1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * (C) Copyright Linus Torvalds 1999 4 * (C) Copyright Johannes Erdfelt 1999-2001 5 * (C) Copyright Andreas Gal 1999 6 * (C) Copyright Gregory P. Smith 1999 7 * (C) Copyright Deti Fliegl 1999 8 * (C) Copyright Randy Dunlap 2000 9 * (C) Copyright David Brownell 2000-2002 10 */ 11 12 #include <linux/bcd.h> 13 #include <linux/module.h> 14 #include <linux/version.h> 15 #include <linux/kernel.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/slab.h> 18 #include <linux/completion.h> 19 #include <linux/utsname.h> 20 #include <linux/mm.h> 21 #include <asm/io.h> 22 #include <linux/device.h> 23 #include <linux/dma-mapping.h> 24 #include <linux/mutex.h> 25 #include <asm/irq.h> 26 #include <asm/byteorder.h> 27 #include <asm/unaligned.h> 28 #include <linux/platform_device.h> 29 #include <linux/workqueue.h> 30 #include <linux/pm_runtime.h> 31 #include <linux/types.h> 32 #include <linux/genalloc.h> 33 #include <linux/io.h> 34 #include <linux/kcov.h> 35 36 #include <linux/phy/phy.h> 37 #include <linux/usb.h> 38 #include <linux/usb/hcd.h> 39 #include <linux/usb/otg.h> 40 41 #include "usb.h" 42 #include "phy.h" 43 44 45 /*-------------------------------------------------------------------------*/ 46 47 /* 48 * USB Host Controller Driver framework 49 * 50 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 51 * HCD-specific behaviors/bugs. 52 * 53 * This does error checks, tracks devices and urbs, and delegates to a 54 * "hc_driver" only for code (and data) that really needs to know about 55 * hardware differences. That includes root hub registers, i/o queues, 56 * and so on ... but as little else as possible. 57 * 58 * Shared code includes most of the "root hub" code (these are emulated, 59 * though each HC's hardware works differently) and PCI glue, plus request 60 * tracking overhead. The HCD code should only block on spinlocks or on 61 * hardware handshaking; blocking on software events (such as other kernel 62 * threads releasing resources, or completing actions) is all generic. 63 * 64 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 65 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 66 * only by the hub driver ... and that neither should be seen or used by 67 * usb client device drivers. 68 * 69 * Contributors of ideas or unattributed patches include: David Brownell, 70 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 71 * 72 * HISTORY: 73 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 74 * associated cleanup. "usb_hcd" still != "usb_bus". 75 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 76 */ 77 78 /*-------------------------------------------------------------------------*/ 79 80 /* Keep track of which host controller drivers are loaded */ 81 unsigned long usb_hcds_loaded; 82 EXPORT_SYMBOL_GPL(usb_hcds_loaded); 83 84 /* host controllers we manage */ 85 DEFINE_IDR (usb_bus_idr); 86 EXPORT_SYMBOL_GPL (usb_bus_idr); 87 88 /* used when allocating bus numbers */ 89 #define USB_MAXBUS 64 90 91 /* used when updating list of hcds */ 92 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */ 93 EXPORT_SYMBOL_GPL (usb_bus_idr_lock); 94 95 /* used for controlling access to virtual root hubs */ 96 static DEFINE_SPINLOCK(hcd_root_hub_lock); 97 98 /* used when updating an endpoint's URB list */ 99 static DEFINE_SPINLOCK(hcd_urb_list_lock); 100 101 /* used to protect against unlinking URBs after the device is gone */ 102 static DEFINE_SPINLOCK(hcd_urb_unlink_lock); 103 104 /* wait queue for synchronous unlinks */ 105 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 106 107 /*-------------------------------------------------------------------------*/ 108 109 /* 110 * Sharable chunks of root hub code. 111 */ 112 113 /*-------------------------------------------------------------------------*/ 114 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff)) 115 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff)) 116 117 /* usb 3.1 root hub device descriptor */ 118 static const u8 usb31_rh_dev_descriptor[18] = { 119 0x12, /* __u8 bLength; */ 120 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 121 0x10, 0x03, /* __le16 bcdUSB; v3.1 */ 122 123 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 124 0x00, /* __u8 bDeviceSubClass; */ 125 0x03, /* __u8 bDeviceProtocol; USB 3 hub */ 126 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 127 128 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 129 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 130 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 131 132 0x03, /* __u8 iManufacturer; */ 133 0x02, /* __u8 iProduct; */ 134 0x01, /* __u8 iSerialNumber; */ 135 0x01 /* __u8 bNumConfigurations; */ 136 }; 137 138 /* usb 3.0 root hub device descriptor */ 139 static const u8 usb3_rh_dev_descriptor[18] = { 140 0x12, /* __u8 bLength; */ 141 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 142 0x00, 0x03, /* __le16 bcdUSB; v3.0 */ 143 144 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 145 0x00, /* __u8 bDeviceSubClass; */ 146 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */ 147 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 148 149 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 150 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 151 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 152 153 0x03, /* __u8 iManufacturer; */ 154 0x02, /* __u8 iProduct; */ 155 0x01, /* __u8 iSerialNumber; */ 156 0x01 /* __u8 bNumConfigurations; */ 157 }; 158 159 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */ 160 static const u8 usb25_rh_dev_descriptor[18] = { 161 0x12, /* __u8 bLength; */ 162 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 163 0x50, 0x02, /* __le16 bcdUSB; v2.5 */ 164 165 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 166 0x00, /* __u8 bDeviceSubClass; */ 167 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 168 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */ 169 170 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 171 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 172 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 173 174 0x03, /* __u8 iManufacturer; */ 175 0x02, /* __u8 iProduct; */ 176 0x01, /* __u8 iSerialNumber; */ 177 0x01 /* __u8 bNumConfigurations; */ 178 }; 179 180 /* usb 2.0 root hub device descriptor */ 181 static const u8 usb2_rh_dev_descriptor[18] = { 182 0x12, /* __u8 bLength; */ 183 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 184 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 185 186 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 187 0x00, /* __u8 bDeviceSubClass; */ 188 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 189 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 190 191 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 192 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 193 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 194 195 0x03, /* __u8 iManufacturer; */ 196 0x02, /* __u8 iProduct; */ 197 0x01, /* __u8 iSerialNumber; */ 198 0x01 /* __u8 bNumConfigurations; */ 199 }; 200 201 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 202 203 /* usb 1.1 root hub device descriptor */ 204 static const u8 usb11_rh_dev_descriptor[18] = { 205 0x12, /* __u8 bLength; */ 206 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 207 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 208 209 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 210 0x00, /* __u8 bDeviceSubClass; */ 211 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 212 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 213 214 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 215 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 216 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 217 218 0x03, /* __u8 iManufacturer; */ 219 0x02, /* __u8 iProduct; */ 220 0x01, /* __u8 iSerialNumber; */ 221 0x01 /* __u8 bNumConfigurations; */ 222 }; 223 224 225 /*-------------------------------------------------------------------------*/ 226 227 /* Configuration descriptors for our root hubs */ 228 229 static const u8 fs_rh_config_descriptor[] = { 230 231 /* one configuration */ 232 0x09, /* __u8 bLength; */ 233 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 234 0x19, 0x00, /* __le16 wTotalLength; */ 235 0x01, /* __u8 bNumInterfaces; (1) */ 236 0x01, /* __u8 bConfigurationValue; */ 237 0x00, /* __u8 iConfiguration; */ 238 0xc0, /* __u8 bmAttributes; 239 Bit 7: must be set, 240 6: Self-powered, 241 5: Remote wakeup, 242 4..0: resvd */ 243 0x00, /* __u8 MaxPower; */ 244 245 /* USB 1.1: 246 * USB 2.0, single TT organization (mandatory): 247 * one interface, protocol 0 248 * 249 * USB 2.0, multiple TT organization (optional): 250 * two interfaces, protocols 1 (like single TT) 251 * and 2 (multiple TT mode) ... config is 252 * sometimes settable 253 * NOT IMPLEMENTED 254 */ 255 256 /* one interface */ 257 0x09, /* __u8 if_bLength; */ 258 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 259 0x00, /* __u8 if_bInterfaceNumber; */ 260 0x00, /* __u8 if_bAlternateSetting; */ 261 0x01, /* __u8 if_bNumEndpoints; */ 262 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 263 0x00, /* __u8 if_bInterfaceSubClass; */ 264 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 265 0x00, /* __u8 if_iInterface; */ 266 267 /* one endpoint (status change endpoint) */ 268 0x07, /* __u8 ep_bLength; */ 269 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 270 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 271 0x03, /* __u8 ep_bmAttributes; Interrupt */ 272 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 273 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 274 }; 275 276 static const u8 hs_rh_config_descriptor[] = { 277 278 /* one configuration */ 279 0x09, /* __u8 bLength; */ 280 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 281 0x19, 0x00, /* __le16 wTotalLength; */ 282 0x01, /* __u8 bNumInterfaces; (1) */ 283 0x01, /* __u8 bConfigurationValue; */ 284 0x00, /* __u8 iConfiguration; */ 285 0xc0, /* __u8 bmAttributes; 286 Bit 7: must be set, 287 6: Self-powered, 288 5: Remote wakeup, 289 4..0: resvd */ 290 0x00, /* __u8 MaxPower; */ 291 292 /* USB 1.1: 293 * USB 2.0, single TT organization (mandatory): 294 * one interface, protocol 0 295 * 296 * USB 2.0, multiple TT organization (optional): 297 * two interfaces, protocols 1 (like single TT) 298 * and 2 (multiple TT mode) ... config is 299 * sometimes settable 300 * NOT IMPLEMENTED 301 */ 302 303 /* one interface */ 304 0x09, /* __u8 if_bLength; */ 305 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 306 0x00, /* __u8 if_bInterfaceNumber; */ 307 0x00, /* __u8 if_bAlternateSetting; */ 308 0x01, /* __u8 if_bNumEndpoints; */ 309 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 310 0x00, /* __u8 if_bInterfaceSubClass; */ 311 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 312 0x00, /* __u8 if_iInterface; */ 313 314 /* one endpoint (status change endpoint) */ 315 0x07, /* __u8 ep_bLength; */ 316 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 317 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 318 0x03, /* __u8 ep_bmAttributes; Interrupt */ 319 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 320 * see hub.c:hub_configure() for details. */ 321 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 322 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 323 }; 324 325 static const u8 ss_rh_config_descriptor[] = { 326 /* one configuration */ 327 0x09, /* __u8 bLength; */ 328 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 329 0x1f, 0x00, /* __le16 wTotalLength; */ 330 0x01, /* __u8 bNumInterfaces; (1) */ 331 0x01, /* __u8 bConfigurationValue; */ 332 0x00, /* __u8 iConfiguration; */ 333 0xc0, /* __u8 bmAttributes; 334 Bit 7: must be set, 335 6: Self-powered, 336 5: Remote wakeup, 337 4..0: resvd */ 338 0x00, /* __u8 MaxPower; */ 339 340 /* one interface */ 341 