1 /* 2 * (C) Copyright Linus Torvalds 1999 3 * (C) Copyright Johannes Erdfelt 1999-2001 4 * (C) Copyright Andreas Gal 1999 5 * (C) Copyright Gregory P. Smith 1999 6 * (C) Copyright Deti Fliegl 1999 7 * (C) Copyright Randy Dunlap 2000 8 * (C) Copyright David Brownell 2000-2002 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the 12 * Free Software Foundation; either version 2 of the License, or (at your 13 * option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18 * for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software Foundation, 22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/version.h> 27 #include <linux/kernel.h> 28 #include <linux/slab.h> 29 #include <linux/completion.h> 30 #include <linux/utsname.h> 31 #include <linux/mm.h> 32 #include <asm/io.h> 33 #include <linux/device.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/mutex.h> 36 #include <asm/irq.h> 37 #include <asm/byteorder.h> 38 #include <asm/unaligned.h> 39 #include <linux/platform_device.h> 40 #include <linux/workqueue.h> 41 42 #include <linux/usb.h> 43 44 #include "usb.h" 45 #include "hcd.h" 46 #include "hub.h" 47 48 49 /*-------------------------------------------------------------------------*/ 50 51 /* 52 * USB Host Controller Driver framework 53 * 54 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 55 * HCD-specific behaviors/bugs. 56 * 57 * This does error checks, tracks devices and urbs, and delegates to a 58 * "hc_driver" only for code (and data) that really needs to know about 59 * hardware differences. That includes root hub registers, i/o queues, 60 * and so on ... but as little else as possible. 61 * 62 * Shared code includes most of the "root hub" code (these are emulated, 63 * though each HC's hardware works differently) and PCI glue, plus request 64 * tracking overhead. The HCD code should only block on spinlocks or on 65 * hardware handshaking; blocking on software events (such as other kernel 66 * threads releasing resources, or completing actions) is all generic. 67 * 68 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 69 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 70 * only by the hub driver ... and that neither should be seen or used by 71 * usb client device drivers. 72 * 73 * Contributors of ideas or unattributed patches include: David Brownell, 74 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 75 * 76 * HISTORY: 77 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 78 * associated cleanup. "usb_hcd" still != "usb_bus". 79 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 80 */ 81 82 /*-------------------------------------------------------------------------*/ 83 84 /* Keep track of which host controller drivers are loaded */ 85 unsigned long usb_hcds_loaded; 86 EXPORT_SYMBOL_GPL(usb_hcds_loaded); 87 88 /* host controllers we manage */ 89 LIST_HEAD (usb_bus_list); 90 EXPORT_SYMBOL_GPL (usb_bus_list); 91 92 /* used when allocating bus numbers */ 93 #define USB_MAXBUS 64 94 struct usb_busmap { 95 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))]; 96 }; 97 static struct usb_busmap busmap; 98 99 /* used when updating list of hcds */ 100 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */ 101 EXPORT_SYMBOL_GPL (usb_bus_list_lock); 102 103 /* used for controlling access to virtual root hubs */ 104 static DEFINE_SPINLOCK(hcd_root_hub_lock); 105 106 /* used when updating an endpoint's URB list */ 107 static DEFINE_SPINLOCK(hcd_urb_list_lock); 108 109 /* used to protect against unlinking URBs after the device is gone */ 110 static DEFINE_SPINLOCK(hcd_urb_unlink_lock); 111 112 /* wait queue for synchronous unlinks */ 113 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 114 115 static inline int is_root_hub(struct usb_device *udev) 116 { 117 return (udev->parent == NULL); 118 } 119 120 /*-------------------------------------------------------------------------*/ 121 122 /* 123 * Sharable chunks of root hub code. 124 */ 125 126 /*-------------------------------------------------------------------------*/ 127 128 #define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff) 129 #define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff) 130 131 /* usb 3.0 root hub device descriptor */ 132 static const u8 usb3_rh_dev_descriptor[18] = { 133 0x12, /* __u8 bLength; */ 134 0x01, /* __u8 bDescriptorType; Device */ 135 0x00, 0x03, /* __le16 bcdUSB; v3.0 */ 136 137 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 138 0x00, /* __u8 bDeviceSubClass; */ 139 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */ 140 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 141 142 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */ 143 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 144 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 145 146 0x03, /* __u8 iManufacturer; */ 147 0x02, /* __u8 iProduct; */ 148 0x01, /* __u8 iSerialNumber; */ 149 0x01 /* __u8 bNumConfigurations; */ 150 }; 151 152 /* usb 2.0 root hub device descriptor */ 153 static const u8 usb2_rh_dev_descriptor [18] = { 154 0x12, /* __u8 bLength; */ 155 0x01, /* __u8 bDescriptorType; Device */ 156 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 157 158 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 159 0x00, /* __u8 bDeviceSubClass; */ 160 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 161 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 162 163 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */ 164 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 165 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 166 167 0x03, /* __u8 iManufacturer; */ 168 0x02, /* __u8 iProduct; */ 169 0x01, /* __u8 iSerialNumber; */ 170 0x01 /* __u8 bNumConfigurations; */ 171 }; 172 173 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 174 175 /* usb 1.1 root hub device descriptor */ 176 static const u8 usb11_rh_dev_descriptor [18] = { 177 0x12, /* __u8 bLength; */ 178 0x01, /* __u8 bDescriptorType; Device */ 179 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 180 181 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 182 0x00, /* __u8 bDeviceSubClass; */ 183 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 184 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 185 186 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */ 187 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 188 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 189 190 0x03, /* __u8 iManufacturer; */ 191 0x02, /* __u8 iProduct; */ 192 0x01, /* __u8 iSerialNumber; */ 193 0x01 /* __u8 bNumConfigurations; */ 194 }; 195 196 197 /*-------------------------------------------------------------------------*/ 198 199 /* Configuration descriptors for our root hubs */ 200 201 static const u8 fs_rh_config_descriptor [] = { 202 203 /* one configuration */ 204 0x09, /* __u8 bLength; */ 205 0x02, /* __u8 bDescriptorType; Configuration */ 206 0x19, 0x00, /* __le16 wTotalLength; */ 207 0x01, /* __u8 bNumInterfaces; (1) */ 208 0x01, /* __u8 bConfigurationValue; */ 209 0x00, /* __u8 iConfiguration; */ 210 0xc0, /* __u8 bmAttributes; 211 Bit 7: must be set, 212 6: Self-powered, 213 5: Remote wakeup, 214 4..0: resvd */ 215 0x00, /* __u8 MaxPower; */ 216 217 /* USB 1.1: 218 * USB 2.0, single TT organization (mandatory): 219 * one interface, protocol 0 220 * 221 * USB 2.0, multiple TT organization (optional): 222 * two interfaces, protocols 1 (like single TT) 223 * and 2 (multiple TT mode) ... config is 224 * sometimes settable 225 * NOT IMPLEMENTED 226 */ 227 228 /* one interface */ 229 0x09, /* __u8 if_bLength; */ 230 0x04, /* __u8 if_bDescriptorType; Interface */ 231 0x00, /* __u8 if_bInterfaceNumber; */ 232 0x00, /* __u8 if_bAlternateSetting; */ 233 0x01, /* __u8 if_bNumEndpoints; */ 234 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 235 0x00, /* __u8 if_bInterfaceSubClass; */ 236 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 237 0x00, /* __u8 if_iInterface; */ 238 239 /* one endpoint (status change endpoint) */ 240 0x07, /* __u8 ep_bLength; */ 241 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 242 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 243 0x03, /* __u8 ep_bmAttributes; Interrupt */ 244 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 245 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 246 }; 247 248 static const u8 hs_rh_config_descriptor [] = { 249 250 /* one configuration */ 251 0x09, /* __u8 bLength; */ 252 0x02, /* __u8 bDescriptorType; Configuration */ 253 0x19, 0x00, /* __le16 wTotalLength; */ 254 0x01, /* __u8 bNumInterfaces; (1) */ 255 0x01, /* __u8 bConfigurationValue; */ 256 0x00, /* __u8 iConfiguration; */ 257 0xc0, /* __u8 bmAttributes; 258 Bit 7: must be set, 259 6: Self-powered, 260 5: Remote wakeup, 261 4..0: resvd */ 262 0x00, /* __u8 MaxPower; */ 263 264 /* USB 1.1: 265 * USB 2.0, single TT organization (mandatory): 266 * one interface, protocol 0 267 * 268 * USB 2.0, multiple TT organization (optional): 269 * two interfaces, protocols 1 (like single TT) 270 * and 2 (multiple TT mode) ... config is 271 * sometimes settable 272 * NOT IMPLEMENTED 273 */ 274 275 /* one interface */ 276 0x09, /* __u8 if_bLength; */ 277 0x04, /* __u8 if_bDescriptorType; Interface */ 278 0x00, /* __u8 if_bInterfaceNumber; */ 279 0x00, /* __u8 if_bAlternateSetting; */ 280 0x01, /* __u8 if_bNumEndpoints; */ 281 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 282 0x00, /* __u8 if_bInterfaceSubClass; */ 283 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 284 0x00, /* __u8 if_iInterface; */ 285 286 /* one endpoint (status change endpoint) */ 287 0x07, /* __u8 ep_bLength; */ 288 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 289 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 290 0x03, /* __u8 ep_bmAttributes; Interrupt */ 291 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 292 * see hub.c:hub_configure() for details. */ 293 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 294 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 295 }; 296 297 static const u8 ss_rh_config_descriptor[] = { 298 /* one configuration */ 299 0x09, /* __u8 bLength; */ 300 0x02, /* __u8 bDescriptorType; Configuration */ 301 0x19, 0x00, /* __le16 wTotalLength; FIXME */ 302 0x01, /* __u8 bNumInterfaces; (1) */ 303 0x01, /* __u8 bConfigurationValue; */ 304 0x00, /* __u8 iConfiguration; */ 305 0xc0, /* __u8 bmAttributes; 306 Bit 7: must be set, 307 6: Self-powered, 308 5: Remote wakeup, 309 4..0: resvd */ 310 0x00, /* __u8 MaxPower; */ 311 312 /* one interface */ 313 0x09, /* __u8 if_bLength; */ 314 0x04, /* __u8 if_bDescriptorType; Interface */ 315 0x00, /* __u8 if_bInterfaceNumber; */ 316 0x00, /* __u8 if_bAlternateSetting; */ 317 0x01, /* __u8 if_bNumEndpoints; */ 318 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 319 0x00, /* __u8 if_bInterfaceSubClass; */ 320 0x00, /* __u8 if_bInterfaceProtocol; */ 321 0x00, /* __u8 if_iInterface; */ 322 323 /* one endpoint (status change endpoint) */ 324 0x07, /* __u8 ep_bLength; */ 325 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 326 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 327 0x03, /* __u8 ep_bmAttributes; Interrupt */ 328 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 329 * see hub.c:hub_configure() for details. */ 330 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 331 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 332 /* 333 * All 3.0 hubs should have an endpoint companion descriptor, 334 * but we're ignoring that for now. FIXME? 335 */ 336 }; 337 338 /*-------------------------------------------------------------------------*/ 339 340 /* 341 * helper routine for returning string descriptors in UTF-16LE 342 * input can actually be ISO-8859-1; ASCII is its 7-bit subset 343 */ 344 static unsigned ascii2utf(char *s, u8 *utf, int utfmax) 345 { 346 unsigned retval; 347 348 for (retval = 0; *s && utfmax > 1; utfmax -= 2, retval += 2) { 349 *utf++ = *s++; 350 *utf++ = 0; 351 } 352 if (utfmax > 0) { 353 *utf = *s; 354 ++retval; 355 } 356 return retval; 357 } 358 359 /* 360 * rh_string - provides manufacturer, product and serial strings for root hub 361 * @id: the string ID number (1: serial number, 2: product, 3: vendor) 362 * @hcd: the host controller for this root hub 363 * @data: return packet in UTF-16 LE 364 * @len: length of the return packet 365 * 366 * Produces either a manufacturer, product or serial number string for the 367 * virtual root hub device. 368 */ 369 static unsigned rh_string(int id, struct usb_hcd *hcd, u8 *data, unsigned len) 370 { 371 char buf [100]; 372 373 // language ids 374 if (id == 0) { 375 buf[0] = 4; buf[1] = 3; /* 4 bytes string data */ 376 buf[2] = 0x09; buf[3] = 0x04; /* MSFT-speak for "en-us" */ 377 len = min_t(unsigned, len, 4); 378 memcpy (data, buf, len); 379 return len; 380 381 // serial number 382 } else if (id == 1) { 383 strlcpy (buf, hcd->self.bus_name, sizeof buf); 384 385 // product description 386 } else if (id == 2) { 387 strlcpy (buf, hcd->product_desc, sizeof buf); 388 389 // id 3 == vendor description 390 } else if (id == 3) { 391 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 392 init_utsname()->release, hcd->driver->description); 393 } 394 395 switch (len) { /* All cases fall through */ 396 default: 397 len = 2 + ascii2utf (buf, data + 2, len - 2); 398 case 2: 399 data [1] = 3; /* type == string */ 400 case 1: 401 data [0] = 2 * (strlen (buf) + 1); 402 case 0: 403 ; /* Compiler wants a statement here */ 404 } 405 return len; 406 } 407 408 409 /* Root hub control transfers execute synchronously */ 410 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 411 { 412 struct usb_ctrlrequest *cmd; 413 u16 typeReq, wValue, wIndex, wLength; 414 u8 *ubuf = urb->transfer_buffer; 415 u8 tbuf [sizeof (struct usb_hub_descriptor)] 416 __attribute__((aligned(4))); 417 const u8 *bufp = tbuf; 418 unsigned len = 0; 419 int status; 420 u8 patch_wakeup = 0; 421 u8 patch_protocol = 0; 422 423 might_sleep(); 424 425 spin_lock_irq(&hcd_root_hub_lock); 426 status = usb_hcd_link_urb_to_ep(hcd, urb); 427 spin_unlock_irq(&hcd_root_hub_lock); 428 if (status) 429 return status; 430 urb->hcpriv = hcd; /* Indicate it's queued */ 431 432 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 433 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 434 wValue = le16_to_cpu (cmd->wValue); 435 wIndex = le16_to_cpu (cmd->wIndex); 436 wLength = le16_to_cpu (cmd->wLength); 437 438 if (wLength > urb->transfer_buffer_length) 439 goto error; 440 441 urb->actual_length = 0; 442 switch (typeReq) { 443 444 /* DEVICE REQUESTS */ 445 446 /* The root hub's remote wakeup enable bit is implemented using 447 * driver model wakeup flags. If this system supports wakeup 448 * through USB, userspace may change the default "allow wakeup" 449 * policy through sysfs or these calls. 450 * 451 * Most root hubs support wakeup from downstream devices, for 452 * runtime power management (disabling USB clocks and reducing 453 * VBUS power usage). However, not all of them do so; silicon, 454 * board, and BIOS bugs here are not uncommon, so these can't 455 * be treated quite like external hubs. 456 * 457 * Likewise, not all root hubs will pass wakeup events upstream, 458 * to wake up the whole system. So don't assume root hub and 459 * controller capabilities are identical. 460 */ 461 462 case DeviceRequest | USB_REQ_GET_STATUS: 463 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev) 464 << USB_DEVICE_REMOTE_WAKEUP) 465 | (1 << USB_DEVICE_SELF_POWERED); 466 tbuf [1] = 0; 467 len = 2; 468 break; 469 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 470 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 471 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 472 else 473 goto error; 474 break; 475 case DeviceOutRequest | USB_REQ_SET_FEATURE: 476 if (device_can_wakeup(&hcd->self.root_hub->dev) 477 && wValue == USB_DEVICE_REMOTE_WAKEUP) 478 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 479 else 480 goto error; 481 break; 482 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 483 tbuf [0] = 1; 484 len = 1; 485 /* FALLTHROUGH */ 486 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 487 break; 488 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 489 switch (wValue & 0xff00) { 490 case USB_DT_DEVICE << 8: 491 switch (hcd->driver->flags & HCD_MASK) { 492 case HCD_USB3: 493 bufp = usb3_rh_dev_descriptor; 494 break; 495 case HCD_USB2: 496 bufp = usb2_rh_dev_descriptor; 497 break; 498 case HCD_USB11: 499 bufp = usb11_rh_dev_descriptor; 500 break; 501 default: 502 goto error; 503 } 504 len = 18; 505 if (hcd->has_tt) 506 patch_protocol = 1; 507 break; 508 case USB_DT_CONFIG << 8: 509 switch (hcd->driver->flags & HCD_MASK) { 510 case HCD_USB3: 511 bufp = ss_rh_config_descriptor; 512 len = sizeof ss_rh_config_descriptor; 513 break; 514 case HCD_USB2: 515 bufp = hs_rh_config_descriptor; 516 len = sizeof hs_rh_config_descriptor; 517 break; 518 case HCD_USB11: 519 bufp = fs_rh_config_descriptor; 520 len = sizeof fs_rh_config_descriptor; 521 break; 522 default: 523 goto error; 524 } 525 if (device_can_wakeup(&hcd->self.root_hub->dev)) 526 patch_wakeup = 1; 527 break; 528 case USB_DT_STRING << 8: 529 if ((wValue & 0xff) < 4) 530 urb->actual_length = rh_string(wValue & 0xff, 531 hcd, ubuf, wLength); 532 else /* unsupported IDs --> "protocol stall" */ 533 goto error; 534 break; 535 default: 536 goto error; 537 } 538 break; 539 case DeviceRequest | USB_REQ_GET_INTERFACE: 540 tbuf [0] = 0; 541 len = 1; 542 /* FALLTHROUGH */ 543 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 544 break; 545 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 546 // wValue == urb->dev->devaddr 547 dev_dbg (hcd->self.controller, "root hub