1 /* 2 * message.c - synchronous message handling 3 * 4 * Released under the GPLv2 only. 5 * SPDX-License-Identifier: GPL-2.0 6 */ 7 8 #include <linux/pci.h> /* for scatterlist macros */ 9 #include <linux/usb.h> 10 #include <linux/module.h> 11 #include <linux/slab.h> 12 #include <linux/mm.h> 13 #include <linux/timer.h> 14 #include <linux/ctype.h> 15 #include <linux/nls.h> 16 #include <linux/device.h> 17 #include <linux/scatterlist.h> 18 #include <linux/usb/cdc.h> 19 #include <linux/usb/quirks.h> 20 #include <linux/usb/hcd.h> /* for usbcore internals */ 21 #include <asm/byteorder.h> 22 23 #include "usb.h" 24 25 static void cancel_async_set_config(struct usb_device *udev); 26 27 struct api_context { 28 struct completion done; 29 int status; 30 }; 31 32 static void usb_api_blocking_completion(struct urb *urb) 33 { 34 struct api_context *ctx = urb->context; 35 36 ctx->status = urb->status; 37 complete(&ctx->done); 38 } 39 40 41 /* 42 * Starts urb and waits for completion or timeout. Note that this call 43 * is NOT interruptible. Many device driver i/o requests should be 44 * interruptible and therefore these drivers should implement their 45 * own interruptible routines. 46 */ 47 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length) 48 { 49 struct api_context ctx; 50 unsigned long expire; 51 int retval; 52 53 init_completion(&ctx.done); 54 urb->context = &ctx; 55 urb->actual_length = 0; 56 retval = usb_submit_urb(urb, GFP_NOIO); 57 if (unlikely(retval)) 58 goto out; 59 60 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT; 61 if (!wait_for_completion_timeout(&ctx.done, expire)) { 62 usb_kill_urb(urb); 63 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status); 64 65 dev_dbg(&urb->dev->dev, 66 "%s timed out on ep%d%s len=%u/%u\n", 67 current->comm, 68 usb_endpoint_num(&urb->ep->desc), 69 usb_urb_dir_in(urb) ? "in" : "out", 70 urb->actual_length, 71 urb->transfer_buffer_length); 72 } else 73 retval = ctx.status; 74 out: 75 if (actual_length) 76 *actual_length = urb->actual_length; 77 78 usb_free_urb(urb); 79 return retval; 80 } 81 82 /*-------------------------------------------------------------------*/ 83 /* returns status (negative) or length (positive) */ 84 static int usb_internal_control_msg(struct usb_device *usb_dev, 85 unsigned int pipe, 86 struct usb_ctrlrequest *cmd, 87 void *data, int len, int timeout) 88 { 89 struct urb *urb; 90 int retv; 91 int length; 92 93 urb = usb_alloc_urb(0, GFP_NOIO); 94 if (!urb) 95 return -ENOMEM; 96 97 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data, 98 len, usb_api_blocking_completion, NULL); 99 100 retv = usb_start_wait_urb(urb, timeout, &length); 101 if (retv < 0) 102 return retv; 103 else 104 return length; 105 } 106 107 /** 108 * usb_control_msg - Builds a control urb, sends it off and waits for completion 109 * @dev: pointer to the usb device to send the message to 110 * @pipe: endpoint "pipe" to send the message to 111 * @request: USB message request value 112 * @requesttype: USB message request type value 113 * @value: USB message value 114 * @index: USB message index value 115 * @data: pointer to the data to send 116 * @size: length in bytes of the data to send 117 * @timeout: time in msecs to wait for the message to complete before timing 118 * out (if 0 the wait is forever) 119 * 120 * Context: !in_interrupt () 121 * 122 * This function sends a simple control message to a specified endpoint and 123 * waits for the message to complete, or timeout. 124 * 125 * Don't use this function from within an interrupt context. If you need 126 * an asynchronous message, or need to send a message from within interrupt 127 * context, use usb_submit_urb(). If a thread in your driver uses this call, 128 * make sure your disconnect() method can wait for it to complete. Since you 129 * don't have a handle on the URB used, you can't cancel the request. 130 * 131 * Return: If successful, the number of bytes transferred. Otherwise, a negative 132 * error number. 133 */ 134 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, 135 __u8 requesttype, __u16 value, __u16 index, void *data, 136 __u16 size, int timeout) 137 { 138 struct usb_ctrlrequest *dr; 139 int ret; 140 141 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO); 142 if (!dr) 143 return -ENOMEM; 144 145 dr->bRequestType = requesttype; 146 dr->bRequest = request; 147 dr->wValue = cpu_to_le16(value); 148 dr->wIndex = cpu_to_le16(index); 149 dr->wLength = cpu_to_le16(size); 150 151 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout); 152 153 kfree(dr); 154 155 return ret; 156 } 157 EXPORT_SYMBOL_GPL(usb_control_msg); 158 159 /** 160 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion 161 * @usb_dev: pointer to the usb device to send the message to 162 * @pipe: endpoint "pipe" to send the message to 163 * @data: pointer to the data to send 164 * @len: length in bytes of the data to send 165 * @actual_length: pointer to a location to put the actual length transferred 166 * in bytes 167 * @timeout: time in msecs to wait for the message to complete before 168 * timing out (if 0 the wait is forever) 169 * 170 * Context: !in_interrupt () 171 * 172 * This function sends a simple interrupt message to a specified endpoint and 173 * waits for the message to complete, or timeout. 174 * 175 * Don't use this function from within an interrupt context. If you need 176 * an asynchronous message, or need to send a message from within interrupt 177 * context, use usb_submit_urb() If a thread in your driver uses this call, 178 * make sure your disconnect() method can wait for it to complete. Since you 179 * don't have a handle on the URB used, you can't cancel the request. 180 * 181 * Return: 182 * If successful, 0. Otherwise a negative error number. The number of actual 183 * bytes transferred will be stored in the @actual_length parameter. 184 */ 185 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 186 void *data, int len, int *actual_length, int timeout) 187 { 188 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout); 189 } 190 EXPORT_SYMBOL_GPL(usb_interrupt_msg); 191 192 /** 193 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion 194 * @usb_dev: pointer to the usb device to send the message to 195 * @pipe: endpoint "pipe" to send the message to 196 * @data: pointer to the data to send 197 * @len: length in bytes of the data to send 198 * @actual_length: pointer to a location to put the actual length transferred 199 * in bytes 200 * @timeout: time in msecs to wait for the message to complete before 201 * timing out (if 0 the wait is forever) 202 * 203 * Context: !in_interrupt () 204 * 205 * This function sends a simple bulk message to a specified endpoint 206 * and waits for the message to complete, or timeout. 207 * 208 * Don't use this function from within an interrupt context. If you need 209 * an asynchronous message, or need to send a message from within interrupt 210 * context, use usb_submit_urb() If a thread in your driver uses this call, 211 * make sure your disconnect() method can wait for it to complete. Since you 212 * don't have a handle on the URB used, you can't cancel the request. 213 * 214 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl, 215 * users are forced to abuse this routine by using it to submit URBs for 216 * interrupt endpoints. We will take the liberty of creating an interrupt URB 217 * (with the default interval) if the target is an interrupt endpoint. 218 * 219 * Return: 220 * If successful, 0. Otherwise a negative error number. The number of actual 221 * bytes transferred will be stored in the @actual_length parameter. 222 * 223 */ 224 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 225 void *data, int len, int *actual_length, int timeout) 226 { 227 struct urb *urb; 228 struct usb_host_endpoint *ep; 229 230 ep = usb_pipe_endpoint(usb_dev, pipe); 231 if (!ep || len < 0) 232 return -EINVAL; 233 234 urb = usb_alloc_urb(0, GFP_KERNEL); 235 if (!urb) 236 return -ENOMEM; 237 238 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 239 USB_ENDPOINT_XFER_INT) { 240 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30); 241 usb_fill_int_urb(urb, usb_dev, pipe, data, len, 242 usb_api_blocking_completion, NULL, 243 ep->desc.bInterval); 244 } else 245 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len, 246 usb_api_blocking_completion, NULL); 247 248 return usb_start_wait_urb(urb, timeout, actual_length); 249 } 250 EXPORT_SYMBOL_GPL(usb_bulk_msg); 251 252 /*-------------------------------------------------------------------*/ 253 254 static void sg_clean(struct usb_sg_request *io) 255 { 256 if (io->urbs) { 257 while (io->entries--) 258 usb_free_urb(io->urbs[io->entries]); 259 kfree(io->urbs); 260 io->urbs = NULL; 261 } 262 io->dev = NULL; 263 } 264 265 static void sg_complete(struct urb *urb) 266 { 267 struct usb_sg_request *io = urb->context; 268 int status = urb->status; 269 270 spin_lock(&io->lock); 271 272 /* In 2.5 we require hcds' endpoint queues not to progress after fault 273 * reports, until the completion callback (this!) returns. That lets 274 * device driver code (like this routine) unlink queued urbs first, 275 * if it needs to, since the HC won't work on them at all. So it's 276 * not possible for page N+1 to overwrite page N, and so on. 277 * 278 * That's only for "hard" faults; "soft" faults (unlinks) sometimes 279 * complete before the HCD can get requests away from hardware, 280 * though never during cleanup after a hard fault. 