0x09, /* __u8 if_bLength; */ 342 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 343 0x00, /* __u8 if_bInterfaceNumber; */ 344 0x00, /* __u8 if_bAlternateSetting; */ 345 0x01, /* __u8 if_bNumEndpoints; */ 346 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 347 0x00, /* __u8 if_bInterfaceSubClass; */ 348 0x00, /* __u8 if_bInterfaceProtocol; */ 349 0x00, /* __u8 if_iInterface; */ 350 351 /* one endpoint (status change endpoint) */ 352 0x07, /* __u8 ep_bLength; */ 353 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 354 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 355 0x03, /* __u8 ep_bmAttributes; Interrupt */ 356 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 357 * see hub.c:hub_configure() for details. */ 358 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 359 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 360 361 /* one SuperSpeed endpoint companion descriptor */ 362 0x06, /* __u8 ss_bLength */ 363 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */ 364 /* Companion */ 365 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */ 366 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */ 367 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */ 368 }; 369 370 /* authorized_default behaviour: 371 * -1 is authorized for all devices except wireless (old behaviour) 372 * 0 is unauthorized for all devices 373 * 1 is authorized for all devices 374 * 2 is authorized for internal devices 375 */ 376 #define USB_AUTHORIZE_WIRED -1 377 #define USB_AUTHORIZE_NONE 0 378 #define USB_AUTHORIZE_ALL 1 379 #define USB_AUTHORIZE_INTERNAL 2 380 381 static int authorized_default = USB_AUTHORIZE_WIRED; 382 module_param(authorized_default, int, S_IRUGO|S_IWUSR); 383 MODULE_PARM_DESC(authorized_default, 384 "Default USB device authorization: 0 is not authorized, 1 is " 385 "authorized, 2 is authorized for internal devices, -1 is " 386 "authorized except for wireless USB (default, old behaviour)"); 387 /*-------------------------------------------------------------------------*/ 388 389 /** 390 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors 391 * @s: Null-terminated ASCII (actually ISO-8859-1) string 392 * @buf: Buffer for USB string descriptor (header + UTF-16LE) 393 * @len: Length (in bytes; may be odd) of descriptor buffer. 394 * 395 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len, 396 * whichever is less. 397 * 398 * Note: 399 * USB String descriptors can contain at most 126 characters; input 400 * strings longer than that are truncated. 401 */ 402 static unsigned 403 ascii2desc(char const *s, u8 *buf, unsigned len) 404 { 405 unsigned n, t = 2 + 2*strlen(s); 406 407 if (t > 254) 408 t = 254; /* Longest possible UTF string descriptor */ 409 if (len > t) 410 len = t; 411 412 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */ 413 414 n = len; 415 while (n--) { 416 *buf++ = t; 417 if (!n--) 418 break; 419 *buf++ = t >> 8; 420 t = (unsigned char)*s++; 421 } 422 return len; 423 } 424 425 /** 426 * rh_string() - provides string descriptors for root hub 427 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor) 428 * @hcd: the host controller for this root hub 429 * @data: buffer for output packet 430 * @len: length of the provided buffer 431 * 432 * Produces either a manufacturer, product or serial number string for the 433 * virtual root hub device. 434 * 435 * Return: The number of bytes filled in: the length of the descriptor or 436 * of the provided buffer, whichever is less. 437 */ 438 static unsigned 439 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len) 440 { 441 char buf[100]; 442 char const *s; 443 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04}; 444 445 /* language ids */ 446 switch (id) { 447 case 0: 448 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */ 449 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */ 450 if (len > 4) 451 len = 4; 452 memcpy(data, langids, len); 453 return len; 454 case 1: 455 /* Serial number */ 456 s = hcd->self.bus_name; 457 break; 458 case 2: 459 /* Product name */ 460 s = hcd->product_desc; 461 break; 462 case 3: 463 /* Manufacturer */ 464 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 465 init_utsname()->release, hcd->driver->description); 466 s = buf; 467 break; 468 default: 469 /* Can't happen; caller guarantees it */ 470 return 0; 471 } 472 473 return ascii2desc(s, data, len); 474 } 475 476 477 /* Root hub control transfers execute synchronously */ 478 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 479 { 480 struct usb_ctrlrequest *cmd; 481 u16 typeReq, wValue, wIndex, wLength; 482 u8 *ubuf = urb->transfer_buffer; 483 unsigned len = 0; 484 int status; 485 u8 patch_wakeup = 0; 486 u8 patch_protocol = 0; 487 u16 tbuf_size; 488 u8 *tbuf = NULL; 489 const u8 *bufp; 490 491 might_sleep(); 492 493 spin_lock_irq(&hcd_root_hub_lock); 494 status = usb_hcd_link_urb_to_ep(hcd, urb); 495 spin_unlock_irq(&hcd_root_hub_lock); 496 if (status) 497 return status; 498 urb->hcpriv = hcd; /* Indicate it's queued */ 499 500 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 501 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 502 wValue = le16_to_cpu (cmd->wValue); 503 wIndex = le16_to_cpu (cmd->wIndex); 504 wLength = le16_to_cpu (cmd->wLength); 505 506 if (wLength > urb->transfer_buffer_length) 507 goto error; 508 509 /* 510 * tbuf should be at least as big as the 511 * USB hub descriptor. 512 */ 513 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength); 514 tbuf = kzalloc(tbuf_size, GFP_KERNEL); 515 if (!tbuf) { 516 status = -ENOMEM; 517 goto err_alloc; 518 } 519 520 bufp = tbuf; 521 522 523 urb->actual_length = 0; 524 switch (typeReq) { 525 526 /* DEVICE REQUESTS */ 527 528 /* The root hub's remote wakeup enable bit is implemented using 529 * driver model wakeup flags. If this system supports wakeup 530 * through USB, userspace may change the default "allow wakeup" 531 * policy through sysfs or these calls. 532 * 533 * Most root hubs support wakeup from downstream devices, for 534 * runtime power management (disabling USB clocks and reducing 535 * VBUS power usage). However, not all of them do so; silicon, 536 * board, and BIOS bugs here are not uncommon, so these can't 537 * be treated quite like external hubs. 538 * 539 * Likewise, not all root hubs will pass wakeup events upstream, 540 * to wake up the whole system. So don't assume root hub and 541 * controller capabilities are identical. 542 */ 543 544 case DeviceRequest | USB_REQ_GET_STATUS: 545 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev) 546 << USB_DEVICE_REMOTE_WAKEUP) 547 | (1 << USB_DEVICE_SELF_POWERED); 548 tbuf[1] = 0; 549 len = 2; 550 break; 551 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 552 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 553 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 554 else 555 goto error; 556 break; 557 case DeviceOutRequest | USB_REQ_SET_FEATURE: 558 if (device_can_wakeup(&hcd->self.root_hub->dev) 559 && wValue == USB_DEVICE_REMOTE_WAKEUP) 560 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 561 else 562 goto error; 563 break; 564 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 565 tbuf[0] = 1; 566 len = 1; 567 fallthrough; 568 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 569 break; 570 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 571 switch (wValue & 0xff00) { 572 case USB_DT_DEVICE << 8: 573 switch (hcd->speed) { 574 case HCD_USB32: 575 case HCD_USB31: 576 bufp = usb31_rh_dev_descriptor; 577 break; 578 case HCD_USB3: 579 bufp = usb3_rh_dev_descriptor; 580 break; 581 case HCD_USB25: 582 bufp = usb25_rh_dev_descriptor; 583 break; 584 case HCD_USB2: 585 bufp = usb2_rh_dev_descriptor; 586 break; 587 case HCD_USB11: 588 bufp = usb11_rh_dev_descriptor; 589 break; 590 default: 591 goto error; 592 } 593 len = 18; 594 if (hcd->has_tt) 595 patch_protocol = 1; 596 break; 597 case USB_DT_CONFIG << 8: 598 switch (hcd->speed) { 599 case HCD_USB32: 600 case HCD_USB31: 601 case HCD_USB3: 602 bufp = ss_rh_config_descriptor; 603 len = sizeof ss_rh_config_descriptor; 604 break; 605 case HCD_USB25: 606 case HCD_USB2: 607 bufp = hs_rh_config_descriptor; 608 len = sizeof hs_rh_config_descriptor; 609 break; 610 case HCD_USB11: 611 bufp = fs_rh_config_descriptor; 612 len = sizeof fs_rh_config_descriptor; 613 break; 614 default: 615 goto error; 616 } 617 if (device_can_wakeup(&hcd->self.root_hub->dev)) 618 patch_wakeup = 1; 619 break; 620 case USB_DT_STRING << 8: 621 if ((wValue & 0xff) < 4) 622 urb->actual_length = rh_string(wValue & 0xff, 623 hcd, ubuf, wLength); 624 else /* unsupported IDs --> "protocol stall" */ 625 goto error; 626 break; 627 case USB_DT_BOS << 8: 628 goto nongeneric; 629 default: 630 goto error; 631 } 632 break; 633 case DeviceRequest | USB_REQ_GET_INTERFACE: 634 tbuf[0] = 0; 635 len = 1; 636 fallthrough; 637 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 638 break; 639 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 640 /* wValue == urb->dev->devaddr */ 641 dev_dbg (hcd->self.controller, "root hub device address %d\n", 642 wValue); 643 break; 644 645 /* INTERFACE REQUESTS (no defined feature/status flags) */ 646 647 /* ENDPOINT REQUESTS */ 648 649 case EndpointRequest | USB_REQ_GET_STATUS: 650 /* ENDPOINT_HALT flag */ 651 tbuf[0] = 0; 652 tbuf[1] = 0; 653 len = 2; 654 fallthrough; 655 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 656 case EndpointOutRequest | USB_REQ_SET_FEATURE: 657 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 658 break; 659 660 /* CLASS REQUESTS (and errors) */ 661 662 default: 663 nongeneric: 664 /* non-generic request */ 665 switch (typeReq) { 666 case GetHubStatus: 667 len = 4; 668 break; 669 case GetPortStatus: 670 if (wValue == HUB_PORT_STATUS) 671 len = 4; 672 else 673 /* other port status types return 8 bytes */ 674 len = 8; 675 break; 676 case GetHubDescriptor: 677 len = sizeof (struct usb_hub_descriptor); 678 break; 679 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 680 /* len is returned by hub_control */ 681 break; 682 } 683 status = hcd->driver->hub_control (hcd, 684 typeReq, wValue, wIndex, 685 tbuf, wLength); 686 687 if (typeReq == GetHubDescriptor) 688 usb_hub_adjust_deviceremovable(hcd->self.root_hub, 689 (struct usb_hub_descriptor *)tbuf); 690 break; 691 error: 692 /* "protocol stall" on error */ 693 status = -EPIPE; 694 } 695 696 if (status < 0) { 697 len = 0; 698 if (status != -EPIPE) { 699 dev_dbg (hcd->self.controller, 700 "CTRL: TypeReq=0x%x val=0x%x " 701 "idx=0x%x len=%d ==> %d\n", 702 typeReq, wValue, wIndex, 703 wLength, status); 704 } 705 } else if (status > 0) { 706 /* hub_control may return the length of data copied. */ 707 len = status; 708 status = 0; 709 } 710 if (len) { 711 if (urb->transfer_buffer_length < len) 712 len = urb->transfer_buffer_length; 713 urb->actual_length = len; 714 /* always USB_DIR_IN, toward host */ 715 memcpy (ubuf, bufp, len); 716 717 /* report whether RH hardware supports remote wakeup */ 718 if (patch_wakeup && 719 len > offsetof (struct usb_config_descriptor, 720 bmAttributes)) 721 ((struct usb_config_descriptor *)ubuf)->bmAttributes 722 |= USB_CONFIG_ATT_WAKEUP; 723 724 /* report whether RH hardware has an integrated TT */ 725 if (patch_protocol && 726 len > offsetof(struct usb_device_descriptor, 727 bDeviceProtocol)) 728 ((struct usb_device_descriptor *) ubuf)-> 729 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT; 730 } 731 732 kfree(tbuf); 733 err_alloc: 734 735 /* any errors get returned through the urb completion */ 736 spin_lock_irq(&hcd_root_hub_lock); 737 usb_hcd_unlink_urb_from_ep(hcd, urb); 738 usb_hcd_giveback_urb(hcd, urb, status); 739 spin_unlock_irq(&hcd_root_hub_lock); 740 return 0; 741 } 742 743 /*-------------------------------------------------------------------------*/ 744 745 /* 746 * Root Hub interrupt transfers are polled using a timer if the 747 * driver requests it; otherwise the driver is responsible for 748 * calling usb_hcd_poll_rh_status() when an event occurs. 