xref: /openbmc/linux/drivers/usb/core/hcd.c (revision e9839402)
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 
25 #include <linux/bcd.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/utsname.h>
32 #include <linux/mm.h>
33 #include <asm/io.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
37 #include <asm/irq.h>
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <linux/platform_device.h>
41 #include <linux/workqueue.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/types.h>
44 
45 #include <linux/phy/phy.h>
46 #include <linux/usb.h>
47 #include <linux/usb/hcd.h>
48 #include <linux/usb/phy.h>
49 #include <linux/usb/otg.h>
50 
51 #include "usb.h"
52 
53 
54 /*-------------------------------------------------------------------------*/
55 
56 /*
57  * USB Host Controller Driver framework
58  *
59  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
60  * HCD-specific behaviors/bugs.
61  *
62  * This does error checks, tracks devices and urbs, and delegates to a
63  * "hc_driver" only for code (and data) that really needs to know about
64  * hardware differences.  That includes root hub registers, i/o queues,
65  * and so on ... but as little else as possible.
66  *
67  * Shared code includes most of the "root hub" code (these are emulated,
68  * though each HC's hardware works differently) and PCI glue, plus request
69  * tracking overhead.  The HCD code should only block on spinlocks or on
70  * hardware handshaking; blocking on software events (such as other kernel
71  * threads releasing resources, or completing actions) is all generic.
72  *
73  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
74  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
75  * only by the hub driver ... and that neither should be seen or used by
76  * usb client device drivers.
77  *
78  * Contributors of ideas or unattributed patches include: David Brownell,
79  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
80  *
81  * HISTORY:
82  * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
83  *		associated cleanup.  "usb_hcd" still != "usb_bus".
84  * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
85  */
86 
87 /*-------------------------------------------------------------------------*/
88 
89 /* Keep track of which host controller drivers are loaded */
90 unsigned long usb_hcds_loaded;
91 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
92 
93 /* host controllers we manage */
94 DEFINE_IDR (usb_bus_idr);
95 EXPORT_SYMBOL_GPL (usb_bus_idr);
96 
97 /* used when allocating bus numbers */
98 #define USB_MAXBUS		64
99 
100 /* used when updating list of hcds */
101 DEFINE_MUTEX(usb_bus_idr_lock);	/* exported only for usbfs */
102 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
103 
104 /* used for controlling access to virtual root hubs */
105 static DEFINE_SPINLOCK(hcd_root_hub_lock);
106 
107 /* used when updating an endpoint's URB list */
108 static DEFINE_SPINLOCK(hcd_urb_list_lock);
109 
110 /* used to protect against unlinking URBs after the device is gone */
111 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
112 
113 /* wait queue for synchronous unlinks */
114 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
115 
116 static inline int is_root_hub(struct usb_device *udev)
117 {
118 	return (udev->parent == NULL);
119 }
120 
121 /*-------------------------------------------------------------------------*/
122 
123 /*
124  * Sharable chunks of root hub code.
125  */
126 
127 /*-------------------------------------------------------------------------*/
128 #define KERNEL_REL	bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
129 #define KERNEL_VER	bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
130 
131 /* usb 3.1 root hub device descriptor */
132 static const u8 usb31_rh_dev_descriptor[18] = {
133 	0x12,       /*  __u8  bLength; */
134 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
135 	0x10, 0x03, /*  __le16 bcdUSB; v3.1 */
136 
137 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
138 	0x00,	    /*  __u8  bDeviceSubClass; */
139 	0x03,       /*  __u8  bDeviceProtocol; USB 3 hub */
140 	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
141 
142 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
143 	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
144 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
145 
146 	0x03,       /*  __u8  iManufacturer; */
147 	0x02,       /*  __u8  iProduct; */
148 	0x01,       /*  __u8  iSerialNumber; */
149 	0x01        /*  __u8  bNumConfigurations; */
150 };
151 
152 /* usb 3.0 root hub device descriptor */
153 static const u8 usb3_rh_dev_descriptor[18] = {
154 	0x12,       /*  __u8  bLength; */
155 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
156 	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
157 
158 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
159 	0x00,	    /*  __u8  bDeviceSubClass; */
160 	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
161 	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
162 
163 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
164 	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
165 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
166 
167 	0x03,       /*  __u8  iManufacturer; */
168 	0x02,       /*  __u8  iProduct; */
169 	0x01,       /*  __u8  iSerialNumber; */
170 	0x01        /*  __u8  bNumConfigurations; */
171 };
172 
173 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
174 static const u8 usb25_rh_dev_descriptor[18] = {
175 	0x12,       /*  __u8  bLength; */
176 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
177 	0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
178 
179 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
180 	0x00,	    /*  __u8  bDeviceSubClass; */
181 	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
182 	0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
183 
184 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
185 	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
186 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
187 
188 	0x03,       /*  __u8  iManufacturer; */