device address %d\n", 548 wValue); 549 break; 550 551 /* INTERFACE REQUESTS (no defined feature/status flags) */ 552 553 /* ENDPOINT REQUESTS */ 554 555 case EndpointRequest | USB_REQ_GET_STATUS: 556 // ENDPOINT_HALT flag 557 tbuf [0] = 0; 558 tbuf [1] = 0; 559 len = 2; 560 /* FALLTHROUGH */ 561 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 562 case EndpointOutRequest | USB_REQ_SET_FEATURE: 563 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 564 break; 565 566 /* CLASS REQUESTS (and errors) */ 567 568 default: 569 /* non-generic request */ 570 switch (typeReq) { 571 case GetHubStatus: 572 case GetPortStatus: 573 len = 4; 574 break; 575 case GetHubDescriptor: 576 len = sizeof (struct usb_hub_descriptor); 577 break; 578 } 579 status = hcd->driver->hub_control (hcd, 580 typeReq, wValue, wIndex, 581 tbuf, wLength); 582 break; 583 error: 584 /* "protocol stall" on error */ 585 status = -EPIPE; 586 } 587 588 if (status) { 589 len = 0; 590 if (status != -EPIPE) { 591 dev_dbg (hcd->self.controller, 592 "CTRL: TypeReq=0x%x val=0x%x " 593 "idx=0x%x len=%d ==> %d\n", 594 typeReq, wValue, wIndex, 595 wLength, status); 596 } 597 } 598 if (len) { 599 if (urb->transfer_buffer_length < len) 600 len = urb->transfer_buffer_length; 601 urb->actual_length = len; 602 // always USB_DIR_IN, toward host 603 memcpy (ubuf, bufp, len); 604 605 /* report whether RH hardware supports remote wakeup */ 606 if (patch_wakeup && 607 len > offsetof (struct usb_config_descriptor, 608 bmAttributes)) 609 ((struct usb_config_descriptor *)ubuf)->bmAttributes 610 |= USB_CONFIG_ATT_WAKEUP; 611 612 /* report whether RH hardware has an integrated TT */ 613 if (patch_protocol && 614 len > offsetof(struct usb_device_descriptor, 615 bDeviceProtocol)) 616 ((struct usb_device_descriptor *) ubuf)-> 617 bDeviceProtocol = 1; 618 } 619 620 /* any errors get returned through the urb completion */ 621 spin_lock_irq(&hcd_root_hub_lock); 622 usb_hcd_unlink_urb_from_ep(hcd, urb); 623 624 /* This peculiar use of spinlocks echoes what real HC drivers do. 625 * Avoiding calls to local_irq_disable/enable makes the code 626 * RT-friendly. 627 */ 628 spin_unlock(&hcd_root_hub_lock); 629 usb_hcd_giveback_urb(hcd, urb, status); 630 spin_lock(&hcd_root_hub_lock); 631 632 spin_unlock_irq(&hcd_root_hub_lock); 633 return 0; 634 } 635 636 /*-------------------------------------------------------------------------*/ 637 638 /* 639 * Root Hub interrupt transfers are polled using a timer if the 640 * driver requests it; otherwise the driver is responsible for 641 * calling usb_hcd_poll_rh_status() when an event occurs. 642 * 643 * Completions are called in_interrupt(), but they may or may not 644 * be in_irq(). 645 */ 646 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 647 { 648 struct urb *urb; 649 int length; 650 unsigned long flags; 651 char buffer[6]; /* Any root hubs with > 31 ports? */ 652 653 if (unlikely(!hcd->rh_registered)) 654 return; 655 if (!hcd->uses_new_polling && !hcd->status_urb) 656 return; 657 658 length = hcd->driver->hub_status_data(hcd, buffer); 659 if (length > 0) { 660 661 /* try to complete the status urb */ 662 spin_lock_irqsave(&hcd_root_hub_lock, flags); 663 urb = hcd->status_urb; 664 if (urb) { 665 hcd->poll_pending = 0; 666 hcd->status_urb = NULL; 667 urb->actual_length = length; 668 memcpy(urb->transfer_buffer, buffer, length); 669 670 usb_hcd_unlink_urb_from_ep(hcd, urb); 671 spin_unlock(&hcd_root_hub_lock); 672 usb_hcd_giveback_urb(hcd, urb, 0); 673 spin_lock(&hcd_root_hub_lock); 674 } else { 675 length = 0; 676 hcd->poll_pending = 1; 677 } 678 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 679 } 680 681 /* The USB 2.0 spec says 256 ms. This is close enough and won't 682 * exceed that limit if HZ is 100. The math is more clunky than 683 * maybe expected, this is to make sure that all timers for USB devices 684 * fire at the same time to give the CPU a break inbetween */ 685 if (hcd->uses_new_polling ? hcd->poll_rh : 686 (length == 0 && hcd->status_urb != NULL)) 687 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 688 } 689 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 690 691 /* timer callback */ 692 static void rh_timer_func (unsigned long _hcd) 693 { 694 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd); 695 } 696 697 /*-------------------------------------------------------------------------*/ 698 699 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 700 { 701 int retval; 702 unsigned long flags; 703 unsigned len = 1 + (urb->dev->maxchild / 8); 704 705 spin_lock_irqsave (&hcd_root_hub_lock, flags); 706 if (hcd->status_urb || urb->transfer_buffer_length < len) { 707 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 708 retval = -EINVAL; 709 goto done; 710 } 711 712 retval = usb_hcd_link_urb_to_ep(hcd, urb); 713 if (retval) 714 goto done; 715 716 hcd->status_urb = urb; 717 urb->hcpriv = hcd; /* indicate it's queued */ 718 if (!hcd->uses_new_polling) 719 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 720 721 /* If a status change has already occurred, report it ASAP */ 722 else if (hcd->poll_pending) 723 mod_timer(&hcd->rh_timer, jiffies); 724 retval = 0; 725 done: 726 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 727 return retval; 728 } 729 730 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 731 { 732 if (usb_endpoint_xfer_int(&urb->ep->desc)) 733 return rh_queue_status (hcd, urb); 734 if (usb_endpoint_xfer_control(&urb->ep->desc)) 735 return rh_call_control (hcd, urb); 736 return -EINVAL; 737 } 738 739 /*-------------------------------------------------------------------------*/ 740 741 /* Unlinks of root-hub control URBs are legal, but they don't do anything 742 * since these URBs always execute synchronously. 743 */ 744 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 745 { 746 unsigned long flags; 747 int rc; 748 749 spin_lock_irqsave(&hcd_root_hub_lock, flags); 750 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 751 if (rc) 752 goto done; 753 754 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 755 ; /* Do nothing */ 756 757 } else { /* Status URB */ 758 if (!hcd->uses_new_polling) 759 del_timer (&hcd->rh_timer); 760 if (urb == hcd->status_urb) { 761 hcd->status_urb = NULL; 762 usb_hcd_unlink_urb_from_ep(hcd, urb); 763 764 spin_unlock(&hcd_root_hub_lock); 765 usb_hcd_giveback_urb(hcd, urb, status); 766 spin_lock(&hcd_root_hub_lock); 767 } 768 } 769 done: 770 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 771 return rc; 772 } 773 774 775 776 /* 777 * Show & store the current value of authorized_default 778 */ 779 static ssize_t usb_host_authorized_default_show(struct device *dev, 780 struct device_attribute *attr, 781 char *buf) 782 { 783 struct usb_device *rh_usb_dev = to_usb_device(dev); 784 struct usb_bus *usb_bus = rh_usb_dev->bus; 785 struct usb_hcd *usb_hcd; 786 787 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */ 788 return -ENODEV; 789 usb_hcd = bus_to_hcd(usb_bus); 790 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default); 791 } 792 793 static ssize_t usb_host_authorized_default_store(struct device *dev, 794 struct device_attribute *attr, 795 const char *buf, size_t size) 796 { 797 ssize_t result; 798 unsigned val; 799 struct usb_device *rh_usb_dev = to_usb_device(dev); 800 struct usb_bus *usb_bus = rh_usb_dev->bus; 801 struct usb_hcd *usb_hcd; 802 803 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */ 804 return -ENODEV; 805 usb_hcd = bus_to_hcd(usb_bus); 806 result = sscanf(buf, "%u\n", &val); 807 if (result == 1) { 808 usb_hcd->authorized_default = val? 1 : 0; 809 result = size; 810 } 811 else 812 result = -EINVAL; 813 return result; 814 } 815 816 static DEVICE_ATTR(authorized_default, 0644, 817 usb_host_authorized_default_show, 818 usb_host_authorized_default_store); 819 820 821 /* Group all the USB bus attributes */ 822 static struct attribute *usb_bus_attrs[] = { 823 &dev_attr_authorized_default.attr, 824 NULL, 825 }; 826 827 static struct attribute_group usb_bus_attr_group = { 828 .name = NULL, /* we want them in the same directory */ 829 .attrs = usb_bus_attrs, 830 }; 831 832 833 834 /*-------------------------------------------------------------------------*/ 835 836 /** 837 * usb_bus_init - shared initialization code 838 * @bus: the bus structure being initialized 839 * 840 * This code is used to initialize a usb_bus structure, memory for which is 841 * separately managed. 