749 * 750 * Completion handler may not sleep. See usb_hcd_giveback_urb() for details. 751 */ 752 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 753 { 754 struct urb *urb; 755 int length; 756 unsigned long flags; 757 char buffer[6]; /* Any root hubs with > 31 ports? */ 758 759 if (unlikely(!hcd->rh_pollable)) 760 return; 761 if (!hcd->uses_new_polling && !hcd->status_urb) 762 return; 763 764 length = hcd->driver->hub_status_data(hcd, buffer); 765 if (length > 0) { 766 767 /* try to complete the status urb */ 768 spin_lock_irqsave(&hcd_root_hub_lock, flags); 769 urb = hcd->status_urb; 770 if (urb) { 771 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 772 hcd->status_urb = NULL; 773 urb->actual_length = length; 774 memcpy(urb->transfer_buffer, buffer, length); 775 776 usb_hcd_unlink_urb_from_ep(hcd, urb); 777 usb_hcd_giveback_urb(hcd, urb, 0); 778 } else { 779 length = 0; 780 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 781 } 782 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 783 } 784 785 /* The USB 2.0 spec says 256 ms. This is close enough and won't 786 * exceed that limit if HZ is 100. The math is more clunky than 787 * maybe expected, this is to make sure that all timers for USB devices 788 * fire at the same time to give the CPU a break in between */ 789 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) : 790 (length == 0 && hcd->status_urb != NULL)) 791 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 792 } 793 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 794 795 /* timer callback */ 796 static void rh_timer_func (struct timer_list *t) 797 { 798 struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer); 799 800 usb_hcd_poll_rh_status(_hcd); 801 } 802 803 /*-------------------------------------------------------------------------*/ 804 805 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 806 { 807 int retval; 808 unsigned long flags; 809 unsigned len = 1 + (urb->dev->maxchild / 8); 810 811 spin_lock_irqsave (&hcd_root_hub_lock, flags); 812 if (hcd->status_urb || urb->transfer_buffer_length < len) { 813 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 814 retval = -EINVAL; 815 goto done; 816 } 817 818 retval = usb_hcd_link_urb_to_ep(hcd, urb); 819 if (retval) 820 goto done; 821 822 hcd->status_urb = urb; 823 urb->hcpriv = hcd; /* indicate it's queued */ 824 if (!hcd->uses_new_polling) 825 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 826 827 /* If a status change has already occurred, report it ASAP */ 828 else if (HCD_POLL_PENDING(hcd)) 829 mod_timer(&hcd->rh_timer, jiffies); 830 retval = 0; 831 done: 832 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 833 return retval; 834 } 835 836 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 837 { 838 if (usb_endpoint_xfer_int(&urb->ep->desc)) 839 return rh_queue_status (hcd, urb); 840 if (usb_endpoint_xfer_control(&urb->ep->desc)) 841 return rh_call_control (hcd, urb); 842 return -EINVAL; 843 } 844 845 /*-------------------------------------------------------------------------*/ 846 847 /* Unlinks of root-hub control URBs are legal, but they don't do anything 848 * since these URBs always execute synchronously. 849 */ 850 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 851 { 852 unsigned long flags; 853 int rc; 854 855 spin_lock_irqsave(&hcd_root_hub_lock, flags); 856 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 857 if (rc) 858 goto done; 859 860 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 861 ; /* Do nothing */ 862 863 } else { /* Status URB */ 864 if (!hcd->uses_new_polling) 865 del_timer (&hcd->rh_timer); 866 if (urb == hcd->status_urb) { 867 hcd->status_urb = NULL; 868 usb_hcd_unlink_urb_from_ep(hcd, urb); 869 usb_hcd_giveback_urb(hcd, urb, status); 870 } 871 } 872 done: 873 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 874 return rc; 875 } 876 877 878 /*-------------------------------------------------------------------------*/ 879 880 /** 881 * usb_bus_init - shared initialization code 882 * @bus: the bus structure being initialized 883 * 884 * This code is used to initialize a usb_bus structure, memory for which is 885 * separately managed. 886 */ 887 static void usb_bus_init (struct usb_bus *bus) 888 { 889 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 890 891 bus->devnum_next = 1; 892 893 bus->root_hub = NULL; 894 bus->busnum = -1; 895 bus->bandwidth_allocated = 0; 896 bus->bandwidth_int_reqs = 0; 897 bus->bandwidth_isoc_reqs = 0; 898 mutex_init(&bus->devnum_next_mutex); 899 } 900 901 /*-------------------------------------------------------------------------*/ 902 903 /** 904 * usb_register_bus - registers the USB host controller with the usb core 905 * @bus: pointer to the bus to register 906 * 907 * Context: task context, might sleep. 908 * 909 * Assigns a bus number, and links the controller into usbcore data 910 * structures so that it can be seen by scanning the bus list. 911 * 912 * Return: 0 if successful. A negative error code otherwise. 913 */ 914 static int usb_register_bus(struct usb_bus *bus) 915 { 916 int result = -E2BIG; 917 int busnum; 918 919 mutex_lock(&usb_bus_idr_lock); 920 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL); 921 if (busnum < 0) { 922 pr_err("%s: failed to get bus number\n", usbcore_name); 923 goto error_find_busnum; 924 } 925 bus->busnum = busnum; 926 mutex_unlock(&usb_bus_idr_lock); 927 928 usb_notify_add_bus(bus); 929 930 dev_info (bus->controller, "new USB bus registered, assigned bus " 931 "number %d\n", bus->busnum); 932 return 0; 933 934 error_find_busnum: 935 mutex_unlock(&usb_bus_idr_lock); 936 return result; 937 } 938 939 /** 940 * usb_deregister_bus - deregisters the USB host controller 941 * @bus: pointer to the bus to deregister 942 * 943 * Context: task context, might sleep. 944 * 945 * Recycles the bus number, and unlinks the controller from usbcore data 946 * structures so that it won't be seen by scanning the bus list. 947 */ 948 static void usb_deregister_bus (struct usb_bus *bus) 949 { 950 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 951 952 /* 953 * NOTE: make sure that all the devices are removed by the 954 * controller code, as well as having it call this when cleaning 955 * itself up 956 */ 957 mutex_lock(&usb_bus_idr_lock); 958 idr_remove(&usb_bus_idr, bus->busnum); 959 mutex_unlock(&usb_bus_idr_lock); 960 961 usb_notify_remove_bus(bus); 962 } 963 964 /** 965 * register_root_hub - called by usb_add_hcd() to register a root hub 966 * @hcd: host controller for this root hub 967 * 968 * This function registers the root hub with the USB subsystem. It sets up 969 * the device properly in the device tree and then calls usb_new_device() 970 * to register the usb device. It also assigns the root hub's USB address 971 * (always 1). 972 * 973 * Return: 0 if successful. A negative error code otherwise. 974 */ 975 static int register_root_hub(struct usb_hcd *hcd) 976 { 977 struct device *parent_dev = hcd->self.controller; 978 struct usb_device *usb_dev = hcd->self.root_hub; 979 const int devnum = 1; 980 int retval; 981 982 usb_dev->devnum = devnum; 983 usb_dev->bus->devnum_next = devnum + 1; 984 set_bit (devnum, usb_dev->bus->devmap.devicemap); 985 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 986 987 mutex_lock(&usb_bus_idr_lock); 988 989 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); 990 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); 991 if (retval != sizeof usb_dev->descriptor) { 992 mutex_unlock(&usb_bus_idr_lock); 993 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 994 dev_name(&usb_dev->dev), retval); 995 return (retval < 0) ? retval : -EMSGSIZE; 996 } 997 998 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) { 999 retval = usb_get_bos_descriptor(usb_dev); 1000 if (!retval) { 1001 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev); 1002 } else if (usb_dev->speed >= USB_SPEED_SUPER) { 1003 mutex_unlock(&usb_bus_idr_lock); 1004 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n", 1005 dev_name(&usb_dev->dev), retval); 1006 return retval; 1007 } 1008 } 1009 1010 retval = usb_new_device (usb_dev); 1011 if (retval) { 1012 dev_err (parent_dev, "can't register root hub for %s, %d\n", 1013 dev_name(&usb_dev->dev), retval); 1014 } else { 1015 spin_lock_irq (&hcd_root_hub_lock); 1016 hcd->rh_registered = 1; 1017 spin_unlock_irq (&hcd_root_hub_lock); 1018 1019 /* Did the HC die before the root hub was registered? */ 1020 if (HCD_DEAD(hcd)) 1021 usb_hc_died (hcd); /* This time clean up */ 1022 } 1023 mutex_unlock(&usb_bus_idr_lock); 1024 1025 return retval; 1026 } 1027 1028 /* 1029 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal 1030 * @bus: the bus which the root hub belongs to 1031 * @portnum: the port which is being resumed 1032 * 1033 * HCDs should call this function when they know that a resume signal is 1034 * being sent to a root-hub port. The root hub will be prevented from 1035 * going into autosuspend until usb_hcd_end_port_resume() is called. 1036 * 1037 * The bus's private lock must be held by the caller. 1038 */ 1039 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum) 1040 { 1041 unsigned bit = 1 << portnum; 1042 1043 if (!(bus->resuming_ports & bit)) { 1044 bus->resuming_ports |= bit; 1045 pm_runtime_get_noresume(&bus->root_hub->dev); 1046 } 1047 } 1048 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume); 1049 1050 /* 1051 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal 1052 * @bus: the bus which the root hub belongs to 1053 * @portnum: the port which is being resumed 1054 * 1055 * HCDs should call this function when they know that a resume signal has 1056 * stopped being sent to a root-hub port. The root hub will be allowed to 1057 * autosuspend again. 1058 * 1059 * The bus's private lock must be held by the caller. 1060 */ 1061 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum) 1062 { 1063 unsigned bit = 1 << portnum; 1064 1065 if (bus->resuming_ports & bit) { 1066 bus->resuming_ports &= ~bit; 1067 pm_runtime_put_noidle(&bus->root_hub->dev); 1068 } 1069 } 1070 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume); 1071 1072 /*-------------------------------------------------------------------------*/ 1073 1074 /** 1075 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 1076 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 1077 * @is_input: true iff the transaction sends data to the host 1078 * @isoc: true for isochronous transactions, false for interrupt ones 1079 * @bytecount: how many bytes in the transaction. 1080 * 1081 * Return: Approximate bus time in nanoseconds for a periodic transaction. 1082 * 1083 * Note: 1084 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 1085 * scheduled in software, this function is only used for such scheduling. 1086 */ 1087 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 1088 { 1089 unsigned long tmp; 1090 1091 switch (speed) { 1092 case USB_SPEED_LOW: /* INTR only */ 1093 if (is_input) { 1094 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 1095 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1096 } else { 1097 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 1098 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1099 } 1100 case USB_SPEED_FULL: /* ISOC or INTR */ 1101 if (isoc) { 1102 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1103 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp; 1104 } else { 1105 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1106 return 9107L + BW_HOST_DELAY + tmp; 1107 } 1108 case USB_SPEED_HIGH: /* ISOC or INTR */ 1109 /* FIXME adjust for input vs output */ 1110 if (isoc) 1111 tmp = HS_NSECS_ISO (bytecount); 1112 else 1113 tmp = HS_NSECS (bytecount); 1114 return tmp; 1115 default: 1116 pr_debug ("%s: bogus device speed!