281 */ 282 if (io->status 283 && (io->status != -ECONNRESET 284 || status != -ECONNRESET) 285 && urb->actual_length) { 286 dev_err(io->dev->bus->controller, 287 "dev %s ep%d%s scatterlist error %d/%d\n", 288 io->dev->devpath, 289 usb_endpoint_num(&urb->ep->desc), 290 usb_urb_dir_in(urb) ? "in" : "out", 291 status, io->status); 292 /* BUG (); */ 293 } 294 295 if (io->status == 0 && status && status != -ECONNRESET) { 296 int i, found, retval; 297 298 io->status = status; 299 300 /* the previous urbs, and this one, completed already. 301 * unlink pending urbs so they won't rx/tx bad data. 302 * careful: unlink can sometimes be synchronous... 303 */ 304 spin_unlock(&io->lock); 305 for (i = 0, found = 0; i < io->entries; i++) { 306 if (!io->urbs[i]) 307 continue; 308 if (found) { 309 usb_block_urb(io->urbs[i]); 310 retval = usb_unlink_urb(io->urbs[i]); 311 if (retval != -EINPROGRESS && 312 retval != -ENODEV && 313 retval != -EBUSY && 314 retval != -EIDRM) 315 dev_err(&io->dev->dev, 316 "%s, unlink --> %d\n", 317 __func__, retval); 318 } else if (urb == io->urbs[i]) 319 found = 1; 320 } 321 spin_lock(&io->lock); 322 } 323 324 /* on the last completion, signal usb_sg_wait() */ 325 io->bytes += urb->actual_length; 326 io->count--; 327 if (!io->count) 328 complete(&io->complete); 329 330 spin_unlock(&io->lock); 331 } 332 333 334 /** 335 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request 336 * @io: request block being initialized. until usb_sg_wait() returns, 337 * treat this as a pointer to an opaque block of memory, 338 * @dev: the usb device that will send or receive the data 339 * @pipe: endpoint "pipe" used to transfer the data 340 * @period: polling rate for interrupt endpoints, in frames or 341 * (for high speed endpoints) microframes; ignored for bulk 342 * @sg: scatterlist entries 343 * @nents: how many entries in the scatterlist 344 * @length: how many bytes to send from the scatterlist, or zero to 345 * send every byte identified in the list. 346 * @mem_flags: SLAB_* flags affecting memory allocations in this call 347 * 348 * This initializes a scatter/gather request, allocating resources such as 349 * I/O mappings and urb memory (except maybe memory used by USB controller 350 * drivers). 351 * 352 * The request must be issued using usb_sg_wait(), which waits for the I/O to 353 * complete (or to be canceled) and then cleans up all resources allocated by 354 * usb_sg_init(). 355 * 356 * The request may be canceled with usb_sg_cancel(), either before or after 357 * usb_sg_wait() is called. 358 * 359 * Return: Zero for success, else a negative errno value. 360 */ 361 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev, 362 unsigned pipe, unsigned period, struct scatterlist *sg, 363 int nents, size_t length, gfp_t mem_flags) 364 { 365 int i; 366 int urb_flags; 367 int use_sg; 368 369 if (!io || !dev || !sg 370 || usb_pipecontrol(pipe) 371 || usb_pipeisoc(pipe) 372 || nents <= 0) 373 return -EINVAL; 374 375 spin_lock_init(&io->lock); 376 io->dev = dev; 377 io->pipe = pipe; 378 379 if (dev->bus->sg_tablesize > 0) { 380 use_sg = true; 381 io->entries = 1; 382 } else { 383 use_sg = false; 384 io->entries = nents; 385 } 386 387 /* initialize all the urbs we'll use */ 388 io->urbs = kmalloc(io->entries * sizeof(*io->urbs), mem_flags); 389 if (!io->urbs) 390 goto nomem; 391 392 urb_flags = URB_NO_INTERRUPT; 393 if (usb_pipein(pipe)) 394 urb_flags |= URB_SHORT_NOT_OK; 395 396 for_each_sg(sg, sg, io->entries, i) { 397 struct urb *urb; 398 unsigned len; 399 400 urb = usb_alloc_urb(0, mem_flags); 401 if (!urb) { 402 io->entries = i; 403 goto nomem; 404 } 405 io->urbs[i] = urb; 406 407 urb->dev = NULL; 408 urb->pipe = pipe; 409 urb->interval = period; 410 urb->transfer_flags = urb_flags; 411 urb->complete = sg_complete; 412 urb->context = io; 413 urb->sg = sg; 414 415 if (use_sg) { 416 /* There is no single transfer buffer */ 417 urb->transfer_buffer = NULL; 418 urb->num_sgs = nents; 419 420 /* A length of zero means transfer the whole sg list */ 421 len = length; 422 if (len == 0) { 423 struct scatterlist *sg2; 424 int j; 425 426 for_each_sg(sg, sg2, nents, j) 427 len += sg2->length; 428 } 429 } else { 430 /* 431 * Some systems can't use DMA; they use PIO instead. 432 * For their sakes, transfer_buffer is set whenever 433 * possible. 434 */ 435 if (!PageHighMem(sg_page(sg))) 436 urb->transfer_buffer = sg_virt(sg); 437 else 438 urb->transfer_buffer = NULL; 439 440 len = sg->length; 441 if (length) { 442 len = min_t(size_t, len, length); 443 length -= len; 444 if (length == 0) 445 io->entries = i + 1; 446 } 447 } 448 urb->transfer_buffer_length = len; 449 } 450 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT; 451 452 /* transaction state */ 453 io->count = io->entries; 454 io->status = 0; 455 io->bytes = 0; 456 init_completion(&io->complete); 457 return 0; 458 459 nomem: 460 sg_clean(io); 461 return -ENOMEM; 462 } 463 EXPORT_SYMBOL_GPL(usb_sg_init); 464 465 /** 466 * usb_sg_wait - synchronously execute scatter/gather request 467 * @io: request block handle, as initialized with usb_sg_init(). 468 * some fields become accessible when this call returns. 469 * Context: !in_interrupt () 470 * 471 * This function blocks until the specified I/O operation completes. It 472 * leverages the grouping of the related I/O requests to get good transfer 473 * rates, by queueing the requests. At higher speeds, such queuing can 474 * significantly improve USB throughput. 475 * 476 * There are three kinds of completion for this function. 477 * (1) success, where io->status is zero. The number of io->bytes 478 * transferred is as requested. 479 * (2) error, where io->status is a negative errno value. The number 480 * of io->bytes transferred before the error is usually less 481 * than requested, and can be nonzero. 482 * (3) cancellation, a type of error with status -ECONNRESET that 483 * is initiated by usb_sg_cancel(). 484 * 485 * When this function returns, all memory allocated through usb_sg_init() or 486 * this call will have been freed. The request block parameter may still be 487 * passed to usb_sg_cancel(), or it may be freed. It could also be 488 * reinitialized and then reused. 489 * 490 * Data Transfer Rates: 491 * 492 * Bulk transfers are valid for full or high speed endpoints. 493 * The best full speed data rate is 19 packets of 64 bytes each 494 * per frame, or 1216 bytes per millisecond. 495 * The best high speed data rate is 13 packets of 512 bytes each 496 * per microframe, or 52 KBytes per millisecond. 497 * 498 * The reason to use interrupt transfers through this API would most likely 499 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond 500 * could be transferred. That capability is less useful for low or full 501 * speed interrupt endpoints, which allow at most one packet per millisecond, 502 * of at most 8 or 64 bytes (respectively). 503 * 504 * It is not necessary to call this function to reserve bandwidth for devices 505 * under an xHCI host controller, as the bandwidth is reserved when the 506 * configuration or interface alt setting is selected. 507 */ 508 void usb_sg_wait(struct usb_sg_request *io) 509 { 510 int i; 511 int entries = io->entries; 512 513 /* queue the urbs. */ 514 spin_lock_irq(&io->lock); 515 i = 0; 516 while (i < entries && !io->status) { 517 int retval; 518 519 io->urbs[i]->dev = io->dev; 520 spin_unlock_irq(&io->lock); 521 522 retval = usb_submit_urb(io->urbs[i], GFP_NOIO); 523 524 switch (retval) { 525 /* maybe we retrying will recover */ 526 case -ENXIO: /* hc didn't queue this one */ 527 case -EAGAIN: 528 case -ENOMEM: 529 retval = 0; 530 yield(); 531 break; 532 533 /* no error? continue immediately. 534 * 535 * NOTE: to work better with UHCI (4K I/O buffer may 536 * need 3K of TDs) it may be good to limit how many 537 * URBs are queued at once; N milliseconds? 538 */ 539 case 0: 540 ++i; 541 cpu_relax(); 542 break; 543 544 /* fail any uncompleted urbs */ 545 default: 546 io->urbs[i]->status = retval; 547 dev_dbg(&io->dev->dev, "%s, submit --> %d\n", 548 __func__, retval); 549 usb_sg_cancel(io); 550 } 551 spin_lock_irq(&io->lock); 552 if (retval && (io->status == 0 || io->status == -ECONNRESET)) 553 io->status = retval; 554 } 555 io->count -= entries - i; 556 if (io->count == 0) 557 complete(&io->complete); 558 spin_unlock_irq(&io->lock); 559 560 /* OK, yes, this could be packaged as non-blocking. 561 * So could the submit loop above ... but it's easier to 562 * solve neither problem than to solve both! 563 */ 564 wait_for_completion(&io->complete); 565 566 sg_clean(io); 567 } 568 EXPORT_SYMBOL_GPL(usb_sg_wait); 569 570 /** 571 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait() 572 * @io: request block, initialized with usb_sg_init() 573 * 574 * This stops a request after it has been started by usb_sg_wait(). 