1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * message.c - synchronous message handling 4 * 5 * Released under the GPLv2 only. 6 */ 7 8 #include <linux/pci.h> /* for scatterlist macros */ 9 #include <linux/usb.h> 10 #include <linux/module.h> 11 #include <linux/slab.h> 12 #include <linux/mm.h> 13 #include <linux/timer.h> 14 #include <linux/ctype.h> 15 #include <linux/nls.h> 16 #include <linux/device.h> 17 #include <linux/scatterlist.h> 18 #include <linux/usb/cdc.h> 19 #include <linux/usb/quirks.h> 20 #include <linux/usb/hcd.h> /* for usbcore internals */ 21 #include <linux/usb/of.h> 22 #include <asm/byteorder.h> 23 24 #include "usb.h" 25 26 static void cancel_async_set_config(struct usb_device *udev); 27 28 struct api_context { 29 struct completion done; 30 int status; 31 }; 32 33 static void usb_api_blocking_completion(struct urb *urb) 34 { 35 struct api_context *ctx = urb->context; 36 37 ctx->status = urb->status; 38 complete(&ctx->done); 39 } 40 41 42 /* 43 * Starts urb and waits for completion or timeout. Note that this call 44 * is NOT interruptible. Many device driver i/o requests should be 45 * interruptible and therefore these drivers should implement their 46 * own interruptible routines. 47 */ 48 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length) 49 { 50 struct api_context ctx; 51 unsigned long expire; 52 int retval; 53 54 init_completion(&ctx.done); 55 urb->context = &ctx; 56 urb->actual_length = 0; 57 retval = usb_submit_urb(urb, GFP_NOIO); 58 if (unlikely(retval)) 59 goto out; 60 61 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT; 62 if (!wait_for_completion_timeout(&ctx.done, expire)) { 63 usb_kill_urb(urb); 64 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status); 65 66 dev_dbg(&urb->dev->dev, 67 "%s timed out on ep%d%s len=%u/%u\n", 68 current->comm, 69 usb_endpoint_num(&urb->ep->desc), 70 usb_urb_dir_in(urb) ? "in" : "out", 71 urb->actual_length, 72 urb->transfer_buffer_length); 73 } else 74 retval = ctx.status; 75 out: 76 if (actual_length) 77 *actual_length = urb->actual_length; 78 79 usb_free_urb(urb); 80 return retval; 81 } 82 83 /*-------------------------------------------------------------------*/ 84 /* returns status (negative) or length (positive) */ 85 static int usb_internal_control_msg(struct usb_device *usb_dev, 86 unsigned int pipe, 87 struct usb_ctrlrequest *cmd, 88 void *data, int len, int timeout) 89 { 90 struct urb *urb; 91 int retv; 92 int length; 93 94 urb = usb_alloc_urb(0, GFP_NOIO); 95 if (!urb) 96 return -ENOMEM; 97 98 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data, 99 len, usb_api_blocking_completion, NULL); 100 101 retv = usb_start_wait_urb(urb, timeout, &length); 102 if (retv < 0) 103 return retv; 104 else 105 return length; 106 } 107 108 /** 109 * usb_control_msg - Builds a control urb, sends it off and waits for completion 110 * @dev: pointer to the usb device to send the message to 111 * @pipe: endpoint "pipe" to send the message to 112 * @request: USB message request value 113 * @requesttype: USB message request type value 114 * @value: USB message value 115 * @index: USB message index value 116 * @data: pointer to the data to send 117 * @size: length in bytes of the data to send 118 * @timeout: time in msecs to wait for the message to complete before timing 119 * out (if 0 the wait is forever) 120 * 121 * Context: !in_interrupt () 122 * 123 * This function sends a simple control message to a specified endpoint and 124 * waits for the message to complete, or timeout. 125 * 126 * Don't use this function from within an interrupt context. If you need 127 * an asynchronous message, or need to send a message from within interrupt 128 * context, use usb_submit_urb(). If a thread in your driver uses this call, 129 * make sure your disconnect() method can wait for it to complete. Since you 130 * don't have a handle on the URB used, you can't cancel the request. 131 * 132 * Return: If successful, the number of bytes transferred. Otherwise, a negative 133 * error number. 134 */ 135 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, 136 __u8 requesttype, __u16 value, __u16 index, void *data, 137 __u16 size, int timeout) 138 { 139 struct usb_ctrlrequest *dr; 140 int ret; 141 142 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO); 143 if (!dr) 144 return -ENOMEM; 145 146 dr->bRequestType = requesttype; 147 dr->bRequest = request; 148 dr->wValue = cpu_to_le16(value); 149 dr->wIndex = cpu_to_le16(index); 150 dr->wLength = cpu_to_le16(size); 151 152 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout); 153 154 /* Linger a bit, prior to the next control message. */ 155 if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG) 156 msleep(200); 157 158 kfree(dr); 159 160 return ret; 161 } 162 EXPORT_SYMBOL_GPL(usb_control_msg); 163 164 /** 165 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion 166 * @usb_dev: pointer to the usb device to send the message to 167 * @pipe: endpoint "pipe" to send the message to 168 * @data: pointer to the data to send 169 * @len: length in bytes of the data to send 170 * @actual_length: pointer to a location to put the actual length transferred 171 * in bytes 172 * @timeout: time in msecs to wait for the message to complete before 173 * timing out (if 0 the wait is forever) 174 * 175 * Context: !in_interrupt () 176 * 177 * This function sends a simple interrupt message to a specified endpoint and 178 * waits for the message to complete, or timeout. 179 * 180 * Don't use this function from within an interrupt context. If you need 181 * an asynchronous message, or need to send a message from within interrupt 182 * context, use usb_submit_urb() If a thread in your driver uses this call, 183 * make sure your disconnect() method can wait for it to complete. Since you 184 * don't have a handle on the URB used, you can't cancel the request. 185 * 186 * Return: 187 * If successful, 0. Otherwise a negative error number. The number of actual 188 * bytes transferred will be stored in the @actual_length parameter. 189 */ 190 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 191 void *data, int len, int *actual_length, int timeout) 192 { 193 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout); 194 } 195 EXPORT_SYMBOL_GPL(usb_interrupt_msg); 196 197 /** 198 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion 199 * @usb_dev: pointer to the usb device to send the message to 200 * @pipe: endpoint "pipe" to send the message to 201 * @data: pointer to the data to send 202 * @len: length in bytes of the data to send 203 * @actual_length: pointer to a location to put the actual length transferred 204 * in bytes 205 * @timeout: time in msecs to wait for the message to complete before 206 * timing out (if 0 the wait is forever) 207 * 208 * Context: !in_interrupt () 209 * 210 * This function sends a simple bulk message to a specified endpoint 211 * and waits for the message to complete, or timeout. 212 * 213 * Don't use this function from within an interrupt context. If you need 214 * an asynchronous message, or need to send a message from within interrupt 215 * context, use usb_submit_urb() If a thread in your driver uses this call, 216 * make sure your disconnect() method can wait for it to complete. Since you 217 * don't have a handle on the URB used, you can't cancel the request. 218 * 219 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl, 220 * users are forced to abuse this routine by using it to submit URBs for 221 * interrupt endpoints. We will take the liberty of creating an interrupt URB 222 * (with the default interval) if the target is an interrupt endpoint. 223 * 224 * Return: 225 * If successful, 0. Otherwise a negative error number. The number of actual 226 * bytes transferred will be stored in the @actual_length parameter. 227 * 228 */ 229 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 230 void *data, int len, int *actual_length, int timeout) 231 { 232 struct urb *urb; 233 struct usb_host_endpoint *ep; 234 235 ep = usb_pipe_endpoint(usb_dev, pipe); 236 if (!ep || len < 0) 237 return -EINVAL; 238 239 urb = usb_alloc_urb(0, GFP_KERNEL); 240 if (!urb) 241 return -ENOMEM; 242 243 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 244 USB_ENDPOINT_XFER_INT) { 245 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30); 246 usb_fill_int_urb(urb, usb_dev, pipe, data, len, 247 usb_api_blocking_completion, NULL, 248 ep->desc.bInterval); 249 } else 250 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len, 251 usb_api_blocking_completion, NULL); 252 253 return usb_start_wait_urb(urb, timeout, actual_length); 254 } 255 EXPORT_SYMBOL_GPL(usb_bulk_msg); 256 257 /*-------------------------------------------------------------------*/ 258 259 static void sg_clean(struct usb_sg_request *io) 260 { 261 if (io->urbs) { 262 while (io->entries--) 263 usb_free_urb(io->urbs[io->entries]); 264 kfree(io->urbs); 265 io->urbs = NULL; 266 } 267 io->dev = NULL; 268 } 269 270 static void sg_complete(struct urb *urb) 271 { 272 unsigned long flags; 273 struct usb_sg_request *io = urb->context; 274 int status = urb->status; 275 276 spin_lock_irqsave(&io->lock, flags); 277 278 /* In 2.5 we require hcds' endpoint queues not to progress after fault 279 * reports, until the completion callback (this!) returns. That lets 280 * device driver code (like this routine) unlink queued urbs first, 281 * if it needs to, since the HC won't work on them at all. So it's 282 * not possible for page N+1 to overwrite page N, and so on. 283 * 284 * That's only for "hard" faults; "soft" faults (unlinks) sometimes 285 * complete before the HCD can get requests away from hardware, 286 * though never during cleanup after a hard fault. 