\n", usbcore_name); 1117 return -1; 1118 } 1119 } 1120 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 1121 1122 1123 /*-------------------------------------------------------------------------*/ 1124 1125 /* 1126 * Generic HC operations. 1127 */ 1128 1129 /*-------------------------------------------------------------------------*/ 1130 1131 /** 1132 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 1133 * @hcd: host controller to which @urb was submitted 1134 * @urb: URB being submitted 1135 * 1136 * Host controller drivers should call this routine in their enqueue() 1137 * method. The HCD's private spinlock must be held and interrupts must 1138 * be disabled. The actions carried out here are required for URB 1139 * submission, as well as for endpoint shutdown and for usb_kill_urb. 1140 * 1141 * Return: 0 for no error, otherwise a negative error code (in which case 1142 * the enqueue() method must fail). If no error occurs but enqueue() fails 1143 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 1144 * the private spinlock and returning. 1145 */ 1146 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1147 { 1148 int rc = 0; 1149 1150 spin_lock(&hcd_urb_list_lock); 1151 1152 /* Check that the URB isn't being killed */ 1153 if (unlikely(atomic_read(&urb->reject))) { 1154 rc = -EPERM; 1155 goto done; 1156 } 1157 1158 if (unlikely(!urb->ep->enabled)) { 1159 rc = -ENOENT; 1160 goto done; 1161 } 1162 1163 if (unlikely(!urb->dev->can_submit)) { 1164 rc = -EHOSTUNREACH; 1165 goto done; 1166 } 1167 1168 /* 1169 * Check the host controller's state and add the URB to the 1170 * endpoint's queue. 1171 */ 1172 if (HCD_RH_RUNNING(hcd)) { 1173 urb->unlinked = 0; 1174 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1175 } else { 1176 rc = -ESHUTDOWN; 1177 goto done; 1178 } 1179 done: 1180 spin_unlock(&hcd_urb_list_lock); 1181 return rc; 1182 } 1183 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1184 1185 /** 1186 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1187 * @hcd: host controller to which @urb was submitted 1188 * @urb: URB being checked for unlinkability 1189 * @status: error code to store in @urb if the unlink succeeds 1190 * 1191 * Host controller drivers should call this routine in their dequeue() 1192 * method. The HCD's private spinlock must be held and interrupts must 1193 * be disabled. The actions carried out here are required for making 1194 * sure than an unlink is valid. 1195 * 1196 * Return: 0 for no error, otherwise a negative error code (in which case 1197 * the dequeue() method must fail). The possible error codes are: 1198 * 1199 * -EIDRM: @urb was not submitted or has already completed. 1200 * The completion function may not have been called yet. 1201 * 1202 * -EBUSY: @urb has already been unlinked. 1203 */ 1204 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1205 int status) 1206 { 1207 struct list_head *tmp; 1208 1209 /* insist the urb is still queued */ 1210 list_for_each(tmp, &urb->ep->urb_list) { 1211 if (tmp == &urb->urb_list) 1212 break; 1213 } 1214 if (tmp != &urb->urb_list) 1215 return -EIDRM; 1216 1217 /* Any status except -EINPROGRESS means something already started to 1218 * unlink this URB from the hardware. So there's no more work to do. 1219 */ 1220 if (urb->unlinked) 1221 return -EBUSY; 1222 urb->unlinked = status; 1223 return 0; 1224 } 1225 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1226 1227 /** 1228 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1229 * @hcd: host controller to which @urb was submitted 1230 * @urb: URB being unlinked 1231 * 1232 * Host controller drivers should call this routine before calling 1233 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1234 * interrupts must be disabled. The actions carried out here are required 1235 * for URB completion. 1236 */ 1237 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1238 { 1239 /* clear all state linking urb to this dev (and hcd) */ 1240 spin_lock(&hcd_urb_list_lock); 1241 list_del_init(&urb->urb_list); 1242 spin_unlock(&hcd_urb_list_lock); 1243 } 1244 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1245 1246 /* 1247 * Some usb host controllers can only perform dma using a small SRAM area. 1248 * The usb core itself is however optimized for host controllers that can dma 1249 * using regular system memory - like pci devices doing bus mastering. 1250 * 1251 * To support host controllers with limited dma capabilities we provide dma 1252 * bounce buffers. This feature can be enabled by initializing 1253 * hcd->localmem_pool using usb_hcd_setup_local_mem(). 1254 * 1255 * The initialized hcd->localmem_pool then tells the usb code to allocate all 1256 * data for dma using the genalloc API. 1257 * 1258 * So, to summarize... 1259 * 1260 * - We need "local" memory, canonical example being 1261 * a small SRAM on a discrete controller being the 1262 * only memory that the controller can read ... 1263 * (a) "normal" kernel memory is no good, and 1264 * (b) there's not enough to share 1265 * 1266 * - So we use that, even though the primary requirement 1267 * is that the memory be "local" (hence addressable 1268 * by that device), not "coherent". 1269 * 1270 */ 1271 1272 static int hcd_alloc_coherent(struct usb_bus *bus, 1273 gfp_t mem_flags, dma_addr_t *dma_handle, 1274 void **vaddr_handle, size_t size, 1275 enum dma_data_direction dir) 1276 { 1277 unsigned char *vaddr; 1278 1279 if (*vaddr_handle == NULL) { 1280 WARN_ON_ONCE(1); 1281 return -EFAULT; 1282 } 1283 1284 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr), 1285 mem_flags, dma_handle); 1286 if (!vaddr) 1287 return -ENOMEM; 1288 1289 /* 1290 * Store the virtual address of the buffer at the end 1291 * of the allocated dma buffer. The size of the buffer 1292 * may be uneven so use unaligned functions instead 1293 * of just rounding up. It makes sense to optimize for 1294 * memory footprint over access speed since the amount 1295 * of memory available for dma may be limited. 1296 */ 1297 put_unaligned((unsigned long)*vaddr_handle, 1298 (unsigned long *)(vaddr + size)); 1299 1300 if (dir == DMA_TO_DEVICE) 1301 memcpy(vaddr, *vaddr_handle, size); 1302 1303 *vaddr_handle = vaddr; 1304 return 0; 1305 } 1306 1307 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1308 void **vaddr_handle, size_t size, 1309 enum dma_data_direction dir) 1310 { 1311 unsigned char *vaddr = *vaddr_handle; 1312 1313 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1314 1315 if (dir == DMA_FROM_DEVICE) 1316 memcpy(vaddr, *vaddr_handle, size); 1317 1318 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1319 1320 *vaddr_handle = vaddr; 1321 *dma_handle = 0; 1322 } 1323 1324 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb) 1325 { 1326 if (IS_ENABLED(CONFIG_HAS_DMA) && 1327 (urb->transfer_flags & URB_SETUP_MAP_SINGLE)) 1328 dma_unmap_single(hcd->self.sysdev, 1329 urb->setup_dma, 1330 sizeof(struct usb_ctrlrequest), 1331 DMA_TO_DEVICE); 1332 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL) 1333 hcd_free_coherent(urb->dev->bus, 1334 &urb->setup_dma, 1335 (void **) &urb->setup_packet, 1336 sizeof(struct usb_ctrlrequest), 1337 DMA_TO_DEVICE); 1338 1339 /* Make it safe to call this routine more than once */ 1340 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL); 1341 } 1342 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma); 1343 1344 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1345 { 1346 if (hcd->driver->unmap_urb_for_dma) 1347 hcd->driver->unmap_urb_for_dma(hcd, urb); 1348 else 1349 usb_hcd_unmap_urb_for_dma(hcd, urb); 1350 } 1351 1352 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1353 { 1354 enum dma_data_direction dir; 1355 1356 usb_hcd_unmap_urb_setup_for_dma(hcd, urb); 1357 1358 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1359 if (IS_ENABLED(CONFIG_HAS_DMA) && 1360 (urb->transfer_flags & URB_DMA_MAP_SG)) 1361 dma_unmap_sg(hcd->self.sysdev, 1362 urb->sg, 1363 urb->num_sgs, 1364 dir); 1365 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1366 (urb->transfer_flags & URB_DMA_MAP_PAGE)) 1367 dma_unmap_page(hcd->self.sysdev, 1368 urb->transfer_dma, 1369 urb->transfer_buffer_length, 1370 dir); 1371 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1372 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1373 dma_unmap_single(hcd->self.sysdev, 1374 urb->transfer_dma, 1375 urb->transfer_buffer_length, 1376 dir); 1377 else if (urb->transfer_flags & URB_MAP_LOCAL) 1378 hcd_free_coherent(urb->dev->bus, 1379 &urb->transfer_dma, 1380 &urb->transfer_buffer, 1381 urb->transfer_buffer_length, 1382 dir); 1383 1384 /* Make it safe to call this routine more than once */ 1385 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE | 1386 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL); 1387 } 1388 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma); 1389 1390 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1391 gfp_t mem_flags) 1392 { 1393 if (hcd->driver->map_urb_for_dma) 1394 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags); 1395 else 1396 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1397 } 1398 1399 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1400 gfp_t mem_flags) 1401 { 1402 enum dma_data_direction dir; 1403 int ret = 0; 1404 1405 /* Map the URB's buffers for DMA access. 1406 * Lower level HCD code should use *_dma exclusively, 1407 * unless it uses pio or talks to another transport, 1408 * or uses the provided scatter gather list for bulk. 1409 */ 1410 1411 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1412 if (hcd->self.uses_pio_for_control) 1413 return ret; 1414 if (hcd->localmem_pool) { 1415 ret = hcd_alloc_coherent( 1416 urb->dev->bus, mem_flags, 1417 &urb->setup_dma, 1418 (void **)&urb->setup_packet, 1419 sizeof(struct usb_ctrlrequest), 1420 DMA_TO_DEVICE); 1421 if (ret) 1422 return ret; 1423 urb->transfer_flags |= URB_SETUP_MAP_LOCAL; 1424 } else if (hcd_uses_dma(hcd)) { 1425 if (object_is_on_stack(urb->setup_packet)) { 1426 WARN_ONCE(1, "setup packet is on stack\n"); 1427 return -EAGAIN; 1428 } 1429 1430 urb->setup_dma = dma_map_single( 1431 hcd->self.sysdev, 1432 urb->setup_packet, 1433 sizeof(struct usb_ctrlrequest), 1434 DMA_TO_DEVICE); 1435 if (dma_mapping_error(hcd->self.sysdev, 1436 urb->setup_dma)) 1437 return -EAGAIN; 1438 urb->transfer_flags |= URB_SETUP_MAP_SINGLE; 1439 } 1440 } 1441 1442 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1443 if (urb->transfer_buffer_length != 0 1444 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1445 if (hcd->localmem_pool) { 1446 ret = hcd_alloc_coherent( 1447 urb->dev->bus, mem_flags, 1448 &urb->transfer_dma, 1449 &urb->transfer_buffer, 1450 urb->transfer_buffer_length, 1451 dir); 1452 if (ret == 0) 1453 urb->transfer_flags |= URB_MAP_LOCAL; 1454 } else if (hcd_uses_dma(hcd)) { 1455 if (urb->num_sgs) { 1456 int n; 1457 1458 /* We don't support sg for isoc transfers ! */ 1459 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) { 1460 WARN_ON(1); 1461 return -EINVAL; 1462 } 1463 1464 n = dma_map_sg( 1465 hcd->self.sysdev, 1466 urb->sg, 1467 urb->num_sgs, 1468 dir); 1469 if (n <= 0) 1470 ret = -EAGAIN; 1471 else 1472 urb->transfer_flags |= URB_DMA_MAP_SG; 1473 urb->num_mapped_sgs = n; 1474 if (n != urb->num_sgs) 1475 urb->transfer_flags |= 1476 URB_DMA_SG_COMBINED; 1477 } else if (urb->sg) { 1478 struct scatterlist *sg = urb->sg; 1479 urb->transfer_dma = dma_map_page( 1480 hcd->self.sysdev, 1481 sg_page(sg), 1482 sg->offset, 1483 urb->transfer_buffer_length, 1484 dir); 1485 if (dma_mapping_error(hcd->self.sysdev, 1486 urb->transfer_dma)) 1487 ret = -EAGAIN; 1488 else 1489 urb->transfer_flags |= URB_DMA_MAP_PAGE; 1490 } else if (object_is_on_stack(urb->transfer_buffer)) { 1491 WARN_ONCE(1, "transfer buffer is on stack\n"); 1492 ret = -EAGAIN; 1493 } else { 1494 urb->transfer_dma = dma_map_single( 1495 hcd->self.sysdev, 1496 urb->transfer_buffer, 1497 urb->transfer_buffer_length, 1498 dir); 1499 if (dma_mapping_error(hcd->self.sysdev, 1500 urb->transfer_dma)) 1501 ret = -EAGAIN; 1502 else 1503 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1504 } 1505 } 1506 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE | 1507 URB_SETUP_MAP_LOCAL))) 1508 usb_hcd_unmap_urb_for_dma(hcd, urb); 1509 } 1510 return ret; 1511 } 1512 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma); 1513 1514 /*-------------------------------------------------------------------------*/ 1515 1516 /* may be called in any context with a valid urb->dev usecount 1517 * caller surrenders "ownership" of urb 1518 * expects usb_submit_urb() to have sanity checked and conditioned all 1519 * inputs in the urb 1520 */ 1521 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1522 { 1523 int status; 1524 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1525 1526 /* increment urb's reference count as part of giving it to the HCD 1527 * (which will control it). HCD guarantees that it either returns 1528 * an error or calls giveback(), but not both. 1529 */ 1530 usb_get_urb(urb); 1531 atomic_inc(&urb->use_count); 1532 atomic_inc(&urb->dev->urbnum); 1533 usbmon_urb_submit(&hcd->self, urb); 1534 1535 /* NOTE requirements on root-hub callers (usbfs and the hub 1536 * driver, for now): URBs' urb->transfer_buffer must be 1537 * valid and usb_buffer_{sync,unmap}() not be needed, since 1538 * they could clobber root hub response data. Also, control 1539 * URBs must be submitted in process context with interrupts 1540 * enabled. 