189 	0x02,       /*  __u8  iProduct; */
190 	0x01,       /*  __u8  iSerialNumber; */
191 	0x01        /*  __u8  bNumConfigurations; */
192 };
193 
194 /* usb 2.0 root hub device descriptor */
195 static const u8 usb2_rh_dev_descriptor[18] = {
196 	0x12,       /*  __u8  bLength; */
197 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
198 	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
199 
200 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
201 	0x00,	    /*  __u8  bDeviceSubClass; */
202 	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
203 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
204 
205 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
206 	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
207 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
208 
209 	0x03,       /*  __u8  iManufacturer; */
210 	0x02,       /*  __u8  iProduct; */
211 	0x01,       /*  __u8  iSerialNumber; */
212 	0x01        /*  __u8  bNumConfigurations; */
213 };
214 
215 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
216 
217 /* usb 1.1 root hub device descriptor */
218 static const u8 usb11_rh_dev_descriptor[18] = {
219 	0x12,       /*  __u8  bLength; */
220 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
221 	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
222 
223 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
224 	0x00,	    /*  __u8  bDeviceSubClass; */
225 	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
226 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
227 
228 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
229 	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
230 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
231 
232 	0x03,       /*  __u8  iManufacturer; */
233 	0x02,       /*  __u8  iProduct; */
234 	0x01,       /*  __u8  iSerialNumber; */
235 	0x01        /*  __u8  bNumConfigurations; */
236 };
237 
238 
239 /*-------------------------------------------------------------------------*/
240 
241 /* Configuration descriptors for our root hubs */
242 
243 static const u8 fs_rh_config_descriptor[] = {
244 
245 	/* one configuration */
246 	0x09,       /*  __u8  bLength; */
247 	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
248 	0x19, 0x00, /*  __le16 wTotalLength; */
249 	0x01,       /*  __u8  bNumInterfaces; (1) */
250 	0x01,       /*  __u8  bConfigurationValue; */
251 	0x00,       /*  __u8  iConfiguration; */
252 	0xc0,       /*  __u8  bmAttributes;
253 				 Bit 7: must be set,
254 				     6: Self-powered,
255 				     5: Remote wakeup,
256 				     4..0: resvd */
257 	0x00,       /*  __u8  MaxPower; */
258 
259 	/* USB 1.1:
260 	 * USB 2.0, single TT organization (mandatory):
261 	 *	one interface, protocol 0
262 	 *
263 	 * USB 2.0, multiple TT organization (optional):
264 	 *	two interfaces, protocols 1 (like single TT)
265 	 *	and 2 (multiple TT mode) ... config is
266 	 *	sometimes settable
267 	 *	NOT IMPLEMENTED
268 	 */
269 
270 	/* one interface */
271 	0x09,       /*  __u8  if_bLength; */
272 	USB_DT_INTERFACE,  /* __u8 if_bDescriptorType; Interface */
273 	0x00,       /*  __u8  if_bInterfaceNumber; */
274 	0x00,       /*  __u8  if_bAlternateSetting; */
275 	0x01,       /*  __u8  if_bNumEndpoints; */
276 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
277 	0x00,       /*  __u8  if_bInterfaceSubClass; */
278 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
279 	0x00,       /*  __u8  if_iInterface; */
280 
281 	/* one endpoint (status change endpoint) */
282 	0x07,       /*  __u8  ep_bLength; */
283 	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
284 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
285 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
286 	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
287 	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
288 };
289 
290 static const u8 hs_rh_config_descriptor[] = {
291 
292 	/* one configuration */
293 	0x09,       /*  __u8  bLength; */
294 	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
295 	0x19, 0x00, /*  __le16 wTotalLength; */
296 	0x01,       /*  __u8  bNumInterfaces; (1) */
297 	0x01,       /*  __u8  bConfigurationValue; */
298 	0x00,       /*  __u8  iConfiguration; */
299 	0xc0,       /*  __u8  bmAttributes;
300 				 Bit 7: must be set,
301 				     6: Self-powered,
302 				     5: Remote wakeup,
303 				     4..0: resvd */
304 	0x00,       /*  __u8  MaxPower; */
305 
306 	/* USB 1.1:
307 	 * USB 2.0, single TT organization (mandatory):
308 	 *	one interface, protocol 0
309 	 *
310 	 * USB 2.0, multiple TT organization (optional):
311 	 *	two interfaces, protocols 1 (like single TT)
312 	 *	and 2 (multiple TT mode) ... config is
313 	 *	sometimes settable
314 	 *	NOT IMPLEMENTED
315 	 */
316 
317 	/* one interface */
318 	0x09,       /*  __u8  if_bLength; */
319 	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
320 	0x00,       /*  __u8  if_bInterfaceNumber; */
321 	0x00,       /*  __u8  if_bAlternateSetting; */
322 	0x01,       /*  __u8  if_bNumEndpoints; */
323 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
324 	0x00,       /*  __u8  if_bInterfaceSubClass; */
325 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
326 	0x00,       /*  __u8  if_iInterface; */
327 
328 	/* one endpoint (status change endpoint) */
329 	0x07,       /*  __u8  ep_bLength; */
330 	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
331 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
332 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
333 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
334 		     * see hub.c:hub_configure() for details. */
335 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
336 	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
337 };
338 
339 static const u8 ss_rh_config_descriptor[] = {
340 	/* one configuration */
341 	0x09,       /*  __u8  bLength; */
342 	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
343 	0x1f, 0x00, /*  __le16 wTotalLength; */
344 	0x01,       /*  __u8  bNumInterfaces; (1) */
345 	0x01,       /*  __u8  bConfigurationValue; */
346 	0x00,       /*  __u8  iConfiguration; */