287 */ 288 if (io->status 289 && (io->status != -ECONNRESET 290 || status != -ECONNRESET) 291 && urb->actual_length) { 292 dev_err(io->dev->bus->controller, 293 "dev %s ep%d%s scatterlist error %d/%d\n", 294 io->dev->devpath, 295 usb_endpoint_num(&urb->ep->desc), 296 usb_urb_dir_in(urb) ? "in" : "out", 297 status, io->status); 298 /* BUG (); */ 299 } 300 301 if (io->status == 0 && status && status != -ECONNRESET) { 302 int i, found, retval; 303 304 io->status = status; 305 306 /* the previous urbs, and this one, completed already. 307 * unlink pending urbs so they won't rx/tx bad data. 308 * careful: unlink can sometimes be synchronous... 309 */ 310 spin_unlock_irqrestore(&io->lock, flags); 311 for (i = 0, found = 0; i < io->entries; i++) { 312 if (!io->urbs[i]) 313 continue; 314 if (found) { 315 usb_block_urb(io->urbs[i]); 316 retval = usb_unlink_urb(io->urbs[i]); 317 if (retval != -EINPROGRESS && 318 retval != -ENODEV && 319 retval != -EBUSY && 320 retval != -EIDRM) 321 dev_err(&io->dev->dev, 322 "%s, unlink --> %d\n", 323 __func__, retval); 324 } else if (urb == io->urbs[i]) 325 found = 1; 326 } 327 spin_lock_irqsave(&io->lock, flags); 328 } 329 330 /* on the last completion, signal usb_sg_wait() */ 331 io->bytes += urb->actual_length; 332 io->count--; 333 if (!io->count) 334 complete(&io->complete); 335 336 spin_unlock_irqrestore(&io->lock, flags); 337 } 338 339 340 /** 341 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request 342 * @io: request block being initialized. until usb_sg_wait() returns, 343 * treat this as a pointer to an opaque block of memory, 344 * @dev: the usb device that will send or receive the data 345 * @pipe: endpoint "pipe" used to transfer the data 346 * @period: polling rate for interrupt endpoints, in frames or 347 * (for high speed endpoints) microframes; ignored for bulk 348 * @sg: scatterlist entries 349 * @nents: how many entries in the scatterlist 350 * @length: how many bytes to send from the scatterlist, or zero to 351 * send every byte identified in the list. 352 * @mem_flags: SLAB_* flags affecting memory allocations in this call 353 * 354 * This initializes a scatter/gather request, allocating resources such as 355 * I/O mappings and urb memory (except maybe memory used by USB controller 356 * drivers). 357 * 358 * The request must be issued using usb_sg_wait(), which waits for the I/O to 359 * complete (or to be canceled) and then cleans up all resources allocated by 360 * usb_sg_init(). 361 * 362 * The request may be canceled with usb_sg_cancel(), either before or after 363 * usb_sg_wait() is called. 364 * 365 * Return: Zero for success, else a negative errno value. 366 */ 367 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev, 368 unsigned pipe, unsigned period, struct scatterlist *sg, 369 int nents, size_t length, gfp_t mem_flags) 370 { 371 int i; 372 int urb_flags; 373 int use_sg; 374 375 if (!io || !dev || !sg 376 || usb_pipecontrol(pipe) 377 || usb_pipeisoc(pipe) 378 || nents <= 0) 379 return -EINVAL; 380 381 spin_lock_init(&io->lock); 382 io->dev = dev; 383 io->pipe = pipe; 384 385 if (dev->bus->sg_tablesize > 0) { 386 use_sg = true; 387 io->entries = 1; 388 } else { 389 use_sg = false; 390 io->entries = nents; 391 } 392 393 /* initialize all the urbs we'll use */ 394 io->urbs = kmalloc_array(io->entries, sizeof(*io->urbs), mem_flags); 395 if (!io->urbs) 396 goto nomem; 397 398 urb_flags = URB_NO_INTERRUPT; 399 if (usb_pipein(pipe)) 400 urb_flags |= URB_SHORT_NOT_OK; 401 402 for_each_sg(sg, sg, io->entries, i) { 403 struct urb *urb; 404 unsigned len; 405 406 urb = usb_alloc_urb(0, mem_flags); 407 if (!urb) { 408 io->entries = i; 409 goto nomem; 410 } 411 io->urbs[i] = urb; 412 413 urb->dev = NULL; 414 urb->pipe = pipe; 415 urb->interval = period; 416 urb->transfer_flags = urb_flags; 417 urb->complete = sg_complete; 418 urb->context = io; 419 urb->sg = sg; 420 421 if (use_sg) { 422 /* There is no single transfer buffer */ 423 urb->transfer_buffer = NULL; 424 urb->num_sgs = nents; 425 426 /* A length of zero means transfer the whole sg list */ 427 len = length; 428 if (len == 0) { 429 struct scatterlist *sg2; 430 int j; 431 432 for_each_sg(sg, sg2, nents, j) 433 len += sg2->length; 434 } 435 } else { 436 /* 437 * Some systems can't use DMA; they use PIO instead. 438 * For their sakes, transfer_buffer is set whenever 439 * possible. 440 */ 441 if (!PageHighMem(sg_page(sg))) 442 urb->transfer_buffer = sg_virt(sg); 443 else 444 urb->transfer_buffer = NULL; 445 446 len = sg->length; 447 if (length) { 448 len = min_t(size_t, len, length); 449 length -= len; 450 if (length == 0) 451 io->entries = i + 1; 452 } 453 } 454 urb->transfer_buffer_length = len; 455 } 456 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT; 457 458 /* transaction state */ 459 io->count = io->entries; 460 io->status = 0; 461 io->bytes = 0; 462 init_completion(&io->complete); 463 return 0; 464 465 nomem: 466 sg_clean(io); 467 return -ENOMEM; 468 } 469 EXPORT_SYMBOL_GPL(usb_sg_init); 470 471 /** 472 * usb_sg_wait - synchronously execute scatter/gather request 473 * @io: request block handle, as initialized with usb_sg_init(). 474 * some fields become accessible when this call returns. 475 * Context: !in_interrupt () 476 * 477 * This function blocks until the specified I/O operation completes. It 478 * leverages the grouping of the related I/O requests to get good transfer 479 * rates, by queueing the requests. At higher speeds, such queuing can 480 * significantly improve USB throughput. 481 * 482 * There are three kinds of completion for this function. 483 * 484 * (1) success, where io->status is zero. The number of io->bytes 485 * transferred is as requested. 486 * (2) error, where io->status is a negative errno value. The number 487 * of io->bytes transferred before the error is usually less 488 * than requested, and can be nonzero. 489 * (3) cancellation, a type of error with status -ECONNRESET that 490 * is initiated by usb_sg_cancel(). 491 * 492 * When this function returns, all memory allocated through usb_sg_init() or 493 * this call will have been freed. The request block parameter may still be 494 * passed to usb_sg_cancel(), or it may be freed. It could also be 495 * reinitialized and then reused. 496 * 497 * Data Transfer Rates: 498 * 499 * Bulk transfers are valid for full or high speed endpoints. 500 * The best full speed data rate is 19 packets of 64 bytes each 501 * per frame, or 1216 bytes per millisecond. 502 * The best high speed data rate is 13 packets of 512 bytes each 503 * per microframe, or 52 KBytes per millisecond. 504 * 505 * The reason to use interrupt transfers through this API would most likely 506 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond 507 * could be transferred. That capability is less useful for low or full 508 * speed interrupt endpoints, which allow at most one packet per millisecond, 509 * of at most 8 or 64 bytes (respectively). 510 * 511 * It is not necessary to call this function to reserve bandwidth for devices 512 * under an xHCI host controller, as the bandwidth is reserved when the 513 * configuration or interface alt setting is selected. 514 */ 515 void usb_sg_wait(struct usb_sg_request *io) 516 { 517 int i; 518 int entries = io->entries; 519 520 /* queue the urbs. */ 521 spin_lock_irq(&io->lock); 522 i = 0; 523 while (i < entries && !io->status) { 524 int retval; 525 526 io->urbs[i]->dev = io->dev; 527 spin_unlock_irq(&io->lock); 528 529 retval = usb_submit_urb(io->urbs[i], GFP_NOIO); 530 531 switch (retval) { 532 /* maybe we retrying will recover */ 533 case -ENXIO: /* hc didn't queue this one */ 534 case -EAGAIN: 535 case -ENOMEM: 536 retval = 0; 537 yield(); 538 break; 539 540 /* no error? continue immediately. 541 * 542 * NOTE: to work better with UHCI (4K I/O buffer may 543 * need 3K of TDs) it may be good to limit how many 544 * URBs are queued at once; N milliseconds? 545 */ 546 case 0: 547 ++i; 548 cpu_relax(); 549 break; 550 551 /* fail any uncompleted urbs */ 552 default: 553 io->urbs[i]->status = retval; 554 dev_dbg(&io->dev->dev, "%s, submit --> %d\n", 555 __func__, retval); 556 usb_sg_cancel(io); 557 } 558 spin_lock_irq(&io->lock); 559 if (retval && (io->status == 0 || io->status == -ECONNRESET)) 560 io->status = retval; 561 } 562 io->count -= entries - i; 563 if (io->count == 0) 564 complete(&io->complete); 565 spin_unlock_irq(&io->lock); 566 567 /* OK, yes, this could be packaged as non-blocking. 568 * So could the submit loop above ... but it's easier to 569 * solve neither problem than to solve both! 570 */ 571 wait_for_completion(&io->complete); 572 573 sg_clean(io); 574 } 575 EXPORT_SYMBOL_GPL(usb_sg_wait); 576 577 /** 578 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait() 579 * @io: request block, initialized with usb_sg_init() 580 * 581 * This stops a request after it has been started by usb_sg_wait(). 582 * It can also prevents one initialized by usb_sg_init() from starting, 583 * so that call just frees resources allocated to the request. 