 * @dev: pointer to the usb device to send the message to 104 * @pipe: endpoint "pipe" to send the message to 105 * @request: USB message request value 106 * @requesttype: USB message request type value 107 * @value: USB message value 108 * @index: USB message index value 109 * @data: pointer to the data to send 110 * @size: length in bytes of the data to send 111 * @timeout: time in msecs to wait for the message to complete before timing 112 * out (if 0 the wait is forever) 113 * 114 * Context: !in_interrupt () 115 * 116 * This function sends a simple control message to a specified endpoint and 117 * waits for the message to complete, or timeout. 118 * 119 * If successful, it returns the number of bytes transferred, otherwise a 120 * negative error number. 121 * 122 * Don't use this function from within an interrupt context, like a bottom half 123 * handler. If you need an asynchronous message, or need to send a message 124 * from within interrupt context, use usb_submit_urb(). 125 * If a thread in your driver uses this call, make sure your disconnect() 126 * method can wait for it to complete. Since you don't have a handle on the 127 * URB used, you can't cancel the request. 128 */ 129 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, 130 __u8 requesttype, __u16 value, __u16 index, void *data, 131 __u16 size, int timeout) 132 { 133 struct usb_ctrlrequest *dr; 134 int ret; 135 136 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO); 137 if (!dr) 138 return -ENOMEM; 139 140 dr->bRequestType = requesttype; 141 dr->bRequest = request; 142 dr->wValue = cpu_to_le16p(&value); 143 dr->wIndex = cpu_to_le16p(&index); 144 dr->wLength = cpu_to_le16p(&size); 145 146 /* dbg("usb_control_msg"); */ 147 148 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout); 149 150 kfree(dr); 151 152 return ret; 153 } 154 EXPORT_SYMBOL_GPL(usb_control_msg); 155 156 /** 157 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion 158 * @usb_dev: pointer to the usb device to send the message to 159 * @pipe: endpoint "pipe" to send the message to 160 * @data: pointer to the data to send 161 * @len: length in bytes of the data to send 162 * @actual_length: pointer to a location to put the actual length transferred 163 * in bytes 164 * @timeout: time in msecs to wait for the message to complete before 165 * timing out (if 0 the wait is forever) 166 * 167 * Context: !in_interrupt () 168 * 169 * This function sends a simple interrupt message to a specified endpoint and 170 * waits for the message to complete, or timeout. 171 * 172 * If successful, it returns 0, otherwise a negative error number. The number 173 * of actual bytes transferred will be stored in the actual_length paramater. 174 * 175 * Don't use this function from within an interrupt context, like a bottom half 176 * handler. If you need an asynchronous message, or need to send a message 177 * from within interrupt context, use usb_submit_urb() If a thread in your 178 * driver uses this call, make sure your disconnect() method can wait for it to 179 * complete. Since you don't have a handle on the URB used, you can't cancel 180 * the request. 181 */ 182 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 183 void *data, int len, int *actual_length, int timeout) 184 { 185 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout); 186 } 187 EXPORT_SYMBOL_GPL(usb_interrupt_msg); 188 189 /** 190 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion 191 * @usb_dev: pointer to the usb device to send the message to 192 * @pipe: endpoint "pipe" to send the message to 193 * @data: pointer to the data to send 194 * @len: length in bytes of the data to send 195 * @actual_length: pointer to a location to put the actual length transferred 196 * in bytes 197 * @timeout: time in msecs to wait for the message to complete before 198 * timing out (if 0 the wait is forever) 199 * 200 * Context: !in_interrupt () 201 * 202 * This function sends a simple bulk message to a specified endpoint 203 * and waits for the message to complete, or timeout. 204 * 205 * If successful, it returns 0, otherwise a negative error number. The number 206 * of actual bytes transferred will be stored in the actual_length paramater. 207 * 208 * Don't use this function from within an interrupt context, like a bottom half 209 * handler. If you need an asynchronous message, or need to send a message 210 * from within interrupt context, use usb_submit_urb() If a thread in your 211 * driver uses this call, make sure your disconnect() method can wait for it to 212 * complete. Since you don't have a handle on the URB used, you can't cancel 213 * the request. 214 * 215 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl, 216 * users are forced to abuse this routine by using it to submit URBs for 217 * interrupt endpoints. We will take the liberty of creating an interrupt URB 218 * (with the default interval) if the target is an interrupt endpoint. 219 */ 220 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 221 void *data, int len, int *actual_length, int timeout) 222 { 223 struct urb *urb; 224 struct usb_host_endpoint *ep; 225 226 ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out) 227 [usb_pipeendpoint(pipe)]; 228 if (!ep || len < 0) 229 return -EINVAL; 230 231 urb = usb_alloc_urb(0, GFP_KERNEL); 232 if (!urb) 233 return -ENOMEM; 234 235 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 236 USB_ENDPOINT_XFER_INT) { 237 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30); 238 usb_fill_int_urb(urb, usb_dev, pipe, data, len, 239 usb_api_blocking_completion, NULL, 240 ep->desc.bInterval); 241 } else 242 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len, 243 usb_api_blocking_completion, NULL); 244 245 return usb_start_wait_urb(urb, timeout, actual_length); 246 } 247 EXPORT_SYMBOL_GPL(usb_bulk_msg); 248 249 /*-------------------------------------------------------------------*/ 250 251 static void sg_clean(struct usb_sg_request *io) 252 { 253 if (io->urbs) { 254 while (io->entries--) 255 usb_free_urb(io->urbs [io->entries]); 256 kfree(io->urbs); 257 io->urbs = NULL; 258 } 259 if (io->dev->dev.dma_mask != NULL) 260 usb_buffer_unmap_sg(io->dev, usb_pipein(io->pipe), 261 io->sg, io->nents); 262 io->dev = NULL; 263 } 264 265 static void sg_complete(struct urb *urb) 266 { 267 struct usb_sg_request *io = urb->context; 268 int status = urb->status; 269 270 spin_lock(&io->lock); 271 272 /* In 2.5 we require hcds' endpoint queues not to progress after fault 273 * reports, until the completion callback (this!) returns. That lets 274 * device driver code (like this routine) unlink queued urbs first, 275 * if it needs to, since the HC won't work on them at all. So it's 276 * not possible for page N+1 to overwrite page N, and so on. 277 * 278 * That's only for "hard" faults; "soft" faults (unlinks) sometimes 279 * complete before the HCD can get requests away from hardware, 280 * though never during cleanup after a hard fault. 