347 	0xc0,       /*  __u8  bmAttributes;
348 				 Bit 7: must be set,
349 				     6: Self-powered,
350 				     5: Remote wakeup,
351 				     4..0: resvd */
352 	0x00,       /*  __u8  MaxPower; */
353 
354 	/* one interface */
355 	0x09,       /*  __u8  if_bLength; */
356 	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
357 	0x00,       /*  __u8  if_bInterfaceNumber; */
358 	0x00,       /*  __u8  if_bAlternateSetting; */
359 	0x01,       /*  __u8  if_bNumEndpoints; */
360 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
361 	0x00,       /*  __u8  if_bInterfaceSubClass; */
362 	0x00,       /*  __u8  if_bInterfaceProtocol; */
363 	0x00,       /*  __u8  if_iInterface; */
364 
365 	/* one endpoint (status change endpoint) */
366 	0x07,       /*  __u8  ep_bLength; */
367 	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
368 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
369 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
370 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
371 		     * see hub.c:hub_configure() for details. */
372 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
373 	0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
374 
375 	/* one SuperSpeed endpoint companion descriptor */
376 	0x06,        /* __u8 ss_bLength */
377 	USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
378 		     /* Companion */
379 	0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
380 	0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
381 	0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
382 };
383 
384 /* authorized_default behaviour:
385  * -1 is authorized for all devices except wireless (old behaviour)
386  * 0 is unauthorized for all devices
387  * 1 is authorized for all devices
388  */
389 static int authorized_default = -1;
390 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
391 MODULE_PARM_DESC(authorized_default,
392 		"Default USB device authorization: 0 is not authorized, 1 is "
393 		"authorized, -1 is authorized except for wireless USB (default, "
394 		"old behaviour");
395 /*-------------------------------------------------------------------------*/
396 
397 /**
398  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
399  * @s: Null-terminated ASCII (actually ISO-8859-1) string
400  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
401  * @len: Length (in bytes; may be odd) of descriptor buffer.
402  *
403  * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
404  * whichever is less.
405  *
406  * Note:
407  * USB String descriptors can contain at most 126 characters; input
408  * strings longer than that are truncated.
409  */
410 static unsigned
411 ascii2desc(char const *s, u8 *buf, unsigned len)
412 {
413 	unsigned n, t = 2 + 2*strlen(s);
414 
415 	if (t > 254)
416 		t = 254;	/* Longest possible UTF string descriptor */
417 	if (len > t)
418 		len = t;
419 
420 	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
421 
422 	n = len;
423 	while (n--) {
424 		*buf++ = t;
425 		if (!n--)
426 			break;
427 		*buf++ = t >> 8;
428 		t = (unsigned char)*s++;
429 	}
430 	return len;
431 }
432 
433 /**
434  * rh_string() - provides string descriptors for root hub
435  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
436  * @hcd: the host controller for this root hub
437  * @data: buffer for output packet
438  * @len: length of the provided buffer
439  *
440  * Produces either a manufacturer, product or serial number string for the
441  * virtual root hub device.
442  *
443  * Return: The number of bytes filled in: the length of the descriptor or
444  * of the provided buffer, whichever is less.
445  */
446 static unsigned
447 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
448 {
449 	char buf[100];
450 	char const *s;
451 	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
452 
453 	/* language ids */
454 	switch (id) {
455 	case 0:
456 		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
457 		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
458 		if (len > 4)
459 			len = 4;
460 		memcpy(data, langids, len);
461 		return len;
462 	case 1:
463 		/* Serial number */
464 		s = hcd->self.bus_name;
465 		break;
466 	case 2:
467 		/* Product name */
468 		s = hcd->product_desc;
469 		break;
470 	case 3:
471 		/* Manufacturer */
472 		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
473 			init_utsname()->release, hcd->driver->description);
474 		s = buf;
475 		break;
476 	default:
477 		/* Can't happen; caller guarantees it */
478 		return 0;
479 	}
480 
481 	return ascii2desc(s, data, len);
482 }
483 
484 
485 /* Root hub control transfers execute synchronously */
486 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
487 {
488 	struct usb_ctrlrequest *cmd;
489 	u16		typeReq, wValue, wIndex, wLength;
490 	u8		*ubuf = urb->transfer_buffer;
491 	unsigned	len = 0;
492 	int		status;
493 	u8		patch_wakeup = 0;
494 	u8		patch_protocol = 0;
495 	u16		tbuf_size;
496 	u8		*tbuf = NULL;
497 	const u8	*bufp;
498 
499 	might_sleep();
500 
501 	spin_lock_irq(&hcd_root_hub_lock);
502 	status = usb_hcd_link_urb_to_ep(hcd, urb);
503 	spin_unlock_irq(&hcd_root_hub_lock);
504 	if (status)
505 		return status;
506 	urb->hcpriv = hcd;	/* Indicate it's queued */
507 
508 	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
509 	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
510 	wValue   = le16_to_cpu (cmd->wValue);
511 	wIndex   = le16_to_cpu (cmd->wIndex);
512 	wLength  = le16_to_cpu (cmd->wLength);
513 
514 	if (wLength > urb->transfer_buffer_length)
515 		goto error;
516 
517 	/*
518 	 * tbuf should be at least as big as the
519 	 * USB hub descriptor.
520 	 */
521 	tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
522 	tbuf = kzalloc(tbuf_size, GFP_KERNEL);
523 	if (!tbuf)
524 		return -ENOMEM;
525 
526 	bufp = tbuf;
527 
528 
529 	urb->actual_length = 0;
530 	switch (typeReq) {
531 
532 	/* DEVICE REQUESTS */
533 
534 	/* The root hub's remote wakeup enable bit is implemented using
535 	 * driver model wakeup flags.  If this system supports wakeup
536 	 * through USB, userspace may change the default "allow wakeup"
537 	 * policy through sysfs or these calls.
