xref: /openbmc/linux/drivers/usb/core/hcd.c (revision fcc8487d)
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 
25 #include <linux/bcd.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/utsname.h>
32 #include <linux/mm.h>
33 #include <asm/io.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
37 #include <asm/irq.h>
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <linux/platform_device.h>
41 #include <linux/workqueue.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/types.h>
44 
45 #include <linux/phy/phy.h>
46 #include <linux/usb.h>
47 #include <linux/usb/hcd.h>
48 #include <linux/usb/phy.h>
49 #include <linux/usb/otg.h>
50 
51 #include "usb.h"
52 
53 
54 /*-------------------------------------------------------------------------*/
55 
56 /*
57  * USB Host Controller Driver framework
58  *
59  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
60  * HCD-specific behaviors/bugs.
61  *
62  * This does error checks, tracks devices and urbs, and delegates to a
63  * "hc_driver" only for code (and data) that really needs to know about
64  * hardware differences.  That includes root hub registers, i/o queues,
65  * and so on ... but as little else as possible.
66  *
67  * Shared code includes most of the "root hub" code (these are emulated,
68  * though each HC's hardware works differently) and PCI glue, plus request
69  * tracking overhead.  The HCD code should only block on spinlocks or on
70  * hardware handshaking; blocking on software events (such as other kernel
71  * threads releasing resources, or completing actions) is all generic.
72  *
73  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
74  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
75  * only by the hub driver ... and that neither should be seen or used by
76  * usb client device drivers.
77  *
78  * Contributors of ideas or unattributed patches include: David Brownell,
79  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
80  *
81  * HISTORY:
82  * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
83  *		associated cleanup.  "usb_hcd" still != "usb_bus".
84  * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
85  */
86 
87 /*-------------------------------------------------------------------------*/
88 
89 /* Keep track of which host controller drivers are loaded */
90 unsigned long usb_hcds_loaded;
91 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
92 
93 /* host controllers we manage */
94 DEFINE_IDR (usb_bus_idr);
95 EXPORT_SYMBOL_GPL (usb_bus_idr);
96 
97 /* used when allocating bus numbers */
98 #define USB_MAXBUS		64
99 
100 /* used when updating list of hcds */
101 DEFINE_MUTEX(usb_bus_idr_lock);	/* exported only for usbfs */
102 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
103 
104 /* used for controlling access to virtual root hubs */
105 static DEFINE_SPINLOCK(hcd_root_hub_lock);
106 
107 /* used when updating an endpoint's URB list */
108 static DEFINE_SPINLOCK(hcd_urb_list_lock);
109 
110 /* used to protect against unlinking URBs after the device is gone */
111 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
112 
113 /* wait queue for synchronous unlinks */
114 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
115 
116 static inline int is_root_hub(struct usb_device *udev)
117 {
118 	return (udev->parent == NULL);
119 }
120 
121 /*-------------------------------------------------------------------------*/
122 
123 /*
124  * Sharable chunks of root hub code.
125  */
126 
127 /*-------------------------------------------------------------------------*/
128 #define KERNEL_REL	bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
129 #define KERNEL_VER	bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
130 
131 /* usb 3.1 root hub device descriptor */
132 static const u8 usb31_rh_dev_descriptor[18] = {
133 	0x12,       /*  __u8  bLength; */
134 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
135 	0x10, 0x03, /*  __le16 bcdUSB; v3.1 */
136 
137 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
138 	0x00,	    /*  __u8  bDeviceSubClass; */
139 	0x03,       /*  __u8  bDeviceProtocol; USB 3 hub */
140 	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
141 
142 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
143 	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
144 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
145 
146 	0x03,       /*  __u8  iManufacturer; */
147 	0x02,       /*  __u8  iProduct; */
148 	0x01,       /*  __u8  iSerialNumber; */
149 	0x01        /*  __u8  bNumConfigurations; */
150 };
151 
152 /* usb 3.0 root hub device descriptor */
153 static const u8 usb3_rh_dev_descriptor[18] = {
154 	0x12,       /*  __u8  bLength; */
155 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
156 	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
157 
158 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
159 	0x00,	    /*  __u8  bDeviceSubClass; */
160 	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
161 	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
162 
163 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
164 	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
165 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
166 
167 	0x03,       /*  __u8  iManufacturer; */
168 	0x02,       /*  __u8  iProduct; */
169 	0x01,       /*  __u8  iSerialNumber; */
170 	0x01        /*  __u8  bNumConfigurations; */
171 };
172 
173 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
174 static const u8 usb25_rh_dev_descriptor[18] = {
175 	0x12,       /*  __u8  bLength; */
176 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
177 	0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
178 
179 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
180 	0x00,	    /*  __u8  bDeviceSubClass; */
181 	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
182 	0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
183 
184 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
185 	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
186 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
187 
188 	0x03,       /*  __u8  iManufacturer; */
189 	0x02,       /*  __u8  iProduct; */
190 	0x01,       /*  __u8  iSerialNumber; */
191 	0x01        /*  __u8  bNumConfigurations; */
192 };
193 
194 /* usb 2.0 root hub device descriptor */
195 static const u8 usb2_rh_dev_descriptor[18] = {
196 	0x12,       /*  __u8  bLength; */
197 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
198 	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
199 
200 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
201 	0x00,	    /*  __u8  bDeviceSubClass; */
202 	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
203 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
204 
205 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
206 	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
207 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
208 
209 	0x03,       /*  __u8  iManufacturer; */
210 	0x02,       /*  __u8  iProduct; */
211 	0x01,       /*  __u8  iSerialNumber; */
212 	0x01        /*  __u8  bNumConfigurations; */
213 };
214 
215 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
216 
217 /* usb 1.1 root hub device descriptor */
218 static const u8 usb11_rh_dev_descriptor[18] = {
219 	0x12,       /*  __u8  bLength; */
220 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
221 	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
222 
223 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
224 	0x00,	    /*  __u8  bDeviceSubClass; */
225 	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
226 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
227 
228 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
229 	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
230 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
231 
232 	0x03,       /*  __u8  iManufacturer; */
233 	0x02,       /*  __u8  iProduct; */
234 	0x01,       /*  __u8  iSerialNumber; */
235 	0x01        /*  __u8  bNumConfigurations; */
236 };
237 
238 
239 /*-------------------------------------------------------------------------*/
240 
241 /* Configuration descriptors for our root hubs */
242 
243 static const u8 fs_rh_config_descriptor[] = {
244 
245 	/* one configuration */
246 	0x09,       /*  __u8  bLength; */
247 	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
248 	0x19, 0x00, /*  __le16 wTotalLength; */
249 	0x01,       /*  __u8  bNumInterfaces; (1) */
250 	0x01,       /*  __u8  bConfigurationValue; */
251 	0x00,       /*  __u8  iConfiguration; */
252 	0xc0,       /*  __u8  bmAttributes;
253 				 Bit 7: must be set,
254 				     6: Self-powered,
255 				     5: Remote wakeup,
256 				     4..0: resvd */
257 	0x00,       /*  __u8  MaxPower; */
258 
259 	/* USB 1.1:
260 	 * USB 2.0, single TT organization (mandatory):
261 	 *	one interface, protocol 0
262 	 *
263 	 * USB 2.0, multiple TT organization (optional):
264 	 *	two interfaces, protocols 1 (like single TT)
265 	 *	and 2 (multiple TT mode) ... config is
266 	 *	sometimes settable
267 	 *	NOT IMPLEMENTED
268 	 */
269 
270 	/* one interface */
271 	0x09,       /*  __u8  if_bLength; */
272 	USB_DT_INTERFACE,  /* __u8 if_bDescriptorType; Interface */
273 	0x00,       /*  __u8  if_bInterfaceNumber; */
274 	0x00,       /*  __u8  if_bAlternateSetting; */
275 	0x01,       /*  __u8  if_bNumEndpoints; */
276 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
277 	0x00,       /*  __u8  if_bInterfaceSubClass; */
278 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
279 	0x00,       /*  __u8  if_iInterface; */
280 
281 	/* one endpoint (status change endpoint) */
282 	0x07,       /*  __u8  ep_bLength; */
283 	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
284 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
285 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
286 	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
287 	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
288 };
289 
290 static const u8 hs_rh_config_descriptor[] = {
291 
292 	/* one configuration */
293 	0x09,       /*  __u8  bLength; */
294 	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
295 	0x19, 0x00, /*  __le16 wTotalLength; */
296 	0x01,       /*  __u8  bNumInterfaces; (1) */
297 	0x01,       /*  __u8  bConfigurationValue; */
298 	0x00,       /*  __u8  iConfiguration; */
299 	0xc0,       /*  __u8  bmAttributes;
300 				 Bit 7: must be set,
301 				     6: Self-powered,
302 				     5: Remote wakeup,
303 				     4..0: resvd */
304 	0x00,       /*  __u8  MaxPower; */
305 
306 	/* USB 1.1:
307 	 * USB 2.0, single TT organization (mandatory):
308 	 *	one interface, protocol 0
309 	 *
310 	 * USB 2.0, multiple TT organization (optional):
311 	 *	two interfaces, protocols 1 (like single TT)
312 	 *	and 2 (multiple TT mode) ... config is
313 	 *	sometimes settable
314 	 *	NOT IMPLEMENTED
315 	 */
316 
317 	/* one interface */
318 	0x09,       /*  __u8  if_bLength; */
319 	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
320 	0x00,       /*  __u8  if_bInterfaceNumber; */
321 	0x00,       /*  __u8  if_bAlternateSetting; */
322 	0x01,       /*  __u8  if_bNumEndpoints; */
323 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
324 	0x00,       /*  __u8  if_bInterfaceSubClass; */
325 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
326 	0x00,       /*  __u8  if_iInterface; */
327 
328 	/* one endpoint (status change endpoint) */
329 	0x07,       /*  __u8  ep_bLength; */
330 	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
331 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
332 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
333 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
334 		     * see hub.c:hub_configure() for details. */
335 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
336 	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
337 };
338 
339 static const u8 ss_rh_config_descriptor[] = {
340 	/* one configuration */
341 	0x09,       /*  __u8  bLength; */
342 	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
343 	0x1f, 0x00, /*  __le16 wTotalLength; */
344 	0x01,       /*  __u8  bNumInterfaces; (1) */
345 	0x01,       /*  __u8  bConfigurationValue; */
346 	0x00,       /*  __u8  iConfiguration; */
347 	0xc0,       /*  __u8  bmAttributes;
348 				 Bit 7: must be set,
349 				     6: Self-powered,
350 				     5: Remote wakeup,
351 				     4..0: resvd */
352 	0x00,       /*  __u8  MaxPower; */
353 
354 	/* one interface */
355 	0x09,       /*  __u8  if_bLength; */
356 	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
357 	0x00,       /*  __u8  if_bInterfaceNumber; */
358 	0x00,       /*  __u8  if_bAlternateSetting; */
359 	0x01,       /*  __u8  if_bNumEndpoints; */
360 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
361 	0x00,       /*  __u8  if_bInterfaceSubClass; */
362 	0x00,       /*  __u8  if_bInterfaceProtocol; */
363 	0x00,       /*  __u8  if_iInterface; */
364 
365 	/* one endpoint (status change endpoint) */
366 	0x07,       /*  __u8  ep_bLength; */
367 	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
368 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
369 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
370 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
371 		     * see hub.c:hub_configure() for details. */
372 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
373 	0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
374 
375 	/* one SuperSpeed endpoint companion descriptor */
376 	0x06,        /* __u8 ss_bLength */
377 	USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
378 		     /* Companion */
379 	0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
380 	0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
381 	0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
382 };
383 
384 /* authorized_default behaviour:
385  * -1 is authorized for all devices except wireless (old behaviour)
386  * 0 is unauthorized for all devices
387  * 1 is authorized for all devices
388  */
389 static int authorized_default = -1;
390 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
391 MODULE_PARM_DESC(authorized_default,
392 		"Default USB device authorization: 0 is not authorized, 1 is "
393 		"authorized, -1 is authorized except for wireless USB (default, "
394 		"old behaviour");
395 /*-------------------------------------------------------------------------*/
396 
397 /**
398  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
399  * @s: Null-terminated ASCII (actually ISO-8859-1) string
400  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
401  * @len: Length (in bytes; may be odd) of descriptor buffer.
402  *
403  * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
404  * whichever is less.
405  *
406  * Note:
407  * USB String descriptors can contain at most 126 characters; input
408  * strings longer than that are truncated.