584 */ 585 void usb_sg_cancel(struct usb_sg_request *io) 586 { 587 unsigned long flags; 588 int i, retval; 589 590 spin_lock_irqsave(&io->lock, flags); 591 if (io->status) { 592 spin_unlock_irqrestore(&io->lock, flags); 593 return; 594 } 595 /* shut everything down */ 596 io->status = -ECONNRESET; 597 spin_unlock_irqrestore(&io->lock, flags); 598 599 for (i = io->entries - 1; i >= 0; --i) { 600 usb_block_urb(io->urbs[i]); 601 602 retval = usb_unlink_urb(io->urbs[i]); 603 if (retval != -EINPROGRESS 604 && retval != -ENODEV 605 && retval != -EBUSY 606 && retval != -EIDRM) 607 dev_warn(&io->dev->dev, "%s, unlink --> %d\n", 608 __func__, retval); 609 } 610 } 611 EXPORT_SYMBOL_GPL(usb_sg_cancel); 612 613 /*-------------------------------------------------------------------*/ 614 615 /** 616 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request 617 * @dev: the device whose descriptor is being retrieved 618 * @type: the descriptor type (USB_DT_*) 619 * @index: the number of the descriptor 620 * @buf: where to put the descriptor 621 * @size: how big is "buf"? 622 * Context: !in_interrupt () 623 * 624 * Gets a USB descriptor. Convenience functions exist to simplify 625 * getting some types of descriptors. Use 626 * usb_get_string() or usb_string() for USB_DT_STRING. 627 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG) 628 * are part of the device structure. 629 * In addition to a number of USB-standard descriptors, some 630 * devices also use class-specific or vendor-specific descriptors. 631 * 632 * This call is synchronous, and may not be used in an interrupt context. 633 * 634 * Return: The number of bytes received on success, or else the status code 635 * returned by the underlying usb_control_msg() call. 636 */ 637 int usb_get_descriptor(struct usb_device *dev, unsigned char type, 638 unsigned char index, void *buf, int size) 639 { 640 int i; 641 int result; 642 643 memset(buf, 0, size); /* Make sure we parse really received data */ 644 645 for (i = 0; i < 3; ++i) { 646 /* retry on length 0 or error; some devices are flakey */ 647 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 648 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 649 (type << 8) + index, 0, buf, size, 650 USB_CTRL_GET_TIMEOUT); 651 if (result <= 0 && result != -ETIMEDOUT) 652 continue; 653 if (result > 1 && ((u8 *)buf)[1] != type) { 654 result = -ENODATA; 655 continue; 656 } 657 break; 658 } 659 return result; 660 } 661 EXPORT_SYMBOL_GPL(usb_get_descriptor); 662 663 /** 664 * usb_get_string - gets a string descriptor 665 * @dev: the device whose string descriptor is being retrieved 666 * @langid: code for language chosen (from string descriptor zero) 667 * @index: the number of the descriptor 668 * @buf: where to put the string 669 * @size: how big is "buf"? 670 * Context: !in_interrupt () 671 * 672 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character, 673 * in little-endian byte order). 674 * The usb_string() function will often be a convenient way to turn 675 * these strings into kernel-printable form. 676 * 677 * Strings may be referenced in device, configuration, interface, or other 678 * descriptors, and could also be used in vendor-specific ways. 679 * 680 * This call is synchronous, and may not be used in an interrupt context. 681 * 682 * Return: The number of bytes received on success, or else the status code 683 * returned by the underlying usb_control_msg() call. 684 */ 685 static int usb_get_string(struct usb_device *dev, unsigned short langid, 686 unsigned char index, void *buf, int size) 687 { 688 int i; 689 int result; 690 691 for (i = 0; i < 3; ++i) { 692 /* retry on length 0 or stall; some devices are flakey */ 693 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 694 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 695 (USB_DT_STRING << 8) + index, langid, buf, size, 696 USB_CTRL_GET_TIMEOUT); 697 if (result == 0 || result == -EPIPE) 698 continue; 699 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) { 700 result = -ENODATA; 701 continue; 702 } 703 break; 704 } 705 return result; 706 } 707 708 static void usb_try_string_workarounds(unsigned char *buf, int *length) 709 { 710 int newlength, oldlength = *length; 711 712 for (newlength = 2; newlength + 1 < oldlength; newlength += 2) 713 if (!isprint(buf[newlength]) || buf[newlength + 1]) 714 break; 715 716 if (newlength > 2) { 717 buf[0] = newlength; 718 *length = newlength; 719 } 720 } 721 722 static int usb_string_sub(struct usb_device *dev, unsigned int langid, 723 unsigned int index, unsigned char *buf) 724 { 725 int rc; 726 727 /* Try to read the string descriptor by asking for the maximum 728 * possible number of bytes */ 729 if (dev->quirks & USB_QUIRK_STRING_FETCH_255) 730 rc = -EIO; 731 else 732 rc = usb_get_string(dev, langid, index, buf, 255); 733 734 /* If that failed try to read the descriptor length, then 735 * ask for just that many bytes */ 736 if (rc < 2) { 737 rc = usb_get_string(dev, langid, index, buf, 2); 738 if (rc == 2) 739 rc = usb_get_string(dev, langid, index, buf, buf[0]); 740 } 741 742 if (rc >= 2) { 743 if (!buf[0] && !buf[1]) 744 usb_try_string_workarounds(buf, &rc); 745 746 /* There might be extra junk at the end of the descriptor */ 747 if (buf[0] < rc) 748 rc = buf[0]; 749 750 rc = rc - (rc & 1); /* force a multiple of two */ 751 } 752 753 if (rc < 2) 754 rc = (rc < 0 ? rc : -EINVAL); 755 756 return rc; 757 } 758 759 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf) 760 { 761 int err; 762 763 if (dev->have_langid) 764 return 0; 765 766 if (dev->string_langid < 0) 767 return -EPIPE; 768 769 err = usb_string_sub(dev, 0, 0, tbuf); 770 771 /* If the string was reported but is malformed, default to english 772 * (0x0409) */ 773 if (err == -ENODATA || (err > 0 && err < 4)) { 774 dev->string_langid = 0x0409; 775 dev->have_langid = 1; 776 dev_err(&dev->dev, 777 "language id specifier not provided by device, defaulting to English\n"); 778 return 0; 779 } 780 781 /* In case of all other errors, we assume the device is not able to 782 * deal with strings at all. Set string_langid to -1 in order to 783 * prevent any string to be retrieved from the device */ 784 if (err < 0) { 785 dev_info(&dev->dev, "string descriptor 0 read error: %d\n", 786 err); 787 dev->string_langid = -1; 788 return -EPIPE; 789 } 790 791 /* always use the first langid listed */ 792 dev->string_langid = tbuf[2] | (tbuf[3] << 8); 793 dev->have_langid = 1; 794 dev_dbg(&dev->dev, "default language 0x%04x\n", 795 dev->string_langid); 796 return 0; 797 } 798 799 /** 800 * usb_string - returns UTF-8 version of a string descriptor 801 * @dev: the device whose string descriptor is being retrieved 802 * @index: the number of the descriptor 803 * @buf: where to put the string 804 * @size: how big is "buf"? 805 * Context: !in_interrupt () 806 * 807 * This converts the UTF-16LE encoded strings returned by devices, from 808 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones 809 * that are more usable in most kernel contexts. Note that this function 810 * chooses strings in the first language supported by the device. 811 * 812 * This call is synchronous, and may not be used in an interrupt context. 813 * 814 * Return: length of the string (>= 0) or usb_control_msg status (< 0). 815 */ 816 int usb_string(struct usb_device *dev, int index, char *buf, size_t size) 817 { 818 unsigned char *tbuf; 819 int err; 820 821 if (dev->state == USB_STATE_SUSPENDED) 822 return -EHOSTUNREACH; 823 if (size <= 0 || !buf || !index) 824 return -EINVAL; 825 buf[0] = 0; 826 tbuf = kmalloc(256, GFP_NOIO); 827 if (!tbuf) 828 return -ENOMEM; 829 830 err = usb_get_langid(dev, tbuf); 831 if (err < 0) 832 goto errout; 833 834 err = usb_string_sub(dev, dev->string_langid, index, tbuf); 835 if (err < 0) 836 goto errout; 837 838 size--; /* leave room for trailing NULL char in output buffer */ 839 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2, 840 UTF16_LITTLE_ENDIAN, buf, size); 841 buf[err] = 0; 842 843 if (tbuf[1] != USB_DT_STRING) 844 dev_dbg(&dev->dev, 845 "wrong descriptor type %02x for string %d (\"%s\")\n", 846 tbuf[1], index, buf); 847 848 errout: 849 kfree(tbuf); 850 return err; 851 } 852 EXPORT_SYMBOL_GPL(usb_string); 853 854 /* one UTF-8-encoded 16-bit character has at most three bytes */ 855 #define MAX_USB_STRING_SIZE (127 * 3 + 1) 856 857 /** 858 * usb_cache_string - read a string descriptor and cache it for later use 859 * @udev: the device whose string descriptor is being read 860 * @index: the descriptor index 861 * 862 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string, 863 * or %NULL if the index is 0 or the string could not be read. 864 */ 865 char *usb_cache_string(struct usb_device *udev, int index) 866 { 867 char *buf; 868 char *smallbuf = NULL; 869 int len; 870 871 if (index <= 0) 872 return NULL; 873 874 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO); 875 if (buf) { 876 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE); 877 if (len > 0) { 878 smallbuf = kmalloc(++len, GFP_NOIO); 879 if (!smallbuf) 880 return buf; 881 memcpy(smallbuf, buf, len); 882 } 883 kfree(buf); 884 } 885 return smallbuf; 886 } 887 888 /* 889 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore) 890 * @dev: the device whose device descriptor is being updated 891 * @size: how much of the descriptor to read 892 * Context: !in_interrupt () 893 * 894 * Updates the copy of the device descriptor stored in the device structure, 895 * which dedicates space for this purpose. 