1541 */ 1542 1543 if (is_root_hub(urb->dev)) { 1544 status = rh_urb_enqueue(hcd, urb); 1545 } else { 1546 status = map_urb_for_dma(hcd, urb, mem_flags); 1547 if (likely(status == 0)) { 1548 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1549 if (unlikely(status)) 1550 unmap_urb_for_dma(hcd, urb); 1551 } 1552 } 1553 1554 if (unlikely(status)) { 1555 usbmon_urb_submit_error(&hcd->self, urb, status); 1556 urb->hcpriv = NULL; 1557 INIT_LIST_HEAD(&urb->urb_list); 1558 atomic_dec(&urb->use_count); 1559 atomic_dec(&urb->dev->urbnum); 1560 if (atomic_read(&urb->reject)) 1561 wake_up(&usb_kill_urb_queue); 1562 usb_put_urb(urb); 1563 } 1564 return status; 1565 } 1566 1567 /*-------------------------------------------------------------------------*/ 1568 1569 /* this makes the hcd giveback() the urb more quickly, by kicking it 1570 * off hardware queues (which may take a while) and returning it as 1571 * soon as practical. we've already set up the urb's return status, 1572 * but we can't know if the callback completed already. 1573 */ 1574 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1575 { 1576 int value; 1577 1578 if (is_root_hub(urb->dev)) 1579 value = usb_rh_urb_dequeue(hcd, urb, status); 1580 else { 1581 1582 /* The only reason an HCD might fail this call is if 1583 * it has not yet fully queued the urb to begin with. 1584 * Such failures should be harmless. */ 1585 value = hcd->driver->urb_dequeue(hcd, urb, status); 1586 } 1587 return value; 1588 } 1589 1590 /* 1591 * called in any context 1592 * 1593 * caller guarantees urb won't be recycled till both unlink() 1594 * and the urb's completion function return 1595 */ 1596 int usb_hcd_unlink_urb (struct urb *urb, int status) 1597 { 1598 struct usb_hcd *hcd; 1599 struct usb_device *udev = urb->dev; 1600 int retval = -EIDRM; 1601 unsigned long flags; 1602 1603 /* Prevent the device and bus from going away while 1604 * the unlink is carried out. If they are already gone 1605 * then urb->use_count must be 0, since disconnected 1606 * devices can't have any active URBs. 1607 */ 1608 spin_lock_irqsave(&hcd_urb_unlink_lock, flags); 1609 if (atomic_read(&urb->use_count) > 0) { 1610 retval = 0; 1611 usb_get_dev(udev); 1612 } 1613 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); 1614 if (retval == 0) { 1615 hcd = bus_to_hcd(urb->dev->bus); 1616 retval = unlink1(hcd, urb, status); 1617 if (retval == 0) 1618 retval = -EINPROGRESS; 1619 else if (retval != -EIDRM && retval != -EBUSY) 1620 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n", 1621 urb, retval); 1622 usb_put_dev(udev); 1623 } 1624 return retval; 1625 } 1626 1627 /*-------------------------------------------------------------------------*/ 1628 1629 static void __usb_hcd_giveback_urb(struct urb *urb) 1630 { 1631 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1632 struct usb_anchor *anchor = urb->anchor; 1633 int status = urb->unlinked; 1634 1635 urb->hcpriv = NULL; 1636 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1637 urb->actual_length < urb->transfer_buffer_length && 1638 !status)) 1639 status = -EREMOTEIO; 1640 1641 unmap_urb_for_dma(hcd, urb); 1642 usbmon_urb_complete(&hcd->self, urb, status); 1643 usb_anchor_suspend_wakeups(anchor); 1644 usb_unanchor_urb(urb); 1645 if (likely(status == 0)) 1646 usb_led_activity(USB_LED_EVENT_HOST); 1647 1648 /* pass ownership to the completion handler */ 1649 urb->status = status; 1650 /* 1651 * This function can be called in task context inside another remote 1652 * coverage collection section, but KCOV doesn't support that kind of 1653 * recursion yet. Only collect coverage in softirq context for now. 1654 */ 1655 if (in_serving_softirq()) 1656 kcov_remote_start_usb((u64)urb->dev->bus->busnum); 1657 urb->complete(urb); 1658 if (in_serving_softirq()) 1659 kcov_remote_stop(); 1660 1661 usb_anchor_resume_wakeups(anchor); 1662 atomic_dec(&urb->use_count); 1663 if (unlikely(atomic_read(&urb->reject))) 1664 wake_up(&usb_kill_urb_queue); 1665 usb_put_urb(urb); 1666 } 1667 1668 static void usb_giveback_urb_bh(struct tasklet_struct *t) 1669 { 1670 struct giveback_urb_bh *bh = from_tasklet(bh, t, bh); 1671 struct list_head local_list; 1672 1673 spin_lock_irq(&bh->lock); 1674 bh->running = true; 1675 restart: 1676 list_replace_init(&bh->head, &local_list); 1677 spin_unlock_irq(&bh->lock); 1678 1679 while (!list_empty(&local_list)) { 1680 struct urb *urb; 1681 1682 urb = list_entry(local_list.next, struct urb, urb_list); 1683 list_del_init(&urb->urb_list); 1684 bh->completing_ep = urb->ep; 1685 __usb_hcd_giveback_urb(urb); 1686 bh->completing_ep = NULL; 1687 } 1688 1689 /* check if there are new URBs to giveback */ 1690 spin_lock_irq(&bh->lock); 1691 if (!list_empty(&bh->head)) 1692 goto restart; 1693 bh->running = false; 1694 spin_unlock_irq(&bh->lock); 1695 } 1696 1697 /** 1698 * usb_hcd_giveback_urb - return URB from HCD to device driver 1699 * @hcd: host controller returning the URB 1700 * @urb: urb being returned to the USB device driver. 1701 * @status: completion status code for the URB. 1702 * 1703 * Context: atomic. The completion callback is invoked in caller's context. 1704 * For HCDs with HCD_BH flag set, the completion callback is invoked in tasklet 1705 * context (except for URBs submitted to the root hub which always complete in 1706 * caller's context). 1707 * 1708 * This hands the URB from HCD to its USB device driver, using its 1709 * completion function. The HCD has freed all per-urb resources 1710 * (and is done using urb->hcpriv). It also released all HCD locks; 1711 * the device driver won't cause problems if it frees, modifies, 1712 * or resubmits this URB. 1713 * 1714 * If @urb was unlinked, the value of @status will be overridden by 1715 * @urb->unlinked. Erroneous short transfers are detected in case 1716 * the HCD hasn't checked for them. 1717 */ 1718 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1719 { 1720 struct giveback_urb_bh *bh; 1721 bool running, high_prio_bh; 1722 1723 /* pass status to tasklet via unlinked */ 1724 if (likely(!urb->unlinked)) 1725 urb->unlinked = status; 1726 1727 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) { 1728 __usb_hcd_giveback_urb(urb); 1729 return; 1730 } 1731 1732 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) { 1733 bh = &hcd->high_prio_bh; 1734 high_prio_bh = true; 1735 } else { 1736 bh = &hcd->low_prio_bh; 1737 high_prio_bh = false; 1738 } 1739 1740 spin_lock(&bh->lock); 1741 list_add_tail(&urb->urb_list, &bh->head); 1742 running = bh->running; 1743 spin_unlock(&bh->lock); 1744 1745 if (running) 1746 ; 1747 else if (high_prio_bh) 1748 tasklet_hi_schedule(&bh->bh); 1749 else 1750 tasklet_schedule(&bh->bh); 1751 } 1752 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1753 1754 /*-------------------------------------------------------------------------*/ 1755 1756 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1757 * queue to drain completely. The caller must first insure that no more 1758 * URBs can be submitted for this endpoint. 1759 */ 1760 void usb_hcd_flush_endpoint(struct usb_device *udev, 1761 struct usb_host_endpoint *ep) 1762 { 1763 struct usb_hcd *hcd; 1764 struct urb *urb; 1765 1766 if (!ep) 1767 return; 1768 might_sleep(); 1769 hcd = bus_to_hcd(udev->bus); 1770 1771 /* No more submits can occur */ 1772 spin_lock_irq(&hcd_urb_list_lock); 1773 rescan: 1774 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) { 1775 int is_in; 1776 1777 if (urb->unlinked) 1778 continue; 1779 usb_get_urb (urb); 1780 is_in = usb_urb_dir_in(urb); 1781 spin_unlock(&hcd_urb_list_lock); 1782 1783 /* kick hcd */ 1784 unlink1(hcd, urb, -ESHUTDOWN); 1785 dev_dbg (hcd->self.controller, 1786 "shutdown urb %pK ep%d%s-%s\n", 1787 urb, usb_endpoint_num(&ep->desc), 1788 is_in ? "in" : "out", 1789 usb_ep_type_string(usb_endpoint_type(&ep->desc))); 1790 usb_put_urb (urb); 1791 1792 /* list contents may have changed */ 1793 spin_lock(&hcd_urb_list_lock); 1794 goto rescan; 1795 } 1796 spin_unlock_irq(&hcd_urb_list_lock); 1797 1798 /* Wait until the endpoint queue is completely empty */ 1799 while (!list_empty (&ep->urb_list)) { 1800 spin_lock_irq(&hcd_urb_list_lock); 1801 1802 /* The list may have changed while we acquired the spinlock */ 1803 urb = NULL; 1804 if (!list_empty (&ep->urb_list)) { 1805 urb = list_entry (ep->urb_list.prev, struct urb, 1806 urb_list); 1807 usb_get_urb (urb); 1808 } 1809 spin_unlock_irq(&hcd_urb_list_lock); 1810 1811 if (urb) { 1812 usb_kill_urb (urb); 1813 usb_put_urb (urb); 1814 } 1815 } 1816 } 1817 1818 /** 1819 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds 1820 * the bus bandwidth 1821 * @udev: target &usb_device 1822 * @new_config: new configuration to install 1823 * @cur_alt: the current alternate interface setting 1824 * @new_alt: alternate interface setting that is being installed 1825 * 1826 * To change configurations, pass in the new configuration in new_config, 1827 * and pass NULL for cur_alt and new_alt. 1828 * 1829 * To reset a device's configuration (put the device in the ADDRESSED state), 1830 * pass in NULL for new_config, cur_alt, and new_alt. 1831 * 1832 * To change alternate interface settings, pass in NULL for new_config, 1833 * pass in the current alternate interface setting in cur_alt, 1834 * and pass in the new alternate interface setting in new_alt. 1835 * 1836 * Return: An error if the requested bandwidth change exceeds the 1837 * bus bandwidth or host controller internal resources. 