409  */
410 static unsigned
411 ascii2desc(char const *s, u8 *buf, unsigned len)
412 {
413 	unsigned n, t = 2 + 2*strlen(s);
414 
415 	if (t > 254)
416 		t = 254;	/* Longest possible UTF string descriptor */
417 	if (len > t)
418 		len = t;
419 
420 	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
421 
422 	n = len;
423 	while (n--) {
424 		*buf++ = t;
425 		if (!n--)
426 			break;
427 		*buf++ = t >> 8;
428 		t = (unsigned char)*s++;
429 	}
430 	return len;
431 }
432 
433 /**
434  * rh_string() - provides string descriptors for root hub
435  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
436  * @hcd: the host controller for this root hub
437  * @data: buffer for output packet
438  * @len: length of the provided buffer
439  *
440  * Produces either a manufacturer, product or serial number string for the
441  * virtual root hub device.
442  *
443  * Return: The number of bytes filled in: the length of the descriptor or
444  * of the provided buffer, whichever is less.
445  */
446 static unsigned
447 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
448 {
449 	char buf[100];
450 	char const *s;
451 	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
452 
453 	/* language ids */
454 	switch (id) {
455 	case 0:
456 		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
457 		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
458 		if (len > 4)
459 			len = 4;
460 		memcpy(data, langids, len);
461 		return len;
462 	case 1:
463 		/* Serial number */
464 		s = hcd->self.bus_name;
465 		break;
466 	case 2:
467 		/* Product name */
468 		s = hcd->product_desc;
469 		break;
470 	case 3:
471 		/* Manufacturer */
472 		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
473 			init_utsname()->release, hcd->driver->description);
474 		s = buf;
475 		break;
476 	default:
477 		/* Can't happen; caller guarantees it */
478 		return 0;
479 	}
480 
481 	return ascii2desc(s, data, len);
482 }
483 
484 
485 /* Root hub control transfers execute synchronously */
486 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
487 {
488 	struct usb_ctrlrequest *cmd;
489 	u16		typeReq, wValue, wIndex, wLength;
490 	u8		*ubuf = urb->transfer_buffer;
491 	unsigned	len = 0;
492 	int		status;
493 	u8		patch_wakeup = 0;
494 	u8		patch_protocol = 0;
495 	u16		tbuf_size;
496 	u8		*tbuf = NULL;
497 	const u8	*bufp;
498 
499 	might_sleep();
500 
501 	spin_lock_irq(&hcd_root_hub_lock);
502 	status = usb_hcd_link_urb_to_ep(hcd, urb);
503 	spin_unlock_irq(&hcd_root_hub_lock);
504 	if (status)
505 		return status;
506 	urb->hcpriv = hcd;	/* Indicate it's queued */
507 
508 	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
509 	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
510 	wValue   = le16_to_cpu (cmd->wValue);
511 	wIndex   = le16_to_cpu (cmd->wIndex);
512 	wLength  = le16_to_cpu (cmd->wLength);
513 
514 	if (wLength > urb->transfer_buffer_length)
515 		goto error;
516 
517 	/*
518 	 * tbuf should be at least as big as the
519 	 * USB hub descriptor.
520 	 */
521 	tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
522 	tbuf = kzalloc(tbuf_size, GFP_KERNEL);
523 	if (!tbuf) {
524 		status = -ENOMEM;
525 		goto err_alloc;
526 	}
527 
528 	bufp = tbuf;
529 
530 
531 	urb->actual_length = 0;
532 	switch (typeReq) {
533 
534 	/* DEVICE REQUESTS */
535 
536 	/* The root hub's remote wakeup enable bit is implemented using
537 	 * driver model wakeup flags.  If this system supports wakeup
538 	 * through USB, userspace may change the default "allow wakeup"
539 	 * policy through sysfs or these calls.
540 	 *
541 	 * Most root hubs support wakeup from downstream devices, for
542 	 * runtime power management (disabling USB clocks and reducing
543 	 * VBUS power usage).  However, not all of them do so; silicon,
544 	 * board, and BIOS bugs here are not uncommon, so these can't
545 	 * be treated quite like external hubs.
546 	 *
547 	 * Likewise, not all root hubs will pass wakeup events upstream,
548 	 * to wake up the whole system.  So don't assume root hub and
549 	 * controller capabilities are identical.
550 	 */
551 
552 	case DeviceRequest | USB_REQ_GET_STATUS:
553 		tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
554 					<< USB_DEVICE_REMOTE_WAKEUP)
555 				| (1 << USB_DEVICE_SELF_POWERED);
556 		tbuf[1] = 0;
557 		len = 2;
558 		break;
559 	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
560 		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
561 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
562 		else
563 			goto error;
564 		break;
565 	case DeviceOutRequest | USB_REQ_SET_FEATURE:
566 		if (device_can_wakeup(&hcd->self.root_hub->dev)
567 				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
568 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
569 		else
570 			goto error;
571 		break;
572 	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
573 		tbuf[0] = 1;
574 		len = 1;
575 			/* FALLTHROUGH */
576 	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
577 		break;
578 	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
579 		switch (wValue & 0xff00) {
580 		case USB_DT_DEVICE << 8:
581 			switch (hcd->speed) {
582 			case HCD_USB31:
583 				bufp = usb31_rh_dev_descriptor;
584 				break;
585 			case HCD_USB3:
586 				bufp = usb3_rh_dev_descriptor;
587 				break;
588 			case HCD_USB25:
589 				bufp = usb25_rh_dev_descriptor;
590 				break;
591 			case HCD_USB2:
592 				bufp = usb2_rh_dev_descriptor;
593 				break;
594 			case HCD_USB11:
595 				bufp = usb11_rh_dev_descriptor;
596 				break;
597 			default:
598 				goto error;
599 			}
600 			len = 18;
601 			if (hcd->has_tt)
602 				patch_protocol = 1;
603 			break;
604 		case USB_DT_CONFIG << 8:
605 			switch (hcd->speed) {
606 			case HCD_USB31:
607 			case HCD_USB3:
608 				bufp = ss_rh_config_descriptor;
609 				len = sizeof ss_rh_config_descriptor;
610 				break;
611 			case HCD_USB25:
612 			case HCD_USB2:
613 				bufp = hs_rh_config_descriptor;
614 				len = sizeof hs_rh_config_descriptor;
615 				break;
616 			case HCD_USB11:
617 				bufp = fs_rh_config_descriptor;
618 				len = sizeof fs_rh_config_descriptor;
619 				break;
620 			default:
621 				goto error;
622 			}
623 			if (device_can_wakeup(&hcd->self.root_hub->dev))
624 				patch_wakeup = 1;
625 			break;
626 		case USB_DT_STRING << 8:
627 			if ((wValue & 0xff) < 4)
628 				urb->actual_length = rh_string(wValue & 0xff,
629 						hcd, ubuf, wLength);
630 			else /* unsupported IDs --> "protocol stall" */
631 				goto error;
632 			break;
633 		case USB_DT_BOS << 8:
634 			goto nongeneric;
635 		default:
636 			goto error;
637 		}
638 		break;
639 	case DeviceRequest | USB_REQ_GET_INTERFACE:
640 		tbuf[0] = 0;
641 		len = 1;
642 			/* FALLTHROUGH */
643 	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
644 		break;
645 	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
646 		/* wValue == urb->dev->devaddr */
647 		dev_dbg (hcd->self.controller, "root hub device address %d\n",
648 			wValue);
649 		break;
650 
651 	/* INTERFACE REQUESTS (no defined feature/status flags) */
652 
653 	/* ENDPOINT REQUESTS */
654 
655 	case EndpointRequest | USB_REQ_GET_STATUS:
656 		/* ENDPOINT_HALT flag */
657 		tbuf[0] = 0;
658 		tbuf[1] = 0;
659 		len = 2;
660 			/* FALLTHROUGH */
661 	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
662 	case EndpointOutRequest | USB_REQ_SET_FEATURE:
663 		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
664 		break;
665 
666 	/* CLASS REQUESTS (and errors) */
667 
668 	default:
669 nongeneric:
670 		/* non-generic request */
671 		switch (typeReq) {
672 		case GetHubStatus:
673 			len = 4;
674 			break;
675 		case GetPortStatus:
676 			if (wValue == HUB_PORT_STATUS)
677 				len = 4;
678 			else
679 				/* other port status types return 8 bytes */
680 				len = 8;
681 			break;
682 		case GetHubDescriptor:
683 			len = sizeof (struct usb_hub_descriptor);
684 			break;
685 		case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
686 			/* len is returned by hub_control */
687 			break;
688 		}
689 		status = hcd->driver->hub_control (hcd,
690 			typeReq, wValue, wIndex,
691 			tbuf, wLength);
692 
693 		if (typeReq == GetHubDescriptor)
694 			usb_hub_adjust_deviceremovable(hcd->self.root_hub,
695 				(struct usb_hub_descriptor *)tbuf);
696 		break;
697 error:
698 		/* "protocol stall" on error */
699 		status = -EPIPE;
700 	}
701 
702 	if (status < 0) {
703 		len = 0;
704 		if (status != -EPIPE) {
705 			dev_dbg (hcd->self.controller,
706 				"CTRL: TypeReq=0x%x val=0x%x "
707 				"idx=0x%x len=%d ==> %d\n",
708 				typeReq, wValue, wIndex,
709 				wLength, status);
710 		}
711 	} else if (status > 0) {
712 		/* hub_control may return the length of data copied. */
713 		len = status;
714 		status = 0;
715 	}
716 	if (len) {
717 		if (urb->transfer_buffer_length < len)
718 			len = urb->transfer_buffer_length;
719 		urb->actual_length = len;
720 		/* always USB_DIR_IN, toward host */
721 		memcpy (ubuf, bufp, len);
722 
723 		/* report whether RH hardware supports remote wakeup */
724 		if (patch_wakeup &&
725 				len > offsetof (struct usb_config_descriptor,
726 						bmAttributes))
727 			((struct usb_config_descriptor *)ubuf)->bmAttributes
728 				|= USB_CONFIG_ATT_WAKEUP;
729 
730 		/* report whether RH hardware has an integrated TT */
731 		if (patch_protocol &&
732 				len > offsetof(struct usb_device_descriptor,
733 						bDeviceProtocol))
734 			((struct usb_device_descriptor *) ubuf)->
735 				bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
736 	}
737 
738 	kfree(tbuf);
739  err_alloc:
740 
741 	/* any errors get returned through the urb completion */
742 	spin_lock_irq(&hcd_root_hub_lock);
743 	usb_hcd_unlink_urb_from_ep(hcd, urb);
744 	usb_hcd_giveback_urb(hcd, urb, status);
745 	spin_unlock_irq(&hcd_root_hub_lock);
746 	return 0;
747 }
748 
749 /*-------------------------------------------------------------------------*/
750 
751 /*
752  * Root Hub interrupt transfers are polled using a timer if the
753  * driver requests it; otherwise the driver is responsible for
754  * calling usb_hcd_poll_rh_status() when an event occurs.
755  *
756  * Completions are called in_interrupt(), but they may or may not
757  * be in_irq().
758  */
759 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
760 {
761 	struct urb	*urb;
762 	int		length;
763 	unsigned long	flags;
764 	char		buffer[6];	/* Any root hubs with > 31 ports? */
765 
766 	if (unlikely(!hcd->rh_pollable))
767 		return;
768 	if (!hcd->uses_new_polling && !hcd->status_urb)
769 		return;
770 
771 	length = hcd->driver->hub_status_data(hcd, buffer);
772 	if (length > 0) {
773 
774 		/* try to complete the status urb */
775 		spin_lock_irqsave(&hcd_root_hub_lock, flags);
776 		urb = hcd->status_urb;
777 		if (urb) {
778 			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
779 			hcd->status_urb = NULL;
780 			urb->actual_length = length;
781 			memcpy(urb->transfer_buffer, buffer, length);
782 
783 			usb_hcd_unlink_urb_from_ep(hcd, urb);
784 			usb_hcd_giveback_urb(hcd, urb, 0);
785 		} else {
786 			length = 0;
787 			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
788 		}
789 		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
790 	}
791 
792 	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
793 	 * exceed that limit if HZ is 100. The math is more clunky than
794 	 * maybe expected, this is to make sure that all timers for USB devices
795 	 * fire at the same time to give the CPU a break in between */
796 	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
797 			(length == 0 && hcd->status_urb != NULL))
798 		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
799 }
800 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
801 
802 /* timer callback */
803 static void rh_timer_func (unsigned long _hcd)
804 {
805 	usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
806 }
807 
808 /*-------------------------------------------------------------------------*/
809 
810 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
811 {
812 	int		retval;
813 	unsigned long	flags;
814 	unsigned	len = 1 + (urb->dev->maxchild / 8);
815 
816 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
817 	if (hcd->status_urb || urb->transfer_buffer_length < len) {
818 		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
819 		retval = -EINVAL;
820 		goto done;
821 	}
822 
823 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
824 	if (retval)
825 		goto done;
826 
827 	hcd->status_urb = urb;
828 	urb->hcpriv = hcd;	/* indicate it's queued */
829 	if (!hcd->uses_new_polling)
830 		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
831 
832 	/* If a status change has already occurred, report it ASAP */
833 	else if (HCD_POLL_PENDING(hcd))
834 		mod_timer(&hcd->rh_timer, jiffies);
835 	retval = 0;
836  done:
837 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
838 	return retval;
839 }
840 
841 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
842 {
843 	if (usb_endpoint_xfer_int(&urb->ep->desc))
844 		return rh_queue_status (hcd, urb);
845 	if (usb_endpoint_xfer_control(&urb->ep->desc))
846 		return rh_call_control (hcd, urb);
847 	return -EINVAL;
848 }
849 
850 /*-------------------------------------------------------------------------*/
851 
852 /* Unlinks of root-hub control URBs are legal, but they don't do anything
853  * since these URBs always execute synchronously.