842 */ 843 static void usb_bus_init (struct usb_bus *bus) 844 { 845 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 846 847 bus->devnum_next = 1; 848 849 bus->root_hub = NULL; 850 bus->busnum = -1; 851 bus->bandwidth_allocated = 0; 852 bus->bandwidth_int_reqs = 0; 853 bus->bandwidth_isoc_reqs = 0; 854 855 INIT_LIST_HEAD (&bus->bus_list); 856 } 857 858 /*-------------------------------------------------------------------------*/ 859 860 /** 861 * usb_register_bus - registers the USB host controller with the usb core 862 * @bus: pointer to the bus to register 863 * Context: !in_interrupt() 864 * 865 * Assigns a bus number, and links the controller into usbcore data 866 * structures so that it can be seen by scanning the bus list. 867 */ 868 static int usb_register_bus(struct usb_bus *bus) 869 { 870 int result = -E2BIG; 871 int busnum; 872 873 mutex_lock(&usb_bus_list_lock); 874 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1); 875 if (busnum >= USB_MAXBUS) { 876 printk (KERN_ERR "%s: too many buses\n", usbcore_name); 877 goto error_find_busnum; 878 } 879 set_bit (busnum, busmap.busmap); 880 bus->busnum = busnum; 881 882 /* Add it to the local list of buses */ 883 list_add (&bus->bus_list, &usb_bus_list); 884 mutex_unlock(&usb_bus_list_lock); 885 886 usb_notify_add_bus(bus); 887 888 dev_info (bus->controller, "new USB bus registered, assigned bus " 889 "number %d\n", bus->busnum); 890 return 0; 891 892 error_find_busnum: 893 mutex_unlock(&usb_bus_list_lock); 894 return result; 895 } 896 897 /** 898 * usb_deregister_bus - deregisters the USB host controller 899 * @bus: pointer to the bus to deregister 900 * Context: !in_interrupt() 901 * 902 * Recycles the bus number, and unlinks the controller from usbcore data 903 * structures so that it won't be seen by scanning the bus list. 904 */ 905 static void usb_deregister_bus (struct usb_bus *bus) 906 { 907 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 908 909 /* 910 * NOTE: make sure that all the devices are removed by the 911 * controller code, as well as having it call this when cleaning 912 * itself up 913 */ 914 mutex_lock(&usb_bus_list_lock); 915 list_del (&bus->bus_list); 916 mutex_unlock(&usb_bus_list_lock); 917 918 usb_notify_remove_bus(bus); 919 920 clear_bit (bus->busnum, busmap.busmap); 921 } 922 923 /** 924 * register_root_hub - called by usb_add_hcd() to register a root hub 925 * @hcd: host controller for this root hub 926 * 927 * This function registers the root hub with the USB subsystem. It sets up 928 * the device properly in the device tree and then calls usb_new_device() 929 * to register the usb device. It also assigns the root hub's USB address 930 * (always 1). 931 */ 932 static int register_root_hub(struct usb_hcd *hcd) 933 { 934 struct device *parent_dev = hcd->self.controller; 935 struct usb_device *usb_dev = hcd->self.root_hub; 936 const int devnum = 1; 937 int retval; 938 939 usb_dev->devnum = devnum; 940 usb_dev->bus->devnum_next = devnum + 1; 941 memset (&usb_dev->bus->devmap.devicemap, 0, 942 sizeof usb_dev->bus->devmap.devicemap); 943 set_bit (devnum, usb_dev->bus->devmap.devicemap); 944 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 945 946 mutex_lock(&usb_bus_list_lock); 947 948 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); 949 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); 950 if (retval != sizeof usb_dev->descriptor) { 951 mutex_unlock(&usb_bus_list_lock); 952 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 953 dev_name(&usb_dev->dev), retval); 954 return (retval < 0) ? retval : -EMSGSIZE; 955 } 956 957 retval = usb_new_device (usb_dev); 958 if (retval) { 959 dev_err (parent_dev, "can't register root hub for %s, %d\n", 960 dev_name(&usb_dev->dev), retval); 961 } 962 mutex_unlock(&usb_bus_list_lock); 963 964 if (retval == 0) { 965 spin_lock_irq (&hcd_root_hub_lock); 966 hcd->rh_registered = 1; 967 spin_unlock_irq (&hcd_root_hub_lock); 968 969 /* Did the HC die before the root hub was registered? */ 970 if (hcd->state == HC_STATE_HALT) 971 usb_hc_died (hcd); /* This time clean up */ 972 } 973 974 return retval; 975 } 976 977 978 /*-------------------------------------------------------------------------*/ 979 980 /** 981 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 982 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 983 * @is_input: true iff the transaction sends data to the host 984 * @isoc: true for isochronous transactions, false for interrupt ones 985 * @bytecount: how many bytes in the transaction. 986 * 987 * Returns approximate bus time in nanoseconds for a periodic transaction. 988 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 989 * scheduled in software, this function is only used for such scheduling. 990 */ 991 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 992 { 993 unsigned long tmp; 994 995 switch (speed) { 996 case USB_SPEED_LOW: /* INTR only */ 997 if (is_input) { 998 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 999 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp); 1000 } else { 1001 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 1002 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp); 1003 } 1004 case USB_SPEED_FULL: /* ISOC or INTR */ 1005 if (isoc) { 1006 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1007 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp); 1008 } else { 1009 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1010 return (9107L + BW_HOST_DELAY + tmp); 1011 } 1012 case USB_SPEED_HIGH: /* ISOC or INTR */ 1013 // FIXME adjust for input vs output 1014 if (isoc) 1015 tmp = HS_NSECS_ISO (bytecount); 1016 else 1017 tmp = HS_NSECS (bytecount); 1018 return tmp; 1019 default: 1020 pr_debug ("%s: bogus device speed!\n", usbcore_name); 1021 return -1; 1022 } 1023 } 1024 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 1025 1026 1027 /*-------------------------------------------------------------------------*/ 1028 1029 /* 1030 * Generic HC operations. 1031 */ 1032 1033 /*-------------------------------------------------------------------------*/ 1034 1035 /** 1036 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 1037 * @hcd: host controller to which @urb was submitted 1038 * @urb: URB being submitted 1039 * 1040 * Host controller drivers should call this routine in their enqueue() 1041 * method. The HCD's private spinlock must be held and interrupts must 1042 * be disabled. The actions carried out here are required for URB 1043 * submission, as well as for endpoint shutdown and for usb_kill_urb. 1044 * 1045 * Returns 0 for no error, otherwise a negative error code (in which case 1046 * the enqueue() method must fail). If no error occurs but enqueue() fails 1047 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 1048 * the private spinlock and returning. 1049 */ 1050 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1051 { 1052 int rc = 0; 1053 1054 spin_lock(&hcd_urb_list_lock); 1055 1056 /* Check that the URB isn't being killed */ 1057 if (unlikely(atomic_read(&urb->reject))) { 1058 rc = -EPERM; 1059 goto done; 1060 } 1061 1062 if (unlikely(!urb->ep->enabled)) { 1063 rc = -ENOENT; 1064 goto done; 1065 } 1066 1067 if (unlikely(!urb->dev->can_submit)) { 1068 rc = -EHOSTUNREACH; 1069 goto done; 1070 } 1071 1072 /* 1073 * Check the host controller's state and add the URB to the 1074 * endpoint's queue. 1075 */ 1076 switch (hcd->state) { 1077 case HC_STATE_RUNNING: 1078 case HC_STATE_RESUMING: 1079 urb->unlinked = 0; 1080 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1081 break; 1082 default: 1083 rc = -ESHUTDOWN; 1084 goto done; 1085 } 1086 done: 1087 spin_unlock(&hcd_urb_list_lock); 1088 return rc; 1089 } 1090 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1091 1092 /** 1093 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1094 * @hcd: host controller to which @urb was submitted 1095 * @urb: URB being checked for unlinkability 1096 * @status: error code to store in @urb if the unlink succeeds 1097 * 1098 * Host controller drivers should call this routine in their dequeue() 1099 * method. The HCD's private spinlock must be held and interrupts must 1100 * be disabled. The actions carried out here are required for making 1101 * sure than an unlink is valid. 1102 * 1103 * Returns 0 for no error, otherwise a negative error code (in which case 1104 * the dequeue() method must fail). The possible error codes are: 1105 * 1106 * -EIDRM: @urb was not submitted or has already completed. 1107 * The completion function may not have been called yet. 1108 * 1109 * -EBUSY: @urb has already been unlinked. 1110 */ 1111 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1112 int status) 1113 { 1114 struct list_head *tmp; 1115 1116 /* insist the urb is still queued */ 1117 list_for_each(tmp, &urb->ep->urb_list) { 1118 if (tmp == &urb->urb_list) 1119 break; 1120 } 1121 if (tmp != &urb->urb_list) 1122 return -EIDRM; 1123 1124 /* Any status except -EINPROGRESS means something already started to 1125 * unlink this URB from the hardware. So there's no more work to do. 1126 */ 1127 if (urb->unlinked) 1128 return -EBUSY; 1129 urb->unlinked = status; 1130 1131 /* IRQ setup can easily be broken so that USB controllers 1132 * never get completion IRQs ... maybe even the ones we need to 1133 * finish unlinking the initial failed usb_set_address() 1134 * or device descriptor fetch. 