538 	 *
539 	 * Most root hubs support wakeup from downstream devices, for
540 	 * runtime power management (disabling USB clocks and reducing
541 	 * VBUS power usage).  However, not all of them do so; silicon,
542 	 * board, and BIOS bugs here are not uncommon, so these can't
543 	 * be treated quite like external hubs.
544 	 *
545 	 * Likewise, not all root hubs will pass wakeup events upstream,
546 	 * to wake up the whole system.  So don't assume root hub and
547 	 * controller capabilities are identical.
548 	 */
549 
550 	case DeviceRequest | USB_REQ_GET_STATUS:
551 		tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
552 					<< USB_DEVICE_REMOTE_WAKEUP)
553 				| (1 << USB_DEVICE_SELF_POWERED);
554 		tbuf[1] = 0;
555 		len = 2;
556 		break;
557 	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
558 		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
559 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
560 		else
561 			goto error;
562 		break;
563 	case DeviceOutRequest | USB_REQ_SET_FEATURE:
564 		if (device_can_wakeup(&hcd->self.root_hub->dev)
565 				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
566 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
567 		else
568 			goto error;
569 		break;
570 	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
571 		tbuf[0] = 1;
572 		len = 1;
573 			/* FALLTHROUGH */
574 	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
575 		break;
576 	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
577 		switch (wValue & 0xff00) {
578 		case USB_DT_DEVICE << 8:
579 			switch (hcd->speed) {
580 			case HCD_USB31:
581 				bufp = usb31_rh_dev_descriptor;
582 				break;
583 			case HCD_USB3:
584 				bufp = usb3_rh_dev_descriptor;
585 				break;
586 			case HCD_USB25:
587 				bufp = usb25_rh_dev_descriptor;
588 				break;
589 			case HCD_USB2:
590 				bufp = usb2_rh_dev_descriptor;
591 				break;
592 			case HCD_USB11:
593 				bufp = usb11_rh_dev_descriptor;
594 				break;
595 			default:
596 				goto error;
597 			}
598 			len = 18;
599 			if (hcd->has_tt)
600 				patch_protocol = 1;
601 			break;
602 		case USB_DT_CONFIG << 8:
603 			switch (hcd->speed) {
604 			case HCD_USB31:
605 			case HCD_USB3:
606 				bufp = ss_rh_config_descriptor;
607 				len = sizeof ss_rh_config_descriptor;
608 				break;
609 			case HCD_USB25:
610 			case HCD_USB2:
611 				bufp = hs_rh_config_descriptor;
612 				len = sizeof hs_rh_config_descriptor;
613 				break;
614 			case HCD_USB11:
615 				bufp = fs_rh_config_descriptor;
616 				len = sizeof fs_rh_config_descriptor;
617 				break;
618 			default:
619 				goto error;
620 			}
621 			if (device_can_wakeup(&hcd->self.root_hub->dev))
622 				patch_wakeup = 1;
623 			break;
624 		case USB_DT_STRING << 8:
625 			if ((wValue & 0xff) < 4)
626 				urb->actual_length = rh_string(wValue & 0xff,
627 						hcd, ubuf, wLength);
628 			else /* unsupported IDs --> "protocol stall" */
629 				goto error;
630 			break;
631 		case USB_DT_BOS << 8:
632 			goto nongeneric;
633 		default:
634 			goto error;
635 		}
636 		break;
637 	case DeviceRequest | USB_REQ_GET_INTERFACE:
638 		tbuf[0] = 0;
639 		len = 1;
640 			/* FALLTHROUGH */
641 	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
642 		break;
643 	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
644 		/* wValue == urb->dev->devaddr */
645 		dev_dbg (hcd->self.controller, "root hub device address %d\n",
646 			wValue);
647 		break;
648 
649 	/* INTERFACE REQUESTS (no defined feature/status flags) */
650 
651 	/* ENDPOINT REQUESTS */
652 
653 	case EndpointRequest | USB_REQ_GET_STATUS:
654 		/* ENDPOINT_HALT flag */
655 		tbuf[0] = 0;
656 		tbuf[1] = 0;
657 		len = 2;
658 			/* FALLTHROUGH */
659 	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
660 	case EndpointOutRequest | USB_REQ_SET_FEATURE:
661 		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
662 		break;
663 
664 	/* CLASS REQUESTS (and errors) */
665 
666 	default:
667 nongeneric:
668 		/* non-generic request */
669 		switch (typeReq) {
670 		case GetHubStatus:
671 			len = 4;
672 			break;
673 		case GetPortStatus:
674 			if (wValue == HUB_PORT_STATUS)
675 				len = 4;
676 			else
677 				/* other port status types return 8 bytes */
678 				len = 8;
679 			break;
680 		case GetHubDescriptor:
681 			len = sizeof (struct usb_hub_descriptor);
682 			break;
683 		case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
684 			/* len is returned by hub_control */
685 			break;
686 		}
687 		status = hcd->driver->hub_control (hcd,
688 			typeReq, wValue, wIndex,
689 			tbuf, wLength);
690 
691 		if (typeReq == GetHubDescriptor)
692 			usb_hub_adjust_deviceremovable(hcd->self.root_hub,
693 				(struct usb_hub_descriptor *)tbuf);
694 		break;
695 error:
696 		/* "protocol stall" on error */
697 		status = -EPIPE;
698 	}
699 
700 	if (status < 0) {
701 		len = 0;
702 		if (status != -EPIPE) {
703 			dev_dbg (hcd->self.controller,