281 */ 282 if (io->status 283 && (io->status != -ECONNRESET 284 || status != -ECONNRESET) 285 && urb->actual_length) { 286 dev_err(io->dev->bus->controller, 287 "dev %s ep%d%s scatterlist error %d/%d\n", 288 io->dev->devpath, 289 usb_endpoint_num(&urb->ep->desc), 290 usb_urb_dir_in(urb) ? "in" : "out", 291 status, io->status); 292 /* BUG (); */ 293 } 294 295 if (io->status == 0 && status && status != -ECONNRESET) { 296 int i, found, retval; 297 298 io->status = status; 299 300 /* the previous urbs, and this one, completed already. 301 * unlink pending urbs so they won't rx/tx bad data. 302 * careful: unlink can sometimes be synchronous... 303 */ 304 spin_unlock(&io->lock); 305 for (i = 0, found = 0; i < io->entries; i++) { 306 if (!io->urbs [i] || !io->urbs [i]->dev) 307 continue; 308 if (found) { 309 retval = usb_unlink_urb(io->urbs [i]); 310 if (retval != -EINPROGRESS && 311 retval != -ENODEV && 312 retval != -EBUSY) 313 dev_err(&io->dev->dev, 314 "%s, unlink --> %d\n", 315 __func__, retval); 316 } else if (urb == io->urbs [i]) 317 found = 1; 318 } 319 spin_lock(&io->lock); 320 } 321 urb->dev = NULL; 322 323 /* on the last completion, signal usb_sg_wait() */ 324 io->bytes += urb->actual_length; 325 io->count--; 326 if (!io->count) 327 complete(&io->complete); 328 329 spin_unlock(&io->lock); 330 } 331 332 333 /** 334 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request 335 * @io: request block being initialized. until usb_sg_wait() returns, 336 * treat this as a pointer to an opaque block of memory, 337 * @dev: the usb device that will send or receive the data 338 * @pipe: endpoint "pipe" used to transfer the data 339 * @period: polling rate for interrupt endpoints, in frames or 340 * (for high speed endpoints) microframes; ignored for bulk 341 * @sg: scatterlist entries 342 * @nents: how many entries in the scatterlist 343 * @length: how many bytes to send from the scatterlist, or zero to 344 * send every byte identified in the list. 345 * @mem_flags: SLAB_* flags affecting memory allocations in this call 346 * 347 * Returns zero for success, else a negative errno value. This initializes a 348 * scatter/gather request, allocating resources such as I/O mappings and urb 349 * memory (except maybe memory used by USB controller drivers). 350 * 351 * The request must be issued using usb_sg_wait(), which waits for the I/O to 352 * complete (or to be canceled) and then cleans up all resources allocated by 353 * usb_sg_init(). 354 * 355 * The request may be canceled with usb_sg_cancel(), either before or after 356 * usb_sg_wait() is called. 357 */ 358 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev, 359 unsigned pipe, unsigned period, struct scatterlist *sg, 360 int nents, size_t length, gfp_t mem_flags) 361 { 362 int i; 363 int urb_flags; 364 int dma; 365 366 if (!io || !dev || !sg 367 || usb_pipecontrol(pipe) 368 || usb_pipeisoc(pipe) 369 || nents <= 0) 370 return -EINVAL; 371 372 spin_lock_init(&io->lock); 373 io->dev = dev; 374 io->pipe = pipe; 375 io->sg = sg; 376 io->nents = nents; 377 378 /* not all host controllers use DMA (like the mainstream pci ones); 379 * they can use PIO (sl811) or be software over another transport. 380 */ 381 dma = (dev->dev.dma_mask != NULL); 382 if (dma) 383 io->entries = usb_buffer_map_sg(dev, usb_pipein(pipe), 384 sg, nents); 385 else 386 io->entries = nents; 387 388 /* initialize all the urbs we'll use */ 389 if (io->entries <= 0) 390 return io->entries; 391 392 io->count = io->entries; 393 io->urbs = kmalloc(io->entries * sizeof *io->urbs, mem_flags); 394 if (!io->urbs) 395 goto nomem; 396 397 urb_flags = URB_NO_INTERRUPT; 398 if (dma) 399 urb_flags |= URB_NO_TRANSFER_DMA_MAP; 400 if (usb_pipein(pipe)) 401 urb_flags |= URB_SHORT_NOT_OK; 402 403 for_each_sg(sg, sg, io->entries, i) { 404 unsigned len; 405 406 io->urbs[i] = usb_alloc_urb(0, mem_flags); 407 if (!io->urbs[i]) { 408 io->entries = i; 409 goto nomem; 410 } 411 412 io->urbs[i]->dev = NULL; 413 io->urbs[i]->pipe = pipe; 414 io->urbs[i]->interval = period; 415 io->urbs[i]->transfer_flags = urb_flags; 416 417 io->urbs[i]->complete = sg_complete; 418 io->urbs[i]->context = io; 419 420 /* 421 * Some systems need to revert to PIO when DMA is temporarily 422 * unavailable. For their sakes, both transfer_buffer and 423 * transfer_dma are set when possible. However this can only 424 * work on systems without: 425 * 426 * - HIGHMEM, since DMA buffers located in high memory are 427 * not directly addressable by the CPU for PIO; 428 * 429 * - IOMMU, since dma_map_sg() is allowed to use an IOMMU to 430 * make virtually discontiguous buffers be "dma-contiguous" 431 * so that PIO and DMA need diferent numbers of URBs. 432 * 433 * So when HIGHMEM or IOMMU are in use, transfer_buffer is NULL 434 * to prevent stale pointers and to help spot bugs. 435 */ 436 if (dma) { 437 io->urbs[i]->transfer_dma = sg_dma_address(sg); 438 len = sg_dma_len(sg); 439 #if defined(CONFIG_HIGHMEM) || defined(CONFIG_GART_IOMMU) 440 io->urbs[i]->transfer_buffer = NULL; 441 #else 442 io->urbs[i]->transfer_buffer = sg_virt(sg); 443 #endif 444 } else { 445 /* hc may use _only_ transfer_buffer */ 446 io->urbs[i]->transfer_buffer = sg_virt(sg); 447 len = sg->length; 448 } 449 450 if (length) { 451 len = min_t(unsigned, len, length); 452 length -= len; 453 if (length == 0) 454 io->entries = i + 1; 455 } 456 io->urbs[i]->transfer_buffer_length = len; 457 } 458 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT; 459 460 /* transaction state */ 461 io->status = 0; 462 io->bytes = 0; 463 init_completion(&io->complete); 464 return 0; 465 466 nomem: 467 sg_clean(io); 468 return -ENOMEM; 469 } 470 EXPORT_SYMBOL_GPL(usb_sg_init); 471 472 /** 473 * usb_sg_wait - synchronously execute scatter/gather request 474 * @io: request block handle, as initialized with usb_sg_init(). 475 * some fields become accessible when this call returns. 476 * Context: !in_interrupt () 477 * 478 * This function blocks until the specified I/O operation completes. It 479 * leverages the grouping of the related I/O requests to get good transfer 480 * rates, by queueing the requests. At higher speeds, such queuing can 481 * significantly improve USB throughput. 482 * 483 * There are three kinds of completion for this function. 484 * (1) success, where io->status is zero. The number of io->bytes 485 * transferred is as requested. 486 * (2) error, where io->status is a negative errno value. The number 487 * of io->bytes transferred before the error is usually less 488 * than requested, and can be nonzero. 489 * (3) cancellation, a type of error with status -ECONNRESET that 490 * is initiated by usb_sg_cancel(). 