575 * It can also prevents one initialized by usb_sg_init() from starting, 576 * so that call just frees resources allocated to the request. 577 */ 578 void usb_sg_cancel(struct usb_sg_request *io) 579 { 580 unsigned long flags; 581 int i, retval; 582 583 spin_lock_irqsave(&io->lock, flags); 584 if (io->status) { 585 spin_unlock_irqrestore(&io->lock, flags); 586 return; 587 } 588 /* shut everything down */ 589 io->status = -ECONNRESET; 590 spin_unlock_irqrestore(&io->lock, flags); 591 592 for (i = io->entries - 1; i >= 0; --i) { 593 usb_block_urb(io->urbs[i]); 594 595 retval = usb_unlink_urb(io->urbs[i]); 596 if (retval != -EINPROGRESS 597 && retval != -ENODEV 598 && retval != -EBUSY 599 && retval != -EIDRM) 600 dev_warn(&io->dev->dev, "%s, unlink --> %d\n", 601 __func__, retval); 602 } 603 } 604 EXPORT_SYMBOL_GPL(usb_sg_cancel); 605 606 /*-------------------------------------------------------------------*/ 607 608 /** 609 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request 610 * @dev: the device whose descriptor is being retrieved 611 * @type: the descriptor type (USB_DT_*) 612 * @index: the number of the descriptor 613 * @buf: where to put the descriptor 614 * @size: how big is "buf"? 615 * Context: !in_interrupt () 616 * 617 * Gets a USB descriptor. Convenience functions exist to simplify 618 * getting some types of descriptors. Use 619 * usb_get_string() or usb_string() for USB_DT_STRING. 620 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG) 621 * are part of the device structure. 622 * In addition to a number of USB-standard descriptors, some 623 * devices also use class-specific or vendor-specific descriptors. 624 * 625 * This call is synchronous, and may not be used in an interrupt context. 626 * 627 * Return: The number of bytes received on success, or else the status code 628 * returned by the underlying usb_control_msg() call. 629 */ 630 int usb_get_descriptor(struct usb_device *dev, unsigned char type, 631 unsigned char index, void *buf, int size) 632 { 633 int i; 634 int result; 635 636 memset(buf, 0, size); /* Make sure we parse really received data */ 637 638 for (i = 0; i < 3; ++i) { 639 /* retry on length 0 or error; some devices are flakey */ 640 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 641 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 642 (type << 8) + index, 0, buf, size, 643 USB_CTRL_GET_TIMEOUT); 644 if (result <= 0 && result != -ETIMEDOUT) 645 continue; 646 if (result > 1 && ((u8 *)buf)[1] != type) { 647 result = -ENODATA; 648 continue; 649 } 650 break; 651 } 652 return result; 653 } 654 EXPORT_SYMBOL_GPL(usb_get_descriptor); 655 656 /** 657 * usb_get_string - gets a string descriptor 658 * @dev: the device whose string descriptor is being retrieved 659 * @langid: code for language chosen (from string descriptor zero) 660 * @index: the number of the descriptor 661 * @buf: where to put the string 662 * @size: how big is "buf"? 663 * Context: !in_interrupt () 664 * 665 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character, 666 * in little-endian byte order). 667 * The usb_string() function will often be a convenient way to turn 668 * these strings into kernel-printable form. 669 * 670 * Strings may be referenced in device, configuration, interface, or other 671 * descriptors, and could also be used in vendor-specific ways. 672 * 673 * This call is synchronous, and may not be used in an interrupt context. 674 * 675 * Return: The number of bytes received on success, or else the status code 676 * returned by the underlying usb_control_msg() call. 677 */ 678 static int usb_get_string(struct usb_device *dev, unsigned short langid, 679 unsigned char index, void *buf, int size) 680 { 681 int i; 682 int result; 683 684 for (i = 0; i < 3; ++i) { 685 /* retry on length 0 or stall; some devices are flakey */ 686 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 687 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 688 (USB_DT_STRING << 8) + index, langid, buf, size, 689 USB_CTRL_GET_TIMEOUT); 690 if (result == 0 || result == -EPIPE) 691 continue; 692 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) { 693 result = -ENODATA; 694 continue; 695 } 696 break; 697 } 698 return result; 699 } 700 701 static void usb_try_string_workarounds(unsigned char *buf, int *length) 702 { 703 int newlength, oldlength = *length; 704 705 for (newlength = 2; newlength + 1 < oldlength; newlength += 2) 706 if (!isprint(buf[newlength]) || buf[newlength + 1]) 707 break; 708 709 if (newlength > 2) { 710 buf[0] = newlength; 711 *length = newlength; 712 } 713 } 714 715 static int usb_string_sub(struct usb_device *dev, unsigned int langid, 716 unsigned int index, unsigned char *buf) 717 { 718 int rc; 719 720 /* Try to read the string descriptor by asking for the maximum 721 * possible number of bytes */ 722 if (dev->quirks & USB_QUIRK_STRING_FETCH_255) 723 rc = -EIO; 724 else 725 rc = usb_get_string(dev, langid, index, buf, 255); 726 727 /* If that failed try to read the descriptor length, then 728 * ask for just that many bytes */ 729 if (rc < 2) { 730 rc = usb_get_string(dev, langid, index, buf, 2); 731 if (rc == 2) 732 rc = usb_get_string(dev, langid, index, buf, buf[0]); 733 } 734 735 if (rc >= 2) { 736 if (!buf[0] && !buf[1]) 737 usb_try_string_workarounds(buf, &rc); 738 739 /* There might be extra junk at the end of the descriptor */ 740 if (buf[0] < rc) 741 rc = buf[0]; 742 743 rc = rc - (rc & 1); /* force a multiple of two */ 744 } 745 746 if (rc < 2) 747 rc = (rc < 0 ? rc : -EINVAL); 748 749 return rc; 750 } 751 752 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf) 753 { 754 int err; 755 756 if (dev->have_langid) 757 return 0; 758 759 if (dev->string_langid < 0) 760 return -EPIPE; 761 762 err = usb_string_sub(dev, 0, 0, tbuf); 763 764 /* If the string was reported but is malformed, default to english 765 * (0x0409) */ 766 if (err == -ENODATA || (err > 0 && err < 4)) { 767 dev->string_langid = 0x0409; 768 dev->have_langid = 1; 769 dev_err(&dev->dev, 770 "language id specifier not provided by device, defaulting to English\n"); 771 return 0; 772 } 773 774 /* In case of all other errors, we assume the device is not able to 775 * deal with strings at all. Set string_langid to -1 in order to 776 * prevent any string to be retrieved from the device */ 777 if (err < 0) { 778 dev_err(&dev->dev, "string descriptor 0 read error: %d\n", 779 err); 780 dev->string_langid = -1; 781 return -EPIPE; 782 } 783 784 /* always use the first langid listed */ 785 dev->string_langid = tbuf[2] | (tbuf[3] << 8); 786 dev->have_langid = 1; 787 dev_dbg(&dev->dev, "default language 0x%04x\n", 788 dev->string_langid); 789 return 0; 790 } 791 792 /** 793 * usb_string - returns UTF-8 version of a string descriptor 794 * @dev: the device whose string descriptor is being retrieved 795 * @index: the number of the descriptor 796 * @buf: where to put the string 797 * @size: how big is "buf"? 798 * Context: !in_interrupt () 799 * 800 * This converts the UTF-16LE encoded strings returned by devices, from 801 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones 802 * that are more usable in most kernel contexts. Note that this function 803 * chooses strings in the first language supported by the device. 804 * 805 * This call is synchronous, and may not be used in an interrupt context. 806 * 807 * Return: length of the string (>= 0) or usb_control_msg status (< 0). 808 */ 809 int usb_string(struct usb_device *dev, int index, char *buf, size_t size) 810 { 811 unsigned char *tbuf; 812 int err; 813 814 if (dev->state == USB_STATE_SUSPENDED) 815 return -EHOSTUNREACH; 816 if (size <= 0 || !buf || !index) 817 return -EINVAL; 818 buf[0] = 0; 819 tbuf = kmalloc(256, GFP_NOIO); 820 if (!tbuf) 821 return -ENOMEM; 822 823 err = usb_get_langid(dev, tbuf); 824 if (err < 0) 825 goto errout; 826 827 err = usb_string_sub(dev, dev->string_langid, index, tbuf); 828 if (err < 0) 829 goto errout; 830 831 size--; /* leave room for trailing NULL char in output buffer */ 832 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2, 833 UTF16_LITTLE_ENDIAN, buf, size); 834 buf[err] = 0; 835 836 if (tbuf[1] != USB_DT_STRING) 837 dev_dbg(&dev->dev, 838 "wrong descriptor type %02x for string %d (\"%s\")\n", 839 tbuf[1], index, buf); 840 841 errout: 842 kfree(tbuf); 843 return err; 844 } 845 EXPORT_SYMBOL_GPL(usb_string); 846 847 /* one UTF-8-encoded 16-bit character has at most three bytes */ 848 #define MAX_USB_STRING_SIZE (127 * 3 + 1) 849 850 /** 851 * usb_cache_string - read a string descriptor and cache it for later use 852 * @udev: the device whose string descriptor is being read 853 * @index: the descriptor index 854 * 855 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string, 856 * or %NULL if the index is 0 or the string could not be read. 857 */ 858 char *usb_cache_string(struct usb_device *udev, int index) 859 { 860 char *buf; 861 char *smallbuf = NULL; 862 int len; 863 864 if (index <= 0) 865 return NULL; 866 867 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO); 868 if (buf) { 869 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE); 870 if (len > 0) { 871 smallbuf = kmalloc(++len, GFP_NOIO); 872 if (!smallbuf) 873 return buf; 874 memcpy(smallbuf, buf, len); 875 } 876 kfree(buf); 877 } 878 return smallbuf; 879 } 880 881 /* 882 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore) 883 * @dev: the device whose device descriptor is being updated 884 * @size: how much of the descriptor to read 885 * Context: !in_interrupt () 886 * 887 * Updates the copy of the device descriptor stored in the device structure, 888 * which dedicates space for this purpose. 