704 				"CTRL: TypeReq=0x%x val=0x%x "
705 				"idx=0x%x len=%d ==> %d\n",
706 				typeReq, wValue, wIndex,
707 				wLength, status);
708 		}
709 	} else if (status > 0) {
710 		/* hub_control may return the length of data copied. */
711 		len = status;
712 		status = 0;
713 	}
714 	if (len) {
715 		if (urb->transfer_buffer_length < len)
716 			len = urb->transfer_buffer_length;
717 		urb->actual_length = len;
718 		/* always USB_DIR_IN, toward host */
719 		memcpy (ubuf, bufp, len);
720 
721 		/* report whether RH hardware supports remote wakeup */
722 		if (patch_wakeup &&
723 				len > offsetof (struct usb_config_descriptor,
724 						bmAttributes))
725 			((struct usb_config_descriptor *)ubuf)->bmAttributes
726 				|= USB_CONFIG_ATT_WAKEUP;
727 
728 		/* report whether RH hardware has an integrated TT */
729 		if (patch_protocol &&
730 				len > offsetof(struct usb_device_descriptor,
731 						bDeviceProtocol))
732 			((struct usb_device_descriptor *) ubuf)->
733 				bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
734 	}
735 
736 	kfree(tbuf);
737 
738 	/* any errors get returned through the urb completion */
739 	spin_lock_irq(&hcd_root_hub_lock);
740 	usb_hcd_unlink_urb_from_ep(hcd, urb);
741 	usb_hcd_giveback_urb(hcd, urb, status);
742 	spin_unlock_irq(&hcd_root_hub_lock);
743 	return 0;
744 }
745 
746 /*-------------------------------------------------------------------------*/
747 
748 /*
749  * Root Hub interrupt transfers are polled using a timer if the
750  * driver requests it; otherwise the driver is responsible for
751  * calling usb_hcd_poll_rh_status() when an event occurs.
752  *
753  * Completions are called in_interrupt(), but they may or may not
754  * be in_irq().
755  */
756 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
757 {
758 	struct urb	*urb;
759 	int		length;
760 	unsigned long	flags;
761 	char		buffer[6];	/* Any root hubs with > 31 ports? */
762 
763 	if (unlikely(!hcd->rh_pollable))
764 		return;
765 	if (!hcd->uses_new_polling && !hcd->status_urb)
766 		return;
767 
768 	length = hcd->driver->hub_status_data(hcd, buffer);
769 	if (length > 0) {
770 
771 		/* try to complete the status urb */
772 		spin_lock_irqsave(&hcd_root_hub_lock, flags);
773 		urb = hcd->status_urb;
774 		if (urb) {
775 			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
776 			hcd->status_urb = NULL;
777 			urb->actual_length = length;
778 			memcpy(urb->transfer_buffer, buffer, length);
779 
780 			usb_hcd_unlink_urb_from_ep(hcd, urb);
781 			usb_hcd_giveback_urb(hcd, urb, 0);
782 		} else {
783 			length = 0;
784 			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
785 		}
786 		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
787 	}
788 
789 	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
790 	 * exceed that limit if HZ is 100. The math is more clunky than
791 	 * maybe expected, this is to make sure that all timers for USB devices
792 	 * fire at the same time to give the CPU a break in between */
793 	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
794 			(length == 0 && hcd->status_urb != NULL))
795 		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
796 }
797 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
798 
799 /* timer callback */
800 static void rh_timer_func (unsigned long _hcd)
801 {
802 	usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
803 }
804 
805 /*-------------------------------------------------------------------------*/
806 
807 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
808 {
809 	int		retval;
810 	unsigned long	flags;
811 	unsigned	len = 1 + (urb->dev->maxchild / 8);
812 
813 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
814 	if (hcd->status_urb || urb->transfer_buffer_length < len) {
815 		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
816 		retval = -EINVAL;
817 		goto done;
818 	}
819 
820 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
821 	if (retval)
822 		goto done;
823 
824 	hcd->status_urb = urb;
825 	urb->hcpriv = hcd;	/* indicate it's queued */
826 	if (!hcd->uses_new_polling)
827 		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
828 
829 	/* If a status change has already occurred, report it ASAP */
830 	else if (HCD_POLL_PENDING(hcd))
831 		mod_timer(&hcd->rh_timer, jiffies);
832 	retval = 0;
833  done:
834 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
835 	return retval;
836 }
837 
838 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
839 {
840 	if (usb_endpoint_xfer_int(&urb->ep->desc))
841 		return rh_queue_status (hcd, urb);
842 	if (usb_endpoint_xfer_control(&urb->ep->desc))
843 		return rh_call_control (hcd, urb);
844 	return -EINVAL;
845 }
846 
847 /*-------------------------------------------------------------------------*/
848 
849 /* Unlinks of root-hub control URBs are legal, but they don't do anything
850  * since these URBs always execute synchronously.