1135 */ 1136 if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags) && 1137 !is_root_hub(urb->dev)) { 1138 dev_warn(hcd->self.controller, "Unlink after no-IRQ? " 1139 "Controller is probably using the wrong IRQ.\n"); 1140 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags); 1141 } 1142 1143 return 0; 1144 } 1145 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1146 1147 /** 1148 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1149 * @hcd: host controller to which @urb was submitted 1150 * @urb: URB being unlinked 1151 * 1152 * Host controller drivers should call this routine before calling 1153 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1154 * interrupts must be disabled. The actions carried out here are required 1155 * for URB completion. 1156 */ 1157 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1158 { 1159 /* clear all state linking urb to this dev (and hcd) */ 1160 spin_lock(&hcd_urb_list_lock); 1161 list_del_init(&urb->urb_list); 1162 spin_unlock(&hcd_urb_list_lock); 1163 } 1164 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1165 1166 /* 1167 * Some usb host controllers can only perform dma using a small SRAM area. 1168 * The usb core itself is however optimized for host controllers that can dma 1169 * using regular system memory - like pci devices doing bus mastering. 1170 * 1171 * To support host controllers with limited dma capabilites we provide dma 1172 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag. 1173 * For this to work properly the host controller code must first use the 1174 * function dma_declare_coherent_memory() to point out which memory area 1175 * that should be used for dma allocations. 1176 * 1177 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for 1178 * dma using dma_alloc_coherent() which in turn allocates from the memory 1179 * area pointed out with dma_declare_coherent_memory(). 1180 * 1181 * So, to summarize... 1182 * 1183 * - We need "local" memory, canonical example being 1184 * a small SRAM on a discrete controller being the 1185 * only memory that the controller can read ... 1186 * (a) "normal" kernel memory is no good, and 1187 * (b) there's not enough to share 1188 * 1189 * - The only *portable* hook for such stuff in the 1190 * DMA framework is dma_declare_coherent_memory() 1191 * 1192 * - So we use that, even though the primary requirement 1193 * is that the memory be "local" (hence addressible 1194 * by that device), not "coherent". 1195 * 1196 */ 1197 1198 static int hcd_alloc_coherent(struct usb_bus *bus, 1199 gfp_t mem_flags, dma_addr_t *dma_handle, 1200 void **vaddr_handle, size_t size, 1201 enum dma_data_direction dir) 1202 { 1203 unsigned char *vaddr; 1204 1205 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr), 1206 mem_flags, dma_handle); 1207 if (!vaddr) 1208 return -ENOMEM; 1209 1210 /* 1211 * Store the virtual address of the buffer at the end 1212 * of the allocated dma buffer. The size of the buffer 1213 * may be uneven so use unaligned functions instead 1214 * of just rounding up. It makes sense to optimize for 1215 * memory footprint over access speed since the amount 1216 * of memory available for dma may be limited. 1217 */ 1218 put_unaligned((unsigned long)*vaddr_handle, 1219 (unsigned long *)(vaddr + size)); 1220 1221 if (dir == DMA_TO_DEVICE) 1222 memcpy(vaddr, *vaddr_handle, size); 1223 1224 *vaddr_handle = vaddr; 1225 return 0; 1226 } 1227 1228 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1229 void **vaddr_handle, size_t size, 1230 enum dma_data_direction dir) 1231 { 1232 unsigned char *vaddr = *vaddr_handle; 1233 1234 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1235 1236 if (dir == DMA_FROM_DEVICE) 1237 memcpy(vaddr, *vaddr_handle, size); 1238 1239 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1240 1241 *vaddr_handle = vaddr; 1242 *dma_handle = 0; 1243 } 1244 1245 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1246 gfp_t mem_flags) 1247 { 1248 enum dma_data_direction dir; 1249 int ret = 0; 1250 1251 /* Map the URB's buffers for DMA access. 1252 * Lower level HCD code should use *_dma exclusively, 1253 * unless it uses pio or talks to another transport, 1254 * or uses the provided scatter gather list for bulk. 1255 */ 1256 if (is_root_hub(urb->dev)) 1257 return 0; 1258 1259 if (usb_endpoint_xfer_control(&urb->ep->desc) 1260 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) { 1261 if (hcd->self.uses_dma) 1262 urb->setup_dma = dma_map_single( 1263 hcd->self.controller, 1264 urb->setup_packet, 1265 sizeof(struct usb_ctrlrequest), 1266 DMA_TO_DEVICE); 1267 else if (hcd->driver->flags & HCD_LOCAL_MEM) 1268 ret = hcd_alloc_coherent( 1269 urb->dev->bus, mem_flags, 1270 &urb->setup_dma, 1271 (void **)&urb->setup_packet, 1272 sizeof(struct usb_ctrlrequest), 1273 DMA_TO_DEVICE); 1274 } 1275 1276 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1277 if (ret == 0 && urb->transfer_buffer_length != 0 1278 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1279 if (hcd->self.uses_dma) 1280 urb->transfer_dma = dma_map_single ( 1281 hcd->self.controller, 1282 urb->transfer_buffer, 1283 urb->transfer_buffer_length, 1284 dir); 1285 else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1286 ret = hcd_alloc_coherent( 1287 urb->dev->bus, mem_flags, 1288 &urb->transfer_dma, 1289 &urb->transfer_buffer, 1290 urb->transfer_buffer_length, 1291 dir); 1292 1293 if (ret && usb_endpoint_xfer_control(&urb->ep->desc) 1294 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) 1295 hcd_free_coherent(urb->dev->bus, 1296 &urb->setup_dma, 1297 (void **)&urb->setup_packet, 1298 sizeof(struct usb_ctrlrequest), 1299 DMA_TO_DEVICE); 1300 } 1301 } 1302 return ret; 1303 } 1304 1305 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1306 { 1307 enum dma_data_direction dir; 1308 1309 if (is_root_hub(urb->dev)) 1310 return; 1311 1312 if (usb_endpoint_xfer_control(&urb->ep->desc) 1313 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) { 1314 if (hcd->self.uses_dma) 1315 dma_unmap_single(hcd->self.controller, urb->setup_dma, 1316 sizeof(struct usb_ctrlrequest), 1317 DMA_TO_DEVICE); 1318 else if (hcd->driver->flags & HCD_LOCAL_MEM) 1319 hcd_free_coherent(urb->dev->bus, &urb->setup_dma, 1320 (void **)&urb->setup_packet, 1321 sizeof(struct usb_ctrlrequest), 1322 DMA_TO_DEVICE); 1323 } 1324 1325 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1326 if (urb->transfer_buffer_length != 0 1327 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1328 if (hcd->self.uses_dma) 1329 dma_unmap_single(hcd->self.controller, 1330 urb->transfer_dma, 1331 urb->transfer_buffer_length, 1332 dir); 1333 else if (hcd->driver->flags & HCD_LOCAL_MEM) 1334 hcd_free_coherent(urb->dev->bus, &urb->transfer_dma, 1335 &urb->transfer_buffer, 1336 urb->transfer_buffer_length, 1337 dir); 1338 } 1339 } 1340 1341 /*-------------------------------------------------------------------------*/ 1342 1343 /* may be called in any context with a valid urb->dev usecount 1344 * caller surrenders "ownership" of urb 1345 * expects usb_submit_urb() to have sanity checked and conditioned all 1346 * inputs in the urb 1347 */ 1348 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1349 { 1350 int status; 1351 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1352 1353 /* increment urb's reference count as part of giving it to the HCD 1354 * (which will control it). HCD guarantees that it either returns 1355 * an error or calls giveback(), but not both. 1356 */ 1357 usb_get_urb(urb); 1358 atomic_inc(&urb->use_count); 1359 atomic_inc(&urb->dev->urbnum); 1360 usbmon_urb_submit(&hcd->self, urb); 1361 1362 /* NOTE requirements on root-hub callers (usbfs and the hub 1363 * driver, for now): URBs' urb->transfer_buffer must be 1364 * valid and usb_buffer_{sync,unmap}() not be needed, since 1365 * they could clobber root hub response data. Also, control 1366 * URBs must be submitted in process context with interrupts 1367 * enabled. 1368 */ 1369 status = map_urb_for_dma(hcd, urb, mem_flags); 1370 if (unlikely(status)) { 1371 usbmon_urb_submit_error(&hcd->self, urb, status); 1372 goto error; 1373 } 1374 1375 if (is_root_hub(urb->dev)) 1376 status = rh_urb_enqueue(hcd, urb); 1377 else 1378 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1379 1380 if (unlikely(status)) { 1381 usbmon_urb_submit_error(&hcd->self, urb, status); 1382 unmap_urb_for_dma(hcd, urb); 1383 error: 1384 urb->hcpriv = NULL; 1385 INIT_LIST_HEAD(&urb->urb_list); 1386 atomic_dec(&urb->use_count); 1387 atomic_dec(&urb->dev->urbnum); 1388 if (atomic_read(&urb->reject)) 1389 wake_up(&usb_kill_urb_queue); 1390 usb_put_urb(urb); 1391 } 1392 return status; 1393 } 1394 1395 /*-------------------------------------------------------------------------*/ 1396 1397 /* this makes the hcd giveback() the urb more quickly, by kicking it 1398 * off hardware queues (which may take a while) and returning it as 1399 * soon as practical. we've already set up the urb's return status, 1400 * but we can't know if the callback completed already. 