854  */
855 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
856 {
857 	unsigned long	flags;
858 	int		rc;
859 
860 	spin_lock_irqsave(&hcd_root_hub_lock, flags);
861 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
862 	if (rc)
863 		goto done;
864 
865 	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
866 		;	/* Do nothing */
867 
868 	} else {				/* Status URB */
869 		if (!hcd->uses_new_polling)
870 			del_timer (&hcd->rh_timer);
871 		if (urb == hcd->status_urb) {
872 			hcd->status_urb = NULL;
873 			usb_hcd_unlink_urb_from_ep(hcd, urb);
874 			usb_hcd_giveback_urb(hcd, urb, status);
875 		}
876 	}
877  done:
878 	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
879 	return rc;
880 }
881 
882 
883 
884 /*
885  * Show & store the current value of authorized_default
886  */
887 static ssize_t authorized_default_show(struct device *dev,
888 				       struct device_attribute *attr, char *buf)
889 {
890 	struct usb_device *rh_usb_dev = to_usb_device(dev);
891 	struct usb_bus *usb_bus = rh_usb_dev->bus;
892 	struct usb_hcd *hcd;
893 
894 	hcd = bus_to_hcd(usb_bus);
895 	return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd));
896 }
897 
898 static ssize_t authorized_default_store(struct device *dev,
899 					struct device_attribute *attr,
900 					const char *buf, size_t size)
901 {
902 	ssize_t result;
903 	unsigned val;
904 	struct usb_device *rh_usb_dev = to_usb_device(dev);
905 	struct usb_bus *usb_bus = rh_usb_dev->bus;
906 	struct usb_hcd *hcd;
907 
908 	hcd = bus_to_hcd(usb_bus);
909 	result = sscanf(buf, "%u\n", &val);
910 	if (result == 1) {
911 		if (val)
912 			set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
913 		else
914 			clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
915 
916 		result = size;
917 	} else {
918 		result = -EINVAL;
919 	}
920 	return result;
921 }
922 static DEVICE_ATTR_RW(authorized_default);
923 
924 /*
925  * interface_authorized_default_show - show default authorization status
926  * for USB interfaces
927  *
928  * note: interface_authorized_default is the default value
929  *       for initializing the authorized attribute of interfaces
930  */
931 static ssize_t interface_authorized_default_show(struct device *dev,
932 		struct device_attribute *attr, char *buf)
933 {
934 	struct usb_device *usb_dev = to_usb_device(dev);
935 	struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
936 
937 	return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd));
938 }
939 
940 /*
941  * interface_authorized_default_store - store default authorization status
942  * for USB interfaces
943  *
944  * note: interface_authorized_default is the default value
945  *       for initializing the authorized attribute of interfaces
946  */
947 static ssize_t interface_authorized_default_store(struct device *dev,
948 		struct device_attribute *attr, const char *buf, size_t count)
949 {
950 	struct usb_device *usb_dev = to_usb_device(dev);
951 	struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
952 	int rc = count;
953 	bool val;
954 
955 	if (strtobool(buf, &val) != 0)
956 		return -EINVAL;
957 
958 	if (val)
959 		set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
960 	else
961 		clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
962 
963 	return rc;
964 }
965 static DEVICE_ATTR_RW(interface_authorized_default);
966 
967 /* Group all the USB bus attributes */
968 static struct attribute *usb_bus_attrs[] = {
969 		&dev_attr_authorized_default.attr,
970 		&dev_attr_interface_authorized_default.attr,
971 		NULL,
972 };
973 
974 static struct attribute_group usb_bus_attr_group = {
975 	.name = NULL,	/* we want them in the same directory */
976 	.attrs = usb_bus_attrs,
977 };
978 
979 
980 
981 /*-------------------------------------------------------------------------*/
982 
983 /**
984  * usb_bus_init - shared initialization code
985  * @bus: the bus structure being initialized
986  *
987  * This code is used to initialize a usb_bus structure, memory for which is
988  * separately managed.
989  */
990 static void usb_bus_init (struct usb_bus *bus)
991 {
992 	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
993 
994 	bus->devnum_next = 1;
995 
996 	bus->root_hub = NULL;
997 	bus->busnum = -1;
998 	bus->bandwidth_allocated = 0;
999 	bus->bandwidth_int_reqs  = 0;
1000 	bus->bandwidth_isoc_reqs = 0;
1001 	mutex_init(&bus->devnum_next_mutex);
1002 }
1003 
1004 /*-------------------------------------------------------------------------*/
1005 
1006 /**
1007  * usb_register_bus - registers the USB host controller with the usb core
1008  * @bus: pointer to the bus to register
1009  * Context: !in_interrupt()
1010  *
1011  * Assigns a bus number, and links the controller into usbcore data
1012  * structures so that it can be seen by scanning the bus list.
1013  *
1014  * Return: 0 if successful. A negative error code otherwise.
1015  */
1016 static int usb_register_bus(struct usb_bus *bus)
1017 {
1018 	int result = -E2BIG;
1019 	int busnum;
1020 
1021 	mutex_lock(&usb_bus_idr_lock);
1022 	busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
1023 	if (busnum < 0) {
1024 		pr_err("%s: failed to get bus number\n", usbcore_name);
1025 		goto error_find_busnum;
1026 	}
1027 	bus->busnum = busnum;
1028 	mutex_unlock(&usb_bus_idr_lock);
1029 
1030 	usb_notify_add_bus(bus);
1031 
1032 	dev_info (bus->controller, "new USB bus registered, assigned bus "
1033 		  "number %d\n", bus->busnum);
1034 	return 0;
1035 
1036 error_find_busnum:
1037 	mutex_unlock(&usb_bus_idr_lock);
1038 	return result;
1039 }
1040 
1041 /**
1042  * usb_deregister_bus - deregisters the USB host controller
1043  * @bus: pointer to the bus to deregister
1044  * Context: !in_interrupt()
1045  *
1046  * Recycles the bus number, and unlinks the controller from usbcore data
1047  * structures so that it won't be seen by scanning the bus list.
1048  */
1049 static void usb_deregister_bus (struct usb_bus *bus)
1050 {
1051 	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
1052 
1053 	/*
1054 	 * NOTE: make sure that all the devices are removed by the
1055 	 * controller code, as well as having it call this when cleaning
1056 	 * itself up
1057 	 */
1058 	mutex_lock(&usb_bus_idr_lock);
1059 	idr_remove(&usb_bus_idr, bus->busnum);
1060 	mutex_unlock(&usb_bus_idr_lock);
1061 
1062 	usb_notify_remove_bus(bus);
1063 }
1064 
1065 /**
1066  * register_root_hub - called by usb_add_hcd() to register a root hub
1067  * @hcd: host controller for this root hub
1068  *
1069  * This function registers the root hub with the USB subsystem.  It sets up
1070  * the device properly in the device tree and then calls usb_new_device()
1071  * to register the usb device.  It also assigns the root hub's USB address
1072  * (always 1).
1073  *
1074  * Return: 0 if successful. A negative error code otherwise.
1075  */
1076 static int register_root_hub(struct usb_hcd *hcd)
1077 {
1078 	struct device *parent_dev = hcd->self.controller;
1079 	struct device *sysdev = hcd->self.sysdev;
1080 	struct usb_device *usb_dev = hcd->self.root_hub;
1081 	const int devnum = 1;
1082 	int retval;
1083 
1084 	usb_dev->devnum = devnum;
1085 	usb_dev->bus->devnum_next = devnum + 1;
1086 	memset (&usb_dev->bus->devmap.devicemap, 0,
1087 			sizeof usb_dev->bus->devmap.devicemap);
1088 	set_bit (devnum, usb_dev->bus->devmap.devicemap);
1089 	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1090 
1091 	mutex_lock(&usb_bus_idr_lock);
1092 
1093 	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1094 	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1095 	if (retval != sizeof usb_dev->descriptor) {
1096 		mutex_unlock(&usb_bus_idr_lock);
1097 		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1098 				dev_name(&usb_dev->dev), retval);
1099 		return (retval < 0) ? retval : -EMSGSIZE;
1100 	}
1101 
1102 	if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1103 		retval = usb_get_bos_descriptor(usb_dev);
1104 		if (!retval) {
1105 			usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1106 		} else if (usb_dev->speed >= USB_SPEED_SUPER) {
1107 			mutex_unlock(&usb_bus_idr_lock);
1108 			dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1109 					dev_name(&usb_dev->dev), retval);
1110 			return retval;
1111 		}
1112 	}
1113 
1114 	retval = usb_new_device (usb_dev);
1115 	if (retval) {
1116 		dev_err (parent_dev, "can't register root hub for %s, %d\n",
1117 				dev_name(&usb_dev->dev), retval);
1118 	} else {
1119 		spin_lock_irq (&hcd_root_hub_lock);
1120 		hcd->rh_registered = 1;
1121 		spin_unlock_irq (&hcd_root_hub_lock);
1122 
1123 		/* Did the HC die before the root hub was registered? */
1124 		if (HCD_DEAD(hcd))
1125 			usb_hc_died (hcd);	/* This time clean up */
1126 		usb_dev->dev.of_node = sysdev->of_node;
1127 	}
1128 	mutex_unlock(&usb_bus_idr_lock);
1129 
1130 	return retval;
1131 }
1132 
1133 /*
1134  * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1135  * @bus: the bus which the root hub belongs to
1136  * @portnum: the port which is being resumed
1137  *
1138  * HCDs should call this function when they know that a resume signal is
1139  * being sent to a root-hub port.  The root hub will be prevented from
1140  * going into autosuspend until usb_hcd_end_port_resume() is called.
1141  *
1142  * The bus's private lock must be held by the caller.
1143  */
1144 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1145 {
1146 	unsigned bit = 1 << portnum;
1147 
1148 	if (!(bus->resuming_ports & bit)) {
1149 		bus->resuming_ports |= bit;
1150 		pm_runtime_get_noresume(&bus->root_hub->dev);
1151 	}
1152 }
1153 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1154 
1155 /*
1156  * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1157  * @bus: the bus which the root hub belongs to
1158  * @portnum: the port which is being resumed
1159  *
1160  * HCDs should call this function when they know that a resume signal has
1161  * stopped being sent to a root-hub port.  The root hub will be allowed to
1162  * autosuspend again.
1163  *
1164  * The bus's private lock must be held by the caller.
1165  */
1166 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1167 {
1168 	unsigned bit = 1 << portnum;
1169 
1170 	if (bus->resuming_ports & bit) {
1171 		bus->resuming_ports &= ~bit;
1172 		pm_runtime_put_noidle(&bus->root_hub->dev);
1173 	}
1174 }
1175 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1176 
1177 /*-------------------------------------------------------------------------*/
1178 
1179 /**
1180  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1181  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1182  * @is_input: true iff the transaction sends data to the host
1183  * @isoc: true for isochronous transactions, false for interrupt ones
1184  * @bytecount: how many bytes in the transaction.
1185  *
1186  * Return: Approximate bus time in nanoseconds for a periodic transaction.
1187  *
1188  * Note:
1189  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1190  * scheduled in software, this function is only used for such scheduling.
1191  */
1192 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1193 {
1194 	unsigned long	tmp;
1195 
1196 	switch (speed) {
1197 	case USB_SPEED_LOW: 	/* INTR only */
1198 		if (is_input) {
1199 			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1200 			return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1201 		} else {
1202 			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1203 			return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1204 		}
1205 	case USB_SPEED_FULL:	/* ISOC or INTR */
1206 		if (isoc) {
1207 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1208 			return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1209 		} else {
1210 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1211 			return 9107L + BW_HOST_DELAY + tmp;
1212 		}
1213 	case USB_SPEED_HIGH:	/* ISOC or INTR */
1214 		/* FIXME adjust for input vs output */
1215 		if (isoc)
1216 			tmp = HS_NSECS_ISO (bytecount);
1217 		else
1218 			tmp = HS_NSECS (bytecount);
1219 		return tmp;
1220 	default:
1221 		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1222 		return -1;
1223 	}
1224 }
1225 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1226 
1227 
1228 /*-------------------------------------------------------------------------*/
1229 
1230 /*
1231  * Generic HC operations.