851  */
852 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
853 {
854 	unsigned long	flags;
855 	int		rc;
856 
857 	spin_lock_irqsave(&hcd_root_hub_lock, flags);
858 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
859 	if (rc)
860 		goto done;
861 
862 	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
863 		;	/* Do nothing */
864 
865 	} else {				/* Status URB */
866 		if (!hcd->uses_new_polling)
867 			del_timer (&hcd->rh_timer);
868 		if (urb == hcd->status_urb) {
869 			hcd->status_urb = NULL;
870 			usb_hcd_unlink_urb_from_ep(hcd, urb);
871 			usb_hcd_giveback_urb(hcd, urb, status);
872 		}
873 	}
874  done:
875 	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
876 	return rc;
877 }
878 
879 
880 
881 /*
882  * Show & store the current value of authorized_default
883  */
884 static ssize_t authorized_default_show(struct device *dev,
885 				       struct device_attribute *attr, char *buf)
886 {
887 	struct usb_device *rh_usb_dev = to_usb_device(dev);
888 	struct usb_bus *usb_bus = rh_usb_dev->bus;
889 	struct usb_hcd *hcd;
890 
891 	hcd = bus_to_hcd(usb_bus);
892 	return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd));
893 }
894 
895 static ssize_t authorized_default_store(struct device *dev,
896 					struct device_attribute *attr,
897 					const char *buf, size_t size)
898 {
899 	ssize_t result;
900 	unsigned val;
901 	struct usb_device *rh_usb_dev = to_usb_device(dev);
902 	struct usb_bus *usb_bus = rh_usb_dev->bus;
903 	struct usb_hcd *hcd;
904 
905 	hcd = bus_to_hcd(usb_bus);
906 	result = sscanf(buf, "%u\n", &val);
907 	if (result == 1) {
908 		if (val)
909 			set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
910 		else
911 			clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
912 
913 		result = size;
914 	} else {
915 		result = -EINVAL;
916 	}
917 	return result;
918 }
919 static DEVICE_ATTR_RW(authorized_default);
920 
921 /*
922  * interface_authorized_default_show - show default authorization status
923  * for USB interfaces
924  *
925  * note: interface_authorized_default is the default value
926  *       for initializing the authorized attribute of interfaces
927  */
928 static ssize_t interface_authorized_default_show(struct device *dev,
929 		struct device_attribute *attr, char *buf)
930 {
931 	struct usb_device *usb_dev = to_usb_device(dev);
932 	struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
933 
934 	return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd));
935 }
936 
937 /*
938  * interface_authorized_default_store - store default authorization status
939  * for USB interfaces
940  *
941  * note: interface_authorized_default is the default value
942  *       for initializing the authorized attribute of interfaces
943  */
944 static ssize_t interface_authorized_default_store(struct device *dev,
945 		struct device_attribute *attr, const char *buf, size_t count)
946 {
947 	struct usb_device *usb_dev = to_usb_device(dev);
948 	struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
949 	int rc = count;
950 	bool val;
951 
952 	if (strtobool(buf, &val) != 0)
953 		return -EINVAL;
954 
955 	if (val)
956 		set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
957 	else
958 		clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
959 
960 	return rc;
961 }
962 static DEVICE_ATTR_RW(interface_authorized_default);
963 
964 /* Group all the USB bus attributes */
965 static struct attribute *usb_bus_attrs[] = {
966 		&dev_attr_authorized_default.attr,
967 		&dev_attr_interface_authorized_default.attr,
968 		NULL,
969 };
970 
971 static struct attribute_group usb_bus_attr_group = {
972 	.name = NULL,	/* we want them in the same directory */
973 	.attrs = usb_bus_attrs,
974 };
975 
976 
977 
978 /*-------------------------------------------------------------------------*/
979 
980 /**
981  * usb_bus_init - shared initialization code
982  * @bus: the bus structure being initialized
983  *
984  * This code is used to initialize a usb_bus structure, memory for which is
985  * separately managed.
986  */
987 static void usb_bus_init (struct usb_bus *bus)
988 {
989 	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
990 
991 	bus->devnum_next = 1;
992 
993 	bus->root_hub = NULL;
994 	bus->busnum = -1;
995 	bus->bandwidth_allocated = 0;
996 	bus->bandwidth_int_reqs  = 0;
997 	bus->bandwidth_isoc_reqs = 0;
998 	mutex_init(&bus->devnum_next_mutex);
999 }
1000 
1001 /*-------------------------------------------------------------------------*/
1002 
1003 /**
1004  * usb_register_bus - registers the USB host controller with the usb core
1005  * @bus: pointer to the bus to register
1006  * Context: !in_interrupt()
1007  *
1008  * Assigns a bus number, and links the controller into usbcore data
1009  * structures so that it can be seen by scanning the bus list.
1010  *
1011  * Return: 0 if successful. A negative error code otherwise.
1012  */
1013 static int usb_register_bus(struct usb_bus *bus)
1014 {
1015 	int result = -E2BIG;
1016 	int busnum;
1017 
1018 	mutex_lock(&usb_bus_idr_lock);
1019 	busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
1020 	if (busnum < 0) {
1021 		pr_err("%s: failed to get bus number\n", usbcore_name);
1022 		goto error_find_busnum;
1023 	}
1024 	bus->busnum = busnum;
1025 	mutex_unlock(&usb_bus_idr_lock);
1026 
1027 	usb_notify_add_bus(bus);
1028 
1029 	dev_info (bus->controller, "new USB bus registered, assigned bus "
1030 		  "number %d\n", bus->busnum);
1031 	return 0;
1032 
1033 error_find_busnum:
1034 	mutex_unlock(&usb_bus_idr_lock);
1035 	return result;
1036 }
1037 
1038 /**
1039  * usb_deregister_bus - deregisters the USB host controller
1040  * @bus: pointer to the bus to deregister
1041  * Context: !in_interrupt()
1042  *
1043  * Recycles the bus number, and unlinks the controller from usbcore data
1044  * structures so that it won't be seen by scanning the bus list.