889 * 890 * Not exported, only for use by the core. If drivers really want to read 891 * the device descriptor directly, they can call usb_get_descriptor() with 892 * type = USB_DT_DEVICE and index = 0. 893 * 894 * This call is synchronous, and may not be used in an interrupt context. 895 * 896 * Return: The number of bytes received on success, or else the status code 897 * returned by the underlying usb_control_msg() call. 898 */ 899 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size) 900 { 901 struct usb_device_descriptor *desc; 902 int ret; 903 904 if (size > sizeof(*desc)) 905 return -EINVAL; 906 desc = kmalloc(sizeof(*desc), GFP_NOIO); 907 if (!desc) 908 return -ENOMEM; 909 910 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size); 911 if (ret >= 0) 912 memcpy(&dev->descriptor, desc, size); 913 kfree(desc); 914 return ret; 915 } 916 917 /** 918 * usb_get_status - issues a GET_STATUS call 919 * @dev: the device whose status is being checked 920 * @type: USB_RECIP_*; for device, interface, or endpoint 921 * @target: zero (for device), else interface or endpoint number 922 * @data: pointer to two bytes of bitmap data 923 * Context: !in_interrupt () 924 * 925 * Returns device, interface, or endpoint status. Normally only of 926 * interest to see if the device is self powered, or has enabled the 927 * remote wakeup facility; or whether a bulk or interrupt endpoint 928 * is halted ("stalled"). 929 * 930 * Bits in these status bitmaps are set using the SET_FEATURE request, 931 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt() 932 * function should be used to clear halt ("stall") status. 933 * 934 * This call is synchronous, and may not be used in an interrupt context. 935 * 936 * Returns 0 and the status value in *@data (in host byte order) on success, 937 * or else the status code from the underlying usb_control_msg() call. 938 */ 939 int usb_get_status(struct usb_device *dev, int type, int target, void *data) 940 { 941 int ret; 942 __le16 *status = kmalloc(sizeof(*status), GFP_KERNEL); 943 944 if (!status) 945 return -ENOMEM; 946 947 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 948 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status, 949 sizeof(*status), USB_CTRL_GET_TIMEOUT); 950 951 if (ret == 2) { 952 *(u16 *) data = le16_to_cpu(*status); 953 ret = 0; 954 } else if (ret >= 0) { 955 ret = -EIO; 956 } 957 kfree(status); 958 return ret; 959 } 960 EXPORT_SYMBOL_GPL(usb_get_status); 961 962 /** 963 * usb_clear_halt - tells device to clear endpoint halt/stall condition 964 * @dev: device whose endpoint is halted 965 * @pipe: endpoint "pipe" being cleared 966 * Context: !in_interrupt () 967 * 968 * This is used to clear halt conditions for bulk and interrupt endpoints, 969 * as reported by URB completion status. Endpoints that are halted are 970 * sometimes referred to as being "stalled". Such endpoints are unable 971 * to transmit or receive data until the halt status is cleared. Any URBs 972 * queued for such an endpoint should normally be unlinked by the driver 973 * before clearing the halt condition, as described in sections 5.7.5 974 * and 5.8.5 of the USB 2.0 spec. 975 * 976 * Note that control and isochronous endpoints don't halt, although control 977 * endpoints report "protocol stall" (for unsupported requests) using the 978 * same status code used to report a true stall. 979 * 980 * This call is synchronous, and may not be used in an interrupt context. 981 * 982 * Return: Zero on success, or else the status code returned by the 983 * underlying usb_control_msg() call. 984 */ 985 int usb_clear_halt(struct usb_device *dev, int pipe) 986 { 987 int result; 988 int endp = usb_pipeendpoint(pipe); 989 990 if (usb_pipein(pipe)) 991 endp |= USB_DIR_IN; 992 993 /* we don't care if it wasn't halted first. in fact some devices 994 * (like some ibmcam model 1 units) seem to expect hosts to make 995 * this request for iso endpoints, which can't halt! 996 */ 997 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 998 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 999 USB_ENDPOINT_HALT, endp, NULL, 0, 1000 USB_CTRL_SET_TIMEOUT); 1001 1002 /* don't un-halt or force to DATA0 except on success */ 1003 if (result < 0) 1004 return result; 1005 1006 /* NOTE: seems like Microsoft and Apple don't bother verifying 1007 * the clear "took", so some devices could lock up if you check... 1008 * such as the Hagiwara FlashGate DUAL. So we won't bother. 1009 * 1010 * NOTE: make sure the logic here doesn't diverge much from 1011 * the copy in usb-storage, for as long as we need two copies. 1012 */ 1013 1014 usb_reset_endpoint(dev, endp); 1015 1016 return 0; 1017 } 1018 EXPORT_SYMBOL_GPL(usb_clear_halt); 1019 1020 static int create_intf_ep_devs(struct usb_interface *intf) 1021 { 1022 struct usb_device *udev = interface_to_usbdev(intf); 1023 struct usb_host_interface *alt = intf->cur_altsetting; 1024 int i; 1025 1026 if (intf->ep_devs_created || intf->unregistering) 1027 return 0; 1028 1029 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1030 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev); 1031 intf->ep_devs_created = 1; 1032 return 0; 1033 } 1034 1035 static void remove_intf_ep_devs(struct usb_interface *intf) 1036 { 1037 struct usb_host_interface *alt = intf->cur_altsetting; 1038 int i; 1039 1040 if (!intf->ep_devs_created) 1041 return; 1042 1043 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1044 usb_remove_ep_devs(&alt->endpoint[i]); 1045 intf->ep_devs_created = 0; 1046 } 1047 1048 /** 1049 * usb_disable_endpoint -- Disable an endpoint by address 1050 * @dev: the device whose endpoint is being disabled 1051 * @epaddr: the endpoint's address. Endpoint number for output, 1052 * endpoint number + USB_DIR_IN for input 1053 * @reset_hardware: flag to erase any endpoint state stored in the 1054 * controller hardware 1055 * 1056 * Disables the endpoint for URB submission and nukes all pending URBs. 1057 * If @reset_hardware is set then also deallocates hcd/hardware state 1058 * for the endpoint. 1059 */ 1060 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr, 1061 bool reset_hardware) 1062 { 1063 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1064 struct usb_host_endpoint *ep; 1065 1066 if (!dev) 1067 return; 1068 1069 if (usb_endpoint_out(epaddr)) { 1070 ep = dev->ep_out[epnum]; 1071 if (reset_hardware) 1072 dev->ep_out[epnum] = NULL; 1073 } else { 1074 ep = dev->ep_in[epnum]; 1075 if (reset_hardware) 1076 dev->ep_in[epnum] = NULL; 1077 } 1078 if (ep) { 1079 ep->enabled = 0; 1080 usb_hcd_flush_endpoint(dev, ep); 1081 if (reset_hardware) 1082 usb_hcd_disable_endpoint(dev, ep); 1083 } 1084 } 1085 1086 /** 1087 * usb_reset_endpoint - Reset an endpoint's state. 1088 * @dev: the device whose endpoint is to be reset 1089 * @epaddr: the endpoint's address. Endpoint number for output, 1090 * endpoint number + USB_DIR_IN for input 1091 * 1092 * Resets any host-side endpoint state such as the toggle bit, 1093 * sequence number or current window. 1094 */ 1095 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr) 1096 { 1097 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1098 struct usb_host_endpoint *ep; 1099 1100 if (usb_endpoint_out(epaddr)) 1101 ep = dev->ep_out[epnum]; 1102 else 1103 ep = dev->ep_in[epnum]; 1104 if (ep) 1105 usb_hcd_reset_endpoint(dev, ep); 1106 } 1107 EXPORT_SYMBOL_GPL(usb_reset_endpoint); 1108 1109 1110 /** 1111 * usb_disable_interface -- Disable all endpoints for an interface 1112 * @dev: the device whose interface is being disabled 1113 * @intf: pointer to the interface descriptor 1114 * @reset_hardware: flag to erase any endpoint state stored in the 1115 * controller hardware 1116 * 1117 * Disables all the endpoints for the interface's current altsetting. 1118 */ 1119 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf, 1120 bool reset_hardware) 1121 { 1122 struct usb_host_interface *alt = intf->cur_altsetting; 1123 int i; 1124 1125 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 1126 usb_disable_endpoint(dev, 1127 alt->endpoint[i].desc.bEndpointAddress, 1128 reset_hardware); 1129 } 1130 } 1131 1132 /** 1133 * usb_disable_device - Disable all the endpoints for a USB device 1134 * @dev: the device whose endpoints are being disabled 1135 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. 