1232  */
1233 
1234 /*-------------------------------------------------------------------------*/
1235 
1236 /**
1237  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1238  * @hcd: host controller to which @urb was submitted
1239  * @urb: URB being submitted
1240  *
1241  * Host controller drivers should call this routine in their enqueue()
1242  * method.  The HCD's private spinlock must be held and interrupts must
1243  * be disabled.  The actions carried out here are required for URB
1244  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1245  *
1246  * Return: 0 for no error, otherwise a negative error code (in which case
1247  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1248  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1249  * the private spinlock and returning.
1250  */
1251 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1252 {
1253 	int		rc = 0;
1254 
1255 	spin_lock(&hcd_urb_list_lock);
1256 
1257 	/* Check that the URB isn't being killed */
1258 	if (unlikely(atomic_read(&urb->reject))) {
1259 		rc = -EPERM;
1260 		goto done;
1261 	}
1262 
1263 	if (unlikely(!urb->ep->enabled)) {
1264 		rc = -ENOENT;
1265 		goto done;
1266 	}
1267 
1268 	if (unlikely(!urb->dev->can_submit)) {
1269 		rc = -EHOSTUNREACH;
1270 		goto done;
1271 	}
1272 
1273 	/*
1274 	 * Check the host controller's state and add the URB to the
1275 	 * endpoint's queue.
1276 	 */
1277 	if (HCD_RH_RUNNING(hcd)) {
1278 		urb->unlinked = 0;
1279 		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1280 	} else {
1281 		rc = -ESHUTDOWN;
1282 		goto done;
1283 	}
1284  done:
1285 	spin_unlock(&hcd_urb_list_lock);
1286 	return rc;
1287 }
1288 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1289 
1290 /**
1291  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1292  * @hcd: host controller to which @urb was submitted
1293  * @urb: URB being checked for unlinkability
1294  * @status: error code to store in @urb if the unlink succeeds
1295  *
1296  * Host controller drivers should call this routine in their dequeue()
1297  * method.  The HCD's private spinlock must be held and interrupts must
1298  * be disabled.  The actions carried out here are required for making
1299  * sure than an unlink is valid.
1300  *
1301  * Return: 0 for no error, otherwise a negative error code (in which case
1302  * the dequeue() method must fail).  The possible error codes are:
1303  *
1304  *	-EIDRM: @urb was not submitted or has already completed.
1305  *		The completion function may not have been called yet.
1306  *
1307  *	-EBUSY: @urb has already been unlinked.
1308  */
1309 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1310 		int status)
1311 {
1312 	struct list_head	*tmp;
1313 
1314 	/* insist the urb is still queued */
1315 	list_for_each(tmp, &urb->ep->urb_list) {
1316 		if (tmp == &urb->urb_list)
1317 			break;
1318 	}
1319 	if (tmp != &urb->urb_list)
1320 		return -EIDRM;
1321 
1322 	/* Any status except -EINPROGRESS means something already started to
1323 	 * unlink this URB from the hardware.  So there's no more work to do.
1324 	 */
1325 	if (urb->unlinked)
1326 		return -EBUSY;
1327 	urb->unlinked = status;
1328 	return 0;
1329 }
1330 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1331 
1332 /**
1333  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1334  * @hcd: host controller to which @urb was submitted
1335  * @urb: URB being unlinked
1336  *
1337  * Host controller drivers should call this routine before calling
1338  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1339  * interrupts must be disabled.  The actions carried out here are required
1340  * for URB completion.
1341  */
1342 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1343 {
1344 	/* clear all state linking urb to this dev (and hcd) */
1345 	spin_lock(&hcd_urb_list_lock);
1346 	list_del_init(&urb->urb_list);
1347 	spin_unlock(&hcd_urb_list_lock);
1348 }
1349 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1350 
1351 /*
1352  * Some usb host controllers can only perform dma using a small SRAM area.
1353  * The usb core itself is however optimized for host controllers that can dma
1354  * using regular system memory - like pci devices doing bus mastering.
1355  *
1356  * To support host controllers with limited dma capabilities we provide dma
1357  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1358  * For this to work properly the host controller code must first use the
1359  * function dma_declare_coherent_memory() to point out which memory area
1360  * that should be used for dma allocations.
1361  *
1362  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1363  * dma using dma_alloc_coherent() which in turn allocates from the memory
1364  * area pointed out with dma_declare_coherent_memory().
1365  *
1366  * So, to summarize...
1367  *
1368  * - We need "local" memory, canonical example being
1369  *   a small SRAM on a discrete controller being the
1370  *   only memory that the controller can read ...
1371  *   (a) "normal" kernel memory is no good, and
1372  *   (b) there's not enough to share
1373  *
1374  * - The only *portable* hook for such stuff in the
1375  *   DMA framework is dma_declare_coherent_memory()
1376  *
1377  * - So we use that, even though the primary requirement
1378  *   is that the memory be "local" (hence addressable
1379  *   by that device), not "coherent".
1380  *
1381  */
1382 
1383 static int hcd_alloc_coherent(struct usb_bus *bus,
1384 			      gfp_t mem_flags, dma_addr_t *dma_handle,
1385 			      void **vaddr_handle, size_t size,
1386 			      enum dma_data_direction dir)
1387 {
1388 	unsigned char *vaddr;
1389 
1390 	if (*vaddr_handle == NULL) {
1391 		WARN_ON_ONCE(1);
1392 		return -EFAULT;
1393 	}
1394 
1395 	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1396 				 mem_flags, dma_handle);
1397 	if (!vaddr)
1398 		return -ENOMEM;
1399 
1400 	/*
1401 	 * Store the virtual address of the buffer at the end
1402 	 * of the allocated dma buffer. The size of the buffer
1403 	 * may be uneven so use unaligned functions instead
1404 	 * of just rounding up. It makes sense to optimize for
1405 	 * memory footprint over access speed since the amount
1406 	 * of memory available for dma may be limited.
1407 	 */
1408 	put_unaligned((unsigned long)*vaddr_handle,
1409 		      (unsigned long *)(vaddr + size));
1410 
1411 	if (dir == DMA_TO_DEVICE)
1412 		memcpy(vaddr, *vaddr_handle, size);
1413 
1414 	*vaddr_handle = vaddr;
1415 	return 0;
1416 }
1417 
1418 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1419 			      void **vaddr_handle, size_t size,
1420 			      enum dma_data_direction dir)
1421 {
1422 	unsigned char *vaddr = *vaddr_handle;
1423 
1424 	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1425 
1426 	if (dir == DMA_FROM_DEVICE)
1427 		memcpy(vaddr, *vaddr_handle, size);
1428 
1429 	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1430 
1431 	*vaddr_handle = vaddr;
1432 	*dma_handle = 0;
1433 }
1434 
1435 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1436 {
1437 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1438 	    (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1439 		dma_unmap_single(hcd->self.sysdev,
1440 				urb->setup_dma,
1441 				sizeof(struct usb_ctrlrequest),
1442 				DMA_TO_DEVICE);
1443 	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1444 		hcd_free_coherent(urb->dev->bus,
1445 				&urb->setup_dma,
1446 				(void **) &urb->setup_packet,
1447 				sizeof(struct usb_ctrlrequest),
1448 				DMA_TO_DEVICE);
1449 
1450 	/* Make it safe to call this routine more than once */
1451 	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1452 }
1453 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1454 
1455 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1456 {
1457 	if (hcd->driver->unmap_urb_for_dma)
1458 		hcd->driver->unmap_urb_for_dma(hcd, urb);
1459 	else
1460 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1461 }
1462 
1463 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1464 {
1465 	enum dma_data_direction dir;
1466 
1467 	usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1468 
1469 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1470 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1471 	    (urb->transfer_flags & URB_DMA_MAP_SG))
1472 		dma_unmap_sg(hcd->self.sysdev,
1473 				urb->sg,
1474 				urb->num_sgs,
1475 				dir);
1476 	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1477 		 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1478 		dma_unmap_page(hcd->self.sysdev,
1479 				urb->transfer_dma,
1480 				urb->transfer_buffer_length,
1481 				dir);
1482 	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1483 		 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1484 		dma_unmap_single(hcd->self.sysdev,
1485 				urb->transfer_dma,
1486 				urb->transfer_buffer_length,
1487 				dir);
1488 	else if (urb->transfer_flags & URB_MAP_LOCAL)
1489 		hcd_free_coherent(urb->dev->bus,
1490 				&urb->transfer_dma,
1491 				&urb->transfer_buffer,
1492 				urb->transfer_buffer_length,
1493 				dir);
1494 
1495 	/* Make it safe to call this routine more than once */
1496 	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1497 			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1498 }
1499 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1500 
1501 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1502 			   gfp_t mem_flags)
1503 {
1504 	if (hcd->driver->map_urb_for_dma)
1505 		return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1506 	else
1507 		return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1508 }
1509 
1510 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1511 			    gfp_t mem_flags)
1512 {
1513 	enum dma_data_direction dir;
1514 	int ret = 0;
1515 
1516 	/* Map the URB's buffers for DMA access.
1517 	 * Lower level HCD code should use *_dma exclusively,
1518 	 * unless it uses pio or talks to another transport,
1519 	 * or uses the provided scatter gather list for bulk.
1520 	 */
1521 
1522 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1523 		if (hcd->self.uses_pio_for_control)
1524 			return ret;
1525 		if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1526 			urb->setup_dma = dma_map_single(
1527 					hcd->self.sysdev,
1528 					urb->setup_packet,
1529 					sizeof(struct usb_ctrlrequest),
1530 					DMA_TO_DEVICE);
1531 			if (dma_mapping_error(hcd->self.sysdev,
1532 						urb->setup_dma))
1533 				return -EAGAIN;
1534 			urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1535 		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1536 			ret = hcd_alloc_coherent(
1537 					urb->dev->bus, mem_flags,
1538 					&urb->setup_dma,
1539 					(void **)&urb->setup_packet,
1540 					sizeof(struct usb_ctrlrequest),
1541 					DMA_TO_DEVICE);
1542 			if (ret)
1543 				return ret;
1544 			urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1545 		}
1546 	}
1547 
1548 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1549 	if (urb->transfer_buffer_length != 0
1550 	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1551 		if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1552 			if (urb->num_sgs) {
1553 				int n;
1554 
1555 				/* We don't support sg for isoc transfers ! */
1556 				if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1557 					WARN_ON(1);
1558 					return -EINVAL;
1559 				}
1560 
1561 				n = dma_map_sg(
1562 						hcd->self.sysdev,
1563 						urb->sg,
1564 						urb->num_sgs,
1565 						dir);
1566 				if (n <= 0)
1567 					ret = -EAGAIN;
1568 				else
1569 					urb->transfer_flags |= URB_DMA_MAP_SG;
1570 				urb->num_mapped_sgs = n;
1571 				if (n != urb->num_sgs)
1572 					urb->transfer_flags |=
1573 							URB_DMA_SG_COMBINED;
1574 			} else if (urb->sg) {
1575 				struct scatterlist *sg = urb->sg;
1576 				urb->transfer_dma = dma_map_page(
1577 						hcd->self.sysdev,
1578 						sg_page(sg),
1579 						sg->offset,
1580 						urb->transfer_buffer_length,
1581 						dir);
1582 				if (dma_mapping_error(hcd->self.sysdev,
1583 						urb->transfer_dma))
1584 					ret = -EAGAIN;
1585 				else
1586 					urb->transfer_flags |= URB_DMA_MAP_PAGE;
1587 			} else if (is_vmalloc_addr(urb->transfer_buffer)) {
1588 				WARN_ONCE(1, "transfer buffer not dma capable\n");
1589 				ret = -EAGAIN;
1590 			} else {
1591 				urb->transfer_dma = dma_map_single(
1592 						hcd->self.sysdev,
1593 						urb->transfer_buffer,
1594 						urb->transfer_buffer_length,
1595 						dir);
1596 				if (dma_mapping_error(hcd->self.sysdev,
1597 						urb->transfer_dma))
1598 					ret = -EAGAIN;
1599 				else
1600 					urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1601 			}
1602 		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1603 			ret = hcd_alloc_coherent(
1604 					urb->dev->bus, mem_flags,
1605 					&urb->transfer_dma,
1606 					&urb->transfer_buffer,
1607 					urb->transfer_buffer_length,
1608 					dir);
1609 			if (ret == 0)
1610 				urb->transfer_flags |= URB_MAP_LOCAL;
1611 		}
1612 		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1613 				URB_SETUP_MAP_LOCAL)))
1614 			usb_hcd_unmap_urb_for_dma(hcd, urb);
1615 	}
1616 	return ret;
1617 }
1618 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1619 
1620 /*-------------------------------------------------------------------------*/
1621 
1622 /* may be called in any context with a valid urb->dev usecount
1623  * caller surrenders "ownership" of urb
1624  * expects usb_submit_urb() to have sanity checked and conditioned all
1625  * inputs in the urb
1626  */
1627 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1628 {
1629 	int			status;
1630 	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1631 
1632 	/* increment urb's reference count as part of giving it to the HCD
1633 	 * (which will control it).  HCD guarantees that it either returns
1634 	 * an error or calls giveback(), but not both.
