1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * message.c - synchronous message handling 4 * 5 * Released under the GPLv2 only. 6 */ 7 8 #include <linux/acpi.h> 9 #include <linux/pci.h> /* for scatterlist macros */ 10 #include <linux/usb.h> 11 #include <linux/module.h> 12 #include <linux/slab.h> 13 #include <linux/mm.h> 14 #include <linux/timer.h> 15 #include <linux/ctype.h> 16 #include <linux/nls.h> 17 #include <linux/device.h> 18 #include <linux/scatterlist.h> 19 #include <linux/usb/cdc.h> 20 #include <linux/usb/quirks.h> 21 #include <linux/usb/hcd.h> /* for usbcore internals */ 22 #include <linux/usb/of.h> 23 #include <asm/byteorder.h> 24 25 #include "usb.h" 26 27 static void cancel_async_set_config(struct usb_device *udev); 28 29 struct api_context { 30 struct completion done; 31 int status; 32 }; 33 34 static void usb_api_blocking_completion(struct urb *urb) 35 { 36 struct api_context *ctx = urb->context; 37 38 ctx->status = urb->status; 39 complete(&ctx->done); 40 } 41 42 43 /* 44 * Starts urb and waits for completion or timeout. Note that this call 45 * is NOT interruptible. Many device driver i/o requests should be 46 * interruptible and therefore these drivers should implement their 47 * own interruptible routines. 48 */ 49 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length) 50 { 51 struct api_context ctx; 52 unsigned long expire; 53 int retval; 54 55 init_completion(&ctx.done); 56 urb->context = &ctx; 57 urb->actual_length = 0; 58 retval = usb_submit_urb(urb, GFP_NOIO); 59 if (unlikely(retval)) 60 goto out; 61 62 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT; 63 if (!wait_for_completion_timeout(&ctx.done, expire)) { 64 usb_kill_urb(urb); 65 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status); 66 67 dev_dbg(&urb->dev->dev, 68 "%s timed out on ep%d%s len=%u/%u\n", 69 current->comm, 70 usb_endpoint_num(&urb->ep->desc), 71 usb_urb_dir_in(urb) ? "in" : "out", 72 urb->actual_length, 73 urb->transfer_buffer_length); 74 } else 75 retval = ctx.status; 76 out: 77 if (actual_length) 78 *actual_length = urb->actual_length; 79 80 usb_free_urb(urb); 81 return retval; 82 } 83 84 /*-------------------------------------------------------------------*/ 85 /* returns status (negative) or length (positive) */ 86 static int usb_internal_control_msg(struct usb_device *usb_dev, 87 unsigned int pipe, 88 struct usb_ctrlrequest *cmd, 89 void *data, int len, int timeout) 90 { 91 struct urb *urb; 92 int retv; 93 int length; 94 95 urb = usb_alloc_urb(0, GFP_NOIO); 96 if (!urb) 97 return -ENOMEM; 98 99 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data, 100 len, usb_api_blocking_completion, NULL); 101 102 retv = usb_start_wait_urb(urb, timeout, &length); 103 if (retv < 0) 104 return retv; 105 else 106 return length; 107 } 108 109 /** 110 * usb_control_msg - Builds a control urb, sends it off and waits for completion 111 * @dev: pointer to the usb device to send the message to 112 * @pipe: endpoint "pipe" to send the message to 113 * @request: USB message request value 114 * @requesttype: USB message request type value 115 * @value: USB message value 116 * @index: USB message index value 117 * @data: pointer to the data to send 118 * @size: length in bytes of the data to send 119 * @timeout: time in msecs to wait for the message to complete before timing 120 * out (if 0 the wait is forever) 121 * 122 * Context: !in_interrupt () 123 * 124 * This function sends a simple control message to a specified endpoint and 125 * waits for the message to complete, or timeout. 126 * 127 * Don't use this function from within an interrupt context. If you need 128 * an asynchronous message, or need to send a message from within interrupt 129 * context, use usb_submit_urb(). If a thread in your driver uses this call, 130 * make sure your disconnect() method can wait for it to complete. Since you 131 * don't have a handle on the URB used, you can't cancel the request. 132 * 133 * Return: If successful, the number of bytes transferred. Otherwise, a negative 134 * error number. 135 */ 136 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, 137 __u8 requesttype, __u16 value, __u16 index, void *data, 138 __u16 size, int timeout) 139 { 140 struct usb_ctrlrequest *dr; 141 int ret; 142 143 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO); 144 if (!dr) 145 return -ENOMEM; 146 147 dr->bRequestType = requesttype; 148 dr->bRequest = request; 149 dr->wValue = cpu_to_le16(value); 150 dr->wIndex = cpu_to_le16(index); 151 dr->wLength = cpu_to_le16(size); 152 153 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout); 154 155 /* Linger a bit, prior to the next control message. */ 156 if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG) 157 msleep(200); 158 159 kfree(dr); 160 161 return ret; 162 } 163 EXPORT_SYMBOL_GPL(usb_control_msg); 164 165 /** 166 * usb_control_msg_send - Builds a control "send" message, sends it off and waits for completion 167 * @dev: pointer to the usb device to send the message to 168 * @endpoint: endpoint to send the message to 169 * @request: USB message request value 170 * @requesttype: USB message request type value 171 * @value: USB message value 172 * @index: USB message index value 173 * @driver_data: pointer to the data to send 174 * @size: length in bytes of the data to send 175 * @timeout: time in msecs to wait for the message to complete before timing 176 * out (if 0 the wait is forever) 177 * @memflags: the flags for memory allocation for buffers 178 * 179 * Context: !in_interrupt () 180 * 181 * This function sends a control message to a specified endpoint that is not 182 * expected to fill in a response (i.e. a "send message") and waits for the 183 * message to complete, or timeout. 184 * 185 * Do not use this function from within an interrupt context. If you need 186 * an asynchronous message, or need to send a message from within interrupt 187 * context, use usb_submit_urb(). If a thread in your driver uses this call, 188 * make sure your disconnect() method can wait for it to complete. Since you 189 * don't have a handle on the URB used, you can't cancel the request. 190 * 191 * The data pointer can be made to a reference on the stack, or anywhere else, 192 * as it will not be modified at all. This does not have the restriction that 193 * usb_control_msg() has where the data pointer must be to dynamically allocated 194 * memory (i.e. memory that can be successfully DMAed to a device). 195 * 196 * Return: If successful, 0 is returned, Otherwise, a negative error number. 197 */ 198 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request, 199 __u8 requesttype, __u16 value, __u16 index, 200 const void *driver_data, __u16 size, int timeout, 201 gfp_t memflags) 202 { 203 unsigned int pipe = usb_sndctrlpipe(dev, endpoint); 204 int ret; 205 u8 *data = NULL; 206 207 if (usb_pipe_type_check(dev, pipe)) 208 return -EINVAL; 209 210 if (size) { 211 data = kmemdup(driver_data, size, memflags); 212 if (!data) 213 return -ENOMEM; 214 } 215 216 ret = usb_control_msg(dev, pipe, request, requesttype, value, index, 217 data, size, timeout); 218 kfree(data); 219 220 if (ret < 0) 221 return ret; 222 if (ret == size) 223 return 0; 224 return -EINVAL; 225 } 226 EXPORT_SYMBOL_GPL(usb_control_msg_send); 227 228 /** 229 * usb_control_msg_recv - Builds a control "receive" message, sends it off and waits for completion 230 * @dev: pointer to the usb device to send the message to 231 * @endpoint: endpoint to send the message to 232 * @request: USB message request value 233 * @requesttype: USB message request type value 234 * @value: USB message value 235 * @index: USB message index value 236 * @driver_data: pointer to the data to be filled in by the message 237 * @size: length in bytes of the data to be received 238 * @timeout: time in msecs to wait for the message to complete before timing 239 * out (if 0 the wait is forever) 240 * @memflags: the flags for memory allocation for buffers 241 * 242 * Context: !in_interrupt () 243 * 244 * This function sends a control message to a specified endpoint that is 245 * expected to fill in a response (i.e. a "receive message") and waits for the 246 * message to complete, or timeout. 247 * 248 * Do not use this function from within an interrupt context. If you need 249 * an asynchronous message, or need to send a message from within interrupt 250 * context, use usb_submit_urb(). If a thread in your driver uses this call, 251 * make sure your disconnect() method can wait for it to complete. Since you 252 * don't have a handle on the URB used, you can't cancel the request. 253 * 254 * The data pointer can be made to a reference on the stack, or anywhere else 255 * that can be successfully written to. This function does not have the 256 * restriction that usb_control_msg() has where the data pointer must be to 257 * dynamically allocated memory (i.e. memory that can be successfully DMAed to a 258 * device). 259 * 260 * The "whole" message must be properly received from the device in order for 261 * this function to be successful. If a device returns less than the expected 262 * amount of data, then the function will fail. Do not use this for messages 263 * where a variable amount of data might be returned. 264 * 265 * Return: If successful, 0 is returned, Otherwise, a negative error number. 266 */ 267 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request, 268 __u8 requesttype, __u16 value, __u16 index, 269 void *driver_data, __u16 size, int timeout, 270 gfp_t memflags) 271 { 272 unsigned int pipe = usb_rcvctrlpipe(dev, endpoint); 273 int ret; 274 u8 *data; 275 276 if (!size || !driver_data || usb_pipe_type_check(dev, pipe)) 277 return -EINVAL; 278 279 data = kmalloc(size, memflags); 280 if (!data) 281 return -ENOMEM; 282 283 ret = usb_control_msg(dev, pipe, request, requesttype, value, index, 284 data, size, timeout); 285 286 if (ret < 0) 287 goto exit; 288 289 if (ret == size) { 290 memcpy(driver_data, data, size); 291 ret = 0; 292 } else { 293 ret = -EINVAL; 294 } 295 296 exit: 297 kfree(data); 298 return ret; 299 } 300 EXPORT_SYMBOL_GPL(usb_control_msg_recv); 301 302 /** 303 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion 304 * @usb_dev: pointer to the usb device to send the message to 305 * @pipe: endpoint "pipe" to send the message to 306 * @data: pointer to the data to send 307 * @len: length in bytes of the data to send 308 * @actual_length: pointer to a location to put the actual length transferred 309 * in bytes 310 * @timeout: time in msecs to wait for the message to complete before 311 * timing out (if 0 the wait is forever) 312 * 313 * Context: !in_interrupt () 314 * 315 * This function sends a simple interrupt message to a specified endpoint and 316 * waits for the message to complete, or timeout. 