1838 */ 1839 int usb_hcd_alloc_bandwidth(struct usb_device *udev, 1840 struct usb_host_config *new_config, 1841 struct usb_host_interface *cur_alt, 1842 struct usb_host_interface *new_alt) 1843 { 1844 int num_intfs, i, j; 1845 struct usb_host_interface *alt = NULL; 1846 int ret = 0; 1847 struct usb_hcd *hcd; 1848 struct usb_host_endpoint *ep; 1849 1850 hcd = bus_to_hcd(udev->bus); 1851 if (!hcd->driver->check_bandwidth) 1852 return 0; 1853 1854 /* Configuration is being removed - set configuration 0 */ 1855 if (!new_config && !cur_alt) { 1856 for (i = 1; i < 16; ++i) { 1857 ep = udev->ep_out[i]; 1858 if (ep) 1859 hcd->driver->drop_endpoint(hcd, udev, ep); 1860 ep = udev->ep_in[i]; 1861 if (ep) 1862 hcd->driver->drop_endpoint(hcd, udev, ep); 1863 } 1864 hcd->driver->check_bandwidth(hcd, udev); 1865 return 0; 1866 } 1867 /* Check if the HCD says there's enough bandwidth. Enable all endpoints 1868 * each interface's alt setting 0 and ask the HCD to check the bandwidth 1869 * of the bus. There will always be bandwidth for endpoint 0, so it's 1870 * ok to exclude it. 1871 */ 1872 if (new_config) { 1873 num_intfs = new_config->desc.bNumInterfaces; 1874 /* Remove endpoints (except endpoint 0, which is always on the 1875 * schedule) from the old config from the schedule 1876 */ 1877 for (i = 1; i < 16; ++i) { 1878 ep = udev->ep_out[i]; 1879 if (ep) { 1880 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1881 if (ret < 0) 1882 goto reset; 1883 } 1884 ep = udev->ep_in[i]; 1885 if (ep) { 1886 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1887 if (ret < 0) 1888 goto reset; 1889 } 1890 } 1891 for (i = 0; i < num_intfs; ++i) { 1892 struct usb_host_interface *first_alt; 1893 int iface_num; 1894 1895 first_alt = &new_config->intf_cache[i]->altsetting[0]; 1896 iface_num = first_alt->desc.bInterfaceNumber; 1897 /* Set up endpoints for alternate interface setting 0 */ 1898 alt = usb_find_alt_setting(new_config, iface_num, 0); 1899 if (!alt) 1900 /* No alt setting 0? Pick the first setting. */ 1901 alt = first_alt; 1902 1903 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 1904 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); 1905 if (ret < 0) 1906 goto reset; 1907 } 1908 } 1909 } 1910 if (cur_alt && new_alt) { 1911 struct usb_interface *iface = usb_ifnum_to_if(udev, 1912 cur_alt->desc.bInterfaceNumber); 1913 1914 if (!iface) 1915 return -EINVAL; 1916 if (iface->resetting_device) { 1917 /* 1918 * The USB core just reset the device, so the xHCI host 1919 * and the device will think alt setting 0 is installed. 1920 * However, the USB core will pass in the alternate 1921 * setting installed before the reset as cur_alt. Dig 1922 * out the alternate setting 0 structure, or the first 1923 * alternate setting if a broken device doesn't have alt 1924 * setting 0. 1925 */ 1926 cur_alt = usb_altnum_to_altsetting(iface, 0); 1927 if (!cur_alt) 1928 cur_alt = &iface->altsetting[0]; 1929 } 1930 1931 /* Drop all the endpoints in the current alt setting */ 1932 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) { 1933 ret = hcd->driver->drop_endpoint(hcd, udev, 1934 &cur_alt->endpoint[i]); 1935 if (ret < 0) 1936 goto reset; 1937 } 1938 /* Add all the endpoints in the new alt setting */ 1939 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) { 1940 ret = hcd->driver->add_endpoint(hcd, udev, 1941 &new_alt->endpoint[i]); 1942 if (ret < 0) 1943 goto reset; 1944 } 1945 } 1946 ret = hcd->driver->check_bandwidth(hcd, udev); 1947 reset: 1948 if (ret < 0) 1949 hcd->driver->reset_bandwidth(hcd, udev); 1950 return ret; 1951 } 1952 1953 /* Disables the endpoint: synchronizes with the hcd to make sure all 1954 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 1955 * have been called previously. Use for set_configuration, set_interface, 1956 * driver removal, physical disconnect. 1957 * 1958 * example: a qh stored in ep->hcpriv, holding state related to endpoint 1959 * type, maxpacket size, toggle, halt status, and scheduling. 1960 */ 1961 void usb_hcd_disable_endpoint(struct usb_device *udev, 1962 struct usb_host_endpoint *ep) 1963 { 1964 struct usb_hcd *hcd; 1965 1966 might_sleep(); 1967 hcd = bus_to_hcd(udev->bus); 1968 if (hcd->driver->endpoint_disable) 1969 hcd->driver->endpoint_disable(hcd, ep); 1970 } 1971 1972 /** 1973 * usb_hcd_reset_endpoint - reset host endpoint state 1974 * @udev: USB device. 1975 * @ep: the endpoint to reset. 1976 * 1977 * Resets any host endpoint state such as the toggle bit, sequence 1978 * number and current window. 1979 */ 1980 void usb_hcd_reset_endpoint(struct usb_device *udev, 1981 struct usb_host_endpoint *ep) 1982 { 1983 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 1984 1985 if (hcd->driver->endpoint_reset) 1986 hcd->driver->endpoint_reset(hcd, ep); 1987 else { 1988 int epnum = usb_endpoint_num(&ep->desc); 1989 int is_out = usb_endpoint_dir_out(&ep->desc); 1990 int is_control = usb_endpoint_xfer_control(&ep->desc); 1991 1992 usb_settoggle(udev, epnum, is_out, 0); 1993 if (is_control) 1994 usb_settoggle(udev, epnum, !is_out, 0); 1995 } 1996 } 1997 1998 /** 1999 * usb_alloc_streams - allocate bulk endpoint stream IDs. 2000 * @interface: alternate setting that includes all endpoints. 2001 * @eps: array of endpoints that need streams. 2002 * @num_eps: number of endpoints in the array. 2003 * @num_streams: number of streams to allocate. 2004 * @mem_flags: flags hcd should use to allocate memory. 2005 * 2006 * Sets up a group of bulk endpoints to have @num_streams stream IDs available. 2007 * Drivers may queue multiple transfers to different stream IDs, which may 2008 * complete in a different order than they were queued. 2009 * 2010 * Return: On success, the number of allocated streams. On failure, a negative 2011 * error code. 2012 */ 2013 int usb_alloc_streams(struct usb_interface *interface, 2014 struct usb_host_endpoint **eps, unsigned int num_eps, 2015 unsigned int num_streams, gfp_t mem_flags) 2016 { 2017 struct usb_hcd *hcd; 2018 struct usb_device *dev; 2019 int i, ret; 2020 2021 dev = interface_to_usbdev(interface); 2022 hcd = bus_to_hcd(dev->bus); 2023 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams) 2024 return -EINVAL; 2025 if (dev->speed < USB_SPEED_SUPER) 2026 return -EINVAL; 2027 if (dev->state < USB_STATE_CONFIGURED) 2028 return -ENODEV; 2029 2030 for (i = 0; i < num_eps; i++) { 2031 /* Streams only apply to bulk endpoints. */ 2032 if (!usb_endpoint_xfer_bulk(&eps[i]->desc)) 2033 return -EINVAL; 2034 /* Re-alloc is not allowed */ 2035 if (eps[i]->streams) 2036 return -EINVAL; 2037 } 2038 2039 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps, 2040 num_streams, mem_flags); 2041 if (ret < 0) 2042 return ret; 2043 2044 for (i = 0; i < num_eps; i++) 2045 eps[i]->streams = ret; 2046 2047 return ret; 2048 } 2049 EXPORT_SYMBOL_GPL(usb_alloc_streams); 2050 2051 /** 2052 * usb_free_streams - free bulk endpoint stream IDs. 2053 * @interface: alternate setting that includes all endpoints. 2054 * @eps: array of endpoints to remove streams from. 2055 * @num_eps: number of endpoints in the array. 2056 * @mem_flags: flags hcd should use to allocate memory. 2057 * 2058 * Reverts a group of bulk endpoints back to not using stream IDs. 2059 * Can fail if we are given bad arguments, or HCD is broken. 2060 * 2061 * Return: 0 on success. On failure, a negative error code. 2062 */ 2063 int usb_free_streams(struct usb_interface *interface, 2064 struct usb_host_endpoint **eps, unsigned int num_eps, 2065 gfp_t mem_flags) 2066 { 2067 struct usb_hcd *hcd; 2068 struct usb_device *dev; 2069 int i, ret; 2070 2071 dev = interface_to_usbdev(interface); 2072 hcd = bus_to_hcd(dev->bus); 2073 if (dev->speed < USB_SPEED_SUPER) 2074 return -EINVAL; 2075 2076 /* Double-free is not allowed */ 2077 for (i = 0; i < num_eps; i++) 2078 if (!eps[i] || !eps[i]->streams) 2079 return -EINVAL; 2080 2081 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags); 2082 if (ret < 0) 2083 return ret; 2084 2085 for (i = 0; i < num_eps; i++) 2086 eps[i]->streams = 0; 2087 2088 return ret; 2089 } 2090 EXPORT_SYMBOL_GPL(usb_free_streams); 2091 2092 /* Protect against drivers that try to unlink URBs after the device 2093 * is gone, by waiting until all unlinks for @udev are finished. 2094 * Since we don't currently track URBs by device, simply wait until 2095 * nothing is running in the locked region of usb_hcd_unlink_urb(). 2096 */ 2097 void usb_hcd_synchronize_unlinks(struct usb_device *udev) 2098 { 2099 spin_lock_irq(&hcd_urb_unlink_lock); 2100 spin_unlock_irq(&hcd_urb_unlink_lock); 2101 } 2102 2103 /*-------------------------------------------------------------------------*/ 2104 2105 /* called in any context */ 2106 int usb_hcd_get_frame_number (struct usb_device *udev) 2107 { 2108 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2109 2110 if (!HCD_RH_RUNNING(hcd)) 2111 return -ESHUTDOWN; 2112 return hcd->driver->get_frame_number (hcd); 2113 } 2114 2115 /*-------------------------------------------------------------------------*/ 2116 2117 #ifdef CONFIG_PM 2118 2119 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) 2120 { 2121 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2122 int status; 2123 int old_state = hcd->state; 2124 2125 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n", 2126 (PMSG_IS_AUTO(msg) ? "auto-" : ""), 2127 rhdev->do_remote_wakeup); 2128 if (HCD_DEAD(hcd)) { 2129 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend"); 2130 return 0; 2131 } 2132 2133 if (!hcd->driver->bus_suspend) { 2134 status = -ENOENT; 2135 } else { 2136 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2137 hcd->state = HC_STATE_QUIESCING; 2138 status = hcd->driver->bus_suspend(hcd); 2139 } 2140 if (status == 0) { 2141 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 2142 hcd->state = HC_STATE_SUSPENDED; 2143 2144 if (!PMSG_IS_AUTO(msg)) 2145 usb_phy_roothub_suspend(hcd->self.sysdev, 2146 hcd->phy_roothub); 2147 2148 /* Did we race with a root-hub wakeup event? */ 2149 if (rhdev->do_remote_wakeup) { 2150 char buffer[6]; 2151 2152 status = hcd->driver->hub_status_data(hcd, buffer); 2153 if (status != 0) { 2154 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n"); 2155 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME); 2156 status = -EBUSY; 2157 } 2158 } 2159 } else { 2160 spin_lock_irq(&hcd_root_hub_lock); 2161 if (!HCD_DEAD(hcd)) { 2162 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2163 hcd->state = old_state; 2164 } 2165 spin_unlock_irq(&hcd_root_hub_lock); 2166 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2167 "suspend", status); 2168 } 2169 return status; 2170 } 2171 2172 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) 2173 { 2174 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2175 int status; 2176 int old_state = hcd->state; 2177 2178 dev_dbg(&rhdev->dev, "usb %sresume\n", 2179 (PMSG_IS_AUTO(msg) ? "auto-" : "")); 2180 if (HCD_DEAD(hcd)) { 2181 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume"); 2182 return 0; 2183 } 2184 2185 if (!PMSG_IS_AUTO(msg)) { 2186 status = usb_phy_roothub_resume(hcd->self.sysdev, 2187 hcd->phy_roothub); 2188 if (status) 2189 return status; 2190 } 2191 2192 if (!hcd->driver->bus_resume) 2193 return -ENOENT; 2194 if (HCD_RH_RUNNING(hcd)) 2195 return 0; 2196 2197 hcd->state = HC_STATE_RESUMING; 2198 status = hcd->driver->bus_resume(hcd); 2199 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2200 if (status == 0) 2201 status = usb_phy_roothub_calibrate(hcd->phy_roothub); 2202 2203 if (status == 0) { 2204 struct usb_device *udev; 2205 int port1; 2206 2207 spin_lock_irq(&hcd_root_hub_lock); 2208 if (!HCD_DEAD(hcd)) { 2209 usb_set_device_state(rhdev, rhdev->actconfig 2210 ? USB_STATE_CONFIGURED 2211 : USB_STATE_ADDRESS); 2212 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2213 hcd->state = HC_STATE_RUNNING; 2214 } 2215 spin_unlock_irq(&hcd_root_hub_lock); 2216 2217 /* 2218 * Check whether any of the enabled ports on the root hub are 2219 * unsuspended. If they are then a TRSMRCY delay is needed 2220 * (this is what the USB-2 spec calls a "global resume"). 2221 * Otherwise we can skip the delay. 2222 */ 2223 usb_hub_for_each_child(rhdev, port1, udev) { 2224 if (udev->state != USB_STATE_NOTATTACHED && 2225 !udev->port_is_suspended) { 2226 usleep_range(10000, 11000); /* TRSMRCY */ 2227 break; 2228 } 2229 } 2230 } else { 2231 hcd->state = old_state; 2232 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub); 2233 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2234 "resume", status); 2235 if (status != -ESHUTDOWN) 2236 usb_hc_died(hcd); 2237 } 2238 return status; 2239 } 2240 2241 /* Workqueue routine for root-hub remote wakeup */ 2242 static void hcd_resume_work(struct work_struct *work) 2243 { 2244 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 2245 struct usb_device *udev = hcd->self.root_hub; 2246 2247 usb_remote_wakeup(udev); 2248 } 2249 2250 /** 2251 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 2252 * @hcd: host controller for this root hub 2253 * 2254 * The USB host controller calls this function when its root hub is 2255 * suspended (with the remote wakeup feature enabled) and a remote 2256 * wakeup request is received. The routine submits a workqueue request 2257 * to resume the root hub (that is, manage its downstream ports again). 