491 * 492 * When this function returns, all memory allocated through usb_sg_init() or 493 * this call will have been freed. The request block parameter may still be 494 * passed to usb_sg_cancel(), or it may be freed. It could also be 495 * reinitialized and then reused. 496 * 497 * Data Transfer Rates: 498 * 499 * Bulk transfers are valid for full or high speed endpoints. 500 * The best full speed data rate is 19 packets of 64 bytes each 501 * per frame, or 1216 bytes per millisecond. 502 * The best high speed data rate is 13 packets of 512 bytes each 503 * per microframe, or 52 KBytes per millisecond. 504 * 505 * The reason to use interrupt transfers through this API would most likely 506 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond 507 * could be transferred. That capability is less useful for low or full 508 * speed interrupt endpoints, which allow at most one packet per millisecond, 509 * of at most 8 or 64 bytes (respectively). 510 */ 511 void usb_sg_wait(struct usb_sg_request *io) 512 { 513 int i; 514 int entries = io->entries; 515 516 /* queue the urbs. */ 517 spin_lock_irq(&io->lock); 518 i = 0; 519 while (i < entries && !io->status) { 520 int retval; 521 522 io->urbs[i]->dev = io->dev; 523 retval = usb_submit_urb(io->urbs [i], GFP_ATOMIC); 524 525 /* after we submit, let completions or cancelations fire; 526 * we handshake using io->status. 527 */ 528 spin_unlock_irq(&io->lock); 529 switch (retval) { 530 /* maybe we retrying will recover */ 531 case -ENXIO: /* hc didn't queue this one */ 532 case -EAGAIN: 533 case -ENOMEM: 534 io->urbs[i]->dev = NULL; 535 retval = 0; 536 yield(); 537 break; 538 539 /* no error? continue immediately. 540 * 541 * NOTE: to work better with UHCI (4K I/O buffer may 542 * need 3K of TDs) it may be good to limit how many 543 * URBs are queued at once; N milliseconds? 544 */ 545 case 0: 546 ++i; 547 cpu_relax(); 548 break; 549 550 /* fail any uncompleted urbs */ 551 default: 552 io->urbs[i]->dev = NULL; 553 io->urbs[i]->status = retval; 554 dev_dbg(&io->dev->dev, "%s, submit --> %d\n", 555 __func__, retval); 556 usb_sg_cancel(io); 557 } 558 spin_lock_irq(&io->lock); 559 if (retval && (io->status == 0 || io->status == -ECONNRESET)) 560 io->status = retval; 561 } 562 io->count -= entries - i; 563 if (io->count == 0) 564 complete(&io->complete); 565 spin_unlock_irq(&io->lock); 566 567 /* OK, yes, this could be packaged as non-blocking. 568 * So could the submit loop above ... but it's easier to 569 * solve neither problem than to solve both! 570 */ 571 wait_for_completion(&io->complete); 572 573 sg_clean(io); 574 } 575 EXPORT_SYMBOL_GPL(usb_sg_wait); 576 577 /** 578 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait() 579 * @io: request block, initialized with usb_sg_init() 580 * 581 * This stops a request after it has been started by usb_sg_wait(). 582 * It can also prevents one initialized by usb_sg_init() from starting, 583 * so that call just frees resources allocated to the request. 584 */ 585 void usb_sg_cancel(struct usb_sg_request *io) 586 { 587 unsigned long flags; 588 589 spin_lock_irqsave(&io->lock, flags); 590 591 /* shut everything down, if it didn't already */ 592 if (!io->status) { 593 int i; 594 595 io->status = -ECONNRESET; 596 spin_unlock(&io->lock); 597 for (i = 0; i < io->entries; i++) { 598 int retval; 599 600 if (!io->urbs [i]->dev) 601 continue; 602 retval = usb_unlink_urb(io->urbs [i]); 603 if (retval != -EINPROGRESS && retval != -EBUSY) 604 dev_warn(&io->dev->dev, "%s, unlink --> %d\n", 605 __func__, retval); 606 } 607 spin_lock(&io->lock); 608 } 609 spin_unlock_irqrestore(&io->lock, flags); 610 } 611 EXPORT_SYMBOL_GPL(usb_sg_cancel); 612 613 /*-------------------------------------------------------------------*/ 614 615 /** 616 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request 617 * @dev: the device whose descriptor is being retrieved 618 * @type: the descriptor type (USB_DT_*) 619 * @index: the number of the descriptor 620 * @buf: where to put the descriptor 621 * @size: how big is "buf"? 622 * Context: !in_interrupt () 623 * 624 * Gets a USB descriptor. Convenience functions exist to simplify 625 * getting some types of descriptors. Use 626 * usb_get_string() or usb_string() for USB_DT_STRING. 627 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG) 628 * are part of the device structure. 629 * In addition to a number of USB-standard descriptors, some 630 * devices also use class-specific or vendor-specific descriptors. 631 * 632 * This call is synchronous, and may not be used in an interrupt context. 633 * 634 * Returns the number of bytes received on success, or else the status code 635 * returned by the underlying usb_control_msg() call. 636 */ 637 int usb_get_descriptor(struct usb_device *dev, unsigned char type, 638 unsigned char index, void *buf, int size) 639 { 640 int i; 641 int result; 642 643 memset(buf, 0, size); /* Make sure we parse really received data */ 644 645 for (i = 0; i < 3; ++i) { 646 /* retry on length 0 or error; some devices are flakey */ 647 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 648 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 649 (type << 8) + index, 0, buf, size, 650 USB_CTRL_GET_TIMEOUT); 651 if (result <= 0 && result != -ETIMEDOUT) 652 continue; 653 if (result > 1 && ((u8 *)buf)[1] != type) { 654 result = -EPROTO; 655 continue; 656 } 657 break; 658 } 659 return result; 660 } 661 EXPORT_SYMBOL_GPL(usb_get_descriptor); 662 663 /** 664 * usb_get_string - gets a string descriptor 665 * @dev: the device whose string descriptor is being retrieved 666 * @langid: code for language chosen (from string descriptor zero) 667 * @index: the number of the descriptor 668 * @buf: where to put the string 669 * @size: how big is "buf"? 670 * Context: !in_interrupt () 671 * 672 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character, 673 * in little-endian byte order). 674 * The usb_string() function will often be a convenient way to turn 675 * these strings into kernel-printable form. 676 * 677 * Strings may be referenced in device, configuration, interface, or other 678 * descriptors, and could also be used in vendor-specific ways. 679 * 680 * This call is synchronous, and may not be used in an interrupt context. 681 * 682 * Returns the number of bytes received on success, or else the status code 683 * returned by the underlying usb_control_msg() call. 684 */ 685 static int usb_get_string(struct usb_device *dev, unsigned short langid, 686 unsigned char index, void *buf, int size) 687 { 688 int i; 689 int result; 690 691 for (i = 0; i < 3; ++i) { 692 /* retry on length 0 or stall; some devices are flakey */ 693 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 694 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 695 (USB_DT_STRING << 8) + index, langid, buf, size, 696 USB_CTRL_GET_TIMEOUT); 697 if (!