317 * 318 * Don't use this function from within an interrupt context. If you need 319 * an asynchronous message, or need to send a message from within interrupt 320 * context, use usb_submit_urb() If a thread in your driver uses this call, 321 * make sure your disconnect() method can wait for it to complete. Since you 322 * don't have a handle on the URB used, you can't cancel the request. 323 * 324 * Return: 325 * If successful, 0. Otherwise a negative error number. The number of actual 326 * bytes transferred will be stored in the @actual_length parameter. 327 */ 328 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 329 void *data, int len, int *actual_length, int timeout) 330 { 331 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout); 332 } 333 EXPORT_SYMBOL_GPL(usb_interrupt_msg); 334 335 /** 336 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion 337 * @usb_dev: pointer to the usb device to send the message to 338 * @pipe: endpoint "pipe" to send the message to 339 * @data: pointer to the data to send 340 * @len: length in bytes of the data to send 341 * @actual_length: pointer to a location to put the actual length transferred 342 * in bytes 343 * @timeout: time in msecs to wait for the message to complete before 344 * timing out (if 0 the wait is forever) 345 * 346 * Context: !in_interrupt () 347 * 348 * This function sends a simple bulk message to a specified endpoint 349 * and waits for the message to complete, or timeout. 350 * 351 * Don't use this function from within an interrupt context. If you need 352 * an asynchronous message, or need to send a message from within interrupt 353 * context, use usb_submit_urb() If a thread in your driver uses this call, 354 * make sure your disconnect() method can wait for it to complete. Since you 355 * don't have a handle on the URB used, you can't cancel the request. 356 * 357 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl, 358 * users are forced to abuse this routine by using it to submit URBs for 359 * interrupt endpoints. We will take the liberty of creating an interrupt URB 360 * (with the default interval) if the target is an interrupt endpoint. 361 * 362 * Return: 363 * If successful, 0. Otherwise a negative error number. The number of actual 364 * bytes transferred will be stored in the @actual_length parameter. 365 * 366 */ 367 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 368 void *data, int len, int *actual_length, int timeout) 369 { 370 struct urb *urb; 371 struct usb_host_endpoint *ep; 372 373 ep = usb_pipe_endpoint(usb_dev, pipe); 374 if (!ep || len < 0) 375 return -EINVAL; 376 377 urb = usb_alloc_urb(0, GFP_KERNEL); 378 if (!urb) 379 return -ENOMEM; 380 381 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 382 USB_ENDPOINT_XFER_INT) { 383 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30); 384 usb_fill_int_urb(urb, usb_dev, pipe, data, len, 385 usb_api_blocking_completion, NULL, 386 ep->desc.bInterval); 387 } else 388 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len, 389 usb_api_blocking_completion, NULL); 390 391 return usb_start_wait_urb(urb, timeout, actual_length); 392 } 393 EXPORT_SYMBOL_GPL(usb_bulk_msg); 394 395 /*-------------------------------------------------------------------*/ 396 397 static void sg_clean(struct usb_sg_request *io) 398 { 399 if (io->urbs) { 400 while (io->entries--) 401 usb_free_urb(io->urbs[io->entries]); 402 kfree(io->urbs); 403 io->urbs = NULL; 404 } 405 io->dev = NULL; 406 } 407 408 static void sg_complete(struct urb *urb) 409 { 410 unsigned long flags; 411 struct usb_sg_request *io = urb->context; 412 int status = urb->status; 413 414 spin_lock_irqsave(&io->lock, flags); 415 416 /* In 2.5 we require hcds' endpoint queues not to progress after fault 417 * reports, until the completion callback (this!) returns. That lets 418 * device driver code (like this routine) unlink queued urbs first, 419 * if it needs to, since the HC won't work on them at all. So it's 420 * not possible for page N+1 to overwrite page N, and so on. 421 * 422 * That's only for "hard" faults; "soft" faults (unlinks) sometimes 423 * complete before the HCD can get requests away from hardware, 424 * though never during cleanup after a hard fault. 425 */ 426 if (io->status 427 && (io->status != -ECONNRESET 428 || status != -ECONNRESET) 429 && urb->actual_length) { 430 dev_err(io->dev->bus->controller, 431 "dev %s ep%d%s scatterlist error %d/%d\n", 432 io->dev->devpath, 433 usb_endpoint_num(&urb->ep->desc), 434 usb_urb_dir_in(urb) ? "in" : "out", 435 status, io->status); 436 /* BUG (); */ 437 } 438 439 if (io->status == 0 && status && status != -ECONNRESET) { 440 int i, found, retval; 441 442 io->status = status; 443 444 /* the previous urbs, and this one, completed already. 445 * unlink pending urbs so they won't rx/tx bad data. 446 * careful: unlink can sometimes be synchronous... 447 */ 448 spin_unlock_irqrestore(&io->lock, flags); 449 for (i = 0, found = 0; i < io->entries; i++) { 450 if (!io->urbs[i]) 451 continue; 452 if (found) { 453 usb_block_urb(io->urbs[i]); 454 retval = usb_unlink_urb(io->urbs[i]); 455 if (retval != -EINPROGRESS && 456 retval != -ENODEV && 457 retval != -EBUSY && 458 retval != -EIDRM) 459 dev_err(&io->dev->dev, 460 "%s, unlink --> %d\n", 461 __func__, retval); 462 } else if (urb == io->urbs[i]) 463 found = 1; 464 } 465 spin_lock_irqsave(&io->lock, flags); 466 } 467 468 /* on the last completion, signal usb_sg_wait() */ 469 io->bytes += urb->actual_length; 470 io->count--; 471 if (!io->count) 472 complete(&io->complete); 473 474 spin_unlock_irqrestore(&io->lock, flags); 475 } 476 477 478 /** 479 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request 480 * @io: request block being initialized. until usb_sg_wait() returns, 481 * treat this as a pointer to an opaque block of memory, 482 * @dev: the usb device that will send or receive the data 483 * @pipe: endpoint "pipe" used to transfer the data 484 * @period: polling rate for interrupt endpoints, in frames or 485 * (for high speed endpoints) microframes; ignored for bulk 486 * @sg: scatterlist entries 487 * @nents: how many entries in the scatterlist 488 * @length: how many bytes to send from the scatterlist, or zero to 489 * send every byte identified in the list. 490 * @mem_flags: SLAB_* flags affecting memory allocations in this call 491 * 492 * This initializes a scatter/gather request, allocating resources such as 493 * I/O mappings and urb memory (except maybe memory used by USB controller 494 * drivers). 495 * 496 * The request must be issued using usb_sg_wait(), which waits for the I/O to 497 * complete (or to be canceled) and then cleans up all resources allocated by 498 * usb_sg_init(). 499 * 500 * The request may be canceled with usb_sg_cancel(), either before or after 501 * usb_sg_wait() is called. 502 * 503 * Return: Zero for success, else a negative errno value. 504 */ 505 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev, 506 unsigned pipe, unsigned period, struct scatterlist *sg, 507 int nents, size_t length, gfp_t mem_flags) 508 { 509 int i; 510 int urb_flags; 511 int use_sg; 512 513 if (!io || !dev || !sg 514 || usb_pipecontrol(pipe) 515 || usb_pipeisoc(pipe) 516 || nents <= 0) 517 return -EINVAL; 518 519 spin_lock_init(&io->lock); 520 io->dev = dev; 521 io->pipe = pipe; 522 523 if (dev->bus->sg_tablesize > 0) { 524 use_sg = true; 525 io->entries = 1; 526 } else { 527 use_sg = false; 528 io->entries = nents; 529 } 530 531 /* initialize all the urbs we'll use */ 532 io->urbs = kmalloc_array(io->entries, sizeof(*io->urbs), mem_flags); 533 if (!io->urbs) 534 goto nomem; 535 536 urb_flags = URB_NO_INTERRUPT; 537 if (usb_pipein(pipe)) 538 urb_flags |= URB_SHORT_NOT_OK; 539 540 for_each_sg(sg, sg, io->entries, i) { 541 struct urb *urb; 542 unsigned len; 543 544 urb = usb_alloc_urb(0, mem_flags); 545 if (!urb) { 546 io->entries = i; 547 goto nomem; 548 } 549 io->urbs[i] = urb; 550 551 urb->dev = NULL; 552 urb->pipe = pipe; 553 urb->interval = period; 554 urb->transfer_flags = urb_flags; 555 urb->complete = sg_complete; 556 urb->context = io; 557 urb->sg = sg; 558 559 if (use_sg) { 560 /* There is no single transfer buffer */ 561 urb->transfer_buffer = NULL; 562 urb->num_sgs = nents; 563 564 /* A length of zero means transfer the whole sg list */ 565 len = length; 566 if (len == 0) { 567 struct scatterlist *sg2; 568 int j; 569 570 for_each_sg(sg, sg2, nents, j) 571 len += sg2->length; 572 } 573 } else { 574 /* 575 * Some systems can't use DMA; they use PIO instead. 576 * For their sakes, transfer_buffer is set whenever 577 * possible. 578 */ 579 if (!PageHighMem(sg_page(sg))) 580 urb->transfer_buffer = sg_virt(sg); 581 else 582 urb->transfer_buffer = NULL; 583 584 len = sg->length; 585 if (length) { 586 len = min_t(size_t, len, length); 587 length -= len; 588 if (length == 0) 589 io->entries = i + 1; 590 } 591 } 592 urb->transfer_buffer_length = len; 593 } 594 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT; 595 596 /* transaction state */ 597 io->count = io->entries; 598 io->status = 0; 599 io->bytes = 0; 600 init_completion(&io->complete); 601 return 0; 602 603 nomem: 604 sg_clean(io); 605 return -ENOMEM; 606 } 607 EXPORT_SYMBOL_GPL(usb_sg_init); 608 609 /** 610 * usb_sg_wait - synchronously execute scatter/gather request 611 * @io: request block handle, as initialized with usb_sg_init(). 