896 * 897 * Not exported, only for use by the core. If drivers really want to read 898 * the device descriptor directly, they can call usb_get_descriptor() with 899 * type = USB_DT_DEVICE and index = 0. 900 * 901 * This call is synchronous, and may not be used in an interrupt context. 902 * 903 * Return: The number of bytes received on success, or else the status code 904 * returned by the underlying usb_control_msg() call. 905 */ 906 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size) 907 { 908 struct usb_device_descriptor *desc; 909 int ret; 910 911 if (size > sizeof(*desc)) 912 return -EINVAL; 913 desc = kmalloc(sizeof(*desc), GFP_NOIO); 914 if (!desc) 915 return -ENOMEM; 916 917 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size); 918 if (ret >= 0) 919 memcpy(&dev->descriptor, desc, size); 920 kfree(desc); 921 return ret; 922 } 923 924 /* 925 * usb_set_isoch_delay - informs the device of the packet transmit delay 926 * @dev: the device whose delay is to be informed 927 * Context: !in_interrupt() 928 * 929 * Since this is an optional request, we don't bother if it fails. 930 */ 931 int usb_set_isoch_delay(struct usb_device *dev) 932 { 933 /* skip hub devices */ 934 if (dev->descriptor.bDeviceClass == USB_CLASS_HUB) 935 return 0; 936 937 /* skip non-SS/non-SSP devices */ 938 if (dev->speed < USB_SPEED_SUPER) 939 return 0; 940 941 return usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 942 USB_REQ_SET_ISOCH_DELAY, 943 USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE, 944 dev->hub_delay, 0, NULL, 0, 945 USB_CTRL_SET_TIMEOUT); 946 } 947 948 /** 949 * usb_get_status - issues a GET_STATUS call 950 * @dev: the device whose status is being checked 951 * @recip: USB_RECIP_*; for device, interface, or endpoint 952 * @type: USB_STATUS_TYPE_*; for standard or PTM status types 953 * @target: zero (for device), else interface or endpoint number 954 * @data: pointer to two bytes of bitmap data 955 * Context: !in_interrupt () 956 * 957 * Returns device, interface, or endpoint status. Normally only of 958 * interest to see if the device is self powered, or has enabled the 959 * remote wakeup facility; or whether a bulk or interrupt endpoint 960 * is halted ("stalled"). 961 * 962 * Bits in these status bitmaps are set using the SET_FEATURE request, 963 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt() 964 * function should be used to clear halt ("stall") status. 965 * 966 * This call is synchronous, and may not be used in an interrupt context. 967 * 968 * Returns 0 and the status value in *@data (in host byte order) on success, 969 * or else the status code from the underlying usb_control_msg() call. 970 */ 971 int usb_get_status(struct usb_device *dev, int recip, int type, int target, 972 void *data) 973 { 974 int ret; 975 void *status; 976 int length; 977 978 switch (type) { 979 case USB_STATUS_TYPE_STANDARD: 980 length = 2; 981 break; 982 case USB_STATUS_TYPE_PTM: 983 if (recip != USB_RECIP_DEVICE) 984 return -EINVAL; 985 986 length = 4; 987 break; 988 default: 989 return -EINVAL; 990 } 991 992 status = kmalloc(length, GFP_KERNEL); 993 if (!status) 994 return -ENOMEM; 995 996 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 997 USB_REQ_GET_STATUS, USB_DIR_IN | recip, USB_STATUS_TYPE_STANDARD, 998 target, status, length, USB_CTRL_GET_TIMEOUT); 999 1000 switch (ret) { 1001 case 4: 1002 if (type != USB_STATUS_TYPE_PTM) { 1003 ret = -EIO; 1004 break; 1005 } 1006 1007 *(u32 *) data = le32_to_cpu(*(__le32 *) status); 1008 ret = 0; 1009 break; 1010 case 2: 1011 if (type != USB_STATUS_TYPE_STANDARD) { 1012 ret = -EIO; 1013 break; 1014 } 1015 1016 *(u16 *) data = le16_to_cpu(*(__le16 *) status); 1017 ret = 0; 1018 break; 1019 default: 1020 ret = -EIO; 1021 } 1022 1023 kfree(status); 1024 return ret; 1025 } 1026 EXPORT_SYMBOL_GPL(usb_get_status); 1027 1028 /** 1029 * usb_clear_halt - tells device to clear endpoint halt/stall condition 1030 * @dev: device whose endpoint is halted 1031 * @pipe: endpoint "pipe" being cleared 1032 * Context: !in_interrupt () 1033 * 1034 * This is used to clear halt conditions for bulk and interrupt endpoints, 1035 * as reported by URB completion status. Endpoints that are halted are 1036 * sometimes referred to as being "stalled". Such endpoints are unable 1037 * to transmit or receive data until the halt status is cleared. Any URBs 1038 * queued for such an endpoint should normally be unlinked by the driver 1039 * before clearing the halt condition, as described in sections 5.7.5 1040 * and 5.8.5 of the USB 2.0 spec. 1041 * 1042 * Note that control and isochronous endpoints don't halt, although control 1043 * endpoints report "protocol stall" (for unsupported requests) using the 1044 * same status code used to report a true stall. 1045 * 1046 * This call is synchronous, and may not be used in an interrupt context. 1047 * 1048 * Return: Zero on success, or else the status code returned by the 1049 * underlying usb_control_msg() call. 1050 */ 1051 int usb_clear_halt(struct usb_device *dev, int pipe) 1052 { 1053 int result; 1054 int endp = usb_pipeendpoint(pipe); 1055 1056 if (usb_pipein(pipe)) 1057 endp |= USB_DIR_IN; 1058 1059 /* we don't care if it wasn't halted first. in fact some devices 1060 * (like some ibmcam model 1 units) seem to expect hosts to make 1061 * this request for iso endpoints, which can't halt! 1062 */ 1063 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1064 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 1065 USB_ENDPOINT_HALT, endp, NULL, 0, 1066 USB_CTRL_SET_TIMEOUT); 1067 1068 /* don't un-halt or force to DATA0 except on success */ 1069 if (result < 0) 1070 return result; 1071 1072 /* NOTE: seems like Microsoft and Apple don't bother verifying 1073 * the clear "took", so some devices could lock up if you check... 1074 * such as the Hagiwara FlashGate DUAL. So we won't bother. 1075 * 1076 * NOTE: make sure the logic here doesn't diverge much from 1077 * the copy in usb-storage, for as long as we need two copies. 1078 */ 1079 1080 usb_reset_endpoint(dev, endp); 1081 1082 return 0; 1083 } 1084 EXPORT_SYMBOL_GPL(usb_clear_halt); 1085 1086 static int create_intf_ep_devs(struct usb_interface *intf) 1087 { 1088 struct usb_device *udev = interface_to_usbdev(intf); 1089 struct usb_host_interface *alt = intf->cur_altsetting; 1090 int i; 1091 1092 if (intf->ep_devs_created || intf->unregistering) 1093 return 0; 1094 1095 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1096 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev); 1097 intf->ep_devs_created = 1; 1098 return 0; 1099 } 1100 1101 static void remove_intf_ep_devs(struct usb_interface *intf) 1102 { 1103 struct usb_host_interface *alt = intf->cur_altsetting; 1104 int i; 1105 1106 if (!intf->ep_devs_created) 1107 return; 1108 1109 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1110 usb_remove_ep_devs(&alt->endpoint[i]); 1111 intf->ep_devs_created = 0; 1112 } 1113 1114 /** 1115 * usb_disable_endpoint -- Disable an endpoint by address 1116 * @dev: the device whose endpoint is being disabled 1117 * @epaddr: the endpoint's address. Endpoint number for output, 1118 * endpoint number + USB_DIR_IN for input 1119 * @reset_hardware: flag to erase any endpoint state stored in the 1120 * controller hardware 1121 * 1122 * Disables the endpoint for URB submission and nukes all pending URBs. 1123 * If @reset_hardware is set then also deallocates hcd/hardware state 1124 * for the endpoint. 1125 */ 1126 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr, 1127 bool reset_hardware) 1128 { 1129 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1130 struct usb_host_endpoint *ep; 1131 1132 if (!dev) 1133 return; 1134 1135 if (usb_endpoint_out(epaddr)) { 1136 ep = dev->ep_out[epnum]; 1137 if (reset_hardware) 1138 dev->ep_out[epnum] = NULL; 1139 } else { 1140 ep = dev->ep_in[epnum]; 1141 if (reset_hardware) 1142 dev->ep_in[epnum] = NULL; 1143 } 1144 if (ep) { 1145 ep->enabled = 0; 1146 usb_hcd_flush_endpoint(dev, ep); 1147 if (reset_hardware) 1148 usb_hcd_disable_endpoint(dev, ep); 1149 } 1150 } 1151 1152 /** 1153 * usb_reset_endpoint - Reset an endpoint's state. 1154 * @dev: the device whose endpoint is to be reset 1155 * @epaddr: the endpoint's address. Endpoint number for output, 1156 * endpoint number + USB_DIR_IN for input 1157 * 1158 * Resets any host-side endpoint state such as the toggle bit, 1159 * sequence number or current window. 1160 */ 1161 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr) 1162 { 1163 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1164 struct usb_host_endpoint *ep; 1165 1166 if (usb_endpoint_out(epaddr)) 1167 ep = dev->ep_out[epnum]; 1168 else 1169 ep = dev->ep_in[epnum]; 1170 if (ep) 1171 usb_hcd_reset_endpoint(dev, ep); 1172 } 1173 EXPORT_SYMBOL_GPL(usb_reset_endpoint); 1174 1175 1176 /** 1177 * usb_disable_interface -- Disable all endpoints for an interface 1178 * @dev: the device whose interface is being disabled 1179 * @intf: pointer to the interface descriptor 1180 * @reset_hardware: flag to erase any endpoint state stored in the 1181 * controller hardware 1182 * 1183 * Disables all the endpoints for the interface's current altsetting. 