(result == 0 || result == -EPIPE)) 698 break; 699 } 700 return result; 701 } 702 703 static void usb_try_string_workarounds(unsigned char *buf, int *length) 704 { 705 int newlength, oldlength = *length; 706 707 for (newlength = 2; newlength + 1 < oldlength; newlength += 2) 708 if (!isprint(buf[newlength]) || buf[newlength + 1]) 709 break; 710 711 if (newlength > 2) { 712 buf[0] = newlength; 713 *length = newlength; 714 } 715 } 716 717 static int usb_string_sub(struct usb_device *dev, unsigned int langid, 718 unsigned int index, unsigned char *buf) 719 { 720 int rc; 721 722 /* Try to read the string descriptor by asking for the maximum 723 * possible number of bytes */ 724 if (dev->quirks & USB_QUIRK_STRING_FETCH_255) 725 rc = -EIO; 726 else 727 rc = usb_get_string(dev, langid, index, buf, 255); 728 729 /* If that failed try to read the descriptor length, then 730 * ask for just that many bytes */ 731 if (rc < 2) { 732 rc = usb_get_string(dev, langid, index, buf, 2); 733 if (rc == 2) 734 rc = usb_get_string(dev, langid, index, buf, buf[0]); 735 } 736 737 if (rc >= 2) { 738 if (!buf[0] && !buf[1]) 739 usb_try_string_workarounds(buf, &rc); 740 741 /* There might be extra junk at the end of the descriptor */ 742 if (buf[0] < rc) 743 rc = buf[0]; 744 745 rc = rc - (rc & 1); /* force a multiple of two */ 746 } 747 748 if (rc < 2) 749 rc = (rc < 0 ? rc : -EINVAL); 750 751 return rc; 752 } 753 754 /** 755 * usb_string - returns ISO 8859-1 version of a string descriptor 756 * @dev: the device whose string descriptor is being retrieved 757 * @index: the number of the descriptor 758 * @buf: where to put the string 759 * @size: how big is "buf"? 760 * Context: !in_interrupt () 761 * 762 * This converts the UTF-16LE encoded strings returned by devices, from 763 * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones 764 * that are more usable in most kernel contexts. Note that all characters 765 * in the chosen descriptor that can't be encoded using ISO-8859-1 766 * are converted to the question mark ("?") character, and this function 767 * chooses strings in the first language supported by the device. 768 * 769 * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit 770 * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode, 771 * and is appropriate for use many uses of English and several other 772 * Western European languages. (But it doesn't include the "Euro" symbol.) 773 * 774 * This call is synchronous, and may not be used in an interrupt context. 775 * 776 * Returns length of the string (>= 0) or usb_control_msg status (< 0). 777 */ 778 int usb_string(struct usb_device *dev, int index, char *buf, size_t size) 779 { 780 unsigned char *tbuf; 781 int err; 782 unsigned int u, idx; 783 784 if (dev->state == USB_STATE_SUSPENDED) 785 return -EHOSTUNREACH; 786 if (size <= 0 || !buf || !index) 787 return -EINVAL; 788 buf[0] = 0; 789 tbuf = kmalloc(256, GFP_NOIO); 790 if (!tbuf) 791 return -ENOMEM; 792 793 /* get langid for strings if it's not yet known */ 794 if (!dev->have_langid) { 795 err = usb_string_sub(dev, 0, 0, tbuf); 796 if (err < 0) { 797 dev_err(&dev->dev, 798 "string descriptor 0 read error: %d\n", 799 err); 800 goto errout; 801 } else if (err < 4) { 802 dev_err(&dev->dev, "string descriptor 0 too short\n"); 803 err = -EINVAL; 804 goto errout; 805 } else { 806 dev->have_langid = 1; 807 dev->string_langid = tbuf[2] | (tbuf[3] << 8); 808 /* always use the first langid listed */ 809 dev_dbg(&dev->dev, "default language 0x%04x\n", 810 dev->string_langid); 811 } 812 } 813 814 err = usb_string_sub(dev, dev->string_langid, index, tbuf); 815 if (err < 0) 816 goto errout; 817 818 size--; /* leave room for trailing NULL char in output buffer */ 819 for (idx = 0, u = 2; u < err; u += 2) { 820 if (idx >= size) 821 break; 822 if (tbuf[u+1]) /* high byte */ 823 buf[idx++] = '?'; /* non ISO-8859-1 character */ 824 else 825 buf[idx++] = tbuf[u]; 826 } 827 buf[idx] = 0; 828 err = idx; 829 830 if (tbuf[1] != USB_DT_STRING) 831 dev_dbg(&dev->dev, 832 "wrong descriptor type %02x for string %d (\"%s\")\n", 833 tbuf[1], index, buf); 834 835 errout: 836 kfree(tbuf); 837 return err; 838 } 839 EXPORT_SYMBOL_GPL(usb_string); 840 841 /** 842 * usb_cache_string - read a string descriptor and cache it for later use 843 * @udev: the device whose string descriptor is being read 844 * @index: the descriptor index 845 * 846 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string, 847 * or NULL if the index is 0 or the string could not be read. 848 */ 849 char *usb_cache_string(struct usb_device *udev, int index) 850 { 851 char *buf; 852 char *smallbuf = NULL; 853 int len; 854 855 if (index <= 0) 856 return NULL; 857 858 buf = kmalloc(256, GFP_KERNEL); 859 if (buf) { 860 len = usb_string(udev, index, buf, 256); 861 if (len > 0) { 862 smallbuf = kmalloc(++len, GFP_KERNEL); 863 if (!smallbuf) 864 return buf; 865 memcpy(smallbuf, buf, len); 866 } 867 kfree(buf); 868 } 869 return smallbuf; 870 } 871 872 /* 873 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore) 874 * @dev: the device whose device descriptor is being updated 875 * @size: how much of the descriptor to read 876 * Context: !in_interrupt () 877 * 878 * Updates the copy of the device descriptor stored in the device structure, 879 * which dedicates space for this purpose. 880 * 881 * Not exported, only for use by the core. If drivers really want to read 882 * the device descriptor directly, they can call usb_get_descriptor() with 883 * type = USB_DT_DEVICE and index = 0. 884 * 885 * This call is synchronous, and may not be used in an interrupt context. 886 * 887 * Returns the number of bytes received on success, or else the status code 888 * returned by the underlying usb_control_msg() call. 889 */ 890 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size) 891 { 892 struct usb_device_descriptor *desc; 893 int ret; 894 895 if (size > sizeof(*desc)) 896 return -EINVAL; 897 desc = kmalloc(sizeof(*desc), GFP_NOIO); 898 if (!desc) 899 return -ENOMEM; 900 901 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size); 902 if (ret >= 0) 903 memcpy(&dev->descriptor, desc, size); 904 kfree(desc); 905 return ret; 906 } 907 908 /** 909 * usb_get_status - issues a GET_STATUS call 910 * @dev: the device whose status is being checked 911 * @type: USB_RECIP_*; for device, interface, or endpoint 912 * @target: zero (for device), else interface or endpoint number 913 * @data: pointer to two bytes of bitmap data 914 * Context: !in_interrupt () 915 * 916 * Returns device, interface, or endpoint status. Normally only of 917 * interest to see if the device is self powered, or has enabled the 918 * remote wakeup facility; or whether a bulk or interrupt endpoint 919 * is halted ("stalled"). 920 * 921 * Bits in these status bitmaps are set using the SET_FEATURE request, 922 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt() 923 * function should be used to clear halt ("stall") status. 