612 * some fields become accessible when this call returns. 613 * Context: !in_interrupt () 614 * 615 * This function blocks until the specified I/O operation completes. It 616 * leverages the grouping of the related I/O requests to get good transfer 617 * rates, by queueing the requests. At higher speeds, such queuing can 618 * significantly improve USB throughput. 619 * 620 * There are three kinds of completion for this function. 621 * 622 * (1) success, where io->status is zero. The number of io->bytes 623 * transferred is as requested. 624 * (2) error, where io->status is a negative errno value. The number 625 * of io->bytes transferred before the error is usually less 626 * than requested, and can be nonzero. 627 * (3) cancellation, a type of error with status -ECONNRESET that 628 * is initiated by usb_sg_cancel(). 629 * 630 * When this function returns, all memory allocated through usb_sg_init() or 631 * this call will have been freed. The request block parameter may still be 632 * passed to usb_sg_cancel(), or it may be freed. It could also be 633 * reinitialized and then reused. 634 * 635 * Data Transfer Rates: 636 * 637 * Bulk transfers are valid for full or high speed endpoints. 638 * The best full speed data rate is 19 packets of 64 bytes each 639 * per frame, or 1216 bytes per millisecond. 640 * The best high speed data rate is 13 packets of 512 bytes each 641 * per microframe, or 52 KBytes per millisecond. 642 * 643 * The reason to use interrupt transfers through this API would most likely 644 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond 645 * could be transferred. That capability is less useful for low or full 646 * speed interrupt endpoints, which allow at most one packet per millisecond, 647 * of at most 8 or 64 bytes (respectively). 648 * 649 * It is not necessary to call this function to reserve bandwidth for devices 650 * under an xHCI host controller, as the bandwidth is reserved when the 651 * configuration or interface alt setting is selected. 652 */ 653 void usb_sg_wait(struct usb_sg_request *io) 654 { 655 int i; 656 int entries = io->entries; 657 658 /* queue the urbs. */ 659 spin_lock_irq(&io->lock); 660 i = 0; 661 while (i < entries && !io->status) { 662 int retval; 663 664 io->urbs[i]->dev = io->dev; 665 spin_unlock_irq(&io->lock); 666 667 retval = usb_submit_urb(io->urbs[i], GFP_NOIO); 668 669 switch (retval) { 670 /* maybe we retrying will recover */ 671 case -ENXIO: /* hc didn't queue this one */ 672 case -EAGAIN: 673 case -ENOMEM: 674 retval = 0; 675 yield(); 676 break; 677 678 /* no error? continue immediately. 679 * 680 * NOTE: to work better with UHCI (4K I/O buffer may 681 * need 3K of TDs) it may be good to limit how many 682 * URBs are queued at once; N milliseconds? 683 */ 684 case 0: 685 ++i; 686 cpu_relax(); 687 break; 688 689 /* fail any uncompleted urbs */ 690 default: 691 io->urbs[i]->status = retval; 692 dev_dbg(&io->dev->dev, "%s, submit --> %d\n", 693 __func__, retval); 694 usb_sg_cancel(io); 695 } 696 spin_lock_irq(&io->lock); 697 if (retval && (io->status == 0 || io->status == -ECONNRESET)) 698 io->status = retval; 699 } 700 io->count -= entries - i; 701 if (io->count == 0) 702 complete(&io->complete); 703 spin_unlock_irq(&io->lock); 704 705 /* OK, yes, this could be packaged as non-blocking. 706 * So could the submit loop above ... but it's easier to 707 * solve neither problem than to solve both! 708 */ 709 wait_for_completion(&io->complete); 710 711 sg_clean(io); 712 } 713 EXPORT_SYMBOL_GPL(usb_sg_wait); 714 715 /** 716 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait() 717 * @io: request block, initialized with usb_sg_init() 718 * 719 * This stops a request after it has been started by usb_sg_wait(). 720 * It can also prevents one initialized by usb_sg_init() from starting, 721 * so that call just frees resources allocated to the request. 722 */ 723 void usb_sg_cancel(struct usb_sg_request *io) 724 { 725 unsigned long flags; 726 int i, retval; 727 728 spin_lock_irqsave(&io->lock, flags); 729 if (io->status || io->count == 0) { 730 spin_unlock_irqrestore(&io->lock, flags); 731 return; 732 } 733 /* shut everything down */ 734 io->status = -ECONNRESET; 735 io->count++; /* Keep the request alive until we're done */ 736 spin_unlock_irqrestore(&io->lock, flags); 737 738 for (i = io->entries - 1; i >= 0; --i) { 739 usb_block_urb(io->urbs[i]); 740 741 retval = usb_unlink_urb(io->urbs[i]); 742 if (retval != -EINPROGRESS 743 && retval != -ENODEV 744 && retval != -EBUSY 745 && retval != -EIDRM) 746 dev_warn(&io->dev->dev, "%s, unlink --> %d\n", 747 __func__, retval); 748 } 749 750 spin_lock_irqsave(&io->lock, flags); 751 io->count--; 752 if (!io->count) 753 complete(&io->complete); 754 spin_unlock_irqrestore(&io->lock, flags); 755 } 756 EXPORT_SYMBOL_GPL(usb_sg_cancel); 757 758 /*-------------------------------------------------------------------*/ 759 760 /** 761 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request 762 * @dev: the device whose descriptor is being retrieved 763 * @type: the descriptor type (USB_DT_*) 764 * @index: the number of the descriptor 765 * @buf: where to put the descriptor 766 * @size: how big is "buf"? 767 * Context: !in_interrupt () 768 * 769 * Gets a USB descriptor. Convenience functions exist to simplify 770 * getting some types of descriptors. Use 771 * usb_get_string() or usb_string() for USB_DT_STRING. 772 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG) 773 * are part of the device structure. 774 * In addition to a number of USB-standard descriptors, some 775 * devices also use class-specific or vendor-specific descriptors. 776 * 777 * This call is synchronous, and may not be used in an interrupt context. 778 * 779 * Return: The number of bytes received on success, or else the status code 780 * returned by the underlying usb_control_msg() call. 781 */ 782 int usb_get_descriptor(struct usb_device *dev, unsigned char type, 783 unsigned char index, void *buf, int size) 784 { 785 int i; 786 int result; 787 788 memset(buf, 0, size); /* Make sure we parse really received data */ 789 790 for (i = 0; i < 3; ++i) { 791 /* retry on length 0 or error; some devices are flakey */ 792 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 793 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 794 (type << 8) + index, 0, buf, size, 795 USB_CTRL_GET_TIMEOUT); 796 if (result <= 0 && result != -ETIMEDOUT) 797 continue; 798 if (result > 1 && ((u8 *)buf)[1] != type) { 799 result = -ENODATA; 800 continue; 801 } 802 break; 803 } 804 return result; 805 } 806 EXPORT_SYMBOL_GPL(usb_get_descriptor); 807 808 /** 809 * usb_get_string - gets a string descriptor 810 * @dev: the device whose string descriptor is being retrieved 811 * @langid: code for language chosen (from string descriptor zero) 812 * @index: the number of the descriptor 813 * @buf: where to put the string 814 * @size: how big is "buf"? 815 * Context: !in_interrupt () 816 * 817 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character, 818 * in little-endian byte order). 819 * The usb_string() function will often be a convenient way to turn 820 * these strings into kernel-printable form. 821 * 822 * Strings may be referenced in device, configuration, interface, or other 823 * descriptors, and could also be used in vendor-specific ways. 824 * 825 * This call is synchronous, and may not be used in an interrupt context. 826 * 827 * Return: The number of bytes received on success, or else the status code 828 * returned by the underlying usb_control_msg() call. 829 */ 830 static int usb_get_string(struct usb_device *dev, unsigned short langid, 831 unsigned char index, void *buf, int size) 832 { 833 int i; 834 int result; 835 836 for (i = 0; i < 3; ++i) { 837 /* retry on length 0 or stall; some devices are flakey */ 838 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 839 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 840 (USB_DT_STRING << 8) + index, langid, buf, size, 841 USB_CTRL_GET_TIMEOUT); 842 if (result == 0 || result == -EPIPE) 843 continue; 844 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) { 845 result = -ENODATA; 846 continue; 847 } 848 break; 849 } 850 return result; 851 } 852 853 static void usb_try_string_workarounds(unsigned char *buf, int *length) 854 { 855 int newlength, oldlength = *length; 856 857 for (newlength = 2; newlength + 1 < oldlength; newlength += 2) 858 if (!isprint(buf[newlength]) || buf[newlength + 1]) 859 break; 860 861 if (newlength > 2) { 862 buf[0] = newlength; 863 *length = newlength; 864 } 865 } 866 867 static int usb_string_sub(struct usb_device *dev, unsigned int langid, 868 unsigned int index, unsigned char *buf) 869 { 870 int rc; 871 872 /* Try to read the string descriptor by asking for the maximum 873 * possible number of bytes */ 874 if (dev->quirks & USB_QUIRK_STRING_FETCH_255) 875 rc = -EIO; 876 else 877 rc = usb_get_string(dev, langid, index, buf, 255); 878 879 /* If that failed try to read the descriptor length, then 880 * ask for just that many bytes */ 881 if (rc < 2) { 882 rc = usb_get_string(dev, langid, index, buf, 2); 883 if (rc == 2) 884 rc = usb_get_string(dev, langid, index, buf, buf[0]); 885 } 886 887 if (rc >= 2) { 888 if (!buf[0] && !buf[1]) 889 usb_try_string_workarounds(buf, &rc); 890 891 /* There might be extra junk at the end of the descriptor */ 892 if (buf[0] < rc) 893 rc = buf[0]; 894 895 rc = rc - (rc & 1); /* force a multiple of two */ 896 } 897 898 if (rc < 2) 899 rc = (rc < 0 ? rc : -EINVAL); 900 901 return rc; 902 } 903 904 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf) 905 { 906 int err; 907 908 if (dev->have_langid) 909 return 0; 910 911 if (dev->string_langid < 0) 912 return -EPIPE; 913 914 err = usb_string_sub(dev, 0, 0, tbuf); 915 916 /* If the string was reported but is malformed, default to english 917 * (0x0409) */ 918 if (err == -ENODATA || (err > 0 && err < 4)) { 919 dev->string_langid = 0x0409; 920 dev->have_langid = 1; 921 dev_err(&dev->dev, 922 "language id specifier not provided by device, defaulting to English\n"); 923 return 0; 924 } 925 926 /* In case of all other errors, we assume the device is not able to 927 * deal with strings at all. Set string_langid to -1 in order to 928 * prevent any string to be retrieved from the device */ 929 if (err < 0) { 930 dev_info(&dev->dev, "string descriptor 0 read error: %d\n", 931 err); 932 dev->string_langid = -1; 933 return -EPIPE; 934 } 935 936 /* always use the first langid listed */ 937 dev->string_langid = tbuf[2] | (tbuf[3] << 8); 938 dev->have_langid = 1; 939 dev_dbg(&dev->dev, "default language 0x%04x\n", 940 dev->string_langid); 941 return 0; 942 } 943 944 /** 945 * usb_string - returns UTF-8 version of a string descriptor 946 * @dev: the device whose string descriptor is being retrieved 947 * @index: the number of the descriptor 948 * @buf: where to put the string 949 * @size: how big is "buf"? 