1184 */ 1185 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf, 1186 bool reset_hardware) 1187 { 1188 struct usb_host_interface *alt = intf->cur_altsetting; 1189 int i; 1190 1191 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 1192 usb_disable_endpoint(dev, 1193 alt->endpoint[i].desc.bEndpointAddress, 1194 reset_hardware); 1195 } 1196 } 1197 1198 /** 1199 * usb_disable_device - Disable all the endpoints for a USB device 1200 * @dev: the device whose endpoints are being disabled 1201 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. 1202 * 1203 * Disables all the device's endpoints, potentially including endpoint 0. 1204 * Deallocates hcd/hardware state for the endpoints (nuking all or most 1205 * pending urbs) and usbcore state for the interfaces, so that usbcore 1206 * must usb_set_configuration() before any interfaces could be used. 1207 */ 1208 void usb_disable_device(struct usb_device *dev, int skip_ep0) 1209 { 1210 int i; 1211 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1212 1213 /* getting rid of interfaces will disconnect 1214 * any drivers bound to them (a key side effect) 1215 */ 1216 if (dev->actconfig) { 1217 /* 1218 * FIXME: In order to avoid self-deadlock involving the 1219 * bandwidth_mutex, we have to mark all the interfaces 1220 * before unregistering any of them. 1221 */ 1222 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) 1223 dev->actconfig->interface[i]->unregistering = 1; 1224 1225 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1226 struct usb_interface *interface; 1227 1228 /* remove this interface if it has been registered */ 1229 interface = dev->actconfig->interface[i]; 1230 if (!device_is_registered(&interface->dev)) 1231 continue; 1232 dev_dbg(&dev->dev, "unregistering interface %s\n", 1233 dev_name(&interface->dev)); 1234 remove_intf_ep_devs(interface); 1235 device_del(&interface->dev); 1236 } 1237 1238 /* Now that the interfaces are unbound, nobody should 1239 * try to access them. 1240 */ 1241 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1242 put_device(&dev->actconfig->interface[i]->dev); 1243 dev->actconfig->interface[i] = NULL; 1244 } 1245 1246 if (dev->usb2_hw_lpm_enabled == 1) 1247 usb_set_usb2_hardware_lpm(dev, 0); 1248 usb_unlocked_disable_lpm(dev); 1249 usb_disable_ltm(dev); 1250 1251 dev->actconfig = NULL; 1252 if (dev->state == USB_STATE_CONFIGURED) 1253 usb_set_device_state(dev, USB_STATE_ADDRESS); 1254 } 1255 1256 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__, 1257 skip_ep0 ? "non-ep0" : "all"); 1258 if (hcd->driver->check_bandwidth) { 1259 /* First pass: Cancel URBs, leave endpoint pointers intact. */ 1260 for (i = skip_ep0; i < 16; ++i) { 1261 usb_disable_endpoint(dev, i, false); 1262 usb_disable_endpoint(dev, i + USB_DIR_IN, false); 1263 } 1264 /* Remove endpoints from the host controller internal state */ 1265 mutex_lock(hcd->bandwidth_mutex); 1266 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); 1267 mutex_unlock(hcd->bandwidth_mutex); 1268 /* Second pass: remove endpoint pointers */ 1269 } 1270 for (i = skip_ep0; i < 16; ++i) { 1271 usb_disable_endpoint(dev, i, true); 1272 usb_disable_endpoint(dev, i + USB_DIR_IN, true); 1273 } 1274 } 1275 1276 /** 1277 * usb_enable_endpoint - Enable an endpoint for USB communications 1278 * @dev: the device whose interface is being enabled 1279 * @ep: the endpoint 1280 * @reset_ep: flag to reset the endpoint state 1281 * 1282 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers. 1283 * For control endpoints, both the input and output sides are handled. 1284 */ 1285 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep, 1286 bool reset_ep) 1287 { 1288 int epnum = usb_endpoint_num(&ep->desc); 1289 int is_out = usb_endpoint_dir_out(&ep->desc); 1290 int is_control = usb_endpoint_xfer_control(&ep->desc); 1291 1292 if (reset_ep) 1293 usb_hcd_reset_endpoint(dev, ep); 1294 if (is_out || is_control) 1295 dev->ep_out[epnum] = ep; 1296 if (!is_out || is_control) 1297 dev->ep_in[epnum] = ep; 1298 ep->enabled = 1; 1299 } 1300 1301 /** 1302 * usb_enable_interface - Enable all the endpoints for an interface 1303 * @dev: the device whose interface is being enabled 1304 * @intf: pointer to the interface descriptor 1305 * @reset_eps: flag to reset the endpoints' state 1306 * 1307 * Enables all the endpoints for the interface's current altsetting. 1308 */ 1309 void usb_enable_interface(struct usb_device *dev, 1310 struct usb_interface *intf, bool reset_eps) 1311 { 1312 struct usb_host_interface *alt = intf->cur_altsetting; 1313 int i; 1314 1315 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1316 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps); 1317 } 1318 1319 /** 1320 * usb_set_interface - Makes a particular alternate setting be current 1321 * @dev: the device whose interface is being updated 1322 * @interface: the interface being updated 1323 * @alternate: the setting being chosen. 1324 * Context: !in_interrupt () 1325 * 1326 * This is used to enable data transfers on interfaces that may not 1327 * be enabled by default. Not all devices support such configurability. 1328 * Only the driver bound to an interface may change its setting. 1329 * 1330 * Within any given configuration, each interface may have several 1331 * alternative settings. These are often used to control levels of 1332 * bandwidth consumption. For example, the default setting for a high 1333 * speed interrupt endpoint may not send more than 64 bytes per microframe, 1334 * while interrupt transfers of up to 3KBytes per microframe are legal. 1335 * Also, isochronous endpoints may never be part of an 1336 * interface's default setting. To access such bandwidth, alternate 1337 * interface settings must be made current. 1338 * 1339 * Note that in the Linux USB subsystem, bandwidth associated with 1340 * an endpoint in a given alternate setting is not reserved until an URB 1341 * is submitted that needs that bandwidth. Some other operating systems 1342 * allocate bandwidth early, when a configuration is chosen. 1343 * 1344 * xHCI reserves bandwidth and configures the alternate setting in 1345 * usb_hcd_alloc_bandwidth(). If it fails the original interface altsetting 1346 * may be disabled. Drivers cannot rely on any particular alternate 1347 * setting being in effect after a failure. 1348 * 1349 * This call is synchronous, and may not be used in an interrupt context. 1350 * Also, drivers must not change altsettings while urbs are scheduled for 1351 * endpoints in that interface; all such urbs must first be completed 1352 * (perhaps forced by unlinking). 1353 * 1354 * Return: Zero on success, or else the status code returned by the 1355 * underlying usb_control_msg() call. 1356 */ 1357 int usb_set_interface(struct usb_device *dev, int interface, int alternate) 1358 { 1359 struct usb_interface *iface; 1360 struct usb_host_interface *alt; 1361 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1362 int i, ret, manual = 0; 1363 unsigned int epaddr; 1364 unsigned int pipe; 1365 1366 if (dev->state == USB_STATE_SUSPENDED) 1367 return -EHOSTUNREACH; 1368 1369 iface = usb_ifnum_to_if(dev, interface); 1370 if (!iface) { 1371 dev_dbg(&dev->dev, "selecting invalid interface %d\n", 1372 interface); 1373 return -EINVAL; 1374 } 1375 if (iface->unregistering) 1376 return -ENODEV; 1377 1378 alt = usb_altnum_to_altsetting(iface, alternate); 1379 if (!alt) { 1380 dev_warn(&dev->dev, "selecting invalid altsetting %d\n", 1381 alternate); 1382 return -EINVAL; 1383 } 1384 /* 1385 * usb3 hosts configure the interface in usb_hcd_alloc_bandwidth, 1386 * including freeing dropped endpoint ring buffers. 1387 * Make sure the interface endpoints are flushed before that 1388 */ 1389 usb_disable_interface(dev, iface, false); 1390 1391 /* Make sure we have enough bandwidth for this alternate interface. 1392 * Remove the current alt setting and add the new alt setting. 1393 */ 1394 mutex_lock(hcd->bandwidth_mutex); 1395 /* Disable LPM, and re-enable it once the new alt setting is installed, 1396 * so that the xHCI driver can recalculate the U1/U2 timeouts. 1397 */ 1398 if (usb_disable_lpm(dev)) { 1399 dev_err(&iface->dev, "%s Failed to disable LPM\n", __func__); 1400 mutex_unlock(hcd->bandwidth_mutex); 1401 return -ENOMEM; 1402 } 1403 /* Changing alt-setting also frees any allocated streams */ 1404 for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++) 1405 iface->cur_altsetting->endpoint[i].streams = 0; 1406 1407 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt); 1408 if (ret < 0) { 1409 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n", 1410 alternate); 1411 usb_enable_lpm(dev); 1412 mutex_unlock(hcd->bandwidth_mutex); 1413 return ret; 1414 } 1415 1416 if (dev->quirks & USB_QUIRK_NO_SET_INTF) 1417 ret = -EPIPE; 1418 else 1419 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1420 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE, 1421 alternate, interface, NULL, 0, 5000); 1422 1423 /* 9.4.10 says devices don't need this and are free to STALL the 1424 * request if the interface only has one alternate setting. 1425 */ 1426 if (ret == -EPIPE && iface->num_altsetting == 1) { 1427 dev_dbg(&dev->dev, 1428 "manual set_interface for iface %d, alt %d\n", 1429 interface, alternate); 1430 manual = 1; 1431 } else if (ret < 0) { 1432 /* Re-instate the old alt setting */ 1433 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting); 1434 usb_enable_lpm(dev); 1435 mutex_unlock(hcd->bandwidth_mutex); 1436 return ret; 1437 } 1438 mutex_unlock(hcd->bandwidth_mutex); 1439 1440 /* FIXME drivers shouldn't need to replicate/bugfix the logic here 1441 * when they implement async or easily-killable versions of this or 1442 * other "should-be-internal" functions (like clear_halt). 