1401 */ 1402 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1403 { 1404 int value; 1405 1406 if (is_root_hub(urb->dev)) 1407 value = usb_rh_urb_dequeue(hcd, urb, status); 1408 else { 1409 1410 /* The only reason an HCD might fail this call is if 1411 * it has not yet fully queued the urb to begin with. 1412 * Such failures should be harmless. */ 1413 value = hcd->driver->urb_dequeue(hcd, urb, status); 1414 } 1415 return value; 1416 } 1417 1418 /* 1419 * called in any context 1420 * 1421 * caller guarantees urb won't be recycled till both unlink() 1422 * and the urb's completion function return 1423 */ 1424 int usb_hcd_unlink_urb (struct urb *urb, int status) 1425 { 1426 struct usb_hcd *hcd; 1427 int retval = -EIDRM; 1428 unsigned long flags; 1429 1430 /* Prevent the device and bus from going away while 1431 * the unlink is carried out. If they are already gone 1432 * then urb->use_count must be 0, since disconnected 1433 * devices can't have any active URBs. 1434 */ 1435 spin_lock_irqsave(&hcd_urb_unlink_lock, flags); 1436 if (atomic_read(&urb->use_count) > 0) { 1437 retval = 0; 1438 usb_get_dev(urb->dev); 1439 } 1440 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); 1441 if (retval == 0) { 1442 hcd = bus_to_hcd(urb->dev->bus); 1443 retval = unlink1(hcd, urb, status); 1444 usb_put_dev(urb->dev); 1445 } 1446 1447 if (retval == 0) 1448 retval = -EINPROGRESS; 1449 else if (retval != -EIDRM && retval != -EBUSY) 1450 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n", 1451 urb, retval); 1452 return retval; 1453 } 1454 1455 /*-------------------------------------------------------------------------*/ 1456 1457 /** 1458 * usb_hcd_giveback_urb - return URB from HCD to device driver 1459 * @hcd: host controller returning the URB 1460 * @urb: urb being returned to the USB device driver. 1461 * @status: completion status code for the URB. 1462 * Context: in_interrupt() 1463 * 1464 * This hands the URB from HCD to its USB device driver, using its 1465 * completion function. The HCD has freed all per-urb resources 1466 * (and is done using urb->hcpriv). It also released all HCD locks; 1467 * the device driver won't cause problems if it frees, modifies, 1468 * or resubmits this URB. 1469 * 1470 * If @urb was unlinked, the value of @status will be overridden by 1471 * @urb->unlinked. Erroneous short transfers are detected in case 1472 * the HCD hasn't checked for them. 1473 */ 1474 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1475 { 1476 urb->hcpriv = NULL; 1477 if (unlikely(urb->unlinked)) 1478 status = urb->unlinked; 1479 else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1480 urb->actual_length < urb->transfer_buffer_length && 1481 !status)) 1482 status = -EREMOTEIO; 1483 1484 unmap_urb_for_dma(hcd, urb); 1485 usbmon_urb_complete(&hcd->self, urb, status); 1486 usb_unanchor_urb(urb); 1487 1488 /* pass ownership to the completion handler */ 1489 urb->status = status; 1490 urb->complete (urb); 1491 atomic_dec (&urb->use_count); 1492 if (unlikely(atomic_read(&urb->reject))) 1493 wake_up (&usb_kill_urb_queue); 1494 usb_put_urb (urb); 1495 } 1496 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1497 1498 /*-------------------------------------------------------------------------*/ 1499 1500 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1501 * queue to drain completely. The caller must first insure that no more 1502 * URBs can be submitted for this endpoint. 1503 */ 1504 void usb_hcd_flush_endpoint(struct usb_device *udev, 1505 struct usb_host_endpoint *ep) 1506 { 1507 struct usb_hcd *hcd; 1508 struct urb *urb; 1509 1510 if (!ep) 1511 return; 1512 might_sleep(); 1513 hcd = bus_to_hcd(udev->bus); 1514 1515 /* No more submits can occur */ 1516 spin_lock_irq(&hcd_urb_list_lock); 1517 rescan: 1518 list_for_each_entry (urb, &ep->urb_list, urb_list) { 1519 int is_in; 1520 1521 if (urb->unlinked) 1522 continue; 1523 usb_get_urb (urb); 1524 is_in = usb_urb_dir_in(urb); 1525 spin_unlock(&hcd_urb_list_lock); 1526 1527 /* kick hcd */ 1528 unlink1(hcd, urb, -ESHUTDOWN); 1529 dev_dbg (hcd->self.controller, 1530 "shutdown urb %p ep%d%s%s\n", 1531 urb, usb_endpoint_num(&ep->desc), 1532 is_in ? "in" : "out", 1533 ({ char *s; 1534 1535 switch (usb_endpoint_type(&ep->desc)) { 1536 case USB_ENDPOINT_XFER_CONTROL: 1537 s = ""; break; 1538 case USB_ENDPOINT_XFER_BULK: 1539 s = "-bulk"; break; 1540 case USB_ENDPOINT_XFER_INT: 1541 s = "-intr"; break; 1542 default: 1543 s = "-iso"; break; 1544 }; 1545 s; 1546 })); 1547 usb_put_urb (urb); 1548 1549 /* list contents may have changed */ 1550 spin_lock(&hcd_urb_list_lock); 1551 goto rescan; 1552 } 1553 spin_unlock_irq(&hcd_urb_list_lock); 1554 1555 /* Wait until the endpoint queue is completely empty */ 1556 while (!list_empty (&ep->urb_list)) { 1557 spin_lock_irq(&hcd_urb_list_lock); 1558 1559 /* The list may have changed while we acquired the spinlock */ 1560 urb = NULL; 1561 if (!list_empty (&ep->urb_list)) { 1562 urb = list_entry (ep->urb_list.prev, struct urb, 1563 urb_list); 1564 usb_get_urb (urb); 1565 } 1566 spin_unlock_irq(&hcd_urb_list_lock); 1567 1568 if (urb) { 1569 usb_kill_urb (urb); 1570 usb_put_urb (urb); 1571 } 1572 } 1573 } 1574 1575 /* Check whether a new configuration or alt setting for an interface 1576 * will exceed the bandwidth for the bus (or the host controller resources). 1577 * Only pass in a non-NULL config or interface, not both! 1578 * Passing NULL for both new_config and new_intf means the device will be 1579 * de-configured by issuing a set configuration 0 command. 1580 */ 1581 int usb_hcd_check_bandwidth(struct usb_device *udev, 1582 struct usb_host_config *new_config, 1583 struct usb_interface *new_intf) 1584 { 1585 int num_intfs, i, j; 1586 struct usb_interface_cache *intf_cache; 1587 struct usb_host_interface *alt = 0; 1588 int ret = 0; 1589 struct usb_hcd *hcd; 1590 struct usb_host_endpoint *ep; 1591 1592 hcd = bus_to_hcd(udev->bus); 1593 if (!hcd->driver->check_bandwidth) 1594 return 0; 1595 1596 /* Configuration is being removed - set configuration 0 */ 1597 if (!new_config && !new_intf) { 1598 for (i = 1; i < 16; ++i) { 1599 ep = udev->ep_out[i]; 1600 if (ep) 1601 hcd->driver->drop_endpoint(hcd, udev, ep); 1602 ep = udev->ep_in[i]; 1603 if (ep) 1604 hcd->driver->drop_endpoint(hcd, udev, ep); 1605 } 1606 hcd->driver->check_bandwidth(hcd, udev); 1607 return 0; 1608 } 1609 /* Check if the HCD says there's enough bandwidth. Enable all endpoints 1610 * each interface's alt setting 0 and ask the HCD to check the bandwidth 1611 * of the bus. There will always be bandwidth for endpoint 0, so it's 1612 * ok to exclude it. 1613 */ 1614 if (new_config) { 1615 num_intfs = new_config->desc.bNumInterfaces; 1616 /* Remove endpoints (except endpoint 0, which is always on the 1617 * schedule) from the old config from the schedule 1618 */ 1619 for (i = 1; i < 16; ++i) { 1620 ep = udev->ep_out[i]; 1621 if (ep) { 1622 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1623 if (ret < 0) 1624 goto reset; 1625 } 1626 ep = udev->ep_in[i]; 1627 if (ep) { 1628 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1629 if (ret < 0) 1630 goto reset; 1631 } 1632 } 1633 for (i = 0; i < num_intfs; ++i) { 1634 1635 /* Dig the endpoints for alt setting 0 out of the 1636 * interface cache for this interface 1637 */ 1638 intf_cache = new_config->intf_cache[i]; 1639 for (j = 0; j < intf_cache->num_altsetting; j++) { 1640 if (intf_cache->altsetting[j].desc.bAlternateSetting == 0) 1641 alt = &intf_cache->altsetting[j]; 1642 } 1643 if (!alt) { 1644 printk(KERN_DEBUG "Did not find alt setting 0 for intf %d\n", i); 1645 continue; 1646 } 1647 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 1648 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); 1649 if (ret < 0) 1650 goto reset; 1651 } 1652 } 1653 } 1654 ret = hcd->driver->check_bandwidth(hcd, udev); 1655 reset: 1656 if (ret < 0) 1657 hcd->driver->reset_bandwidth(hcd, udev); 1658 return ret; 1659 } 1660 1661 /* Disables the endpoint: synchronizes with the hcd to make sure all 1662 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 1663 * have been called previously. Use for set_configuration, set_interface, 1664 * driver removal, physical disconnect. 1665 * 1666 * example: a qh stored in ep->hcpriv, holding state related to endpoint 1667 * type, maxpacket size, toggle, halt status, and scheduling. 1668 */ 1669 void usb_hcd_disable_endpoint(struct usb_device *udev, 1670 struct usb_host_endpoint *ep) 1671 { 1672 struct usb_hcd *hcd; 1673 1674 might_sleep(); 1675 hcd = bus_to_hcd(udev->bus); 1676 if (hcd->driver->endpoint_disable) 1677 hcd->driver->endpoint_disable(hcd, ep); 1678 } 1679 1680 /** 1681 * usb_hcd_reset_endpoint - reset host endpoint state 1682 * @udev: USB device. 