950 * Context: !in_interrupt () 951 * 952 * This converts the UTF-16LE encoded strings returned by devices, from 953 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones 954 * that are more usable in most kernel contexts. Note that this function 955 * chooses strings in the first language supported by the device. 956 * 957 * This call is synchronous, and may not be used in an interrupt context. 958 * 959 * Return: length of the string (>= 0) or usb_control_msg status (< 0). 960 */ 961 int usb_string(struct usb_device *dev, int index, char *buf, size_t size) 962 { 963 unsigned char *tbuf; 964 int err; 965 966 if (dev->state == USB_STATE_SUSPENDED) 967 return -EHOSTUNREACH; 968 if (size <= 0 || !buf) 969 return -EINVAL; 970 buf[0] = 0; 971 if (index <= 0 || index >= 256) 972 return -EINVAL; 973 tbuf = kmalloc(256, GFP_NOIO); 974 if (!tbuf) 975 return -ENOMEM; 976 977 err = usb_get_langid(dev, tbuf); 978 if (err < 0) 979 goto errout; 980 981 err = usb_string_sub(dev, dev->string_langid, index, tbuf); 982 if (err < 0) 983 goto errout; 984 985 size--; /* leave room for trailing NULL char in output buffer */ 986 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2, 987 UTF16_LITTLE_ENDIAN, buf, size); 988 buf[err] = 0; 989 990 if (tbuf[1] != USB_DT_STRING) 991 dev_dbg(&dev->dev, 992 "wrong descriptor type %02x for string %d (\"%s\")\n", 993 tbuf[1], index, buf); 994 995 errout: 996 kfree(tbuf); 997 return err; 998 } 999 EXPORT_SYMBOL_GPL(usb_string); 1000 1001 /* one UTF-8-encoded 16-bit character has at most three bytes */ 1002 #define MAX_USB_STRING_SIZE (127 * 3 + 1) 1003 1004 /** 1005 * usb_cache_string - read a string descriptor and cache it for later use 1006 * @udev: the device whose string descriptor is being read 1007 * @index: the descriptor index 1008 * 1009 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string, 1010 * or %NULL if the index is 0 or the string could not be read. 1011 */ 1012 char *usb_cache_string(struct usb_device *udev, int index) 1013 { 1014 char *buf; 1015 char *smallbuf = NULL; 1016 int len; 1017 1018 if (index <= 0) 1019 return NULL; 1020 1021 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO); 1022 if (buf) { 1023 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE); 1024 if (len > 0) { 1025 smallbuf = kmalloc(++len, GFP_NOIO); 1026 if (!smallbuf) 1027 return buf; 1028 memcpy(smallbuf, buf, len); 1029 } 1030 kfree(buf); 1031 } 1032 return smallbuf; 1033 } 1034 1035 /* 1036 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore) 1037 * @dev: the device whose device descriptor is being updated 1038 * @size: how much of the descriptor to read 1039 * Context: !in_interrupt () 1040 * 1041 * Updates the copy of the device descriptor stored in the device structure, 1042 * which dedicates space for this purpose. 1043 * 1044 * Not exported, only for use by the core. If drivers really want to read 1045 * the device descriptor directly, they can call usb_get_descriptor() with 1046 * type = USB_DT_DEVICE and index = 0. 1047 * 1048 * This call is synchronous, and may not be used in an interrupt context. 1049 * 1050 * Return: The number of bytes received on success, or else the status code 1051 * returned by the underlying usb_control_msg() call. 1052 */ 1053 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size) 1054 { 1055 struct usb_device_descriptor *desc; 1056 int ret; 1057 1058 if (size > sizeof(*desc)) 1059 return -EINVAL; 1060 desc = kmalloc(sizeof(*desc), GFP_NOIO); 1061 if (!desc) 1062 return -ENOMEM; 1063 1064 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size); 1065 if (ret >= 0) 1066 memcpy(&dev->descriptor, desc, size); 1067 kfree(desc); 1068 return ret; 1069 } 1070 1071 /* 1072 * usb_set_isoch_delay - informs the device of the packet transmit delay 1073 * @dev: the device whose delay is to be informed 1074 * Context: !in_interrupt() 1075 * 1076 * Since this is an optional request, we don't bother if it fails. 1077 */ 1078 int usb_set_isoch_delay(struct usb_device *dev) 1079 { 1080 /* skip hub devices */ 1081 if (dev->descriptor.bDeviceClass == USB_CLASS_HUB) 1082 return 0; 1083 1084 /* skip non-SS/non-SSP devices */ 1085 if (dev->speed < USB_SPEED_SUPER) 1086 return 0; 1087 1088 return usb_control_msg_send(dev, 0, 1089 USB_REQ_SET_ISOCH_DELAY, 1090 USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE, 1091 dev->hub_delay, 0, NULL, 0, 1092 USB_CTRL_SET_TIMEOUT, 1093 GFP_NOIO); 1094 } 1095 1096 /** 1097 * usb_get_status - issues a GET_STATUS call 1098 * @dev: the device whose status is being checked 1099 * @recip: USB_RECIP_*; for device, interface, or endpoint 1100 * @type: USB_STATUS_TYPE_*; for standard or PTM status types 1101 * @target: zero (for device), else interface or endpoint number 1102 * @data: pointer to two bytes of bitmap data 1103 * Context: !in_interrupt () 1104 * 1105 * Returns device, interface, or endpoint status. Normally only of 1106 * interest to see if the device is self powered, or has enabled the 1107 * remote wakeup facility; or whether a bulk or interrupt endpoint 1108 * is halted ("stalled"). 1109 * 1110 * Bits in these status bitmaps are set using the SET_FEATURE request, 1111 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt() 1112 * function should be used to clear halt ("stall") status. 1113 * 1114 * This call is synchronous, and may not be used in an interrupt context. 1115 * 1116 * Returns 0 and the status value in *@data (in host byte order) on success, 1117 * or else the status code from the underlying usb_control_msg() call. 1118 */ 1119 int usb_get_status(struct usb_device *dev, int recip, int type, int target, 1120 void *data) 1121 { 1122 int ret; 1123 void *status; 1124 int length; 1125 1126 switch (type) { 1127 case USB_STATUS_TYPE_STANDARD: 1128 length = 2; 1129 break; 1130 case USB_STATUS_TYPE_PTM: 1131 if (recip != USB_RECIP_DEVICE) 1132 return -EINVAL; 1133 1134 length = 4; 1135 break; 1136 default: 1137 return -EINVAL; 1138 } 1139 1140 status = kmalloc(length, GFP_KERNEL); 1141 if (!status) 1142 return -ENOMEM; 1143 1144 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 1145 USB_REQ_GET_STATUS, USB_DIR_IN | recip, USB_STATUS_TYPE_STANDARD, 1146 target, status, length, USB_CTRL_GET_TIMEOUT); 1147 1148 switch (ret) { 1149 case 4: 1150 if (type != USB_STATUS_TYPE_PTM) { 1151 ret = -EIO; 1152 break; 1153 } 1154 1155 *(u32 *) data = le32_to_cpu(*(__le32 *) status); 1156 ret = 0; 1157 break; 1158 case 2: 1159 if (type != USB_STATUS_TYPE_STANDARD) { 1160 ret = -EIO; 1161 break; 1162 } 1163 1164 *(u16 *) data = le16_to_cpu(*(__le16 *) status); 1165 ret = 0; 1166 break; 1167 default: 1168 ret = -EIO; 1169 } 1170 1171 kfree(status); 1172 return ret; 1173 } 1174 EXPORT_SYMBOL_GPL(usb_get_status); 1175 1176 /** 1177 * usb_clear_halt - tells device to clear endpoint halt/stall condition 1178 * @dev: device whose endpoint is halted 1179 * @pipe: endpoint "pipe" being cleared 1180 * Context: !in_interrupt () 1181 * 1182 * This is used to clear halt conditions for bulk and interrupt endpoints, 1183 * as reported by URB completion status. Endpoints that are halted are 1184 * sometimes referred to as being "stalled". Such endpoints are unable 1185 * to transmit or receive data until the halt status is cleared. Any URBs 1186 * queued for such an endpoint should normally be unlinked by the driver 1187 * before clearing the halt condition, as described in sections 5.7.5 1188 * and 5.8.5 of the USB 2.0 spec. 1189 * 1190 * Note that control and isochronous endpoints don't halt, although control 1191 * endpoints report "protocol stall" (for unsupported requests) using the 1192 * same status code used to report a true stall. 1193 * 1194 * This call is synchronous, and may not be used in an interrupt context. 1195 * 1196 * Return: Zero on success, or else the status code returned by the 1197 * underlying usb_control_msg() call. 1198 */ 1199 int usb_clear_halt(struct usb_device *dev, int pipe) 1200 { 1201 int result; 1202 int endp = usb_pipeendpoint(pipe); 1203 1204 if (usb_pipein(pipe)) 1205 endp |= USB_DIR_IN; 1206 1207 /* we don't care if it wasn't halted first. in fact some devices 1208 * (like some ibmcam model 1 units) seem to expect hosts to make 1209 * this request for iso endpoints, which can't halt! 1210 */ 1211 result = usb_control_msg_send(dev, 0, 1212 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 1213 USB_ENDPOINT_HALT, endp, NULL, 0, 1214 USB_CTRL_SET_TIMEOUT, GFP_NOIO); 1215 1216 /* don't un-halt or force to DATA0 except on success */ 1217 if (result) 1218 return result; 1219 1220 /* NOTE: seems like Microsoft and Apple don't bother verifying 1221 * the clear "took", so some devices could lock up if you check... 1222 * such as the Hagiwara FlashGate DUAL. So we won't bother. 1223 * 1224 * NOTE: make sure the logic here doesn't diverge much from 1225 * the copy in usb-storage, for as long as we need two copies. 