1045  */
1046 static void usb_deregister_bus (struct usb_bus *bus)
1047 {
1048 	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
1049 
1050 	/*
1051 	 * NOTE: make sure that all the devices are removed by the
1052 	 * controller code, as well as having it call this when cleaning
1053 	 * itself up
1054 	 */
1055 	mutex_lock(&usb_bus_idr_lock);
1056 	idr_remove(&usb_bus_idr, bus->busnum);
1057 	mutex_unlock(&usb_bus_idr_lock);
1058 
1059 	usb_notify_remove_bus(bus);
1060 }
1061 
1062 /**
1063  * register_root_hub - called by usb_add_hcd() to register a root hub
1064  * @hcd: host controller for this root hub
1065  *
1066  * This function registers the root hub with the USB subsystem.  It sets up
1067  * the device properly in the device tree and then calls usb_new_device()
1068  * to register the usb device.  It also assigns the root hub's USB address
1069  * (always 1).
1070  *
1071  * Return: 0 if successful. A negative error code otherwise.
1072  */
1073 static int register_root_hub(struct usb_hcd *hcd)
1074 {
1075 	struct device *parent_dev = hcd->self.controller;
1076 	struct usb_device *usb_dev = hcd->self.root_hub;
1077 	const int devnum = 1;
1078 	int retval;
1079 
1080 	usb_dev->devnum = devnum;
1081 	usb_dev->bus->devnum_next = devnum + 1;
1082 	memset (&usb_dev->bus->devmap.devicemap, 0,
1083 			sizeof usb_dev->bus->devmap.devicemap);
1084 	set_bit (devnum, usb_dev->bus->devmap.devicemap);
1085 	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1086 
1087 	mutex_lock(&usb_bus_idr_lock);
1088 
1089 	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1090 	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1091 	if (retval != sizeof usb_dev->descriptor) {
1092 		mutex_unlock(&usb_bus_idr_lock);
1093 		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1094 				dev_name(&usb_dev->dev), retval);
1095 		return (retval < 0) ? retval : -EMSGSIZE;
1096 	}
1097 
1098 	if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1099 		retval = usb_get_bos_descriptor(usb_dev);
1100 		if (!retval) {
1101 			usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1102 		} else if (usb_dev->speed >= USB_SPEED_SUPER) {
1103 			mutex_unlock(&usb_bus_idr_lock);
1104 			dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1105 					dev_name(&usb_dev->dev), retval);
1106 			return retval;
1107 		}
1108 	}
1109 
1110 	retval = usb_new_device (usb_dev);
1111 	if (retval) {
1112 		dev_err (parent_dev, "can't register root hub for %s, %d\n",
1113 				dev_name(&usb_dev->dev), retval);
1114 	} else {
1115 		spin_lock_irq (&hcd_root_hub_lock);
1116 		hcd->rh_registered = 1;
1117 		spin_unlock_irq (&hcd_root_hub_lock);
1118 
1119 		/* Did the HC die before the root hub was registered? */
1120 		if (HCD_DEAD(hcd))
1121 			usb_hc_died (hcd);	/* This time clean up */
1122 		usb_dev->dev.of_node = parent_dev->of_node;
1123 	}
1124 	mutex_unlock(&usb_bus_idr_lock);
1125 
1126 	return retval;
1127 }
1128 
1129 /*
1130  * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1131  * @bus: the bus which the root hub belongs to
1132  * @portnum: the port which is being resumed
1133  *
1134  * HCDs should call this function when they know that a resume signal is
1135  * being sent to a root-hub port.  The root hub will be prevented from
1136  * going into autosuspend until usb_hcd_end_port_resume() is called.
1137  *
1138  * The bus's private lock must be held by the caller.
1139  */
1140 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1141 {
1142 	unsigned bit = 1 << portnum;
1143 
1144 	if (!(bus->resuming_ports & bit)) {
1145 		bus->resuming_ports |= bit;
1146 		pm_runtime_get_noresume(&bus->root_hub->dev);
1147 	}
1148 }
1149 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1150 
1151 /*
1152  * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1153  * @bus: the bus which the root hub belongs to
1154  * @portnum: the port which is being resumed
1155  *
1156  * HCDs should call this function when they know that a resume signal has
1157  * stopped being sent to a root-hub port.  The root hub will be allowed to
1158  * autosuspend again.
1159  *
1160  * The bus's private lock must be held by the caller.
1161  */
1162 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1163 {
1164 	unsigned bit = 1 << portnum;
1165 
1166 	if (bus->resuming_ports & bit) {
1167 		bus->resuming_ports &= ~bit;
1168 		pm_runtime_put_noidle(&bus->root_hub->dev);
1169 	}
1170 }
1171 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1172 
1173 /*-------------------------------------------------------------------------*/
1174 
1175 /**
1176  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1177  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1178  * @is_input: true iff the transaction sends data to the host
1179  * @isoc: true for isochronous transactions, false for interrupt ones
1180  * @bytecount: how many bytes in the transaction.