1136 * 1137 * Disables all the device's endpoints, potentially including endpoint 0. 1138 * Deallocates hcd/hardware state for the endpoints (nuking all or most 1139 * pending urbs) and usbcore state for the interfaces, so that usbcore 1140 * must usb_set_configuration() before any interfaces could be used. 1141 */ 1142 void usb_disable_device(struct usb_device *dev, int skip_ep0) 1143 { 1144 int i; 1145 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1146 1147 /* getting rid of interfaces will disconnect 1148 * any drivers bound to them (a key side effect) 1149 */ 1150 if (dev->actconfig) { 1151 /* 1152 * FIXME: In order to avoid self-deadlock involving the 1153 * bandwidth_mutex, we have to mark all the interfaces 1154 * before unregistering any of them. 1155 */ 1156 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) 1157 dev->actconfig->interface[i]->unregistering = 1; 1158 1159 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1160 struct usb_interface *interface; 1161 1162 /* remove this interface if it has been registered */ 1163 interface = dev->actconfig->interface[i]; 1164 if (!device_is_registered(&interface->dev)) 1165 continue; 1166 dev_dbg(&dev->dev, "unregistering interface %s\n", 1167 dev_name(&interface->dev)); 1168 remove_intf_ep_devs(interface); 1169 device_del(&interface->dev); 1170 } 1171 1172 /* Now that the interfaces are unbound, nobody should 1173 * try to access them. 1174 */ 1175 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1176 put_device(&dev->actconfig->interface[i]->dev); 1177 dev->actconfig->interface[i] = NULL; 1178 } 1179 1180 if (dev->usb2_hw_lpm_enabled == 1) 1181 usb_set_usb2_hardware_lpm(dev, 0); 1182 usb_unlocked_disable_lpm(dev); 1183 usb_disable_ltm(dev); 1184 1185 dev->actconfig = NULL; 1186 if (dev->state == USB_STATE_CONFIGURED) 1187 usb_set_device_state(dev, USB_STATE_ADDRESS); 1188 } 1189 1190 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__, 1191 skip_ep0 ? "non-ep0" : "all"); 1192 if (hcd->driver->check_bandwidth) { 1193 /* First pass: Cancel URBs, leave endpoint pointers intact. */ 1194 for (i = skip_ep0; i < 16; ++i) { 1195 usb_disable_endpoint(dev, i, false); 1196 usb_disable_endpoint(dev, i + USB_DIR_IN, false); 1197 } 1198 /* Remove endpoints from the host controller internal state */ 1199 mutex_lock(hcd->bandwidth_mutex); 1200 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); 1201 mutex_unlock(hcd->bandwidth_mutex); 1202 /* Second pass: remove endpoint pointers */ 1203 } 1204 for (i = skip_ep0; i < 16; ++i) { 1205 usb_disable_endpoint(dev, i, true); 1206 usb_disable_endpoint(dev, i + USB_DIR_IN, true); 1207 } 1208 } 1209 1210 /** 1211 * usb_enable_endpoint - Enable an endpoint for USB communications 1212 * @dev: the device whose interface is being enabled 1213 * @ep: the endpoint 1214 * @reset_ep: flag to reset the endpoint state 1215 * 1216 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers. 1217 * For control endpoints, both the input and output sides are handled. 1218 */ 1219 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep, 1220 bool reset_ep) 1221 { 1222 int epnum = usb_endpoint_num(&ep->desc); 1223 int is_out = usb_endpoint_dir_out(&ep->desc); 1224 int is_control = usb_endpoint_xfer_control(&ep->desc); 1225 1226 if (reset_ep) 1227 usb_hcd_reset_endpoint(dev, ep); 1228 if (is_out || is_control) 1229 dev->ep_out[epnum] = ep; 1230 if (!is_out || is_control) 1231 dev->ep_in[epnum] = ep; 1232 ep->enabled = 1; 1233 } 1234 1235 /** 1236 * usb_enable_interface - Enable all the endpoints for an interface 1237 * @dev: the device whose interface is being enabled 1238 * @intf: pointer to the interface descriptor 1239 * @reset_eps: flag to reset the endpoints' state 1240 * 1241 * Enables all the endpoints for the interface's current altsetting. 1242 */ 1243 void usb_enable_interface(struct usb_device *dev, 1244 struct usb_interface *intf, bool reset_eps) 1245 { 1246 struct usb_host_interface *alt = intf->cur_altsetting; 1247 int i; 1248 1249 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1250 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps); 1251 } 1252 1253 /** 1254 * usb_set_interface - Makes a particular alternate setting be current 1255 * @dev: the device whose interface is being updated 1256 * @interface: the interface being updated 1257 * @alternate: the setting being chosen. 1258 * Context: !in_interrupt () 1259 * 1260 * This is used to enable data transfers on interfaces that may not 1261 * be enabled by default. Not all devices support such configurability. 1262 * Only the driver bound to an interface may change its setting. 1263 * 1264 * Within any given configuration, each interface may have several 1265 * alternative settings. These are often used to control levels of 1266 * bandwidth consumption. For example, the default setting for a high 1267 * speed interrupt endpoint may not send more than 64 bytes per microframe, 1268 * while interrupt transfers of up to 3KBytes per microframe are legal. 1269 * Also, isochronous endpoints may never be part of an 1270 * interface's default setting. To access such bandwidth, alternate 1271 * interface settings must be made current. 1272 * 1273 * Note that in the Linux USB subsystem, bandwidth associated with 1274 * an endpoint in a given alternate setting is not reserved until an URB 1275 * is submitted that needs that bandwidth. Some other operating systems 1276 * allocate bandwidth early, when a configuration is chosen. 1277 * 1278 * This call is synchronous, and may not be used in an interrupt context. 1279 * Also, drivers must not change altsettings while urbs are scheduled for 1280 * endpoints in that interface; all such urbs must first be completed 1281 * (perhaps forced by unlinking). 1282 * 1283 * Return: Zero on success, or else the status code returned by the 1284 * underlying usb_control_msg() call. 1285 */ 1286 int usb_set_interface(struct usb_device *dev, int interface, int alternate) 1287 { 1288 struct usb_interface *iface; 1289 struct usb_host_interface *alt; 1290 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1291 int i, ret, manual = 0; 1292 unsigned int epaddr; 1293 unsigned int pipe; 1294 1295 if (dev->state == USB_STATE_SUSPENDED) 1296 return -EHOSTUNREACH; 1297 1298 iface = usb_ifnum_to_if(dev, interface); 1299 if (!iface) { 1300 dev_dbg(&dev->dev, "selecting invalid interface %d\n", 1301 interface); 1302 return -EINVAL; 1303 } 1304 if (iface->unregistering) 1305 return -ENODEV; 1306 1307 alt = usb_altnum_to_altsetting(iface, alternate); 1308 if (!alt) { 1309 dev_warn(&dev->dev, "selecting invalid altsetting %d\n", 1310 alternate); 1311 return -EINVAL; 1312 } 1313 1314 /* Make sure we have enough bandwidth for this alternate interface. 1315 * Remove the current alt setting and add the new alt setting. 1316 */ 1317 mutex_lock(hcd->bandwidth_mutex); 1318 /* Disable LPM, and re-enable it once the new alt setting is installed, 1319 * so that the xHCI driver can recalculate the U1/U2 timeouts. 1320 */ 1321 if (usb_disable_lpm(dev)) { 1322 dev_err(&iface->dev, "%s Failed to disable LPM\n.", __func__); 1323 mutex_unlock(hcd->bandwidth_mutex); 1324 return -ENOMEM; 1325 } 1326 /* Changing alt-setting also frees any allocated streams */ 1327 for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++) 1328 iface->cur_altsetting->endpoint[i].streams = 0; 1329 1330 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt); 1331 if (ret < 0) { 1332 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n", 1333 alternate); 1334 usb_enable_lpm(dev); 1335 mutex_unlock(hcd->bandwidth_mutex); 1336 return ret; 1337 } 1338 1339 if (dev->quirks & USB_QUIRK_NO_SET_INTF) 1340 ret = -EPIPE; 1341 else 1342 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1343 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE, 1344 alternate, interface, NULL, 0, 5000); 1345 1346 /* 9.4.10 says devices don't need this and are free to STALL the 1347 * request if the interface only has one alternate setting. 1348 */ 1349 if (ret == -EPIPE && iface->num_altsetting == 1) { 1350 dev_dbg(&dev->dev, 1351 "manual set_interface for iface %d, alt %d\n", 1352 interface, alternate); 1353 manual = 1; 1354 } else if (ret < 0) { 1355 /* Re-instate the old alt setting */ 1356 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting); 1357 usb_enable_lpm(dev); 1358 mutex_unlock(hcd->bandwidth_mutex); 1359 return ret; 1360 } 1361 mutex_unlock(hcd->bandwidth_mutex); 1362 1363 /* FIXME drivers shouldn't need to replicate/bugfix the logic here 1364 * when they implement async or easily-killable versions of this or 1365 * other "should-be-internal" functions (like clear_halt). 1366 * should hcd+usbcore postprocess control requests? 