1635 	 */
1636 	usb_get_urb(urb);
1637 	atomic_inc(&urb->use_count);
1638 	atomic_inc(&urb->dev->urbnum);
1639 	usbmon_urb_submit(&hcd->self, urb);
1640 
1641 	/* NOTE requirements on root-hub callers (usbfs and the hub
1642 	 * driver, for now):  URBs' urb->transfer_buffer must be
1643 	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1644 	 * they could clobber root hub response data.  Also, control
1645 	 * URBs must be submitted in process context with interrupts
1646 	 * enabled.
1647 	 */
1648 
1649 	if (is_root_hub(urb->dev)) {
1650 		status = rh_urb_enqueue(hcd, urb);
1651 	} else {
1652 		status = map_urb_for_dma(hcd, urb, mem_flags);
1653 		if (likely(status == 0)) {
1654 			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1655 			if (unlikely(status))
1656 				unmap_urb_for_dma(hcd, urb);
1657 		}
1658 	}
1659 
1660 	if (unlikely(status)) {
1661 		usbmon_urb_submit_error(&hcd->self, urb, status);
1662 		urb->hcpriv = NULL;
1663 		INIT_LIST_HEAD(&urb->urb_list);
1664 		atomic_dec(&urb->use_count);
1665 		atomic_dec(&urb->dev->urbnum);
1666 		if (atomic_read(&urb->reject))
1667 			wake_up(&usb_kill_urb_queue);
1668 		usb_put_urb(urb);
1669 	}
1670 	return status;
1671 }
1672 
1673 /*-------------------------------------------------------------------------*/
1674 
1675 /* this makes the hcd giveback() the urb more quickly, by kicking it
1676  * off hardware queues (which may take a while) and returning it as
1677  * soon as practical.  we've already set up the urb's return status,
1678  * but we can't know if the callback completed already.
1679  */
1680 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1681 {
1682 	int		value;
1683 
1684 	if (is_root_hub(urb->dev))
1685 		value = usb_rh_urb_dequeue(hcd, urb, status);
1686 	else {
1687 
1688 		/* The only reason an HCD might fail this call is if
1689 		 * it has not yet fully queued the urb to begin with.
1690 		 * Such failures should be harmless. */
1691 		value = hcd->driver->urb_dequeue(hcd, urb, status);
1692 	}
1693 	return value;
1694 }
1695 
1696 /*
1697  * called in any context
1698  *
1699  * caller guarantees urb won't be recycled till both unlink()
1700  * and the urb's completion function return
1701  */
1702 int usb_hcd_unlink_urb (struct urb *urb, int status)
1703 {
1704 	struct usb_hcd		*hcd;
1705 	struct usb_device	*udev = urb->dev;
1706 	int			retval = -EIDRM;
1707 	unsigned long		flags;
1708 
1709 	/* Prevent the device and bus from going away while
1710 	 * the unlink is carried out.  If they are already gone
1711 	 * then urb->use_count must be 0, since disconnected
1712 	 * devices can't have any active URBs.
1713 	 */
1714 	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1715 	if (atomic_read(&urb->use_count) > 0) {
1716 		retval = 0;
1717 		usb_get_dev(udev);
1718 	}
1719 	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1720 	if (retval == 0) {
1721 		hcd = bus_to_hcd(urb->dev->bus);
1722 		retval = unlink1(hcd, urb, status);
1723 		if (retval == 0)
1724 			retval = -EINPROGRESS;
1725 		else if (retval != -EIDRM && retval != -EBUSY)
1726 			dev_dbg(&udev->dev, "hcd_unlink_urb %p fail %d\n",
1727 					urb, retval);
1728 		usb_put_dev(udev);
1729 	}
1730 	return retval;
1731 }
1732 
1733 /*-------------------------------------------------------------------------*/
1734 
1735 static void __usb_hcd_giveback_urb(struct urb *urb)
1736 {
1737 	struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1738 	struct usb_anchor *anchor = urb->anchor;
1739 	int status = urb->unlinked;
1740 	unsigned long flags;
1741 
1742 	urb->hcpriv = NULL;
1743 	if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1744 	    urb->actual_length < urb->transfer_buffer_length &&
1745 	    !status))
1746 		status = -EREMOTEIO;
1747 
1748 	unmap_urb_for_dma(hcd, urb);
1749 	usbmon_urb_complete(&hcd->self, urb, status);
1750 	usb_anchor_suspend_wakeups(anchor);
1751 	usb_unanchor_urb(urb);
1752 	if (likely(status == 0))
1753 		usb_led_activity(USB_LED_EVENT_HOST);
1754 
1755 	/* pass ownership to the completion handler */
1756 	urb->status = status;
1757 
1758 	/*
1759 	 * We disable local IRQs here avoid possible deadlock because
1760 	 * drivers may call spin_lock() to hold lock which might be
1761 	 * acquired in one hard interrupt handler.
1762 	 *
1763 	 * The local_irq_save()/local_irq_restore() around complete()
1764 	 * will be removed if current USB drivers have been cleaned up
1765 	 * and no one may trigger the above deadlock situation when
1766 	 * running complete() in tasklet.
1767 	 */
1768 	local_irq_save(flags);
1769 	urb->complete(urb);
1770 	local_irq_restore(flags);
1771 
1772 	usb_anchor_resume_wakeups(anchor);
1773 	atomic_dec(&urb->use_count);
1774 	if (unlikely(atomic_read(&urb->reject)))
1775 		wake_up(&usb_kill_urb_queue);
1776 	usb_put_urb(urb);
1777 }
1778 
1779 static void usb_giveback_urb_bh(unsigned long param)
1780 {
1781 	struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1782 	struct list_head local_list;
1783 
1784 	spin_lock_irq(&bh->lock);
1785 	bh->running = true;
1786  restart:
1787 	list_replace_init(&bh->head, &local_list);
1788 	spin_unlock_irq(&bh->lock);
1789 
1790 	while (!list_empty(&local_list)) {
1791 		struct urb *urb;
1792 
1793 		urb = list_entry(local_list.next, struct urb, urb_list);
1794 		list_del_init(&urb->urb_list);
1795 		bh->completing_ep = urb->ep;
1796 		__usb_hcd_giveback_urb(urb);
1797 		bh->completing_ep = NULL;
1798 	}
1799 
1800 	/* check if there are new URBs to giveback */
1801 	spin_lock_irq(&bh->lock);
1802 	if (!list_empty(&bh->head))
1803 		goto restart;
1804 	bh->running = false;
1805 	spin_unlock_irq(&bh->lock);
1806 }
1807 
1808 /**
1809  * usb_hcd_giveback_urb - return URB from HCD to device driver
1810  * @hcd: host controller returning the URB
1811  * @urb: urb being returned to the USB device driver.
1812  * @status: completion status code for the URB.
1813  * Context: in_interrupt()
1814  *
1815  * This hands the URB from HCD to its USB device driver, using its
1816  * completion function.  The HCD has freed all per-urb resources
1817  * (and is done using urb->hcpriv).  It also released all HCD locks;
1818  * the device driver won't cause problems if it frees, modifies,
1819  * or resubmits this URB.
1820  *
1821  * If @urb was unlinked, the value of @status will be overridden by
1822  * @urb->unlinked.  Erroneous short transfers are detected in case
1823  * the HCD hasn't checked for them.
1824  */
1825 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1826 {
1827 	struct giveback_urb_bh *bh;
1828 	bool running, high_prio_bh;
1829 
1830 	/* pass status to tasklet via unlinked */
1831 	if (likely(!urb->unlinked))
1832 		urb->unlinked = status;
1833 
1834 	if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1835 		__usb_hcd_giveback_urb(urb);
1836 		return;
1837 	}
1838 
1839 	if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1840 		bh = &hcd->high_prio_bh;
1841 		high_prio_bh = true;
1842 	} else {
1843 		bh = &hcd->low_prio_bh;
1844 		high_prio_bh = false;
1845 	}
1846 
1847 	spin_lock(&bh->lock);
1848 	list_add_tail(&urb->urb_list, &bh->head);
1849 	running = bh->running;
1850 	spin_unlock(&bh->lock);
1851 
1852 	if (running)
1853 		;
1854 	else if (high_prio_bh)
1855 		tasklet_hi_schedule(&bh->bh);
1856 	else
1857 		tasklet_schedule(&bh->bh);
1858 }
1859 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1860 
1861 /*-------------------------------------------------------------------------*/
1862 
1863 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1864  * queue to drain completely.  The caller must first insure that no more
1865  * URBs can be submitted for this endpoint.
1866  */
1867 void usb_hcd_flush_endpoint(struct usb_device *udev,
1868 		struct usb_host_endpoint *ep)
1869 {
1870 	struct usb_hcd		*hcd;
1871 	struct urb		*urb;
1872 
1873 	if (!ep)
1874 		return;
1875 	might_sleep();
1876 	hcd = bus_to_hcd(udev->bus);
1877 
1878 	/* No more submits can occur */
1879 	spin_lock_irq(&hcd_urb_list_lock);
1880 rescan:
1881 	list_for_each_entry (urb, &ep->urb_list, urb_list) {
1882 		int	is_in;
1883 
1884 		if (urb->unlinked)
1885 			continue;
1886 		usb_get_urb (urb);
1887 		is_in = usb_urb_dir_in(urb);
1888 		spin_unlock(&hcd_urb_list_lock);
1889 
1890 		/* kick hcd */
1891 		unlink1(hcd, urb, -ESHUTDOWN);
1892 		dev_dbg (hcd->self.controller,
1893 			"shutdown urb %p ep%d%s%s\n",
1894 			urb, usb_endpoint_num(&ep->desc),
1895 			is_in ? "in" : "out",
1896 			({	char *s;
1897 
1898 				 switch (usb_endpoint_type(&ep->desc)) {
1899 				 case USB_ENDPOINT_XFER_CONTROL:
1900 					s = ""; break;
1901 				 case USB_ENDPOINT_XFER_BULK:
1902 					s = "-bulk"; break;
1903 				 case USB_ENDPOINT_XFER_INT:
1904 					s = "-intr"; break;
1905 				 default:
1906 					s = "-iso"; break;
1907 				};
1908 				s;
1909 			}));
1910 		usb_put_urb (urb);
1911 
1912 		/* list contents may have changed */
1913 		spin_lock(&hcd_urb_list_lock);
1914 		goto rescan;
1915 	}
1916 	spin_unlock_irq(&hcd_urb_list_lock);
1917 
1918 	/* Wait until the endpoint queue is completely empty */
1919 	while (!list_empty (&ep->urb_list)) {
1920 		spin_lock_irq(&hcd_urb_list_lock);
1921 
1922 		/* The list may have changed while we acquired the spinlock */
1923 		urb = NULL;
1924 		if (!list_empty (&ep->urb_list)) {
1925 			urb = list_entry (ep->urb_list.prev, struct urb,
1926 					urb_list);
1927 			usb_get_urb (urb);
1928 		}
1929 		spin_unlock_irq(&hcd_urb_list_lock);
1930 
1931 		if (urb) {
1932 			usb_kill_urb (urb);
1933 			usb_put_urb (urb);
1934 		}
1935 	}
1936 }
1937 
1938 /**
1939  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1940  *				the bus bandwidth
1941  * @udev: target &usb_device
1942  * @new_config: new configuration to install
1943  * @cur_alt: the current alternate interface setting
1944  * @new_alt: alternate interface setting that is being installed
1945  *
1946  * To change configurations, pass in the new configuration in new_config,
1947  * and pass NULL for cur_alt and new_alt.
1948  *
1949  * To reset a device's configuration (put the device in the ADDRESSED state),
1950  * pass in NULL for new_config, cur_alt, and new_alt.
1951  *
1952  * To change alternate interface settings, pass in NULL for new_config,
1953  * pass in the current alternate interface setting in cur_alt,
1954  * and pass in the new alternate interface setting in new_alt.
1955  *
1956  * Return: An error if the requested bandwidth change exceeds the
1957  * bus bandwidth or host controller internal resources.