924 * 925 * This call is synchronous, and may not be used in an interrupt context. 926 * 927 * Returns the number of bytes received on success, or else the status code 928 * returned by the underlying usb_control_msg() call. 929 */ 930 int usb_get_status(struct usb_device *dev, int type, int target, void *data) 931 { 932 int ret; 933 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL); 934 935 if (!status) 936 return -ENOMEM; 937 938 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 939 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status, 940 sizeof(*status), USB_CTRL_GET_TIMEOUT); 941 942 *(u16 *)data = *status; 943 kfree(status); 944 return ret; 945 } 946 EXPORT_SYMBOL_GPL(usb_get_status); 947 948 /** 949 * usb_clear_halt - tells device to clear endpoint halt/stall condition 950 * @dev: device whose endpoint is halted 951 * @pipe: endpoint "pipe" being cleared 952 * Context: !in_interrupt () 953 * 954 * This is used to clear halt conditions for bulk and interrupt endpoints, 955 * as reported by URB completion status. Endpoints that are halted are 956 * sometimes referred to as being "stalled". Such endpoints are unable 957 * to transmit or receive data until the halt status is cleared. Any URBs 958 * queued for such an endpoint should normally be unlinked by the driver 959 * before clearing the halt condition, as described in sections 5.7.5 960 * and 5.8.5 of the USB 2.0 spec. 961 * 962 * Note that control and isochronous endpoints don't halt, although control 963 * endpoints report "protocol stall" (for unsupported requests) using the 964 * same status code used to report a true stall. 965 * 966 * This call is synchronous, and may not be used in an interrupt context. 967 * 968 * Returns zero on success, or else the status code returned by the 969 * underlying usb_control_msg() call. 970 */ 971 int usb_clear_halt(struct usb_device *dev, int pipe) 972 { 973 int result; 974 int endp = usb_pipeendpoint(pipe); 975 976 if (usb_pipein(pipe)) 977 endp |= USB_DIR_IN; 978 979 /* we don't care if it wasn't halted first. in fact some devices 980 * (like some ibmcam model 1 units) seem to expect hosts to make 981 * this request for iso endpoints, which can't halt! 982 */ 983 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 984 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 985 USB_ENDPOINT_HALT, endp, NULL, 0, 986 USB_CTRL_SET_TIMEOUT); 987 988 /* don't un-halt or force to DATA0 except on success */ 989 if (result < 0) 990 return result; 991 992 /* NOTE: seems like Microsoft and Apple don't bother verifying 993 * the clear "took", so some devices could lock up if you check... 994 * such as the Hagiwara FlashGate DUAL. So we won't bother. 995 * 996 * NOTE: make sure the logic here doesn't diverge much from 997 * the copy in usb-storage, for as long as we need two copies. 998 */ 999 1000 /* toggle was reset by the clear */ 1001 usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0); 1002 1003 return 0; 1004 } 1005 EXPORT_SYMBOL_GPL(usb_clear_halt); 1006 1007 /** 1008 * usb_disable_endpoint -- Disable an endpoint by address 1009 * @dev: the device whose endpoint is being disabled 1010 * @epaddr: the endpoint's address. Endpoint number for output, 1011 * endpoint number + USB_DIR_IN for input 1012 * 1013 * Deallocates hcd/hardware state for this endpoint ... and nukes all 1014 * pending urbs. 1015 * 1016 * If the HCD hasn't registered a disable() function, this sets the 1017 * endpoint's maxpacket size to 0 to prevent further submissions. 1018 */ 1019 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr) 1020 { 1021 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1022 struct usb_host_endpoint *ep; 1023 1024 if (!dev) 1025 return; 1026 1027 if (usb_endpoint_out(epaddr)) { 1028 ep = dev->ep_out[epnum]; 1029 dev->ep_out[epnum] = NULL; 1030 } else { 1031 ep = dev->ep_in[epnum]; 1032 dev->ep_in[epnum] = NULL; 1033 } 1034 if (ep) { 1035 ep->enabled = 0; 1036 usb_hcd_flush_endpoint(dev, ep); 1037 usb_hcd_disable_endpoint(dev, ep); 1038 } 1039 } 1040 1041 /** 1042 * usb_disable_interface -- Disable all endpoints for an interface 1043 * @dev: the device whose interface is being disabled 1044 * @intf: pointer to the interface descriptor 1045 * 1046 * Disables all the endpoints for the interface's current altsetting. 1047 */ 1048 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf) 1049 { 1050 struct usb_host_interface *alt = intf->cur_altsetting; 1051 int i; 1052 1053 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 1054 usb_disable_endpoint(dev, 1055 alt->endpoint[i].desc.bEndpointAddress); 1056 } 1057 } 1058 1059 /** 1060 * usb_disable_device - Disable all the endpoints for a USB device 1061 * @dev: the device whose endpoints are being disabled 1062 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. 1063 * 1064 * Disables all the device's endpoints, potentially including endpoint 0. 1065 * Deallocates hcd/hardware state for the endpoints (nuking all or most 1066 * pending urbs) and usbcore state for the interfaces, so that usbcore 1067 * must usb_set_configuration() before any interfaces could be used. 1068 */ 1069 void usb_disable_device(struct usb_device *dev, int skip_ep0) 1070 { 1071 int i; 1072 1073 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__, 1074 skip_ep0 ? "non-ep0" : "all"); 1075 for (i = skip_ep0; i < 16; ++i) { 1076 usb_disable_endpoint(dev, i); 1077 usb_disable_endpoint(dev, i + USB_DIR_IN); 1078 } 1079 dev->toggle[0] = dev->toggle[1] = 0; 1080 1081 /* getting rid of interfaces will disconnect 1082 * any drivers bound to them (a key side effect) 1083 */ 1084 if (dev->actconfig) { 1085 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1086 struct usb_interface *interface; 1087 1088 /* remove this interface if it has been registered */ 1089 interface = dev->actconfig->interface[i]; 1090 if (!device_is_registered(&interface->dev)) 1091 continue; 1092 dev_dbg(&dev->dev, "unregistering interface %s\n", 1093 dev_name(&interface->dev)); 1094 device_del(&interface->dev); 1095 usb_remove_sysfs_intf_files(interface); 1096 } 1097 1098 /* Now that the interfaces are unbound, nobody should 1099 * try to access them. 1100 */ 1101 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1102 put_device(&dev->actconfig->interface[i]->dev); 1103 dev->actconfig->interface[i] = NULL; 1104 } 1105 dev->actconfig = NULL; 1106 if (dev->state == USB_STATE_CONFIGURED) 1107 usb_set_device_state(dev, USB_STATE_ADDRESS); 1108 } 1109 } 1110 1111 /** 1112 * usb_enable_endpoint - Enable an endpoint for USB communications 1113 * @dev: the device whose interface is being enabled 1114 * @ep: the endpoint 1115 * 1116 * Resets the endpoint toggle, and sets dev->ep_{in,out} pointers. 1117 * For control endpoints, both the input and output sides are handled. 