2258 */ 2259 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 2260 { 2261 unsigned long flags; 2262 2263 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2264 if (hcd->rh_registered) { 2265 pm_wakeup_event(&hcd->self.root_hub->dev, 0); 2266 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2267 queue_work(pm_wq, &hcd->wakeup_work); 2268 } 2269 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2270 } 2271 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 2272 2273 #endif /* CONFIG_PM */ 2274 2275 /*-------------------------------------------------------------------------*/ 2276 2277 #ifdef CONFIG_USB_OTG 2278 2279 /** 2280 * usb_bus_start_enum - start immediate enumeration (for OTG) 2281 * @bus: the bus (must use hcd framework) 2282 * @port_num: 1-based number of port; usually bus->otg_port 2283 * Context: atomic 2284 * 2285 * Starts enumeration, with an immediate reset followed later by 2286 * hub_wq identifying and possibly configuring the device. 2287 * This is needed by OTG controller drivers, where it helps meet 2288 * HNP protocol timing requirements for starting a port reset. 2289 * 2290 * Return: 0 if successful. 2291 */ 2292 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 2293 { 2294 struct usb_hcd *hcd; 2295 int status = -EOPNOTSUPP; 2296 2297 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 2298 * boards with root hubs hooked up to internal devices (instead of 2299 * just the OTG port) may need more attention to resetting... 2300 */ 2301 hcd = bus_to_hcd(bus); 2302 if (port_num && hcd->driver->start_port_reset) 2303 status = hcd->driver->start_port_reset(hcd, port_num); 2304 2305 /* allocate hub_wq shortly after (first) root port reset finishes; 2306 * it may issue others, until at least 50 msecs have passed. 2307 */ 2308 if (status == 0) 2309 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 2310 return status; 2311 } 2312 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 2313 2314 #endif 2315 2316 /*-------------------------------------------------------------------------*/ 2317 2318 /** 2319 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 2320 * @irq: the IRQ being raised 2321 * @__hcd: pointer to the HCD whose IRQ is being signaled 2322 * 2323 * If the controller isn't HALTed, calls the driver's irq handler. 2324 * Checks whether the controller is now dead. 2325 * 2326 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise. 2327 */ 2328 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 2329 { 2330 struct usb_hcd *hcd = __hcd; 2331 irqreturn_t rc; 2332 2333 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) 2334 rc = IRQ_NONE; 2335 else if (hcd->driver->irq(hcd) == IRQ_NONE) 2336 rc = IRQ_NONE; 2337 else 2338 rc = IRQ_HANDLED; 2339 2340 return rc; 2341 } 2342 EXPORT_SYMBOL_GPL(usb_hcd_irq); 2343 2344 /*-------------------------------------------------------------------------*/ 2345 2346 /* Workqueue routine for when the root-hub has died. */ 2347 static void hcd_died_work(struct work_struct *work) 2348 { 2349 struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work); 2350 static char *env[] = { 2351 "ERROR=DEAD", 2352 NULL 2353 }; 2354 2355 /* Notify user space that the host controller has died */ 2356 kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env); 2357 } 2358 2359 /** 2360 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 2361 * @hcd: pointer to the HCD representing the controller 2362 * 2363 * This is called by bus glue to report a USB host controller that died 2364 * while operations may still have been pending. It's called automatically 2365 * by the PCI glue, so only glue for non-PCI busses should need to call it. 2366 * 2367 * Only call this function with the primary HCD. 2368 */ 2369 void usb_hc_died (struct usb_hcd *hcd) 2370 { 2371 unsigned long flags; 2372 2373 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 2374 2375 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2376 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2377 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2378 if (hcd->rh_registered) { 2379 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2380 2381 /* make hub_wq clean up old urbs and devices */ 2382 usb_set_device_state (hcd->self.root_hub, 2383 USB_STATE_NOTATTACHED); 2384 usb_kick_hub_wq(hcd->self.root_hub); 2385 } 2386 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) { 2387 hcd = hcd->shared_hcd; 2388 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2389 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2390 if (hcd->rh_registered) { 2391 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2392 2393 /* make hub_wq clean up old urbs and devices */ 2394 usb_set_device_state(hcd->self.root_hub, 2395 USB_STATE_NOTATTACHED); 2396 usb_kick_hub_wq(hcd->self.root_hub); 2397 } 2398 } 2399 2400 /* Handle the case where this function gets called with a shared HCD */ 2401 if (usb_hcd_is_primary_hcd(hcd)) 2402 schedule_work(&hcd->died_work); 2403 else 2404 schedule_work(&hcd->primary_hcd->died_work); 2405 2406 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2407 /* Make sure that the other roothub is also deallocated. */ 2408 } 2409 EXPORT_SYMBOL_GPL (usb_hc_died); 2410 2411 /*-------------------------------------------------------------------------*/ 2412 2413 static void init_giveback_urb_bh(struct giveback_urb_bh *bh) 2414 { 2415 2416 spin_lock_init(&bh->lock); 2417 INIT_LIST_HEAD(&bh->head); 2418 tasklet_setup(&bh->bh, usb_giveback_urb_bh); 2419 } 2420 2421 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver, 2422 struct device *sysdev, struct device *dev, const char *bus_name, 2423 struct usb_hcd *primary_hcd) 2424 { 2425 struct usb_hcd *hcd; 2426 2427 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 2428 if (!hcd) 2429 return NULL; 2430 if (primary_hcd == NULL) { 2431 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex), 2432 GFP_KERNEL); 2433 if (!hcd->address0_mutex) { 2434 kfree(hcd); 2435 dev_dbg(dev, "hcd address0 mutex alloc failed\n"); 2436 return NULL; 2437 } 2438 mutex_init(hcd->address0_mutex); 2439 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex), 2440 GFP_KERNEL); 2441 if (!hcd->bandwidth_mutex) { 2442 kfree(hcd->address0_mutex); 2443 kfree(hcd); 2444 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n"); 2445 return NULL; 2446 } 2447 mutex_init(hcd->bandwidth_mutex); 2448 dev_set_drvdata(dev, hcd); 2449 } else { 2450 mutex_lock(&usb_port_peer_mutex); 2451 hcd->address0_mutex = primary_hcd->address0_mutex; 2452 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex; 2453 hcd->primary_hcd = primary_hcd; 2454 primary_hcd->primary_hcd = primary_hcd; 2455 hcd->shared_hcd = primary_hcd; 2456 primary_hcd->shared_hcd = hcd; 2457 mutex_unlock(&usb_port_peer_mutex); 2458 } 2459 2460 kref_init(&hcd->kref); 2461 2462 usb_bus_init(&hcd->self); 2463 hcd->self.controller = dev; 2464 hcd->self.sysdev = sysdev; 2465 hcd->self.bus_name = bus_name; 2466 2467 timer_setup(&hcd->rh_timer, rh_timer_func, 0); 2468 #ifdef CONFIG_PM 2469 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 2470 #endif 2471 2472 INIT_WORK(&hcd->died_work, hcd_died_work); 2473 2474 hcd->driver = driver; 2475 hcd->speed = driver->flags & HCD_MASK; 2476 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 2477 "USB Host Controller"; 2478 return hcd; 2479 } 2480 EXPORT_SYMBOL_GPL(__usb_create_hcd); 2481 2482 /** 2483 * usb_create_shared_hcd - create and initialize an HCD structure 2484 * @driver: HC driver that will use this hcd 2485 * @dev: device for this HC, stored in hcd->self.controller 2486 * @bus_name: value to store in hcd->self.bus_name 2487 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the 2488 * PCI device. Only allocate certain resources for the primary HCD 2489 * 2490 * Context: task context, might sleep. 2491 * 2492 * Allocate a struct usb_hcd, with extra space at the end for the 2493 * HC driver's private data. Initialize the generic members of the 2494 * hcd structure. 2495 * 2496 * Return: On success, a pointer to the created and initialized HCD structure. 2497 * On failure (e.g. if memory is unavailable), %NULL. 2498 */ 2499 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver, 2500 struct device *dev, const char *bus_name, 2501 struct usb_hcd *primary_hcd) 2502 { 2503 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd); 2504 } 2505 EXPORT_SYMBOL_GPL(usb_create_shared_hcd); 2506 2507 /** 2508 * usb_create_hcd - create and initialize an HCD structure 2509 * @driver: HC driver that will use this hcd 2510 * @dev: device for this HC, stored in hcd->self.controller 2511 * @bus_name: value to store in hcd->self.bus_name 2512 * 2513 * Context: task context, might sleep. 2514 * 2515 * Allocate a struct usb_hcd, with extra space at the end for the 2516 * HC driver's private data. Initialize the generic members of the 2517 * hcd structure. 2518 * 2519 * Return: On success, a pointer to the created and initialized HCD 2520 * structure. On failure (e.g. if memory is unavailable), %NULL. 2521 */ 2522 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver, 2523 struct device *dev, const char *bus_name) 2524 { 2525 return __usb_create_hcd(driver, dev, dev, bus_name, NULL); 2526 } 2527 EXPORT_SYMBOL_GPL(usb_create_hcd); 2528 2529 /* 2530 * Roothubs that share one PCI device must also share the bandwidth mutex. 2531 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is 2532 * deallocated. 2533 * 2534 * Make sure to deallocate the bandwidth_mutex only when the last HCD is 2535 * freed. When hcd_release() is called for either hcd in a peer set, 2536 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers. 2537 */ 2538 static void hcd_release(struct kref *kref) 2539 { 2540 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 2541 2542 mutex_lock(&usb_port_peer_mutex); 2543 if (hcd->shared_hcd) { 2544 struct usb_hcd *peer = hcd->shared_hcd; 2545 2546 peer->shared_hcd = NULL; 2547 peer->primary_hcd = NULL; 2548 } else { 2549 kfree(hcd->address0_mutex); 2550 kfree(hcd->bandwidth_mutex); 2551 } 2552 mutex_unlock(&usb_port_peer_mutex); 2553 kfree(hcd); 2554 } 2555 2556 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 2557 { 2558 if (hcd) 2559 kref_get (&hcd->kref); 2560 return hcd; 2561 } 2562 EXPORT_SYMBOL_GPL(usb_get_hcd); 2563 2564 void usb_put_hcd (struct usb_hcd *hcd) 2565 { 2566 if (hcd) 2567 kref_put (&hcd->kref, hcd_release); 2568 } 2569 EXPORT_SYMBOL_GPL(usb_put_hcd); 2570 2571 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd) 2572 { 2573 if (!hcd->primary_hcd) 2574 return 1; 2575 return hcd == hcd->primary_hcd; 2576 } 2577 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd); 2578 2579 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1) 2580 { 2581 if (!hcd->driver->find_raw_port_number) 2582 return port1; 2583 2584 return hcd->driver->find_raw_port_number(hcd, port1); 2585 } 2586 2587 static int usb_hcd_request_irqs(struct usb_hcd *hcd, 2588 unsigned int irqnum, unsigned long irqflags) 2589 { 2590 int retval; 2591 2592 if (hcd->driver->irq) { 2593 2594 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 2595 hcd->driver->description, hcd->self.busnum); 2596 retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 2597 hcd->irq_descr, hcd); 2598 if (retval != 0) { 2599 dev_err(hcd->self.controller, 2600 "request interrupt %d failed\n", 2601 irqnum); 2602 return retval; 2603 } 2604 hcd->irq = irqnum; 2605 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 2606 (hcd->driver->flags & HCD_MEMORY) ? 