1683 * @ep: the endpoint to reset. 1684 * 1685 * Resets any host endpoint state such as the toggle bit, sequence 1686 * number and current window. 1687 */ 1688 void usb_hcd_reset_endpoint(struct usb_device *udev, 1689 struct usb_host_endpoint *ep) 1690 { 1691 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 1692 1693 if (hcd->driver->endpoint_reset) 1694 hcd->driver->endpoint_reset(hcd, ep); 1695 else { 1696 int epnum = usb_endpoint_num(&ep->desc); 1697 int is_out = usb_endpoint_dir_out(&ep->desc); 1698 int is_control = usb_endpoint_xfer_control(&ep->desc); 1699 1700 usb_settoggle(udev, epnum, is_out, 0); 1701 if (is_control) 1702 usb_settoggle(udev, epnum, !is_out, 0); 1703 } 1704 } 1705 1706 /* Protect against drivers that try to unlink URBs after the device 1707 * is gone, by waiting until all unlinks for @udev are finished. 1708 * Since we don't currently track URBs by device, simply wait until 1709 * nothing is running in the locked region of usb_hcd_unlink_urb(). 1710 */ 1711 void usb_hcd_synchronize_unlinks(struct usb_device *udev) 1712 { 1713 spin_lock_irq(&hcd_urb_unlink_lock); 1714 spin_unlock_irq(&hcd_urb_unlink_lock); 1715 } 1716 1717 /*-------------------------------------------------------------------------*/ 1718 1719 /* called in any context */ 1720 int usb_hcd_get_frame_number (struct usb_device *udev) 1721 { 1722 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 1723 1724 if (!HC_IS_RUNNING (hcd->state)) 1725 return -ESHUTDOWN; 1726 return hcd->driver->get_frame_number (hcd); 1727 } 1728 1729 /*-------------------------------------------------------------------------*/ 1730 1731 #ifdef CONFIG_PM 1732 1733 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) 1734 { 1735 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 1736 int status; 1737 int old_state = hcd->state; 1738 1739 dev_dbg(&rhdev->dev, "bus %s%s\n", 1740 (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "suspend"); 1741 if (!hcd->driver->bus_suspend) { 1742 status = -ENOENT; 1743 } else { 1744 hcd->state = HC_STATE_QUIESCING; 1745 status = hcd->driver->bus_suspend(hcd); 1746 } 1747 if (status == 0) { 1748 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 1749 hcd->state = HC_STATE_SUSPENDED; 1750 } else { 1751 hcd->state = old_state; 1752 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 1753 "suspend", status); 1754 } 1755 return status; 1756 } 1757 1758 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) 1759 { 1760 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 1761 int status; 1762 int old_state = hcd->state; 1763 1764 dev_dbg(&rhdev->dev, "usb %s%s\n", 1765 (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "resume"); 1766 if (!hcd->driver->bus_resume) 1767 return -ENOENT; 1768 if (hcd->state == HC_STATE_RUNNING) 1769 return 0; 1770 1771 hcd->state = HC_STATE_RESUMING; 1772 status = hcd->driver->bus_resume(hcd); 1773 if (status == 0) { 1774 /* TRSMRCY = 10 msec */ 1775 msleep(10); 1776 usb_set_device_state(rhdev, rhdev->actconfig 1777 ? USB_STATE_CONFIGURED 1778 : USB_STATE_ADDRESS); 1779 hcd->state = HC_STATE_RUNNING; 1780 } else { 1781 hcd->state = old_state; 1782 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 1783 "resume", status); 1784 if (status != -ESHUTDOWN) 1785 usb_hc_died(hcd); 1786 } 1787 return status; 1788 } 1789 1790 /* Workqueue routine for root-hub remote wakeup */ 1791 static void hcd_resume_work(struct work_struct *work) 1792 { 1793 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 1794 struct usb_device *udev = hcd->self.root_hub; 1795 1796 usb_lock_device(udev); 1797 usb_mark_last_busy(udev); 1798 usb_external_resume_device(udev, PMSG_REMOTE_RESUME); 1799 usb_unlock_device(udev); 1800 } 1801 1802 /** 1803 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 1804 * @hcd: host controller for this root hub 1805 * 1806 * The USB host controller calls this function when its root hub is 1807 * suspended (with the remote wakeup feature enabled) and a remote 1808 * wakeup request is received. The routine submits a workqueue request 1809 * to resume the root hub (that is, manage its downstream ports again). 1810 */ 1811 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 1812 { 1813 unsigned long flags; 1814 1815 spin_lock_irqsave (&hcd_root_hub_lock, flags); 1816 if (hcd->rh_registered) 1817 queue_work(ksuspend_usb_wq, &hcd->wakeup_work); 1818 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 1819 } 1820 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 1821 1822 #endif 1823 1824 /*-------------------------------------------------------------------------*/ 1825 1826 #ifdef CONFIG_USB_OTG 1827 1828 /** 1829 * usb_bus_start_enum - start immediate enumeration (for OTG) 1830 * @bus: the bus (must use hcd framework) 1831 * @port_num: 1-based number of port; usually bus->otg_port 1832 * Context: in_interrupt() 1833 * 1834 * Starts enumeration, with an immediate reset followed later by 1835 * khubd identifying and possibly configuring the device. 1836 * This is needed by OTG controller drivers, where it helps meet 1837 * HNP protocol timing requirements for starting a port reset. 1838 */ 1839 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 1840 { 1841 struct usb_hcd *hcd; 1842 int status = -EOPNOTSUPP; 1843 1844 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 1845 * boards with root hubs hooked up to internal devices (instead of 1846 * just the OTG port) may need more attention to resetting... 1847 */ 1848 hcd = container_of (bus, struct usb_hcd, self); 1849 if (port_num && hcd->driver->start_port_reset) 1850 status = hcd->driver->start_port_reset(hcd, port_num); 1851 1852 /* run khubd shortly after (first) root port reset finishes; 1853 * it may issue others, until at least 50 msecs have passed. 1854 */ 1855 if (status == 0) 1856 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 1857 return status; 1858 } 1859 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 1860 1861 #endif 1862 1863 /*-------------------------------------------------------------------------*/ 1864 1865 /** 1866 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 1867 * @irq: the IRQ being raised 1868 * @__hcd: pointer to the HCD whose IRQ is being signaled 1869 * 1870 * If the controller isn't HALTed, calls the driver's irq handler. 1871 * Checks whether the controller is now dead. 1872 */ 1873 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 1874 { 1875 struct usb_hcd *hcd = __hcd; 1876 unsigned long flags; 1877 irqreturn_t rc; 1878 1879 /* IRQF_DISABLED doesn't work correctly with shared IRQs 1880 * when the first handler doesn't use it. So let's just 1881 * assume it's never used. 1882 */ 1883 local_irq_save(flags); 1884 1885 if (unlikely(hcd->state == HC_STATE_HALT || 1886 !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags))) { 1887 rc = IRQ_NONE; 1888 } else if (hcd->driver->irq(hcd) == IRQ_NONE) { 1889 rc = IRQ_NONE; 1890 } else { 1891 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags); 1892 1893 if (unlikely(hcd->state == HC_STATE_HALT)) 1894 usb_hc_died(hcd); 1895 rc = IRQ_HANDLED; 1896 } 1897 1898 local_irq_restore(flags); 1899 return rc; 1900 } 1901 1902 /*-------------------------------------------------------------------------*/ 1903 1904 /** 1905 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 1906 * @hcd: pointer to the HCD representing the controller 1907 * 1908 * This is called by bus glue to report a USB host controller that died 1909 * while operations may still have been pending. It's called automatically 1910 * by the PCI glue, so only glue for non-PCI busses should need to call it. 1911 */ 1912 void usb_hc_died (struct usb_hcd *hcd) 1913 { 1914 unsigned long flags; 1915 1916 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 1917 1918 spin_lock_irqsave (&hcd_root_hub_lock, flags); 1919 if (hcd->rh_registered) { 1920 hcd->poll_rh = 0; 1921 1922 /* make khubd clean up old urbs and devices */ 1923 usb_set_device_state (hcd->self.root_hub, 1924 USB_STATE_NOTATTACHED); 1925 usb_kick_khubd (hcd->self.root_hub); 1926 } 1927 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 1928 } 1929 EXPORT_SYMBOL_GPL (usb_hc_died); 1930 1931 /*-------------------------------------------------------------------------*/ 1932 1933 /** 1934 * usb_create_hcd - create and initialize an HCD structure 1935 * @driver: HC driver that will use this hcd 1936 * @dev: device for this HC, stored in hcd->self.controller 1937 * @bus_name: value to store in hcd->self.bus_name 1938 * Context: !in_interrupt() 1939 * 1940 * Allocate a struct usb_hcd, with extra space at the end for the 1941 * HC driver's private data. Initialize the generic members of the 1942 * hcd structure. 