1367 */ 1368 1369 /* prevent submissions using previous endpoint settings */ 1370 if (iface->cur_altsetting != alt) { 1371 remove_intf_ep_devs(iface); 1372 usb_remove_sysfs_intf_files(iface); 1373 } 1374 usb_disable_interface(dev, iface, true); 1375 1376 iface->cur_altsetting = alt; 1377 1378 /* Now that the interface is installed, re-enable LPM. */ 1379 usb_unlocked_enable_lpm(dev); 1380 1381 /* If the interface only has one altsetting and the device didn't 1382 * accept the request, we attempt to carry out the equivalent action 1383 * by manually clearing the HALT feature for each endpoint in the 1384 * new altsetting. 1385 */ 1386 if (manual) { 1387 for (i = 0; i < alt->desc.bNumEndpoints; i++) { 1388 epaddr = alt->endpoint[i].desc.bEndpointAddress; 1389 pipe = __create_pipe(dev, 1390 USB_ENDPOINT_NUMBER_MASK & epaddr) | 1391 (usb_endpoint_out(epaddr) ? 1392 USB_DIR_OUT : USB_DIR_IN); 1393 1394 usb_clear_halt(dev, pipe); 1395 } 1396 } 1397 1398 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting 1399 * 1400 * Note: 1401 * Despite EP0 is always present in all interfaces/AS, the list of 1402 * endpoints from the descriptor does not contain EP0. Due to its 1403 * omnipresence one might expect EP0 being considered "affected" by 1404 * any SetInterface request and hence assume toggles need to be reset. 1405 * However, EP0 toggles are re-synced for every individual transfer 1406 * during the SETUP stage - hence EP0 toggles are "don't care" here. 1407 * (Likewise, EP0 never "halts" on well designed devices.) 1408 */ 1409 usb_enable_interface(dev, iface, true); 1410 if (device_is_registered(&iface->dev)) { 1411 usb_create_sysfs_intf_files(iface); 1412 create_intf_ep_devs(iface); 1413 } 1414 return 0; 1415 } 1416 EXPORT_SYMBOL_GPL(usb_set_interface); 1417 1418 /** 1419 * usb_reset_configuration - lightweight device reset 1420 * @dev: the device whose configuration is being reset 1421 * 1422 * This issues a standard SET_CONFIGURATION request to the device using 1423 * the current configuration. The effect is to reset most USB-related 1424 * state in the device, including interface altsettings (reset to zero), 1425 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt 1426 * endpoints). Other usbcore state is unchanged, including bindings of 1427 * usb device drivers to interfaces. 1428 * 1429 * Because this affects multiple interfaces, avoid using this with composite 1430 * (multi-interface) devices. Instead, the driver for each interface may 1431 * use usb_set_interface() on the interfaces it claims. Be careful though; 1432 * some devices don't support the SET_INTERFACE request, and others won't 1433 * reset all the interface state (notably endpoint state). Resetting the whole 1434 * configuration would affect other drivers' interfaces. 1435 * 1436 * The caller must own the device lock. 1437 * 1438 * Return: Zero on success, else a negative error code. 1439 */ 1440 int usb_reset_configuration(struct usb_device *dev) 1441 { 1442 int i, retval; 1443 struct usb_host_config *config; 1444 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1445 1446 if (dev->state == USB_STATE_SUSPENDED) 1447 return -EHOSTUNREACH; 1448 1449 /* caller must have locked the device and must own 1450 * the usb bus readlock (so driver bindings are stable); 1451 * calls during probe() are fine 1452 */ 1453 1454 for (i = 1; i < 16; ++i) { 1455 usb_disable_endpoint(dev, i, true); 1456 usb_disable_endpoint(dev, i + USB_DIR_IN, true); 1457 } 1458 1459 config = dev->actconfig; 1460 retval = 0; 1461 mutex_lock(hcd->bandwidth_mutex); 1462 /* Disable LPM, and re-enable it once the configuration is reset, so 1463 * that the xHCI driver can recalculate the U1/U2 timeouts. 1464 */ 1465 if (usb_disable_lpm(dev)) { 1466 dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__); 1467 mutex_unlock(hcd->bandwidth_mutex); 1468 return -ENOMEM; 1469 } 1470 /* Make sure we have enough bandwidth for each alternate setting 0 */ 1471 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1472 struct usb_interface *intf = config->interface[i]; 1473 struct usb_host_interface *alt; 1474 1475 alt = usb_altnum_to_altsetting(intf, 0); 1476 if (!alt) 1477 alt = &intf->altsetting[0]; 1478 if (alt != intf->cur_altsetting) 1479 retval = usb_hcd_alloc_bandwidth(dev, NULL, 1480 intf->cur_altsetting, alt); 1481 if (retval < 0) 1482 break; 1483 } 1484 /* If not, reinstate the old alternate settings */ 1485 if (retval < 0) { 1486 reset_old_alts: 1487 for (i--; i >= 0; i--) { 1488 struct usb_interface *intf = config->interface[i]; 1489 struct usb_host_interface *alt; 1490 1491 alt = usb_altnum_to_altsetting(intf, 0); 1492 if (!alt) 1493 alt = &intf->altsetting[0]; 1494 if (alt != intf->cur_altsetting) 1495 usb_hcd_alloc_bandwidth(dev, NULL, 1496 alt, intf->cur_altsetting); 1497 } 1498 usb_enable_lpm(dev); 1499 mutex_unlock(hcd->bandwidth_mutex); 1500 return retval; 1501 } 1502 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1503 USB_REQ_SET_CONFIGURATION, 0, 1504 config->desc.bConfigurationValue, 0, 1505 NULL, 0, USB_CTRL_SET_TIMEOUT); 1506 if (retval < 0) 1507 goto reset_old_alts; 1508 mutex_unlock(hcd->bandwidth_mutex); 1509 1510 /* re-init hc/hcd interface/endpoint state */ 1511 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1512 struct usb_interface *intf = config->interface[i]; 1513 struct usb_host_interface *alt; 1514 1515 alt = usb_altnum_to_altsetting(intf, 0); 1516 1517 /* No altsetting 0? We'll assume the first altsetting. 1518 * We could use a GetInterface call, but if a device is 1519 * so non-compliant that it doesn't have altsetting 0 1520 * then I wouldn't trust its reply anyway. 1521 */ 1522 if (!alt) 1523 alt = &intf->altsetting[0]; 1524 1525 if (alt != intf->cur_altsetting) { 1526 remove_intf_ep_devs(intf); 1527 usb_remove_sysfs_intf_files(intf); 1528 } 1529 intf->cur_altsetting = alt; 1530 usb_enable_interface(dev, intf, true); 1531 if (device_is_registered(&intf->dev)) { 1532 usb_create_sysfs_intf_files(intf); 1533 create_intf_ep_devs(intf); 1534 } 1535 } 1536 /* Now that the interfaces are installed, re-enable LPM. */ 1537 usb_unlocked_enable_lpm(dev); 1538 return 0; 1539 } 1540 EXPORT_SYMBOL_GPL(usb_reset_configuration); 1541 1542 static void usb_release_interface(struct device *dev) 1543 { 1544 struct usb_interface *intf = to_usb_interface(dev); 1545 struct usb_interface_cache *intfc = 1546 altsetting_to_usb_interface_cache(intf->altsetting); 1547 1548 kref_put(&intfc->ref, usb_release_interface_cache); 1549 usb_put_dev(interface_to_usbdev(intf)); 1550 kfree(intf); 1551 } 1552 1553 /* 1554 * usb_deauthorize_interface - deauthorize an USB interface 1555 * 1556 * @intf: USB interface structure 1557 */ 1558 void usb_deauthorize_interface(struct usb_interface *intf) 1559 { 1560 struct device *dev = &intf->dev; 1561 1562 device_lock(dev->parent); 1563 1564 if (intf->authorized) { 1565 device_lock(dev); 1566 intf->authorized = 0; 1567 device_unlock(dev); 1568 1569 usb_forced_unbind_intf(intf); 1570 } 1571 1572 device_unlock(dev->parent); 1573 } 1574 1575 /* 1576 * usb_authorize_interface - authorize an USB interface 1577 * 1578 * @intf: USB interface structure 1579 */ 1580 void usb_authorize_interface(struct usb_interface *intf) 1581 { 1582 struct device *dev = &intf->dev; 1583 1584 if (!intf->authorized) { 1585 device_lock(dev); 1586 intf->authorized = 1; /* authorize interface */ 1587 device_unlock(dev); 1588 } 1589 } 1590 1591 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env) 1592 { 1593 struct usb_device *usb_dev; 1594 struct usb_interface *intf; 1595 struct usb_host_interface *alt; 1596 1597 intf = to_usb_interface(dev); 1598 usb_dev = interface_to_usbdev(intf); 1599 alt = intf->cur_altsetting; 1600 1601 if (add_uevent_var(env, "INTERFACE=%d/%d/%d", 1602 alt->desc.bInterfaceClass, 1603 alt->desc.bInterfaceSubClass, 1604 alt->desc.bInterfaceProtocol)) 1605 return -ENOMEM; 1606 1607 if (add_uevent_var(env, 1608 "MODALIAS=usb:" 1609 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X", 1610 le16_to_cpu(usb_dev->descriptor.idVendor), 1611 le16_to_cpu(usb_dev->descriptor.idProduct), 1612 le16_to_cpu(usb_dev->descriptor.bcdDevice), 1613 usb_dev->descriptor.bDeviceClass, 1614 usb_dev->descriptor.bDeviceSubClass, 1615 usb_dev->descriptor.bDeviceProtocol, 1616 alt->desc.bInterfaceClass, 1617 alt->desc.bInterfaceSubClass, 1618 alt->desc.bInterfaceProtocol, 1619 alt->desc.bInterfaceNumber)) 1620 return -ENOMEM; 1621 1622 return 0; 1623 } 1624 1625 struct device_type usb_if_device_type = { 1626 .name = "usb_interface", 1627 .release = usb_release_interface, 1628 .uevent = usb_if_uevent, 1629 }; 1630 1631 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev, 1632 struct usb_host_config *config, 1633 u8 inum) 1634 { 1635 struct usb_interface_assoc_descriptor *retval = NULL; 1636 struct usb_interface_assoc_descriptor *intf_assoc; 1637 int first_intf; 1638 int last_intf; 1639 int i; 1640 1641 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) { 1642 intf_assoc = config->intf_assoc[i]; 1643 if (intf_assoc->bInterfaceCount == 0) 1644 continue; 1645 1646 first_intf = intf_assoc->bFirstInterface; 1647 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1); 1648 if (inum >= first_intf && inum <= last_intf) { 1649 if (!retval) 1650 retval = intf_assoc; 1651 else 1652 dev_err(&dev->dev, "Interface #%d referenced" 1653 " by multiple IADs\n", inum); 1654 } 1655 } 1656 1657 return retval; 1658 } 1659 1660 1661 /* 1662 * Internal function to queue a device reset 1663 * See usb_queue_reset_device() for more details 1664 */ 1665 static void __usb_queue_reset_device(struct work_struct *ws) 1666 { 1667 int rc; 1668 struct usb_interface *iface = 1669 container_of(ws, struct usb_interface, reset_ws); 1670 struct usb_device *udev = interface_to_usbdev(iface); 1671 1672 rc = usb_lock_device_for_reset(udev, iface); 1673 if (rc >= 0) { 1674 usb_reset_device(udev); 1675 usb_unlock_device(udev); 1676 } 1677 usb_put_intf(iface); /* Undo _get_ in usb_queue_reset_device() */ 1678 } 1679 1680 1681 /* 1682 * usb_set_configuration - Makes a particular device setting be current 1683 * @dev: the device whose configuration is being updated 1684 * @configuration: the configuration being chosen. 