1118 */ 1119 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep) 1120 { 1121 int epnum = usb_endpoint_num(&ep->desc); 1122 int is_out = usb_endpoint_dir_out(&ep->desc); 1123 int is_control = usb_endpoint_xfer_control(&ep->desc); 1124 1125 if (is_out || is_control) { 1126 usb_settoggle(dev, epnum, 1, 0); 1127 dev->ep_out[epnum] = ep; 1128 } 1129 if (!is_out || is_control) { 1130 usb_settoggle(dev, epnum, 0, 0); 1131 dev->ep_in[epnum] = ep; 1132 } 1133 ep->enabled = 1; 1134 } 1135 1136 /** 1137 * usb_enable_interface - Enable all the endpoints for an interface 1138 * @dev: the device whose interface is being enabled 1139 * @intf: pointer to the interface descriptor 1140 * 1141 * Enables all the endpoints for the interface's current altsetting. 1142 */ 1143 static void usb_enable_interface(struct usb_device *dev, 1144 struct usb_interface *intf) 1145 { 1146 struct usb_host_interface *alt = intf->cur_altsetting; 1147 int i; 1148 1149 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1150 usb_enable_endpoint(dev, &alt->endpoint[i]); 1151 } 1152 1153 /** 1154 * usb_set_interface - Makes a particular alternate setting be current 1155 * @dev: the device whose interface is being updated 1156 * @interface: the interface being updated 1157 * @alternate: the setting being chosen. 1158 * Context: !in_interrupt () 1159 * 1160 * This is used to enable data transfers on interfaces that may not 1161 * be enabled by default. Not all devices support such configurability. 1162 * Only the driver bound to an interface may change its setting. 1163 * 1164 * Within any given configuration, each interface may have several 1165 * alternative settings. These are often used to control levels of 1166 * bandwidth consumption. For example, the default setting for a high 1167 * speed interrupt endpoint may not send more than 64 bytes per microframe, 1168 * while interrupt transfers of up to 3KBytes per microframe are legal. 1169 * Also, isochronous endpoints may never be part of an 1170 * interface's default setting. To access such bandwidth, alternate 1171 * interface settings must be made current. 1172 * 1173 * Note that in the Linux USB subsystem, bandwidth associated with 1174 * an endpoint in a given alternate setting is not reserved until an URB 1175 * is submitted that needs that bandwidth. Some other operating systems 1176 * allocate bandwidth early, when a configuration is chosen. 1177 * 1178 * This call is synchronous, and may not be used in an interrupt context. 1179 * Also, drivers must not change altsettings while urbs are scheduled for 1180 * endpoints in that interface; all such urbs must first be completed 1181 * (perhaps forced by unlinking). 1182 * 1183 * Returns zero on success, or else the status code returned by the 1184 * underlying usb_control_msg() call. 1185 */ 1186 int usb_set_interface(struct usb_device *dev, int interface, int alternate) 1187 { 1188 struct usb_interface *iface; 1189 struct usb_host_interface *alt; 1190 int ret; 1191 int manual = 0; 1192 unsigned int epaddr; 1193 unsigned int pipe; 1194 1195 if (dev->state == USB_STATE_SUSPENDED) 1196 return -EHOSTUNREACH; 1197 1198 iface = usb_ifnum_to_if(dev, interface); 1199 if (!iface) { 1200 dev_dbg(&dev->dev, "selecting invalid interface %d\n", 1201 interface); 1202 return -EINVAL; 1203 } 1204 1205 alt = usb_altnum_to_altsetting(iface, alternate); 1206 if (!alt) { 1207 warn("selecting invalid altsetting %d", alternate); 1208 return -EINVAL; 1209 } 1210 1211 if (dev->quirks & USB_QUIRK_NO_SET_INTF) 1212 ret = -EPIPE; 1213 else 1214 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1215 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE, 1216 alternate, interface, NULL, 0, 5000); 1217 1218 /* 9.4.10 says devices don't need this and are free to STALL the 1219 * request if the interface only has one alternate setting. 1220 */ 1221 if (ret == -EPIPE && iface->num_altsetting == 1) { 1222 dev_dbg(&dev->dev, 1223 "manual set_interface for iface %d, alt %d\n", 1224 interface, alternate); 1225 manual = 1; 1226 } else if (ret < 0) 1227 return ret; 1228 1229 /* FIXME drivers shouldn't need to replicate/bugfix the logic here 1230 * when they implement async or easily-killable versions of this or 1231 * other "should-be-internal" functions (like clear_halt). 1232 * should hcd+usbcore postprocess control requests? 1233 */ 1234 1235 /* prevent submissions using previous endpoint settings */ 1236 if (iface->cur_altsetting != alt) 1237 usb_remove_sysfs_intf_files(iface); 1238 usb_disable_interface(dev, iface); 1239 1240 iface->cur_altsetting = alt; 1241 1242 /* If the interface only has one altsetting and the device didn't 1243 * accept the request, we attempt to carry out the equivalent action 1244 * by manually clearing the HALT feature for each endpoint in the 1245 * new altsetting. 1246 */ 1247 if (manual) { 1248 int i; 1249 1250 for (i = 0; i < alt->desc.bNumEndpoints; i++) { 1251 epaddr = alt->endpoint[i].desc.bEndpointAddress; 1252 pipe = __create_pipe(dev, 1253 USB_ENDPOINT_NUMBER_MASK & epaddr) | 1254 (usb_endpoint_out(epaddr) ? 1255 USB_DIR_OUT : USB_DIR_IN); 1256 1257 usb_clear_halt(dev, pipe); 1258 } 1259 } 1260 1261 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting 1262 * 1263 * Note: 1264 * Despite EP0 is always present in all interfaces/AS, the list of 1265 * endpoints from the descriptor does not contain EP0. Due to its 1266 * omnipresence one might expect EP0 being considered "affected" by 1267 * any SetInterface request and hence assume toggles need to be reset. 1268 * However, EP0 toggles are re-synced for every individual transfer 1269 * during the SETUP stage - hence EP0 toggles are "don't care" here. 1270 * (Likewise, EP0 never "halts" on well designed devices.) 1271 */ 1272 usb_enable_interface(dev, iface); 1273 if (device_is_registered(&iface->dev)) 1274 usb_create_sysfs_intf_files(iface); 1275 1276 return 0; 1277 } 1278 EXPORT_SYMBOL_GPL(usb_set_interface); 1279 1280 /** 1281 * usb_reset_configuration - lightweight device reset 1282 * @dev: the device whose configuration is being reset 1283 * 1284 * This issues a standard SET_CONFIGURATION request to the device using 1285 * the current configuration. The effect is to reset most USB-related 1286 * state in the device, including interface altsettings (reset to zero), 1287 * endpoint halts (cleared), and data toggle (only for bulk and interrupt 1288 * endpoints). Other usbcore state is unchanged, including bindings of 1289 * usb device drivers to interfaces. 1290 * 1291 * Because this affects multiple interfaces, avoid using this with composite 1292 * (multi-interface) devices. Instead, the driver for each interface may 1293 * use usb_set_interface() on the interfaces it claims. Be careful though; 1294 * some devices don't support the SET_INTERFACE request, and others won't 1295 * reset all the interface state (notably data toggles). Resetting the whole 1296 * configuration would affect other drivers' interfaces. 