1443 * should hcd+usbcore postprocess control requests? 1444 */ 1445 1446 /* prevent submissions using previous endpoint settings */ 1447 if (iface->cur_altsetting != alt) { 1448 remove_intf_ep_devs(iface); 1449 usb_remove_sysfs_intf_files(iface); 1450 } 1451 usb_disable_interface(dev, iface, true); 1452 1453 iface->cur_altsetting = alt; 1454 1455 /* Now that the interface is installed, re-enable LPM. */ 1456 usb_unlocked_enable_lpm(dev); 1457 1458 /* If the interface only has one altsetting and the device didn't 1459 * accept the request, we attempt to carry out the equivalent action 1460 * by manually clearing the HALT feature for each endpoint in the 1461 * new altsetting. 1462 */ 1463 if (manual) { 1464 for (i = 0; i < alt->desc.bNumEndpoints; i++) { 1465 epaddr = alt->endpoint[i].desc.bEndpointAddress; 1466 pipe = __create_pipe(dev, 1467 USB_ENDPOINT_NUMBER_MASK & epaddr) | 1468 (usb_endpoint_out(epaddr) ? 1469 USB_DIR_OUT : USB_DIR_IN); 1470 1471 usb_clear_halt(dev, pipe); 1472 } 1473 } 1474 1475 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting 1476 * 1477 * Note: 1478 * Despite EP0 is always present in all interfaces/AS, the list of 1479 * endpoints from the descriptor does not contain EP0. Due to its 1480 * omnipresence one might expect EP0 being considered "affected" by 1481 * any SetInterface request and hence assume toggles need to be reset. 1482 * However, EP0 toggles are re-synced for every individual transfer 1483 * during the SETUP stage - hence EP0 toggles are "don't care" here. 1484 * (Likewise, EP0 never "halts" on well designed devices.) 1485 */ 1486 usb_enable_interface(dev, iface, true); 1487 if (device_is_registered(&iface->dev)) { 1488 usb_create_sysfs_intf_files(iface); 1489 create_intf_ep_devs(iface); 1490 } 1491 return 0; 1492 } 1493 EXPORT_SYMBOL_GPL(usb_set_interface); 1494 1495 /** 1496 * usb_reset_configuration - lightweight device reset 1497 * @dev: the device whose configuration is being reset 1498 * 1499 * This issues a standard SET_CONFIGURATION request to the device using 1500 * the current configuration. The effect is to reset most USB-related 1501 * state in the device, including interface altsettings (reset to zero), 1502 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt 1503 * endpoints). Other usbcore state is unchanged, including bindings of 1504 * usb device drivers to interfaces. 1505 * 1506 * Because this affects multiple interfaces, avoid using this with composite 1507 * (multi-interface) devices. Instead, the driver for each interface may 1508 * use usb_set_interface() on the interfaces it claims. Be careful though; 1509 * some devices don't support the SET_INTERFACE request, and others won't 1510 * reset all the interface state (notably endpoint state). Resetting the whole 1511 * configuration would affect other drivers' interfaces. 1512 * 1513 * The caller must own the device lock. 1514 * 1515 * Return: Zero on success, else a negative error code. 1516 */ 1517 int usb_reset_configuration(struct usb_device *dev) 1518 { 1519 int i, retval; 1520 struct usb_host_config *config; 1521 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1522 1523 if (dev->state == USB_STATE_SUSPENDED) 1524 return -EHOSTUNREACH; 1525 1526 /* caller must have locked the device and must own 1527 * the usb bus readlock (so driver bindings are stable); 1528 * calls during probe() are fine 1529 */ 1530 1531 for (i = 1; i < 16; ++i) { 1532 usb_disable_endpoint(dev, i, true); 1533 usb_disable_endpoint(dev, i + USB_DIR_IN, true); 1534 } 1535 1536 config = dev->actconfig; 1537 retval = 0; 1538 mutex_lock(hcd->bandwidth_mutex); 1539 /* Disable LPM, and re-enable it once the configuration is reset, so 1540 * that the xHCI driver can recalculate the U1/U2 timeouts. 1541 */ 1542 if (usb_disable_lpm(dev)) { 1543 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__); 1544 mutex_unlock(hcd->bandwidth_mutex); 1545 return -ENOMEM; 1546 } 1547 /* Make sure we have enough bandwidth for each alternate setting 0 */ 1548 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1549 struct usb_interface *intf = config->interface[i]; 1550 struct usb_host_interface *alt; 1551 1552 alt = usb_altnum_to_altsetting(intf, 0); 1553 if (!alt) 1554 alt = &intf->altsetting[0]; 1555 if (alt != intf->cur_altsetting) 1556 retval = usb_hcd_alloc_bandwidth(dev, NULL, 1557 intf->cur_altsetting, alt); 1558 if (retval < 0) 1559 break; 1560 } 1561 /* If not, reinstate the old alternate settings */ 1562 if (retval < 0) { 1563 reset_old_alts: 1564 for (i--; i >= 0; i--) { 1565 struct usb_interface *intf = config->interface[i]; 1566 struct usb_host_interface *alt; 1567 1568 alt = usb_altnum_to_altsetting(intf, 0); 1569 if (!alt) 1570 alt = &intf->altsetting[0]; 1571 if (alt != intf->cur_altsetting) 1572 usb_hcd_alloc_bandwidth(dev, NULL, 1573 alt, intf->cur_altsetting); 1574 } 1575 usb_enable_lpm(dev); 1576 mutex_unlock(hcd->bandwidth_mutex); 1577 return retval; 1578 } 1579 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1580 USB_REQ_SET_CONFIGURATION, 0, 1581 config->desc.bConfigurationValue, 0, 1582 NULL, 0, USB_CTRL_SET_TIMEOUT); 1583 if (retval < 0) 1584 goto reset_old_alts; 1585 mutex_unlock(hcd->bandwidth_mutex); 1586 1587 /* re-init hc/hcd interface/endpoint state */ 1588 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1589 struct usb_interface *intf = config->interface[i]; 1590 struct usb_host_interface *alt; 1591 1592 alt = usb_altnum_to_altsetting(intf, 0); 1593 1594 /* No altsetting 0? We'll assume the first altsetting. 1595 * We could use a GetInterface call, but if a device is 1596 * so non-compliant that it doesn't have altsetting 0 1597 * then I wouldn't trust its reply anyway. 1598 */ 1599 if (!alt) 1600 alt = &intf->altsetting[0]; 1601 1602 if (alt != intf->cur_altsetting) { 1603 remove_intf_ep_devs(intf); 1604 usb_remove_sysfs_intf_files(intf); 1605 } 1606 intf->cur_altsetting = alt; 1607 usb_enable_interface(dev, intf, true); 1608 if (device_is_registered(&intf->dev)) { 1609 usb_create_sysfs_intf_files(intf); 1610 create_intf_ep_devs(intf); 1611 } 1612 } 1613 /* Now that the interfaces are installed, re-enable LPM. */ 1614 usb_unlocked_enable_lpm(dev); 1615 return 0; 1616 } 1617 EXPORT_SYMBOL_GPL(usb_reset_configuration); 1618 1619 static void usb_release_interface(struct device *dev) 1620 { 1621 struct usb_interface *intf = to_usb_interface(dev); 1622 struct usb_interface_cache *intfc = 1623 altsetting_to_usb_interface_cache(intf->altsetting); 1624 1625 kref_put(&intfc->ref, usb_release_interface_cache); 1626 usb_put_dev(interface_to_usbdev(intf)); 1627 of_node_put(dev->of_node); 1628 kfree(intf); 1629 } 1630 1631 /* 1632 * usb_deauthorize_interface - deauthorize an USB interface 1633 * 1634 * @intf: USB interface structure 1635 */ 1636 void usb_deauthorize_interface(struct usb_interface *intf) 1637 { 1638 struct device *dev = &intf->dev; 1639 1640 device_lock(dev->parent); 1641 1642 if (intf->authorized) { 1643 device_lock(dev); 1644 intf->authorized = 0; 1645 device_unlock(dev); 1646 1647 usb_forced_unbind_intf(intf); 1648 } 1649 1650 device_unlock(dev->parent); 1651 } 1652 1653 /* 1654 * usb_authorize_interface - authorize an USB interface 1655 * 1656 * @intf: USB interface structure 1657 */ 1658 void usb_authorize_interface(struct usb_interface *intf) 1659 { 1660 struct device *dev = &intf->dev; 1661 1662 if (!intf->authorized) { 1663 device_lock(dev); 1664 intf->authorized = 1; /* authorize interface */ 1665 device_unlock(dev); 1666 } 1667 } 1668 1669 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env) 1670 { 1671 struct usb_device *usb_dev; 1672 struct usb_interface *intf; 1673 struct usb_host_interface *alt; 1674 1675 intf = to_usb_interface(dev); 1676 usb_dev = interface_to_usbdev(intf); 1677 alt = intf->cur_altsetting; 1678 1679 if (add_uevent_var(env, "INTERFACE=%d/%d/%d", 1680 alt->desc.bInterfaceClass, 1681 alt->desc.bInterfaceSubClass, 1682 alt->desc.bInterfaceProtocol)) 1683 return -ENOMEM; 1684 1685 if (add_uevent_var(env, 1686 "MODALIAS=usb:" 1687 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X", 1688 le16_to_cpu(usb_dev->descriptor.idVendor), 1689 le16_to_cpu(usb_dev->descriptor.idProduct), 1690 le16_to_cpu(usb_dev->descriptor.bcdDevice), 1691 usb_dev->descriptor.bDeviceClass, 1692 usb_dev->descriptor.bDeviceSubClass, 1693 usb_dev->descriptor.bDeviceProtocol, 1694 alt->desc.bInterfaceClass, 1695 alt->desc.bInterfaceSubClass, 1696 alt->desc.bInterfaceProtocol, 1697 alt->desc.bInterfaceNumber)) 1698 return -ENOMEM; 1699 1700 return 0; 1701 } 1702 1703 struct device_type usb_if_device_type = { 1704 .name = "usb_interface", 1705 .release = usb_release_interface, 1706 .uevent = usb_if_uevent, 1707 }; 1708 1709 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev, 1710 struct usb_host_config *config, 1711 u8 inum) 1712 { 1713 struct usb_interface_assoc_descriptor *retval = NULL; 1714 struct usb_interface_assoc_descriptor *intf_assoc; 1715 int first_intf; 1716 int last_intf; 1717 int i; 1718 1719 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) { 1720 intf_assoc = config->intf_assoc[i]; 1721 if (intf_assoc->bInterfaceCount == 0) 1722 continue; 1723 1724 first_intf = intf_assoc->bFirstInterface; 1725 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1); 1726 if (inum >= first_intf && inum <= last_intf) { 1727 if (!retval) 1728 retval = intf_assoc; 1729 else 1730 dev_err(&dev->dev, "Interface #%d referenced" 1731 " by multiple IADs\n", inum); 1732 } 1733 } 1734 1735 return retval; 1736 } 1737 1738 1739 /* 1740 * Internal function to queue a device reset 1741 * See usb_queue_reset_device() for more details 1742 */ 1743 static void __usb_queue_reset_device(struct work_struct *ws) 1744 { 1745 int rc; 1746 struct usb_interface *iface = 1747 container_of(ws, struct usb_interface, reset_ws); 1748 struct usb_device *udev = interface_to_usbdev(iface); 1749 1750 rc = usb_lock_device_for_reset(udev, iface); 1751 if (rc >= 0) { 1752 usb_reset_device(udev); 1753 usb_unlock_device(udev); 1754 } 1755 usb_put_intf(iface); /* Undo _get_ in usb_queue_reset_device() */ 1756 } 1757 1758 1759 /* 1760 * usb_set_configuration - Makes a particular device setting be current 1761 * @dev: the device whose configuration is being updated 1762 * @configuration: the configuration being chosen. 