1685 * Context: !in_interrupt(), caller owns the device lock 1686 * 1687 * This is used to enable non-default device modes. Not all devices 1688 * use this kind of configurability; many devices only have one 1689 * configuration. 1690 * 1691 * @configuration is the value of the configuration to be installed. 1692 * According to the USB spec (e.g. section 9.1.1.5), configuration values 1693 * must be non-zero; a value of zero indicates that the device in 1694 * unconfigured. However some devices erroneously use 0 as one of their 1695 * configuration values. To help manage such devices, this routine will 1696 * accept @configuration = -1 as indicating the device should be put in 1697 * an unconfigured state. 1698 * 1699 * USB device configurations may affect Linux interoperability, 1700 * power consumption and the functionality available. For example, 1701 * the default configuration is limited to using 100mA of bus power, 1702 * so that when certain device functionality requires more power, 1703 * and the device is bus powered, that functionality should be in some 1704 * non-default device configuration. Other device modes may also be 1705 * reflected as configuration options, such as whether two ISDN 1706 * channels are available independently; and choosing between open 1707 * standard device protocols (like CDC) or proprietary ones. 1708 * 1709 * Note that a non-authorized device (dev->authorized == 0) will only 1710 * be put in unconfigured mode. 1711 * 1712 * Note that USB has an additional level of device configurability, 1713 * associated with interfaces. That configurability is accessed using 1714 * usb_set_interface(). 1715 * 1716 * This call is synchronous. The calling context must be able to sleep, 1717 * must own the device lock, and must not hold the driver model's USB 1718 * bus mutex; usb interface driver probe() methods cannot use this routine. 1719 * 1720 * Returns zero on success, or else the status code returned by the 1721 * underlying call that failed. On successful completion, each interface 1722 * in the original device configuration has been destroyed, and each one 1723 * in the new configuration has been probed by all relevant usb device 1724 * drivers currently known to the kernel. 1725 */ 1726 int usb_set_configuration(struct usb_device *dev, int configuration) 1727 { 1728 int i, ret; 1729 struct usb_host_config *cp = NULL; 1730 struct usb_interface **new_interfaces = NULL; 1731 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1732 int n, nintf; 1733 1734 if (dev->authorized == 0 || configuration == -1) 1735 configuration = 0; 1736 else { 1737 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) { 1738 if (dev->config[i].desc.bConfigurationValue == 1739 configuration) { 1740 cp = &dev->config[i]; 1741 break; 1742 } 1743 } 1744 } 1745 if ((!cp && configuration != 0)) 1746 return -EINVAL; 1747 1748 /* The USB spec says configuration 0 means unconfigured. 1749 * But if a device includes a configuration numbered 0, 1750 * we will accept it as a correctly configured state. 1751 * Use -1 if you really want to unconfigure the device. 1752 */ 1753 if (cp && configuration == 0) 1754 dev_warn(&dev->dev, "config 0 descriptor??\n"); 1755 1756 /* Allocate memory for new interfaces before doing anything else, 1757 * so that if we run out then nothing will have changed. */ 1758 n = nintf = 0; 1759 if (cp) { 1760 nintf = cp->desc.bNumInterfaces; 1761 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces), 1762 GFP_NOIO); 1763 if (!new_interfaces) 1764 return -ENOMEM; 1765 1766 for (; n < nintf; ++n) { 1767 new_interfaces[n] = kzalloc( 1768 sizeof(struct usb_interface), 1769 GFP_NOIO); 1770 if (!new_interfaces[n]) { 1771 ret = -ENOMEM; 1772 free_interfaces: 1773 while (--n >= 0) 1774 kfree(new_interfaces[n]); 1775 kfree(new_interfaces); 1776 return ret; 1777 } 1778 } 1779 1780 i = dev->bus_mA - usb_get_max_power(dev, cp); 1781 if (i < 0) 1782 dev_warn(&dev->dev, "new config #%d exceeds power " 1783 "limit by %dmA\n", 1784 configuration, -i); 1785 } 1786 1787 /* Wake up the device so we can send it the Set-Config request */ 1788 ret = usb_autoresume_device(dev); 1789 if (ret) 1790 goto free_interfaces; 1791 1792 /* if it's already configured, clear out old state first. 1793 * getting rid of old interfaces means unbinding their drivers. 1794 */ 1795 if (dev->state != USB_STATE_ADDRESS) 1796 usb_disable_device(dev, 1); /* Skip ep0 */ 1797 1798 /* Get rid of pending async Set-Config requests for this device */ 1799 cancel_async_set_config(dev); 1800 1801 /* Make sure we have bandwidth (and available HCD resources) for this 1802 * configuration. Remove endpoints from the schedule if we're dropping 1803 * this configuration to set configuration 0. After this point, the 1804 * host controller will not allow submissions to dropped endpoints. If 1805 * this call fails, the device state is unchanged. 1806 */ 1807 mutex_lock(hcd->bandwidth_mutex); 1808 /* Disable LPM, and re-enable it once the new configuration is 1809 * installed, so that the xHCI driver can recalculate the U1/U2 1810 * timeouts. 1811 */ 1812 if (dev->actconfig && usb_disable_lpm(dev)) { 1813 dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__); 1814 mutex_unlock(hcd->bandwidth_mutex); 1815 ret = -ENOMEM; 1816 goto free_interfaces; 1817 } 1818 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL); 1819 if (ret < 0) { 1820 if (dev->actconfig) 1821 usb_enable_lpm(dev); 1822 mutex_unlock(hcd->bandwidth_mutex); 1823 usb_autosuspend_device(dev); 1824 goto free_interfaces; 1825 } 1826 1827 /* 1828 * Initialize the new interface structures and the 1829 * hc/hcd/usbcore interface/endpoint state. 1830 */ 1831 for (i = 0; i < nintf; ++i) { 1832 struct usb_interface_cache *intfc; 1833 struct usb_interface *intf; 1834 struct usb_host_interface *alt; 1835 1836 cp->interface[i] = intf = new_interfaces[i]; 1837 intfc = cp->intf_cache[i]; 1838 intf->altsetting = intfc->altsetting; 1839 intf->num_altsetting = intfc->num_altsetting; 1840 intf->authorized = !!HCD_INTF_AUTHORIZED(hcd); 1841 kref_get(&intfc->ref); 1842 1843 alt = usb_altnum_to_altsetting(intf, 0); 1844 1845 /* No altsetting 0? We'll assume the first altsetting. 1846 * We could use a GetInterface call, but if a device is 1847 * so non-compliant that it doesn't have altsetting 0 1848 * then I wouldn't trust its reply anyway. 1849 */ 1850 if (!alt) 1851 alt = &intf->altsetting[0]; 1852 1853 intf->intf_assoc = 1854 find_iad(dev, cp, alt->desc.bInterfaceNumber); 1855 intf->cur_altsetting = alt; 1856 usb_enable_interface(dev, intf, true); 1857 intf->dev.parent = &dev->dev; 1858 intf->dev.driver = NULL; 1859 intf->dev.bus = &usb_bus_type; 1860 intf->dev.type = &usb_if_device_type; 1861 intf->dev.groups = usb_interface_groups; 1862 /* 1863 * Please refer to usb_alloc_dev() to see why we set 1864 * dma_mask and dma_pfn_offset. 1865 */ 1866 intf->dev.dma_mask = dev->dev.dma_mask; 1867 intf->dev.dma_pfn_offset = dev->dev.dma_pfn_offset; 1868 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device); 1869 intf->minor = -1; 1870 device_initialize(&intf->dev); 1871 pm_runtime_no_callbacks(&intf->dev); 1872 dev_set_name(&intf->dev, "%d-%s:%d.%d", 1873 dev->bus->busnum, dev->devpath, 1874 configuration, alt->desc.bInterfaceNumber); 1875 usb_get_dev(dev); 1876 } 1877 kfree(new_interfaces); 1878 1879 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1880 USB_REQ_SET_CONFIGURATION, 0, configuration, 0, 1881 NULL, 0, USB_CTRL_SET_TIMEOUT); 1882 if (ret < 0 && cp) { 1883 /* 1884 * All the old state is gone, so what else can we do? 1885 * The device is probably useless now anyway. 