1297 * 1298 * The caller must own the device lock. 1299 * 1300 * Returns zero on success, else a negative error code. 1301 */ 1302 int usb_reset_configuration(struct usb_device *dev) 1303 { 1304 int i, retval; 1305 struct usb_host_config *config; 1306 1307 if (dev->state == USB_STATE_SUSPENDED) 1308 return -EHOSTUNREACH; 1309 1310 /* caller must have locked the device and must own 1311 * the usb bus readlock (so driver bindings are stable); 1312 * calls during probe() are fine 1313 */ 1314 1315 for (i = 1; i < 16; ++i) { 1316 usb_disable_endpoint(dev, i); 1317 usb_disable_endpoint(dev, i + USB_DIR_IN); 1318 } 1319 1320 config = dev->actconfig; 1321 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1322 USB_REQ_SET_CONFIGURATION, 0, 1323 config->desc.bConfigurationValue, 0, 1324 NULL, 0, USB_CTRL_SET_TIMEOUT); 1325 if (retval < 0) 1326 return retval; 1327 1328 dev->toggle[0] = dev->toggle[1] = 0; 1329 1330 /* re-init hc/hcd interface/endpoint state */ 1331 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1332 struct usb_interface *intf = config->interface[i]; 1333 struct usb_host_interface *alt; 1334 1335 usb_remove_sysfs_intf_files(intf); 1336 alt = usb_altnum_to_altsetting(intf, 0); 1337 1338 /* No altsetting 0? We'll assume the first altsetting. 1339 * We could use a GetInterface call, but if a device is 1340 * so non-compliant that it doesn't have altsetting 0 1341 * then I wouldn't trust its reply anyway. 1342 */ 1343 if (!alt) 1344 alt = &intf->altsetting[0]; 1345 1346 intf->cur_altsetting = alt; 1347 usb_enable_interface(dev, intf); 1348 if (device_is_registered(&intf->dev)) 1349 usb_create_sysfs_intf_files(intf); 1350 } 1351 return 0; 1352 } 1353 EXPORT_SYMBOL_GPL(usb_reset_configuration); 1354 1355 static void usb_release_interface(struct device *dev) 1356 { 1357 struct usb_interface *intf = to_usb_interface(dev); 1358 struct usb_interface_cache *intfc = 1359 altsetting_to_usb_interface_cache(intf->altsetting); 1360 1361 kref_put(&intfc->ref, usb_release_interface_cache); 1362 kfree(intf); 1363 } 1364 1365 #ifdef CONFIG_HOTPLUG 1366 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env) 1367 { 1368 struct usb_device *usb_dev; 1369 struct usb_interface *intf; 1370 struct usb_host_interface *alt; 1371 1372 intf = to_usb_interface(dev); 1373 usb_dev = interface_to_usbdev(intf); 1374 alt = intf->cur_altsetting; 1375 1376 if (add_uevent_var(env, "INTERFACE=%d/%d/%d", 1377 alt->desc.bInterfaceClass, 1378 alt->desc.bInterfaceSubClass, 1379 alt->desc.bInterfaceProtocol)) 1380 return -ENOMEM; 1381 1382 if (add_uevent_var(env, 1383 "MODALIAS=usb:" 1384 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X", 1385 le16_to_cpu(usb_dev->descriptor.idVendor), 1386 le16_to_cpu(usb_dev->descriptor.idProduct), 1387 le16_to_cpu(usb_dev->descriptor.bcdDevice), 1388 usb_dev->descriptor.bDeviceClass, 1389 usb_dev->descriptor.bDeviceSubClass, 1390 usb_dev->descriptor.bDeviceProtocol, 1391 alt->desc.bInterfaceClass, 1392 alt->desc.bInterfaceSubClass, 1393 alt->desc.bInterfaceProtocol)) 1394 return -ENOMEM; 1395 1396 return 0; 1397 } 1398 1399 #else 1400 1401 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env) 1402 { 1403 return -ENODEV; 1404 } 1405 #endif /* CONFIG_HOTPLUG */ 1406 1407 struct device_type usb_if_device_type = { 1408 .name = "usb_interface", 1409 .release = usb_release_interface, 1410 .uevent = usb_if_uevent, 1411 }; 1412 1413 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev, 1414 struct usb_host_config *config, 1415 u8 inum) 1416 { 1417 struct usb_interface_assoc_descriptor *retval = NULL; 1418 struct usb_interface_assoc_descriptor *intf_assoc; 1419 int first_intf; 1420 int last_intf; 1421 int i; 1422 1423 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) { 1424 intf_assoc = config->intf_assoc[i]; 1425 if (intf_assoc->bInterfaceCount == 0) 1426 continue; 1427 1428 first_intf = intf_assoc->bFirstInterface; 1429 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1); 1430 if (inum >= first_intf && inum <= last_intf) { 1431 if (!retval) 1432 retval = intf_assoc; 1433 else 1434 dev_err(&dev->dev, "Interface #%d referenced" 1435 " by multiple IADs\n", inum); 1436 } 1437 } 1438 1439 return retval; 1440 } 1441 1442 /* 1443 * usb_set_configuration - Makes a particular device setting be current 1444 * @dev: the device whose configuration is being updated 1445 * @configuration: the configuration being chosen. 1446 * Context: !in_interrupt(), caller owns the device lock 1447 * 1448 * This is used to enable non-default device modes. Not all devices 1449 * use this kind of configurability; many devices only have one 1450 * configuration. 1451 * 1452 * @configuration is the value of the configuration to be installed. 1453 * According to the USB spec (e.g. section 9.1.1.5), configuration values 1454 * must be non-zero; a value of zero indicates that the device in 1455 * unconfigured. However some devices erroneously use 0 as one of their 1456 * configuration values. To help manage such devices, this routine will 1457 * accept @configuration = -1 as indicating the device should be put in 1458 * an unconfigured state. 1459 * 1460 * USB device configurations may affect Linux interoperability, 1461 * power consumption and the functionality available. For example, 1462 * the default configuration is limited to using 100mA of bus power, 1463 * so that when certain device functionality requires more power, 1464 * and the device is bus powered, that functionality should be in some 1465 * non-default device configuration. Other device modes may also be 1466 * reflected as configuration options, such as whether two ISDN 1467 * channels are available independently; and choosing between open 1468 * standard device protocols (like CDC) or proprietary ones. 1469 * 1470 * Note that a non-authorized device (dev->authorized == 0) will only 1471 * be put in unconfigured mode. 1472 * 1473 * Note that USB has an additional level of device configurability, 1474 * associated with interfaces. That configurability is accessed using 1475 * usb_set_interface(). 1476 * 1477 * This call is synchronous. The calling context must be able to sleep, 1478 * must own the device lock, and must not hold the driver model's USB 1479 * bus mutex; usb interface driver probe() methods cannot use this routine. 1480 * 1481 * Returns zero on success, or else the status code returned by the 1482 * underlying call that failed. On successful completion, each interface 1483 * in the original device configuration has been destroyed, and each one 1484 * in the new configuration has been probed by all relevant usb device 1485 * drivers currently known to the kernel. 