1763 * Context: !in_interrupt(), caller owns the device lock 1764 * 1765 * This is used to enable non-default device modes. Not all devices 1766 * use this kind of configurability; many devices only have one 1767 * configuration. 1768 * 1769 * @configuration is the value of the configuration to be installed. 1770 * According to the USB spec (e.g. section 9.1.1.5), configuration values 1771 * must be non-zero; a value of zero indicates that the device in 1772 * unconfigured. However some devices erroneously use 0 as one of their 1773 * configuration values. To help manage such devices, this routine will 1774 * accept @configuration = -1 as indicating the device should be put in 1775 * an unconfigured state. 1776 * 1777 * USB device configurations may affect Linux interoperability, 1778 * power consumption and the functionality available. For example, 1779 * the default configuration is limited to using 100mA of bus power, 1780 * so that when certain device functionality requires more power, 1781 * and the device is bus powered, that functionality should be in some 1782 * non-default device configuration. Other device modes may also be 1783 * reflected as configuration options, such as whether two ISDN 1784 * channels are available independently; and choosing between open 1785 * standard device protocols (like CDC) or proprietary ones. 1786 * 1787 * Note that a non-authorized device (dev->authorized == 0) will only 1788 * be put in unconfigured mode. 1789 * 1790 * Note that USB has an additional level of device configurability, 1791 * associated with interfaces. That configurability is accessed using 1792 * usb_set_interface(). 1793 * 1794 * This call is synchronous. The calling context must be able to sleep, 1795 * must own the device lock, and must not hold the driver model's USB 1796 * bus mutex; usb interface driver probe() methods cannot use this routine. 1797 * 1798 * Returns zero on success, or else the status code returned by the 1799 * underlying call that failed. On successful completion, each interface 1800 * in the original device configuration has been destroyed, and each one 1801 * in the new configuration has been probed by all relevant usb device 1802 * drivers currently known to the kernel. 1803 */ 1804 int usb_set_configuration(struct usb_device *dev, int configuration) 1805 { 1806 int i, ret; 1807 struct usb_host_config *cp = NULL; 1808 struct usb_interface **new_interfaces = NULL; 1809 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1810 int n, nintf; 1811 1812 if (dev->authorized == 0 || configuration == -1) 1813 configuration = 0; 1814 else { 1815 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) { 1816 if (dev->config[i].desc.bConfigurationValue == 1817 configuration) { 1818 cp = &dev->config[i]; 1819 break; 1820 } 1821 } 1822 } 1823 if ((!cp && configuration != 0)) 1824 return -EINVAL; 1825 1826 /* The USB spec says configuration 0 means unconfigured. 1827 * But if a device includes a configuration numbered 0, 1828 * we will accept it as a correctly configured state. 1829 * Use -1 if you really want to unconfigure the device. 1830 */ 1831 if (cp && configuration == 0) 1832 dev_warn(&dev->dev, "config 0 descriptor??\n"); 1833 1834 /* Allocate memory for new interfaces before doing anything else, 1835 * so that if we run out then nothing will have changed. */ 1836 n = nintf = 0; 1837 if (cp) { 1838 nintf = cp->desc.bNumInterfaces; 1839 new_interfaces = kmalloc_array(nintf, sizeof(*new_interfaces), 1840 GFP_NOIO); 1841 if (!new_interfaces) 1842 return -ENOMEM; 1843 1844 for (; n < nintf; ++n) { 1845 new_interfaces[n] = kzalloc( 1846 sizeof(struct usb_interface), 1847 GFP_NOIO); 1848 if (!new_interfaces[n]) { 1849 ret = -ENOMEM; 1850 free_interfaces: 1851 while (--n >= 0) 1852 kfree(new_interfaces[n]); 1853 kfree(new_interfaces); 1854 return ret; 1855 } 1856 } 1857 1858 i = dev->bus_mA - usb_get_max_power(dev, cp); 1859 if (i < 0) 1860 dev_warn(&dev->dev, "new config #%d exceeds power " 1861 "limit by %dmA\n", 1862 configuration, -i); 1863 } 1864 1865 /* Wake up the device so we can send it the Set-Config request */ 1866 ret = usb_autoresume_device(dev); 1867 if (ret) 1868 goto free_interfaces; 1869 1870 /* if it's already configured, clear out old state first. 1871 * getting rid of old interfaces means unbinding their drivers. 1872 */ 1873 if (dev->state != USB_STATE_ADDRESS) 1874 usb_disable_device(dev, 1); /* Skip ep0 */ 1875 1876 /* Get rid of pending async Set-Config requests for this device */ 1877 cancel_async_set_config(dev); 1878 1879 /* Make sure we have bandwidth (and available HCD resources) for this 1880 * configuration. Remove endpoints from the schedule if we're dropping 1881 * this configuration to set configuration 0. After this point, the 1882 * host controller will not allow submissions to dropped endpoints. If 1883 * this call fails, the device state is unchanged. 1884 */ 1885 mutex_lock(hcd->bandwidth_mutex); 1886 /* Disable LPM, and re-enable it once the new configuration is 1887 * installed, so that the xHCI driver can recalculate the U1/U2 1888 * timeouts. 1889 */ 1890 if (dev->actconfig && usb_disable_lpm(dev)) { 1891 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__); 1892 mutex_unlock(hcd->bandwidth_mutex); 1893 ret = -ENOMEM; 1894 goto free_interfaces; 1895 } 1896 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL); 1897 if (ret < 0) { 1898 if (dev->actconfig) 1899 usb_enable_lpm(dev); 1900 mutex_unlock(hcd->bandwidth_mutex); 1901 usb_autosuspend_device(dev); 1902 goto free_interfaces; 1903 } 1904 1905 /* 1906 * Initialize the new interface structures and the 1907 * hc/hcd/usbcore interface/endpoint state. 1908 */ 1909 for (i = 0; i < nintf; ++i) { 1910 struct usb_interface_cache *intfc; 1911 struct usb_interface *intf; 1912 struct usb_host_interface *alt; 1913 u8 ifnum; 1914 1915 cp->interface[i] = intf = new_interfaces[i]; 1916 intfc = cp->intf_cache[i]; 1917 intf->altsetting = intfc->altsetting; 1918 intf->num_altsetting = intfc->num_altsetting; 1919 intf->authorized = !!HCD_INTF_AUTHORIZED(hcd); 1920 kref_get(&intfc->ref); 1921 1922 alt = usb_altnum_to_altsetting(intf, 0); 1923 1924 /* No altsetting 0? We'll assume the first altsetting. 1925 * We could use a GetInterface call, but if a device is 1926 * so non-compliant that it doesn't have altsetting 0 1927 * then I wouldn't trust its reply anyway. 1928 */ 1929 if (!alt) 1930 alt = &intf->altsetting[0]; 1931 1932 ifnum = alt->desc.bInterfaceNumber; 1933 intf->intf_assoc = find_iad(dev, cp, ifnum); 1934 intf->cur_altsetting = alt; 1935 usb_enable_interface(dev, intf, true); 1936 intf->dev.parent = &dev->dev; 1937 if (usb_of_has_combined_node(dev)) { 1938 device_set_of_node_from_dev(&intf->dev, &dev->dev); 1939 } else { 1940 intf->dev.of_node = usb_of_get_interface_node(dev, 1941 configuration, ifnum); 1942 } 1943 intf->dev.driver = NULL; 1944 intf->dev.bus = &usb_bus_type; 1945 intf->dev.type = &usb_if_device_type; 1946 intf->dev.groups = usb_interface_groups; 1947 /* 1948 * Please refer to usb_alloc_dev() to see why we set 1949 * dma_mask and dma_pfn_offset. 1950 */ 1951 intf->dev.dma_mask = dev->dev.dma_mask; 1952 intf->dev.dma_pfn_offset = dev->dev.dma_pfn_offset; 1953 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device); 1954 intf->minor = -1; 1955 device_initialize(&intf->dev); 1956 pm_runtime_no_callbacks(&intf->dev); 1957 dev_set_name(&intf->dev, "%d-%s:%d.%d", dev->bus->busnum, 1958 dev->devpath, configuration, ifnum); 1959 usb_get_dev(dev); 1960 } 1961 kfree(new_interfaces); 1962 1963 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1964 USB_REQ_SET_CONFIGURATION, 0, configuration, 0, 1965 NULL, 0, USB_CTRL_SET_TIMEOUT); 1966 if (ret < 0 && cp) { 1967 /* 1968 * All the old state is gone, so what else can we do? 1969 * The device is probably useless now anyway. 