1226 */ 1227 1228 usb_reset_endpoint(dev, endp); 1229 1230 return 0; 1231 } 1232 EXPORT_SYMBOL_GPL(usb_clear_halt); 1233 1234 static int create_intf_ep_devs(struct usb_interface *intf) 1235 { 1236 struct usb_device *udev = interface_to_usbdev(intf); 1237 struct usb_host_interface *alt = intf->cur_altsetting; 1238 int i; 1239 1240 if (intf->ep_devs_created || intf->unregistering) 1241 return 0; 1242 1243 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1244 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev); 1245 intf->ep_devs_created = 1; 1246 return 0; 1247 } 1248 1249 static void remove_intf_ep_devs(struct usb_interface *intf) 1250 { 1251 struct usb_host_interface *alt = intf->cur_altsetting; 1252 int i; 1253 1254 if (!intf->ep_devs_created) 1255 return; 1256 1257 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1258 usb_remove_ep_devs(&alt->endpoint[i]); 1259 intf->ep_devs_created = 0; 1260 } 1261 1262 /** 1263 * usb_disable_endpoint -- Disable an endpoint by address 1264 * @dev: the device whose endpoint is being disabled 1265 * @epaddr: the endpoint's address. Endpoint number for output, 1266 * endpoint number + USB_DIR_IN for input 1267 * @reset_hardware: flag to erase any endpoint state stored in the 1268 * controller hardware 1269 * 1270 * Disables the endpoint for URB submission and nukes all pending URBs. 1271 * If @reset_hardware is set then also deallocates hcd/hardware state 1272 * for the endpoint. 1273 */ 1274 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr, 1275 bool reset_hardware) 1276 { 1277 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1278 struct usb_host_endpoint *ep; 1279 1280 if (!dev) 1281 return; 1282 1283 if (usb_endpoint_out(epaddr)) { 1284 ep = dev->ep_out[epnum]; 1285 if (reset_hardware && epnum != 0) 1286 dev->ep_out[epnum] = NULL; 1287 } else { 1288 ep = dev->ep_in[epnum]; 1289 if (reset_hardware && epnum != 0) 1290 dev->ep_in[epnum] = NULL; 1291 } 1292 if (ep) { 1293 ep->enabled = 0; 1294 usb_hcd_flush_endpoint(dev, ep); 1295 if (reset_hardware) 1296 usb_hcd_disable_endpoint(dev, ep); 1297 } 1298 } 1299 1300 /** 1301 * usb_reset_endpoint - Reset an endpoint's state. 1302 * @dev: the device whose endpoint is to be reset 1303 * @epaddr: the endpoint's address. Endpoint number for output, 1304 * endpoint number + USB_DIR_IN for input 1305 * 1306 * Resets any host-side endpoint state such as the toggle bit, 1307 * sequence number or current window. 1308 */ 1309 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr) 1310 { 1311 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1312 struct usb_host_endpoint *ep; 1313 1314 if (usb_endpoint_out(epaddr)) 1315 ep = dev->ep_out[epnum]; 1316 else 1317 ep = dev->ep_in[epnum]; 1318 if (ep) 1319 usb_hcd_reset_endpoint(dev, ep); 1320 } 1321 EXPORT_SYMBOL_GPL(usb_reset_endpoint); 1322 1323 1324 /** 1325 * usb_disable_interface -- Disable all endpoints for an interface 1326 * @dev: the device whose interface is being disabled 1327 * @intf: pointer to the interface descriptor 1328 * @reset_hardware: flag to erase any endpoint state stored in the 1329 * controller hardware 1330 * 1331 * Disables all the endpoints for the interface's current altsetting. 1332 */ 1333 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf, 1334 bool reset_hardware) 1335 { 1336 struct usb_host_interface *alt = intf->cur_altsetting; 1337 int i; 1338 1339 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 1340 usb_disable_endpoint(dev, 1341 alt->endpoint[i].desc.bEndpointAddress, 1342 reset_hardware); 1343 } 1344 } 1345 1346 /* 1347 * usb_disable_device_endpoints -- Disable all endpoints for a device 1348 * @dev: the device whose endpoints are being disabled 1349 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. 1350 */ 1351 static void usb_disable_device_endpoints(struct usb_device *dev, int skip_ep0) 1352 { 1353 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1354 int i; 1355 1356 if (hcd->driver->check_bandwidth) { 1357 /* First pass: Cancel URBs, leave endpoint pointers intact. */ 1358 for (i = skip_ep0; i < 16; ++i) { 1359 usb_disable_endpoint(dev, i, false); 1360 usb_disable_endpoint(dev, i + USB_DIR_IN, false); 1361 } 1362 /* Remove endpoints from the host controller internal state */ 1363 mutex_lock(hcd->bandwidth_mutex); 1364 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); 1365 mutex_unlock(hcd->bandwidth_mutex); 1366 } 1367 /* Second pass: remove endpoint pointers */ 1368 for (i = skip_ep0; i < 16; ++i) { 1369 usb_disable_endpoint(dev, i, true); 1370 usb_disable_endpoint(dev, i + USB_DIR_IN, true); 1371 } 1372 } 1373 1374 /** 1375 * usb_disable_device - Disable all the endpoints for a USB device 1376 * @dev: the device whose endpoints are being disabled 1377 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. 1378 * 1379 * Disables all the device's endpoints, potentially including endpoint 0. 1380 * Deallocates hcd/hardware state for the endpoints (nuking all or most 1381 * pending urbs) and usbcore state for the interfaces, so that usbcore 1382 * must usb_set_configuration() before any interfaces could be used. 1383 */ 1384 void usb_disable_device(struct usb_device *dev, int skip_ep0) 1385 { 1386 int i; 1387 1388 /* getting rid of interfaces will disconnect 1389 * any drivers bound to them (a key side effect) 1390 */ 1391 if (dev->actconfig) { 1392 /* 1393 * FIXME: In order to avoid self-deadlock involving the 1394 * bandwidth_mutex, we have to mark all the interfaces 1395 * before unregistering any of them. 1396 */ 1397 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) 1398 dev->actconfig->interface[i]->unregistering = 1; 1399 1400 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1401 struct usb_interface *interface; 1402 1403 /* remove this interface if it has been registered */ 1404 interface = dev->actconfig->interface[i]; 1405 if (!device_is_registered(&interface->dev)) 1406 continue; 1407 dev_dbg(&dev->dev, "unregistering interface %s\n", 1408 dev_name(&interface->dev)); 1409 remove_intf_ep_devs(interface); 1410 device_del(&interface->dev); 1411 } 1412 1413 /* Now that the interfaces are unbound, nobody should 1414 * try to access them. 1415 */ 1416 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1417 put_device(&dev->actconfig->interface[i]->dev); 1418 dev->actconfig->interface[i] = NULL; 1419 } 1420 1421 usb_disable_usb2_hardware_lpm(dev); 1422 usb_unlocked_disable_lpm(dev); 1423 usb_disable_ltm(dev); 1424 1425 dev->actconfig = NULL; 1426 if (dev->state == USB_STATE_CONFIGURED) 1427 usb_set_device_state(dev, USB_STATE_ADDRESS); 1428 } 1429 1430 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__, 1431 skip_ep0 ? "non-ep0" : "all"); 1432 1433 usb_disable_device_endpoints(dev, skip_ep0); 1434 } 1435 1436 /** 1437 * usb_enable_endpoint - Enable an endpoint for USB communications 1438 * @dev: the device whose interface is being enabled 1439 * @ep: the endpoint 1440 * @reset_ep: flag to reset the endpoint state 1441 * 1442 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers. 1443 * For control endpoints, both the input and output sides are handled. 1444 */ 1445 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep, 1446 bool reset_ep) 1447 { 1448 int epnum = usb_endpoint_num(&ep->desc); 1449 int is_out = usb_endpoint_dir_out(&ep->desc); 1450 int is_control = usb_endpoint_xfer_control(&ep->desc); 1451 1452 if (reset_ep) 1453 usb_hcd_reset_endpoint(dev, ep); 1454 if (is_out || is_control) 1455 dev->ep_out[epnum] = ep; 1456 if (!is_out || is_control) 1457 dev->ep_in[epnum] = ep; 1458 ep->enabled = 1; 1459 } 1460 1461 /** 1462 * usb_enable_interface - Enable all the endpoints for an interface 1463 * @dev: the device whose interface is being enabled 1464 * @intf: pointer to the interface descriptor 1465 * @reset_eps: flag to reset the endpoints' state 1466 * 1467 * Enables all the endpoints for the interface's current altsetting. 1468 */ 1469 void usb_enable_interface(struct usb_device *dev, 1470 struct usb_interface *intf, bool reset_eps) 1471 { 1472 struct usb_host_interface *alt = intf->cur_altsetting; 1473 int i; 1474 1475 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1476 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps); 1477 } 1478 1479 /** 1480 * usb_set_interface - Makes a particular alternate setting be current 1481 * @dev: the device whose interface is being updated 1482 * @interface: the interface being updated 1483 * @alternate: the setting being chosen. 1484 * Context: !in_interrupt () 1485 * 1486 * This is used to enable data transfers on interfaces that may not 1487 * be enabled by default. Not all devices support such configurability. 1488 * Only the driver bound to an interface may change its setting. 1489 * 1490 * Within any given configuration, each interface may have several 1491 * alternative settings. These are often used to control levels of 1492 * bandwidth consumption. For example, the default setting for a high 1493 * speed interrupt endpoint may not send more than 64 bytes per microframe, 1494 * while interrupt transfers of up to 3KBytes per microframe are legal. 1495 * Also, isochronous endpoints may never be part of an 1496 * interface's default setting. To access such bandwidth, alternate 1497 * interface settings must be made current. 1498 * 1499 * Note that in the Linux USB subsystem, bandwidth associated with 1500 * an endpoint in a given alternate setting is not reserved until an URB 1501 * is submitted that needs that bandwidth. Some other operating systems 1502 * allocate bandwidth early, when a configuration is chosen. 1503 * 1504 * xHCI reserves bandwidth and configures the alternate setting in 1505 * usb_hcd_alloc_bandwidth(). If it fails the original interface altsetting 1506 * may be disabled. Drivers cannot rely on any particular alternate 1507 * setting being in effect after a failure. 1508 * 1509 * This call is synchronous, and may not be used in an interrupt context. 1510 * Also, drivers must not change altsettings while urbs are scheduled for 1511 * endpoints in that interface; all such urbs must first be completed 1512 * (perhaps forced by unlinking). 