2607 "io mem" : "io base", 2608 (unsigned long long)hcd->rsrc_start); 2609 } else { 2610 hcd->irq = 0; 2611 if (hcd->rsrc_start) 2612 dev_info(hcd->self.controller, "%s 0x%08llx\n", 2613 (hcd->driver->flags & HCD_MEMORY) ? 2614 "io mem" : "io base", 2615 (unsigned long long)hcd->rsrc_start); 2616 } 2617 return 0; 2618 } 2619 2620 /* 2621 * Before we free this root hub, flush in-flight peering attempts 2622 * and disable peer lookups 2623 */ 2624 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd) 2625 { 2626 struct usb_device *rhdev; 2627 2628 mutex_lock(&usb_port_peer_mutex); 2629 rhdev = hcd->self.root_hub; 2630 hcd->self.root_hub = NULL; 2631 mutex_unlock(&usb_port_peer_mutex); 2632 usb_put_dev(rhdev); 2633 } 2634 2635 /** 2636 * usb_add_hcd - finish generic HCD structure initialization and register 2637 * @hcd: the usb_hcd structure to initialize 2638 * @irqnum: Interrupt line to allocate 2639 * @irqflags: Interrupt type flags 2640 * 2641 * Finish the remaining parts of generic HCD initialization: allocate the 2642 * buffers of consistent memory, register the bus, request the IRQ line, 2643 * and call the driver's reset() and start() routines. 2644 */ 2645 int usb_add_hcd(struct usb_hcd *hcd, 2646 unsigned int irqnum, unsigned long irqflags) 2647 { 2648 int retval; 2649 struct usb_device *rhdev; 2650 2651 if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) { 2652 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev); 2653 if (IS_ERR(hcd->phy_roothub)) 2654 return PTR_ERR(hcd->phy_roothub); 2655 2656 retval = usb_phy_roothub_init(hcd->phy_roothub); 2657 if (retval) 2658 return retval; 2659 2660 retval = usb_phy_roothub_set_mode(hcd->phy_roothub, 2661 PHY_MODE_USB_HOST_SS); 2662 if (retval) 2663 retval = usb_phy_roothub_set_mode(hcd->phy_roothub, 2664 PHY_MODE_USB_HOST); 2665 if (retval) 2666 goto err_usb_phy_roothub_power_on; 2667 2668 retval = usb_phy_roothub_power_on(hcd->phy_roothub); 2669 if (retval) 2670 goto err_usb_phy_roothub_power_on; 2671 } 2672 2673 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 2674 2675 switch (authorized_default) { 2676 case USB_AUTHORIZE_NONE: 2677 hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE; 2678 break; 2679 2680 case USB_AUTHORIZE_ALL: 2681 hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL; 2682 break; 2683 2684 case USB_AUTHORIZE_INTERNAL: 2685 hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL; 2686 break; 2687 2688 case USB_AUTHORIZE_WIRED: 2689 default: 2690 hcd->dev_policy = hcd->wireless ? 2691 USB_DEVICE_AUTHORIZE_NONE : USB_DEVICE_AUTHORIZE_ALL; 2692 break; 2693 } 2694 2695 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2696 2697 /* per default all interfaces are authorized */ 2698 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 2699 2700 /* HC is in reset state, but accessible. Now do the one-time init, 2701 * bottom up so that hcds can customize the root hubs before hub_wq 2702 * starts talking to them. (Note, bus id is assigned early too.) 2703 */ 2704 retval = hcd_buffer_create(hcd); 2705 if (retval != 0) { 2706 dev_dbg(hcd->self.sysdev, "pool alloc failed\n"); 2707 goto err_create_buf; 2708 } 2709 2710 retval = usb_register_bus(&hcd->self); 2711 if (retval < 0) 2712 goto err_register_bus; 2713 2714 rhdev = usb_alloc_dev(NULL, &hcd->self, 0); 2715 if (rhdev == NULL) { 2716 dev_err(hcd->self.sysdev, "unable to allocate root hub\n"); 2717 retval = -ENOMEM; 2718 goto err_allocate_root_hub; 2719 } 2720 mutex_lock(&usb_port_peer_mutex); 2721 hcd->self.root_hub = rhdev; 2722 mutex_unlock(&usb_port_peer_mutex); 2723 2724 rhdev->rx_lanes = 1; 2725 rhdev->tx_lanes = 1; 2726 2727 switch (hcd->speed) { 2728 case HCD_USB11: 2729 rhdev->speed = USB_SPEED_FULL; 2730 break; 2731 case HCD_USB2: 2732 rhdev->speed = USB_SPEED_HIGH; 2733 break; 2734 case HCD_USB25: 2735 rhdev->speed = USB_SPEED_WIRELESS; 2736 break; 2737 case HCD_USB3: 2738 rhdev->speed = USB_SPEED_SUPER; 2739 break; 2740 case HCD_USB32: 2741 rhdev->rx_lanes = 2; 2742 rhdev->tx_lanes = 2; 2743 fallthrough; 2744 case HCD_USB31: 2745 rhdev->speed = USB_SPEED_SUPER_PLUS; 2746 break; 2747 default: 2748 retval = -EINVAL; 2749 goto err_set_rh_speed; 2750 } 2751 2752 /* wakeup flag init defaults to "everything works" for root hubs, 2753 * but drivers can override it in reset() if needed, along with 2754 * recording the overall controller's system wakeup capability. 2755 */ 2756 device_set_wakeup_capable(&rhdev->dev, 1); 2757 2758 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is 2759 * registered. But since the controller can die at any time, 2760 * let's initialize the flag before touching the hardware. 2761 */ 2762 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2763 2764 /* "reset" is misnamed; its role is now one-time init. the controller 2765 * should already have been reset (and boot firmware kicked off etc). 2766 */ 2767 if (hcd->driver->reset) { 2768 retval = hcd->driver->reset(hcd); 2769 if (retval < 0) { 2770 dev_err(hcd->self.controller, "can't setup: %d\n", 2771 retval); 2772 goto err_hcd_driver_setup; 2773 } 2774 } 2775 hcd->rh_pollable = 1; 2776 2777 retval = usb_phy_roothub_calibrate(hcd->phy_roothub); 2778 if (retval) 2779 goto err_hcd_driver_setup; 2780 2781 /* NOTE: root hub and controller capabilities may not be the same */ 2782 if (device_can_wakeup(hcd->self.controller) 2783 && device_can_wakeup(&hcd->self.root_hub->dev)) 2784 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 2785 2786 /* initialize tasklets */ 2787 init_giveback_urb_bh(&hcd->high_prio_bh); 2788 init_giveback_urb_bh(&hcd->low_prio_bh); 2789 2790 /* enable irqs just before we start the controller, 2791 * if the BIOS provides legacy PCI irqs. 2792 */ 2793 if (usb_hcd_is_primary_hcd(hcd) && irqnum) { 2794 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags); 2795 if (retval) 2796 goto err_request_irq; 2797 } 2798 2799 hcd->state = HC_STATE_RUNNING; 2800 retval = hcd->driver->start(hcd); 2801 if (retval < 0) { 2802 dev_err(hcd->self.controller, "startup error %d\n", retval); 2803 goto err_hcd_driver_start; 2804 } 2805 2806 /* starting here, usbcore will pay attention to this root hub */ 2807 retval = register_root_hub(hcd); 2808 if (retval != 0) 2809 goto err_register_root_hub; 2810 2811 if (hcd->uses_new_polling && HCD_POLL_RH(hcd)) 2812 usb_hcd_poll_rh_status(hcd); 2813 2814 return retval; 2815 2816 err_register_root_hub: 2817 hcd->rh_pollable = 0; 2818 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2819 del_timer_sync(&hcd->rh_timer); 2820 hcd->driver->stop(hcd); 2821 hcd->state = HC_STATE_HALT; 2822 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2823 del_timer_sync(&hcd->rh_timer); 2824 err_hcd_driver_start: 2825 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0) 2826 free_irq(irqnum, hcd); 2827 err_request_irq: 2828 err_hcd_driver_setup: 2829 err_set_rh_speed: 2830 usb_put_invalidate_rhdev(hcd); 2831 err_allocate_root_hub: 2832 usb_deregister_bus(&hcd->self); 2833 err_register_bus: 2834 hcd_buffer_destroy(hcd); 2835 err_create_buf: 2836 usb_phy_roothub_power_off(hcd->phy_roothub); 2837 err_usb_phy_roothub_power_on: 2838 usb_phy_roothub_exit(hcd->phy_roothub); 2839 2840 return retval; 2841 } 2842 EXPORT_SYMBOL_GPL(usb_add_hcd); 2843 2844 /** 2845 * usb_remove_hcd - shutdown processing for generic HCDs 2846 * @hcd: the usb_hcd structure to remove 2847 * 2848 * Context: task context, might sleep. 2849 * 2850 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 2851 * invoking the HCD's stop() method. 2852 */ 2853 void usb_remove_hcd(struct usb_hcd *hcd) 2854 { 2855 struct usb_device *rhdev = hcd->self.root_hub; 2856 2857 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 2858 2859 usb_get_dev(rhdev); 2860 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2861 if (HC_IS_RUNNING (hcd->state)) 2862 hcd->state = HC_STATE_QUIESCING; 2863 2864 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 2865 spin_lock_irq (&hcd_root_hub_lock); 2866 hcd->rh_registered = 0; 2867 spin_unlock_irq (&hcd_root_hub_lock); 2868 2869 #ifdef CONFIG_PM 2870 cancel_work_sync(&hcd->wakeup_work); 2871 #endif 2872 cancel_work_sync(&hcd->died_work); 2873 2874 mutex_lock(&usb_bus_idr_lock); 2875 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2876 mutex_unlock(&usb_bus_idr_lock); 2877 2878 /* 2879 * tasklet_kill() isn't needed here because: 2880 * - driver's disconnect() called from usb_disconnect() should 2881 * make sure its URBs are completed during the disconnect() 2882 * callback 2883 * 2884 * - it is too late to run complete() here since driver may have 2885 * been removed already now 2886 */ 2887 2888 /* Prevent any more root-hub status calls from the timer. 2889 * The HCD might still restart the timer (if a port status change 2890 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke 2891 * the hub_status_data() callback. 2892 */ 2893 hcd->rh_pollable = 0; 2894 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2895 del_timer_sync(&hcd->rh_timer); 2896 2897 hcd->driver->stop(hcd); 2898 hcd->state = HC_STATE_HALT; 2899 2900 /* In case the HCD restarted the timer, stop it again. */ 2901 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2902 del_timer_sync(&hcd->rh_timer); 2903 2904 if (usb_hcd_is_primary_hcd(hcd)) { 2905 if (hcd->irq > 0) 2906 free_irq(hcd->irq, hcd); 2907 } 2908 2909 usb_deregister_bus(&hcd->self); 2910 hcd_buffer_destroy(hcd); 2911 2912 usb_phy_roothub_power_off(hcd->phy_roothub); 2913 usb_phy_roothub_exit(hcd->phy_roothub); 2914 2915 usb_put_invalidate_rhdev(hcd); 2916 hcd->flags = 0; 2917 } 2918 EXPORT_SYMBOL_GPL(usb_remove_hcd); 2919 2920 void 2921 usb_hcd_platform_shutdown(struct platform_device *dev) 2922 { 2923 struct usb_hcd *hcd = platform_get_drvdata(dev); 2924 2925 /* No need for pm_runtime_put(), we're shutting down */ 2926 pm_runtime_get_sync(&dev->dev); 2927 2928 if (hcd->driver->shutdown) 2929 hcd->driver->shutdown(hcd); 2930 } 2931 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 2932 2933 int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr, 2934 dma_addr_t dma, size_t size) 2935 { 2936 int err; 2937 void *local_mem; 2938 2939 hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4, 2940 dev_to_node(hcd->self.sysdev), 2941 dev_name(hcd->self.sysdev)); 2942 if (IS_ERR(hcd->localmem_pool)) 2943 return PTR_ERR(hcd->localmem_pool); 2944 2945 local_mem = devm_memremap(hcd->self.sysdev, phys_addr, 2946 size, MEMREMAP_WC); 2947 if (IS_ERR(local_mem)) 2948 return PTR_ERR(local_mem); 2949 2950 /* 2951 * Here we pass a dma_addr_t but the arg type is a phys_addr_t. 2952 * It's not backed by system memory and thus there's no kernel mapping 2953 * for it. 2954 */ 2955 err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem, 2956 dma, size, dev_to_node(hcd->self.sysdev)); 2957 if (err < 0) { 2958 dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n", 2959 err); 2960 return err; 2961 } 2962 2963 return 0; 2964 } 2965 EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem); 2966 2967 /*-------------------------------------------------------------------------*/ 2968 2969 #if IS_ENABLED(CONFIG_USB_MON) 2970 2971 const struct usb_mon_operations *mon_ops; 2972 2973 /* 2974 * The registration is unlocked. 2975 * We do it this way because we do not want to lock in hot paths. 2976 * 2977 * Notice that the code is minimally error-proof. Because usbmon needs 2978 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 2979 */ 2980 2981 int usb_mon_register(const struct usb_mon_operations *ops) 2982 { 2983 2984 if (mon_ops) 2985 return -EBUSY; 2986 2987 mon_ops = ops; 2988 mb(); 2989 return 0; 2990 } 2991 EXPORT_SYMBOL_GPL (usb_mon_register); 2992 2993 void usb_mon_deregister (void) 2994 { 2995 2996 if (mon_ops == NULL) { 2997 printk(KERN_ERR "USB: monitor was not registered\n"); 2998 return; 2999 } 3000 mon_ops = NULL; 3001 mb(); 3002 } 3003 EXPORT_SYMBOL_GPL (usb_mon_deregister); 3004 3005 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ 3006