1943 * 1944 * If memory is unavailable, returns NULL. 1945 */ 1946 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver, 1947 struct device *dev, const char *bus_name) 1948 { 1949 struct usb_hcd *hcd; 1950 1951 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 1952 if (!hcd) { 1953 dev_dbg (dev, "hcd alloc failed\n"); 1954 return NULL; 1955 } 1956 dev_set_drvdata(dev, hcd); 1957 kref_init(&hcd->kref); 1958 1959 usb_bus_init(&hcd->self); 1960 hcd->self.controller = dev; 1961 hcd->self.bus_name = bus_name; 1962 hcd->self.uses_dma = (dev->dma_mask != NULL); 1963 1964 init_timer(&hcd->rh_timer); 1965 hcd->rh_timer.function = rh_timer_func; 1966 hcd->rh_timer.data = (unsigned long) hcd; 1967 #ifdef CONFIG_PM 1968 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 1969 #endif 1970 1971 hcd->driver = driver; 1972 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 1973 "USB Host Controller"; 1974 return hcd; 1975 } 1976 EXPORT_SYMBOL_GPL(usb_create_hcd); 1977 1978 static void hcd_release (struct kref *kref) 1979 { 1980 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 1981 1982 kfree(hcd); 1983 } 1984 1985 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 1986 { 1987 if (hcd) 1988 kref_get (&hcd->kref); 1989 return hcd; 1990 } 1991 EXPORT_SYMBOL_GPL(usb_get_hcd); 1992 1993 void usb_put_hcd (struct usb_hcd *hcd) 1994 { 1995 if (hcd) 1996 kref_put (&hcd->kref, hcd_release); 1997 } 1998 EXPORT_SYMBOL_GPL(usb_put_hcd); 1999 2000 /** 2001 * usb_add_hcd - finish generic HCD structure initialization and register 2002 * @hcd: the usb_hcd structure to initialize 2003 * @irqnum: Interrupt line to allocate 2004 * @irqflags: Interrupt type flags 2005 * 2006 * Finish the remaining parts of generic HCD initialization: allocate the 2007 * buffers of consistent memory, register the bus, request the IRQ line, 2008 * and call the driver's reset() and start() routines. 2009 */ 2010 int usb_add_hcd(struct usb_hcd *hcd, 2011 unsigned int irqnum, unsigned long irqflags) 2012 { 2013 int retval; 2014 struct usb_device *rhdev; 2015 2016 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 2017 2018 hcd->authorized_default = hcd->wireless? 0 : 1; 2019 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2020 2021 /* HC is in reset state, but accessible. Now do the one-time init, 2022 * bottom up so that hcds can customize the root hubs before khubd 2023 * starts talking to them. (Note, bus id is assigned early too.) 2024 */ 2025 if ((retval = hcd_buffer_create(hcd)) != 0) { 2026 dev_dbg(hcd->self.controller, "pool alloc failed\n"); 2027 return retval; 2028 } 2029 2030 if ((retval = usb_register_bus(&hcd->self)) < 0) 2031 goto err_register_bus; 2032 2033 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) { 2034 dev_err(hcd->self.controller, "unable to allocate root hub\n"); 2035 retval = -ENOMEM; 2036 goto err_allocate_root_hub; 2037 } 2038 2039 switch (hcd->driver->flags & HCD_MASK) { 2040 case HCD_USB11: 2041 rhdev->speed = USB_SPEED_FULL; 2042 break; 2043 case HCD_USB2: 2044 rhdev->speed = USB_SPEED_HIGH; 2045 break; 2046 case HCD_USB3: 2047 rhdev->speed = USB_SPEED_SUPER; 2048 break; 2049 default: 2050 goto err_allocate_root_hub; 2051 } 2052 hcd->self.root_hub = rhdev; 2053 2054 /* wakeup flag init defaults to "everything works" for root hubs, 2055 * but drivers can override it in reset() if needed, along with 2056 * recording the overall controller's system wakeup capability. 2057 */ 2058 device_init_wakeup(&rhdev->dev, 1); 2059 2060 /* "reset" is misnamed; its role is now one-time init. the controller 2061 * should already have been reset (and boot firmware kicked off etc). 2062 */ 2063 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) { 2064 dev_err(hcd->self.controller, "can't setup\n"); 2065 goto err_hcd_driver_setup; 2066 } 2067 2068 /* NOTE: root hub and controller capabilities may not be the same */ 2069 if (device_can_wakeup(hcd->self.controller) 2070 && device_can_wakeup(&hcd->self.root_hub->dev)) 2071 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 2072 2073 /* enable irqs just before we start the controller */ 2074 if (hcd->driver->irq) { 2075 2076 /* IRQF_DISABLED doesn't work as advertised when used together 2077 * with IRQF_SHARED. As usb_hcd_irq() will always disable 2078 * interrupts we can remove it here. 2079 */ 2080 if (irqflags & IRQF_SHARED) 2081 irqflags &= ~IRQF_DISABLED; 2082 2083 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 2084 hcd->driver->description, hcd->self.busnum); 2085 if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 2086 hcd->irq_descr, hcd)) != 0) { 2087 dev_err(hcd->self.controller, 2088 "request interrupt %d failed\n", irqnum); 2089 goto err_request_irq; 2090 } 2091 hcd->irq = irqnum; 2092 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 2093 (hcd->driver->flags & HCD_MEMORY) ? 2094 "io mem" : "io base", 2095 (unsigned long long)hcd->rsrc_start); 2096 } else { 2097 hcd->irq = -1; 2098 if (hcd->rsrc_start) 2099 dev_info(hcd->self.controller, "%s 0x%08llx\n", 2100 (hcd->driver->flags & HCD_MEMORY) ? 2101 "io mem" : "io base", 2102 (unsigned long long)hcd->rsrc_start); 2103 } 2104 2105 if ((retval = hcd->driver->start(hcd)) < 0) { 2106 dev_err(hcd->self.controller, "startup error %d\n", retval); 2107 goto err_hcd_driver_start; 2108 } 2109 2110 /* starting here, usbcore will pay attention to this root hub */ 2111 rhdev->bus_mA = min(500u, hcd->power_budget); 2112 if ((retval = register_root_hub(hcd)) != 0) 2113 goto err_register_root_hub; 2114 2115 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2116 if (retval < 0) { 2117 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n", 2118 retval); 2119 goto error_create_attr_group; 2120 } 2121 if (hcd->uses_new_polling && hcd->poll_rh) 2122 usb_hcd_poll_rh_status(hcd); 2123 return retval; 2124 2125 error_create_attr_group: 2126 mutex_lock(&usb_bus_list_lock); 2127 usb_disconnect(&hcd->self.root_hub); 2128 mutex_unlock(&usb_bus_list_lock); 2129 err_register_root_hub: 2130 hcd->driver->stop(hcd); 2131 err_hcd_driver_start: 2132 if (hcd->irq >= 0) 2133 free_irq(irqnum, hcd); 2134 err_request_irq: 2135 err_hcd_driver_setup: 2136 hcd->self.root_hub = NULL; 2137 usb_put_dev(rhdev); 2138 err_allocate_root_hub: 2139 usb_deregister_bus(&hcd->self); 2140 err_register_bus: 2141 hcd_buffer_destroy(hcd); 2142 return retval; 2143 } 2144 EXPORT_SYMBOL_GPL(usb_add_hcd); 2145 2146 /** 2147 * usb_remove_hcd - shutdown processing for generic HCDs 2148 * @hcd: the usb_hcd structure to remove 2149 * Context: !in_interrupt() 2150 * 2151 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 2152 * invoking the HCD's stop() method. 2153 */ 2154 void usb_remove_hcd(struct usb_hcd *hcd) 2155 { 2156 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 2157 2158 if (HC_IS_RUNNING (hcd->state)) 2159 hcd->state = HC_STATE_QUIESCING; 2160 2161 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 2162 spin_lock_irq (&hcd_root_hub_lock); 2163 hcd->rh_registered = 0; 2164 spin_unlock_irq (&hcd_root_hub_lock); 2165 2166 #ifdef CONFIG_PM 2167 cancel_work_sync(&hcd->wakeup_work); 2168 #endif 2169 2170 sysfs_remove_group(&hcd->self.root_hub->dev.kobj, &usb_bus_attr_group); 2171 mutex_lock(&usb_bus_list_lock); 2172 usb_disconnect(&hcd->self.root_hub); 2173 mutex_unlock(&usb_bus_list_lock); 2174 2175 hcd->driver->stop(hcd); 2176 hcd->state = HC_STATE_HALT; 2177 2178 hcd->poll_rh = 0; 2179 del_timer_sync(&hcd->rh_timer); 2180 2181 if (hcd->irq >= 0) 2182 free_irq(hcd->irq, hcd); 2183 usb_deregister_bus(&hcd->self); 2184 hcd_buffer_destroy(hcd); 2185 } 2186 EXPORT_SYMBOL_GPL(usb_remove_hcd); 2187 2188 void 2189 usb_hcd_platform_shutdown(struct platform_device* dev) 2190 { 2191 struct usb_hcd *hcd = platform_get_drvdata(dev); 2192 2193 if (hcd->driver->shutdown) 2194 hcd->driver->shutdown(hcd); 2195 } 2196 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 2197 2198 /*-------------------------------------------------------------------------*/ 2199 2200 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 2201 2202 struct usb_mon_operations *mon_ops; 2203 2204 /* 2205 * The registration is unlocked. 2206 * We do it this way because we do not want to lock in hot paths. 2207 * 2208 * Notice that the code is minimally error-proof. Because usbmon needs 2209 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 2210 */ 2211 2212 int usb_mon_register (struct usb_mon_operations *ops) 2213 { 2214 2215 if (mon_ops) 2216 return -EBUSY; 2217 2218 mon_ops = ops; 2219 mb(); 2220 return 0; 2221 } 2222 EXPORT_SYMBOL_GPL (usb_mon_register); 2223 2224 void usb_mon_deregister (void) 2225 { 2226 2227 if (mon_ops == NULL) { 2228 printk(KERN_ERR "USB: monitor was not registered\n"); 2229 return; 2230 } 2231 mon_ops = NULL; 2232 mb(); 2233 } 2234 EXPORT_SYMBOL_GPL (usb_mon_deregister); 2235 2236 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ 2237