1513 * 1514 * Return: Zero on success, or else the status code returned by the 1515 * underlying usb_control_msg() call. 1516 */ 1517 int usb_set_interface(struct usb_device *dev, int interface, int alternate) 1518 { 1519 struct usb_interface *iface; 1520 struct usb_host_interface *alt; 1521 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1522 int i, ret, manual = 0; 1523 unsigned int epaddr; 1524 unsigned int pipe; 1525 1526 if (dev->state == USB_STATE_SUSPENDED) 1527 return -EHOSTUNREACH; 1528 1529 iface = usb_ifnum_to_if(dev, interface); 1530 if (!iface) { 1531 dev_dbg(&dev->dev, "selecting invalid interface %d\n", 1532 interface); 1533 return -EINVAL; 1534 } 1535 if (iface->unregistering) 1536 return -ENODEV; 1537 1538 alt = usb_altnum_to_altsetting(iface, alternate); 1539 if (!alt) { 1540 dev_warn(&dev->dev, "selecting invalid altsetting %d\n", 1541 alternate); 1542 return -EINVAL; 1543 } 1544 /* 1545 * usb3 hosts configure the interface in usb_hcd_alloc_bandwidth, 1546 * including freeing dropped endpoint ring buffers. 1547 * Make sure the interface endpoints are flushed before that 1548 */ 1549 usb_disable_interface(dev, iface, false); 1550 1551 /* Make sure we have enough bandwidth for this alternate interface. 1552 * Remove the current alt setting and add the new alt setting. 1553 */ 1554 mutex_lock(hcd->bandwidth_mutex); 1555 /* Disable LPM, and re-enable it once the new alt setting is installed, 1556 * so that the xHCI driver can recalculate the U1/U2 timeouts. 1557 */ 1558 if (usb_disable_lpm(dev)) { 1559 dev_err(&iface->dev, "%s Failed to disable LPM\n", __func__); 1560 mutex_unlock(hcd->bandwidth_mutex); 1561 return -ENOMEM; 1562 } 1563 /* Changing alt-setting also frees any allocated streams */ 1564 for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++) 1565 iface->cur_altsetting->endpoint[i].streams = 0; 1566 1567 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt); 1568 if (ret < 0) { 1569 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n", 1570 alternate); 1571 usb_enable_lpm(dev); 1572 mutex_unlock(hcd->bandwidth_mutex); 1573 return ret; 1574 } 1575 1576 if (dev->quirks & USB_QUIRK_NO_SET_INTF) 1577 ret = -EPIPE; 1578 else 1579 ret = usb_control_msg_send(dev, 0, 1580 USB_REQ_SET_INTERFACE, 1581 USB_RECIP_INTERFACE, alternate, 1582 interface, NULL, 0, 5000, 1583 GFP_NOIO); 1584 1585 /* 9.4.10 says devices don't need this and are free to STALL the 1586 * request if the interface only has one alternate setting. 1587 */ 1588 if (ret == -EPIPE && iface->num_altsetting == 1) { 1589 dev_dbg(&dev->dev, 1590 "manual set_interface for iface %d, alt %d\n", 1591 interface, alternate); 1592 manual = 1; 1593 } else if (ret) { 1594 /* Re-instate the old alt setting */ 1595 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting); 1596 usb_enable_lpm(dev); 1597 mutex_unlock(hcd->bandwidth_mutex); 1598 return ret; 1599 } 1600 mutex_unlock(hcd->bandwidth_mutex); 1601 1602 /* FIXME drivers shouldn't need to replicate/bugfix the logic here 1603 * when they implement async or easily-killable versions of this or 1604 * other "should-be-internal" functions (like clear_halt). 1605 * should hcd+usbcore postprocess control requests? 1606 */ 1607 1608 /* prevent submissions using previous endpoint settings */ 1609 if (iface->cur_altsetting != alt) { 1610 remove_intf_ep_devs(iface); 1611 usb_remove_sysfs_intf_files(iface); 1612 } 1613 usb_disable_interface(dev, iface, true); 1614 1615 iface->cur_altsetting = alt; 1616 1617 /* Now that the interface is installed, re-enable LPM. */ 1618 usb_unlocked_enable_lpm(dev); 1619 1620 /* If the interface only has one altsetting and the device didn't 1621 * accept the request, we attempt to carry out the equivalent action 1622 * by manually clearing the HALT feature for each endpoint in the 1623 * new altsetting. 1624 */ 1625 if (manual) { 1626 for (i = 0; i < alt->desc.bNumEndpoints; i++) { 1627 epaddr = alt->endpoint[i].desc.bEndpointAddress; 1628 pipe = __create_pipe(dev, 1629 USB_ENDPOINT_NUMBER_MASK & epaddr) | 1630 (usb_endpoint_out(epaddr) ? 1631 USB_DIR_OUT : USB_DIR_IN); 1632 1633 usb_clear_halt(dev, pipe); 1634 } 1635 } 1636 1637 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting 1638 * 1639 * Note: 1640 * Despite EP0 is always present in all interfaces/AS, the list of 1641 * endpoints from the descriptor does not contain EP0. Due to its 1642 * omnipresence one might expect EP0 being considered "affected" by 1643 * any SetInterface request and hence assume toggles need to be reset. 1644 * However, EP0 toggles are re-synced for every individual transfer 1645 * during the SETUP stage - hence EP0 toggles are "don't care" here. 1646 * (Likewise, EP0 never "halts" on well designed devices.) 1647 */ 1648 usb_enable_interface(dev, iface, true); 1649 if (device_is_registered(&iface->dev)) { 1650 usb_create_sysfs_intf_files(iface); 1651 create_intf_ep_devs(iface); 1652 } 1653 return 0; 1654 } 1655 EXPORT_SYMBOL_GPL(usb_set_interface); 1656 1657 /** 1658 * usb_reset_configuration - lightweight device reset 1659 * @dev: the device whose configuration is being reset 1660 * 1661 * This issues a standard SET_CONFIGURATION request to the device using 1662 * the current configuration. The effect is to reset most USB-related 1663 * state in the device, including interface altsettings (reset to zero), 1664 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt 1665 * endpoints). Other usbcore state is unchanged, including bindings of 1666 * usb device drivers to interfaces. 1667 * 1668 * Because this affects multiple interfaces, avoid using this with composite 1669 * (multi-interface) devices. Instead, the driver for each interface may 1670 * use usb_set_interface() on the interfaces it claims. Be careful though; 1671 * some devices don't support the SET_INTERFACE request, and others won't 1672 * reset all the interface state (notably endpoint state). Resetting the whole 1673 * configuration would affect other drivers' interfaces. 1674 * 1675 * The caller must own the device lock. 1676 * 1677 * Return: Zero on success, else a negative error code. 1678 * 1679 * If this routine fails the device will probably be in an unusable state 1680 * with endpoints disabled, and interfaces only partially enabled. 1681 */ 1682 int usb_reset_configuration(struct usb_device *dev) 1683 { 1684 int i, retval; 1685 struct usb_host_config *config; 1686 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1687 1688 if (dev->state == USB_STATE_SUSPENDED) 1689 return -EHOSTUNREACH; 1690 1691 /* caller must have locked the device and must own 1692 * the usb bus readlock (so driver bindings are stable); 1693 * calls during probe() are fine 1694 */ 1695 1696 usb_disable_device_endpoints(dev, 1); /* skip ep0*/ 1697 1698 config = dev->actconfig; 1699 retval = 0; 1700 mutex_lock(hcd->bandwidth_mutex); 1701 /* Disable LPM, and re-enable it once the configuration is reset, so 1702 * that the xHCI driver can recalculate the U1/U2 timeouts. 1703 */ 1704 if (usb_disable_lpm(dev)) { 1705 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__); 1706 mutex_unlock(hcd->bandwidth_mutex); 1707 return -ENOMEM; 1708 } 1709 1710 /* xHCI adds all endpoints in usb_hcd_alloc_bandwidth */ 1711 retval = usb_hcd_alloc_bandwidth(dev, config, NULL, NULL); 1712 if (retval < 0) { 1713 usb_enable_lpm(dev); 1714 mutex_unlock(hcd->bandwidth_mutex); 1715 return retval; 1716 } 1717 retval = usb_control_msg_send(dev, 0, USB_REQ_SET_CONFIGURATION, 0, 1718 config->desc.bConfigurationValue, 0, 1719 NULL, 0, USB_CTRL_SET_TIMEOUT, 1720 GFP_NOIO); 1721 if (retval) { 1722 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); 1723 usb_enable_lpm(dev); 1724 mutex_unlock(hcd->bandwidth_mutex); 1725 return retval; 1726 } 1727 mutex_unlock(hcd->bandwidth_mutex); 1728 1729 /* re-init hc/hcd interface/endpoint state */ 1730 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1731 struct usb_interface *intf = config->interface[i]; 1732 struct usb_host_interface *alt; 1733 1734 alt = usb_altnum_to_altsetting(intf, 0); 1735 1736 /* No altsetting 0? We'll assume the first altsetting. 1737 * We could use a GetInterface call, but if a device is 1738 * so non-compliant that it doesn't have altsetting 0 1739 * then I wouldn't trust its reply anyway. 1740 */ 1741 if (!alt) 1742 alt = &intf->altsetting[0]; 1743 1744 if (alt != intf->cur_altsetting) { 1745 remove_intf_ep_devs(intf); 1746 usb_remove_sysfs_intf_files(intf); 1747 } 1748 intf->cur_altsetting = alt; 1749 usb_enable_interface(dev, intf, true); 1750 if (device_is_registered(&intf->dev)) { 1751 usb_create_sysfs_intf_files(intf); 1752 create_intf_ep_devs(intf); 1753 } 1754 } 1755 /* Now that the interfaces are installed, re-enable LPM. */ 1756 usb_unlocked_enable_lpm(dev); 1757 return 0; 1758 } 1759 EXPORT_SYMBOL_GPL(usb_reset_configuration); 1760 1761 static void usb_release_interface(struct device *dev) 1762 { 1763 struct usb_interface *intf = to_usb_interface(dev); 1764 struct usb_interface_cache *intfc = 1765 altsetting_to_usb_interface_cache(intf->altsetting); 1766 1767 kref_put(&intfc->ref, usb_release_interface_cache); 1768 usb_put_dev(interface_to_usbdev(intf)); 1769 of_node_put(dev->of_node); 1770 kfree(intf); 1771 } 1772 1773 /* 1774 * usb_deauthorize_interface - deauthorize an USB interface 1775 * 1776 * @intf: USB interface structure 1777 */ 1778 void usb_deauthorize_interface(struct usb_interface *intf) 1779 { 1780 struct device *dev = &intf->dev; 1781 1782 device_lock(dev->parent); 1783 1784 if (intf->authorized) { 1785 device_lock(dev); 1786 intf->authorized = 0; 1787 device_unlock(dev); 1788 1789 usb_forced_unbind_intf(intf); 1790 } 1791 1792 device_unlock(dev->parent); 1793 } 1794 1795 /* 1796 * usb_authorize_interface - authorize an USB interface 1797 * 1798 * @intf: USB interface structure 1799 */ 1800 void usb_authorize_interface(struct usb_interface *intf) 1801 { 1802 struct device *dev = &intf->dev; 1803 1804 if (!intf->authorized) { 1805 device_lock(dev); 1806 intf->authorized = 1; /* authorize interface */ 1807 device_unlock(dev); 1808 } 1809 } 1810 1811 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env) 1812 { 1813 struct usb_device *usb_dev; 1814 struct usb_interface *intf; 1815 struct usb_host_interface *alt; 1816 1817 intf = to_usb_interface(dev); 1818 usb_dev = interface_to_usbdev(intf); 1819 alt = intf->cur_altsetting; 1820 1821 if (add_uevent_var(env, "INTERFACE=%d/%d/%d", 1822 alt->desc.bInterfaceClass, 1823 alt->desc.bInterfaceSubClass, 1824 alt->desc.bInterfaceProtocol)) 1825 return -ENOMEM; 1826 1827 if (add_uevent_var(env, 1828 "MODALIAS=usb:" 1829 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X", 1830 le16_to_cpu(usb_dev->descriptor.idVendor), 1831 le16_to_cpu(usb_dev->descriptor.idProduct), 1832 le16_to_cpu(usb_dev->descriptor.bcdDevice), 1833 usb_dev->descriptor.bDeviceClass, 1834 usb_dev->descriptor.bDeviceSubClass, 1835 usb_dev->descriptor.bDeviceProtocol, 1836 alt->desc.bInterfaceClass, 1837 alt->desc.bInterfaceSubClass, 1838 alt->desc.bInterfaceProtocol, 1839 alt->desc.bInterfaceNumber)) 1840 return -ENOMEM; 1841 1842 return 0; 1843 } 1844 1845 struct device_type usb_if_device_type = { 1846 .name = "usb_interface", 1847 .release = usb_release_interface, 1848 .uevent = usb_if_uevent, 1849 }; 1850 1851 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev, 1852 struct usb_host_config *config, 1853 u8 inum) 1854 { 1855 struct usb_interface_assoc_descriptor *retval = NULL; 1856 struct usb_interface_assoc_descriptor *intf_assoc; 1857 int first_intf; 1858 int last_intf; 1859 int i; 1860 1861 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) { 1862 intf_assoc = config->intf_assoc[i]; 1863 if (intf_assoc->bInterfaceCount == 0) 1864 continue; 1865 1866 first_intf = intf_assoc->bFirstInterface; 1867 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1); 1868 if (inum >= first_intf && inum <= last_intf) { 1869 if (!retval) 1870 retval = intf_assoc; 1871 else 1872 dev_err(&dev->dev, "Interface #%d referenced" 1873 " by multiple IADs\n", inum); 1874 } 1875 } 1876 1877 return retval; 1878 } 1879 1880 1881 /* 1882 * Internal function to queue a device reset 1883 * See usb_queue_reset_device() for more details 1884 */ 1885 static void __usb_queue_reset_device(struct work_struct *ws) 1886 { 1887 int rc; 1888 struct usb_interface *iface = 1889 container_of(ws, struct usb_interface, reset_ws); 1890 struct usb_device *udev = interface_to_usbdev(iface); 1891 1892 rc = usb_lock_device_for_reset(udev, iface); 1893 if (rc >= 0) { 1894 usb_reset_device(udev); 1895 usb_unlock_device(udev); 1896 } 1897 usb_put_intf(iface); /* Undo _get_ in usb_queue_reset_device() */ 1898 } 1899 1900 1901 /* 1902 * usb_set_configuration - Makes a particular device setting be current 1903 * @dev: the device whose configuration is being updated 1904 * @configuration: the configuration being chosen. 1905 * Context: !in_interrupt(), caller owns the device lock 1906 * 1907 * This is used to enable non-default device modes. Not all devices 1908 * use this kind of configurability; many devices only have one 1909 * configuration. 1910 * 1911 * @configuration is the value of the configuration to be installed. 1912 * According to the USB spec (e.g. section 9.1.1.5), configuration values 1913 * must be non-zero; a value of zero indicates that the device in 1914 * unconfigured. However some devices erroneously use 0 as one of their 1915 * configuration values. To help manage such devices, this routine will 1916 * accept @configuration = -1 as indicating the device should be put in 1917 * an unconfigured state. 1918 * 1919 * USB device configurations may affect Linux interoperability, 1920 * power consumption and the functionality available. For example, 1921 * the default configuration is limited to using 100mA of bus power, 1922 * so that when certain device functionality requires more power, 1923 * and the device is bus powered, that functionality should be in some 1924 * non-default device configuration. Other device modes may also be 1925 * reflected as configuration options, such as whether two ISDN 1926 * channels are available independently; and choosing between open 1927 * standard device protocols (like CDC) or proprietary ones. 1928 * 1929 * Note that a non-authorized device (dev->authorized == 0) will only 1930 * be put in unconfigured mode. 1931 * 1932 * Note that USB has an additional level of device configurability, 1933 * associated with interfaces. That configurability is accessed using 1934 * usb_set_interface(). 1935 * 1936 * This call is synchronous. The calling context must be able to sleep, 1937 * must own the device lock, and must not hold the driver model's USB 1938 * bus mutex; usb interface driver probe() methods cannot use this routine. 1939 * 1940 * Returns zero on success, or else the status code returned by the 1941 * underlying call that failed. On successful completion, each interface 1942 * in the original device configuration has been destroyed, and each one 1943 * in the new configuration has been probed by all relevant usb device 1944 * drivers currently known to the kernel. 1945 */ 1946 int usb_set_configuration(struct usb_device *dev, int configuration) 1947 { 1948 int i, ret; 1949 struct usb_host_config *cp = NULL; 1950 struct usb_interface **new_interfaces = NULL; 1951 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1952 int n, nintf; 1953 1954 if (dev->authorized == 0 || configuration == -1) 1955 configuration = 0; 1956 else { 1957 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) { 1958 if (dev->config[i].desc.bConfigurationValue == 1959 configuration) { 1960 cp = &dev->config[i]; 1961 break; 1962 } 1963 } 1964 } 1965 if ((!cp && configuration != 0)) 1966 return -EINVAL; 1967 1968 /* The USB spec says configuration 0 means unconfigured. 1969 * But if a device includes a configuration numbered 0, 1970 * we will accept it as a correctly configured state. 1971 * Use -1 if you really want to unconfigure the device. 1972 */ 1973 if (cp && configuration == 0) 1974 dev_warn(&dev->dev, "config 0 descriptor??\n"); 1975 1976 /* Allocate memory for new interfaces before doing anything else, 1977 * so that if we run out then nothing will have changed. */ 1978 n = nintf = 0; 1979 if (cp) { 1980 nintf = cp->desc.bNumInterfaces; 1981 new_interfaces = kmalloc_array(nintf, sizeof(*new_interfaces), 1982 GFP_NOIO); 1983 if (!new_interfaces) 1984 return -ENOMEM; 1985 1986 for (; n < nintf; ++n) { 1987 new_interfaces[n] = kzalloc( 1988 sizeof(struct usb_interface), 1989 GFP_NOIO); 1990 if (!new_interfaces[n]) { 1991 ret = -ENOMEM; 1992 free_interfaces: 1993 while (--n >= 0) 1994 kfree(new_interfaces[n]); 1995 kfree(new_interfaces); 1996 return ret; 1997 } 1998 } 1999 2000 i = dev->bus_mA - usb_get_max_power(dev, cp); 2001 if (i < 0) 2002 dev_warn(&dev->dev, "new config #%d exceeds power " 2003 "limit by %dmA\n", 2004 configuration, -i); 2005 } 2006 2007 /* Wake up the device so we can send it the Set-Config request */ 2008 ret = usb_autoresume_device(dev); 2009 if (ret) 2010 goto free_interfaces; 2011 2012 /* if it's already configured, clear out old state first. 2013 * getting rid of old interfaces means unbinding their drivers. 2014 */ 2015 if (dev->state != USB_STATE_ADDRESS) 2016 usb_disable_device(dev, 1); /* Skip ep0 */ 2017 2018 /* Get rid of pending async Set-Config requests for this device */ 2019 cancel_async_set_config(dev); 2020 2021 /* Make sure we have bandwidth (and available HCD resources) for this 2022 * configuration. Remove endpoints from the schedule if we're dropping 2023 * this configuration to set configuration 0. After this point, the 2024 * host controller will not allow submissions to dropped endpoints. If 2025 * this call fails, the device state is unchanged. 2026 */ 2027 mutex_lock(hcd->bandwidth_mutex); 2028 /* Disable LPM, and re-enable it once the new configuration is 2029 * installed, so that the xHCI driver can recalculate the U1/U2 2030 * timeouts. 2031 */ 2032 if (dev->actconfig && usb_disable_lpm(dev)) { 2033 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__); 2034 mutex_unlock(hcd->bandwidth_mutex); 2035 ret = -ENOMEM; 2036 goto free_interfaces; 2037 } 2038 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL); 2039 if (ret < 0) { 2040 if (dev->actconfig) 2041 usb_enable_lpm(dev); 2042 mutex_unlock(hcd->bandwidth_mutex); 2043 usb_autosuspend_device(dev); 2044 goto free_interfaces; 2045 } 2046 2047 /* 2048 * Initialize the new interface structures and the 2049 * hc/hcd/usbcore interface/endpoint state. 2050 */ 2051 for (i = 0; i < nintf; ++i) { 2052 struct usb_interface_cache *intfc; 2053 struct usb_interface *intf; 2054 struct usb_host_interface *alt; 2055 u8 ifnum; 2056 2057 cp->interface[i] = intf = new_interfaces[i]; 2058 intfc = cp->intf_cache[i]; 2059 intf->altsetting = intfc->altsetting; 2060 intf->num_altsetting = intfc->num_altsetting; 2061 intf->authorized = !!HCD_INTF_AUTHORIZED(hcd); 2062 kref_get(&intfc->ref); 2063 2064 alt = usb_altnum_to_altsetting(intf, 0); 2065 2066 /* No altsetting 0? We'll assume the first altsetting. 2067 * We could use a GetInterface call, but if a device is 2068 * so non-compliant that it doesn't have altsetting 0 2069 * then I wouldn't trust its reply anyway. 2070 */ 2071 if (!alt) 2072 alt = &intf->altsetting[0]; 2073 2074 ifnum = alt->desc.bInterfaceNumber; 2075 intf->intf_assoc = find_iad(dev, cp, ifnum); 2076 intf->cur_altsetting = alt; 2077 usb_enable_interface(dev, intf, true); 2078 intf->dev.parent = &dev->dev; 2079 if (usb_of_has_combined_node(dev)) { 2080 device_set_of_node_from_dev(&intf->dev, &dev->dev); 2081 } else { 2082 intf->dev.of_node = usb_of_get_interface_node(dev, 2083 configuration, ifnum); 2084 } 2085 ACPI_COMPANION_SET(&intf->dev, ACPI_COMPANION(&dev->dev)); 2086 intf->dev.driver = NULL; 2087 intf->dev.bus = &usb_bus_type; 2088 intf->dev.type = &usb_if_device_type; 2089 intf->dev.groups = usb_interface_groups; 2090 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device); 2091 intf->minor = -1; 2092 device_initialize(&intf->dev); 2093 pm_runtime_no_callbacks(&intf->dev); 2094 dev_set_name(&intf->dev, "%d-%s:%d.%d", dev->bus->busnum, 2095 dev->devpath, configuration, ifnum); 2096 usb_get_dev(dev); 2097 } 2098 kfree(new_interfaces); 2099 2100 ret = usb_control_msg_send(dev, 0, USB_REQ_SET_CONFIGURATION, 0, 2101 configuration, 0, NULL, 0, 2102 USB_CTRL_SET_TIMEOUT, GFP_NOIO); 2103 if (ret && cp) { 2104 /* 2105 * All the old state is gone, so what else can we do? 2106 * The device is probably useless now anyway. 