1886 */ 1887 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); 1888 for (i = 0; i < nintf; ++i) { 1889 usb_disable_interface(dev, cp->interface[i], true); 1890 put_device(&cp->interface[i]->dev); 1891 cp->interface[i] = NULL; 1892 } 1893 cp = NULL; 1894 } 1895 1896 dev->actconfig = cp; 1897 mutex_unlock(hcd->bandwidth_mutex); 1898 1899 if (!cp) { 1900 usb_set_device_state(dev, USB_STATE_ADDRESS); 1901 1902 /* Leave LPM disabled while the device is unconfigured. */ 1903 usb_autosuspend_device(dev); 1904 return ret; 1905 } 1906 usb_set_device_state(dev, USB_STATE_CONFIGURED); 1907 1908 if (cp->string == NULL && 1909 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS)) 1910 cp->string = usb_cache_string(dev, cp->desc.iConfiguration); 1911 1912 /* Now that the interfaces are installed, re-enable LPM. */ 1913 usb_unlocked_enable_lpm(dev); 1914 /* Enable LTM if it was turned off by usb_disable_device. */ 1915 usb_enable_ltm(dev); 1916 1917 /* Now that all the interfaces are set up, register them 1918 * to trigger binding of drivers to interfaces. probe() 1919 * routines may install different altsettings and may 1920 * claim() any interfaces not yet bound. Many class drivers 1921 * need that: CDC, audio, video, etc. 1922 */ 1923 for (i = 0; i < nintf; ++i) { 1924 struct usb_interface *intf = cp->interface[i]; 1925 1926 dev_dbg(&dev->dev, 1927 "adding %s (config #%d, interface %d)\n", 1928 dev_name(&intf->dev), configuration, 1929 intf->cur_altsetting->desc.bInterfaceNumber); 1930 device_enable_async_suspend(&intf->dev); 1931 ret = device_add(&intf->dev); 1932 if (ret != 0) { 1933 dev_err(&dev->dev, "device_add(%s) --> %d\n", 1934 dev_name(&intf->dev), ret); 1935 continue; 1936 } 1937 create_intf_ep_devs(intf); 1938 } 1939 1940 usb_autosuspend_device(dev); 1941 return 0; 1942 } 1943 EXPORT_SYMBOL_GPL(usb_set_configuration); 1944 1945 static LIST_HEAD(set_config_list); 1946 static DEFINE_SPINLOCK(set_config_lock); 1947 1948 struct set_config_request { 1949 struct usb_device *udev; 1950 int config; 1951 struct work_struct work; 1952 struct list_head node; 1953 }; 1954 1955 /* Worker routine for usb_driver_set_configuration() */ 1956 static void driver_set_config_work(struct work_struct *work) 1957 { 1958 struct set_config_request *req = 1959 container_of(work, struct set_config_request, work); 1960 struct usb_device *udev = req->udev; 1961 1962 usb_lock_device(udev); 1963 spin_lock(&set_config_lock); 1964 list_del(&req->node); 1965 spin_unlock(&set_config_lock); 1966 1967 if (req->config >= -1) /* Is req still valid? */ 1968 usb_set_configuration(udev, req->config); 1969 usb_unlock_device(udev); 1970 usb_put_dev(udev); 1971 kfree(req); 1972 } 1973 1974 /* Cancel pending Set-Config requests for a device whose configuration 1975 * was just changed 1976 */ 1977 static void cancel_async_set_config(struct usb_device *udev) 1978 { 1979 struct set_config_request *req; 1980 1981 spin_lock(&set_config_lock); 1982 list_for_each_entry(req, &set_config_list, node) { 1983 if (req->udev == udev) 1984 req->config = -999; /* Mark as cancelled */ 1985 } 1986 spin_unlock(&set_config_lock); 1987 } 1988 1989 /** 1990 * usb_driver_set_configuration - Provide a way for drivers to change device configurations 1991 * @udev: the device whose configuration is being updated 1992 * @config: the configuration being chosen. 1993 * Context: In process context, must be able to sleep 1994 * 1995 * Device interface drivers are not allowed to change device configurations. 1996 * This is because changing configurations will destroy the interface the 1997 * driver is bound to and create new ones; it would be like a floppy-disk 1998 * driver telling the computer to replace the floppy-disk drive with a 1999 * tape drive! 2000 * 2001 * Still, in certain specialized circumstances the need may arise. This 2002 * routine gets around the normal restrictions by using a work thread to 2003 * submit the change-config request. 2004 * 2005 * Return: 0 if the request was successfully queued, error code otherwise. 2006 * The caller has no way to know whether the queued request will eventually 2007 * succeed. 2008 */ 2009 int usb_driver_set_configuration(struct usb_device *udev, int config) 2010 { 2011 struct set_config_request *req; 2012 2013 req = kmalloc(sizeof(*req), GFP_KERNEL); 2014 if (!req) 2015 return -ENOMEM; 2016 req->udev = udev; 2017 req->config = config; 2018 INIT_WORK(&req->work, driver_set_config_work); 2019 2020 spin_lock(&set_config_lock); 2021 list_add(&req->node, &set_config_list); 2022 spin_unlock(&set_config_lock); 2023 2024 usb_get_dev(udev); 2025 schedule_work(&req->work); 2026 return 0; 2027 } 2028 EXPORT_SYMBOL_GPL(usb_driver_set_configuration); 2029 2030 /** 2031 * cdc_parse_cdc_header - parse the extra headers present in CDC devices 2032 * @hdr: the place to put the results of the parsing 2033 * @intf: the interface for which parsing is requested 2034 * @buffer: pointer to the extra headers to be parsed 2035 * @buflen: length of the extra headers 2036 * 2037 * This evaluates the extra headers present in CDC devices which 2038 * bind the interfaces for data and control and provide details 2039 * about the capabilities of the device. 2040 * 2041 * Return: number of descriptors parsed or -EINVAL 2042 * if the header is contradictory beyond salvage 2043 */ 2044 2045 int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr, 2046 struct usb_interface *intf, 2047 u8 *buffer, 2048 int buflen) 2049 { 2050 /* duplicates are ignored */ 2051 struct usb_cdc_union_desc *union_header = NULL; 2052 2053 /* duplicates are not tolerated */ 2054 struct usb_cdc_header_desc *header = NULL; 2055 struct usb_cdc_ether_desc *ether = NULL; 2056 struct usb_cdc_mdlm_detail_desc *detail = NULL; 2057 struct usb_cdc_mdlm_desc *desc = NULL; 2058 2059 unsigned int elength; 2060 int cnt = 0; 2061 2062 memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header)); 2063 hdr->phonet_magic_present = false; 2064 while (buflen > 0) { 2065 elength = buffer[0]; 2066 if (!elength) { 2067 dev_err(&intf->dev, "skipping garbage byte\n"); 2068 elength = 1; 2069 goto next_desc; 2070 } 2071 if (buffer[1] != USB_DT_CS_INTERFACE) { 2072 dev_err(&intf->dev, "skipping garbage\n"); 2073 goto next_desc; 2074 } 2075 2076 switch (buffer[2]) { 2077 case USB_CDC_UNION_TYPE: /* we've found it */ 2078 if (elength < sizeof(struct usb_cdc_union_desc)) 2079 goto next_desc; 2080 if (union_header) { 2081 dev_err(&intf->dev, "More than one union descriptor, skipping ...\n"); 2082 goto next_desc; 2083 } 2084 union_header = (struct usb_cdc_union_desc *)buffer; 2085 break; 2086 case USB_CDC_COUNTRY_TYPE: 2087 if (elength < sizeof(struct usb_cdc_country_functional_desc)) 2088 goto next_desc; 2089 hdr->usb_cdc_country_functional_desc = 2090 (struct usb_cdc_country_functional_desc *)buffer; 2091 break; 2092 case USB_CDC_HEADER_TYPE: 2093 if (elength != sizeof(struct usb_cdc_header_desc)) 2094 goto next_desc; 2095 if (header) 2096 return -EINVAL; 2097 header = (struct usb_cdc_header_desc *)buffer; 2098 break; 2099 case USB_CDC_ACM_TYPE: 2100 if (elength < sizeof(struct usb_cdc_acm_descriptor)) 2101 goto next_desc; 2102 hdr->usb_cdc_acm_descriptor = 2103 (struct usb_cdc_acm_descriptor *)buffer; 2104 break; 2105 case USB_CDC_ETHERNET_TYPE: 2106 if (elength != sizeof(struct usb_cdc_ether_desc)) 2107 goto next_desc; 2108 if (ether) 2109 return -EINVAL; 2110 ether = (struct usb_cdc_ether_desc *)buffer; 2111 break; 2112 case USB_CDC_CALL_MANAGEMENT_TYPE: 2113 if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor)) 2114 goto next_desc; 2115 hdr->usb_cdc_call_mgmt_descriptor = 2116 (struct usb_cdc_call_mgmt_descriptor *)buffer; 2117 break; 2118 case USB_CDC_DMM_TYPE: 2119 if (elength < sizeof(struct usb_cdc_dmm_desc)) 2120 goto next_desc; 2121 hdr->usb_cdc_dmm_desc = 2122 (struct usb_cdc_dmm_desc *)buffer; 2123 break; 2124 case USB_CDC_MDLM_TYPE: 2125 if (elength < sizeof(struct usb_cdc_mdlm_desc *)) 2126 goto next_desc; 2127 if (desc) 2128 return -EINVAL; 2129 desc = (struct usb_cdc_mdlm_desc *)buffer; 2130 break; 2131 case USB_CDC_MDLM_DETAIL_TYPE: 2132 if (elength < sizeof(struct usb_cdc_mdlm_detail_desc *)) 2133 goto next_desc; 2134 if (detail) 2135 return -EINVAL; 2136 detail = (struct usb_cdc_mdlm_detail_desc *)buffer; 2137 break; 2138 case USB_CDC_NCM_TYPE: 2139 if (elength < sizeof(struct usb_cdc_ncm_desc)) 2140 goto next_desc; 2141 hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer; 2142 break; 2143 case USB_CDC_MBIM_TYPE: 2144 if (elength < sizeof(struct usb_cdc_mbim_desc)) 2145 goto next_desc; 2146 2147 hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer; 2148 break; 2149 case USB_CDC_MBIM_EXTENDED_TYPE: 2150 if (elength < sizeof(struct usb_cdc_mbim_extended_desc)) 2151 break; 2152 hdr->usb_cdc_mbim_extended_desc = 2153 (struct usb_cdc_mbim_extended_desc *)buffer; 2154 break; 2155 case CDC_PHONET_MAGIC_NUMBER: 2156 hdr->phonet_magic_present = true; 2157 break; 2158 default: 2159 /* 2160 * there are LOTS more CDC descriptors that 2161 * could legitimately be found here. 2162 */ 2163 dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n", 2164 buffer[2], elength); 2165 goto next_desc; 2166 } 2167 cnt++; 2168 next_desc: 2169 buflen -= elength; 2170 buffer += elength; 2171 } 2172 hdr->usb_cdc_union_desc = union_header; 2173 hdr->usb_cdc_header_desc = header; 2174 hdr->usb_cdc_mdlm_detail_desc = detail; 2175 hdr->usb_cdc_mdlm_desc = desc; 2176 hdr->usb_cdc_ether_desc = ether; 2177 return cnt; 2178 } 2179 2180 EXPORT_SYMBOL(cdc_parse_cdc_header); 2181