1958  */
1959 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1960 		struct usb_host_config *new_config,
1961 		struct usb_host_interface *cur_alt,
1962 		struct usb_host_interface *new_alt)
1963 {
1964 	int num_intfs, i, j;
1965 	struct usb_host_interface *alt = NULL;
1966 	int ret = 0;
1967 	struct usb_hcd *hcd;
1968 	struct usb_host_endpoint *ep;
1969 
1970 	hcd = bus_to_hcd(udev->bus);
1971 	if (!hcd->driver->check_bandwidth)
1972 		return 0;
1973 
1974 	/* Configuration is being removed - set configuration 0 */
1975 	if (!new_config && !cur_alt) {
1976 		for (i = 1; i < 16; ++i) {
1977 			ep = udev->ep_out[i];
1978 			if (ep)
1979 				hcd->driver->drop_endpoint(hcd, udev, ep);
1980 			ep = udev->ep_in[i];
1981 			if (ep)
1982 				hcd->driver->drop_endpoint(hcd, udev, ep);
1983 		}
1984 		hcd->driver->check_bandwidth(hcd, udev);
1985 		return 0;
1986 	}
1987 	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1988 	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1989 	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1990 	 * ok to exclude it.
1991 	 */
1992 	if (new_config) {
1993 		num_intfs = new_config->desc.bNumInterfaces;
1994 		/* Remove endpoints (except endpoint 0, which is always on the
1995 		 * schedule) from the old config from the schedule
1996 		 */
1997 		for (i = 1; i < 16; ++i) {
1998 			ep = udev->ep_out[i];
1999 			if (ep) {
2000 				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2001 				if (ret < 0)
2002 					goto reset;
2003 			}
2004 			ep = udev->ep_in[i];
2005 			if (ep) {
2006 				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2007 				if (ret < 0)
2008 					goto reset;
2009 			}
2010 		}
2011 		for (i = 0; i < num_intfs; ++i) {
2012 			struct usb_host_interface *first_alt;
2013 			int iface_num;
2014 
2015 			first_alt = &new_config->intf_cache[i]->altsetting[0];
2016 			iface_num = first_alt->desc.bInterfaceNumber;
2017 			/* Set up endpoints for alternate interface setting 0 */
2018 			alt = usb_find_alt_setting(new_config, iface_num, 0);
2019 			if (!alt)
2020 				/* No alt setting 0? Pick the first setting. */
2021 				alt = first_alt;
2022 
2023 			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
2024 				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
2025 				if (ret < 0)
2026 					goto reset;
2027 			}
2028 		}
2029 	}
2030 	if (cur_alt && new_alt) {
2031 		struct usb_interface *iface = usb_ifnum_to_if(udev,
2032 				cur_alt->desc.bInterfaceNumber);
2033 
2034 		if (!iface)
2035 			return -EINVAL;
2036 		if (iface->resetting_device) {
2037 			/*
2038 			 * The USB core just reset the device, so the xHCI host
2039 			 * and the device will think alt setting 0 is installed.
2040 			 * However, the USB core will pass in the alternate
2041 			 * setting installed before the reset as cur_alt.  Dig
2042 			 * out the alternate setting 0 structure, or the first
2043 			 * alternate setting if a broken device doesn't have alt
2044 			 * setting 0.
2045 			 */
2046 			cur_alt = usb_altnum_to_altsetting(iface, 0);
2047 			if (!cur_alt)
2048 				cur_alt = &iface->altsetting[0];
2049 		}
2050 
2051 		/* Drop all the endpoints in the current alt setting */
2052 		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
2053 			ret = hcd->driver->drop_endpoint(hcd, udev,
2054 					&cur_alt->endpoint[i]);
2055 			if (ret < 0)
2056 				goto reset;
2057 		}
2058 		/* Add all the endpoints in the new alt setting */
2059 		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
2060 			ret = hcd->driver->add_endpoint(hcd, udev,
2061 					&new_alt->endpoint[i]);
2062 			if (ret < 0)
2063 				goto reset;
2064 		}
2065 	}
2066 	ret = hcd->driver->check_bandwidth(hcd, udev);
2067 reset:
2068 	if (ret < 0)
2069 		hcd->driver->reset_bandwidth(hcd, udev);
2070 	return ret;
2071 }
2072 
2073 /* Disables the endpoint: synchronizes with the hcd to make sure all
2074  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
2075  * have been called previously.  Use for set_configuration, set_interface,
2076  * driver removal, physical disconnect.
2077  *
2078  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
2079  * type, maxpacket size, toggle, halt status, and scheduling.
2080  */
2081 void usb_hcd_disable_endpoint(struct usb_device *udev,
2082 		struct usb_host_endpoint *ep)
2083 {
2084 	struct usb_hcd		*hcd;
2085 
2086 	might_sleep();
2087 	hcd = bus_to_hcd(udev->bus);
2088 	if (hcd->driver->endpoint_disable)
2089 		hcd->driver->endpoint_disable(hcd, ep);
2090 }
2091 
2092 /**
2093  * usb_hcd_reset_endpoint - reset host endpoint state
2094  * @udev: USB device.
2095  * @ep:   the endpoint to reset.
2096  *
2097  * Resets any host endpoint state such as the toggle bit, sequence
2098  * number and current window.
2099  */
2100 void usb_hcd_reset_endpoint(struct usb_device *udev,
2101 			    struct usb_host_endpoint *ep)
2102 {
2103 	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2104 
2105 	if (hcd->driver->endpoint_reset)
2106 		hcd->driver->endpoint_reset(hcd, ep);
2107 	else {
2108 		int epnum = usb_endpoint_num(&ep->desc);
2109 		int is_out = usb_endpoint_dir_out(&ep->desc);
2110 		int is_control = usb_endpoint_xfer_control(&ep->desc);
2111 
2112 		usb_settoggle(udev, epnum, is_out, 0);
2113 		if (is_control)
2114 			usb_settoggle(udev, epnum, !is_out, 0);
2115 	}
2116 }
2117 
2118 /**
2119  * usb_alloc_streams - allocate bulk endpoint stream IDs.
2120  * @interface:		alternate setting that includes all endpoints.
2121  * @eps:		array of endpoints that need streams.
2122  * @num_eps:		number of endpoints in the array.
2123  * @num_streams:	number of streams to allocate.
2124  * @mem_flags:		flags hcd should use to allocate memory.
2125  *
2126  * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2127  * Drivers may queue multiple transfers to different stream IDs, which may
2128  * complete in a different order than they were queued.
2129  *
2130  * Return: On success, the number of allocated streams. On failure, a negative
2131  * error code.
2132  */
2133 int usb_alloc_streams(struct usb_interface *interface,
2134 		struct usb_host_endpoint **eps, unsigned int num_eps,
2135 		unsigned int num_streams, gfp_t mem_flags)
2136 {
2137 	struct usb_hcd *hcd;
2138 	struct usb_device *dev;
2139 	int i, ret;
2140 
2141 	dev = interface_to_usbdev(interface);
2142 	hcd = bus_to_hcd(dev->bus);
2143 	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2144 		return -EINVAL;
2145 	if (dev->speed < USB_SPEED_SUPER)
2146 		return -EINVAL;
2147 	if (dev->state < USB_STATE_CONFIGURED)
2148 		return -ENODEV;
2149 
2150 	for (i = 0; i < num_eps; i++) {
2151 		/* Streams only apply to bulk endpoints. */
2152 		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2153 			return -EINVAL;
2154 		/* Re-alloc is not allowed */
2155 		if (eps[i]->streams)
2156 			return -EINVAL;
2157 	}
2158 
2159 	ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2160 			num_streams, mem_flags);
2161 	if (ret < 0)
2162 		return ret;
2163 
2164 	for (i = 0; i < num_eps; i++)
2165 		eps[i]->streams = ret;
2166 
2167 	return ret;
2168 }
2169 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2170 
2171 /**
2172  * usb_free_streams - free bulk endpoint stream IDs.
2173  * @interface:	alternate setting that includes all endpoints.
2174  * @eps:	array of endpoints to remove streams from.
2175  * @num_eps:	number of endpoints in the array.
2176  * @mem_flags:	flags hcd should use to allocate memory.
2177  *
2178  * Reverts a group of bulk endpoints back to not using stream IDs.
2179  * Can fail if we are given bad arguments, or HCD is broken.
2180  *
2181  * Return: 0 on success. On failure, a negative error code.
2182  */
2183 int usb_free_streams(struct usb_interface *interface,
2184 		struct usb_host_endpoint **eps, unsigned int num_eps,
2185 		gfp_t mem_flags)
2186 {
2187 	struct usb_hcd *hcd;
2188 	struct usb_device *dev;
2189 	int i, ret;
2190 
2191 	dev = interface_to_usbdev(interface);
2192 	hcd = bus_to_hcd(dev->bus);
2193 	if (dev->speed < USB_SPEED_SUPER)
2194 		return -EINVAL;
2195 
2196 	/* Double-free is not allowed */
2197 	for (i = 0; i < num_eps; i++)
2198 		if (!eps[i] || !eps[i]->streams)
2199 			return -EINVAL;
2200 
2201 	ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2202 	if (ret < 0)
2203 		return ret;
2204 
2205 	for (i = 0; i < num_eps; i++)
2206 		eps[i]->streams = 0;
2207 
2208 	return ret;
2209 }
2210 EXPORT_SYMBOL_GPL(usb_free_streams);
2211 
2212 /* Protect against drivers that try to unlink URBs after the device
2213  * is gone, by waiting until all unlinks for @udev are finished.
2214  * Since we don't currently track URBs by device, simply wait until
2215  * nothing is running in the locked region of usb_hcd_unlink_urb().
2216  */
2217 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2218 {
2219 	spin_lock_irq(&hcd_urb_unlink_lock);
2220 	spin_unlock_irq(&hcd_urb_unlink_lock);
2221 }
2222 
2223 /*-------------------------------------------------------------------------*/
2224 
2225 /* called in any context */
2226 int usb_hcd_get_frame_number (struct usb_device *udev)
2227 {
2228 	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
2229 
2230 	if (!HCD_RH_RUNNING(hcd))
2231 		return -ESHUTDOWN;
2232 	return hcd->driver->get_frame_number (hcd);
2233 }
2234 
2235 /*-------------------------------------------------------------------------*/
2236 
2237 #ifdef	CONFIG_PM
2238 
2239 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2240 {
2241 	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2242 	int		status;
2243 	int		old_state = hcd->state;
2244 
2245 	dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2246 			(PMSG_IS_AUTO(msg) ? "auto-" : ""),
2247 			rhdev->do_remote_wakeup);
2248 	if (HCD_DEAD(hcd)) {
2249 		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2250 		return 0;
2251 	}
2252 
2253 	if (!hcd->driver->bus_suspend) {
2254 		status = -ENOENT;
2255 	} else {
2256 		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2257 		hcd->state = HC_STATE_QUIESCING;
2258 		status = hcd->driver->bus_suspend(hcd);
2259 	}
2260 	if (status == 0) {
2261 		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2262 		hcd->state = HC_STATE_SUSPENDED;
2263 
2264 		/* Did we race with a root-hub wakeup event? */
2265 		if (rhdev->do_remote_wakeup) {
2266 			char	buffer[6];
2267 
2268 			status = hcd->driver->hub_status_data(hcd, buffer);
2269 			if (status != 0) {
2270 				dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2271 				hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2272 				status = -EBUSY;
2273 			}
2274 		}
2275 	} else {
2276 		spin_lock_irq(&hcd_root_hub_lock);
2277 		if (!HCD_DEAD(hcd)) {
2278 			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2279 			hcd->state = old_state;
2280 		}
2281 		spin_unlock_irq(&hcd_root_hub_lock);
2282 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2283 				"suspend", status);
2284 	}
2285 	return status;
2286 }
2287 
2288 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2289 {
2290 	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2291 	int		status;
2292 	int		old_state = hcd->state;
2293 
2294 	dev_dbg(&rhdev->dev, "usb %sresume\n",
2295 			(PMSG_IS_AUTO(msg) ? "auto-" : ""));
2296 	if (HCD_DEAD(hcd)) {
2297 		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2298 		return 0;
2299 	}
2300 	if (!hcd->driver->bus_resume)
2301 		return -ENOENT;
2302 	if (HCD_RH_RUNNING(hcd))
2303 		return 0;
2304 
2305 	hcd->state = HC_STATE_RESUMING;
2306 	status = hcd->driver->bus_resume(hcd);
2307 	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2308 	if (status == 0) {
2309 		struct usb_device *udev;
2310 		int port1;
2311 
2312 		spin_lock_irq(&hcd_root_hub_lock);
2313 		if (!HCD_DEAD(hcd)) {
2314 			usb_set_device_state(rhdev, rhdev->actconfig
2315 					? USB_STATE_CONFIGURED
2316 					: USB_STATE_ADDRESS);
2317 			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2318 			hcd->state = HC_STATE_RUNNING;
2319 		}
2320 		spin_unlock_irq(&hcd_root_hub_lock);
2321 
2322 		/*
2323 		 * Check whether any of the enabled ports on the root hub are
2324 		 * unsuspended.  If they are then a TRSMRCY delay is needed
2325 		 * (this is what the USB-2 spec calls a "global resume").