1486 */ 1487 int usb_set_configuration(struct usb_device *dev, int configuration) 1488 { 1489 int i, ret; 1490 struct usb_host_config *cp = NULL; 1491 struct usb_interface **new_interfaces = NULL; 1492 int n, nintf; 1493 1494 if (dev->authorized == 0 || configuration == -1) 1495 configuration = 0; 1496 else { 1497 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) { 1498 if (dev->config[i].desc.bConfigurationValue == 1499 configuration) { 1500 cp = &dev->config[i]; 1501 break; 1502 } 1503 } 1504 } 1505 if ((!cp && configuration != 0)) 1506 return -EINVAL; 1507 1508 /* The USB spec says configuration 0 means unconfigured. 1509 * But if a device includes a configuration numbered 0, 1510 * we will accept it as a correctly configured state. 1511 * Use -1 if you really want to unconfigure the device. 1512 */ 1513 if (cp && configuration == 0) 1514 dev_warn(&dev->dev, "config 0 descriptor??\n"); 1515 1516 /* Allocate memory for new interfaces before doing anything else, 1517 * so that if we run out then nothing will have changed. */ 1518 n = nintf = 0; 1519 if (cp) { 1520 nintf = cp->desc.bNumInterfaces; 1521 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces), 1522 GFP_KERNEL); 1523 if (!new_interfaces) { 1524 dev_err(&dev->dev, "Out of memory\n"); 1525 return -ENOMEM; 1526 } 1527 1528 for (; n < nintf; ++n) { 1529 new_interfaces[n] = kzalloc( 1530 sizeof(struct usb_interface), 1531 GFP_KERNEL); 1532 if (!new_interfaces[n]) { 1533 dev_err(&dev->dev, "Out of memory\n"); 1534 ret = -ENOMEM; 1535 free_interfaces: 1536 while (--n >= 0) 1537 kfree(new_interfaces[n]); 1538 kfree(new_interfaces); 1539 return ret; 1540 } 1541 } 1542 1543 i = dev->bus_mA - cp->desc.bMaxPower * 2; 1544 if (i < 0) 1545 dev_warn(&dev->dev, "new config #%d exceeds power " 1546 "limit by %dmA\n", 1547 configuration, -i); 1548 } 1549 1550 /* Wake up the device so we can send it the Set-Config request */ 1551 ret = usb_autoresume_device(dev); 1552 if (ret) 1553 goto free_interfaces; 1554 1555 /* if it's already configured, clear out old state first. 1556 * getting rid of old interfaces means unbinding their drivers. 1557 */ 1558 if (dev->state != USB_STATE_ADDRESS) 1559 usb_disable_device(dev, 1); /* Skip ep0 */ 1560 1561 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1562 USB_REQ_SET_CONFIGURATION, 0, configuration, 0, 1563 NULL, 0, USB_CTRL_SET_TIMEOUT); 1564 if (ret < 0) { 1565 /* All the old state is gone, so what else can we do? 1566 * The device is probably useless now anyway. 1567 */ 1568 cp = NULL; 1569 } 1570 1571 dev->actconfig = cp; 1572 if (!cp) { 1573 usb_set_device_state(dev, USB_STATE_ADDRESS); 1574 usb_autosuspend_device(dev); 1575 goto free_interfaces; 1576 } 1577 usb_set_device_state(dev, USB_STATE_CONFIGURED); 1578 1579 /* Initialize the new interface structures and the 1580 * hc/hcd/usbcore interface/endpoint state. 1581 */ 1582 for (i = 0; i < nintf; ++i) { 1583 struct usb_interface_cache *intfc; 1584 struct usb_interface *intf; 1585 struct usb_host_interface *alt; 1586 1587 cp->interface[i] = intf = new_interfaces[i]; 1588 intfc = cp->intf_cache[i]; 1589 intf->altsetting = intfc->altsetting; 1590 intf->num_altsetting = intfc->num_altsetting; 1591 intf->intf_assoc = find_iad(dev, cp, i); 1592 kref_get(&intfc->ref); 1593 1594 alt = usb_altnum_to_altsetting(intf, 0); 1595 1596 /* No altsetting 0? We'll assume the first altsetting. 1597 * We could use a GetInterface call, but if a device is 1598 * so non-compliant that it doesn't have altsetting 0 1599 * then I wouldn't trust its reply anyway. 1600 */ 1601 if (!alt) 1602 alt = &intf->altsetting[0]; 1603 1604 intf->cur_altsetting = alt; 1605 usb_enable_interface(dev, intf); 1606 intf->dev.parent = &dev->dev; 1607 intf->dev.driver = NULL; 1608 intf->dev.bus = &usb_bus_type; 1609 intf->dev.type = &usb_if_device_type; 1610 intf->dev.groups = usb_interface_groups; 1611 intf->dev.dma_mask = dev->dev.dma_mask; 1612 device_initialize(&intf->dev); 1613 mark_quiesced(intf); 1614 dev_set_name(&intf->dev, "%d-%s:%d.%d", 1615 dev->bus->busnum, dev->devpath, 1616 configuration, alt->desc.bInterfaceNumber); 1617 } 1618 kfree(new_interfaces); 1619 1620 if (cp->string == NULL) 1621 cp->string = usb_cache_string(dev, cp->desc.iConfiguration); 1622 1623 /* Now that all the interfaces are set up, register them 1624 * to trigger binding of drivers to interfaces. probe() 1625 * routines may install different altsettings and may 1626 * claim() any interfaces not yet bound. Many class drivers 1627 * need that: CDC, audio, video, etc. 1628 */ 1629 for (i = 0; i < nintf; ++i) { 1630 struct usb_interface *intf = cp->interface[i]; 1631 1632 dev_dbg(&dev->dev, 1633 "adding %s (config #%d, interface %d)\n", 1634 dev_name(&intf->dev), configuration, 1635 intf->cur_altsetting->desc.bInterfaceNumber); 1636 ret = device_add(&intf->dev); 1637 if (ret != 0) { 1638 dev_err(&dev->dev, "device_add(%s) --> %d\n", 1639 dev_name(&intf->dev), ret); 1640 continue; 1641 } 1642 usb_create_sysfs_intf_files(intf); 1643 } 1644 1645 usb_autosuspend_device(dev); 1646 return 0; 1647 } 1648 1649 struct set_config_request { 1650 struct usb_device *udev; 1651 int config; 1652 struct work_struct work; 1653 }; 1654 1655 /* Worker routine for usb_driver_set_configuration() */ 1656 static void driver_set_config_work(struct work_struct *work) 1657 { 1658 struct set_config_request *req = 1659 container_of(work, struct set_config_request, work); 1660 1661 usb_lock_device(req->udev); 1662 usb_set_configuration(req->udev, req->config); 1663 usb_unlock_device(req->udev); 1664 usb_put_dev(req->udev); 1665 kfree(req); 1666 } 1667 1668 /** 1669 * usb_driver_set_configuration - Provide a way for drivers to change device configurations 1670 * @udev: the device whose configuration is being updated 1671 * @config: the configuration being chosen. 1672 * Context: In process context, must be able to sleep 1673 * 1674 * Device interface drivers are not allowed to change device configurations. 1675 * This is because changing configurations will destroy the interface the 1676 * driver is bound to and create new ones; it would be like a floppy-disk 1677 * driver telling the computer to replace the floppy-disk drive with a 1678 * tape drive! 1679 * 1680 * Still, in certain specialized circumstances the need may arise. This 1681 * routine gets around the normal restrictions by using a work thread to 1682 * submit the change-config request. 1683 * 1684 * Returns 0 if the request was succesfully queued, error code otherwise. 1685 * The caller has no way to know whether the queued request will eventually 1686 * succeed. 1687 */ 1688 int usb_driver_set_configuration(struct usb_device *udev, int config) 1689 { 1690 struct set_config_request *req; 1691 1692 req = kmalloc(sizeof(*req), GFP_KERNEL); 1693 if (!req) 1694 return -ENOMEM; 1695 req->udev = udev; 1696 req->config = config; 1697 INIT_WORK(&req->work, driver_set_config_work); 1698 1699 usb_get_dev(udev); 1700 schedule_work(&req->work); 1701 return 0; 1702 } 1703 EXPORT_SYMBOL_GPL(usb_driver_set_configuration); 1704