1970 */ 1971 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); 1972 for (i = 0; i < nintf; ++i) { 1973 usb_disable_interface(dev, cp->interface[i], true); 1974 put_device(&cp->interface[i]->dev); 1975 cp->interface[i] = NULL; 1976 } 1977 cp = NULL; 1978 } 1979 1980 dev->actconfig = cp; 1981 mutex_unlock(hcd->bandwidth_mutex); 1982 1983 if (!cp) { 1984 usb_set_device_state(dev, USB_STATE_ADDRESS); 1985 1986 /* Leave LPM disabled while the device is unconfigured. */ 1987 usb_autosuspend_device(dev); 1988 return ret; 1989 } 1990 usb_set_device_state(dev, USB_STATE_CONFIGURED); 1991 1992 if (cp->string == NULL && 1993 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS)) 1994 cp->string = usb_cache_string(dev, cp->desc.iConfiguration); 1995 1996 /* Now that the interfaces are installed, re-enable LPM. */ 1997 usb_unlocked_enable_lpm(dev); 1998 /* Enable LTM if it was turned off by usb_disable_device. */ 1999 usb_enable_ltm(dev); 2000 2001 /* Now that all the interfaces are set up, register them 2002 * to trigger binding of drivers to interfaces. probe() 2003 * routines may install different altsettings and may 2004 * claim() any interfaces not yet bound. Many class drivers 2005 * need that: CDC, audio, video, etc. 2006 */ 2007 for (i = 0; i < nintf; ++i) { 2008 struct usb_interface *intf = cp->interface[i]; 2009 2010 dev_dbg(&dev->dev, 2011 "adding %s (config #%d, interface %d)\n", 2012 dev_name(&intf->dev), configuration, 2013 intf->cur_altsetting->desc.bInterfaceNumber); 2014 device_enable_async_suspend(&intf->dev); 2015 ret = device_add(&intf->dev); 2016 if (ret != 0) { 2017 dev_err(&dev->dev, "device_add(%s) --> %d\n", 2018 dev_name(&intf->dev), ret); 2019 continue; 2020 } 2021 create_intf_ep_devs(intf); 2022 } 2023 2024 usb_autosuspend_device(dev); 2025 return 0; 2026 } 2027 EXPORT_SYMBOL_GPL(usb_set_configuration); 2028 2029 static LIST_HEAD(set_config_list); 2030 static DEFINE_SPINLOCK(set_config_lock); 2031 2032 struct set_config_request { 2033 struct usb_device *udev; 2034 int config; 2035 struct work_struct work; 2036 struct list_head node; 2037 }; 2038 2039 /* Worker routine for usb_driver_set_configuration() */ 2040 static void driver_set_config_work(struct work_struct *work) 2041 { 2042 struct set_config_request *req = 2043 container_of(work, struct set_config_request, work); 2044 struct usb_device *udev = req->udev; 2045 2046 usb_lock_device(udev); 2047 spin_lock(&set_config_lock); 2048 list_del(&req->node); 2049 spin_unlock(&set_config_lock); 2050 2051 if (req->config >= -1) /* Is req still valid? */ 2052 usb_set_configuration(udev, req->config); 2053 usb_unlock_device(udev); 2054 usb_put_dev(udev); 2055 kfree(req); 2056 } 2057 2058 /* Cancel pending Set-Config requests for a device whose configuration 2059 * was just changed 2060 */ 2061 static void cancel_async_set_config(struct usb_device *udev) 2062 { 2063 struct set_config_request *req; 2064 2065 spin_lock(&set_config_lock); 2066 list_for_each_entry(req, &set_config_list, node) { 2067 if (req->udev == udev) 2068 req->config = -999; /* Mark as cancelled */ 2069 } 2070 spin_unlock(&set_config_lock); 2071 } 2072 2073 /** 2074 * usb_driver_set_configuration - Provide a way for drivers to change device configurations 2075 * @udev: the device whose configuration is being updated 2076 * @config: the configuration being chosen. 2077 * Context: In process context, must be able to sleep 2078 * 2079 * Device interface drivers are not allowed to change device configurations. 2080 * This is because changing configurations will destroy the interface the 2081 * driver is bound to and create new ones; it would be like a floppy-disk 2082 * driver telling the computer to replace the floppy-disk drive with a 2083 * tape drive! 2084 * 2085 * Still, in certain specialized circumstances the need may arise. This 2086 * routine gets around the normal restrictions by using a work thread to 2087 * submit the change-config request. 2088 * 2089 * Return: 0 if the request was successfully queued, error code otherwise. 2090 * The caller has no way to know whether the queued request will eventually 2091 * succeed. 2092 */ 2093 int usb_driver_set_configuration(struct usb_device *udev, int config) 2094 { 2095 struct set_config_request *req; 2096 2097 req = kmalloc(sizeof(*req), GFP_KERNEL); 2098 if (!req) 2099 return -ENOMEM; 2100 req->udev = udev; 2101 req->config = config; 2102 INIT_WORK(&req->work, driver_set_config_work); 2103 2104 spin_lock(&set_config_lock); 2105 list_add(&req->node, &set_config_list); 2106 spin_unlock(&set_config_lock); 2107 2108 usb_get_dev(udev); 2109 schedule_work(&req->work); 2110 return 0; 2111 } 2112 EXPORT_SYMBOL_GPL(usb_driver_set_configuration); 2113 2114 /** 2115 * cdc_parse_cdc_header - parse the extra headers present in CDC devices 2116 * @hdr: the place to put the results of the parsing 2117 * @intf: the interface for which parsing is requested 2118 * @buffer: pointer to the extra headers to be parsed 2119 * @buflen: length of the extra headers 2120 * 2121 * This evaluates the extra headers present in CDC devices which 2122 * bind the interfaces for data and control and provide details 2123 * about the capabilities of the device. 2124 * 2125 * Return: number of descriptors parsed or -EINVAL 2126 * if the header is contradictory beyond salvage 2127 */ 2128 2129 int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr, 2130 struct usb_interface *intf, 2131 u8 *buffer, 2132 int buflen) 2133 { 2134 /* duplicates are ignored */ 2135 struct usb_cdc_union_desc *union_header = NULL; 2136 2137 /* duplicates are not tolerated */ 2138 struct usb_cdc_header_desc *header = NULL; 2139 struct usb_cdc_ether_desc *ether = NULL; 2140 struct usb_cdc_mdlm_detail_desc *detail = NULL; 2141 struct usb_cdc_mdlm_desc *desc = NULL; 2142 2143 unsigned int elength; 2144 int cnt = 0; 2145 2146 memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header)); 2147 hdr->phonet_magic_present = false; 2148 while (buflen > 0) { 2149 elength = buffer[0]; 2150 if (!elength) { 2151 dev_err(&intf->dev, "skipping garbage byte\n"); 2152 elength = 1; 2153 goto next_desc; 2154 } 2155 if ((buflen < elength) || (elength < 3)) { 2156 dev_err(&intf->dev, "invalid descriptor buffer length\n"); 2157 break; 2158 } 2159 if (buffer[1] != USB_DT_CS_INTERFACE) { 2160 dev_err(&intf->dev, "skipping garbage\n"); 2161 goto next_desc; 2162 } 2163 2164 switch (buffer[2]) { 2165 case USB_CDC_UNION_TYPE: /* we've found it */ 2166 if (elength < sizeof(struct usb_cdc_union_desc)) 2167 goto next_desc; 2168 if (union_header) { 2169 dev_err(&intf->dev, "More than one union descriptor, skipping ...\n"); 2170 goto next_desc; 2171 } 2172 union_header = (struct usb_cdc_union_desc *)buffer; 2173 break; 2174 case USB_CDC_COUNTRY_TYPE: 2175 if (elength < sizeof(struct usb_cdc_country_functional_desc)) 2176 goto next_desc; 2177 hdr->usb_cdc_country_functional_desc = 2178 (struct usb_cdc_country_functional_desc *)buffer; 2179 break; 2180 case USB_CDC_HEADER_TYPE: 2181 if (elength != sizeof(struct usb_cdc_header_desc)) 2182 goto next_desc; 2183 if (header) 2184 return -EINVAL; 2185 header = (struct usb_cdc_header_desc *)buffer; 2186 break; 2187 case USB_CDC_ACM_TYPE: 2188 if (elength < sizeof(struct usb_cdc_acm_descriptor)) 2189 goto next_desc; 2190 hdr->usb_cdc_acm_descriptor = 2191 (struct usb_cdc_acm_descriptor *)buffer; 2192 break; 2193 case USB_CDC_ETHERNET_TYPE: 2194 if (elength != sizeof(struct usb_cdc_ether_desc)) 2195 goto next_desc; 2196 if (ether) 2197 return -EINVAL; 2198 ether = (struct usb_cdc_ether_desc *)buffer; 2199 break; 2200 case USB_CDC_CALL_MANAGEMENT_TYPE: 2201 if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor)) 2202 goto next_desc; 2203 hdr->usb_cdc_call_mgmt_descriptor = 2204 (struct usb_cdc_call_mgmt_descriptor *)buffer; 2205 break; 2206 case USB_CDC_DMM_TYPE: 2207 if (elength < sizeof(struct usb_cdc_dmm_desc)) 2208 goto next_desc; 2209 hdr->usb_cdc_dmm_desc = 2210 (struct usb_cdc_dmm_desc *)buffer; 2211 break; 2212 case USB_CDC_MDLM_TYPE: 2213 if (elength < sizeof(struct usb_cdc_mdlm_desc *)) 2214 goto next_desc; 2215 if (desc) 2216 return -EINVAL; 2217 desc = (struct usb_cdc_mdlm_desc *)buffer; 2218 break; 2219 case USB_CDC_MDLM_DETAIL_TYPE: 2220 if (elength < sizeof(struct usb_cdc_mdlm_detail_desc *)) 2221 goto next_desc; 2222 if (detail) 2223 return -EINVAL; 2224 detail = (struct usb_cdc_mdlm_detail_desc *)buffer; 2225 break; 2226 case USB_CDC_NCM_TYPE: 2227 if (elength < sizeof(struct usb_cdc_ncm_desc)) 2228 goto next_desc; 2229 hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer; 2230 break; 2231 case USB_CDC_MBIM_TYPE: 2232 if (elength < sizeof(struct usb_cdc_mbim_desc)) 2233 goto next_desc; 2234 2235 hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer; 2236 break; 2237 case USB_CDC_MBIM_EXTENDED_TYPE: 2238 if (elength < sizeof(struct usb_cdc_mbim_extended_desc)) 2239 break; 2240 hdr->usb_cdc_mbim_extended_desc = 2241 (struct usb_cdc_mbim_extended_desc *)buffer; 2242 break; 2243 case CDC_PHONET_MAGIC_NUMBER: 2244 hdr->phonet_magic_present = true; 2245 break; 2246 default: 2247 /* 2248 * there are LOTS more CDC descriptors that 2249 * could legitimately be found here. 2250 */ 2251 dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n", 2252 buffer[2], elength); 2253 goto next_desc; 2254 } 2255 cnt++; 2256 next_desc: 2257 buflen -= elength; 2258 buffer += elength; 2259 } 2260 hdr->usb_cdc_union_desc = union_header; 2261 hdr->usb_cdc_header_desc = header; 2262 hdr->usb_cdc_mdlm_detail_desc = detail; 2263 hdr->usb_cdc_mdlm_desc = desc; 2264 hdr->usb_cdc_ether_desc = ether; 2265 return cnt; 2266 } 2267 2268 EXPORT_SYMBOL(cdc_parse_cdc_header); 2269