2326 		 * Otherwise we can skip the delay.
2327 		 */
2328 		usb_hub_for_each_child(rhdev, port1, udev) {
2329 			if (udev->state != USB_STATE_NOTATTACHED &&
2330 					!udev->port_is_suspended) {
2331 				usleep_range(10000, 11000);	/* TRSMRCY */
2332 				break;
2333 			}
2334 		}
2335 	} else {
2336 		hcd->state = old_state;
2337 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2338 				"resume", status);
2339 		if (status != -ESHUTDOWN)
2340 			usb_hc_died(hcd);
2341 	}
2342 	return status;
2343 }
2344 
2345 /* Workqueue routine for root-hub remote wakeup */
2346 static void hcd_resume_work(struct work_struct *work)
2347 {
2348 	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2349 	struct usb_device *udev = hcd->self.root_hub;
2350 
2351 	usb_remote_wakeup(udev);
2352 }
2353 
2354 /**
2355  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2356  * @hcd: host controller for this root hub
2357  *
2358  * The USB host controller calls this function when its root hub is
2359  * suspended (with the remote wakeup feature enabled) and a remote
2360  * wakeup request is received.  The routine submits a workqueue request
2361  * to resume the root hub (that is, manage its downstream ports again).
2362  */
2363 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2364 {
2365 	unsigned long flags;
2366 
2367 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2368 	if (hcd->rh_registered) {
2369 		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2370 		queue_work(pm_wq, &hcd->wakeup_work);
2371 	}
2372 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2373 }
2374 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2375 
2376 #endif	/* CONFIG_PM */
2377 
2378 /*-------------------------------------------------------------------------*/
2379 
2380 #ifdef	CONFIG_USB_OTG
2381 
2382 /**
2383  * usb_bus_start_enum - start immediate enumeration (for OTG)
2384  * @bus: the bus (must use hcd framework)
2385  * @port_num: 1-based number of port; usually bus->otg_port
2386  * Context: in_interrupt()
2387  *
2388  * Starts enumeration, with an immediate reset followed later by
2389  * hub_wq identifying and possibly configuring the device.
2390  * This is needed by OTG controller drivers, where it helps meet
2391  * HNP protocol timing requirements for starting a port reset.
2392  *
2393  * Return: 0 if successful.
2394  */
2395 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2396 {
2397 	struct usb_hcd		*hcd;
2398 	int			status = -EOPNOTSUPP;
2399 
2400 	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2401 	 * boards with root hubs hooked up to internal devices (instead of
2402 	 * just the OTG port) may need more attention to resetting...
2403 	 */
2404 	hcd = bus_to_hcd(bus);
2405 	if (port_num && hcd->driver->start_port_reset)
2406 		status = hcd->driver->start_port_reset(hcd, port_num);
2407 
2408 	/* allocate hub_wq shortly after (first) root port reset finishes;
2409 	 * it may issue others, until at least 50 msecs have passed.
2410 	 */
2411 	if (status == 0)
2412 		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2413 	return status;
2414 }
2415 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2416 
2417 #endif
2418 
2419 /*-------------------------------------------------------------------------*/
2420 
2421 /**
2422  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2423  * @irq: the IRQ being raised
2424  * @__hcd: pointer to the HCD whose IRQ is being signaled
2425  *
2426  * If the controller isn't HALTed, calls the driver's irq handler.
2427  * Checks whether the controller is now dead.
2428  *
2429  * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2430  */
2431 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2432 {
2433 	struct usb_hcd		*hcd = __hcd;
2434 	irqreturn_t		rc;
2435 
2436 	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2437 		rc = IRQ_NONE;
2438 	else if (hcd->driver->irq(hcd) == IRQ_NONE)
2439 		rc = IRQ_NONE;
2440 	else
2441 		rc = IRQ_HANDLED;
2442 
2443 	return rc;
2444 }
2445 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2446 
2447 /*-------------------------------------------------------------------------*/
2448 
2449 /**
2450  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2451  * @hcd: pointer to the HCD representing the controller
2452  *
2453  * This is called by bus glue to report a USB host controller that died
2454  * while operations may still have been pending.  It's called automatically
2455  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2456  *
2457  * Only call this function with the primary HCD.
2458  */
2459 void usb_hc_died (struct usb_hcd *hcd)
2460 {
2461 	unsigned long flags;
2462 
2463 	dev_err (hcd->self.controller, "HC died; cleaning up\n");
2464 
2465 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2466 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2467 	set_bit(HCD_FLAG_DEAD, &hcd->flags);
2468 	if (hcd->rh_registered) {
2469 		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2470 
2471 		/* make hub_wq clean up old urbs and devices */
2472 		usb_set_device_state (hcd->self.root_hub,
2473 				USB_STATE_NOTATTACHED);
2474 		usb_kick_hub_wq(hcd->self.root_hub);
2475 	}
2476 	if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2477 		hcd = hcd->shared_hcd;
2478 		if (hcd->rh_registered) {
2479 			clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2480 
2481 			/* make hub_wq clean up old urbs and devices */
2482 			usb_set_device_state(hcd->self.root_hub,
2483 					USB_STATE_NOTATTACHED);
2484 			usb_kick_hub_wq(hcd->self.root_hub);
2485 		}
2486 	}
2487 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2488 	/* Make sure that the other roothub is also deallocated. */
2489 }
2490 EXPORT_SYMBOL_GPL (usb_hc_died);
2491 
2492 /*-------------------------------------------------------------------------*/
2493 
2494 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2495 {
2496 
2497 	spin_lock_init(&bh->lock);
2498 	INIT_LIST_HEAD(&bh->head);
2499 	tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2500 }
2501 
2502 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2503 		struct device *sysdev, struct device *dev, const char *bus_name,
2504 		struct usb_hcd *primary_hcd)
2505 {
2506 	struct usb_hcd *hcd;
2507 
2508 	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2509 	if (!hcd)
2510 		return NULL;
2511 	if (primary_hcd == NULL) {
2512 		hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2513 				GFP_KERNEL);
2514 		if (!hcd->address0_mutex) {
2515 			kfree(hcd);
2516 			dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2517 			return NULL;
2518 		}
2519 		mutex_init(hcd->address0_mutex);
2520 		hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2521 				GFP_KERNEL);
2522 		if (!hcd->bandwidth_mutex) {
2523 			kfree(hcd);
2524 			dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2525 			return NULL;
2526 		}
2527 		mutex_init(hcd->bandwidth_mutex);
2528 		dev_set_drvdata(dev, hcd);
2529 	} else {
2530 		mutex_lock(&usb_port_peer_mutex);
2531 		hcd->address0_mutex = primary_hcd->address0_mutex;
2532 		hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2533 		hcd->primary_hcd = primary_hcd;
2534 		primary_hcd->primary_hcd = primary_hcd;
2535 		hcd->shared_hcd = primary_hcd;
2536 		primary_hcd->shared_hcd = hcd;
2537 		mutex_unlock(&usb_port_peer_mutex);
2538 	}
2539 
2540 	kref_init(&hcd->kref);
2541 
2542 	usb_bus_init(&hcd->self);
2543 	hcd->self.controller = dev;
2544 	hcd->self.sysdev = sysdev;
2545 	hcd->self.bus_name = bus_name;
2546 	hcd->self.uses_dma = (sysdev->dma_mask != NULL);
2547 
2548 	init_timer(&hcd->rh_timer);
2549 	hcd->rh_timer.function = rh_timer_func;
2550 	hcd->rh_timer.data = (unsigned long) hcd;
2551 #ifdef CONFIG_PM
2552 	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2553 #endif
2554 
2555 	hcd->driver = driver;
2556 	hcd->speed = driver->flags & HCD_MASK;
2557 	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2558 			"USB Host Controller";
2559 	return hcd;
2560 }
2561 EXPORT_SYMBOL_GPL(__usb_create_hcd);
2562 
2563 /**
2564  * usb_create_shared_hcd - create and initialize an HCD structure
2565  * @driver: HC driver that will use this hcd
2566  * @dev: device for this HC, stored in hcd->self.controller
2567  * @bus_name: value to store in hcd->self.bus_name
2568  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2569  *              PCI device.  Only allocate certain resources for the primary HCD
2570  * Context: !in_interrupt()
2571  *
2572  * Allocate a struct usb_hcd, with extra space at the end for the
2573  * HC driver's private data.  Initialize the generic members of the
2574  * hcd structure.
2575  *
2576  * Return: On success, a pointer to the created and initialized HCD structure.
2577  * On failure (e.g. if memory is unavailable), %NULL.
2578  */
2579 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2580 		struct device *dev, const char *bus_name,
2581 		struct usb_hcd *primary_hcd)
2582 {
2583 	return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2584 }
2585 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2586 
2587 /**
2588  * usb_create_hcd - create and initialize an HCD structure
2589  * @driver: HC driver that will use this hcd
2590  * @dev: device for this HC, stored in hcd->self.controller
2591  * @bus_name: value to store in hcd->self.bus_name
2592  * Context: !in_interrupt()
2593  *
2594  * Allocate a struct usb_hcd, with extra space at the end for the
2595  * HC driver's private data.  Initialize the generic members of the
2596  * hcd structure.
2597  *
2598  * Return: On success, a pointer to the created and initialized HCD
2599  * structure. On failure (e.g. if memory is unavailable), %NULL.
2600  */
2601 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2602 		struct device *dev, const char *bus_name)
2603 {
2604 	return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2605 }
2606 EXPORT_SYMBOL_GPL(usb_create_hcd);
2607 
2608 /*
2609  * Roothubs that share one PCI device must also share the bandwidth mutex.
2610  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2611  * deallocated.
2612  *
2613  * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2614  * freed.  When hcd_release() is called for either hcd in a peer set,
2615  * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2616  */
2617 static void hcd_release(struct kref *kref)
2618 {
2619 	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2620 
2621 	mutex_lock(&usb_port_peer_mutex);
2622 	if (hcd->shared_hcd) {
2623 		struct usb_hcd *peer = hcd->shared_hcd;
2624 
2625 		peer->shared_hcd = NULL;
2626 		peer->primary_hcd = NULL;
2627 	} else {
2628 		kfree(hcd->address0_mutex);
2629 		kfree(hcd->bandwidth_mutex);
2630 	}
2631 	mutex_unlock(&usb_port_peer_mutex);
2632 	kfree(hcd);
2633 }
2634 
2635 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2636 {
2637 	if (hcd)
2638 		kref_get (&hcd->kref);
2639 	return hcd;
2640 }
2641 EXPORT_SYMBOL_GPL(usb_get_hcd);
2642 
2643 void usb_put_hcd (struct usb_hcd *hcd)
2644 {
2645 	if (hcd)
2646 		kref_put (&hcd->kref, hcd_release);
2647 }
2648 EXPORT_SYMBOL_GPL(usb_put_hcd);
2649 
2650 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2651 {
2652 	if (!hcd->primary_hcd)
2653 		return 1;
2654 	return hcd == hcd->primary_hcd;
2655 }
2656 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2657 
2658 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2659 {
2660 	if (!hcd->driver->find_raw_port_number)
2661 		return port1;
2662 
2663 	return hcd->driver->find_raw_port_number(hcd, port1);
2664 }
2665 
2666 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2667 		unsigned int irqnum, unsigned long irqflags)
2668 {
2669 	int retval;
2670 
2671 	if (hcd->driver->irq) {
2672 
2673 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2674 				hcd->driver->description, hcd->self.busnum);
2675 		retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2676 				hcd->irq_descr, hcd);
2677 		if (retval != 0) {
2678 			dev_err(hcd->self.controller,
2679 					"request interrupt %d failed\n",
2680 					irqnum);
2681 			return retval;
2682 		}
2683 		hcd->irq = irqnum;
2684 		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2685 				(hcd->driver->flags & HCD_MEMORY) ?
2686 					"io mem" : "io base",
2687 					(unsigned long long)hcd->rsrc_start);
2688 	} else {
2689 		hcd->irq = 0;
2690 		if (hcd->rsrc_start)
2691 			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2692 					(hcd->driver->flags & HCD_MEMORY) ?
2693 					"io mem" : "io base",
2694 					(unsigned long long)hcd->rsrc_start);
2695 	}
2696 	return 0;
2697 }
2698 
2699 /*
2700  * Before we free this root hub, flush in-flight peering attempts
2701  * and disable peer lookups
2702  */
2703 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2704 {
2705 	struct usb_device *rhdev;
2706 
2707 	mutex_lock(&usb_port_peer_mutex);
2708 	rhdev = hcd->self.root_hub;
2709 	hcd->self.root_hub = NULL;
2710 	mutex_unlock(&usb_port_peer_mutex);
2711 	usb_put_dev(rhdev);
2712 }
2713 
2714 /**
2715  * usb_add_hcd - finish generic HCD structure initialization and register
2716  * @hcd: the usb_hcd structure to initialize
2717  * @irqnum: Interrupt line to allocate
2718  * @irqflags: Interrupt type flags
2719  *
2720  * Finish the remaining parts of generic HCD initialization: allocate the
2721  * buffers of consistent memory, register the bus, request the IRQ line,
2722  * and call the driver's reset() and start() routines.