2107 */ 2108 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); 2109 for (i = 0; i < nintf; ++i) { 2110 usb_disable_interface(dev, cp->interface[i], true); 2111 put_device(&cp->interface[i]->dev); 2112 cp->interface[i] = NULL; 2113 } 2114 cp = NULL; 2115 } 2116 2117 dev->actconfig = cp; 2118 mutex_unlock(hcd->bandwidth_mutex); 2119 2120 if (!cp) { 2121 usb_set_device_state(dev, USB_STATE_ADDRESS); 2122 2123 /* Leave LPM disabled while the device is unconfigured. */ 2124 usb_autosuspend_device(dev); 2125 return ret; 2126 } 2127 usb_set_device_state(dev, USB_STATE_CONFIGURED); 2128 2129 if (cp->string == NULL && 2130 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS)) 2131 cp->string = usb_cache_string(dev, cp->desc.iConfiguration); 2132 2133 /* Now that the interfaces are installed, re-enable LPM. */ 2134 usb_unlocked_enable_lpm(dev); 2135 /* Enable LTM if it was turned off by usb_disable_device. */ 2136 usb_enable_ltm(dev); 2137 2138 /* Now that all the interfaces are set up, register them 2139 * to trigger binding of drivers to interfaces. probe() 2140 * routines may install different altsettings and may 2141 * claim() any interfaces not yet bound. Many class drivers 2142 * need that: CDC, audio, video, etc. 2143 */ 2144 for (i = 0; i < nintf; ++i) { 2145 struct usb_interface *intf = cp->interface[i]; 2146 2147 if (intf->dev.of_node && 2148 !of_device_is_available(intf->dev.of_node)) { 2149 dev_info(&dev->dev, "skipping disabled interface %d\n", 2150 intf->cur_altsetting->desc.bInterfaceNumber); 2151 continue; 2152 } 2153 2154 dev_dbg(&dev->dev, 2155 "adding %s (config #%d, interface %d)\n", 2156 dev_name(&intf->dev), configuration, 2157 intf->cur_altsetting->desc.bInterfaceNumber); 2158 device_enable_async_suspend(&intf->dev); 2159 ret = device_add(&intf->dev); 2160 if (ret != 0) { 2161 dev_err(&dev->dev, "device_add(%s) --> %d\n", 2162 dev_name(&intf->dev), ret); 2163 continue; 2164 } 2165 create_intf_ep_devs(intf); 2166 } 2167 2168 usb_autosuspend_device(dev); 2169 return 0; 2170 } 2171 EXPORT_SYMBOL_GPL(usb_set_configuration); 2172 2173 static LIST_HEAD(set_config_list); 2174 static DEFINE_SPINLOCK(set_config_lock); 2175 2176 struct set_config_request { 2177 struct usb_device *udev; 2178 int config; 2179 struct work_struct work; 2180 struct list_head node; 2181 }; 2182 2183 /* Worker routine for usb_driver_set_configuration() */ 2184 static void driver_set_config_work(struct work_struct *work) 2185 { 2186 struct set_config_request *req = 2187 container_of(work, struct set_config_request, work); 2188 struct usb_device *udev = req->udev; 2189 2190 usb_lock_device(udev); 2191 spin_lock(&set_config_lock); 2192 list_del(&req->node); 2193 spin_unlock(&set_config_lock); 2194 2195 if (req->config >= -1) /* Is req still valid? */ 2196 usb_set_configuration(udev, req->config); 2197 usb_unlock_device(udev); 2198 usb_put_dev(udev); 2199 kfree(req); 2200 } 2201 2202 /* Cancel pending Set-Config requests for a device whose configuration 2203 * was just changed 2204 */ 2205 static void cancel_async_set_config(struct usb_device *udev) 2206 { 2207 struct set_config_request *req; 2208 2209 spin_lock(&set_config_lock); 2210 list_for_each_entry(req, &set_config_list, node) { 2211 if (req->udev == udev) 2212 req->config = -999; /* Mark as cancelled */ 2213 } 2214 spin_unlock(&set_config_lock); 2215 } 2216 2217 /** 2218 * usb_driver_set_configuration - Provide a way for drivers to change device configurations 2219 * @udev: the device whose configuration is being updated 2220 * @config: the configuration being chosen. 2221 * Context: In process context, must be able to sleep 2222 * 2223 * Device interface drivers are not allowed to change device configurations. 2224 * This is because changing configurations will destroy the interface the 2225 * driver is bound to and create new ones; it would be like a floppy-disk 2226 * driver telling the computer to replace the floppy-disk drive with a 2227 * tape drive! 2228 * 2229 * Still, in certain specialized circumstances the need may arise. This 2230 * routine gets around the normal restrictions by using a work thread to 2231 * submit the change-config request. 2232 * 2233 * Return: 0 if the request was successfully queued, error code otherwise. 2234 * The caller has no way to know whether the queued request will eventually 2235 * succeed. 2236 */ 2237 int usb_driver_set_configuration(struct usb_device *udev, int config) 2238 { 2239 struct set_config_request *req; 2240 2241 req = kmalloc(sizeof(*req), GFP_KERNEL); 2242 if (!req) 2243 return -ENOMEM; 2244 req->udev = udev; 2245 req->config = config; 2246 INIT_WORK(&req->work, driver_set_config_work); 2247 2248 spin_lock(&set_config_lock); 2249 list_add(&req->node, &set_config_list); 2250 spin_unlock(&set_config_lock); 2251 2252 usb_get_dev(udev); 2253 schedule_work(&req->work); 2254 return 0; 2255 } 2256 EXPORT_SYMBOL_GPL(usb_driver_set_configuration); 2257 2258 /** 2259 * cdc_parse_cdc_header - parse the extra headers present in CDC devices 2260 * @hdr: the place to put the results of the parsing 2261 * @intf: the interface for which parsing is requested 2262 * @buffer: pointer to the extra headers to be parsed 2263 * @buflen: length of the extra headers 2264 * 2265 * This evaluates the extra headers present in CDC devices which 2266 * bind the interfaces for data and control and provide details 2267 * about the capabilities of the device. 2268 * 2269 * Return: number of descriptors parsed or -EINVAL 2270 * if the header is contradictory beyond salvage 2271 */ 2272 2273 int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr, 2274 struct usb_interface *intf, 2275 u8 *buffer, 2276 int buflen) 2277 { 2278 /* duplicates are ignored */ 2279 struct usb_cdc_union_desc *union_header = NULL; 2280 2281 /* duplicates are not tolerated */ 2282 struct usb_cdc_header_desc *header = NULL; 2283 struct usb_cdc_ether_desc *ether = NULL; 2284 struct usb_cdc_mdlm_detail_desc *detail = NULL; 2285 struct usb_cdc_mdlm_desc *desc = NULL; 2286 2287 unsigned int elength; 2288 int cnt = 0; 2289 2290 memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header)); 2291 hdr->phonet_magic_present = false; 2292 while (buflen > 0) { 2293 elength = buffer[0]; 2294 if (!elength) { 2295 dev_err(&intf->dev, "skipping garbage byte\n"); 2296 elength = 1; 2297 goto next_desc; 2298 } 2299 if ((buflen < elength) || (elength < 3)) { 2300 dev_err(&intf->dev, "invalid descriptor buffer length\n"); 2301 break; 2302 } 2303 if (buffer[1] != USB_DT_CS_INTERFACE) { 2304 dev_err(&intf->dev, "skipping garbage\n"); 2305 goto next_desc; 2306 } 2307 2308 switch (buffer[2]) { 2309 case USB_CDC_UNION_TYPE: /* we've found it */ 2310 if (elength < sizeof(struct usb_cdc_union_desc)) 2311 goto next_desc; 2312 if (union_header) { 2313 dev_err(&intf->dev, "More than one union descriptor, skipping ...\n"); 2314 goto next_desc; 2315 } 2316 union_header = (struct usb_cdc_union_desc *)buffer; 2317 break; 2318 case USB_CDC_COUNTRY_TYPE: 2319 if (elength < sizeof(struct usb_cdc_country_functional_desc)) 2320 goto next_desc; 2321 hdr->usb_cdc_country_functional_desc = 2322 (struct usb_cdc_country_functional_desc *)buffer; 2323 break; 2324 case USB_CDC_HEADER_TYPE: 2325 if (elength != sizeof(struct usb_cdc_header_desc)) 2326 goto next_desc; 2327 if (header) 2328 return -EINVAL; 2329 header = (struct usb_cdc_header_desc *)buffer; 2330 break; 2331 case USB_CDC_ACM_TYPE: 2332 if (elength < sizeof(struct usb_cdc_acm_descriptor)) 2333 goto next_desc; 2334 hdr->usb_cdc_acm_descriptor = 2335 (struct usb_cdc_acm_descriptor *)buffer; 2336 break; 2337 case USB_CDC_ETHERNET_TYPE: 2338 if (elength != sizeof(struct usb_cdc_ether_desc)) 2339 goto next_desc; 2340 if (ether) 2341 return -EINVAL; 2342 ether = (struct usb_cdc_ether_desc *)buffer; 2343 break; 2344 case USB_CDC_CALL_MANAGEMENT_TYPE: 2345 if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor)) 2346 goto next_desc; 2347 hdr->usb_cdc_call_mgmt_descriptor = 2348 (struct usb_cdc_call_mgmt_descriptor *)buffer; 2349 break; 2350 case USB_CDC_DMM_TYPE: 2351 if (elength < sizeof(struct usb_cdc_dmm_desc)) 2352 goto next_desc; 2353 hdr->usb_cdc_dmm_desc = 2354 (struct usb_cdc_dmm_desc *)buffer; 2355 break; 2356 case USB_CDC_MDLM_TYPE: 2357 if (elength < sizeof(struct usb_cdc_mdlm_desc)) 2358 goto next_desc; 2359 if (desc) 2360 return -EINVAL; 2361 desc = (struct usb_cdc_mdlm_desc *)buffer; 2362 break; 2363 case USB_CDC_MDLM_DETAIL_TYPE: 2364 if (elength < sizeof(struct usb_cdc_mdlm_detail_desc)) 2365 goto next_desc; 2366 if (detail) 2367 return -EINVAL; 2368 detail = (struct usb_cdc_mdlm_detail_desc *)buffer; 2369 break; 2370 case USB_CDC_NCM_TYPE: 2371 if (elength < sizeof(struct usb_cdc_ncm_desc)) 2372 goto next_desc; 2373 hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer; 2374 break; 2375 case USB_CDC_MBIM_TYPE: 2376 if (elength < sizeof(struct usb_cdc_mbim_desc)) 2377 goto next_desc; 2378 2379 hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer; 2380 break; 2381 case USB_CDC_MBIM_EXTENDED_TYPE: 2382 if (elength < sizeof(struct usb_cdc_mbim_extended_desc)) 2383 break; 2384 hdr->usb_cdc_mbim_extended_desc = 2385 (struct usb_cdc_mbim_extended_desc *)buffer; 2386 break; 2387 case CDC_PHONET_MAGIC_NUMBER: 2388 hdr->phonet_magic_present = true; 2389 break; 2390 default: 2391 /* 2392 * there are LOTS more CDC descriptors that 2393 * could legitimately be found here. 2394 */ 2395 dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n", 2396 buffer[2], elength); 2397 goto next_desc; 2398 } 2399 cnt++; 2400 next_desc: 2401 buflen -= elength; 2402 buffer += elength; 2403 } 2404 hdr->usb_cdc_union_desc = union_header; 2405 hdr->usb_cdc_header_desc = header; 2406 hdr->usb_cdc_mdlm_detail_desc = detail; 2407 hdr->usb_cdc_mdlm_desc = desc; 2408 hdr->usb_cdc_ether_desc = ether; 2409 return cnt; 2410 } 2411 2412 EXPORT_SYMBOL(cdc_parse_cdc_header); 2413