2723  */
2724 int usb_add_hcd(struct usb_hcd *hcd,
2725 		unsigned int irqnum, unsigned long irqflags)
2726 {
2727 	int retval;
2728 	struct usb_device *rhdev;
2729 
2730 	if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) {
2731 		struct usb_phy *phy = usb_get_phy_dev(hcd->self.sysdev, 0);
2732 
2733 		if (IS_ERR(phy)) {
2734 			retval = PTR_ERR(phy);
2735 			if (retval == -EPROBE_DEFER)
2736 				return retval;
2737 		} else {
2738 			retval = usb_phy_init(phy);
2739 			if (retval) {
2740 				usb_put_phy(phy);
2741 				return retval;
2742 			}
2743 			hcd->usb_phy = phy;
2744 			hcd->remove_phy = 1;
2745 		}
2746 	}
2747 
2748 	if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) {
2749 		struct phy *phy = phy_get(hcd->self.sysdev, "usb");
2750 
2751 		if (IS_ERR(phy)) {
2752 			retval = PTR_ERR(phy);
2753 			if (retval == -EPROBE_DEFER)
2754 				goto err_phy;
2755 		} else {
2756 			retval = phy_init(phy);
2757 			if (retval) {
2758 				phy_put(phy);
2759 				goto err_phy;
2760 			}
2761 			retval = phy_power_on(phy);
2762 			if (retval) {
2763 				phy_exit(phy);
2764 				phy_put(phy);
2765 				goto err_phy;
2766 			}
2767 			hcd->phy = phy;
2768 			hcd->remove_phy = 1;
2769 		}
2770 	}
2771 
2772 	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2773 
2774 	/* Keep old behaviour if authorized_default is not in [0, 1]. */
2775 	if (authorized_default < 0 || authorized_default > 1) {
2776 		if (hcd->wireless)
2777 			clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2778 		else
2779 			set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2780 	} else {
2781 		if (authorized_default)
2782 			set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2783 		else
2784 			clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2785 	}
2786 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2787 
2788 	/* per default all interfaces are authorized */
2789 	set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2790 
2791 	/* HC is in reset state, but accessible.  Now do the one-time init,
2792 	 * bottom up so that hcds can customize the root hubs before hub_wq
2793 	 * starts talking to them.  (Note, bus id is assigned early too.)
2794 	 */
2795 	retval = hcd_buffer_create(hcd);
2796 	if (retval != 0) {
2797 		dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2798 		goto err_create_buf;
2799 	}
2800 
2801 	retval = usb_register_bus(&hcd->self);
2802 	if (retval < 0)
2803 		goto err_register_bus;
2804 
2805 	rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2806 	if (rhdev == NULL) {
2807 		dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2808 		retval = -ENOMEM;
2809 		goto err_allocate_root_hub;
2810 	}
2811 	mutex_lock(&usb_port_peer_mutex);
2812 	hcd->self.root_hub = rhdev;
2813 	mutex_unlock(&usb_port_peer_mutex);
2814 
2815 	switch (hcd->speed) {
2816 	case HCD_USB11:
2817 		rhdev->speed = USB_SPEED_FULL;
2818 		break;
2819 	case HCD_USB2:
2820 		rhdev->speed = USB_SPEED_HIGH;
2821 		break;
2822 	case HCD_USB25:
2823 		rhdev->speed = USB_SPEED_WIRELESS;
2824 		break;
2825 	case HCD_USB3:
2826 		rhdev->speed = USB_SPEED_SUPER;
2827 		break;
2828 	case HCD_USB31:
2829 		rhdev->speed = USB_SPEED_SUPER_PLUS;
2830 		break;
2831 	default:
2832 		retval = -EINVAL;
2833 		goto err_set_rh_speed;
2834 	}
2835 
2836 	/* wakeup flag init defaults to "everything works" for root hubs,
2837 	 * but drivers can override it in reset() if needed, along with
2838 	 * recording the overall controller's system wakeup capability.
2839 	 */
2840 	device_set_wakeup_capable(&rhdev->dev, 1);
2841 
2842 	/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2843 	 * registered.  But since the controller can die at any time,
2844 	 * let's initialize the flag before touching the hardware.
2845 	 */
2846 	set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2847 
2848 	/* "reset" is misnamed; its role is now one-time init. the controller
2849 	 * should already have been reset (and boot firmware kicked off etc).
2850 	 */
2851 	if (hcd->driver->reset) {
2852 		retval = hcd->driver->reset(hcd);
2853 		if (retval < 0) {
2854 			dev_err(hcd->self.controller, "can't setup: %d\n",
2855 					retval);
2856 			goto err_hcd_driver_setup;
2857 		}
2858 	}
2859 	hcd->rh_pollable = 1;
2860 
2861 	/* NOTE: root hub and controller capabilities may not be the same */
2862 	if (device_can_wakeup(hcd->self.controller)
2863 			&& device_can_wakeup(&hcd->self.root_hub->dev))
2864 		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2865 
2866 	/* initialize tasklets */
2867 	init_giveback_urb_bh(&hcd->high_prio_bh);
2868 	init_giveback_urb_bh(&hcd->low_prio_bh);
2869 
2870 	/* enable irqs just before we start the controller,
2871 	 * if the BIOS provides legacy PCI irqs.
2872 	 */
2873 	if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2874 		retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2875 		if (retval)
2876 			goto err_request_irq;
2877 	}
2878 
2879 	hcd->state = HC_STATE_RUNNING;
2880 	retval = hcd->driver->start(hcd);
2881 	if (retval < 0) {
2882 		dev_err(hcd->self.controller, "startup error %d\n", retval);
2883 		goto err_hcd_driver_start;
2884 	}
2885 
2886 	/* starting here, usbcore will pay attention to this root hub */
2887 	retval = register_root_hub(hcd);
2888 	if (retval != 0)
2889 		goto err_register_root_hub;
2890 
2891 	retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2892 	if (retval < 0) {
2893 		printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2894 		       retval);
2895 		goto error_create_attr_group;
2896 	}
2897 	if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2898 		usb_hcd_poll_rh_status(hcd);
2899 
2900 	return retval;
2901 
2902 error_create_attr_group:
2903 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2904 	if (HC_IS_RUNNING(hcd->state))
2905 		hcd->state = HC_STATE_QUIESCING;
2906 	spin_lock_irq(&hcd_root_hub_lock);
2907 	hcd->rh_registered = 0;
2908 	spin_unlock_irq(&hcd_root_hub_lock);
2909 
2910 #ifdef CONFIG_PM
2911 	cancel_work_sync(&hcd->wakeup_work);
2912 #endif
2913 	mutex_lock(&usb_bus_idr_lock);
2914 	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2915 	mutex_unlock(&usb_bus_idr_lock);
2916 err_register_root_hub:
2917 	hcd->rh_pollable = 0;
2918 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2919 	del_timer_sync(&hcd->rh_timer);
2920 	hcd->driver->stop(hcd);
2921 	hcd->state = HC_STATE_HALT;
2922 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2923 	del_timer_sync(&hcd->rh_timer);
2924 err_hcd_driver_start:
2925 	if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2926 		free_irq(irqnum, hcd);
2927 err_request_irq:
2928 err_hcd_driver_setup:
2929 err_set_rh_speed:
2930 	usb_put_invalidate_rhdev(hcd);
2931 err_allocate_root_hub:
2932 	usb_deregister_bus(&hcd->self);
2933 err_register_bus:
2934 	hcd_buffer_destroy(hcd);
2935 err_create_buf:
2936 	if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2937 		phy_power_off(hcd->phy);
2938 		phy_exit(hcd->phy);
2939 		phy_put(hcd->phy);
2940 		hcd->phy = NULL;
2941 	}
2942 err_phy:
2943 	if (hcd->remove_phy && hcd->usb_phy) {
2944 		usb_phy_shutdown(hcd->usb_phy);
2945 		usb_put_phy(hcd->usb_phy);
2946 		hcd->usb_phy = NULL;
2947 	}
2948 	return retval;
2949 }
2950 EXPORT_SYMBOL_GPL(usb_add_hcd);
2951 
2952 /**
2953  * usb_remove_hcd - shutdown processing for generic HCDs
2954  * @hcd: the usb_hcd structure to remove
2955  * Context: !in_interrupt()
2956  *
2957  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2958  * invoking the HCD's stop() method.
2959  */
2960 void usb_remove_hcd(struct usb_hcd *hcd)
2961 {
2962 	struct usb_device *rhdev = hcd->self.root_hub;
2963 
2964 	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2965 
2966 	usb_get_dev(rhdev);
2967 	sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2968 
2969 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2970 	if (HC_IS_RUNNING (hcd->state))
2971 		hcd->state = HC_STATE_QUIESCING;
2972 
2973 	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2974 	spin_lock_irq (&hcd_root_hub_lock);
2975 	hcd->rh_registered = 0;
2976 	spin_unlock_irq (&hcd_root_hub_lock);
2977 
2978 #ifdef CONFIG_PM
2979 	cancel_work_sync(&hcd->wakeup_work);
2980 #endif
2981 
2982 	mutex_lock(&usb_bus_idr_lock);
2983 	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2984 	mutex_unlock(&usb_bus_idr_lock);
2985 
2986 	/*
2987 	 * tasklet_kill() isn't needed here because:
2988 	 * - driver's disconnect() called from usb_disconnect() should
2989 	 *   make sure its URBs are completed during the disconnect()
2990 	 *   callback
2991 	 *
2992 	 * - it is too late to run complete() here since driver may have
2993 	 *   been removed already now
2994 	 */
2995 
2996 	/* Prevent any more root-hub status calls from the timer.
2997 	 * The HCD might still restart the timer (if a port status change
2998 	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2999 	 * the hub_status_data() callback.
3000 	 */
3001 	hcd->rh_pollable = 0;
3002 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3003 	del_timer_sync(&hcd->rh_timer);
3004 
3005 	hcd->driver->stop(hcd);
3006 	hcd->state = HC_STATE_HALT;
3007 
3008 	/* In case the HCD restarted the timer, stop it again. */
3009 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3010 	del_timer_sync(&hcd->rh_timer);
3011 
3012 	if (usb_hcd_is_primary_hcd(hcd)) {
3013 		if (hcd->irq > 0)
3014 			free_irq(hcd->irq, hcd);
3015 	}
3016 
3017 	usb_deregister_bus(&hcd->self);
3018 	hcd_buffer_destroy(hcd);
3019 
3020 	if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
3021 		phy_power_off(hcd->phy);
3022 		phy_exit(hcd->phy);
3023 		phy_put(hcd->phy);
3024 		hcd->phy = NULL;
3025 	}
3026 	if (hcd->remove_phy && hcd->usb_phy) {
3027 		usb_phy_shutdown(hcd->usb_phy);
3028 		usb_put_phy(hcd->usb_phy);
3029 		hcd->usb_phy = NULL;
3030 	}
3031 
3032 	usb_put_invalidate_rhdev(hcd);
3033 	hcd->flags = 0;
3034 }
3035 EXPORT_SYMBOL_GPL(usb_remove_hcd);
3036 
3037 void
3038 usb_hcd_platform_shutdown(struct platform_device *dev)
3039 {
3040 	struct usb_hcd *hcd = platform_get_drvdata(dev);
3041 
3042 	if (hcd->driver->shutdown)
3043 		hcd->driver->shutdown(hcd);
3044 }
3045 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3046 
3047 /*-------------------------------------------------------------------------*/
3048 
3049 #if IS_ENABLED(CONFIG_USB_MON)
3050 
3051 const struct usb_mon_operations *mon_ops;
3052 
3053 /*
3054  * The registration is unlocked.
3055  * We do it this way because we do not want to lock in hot paths.
3056  *
3057  * Notice that the code is minimally error-proof. Because usbmon needs
3058  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3059  */
3060 
3061 int usb_mon_register(const struct usb_mon_operations *ops)
3062 {
3063 
3064 	if (mon_ops)
3065 		return -EBUSY;
3066 
3067 	mon_ops = ops;
3068 	mb();
3069 	return 0;
3070 }
3071 EXPORT_SYMBOL_GPL (usb_mon_register);
3072 
3073 void usb_mon_deregister (void)
3074 {
3075 
3076 	if (mon_ops == NULL) {
3077 		printk(KERN_ERR "USB: monitor was not registered\n");
3078 		return;
3079 	}
3080 	mon_ops = NULL;
3081 	mb();
3082 }
3083 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3084 
3085 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
3086