1181  *
1182  * Return: Approximate bus time in nanoseconds for a periodic transaction.
1183  *
1184  * Note:
1185  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1186  * scheduled in software, this function is only used for such scheduling.
1187  */
1188 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1189 {
1190 	unsigned long	tmp;
1191 
1192 	switch (speed) {
1193 	case USB_SPEED_LOW: 	/* INTR only */
1194 		if (is_input) {
1195 			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1196 			return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1197 		} else {
1198 			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1199 			return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1200 		}
1201 	case USB_SPEED_FULL:	/* ISOC or INTR */
1202 		if (isoc) {
1203 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1204 			return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1205 		} else {
1206 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1207 			return 9107L + BW_HOST_DELAY + tmp;
1208 		}
1209 	case USB_SPEED_HIGH:	/* ISOC or INTR */
1210 		/* FIXME adjust for input vs output */
1211 		if (isoc)
1212 			tmp = HS_NSECS_ISO (bytecount);
1213 		else
1214 			tmp = HS_NSECS (bytecount);
1215 		return tmp;
1216 	default:
1217 		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1218 		return -1;
1219 	}
1220 }
1221 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1222 
1223 
1224 /*-------------------------------------------------------------------------*/
1225 
1226 /*
1227  * Generic HC operations.
1228  */
1229 
1230 /*-------------------------------------------------------------------------*/
1231 
1232 /**
1233  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1234  * @hcd: host controller to which @urb was submitted
1235  * @urb: URB being submitted
1236  *
1237  * Host controller drivers should call this routine in their enqueue()
1238  * method.  The HCD's private spinlock must be held and interrupts must
1239  * be disabled.  The actions carried out here are required for URB
1240  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1241  *
1242  * Return: 0 for no error, otherwise a negative error code (in which case
1243  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1244  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1245  * the private spinlock and returning.
1246  */
1247 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1248 {
1249 	int		rc = 0;
1250 
1251 	spin_lock(&hcd_urb_list_lock);
1252 
1253 	/* Check that the URB isn't being killed */
1254 	if (unlikely(atomic_read(&urb->reject))) {
1255 		rc = -EPERM;
1256 		goto done;
1257 	}
1258 
1259 	if (unlikely(!urb->ep->enabled)) {
1260 		rc = -ENOENT;
1261 		goto done;
1262 	}
1263 
1264 	if (unlikely(!urb->dev->can_submit)) {
1265 		rc = -EHOSTUNREACH;
1266 		goto done;
1267 	}
1268 
1269 	/*
1270 	 * Check the host controller's state and add the URB to the
1271 	 * endpoint's queue.
1272 	 */
1273 	if (HCD_RH_RUNNING(hcd)) {
1274 		urb->unlinked = 0;
1275 		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1276 	} else {
1277 		rc = -ESHUTDOWN;
1278 		goto done;
1279 	}
1280  done:
1281 	spin_unlock(&hcd_urb_list_lock);
1282 	return rc;
1283 }
1284 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1285 
1286 /**
1287  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1288  * @hcd: host controller to which @urb was submitted
1289  * @urb: URB being checked for unlinkability
1290  * @status: error code to store in @urb if the unlink succeeds
1291  *
1292  * Host controller drivers should call this routine in their dequeue()
1293  * method.  The HCD's private spinlock must be held and interrupts must
1294  * be disabled.  The actions carried out here are required for making
1295  * sure than an unlink is valid.
1296  *
1297  * Return: 0 for no error, otherwise a negative error code (in which case
1298  * the dequeue() method must fail).  The possible error codes are:
1299  *
1300  *	-EIDRM: @urb was not submitted or has already completed.
1301  *		The completion function may not have been called yet.
1302  *
1303  *	-EBUSY: @urb has already been unlinked.
1304  */
1305 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1306 		int status)
1307 {
1308 	struct list_head	*tmp;
1309 
1310 	/* insist the urb is still queued */
1311 	list_for_each(tmp, &urb->ep->urb_list) {
1312 		if (tmp == &urb->urb_list)
1313 			break;
1314 	}
1315 	if (tmp != &urb->urb_list)
1316 		return -EIDRM;
1317 
1318 	/* Any status except -EINPROGRESS means something already started to
1319 	 * unlink this URB from the hardware.  So there's no more work to do.
1320 	 */
1321 	if (urb->unlinked)
1322 		return -EBUSY;
1323 	urb->unlinked = status;
1324 	return 0;
1325 }
1326 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1327 
1328 /**
1329  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1330  * @hcd: host controller to which @urb was submitted
1331  * @urb: URB being unlinked
1332  *
1333  * Host controller drivers should call this routine before calling
1334  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1335  * interrupts must be disabled.  The actions carried out here are required
1336  * for URB completion.
1337  */
1338 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1339 {
1340 	/* clear all state linking urb to this dev (and hcd) */
1341 	spin_lock(&hcd_urb_list_lock);
1342 	list_del_init(&urb->urb_list);
1343 	spin_unlock(&hcd_urb_list_lock);
1344 }
1345 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1346 
1347 /*
1348  * Some usb host controllers can only perform dma using a small SRAM area.
1349  * The usb core itself is however optimized for host controllers that can dma
1350  * using regular system memory - like pci devices doing bus mastering.
1351  *
1352  * To support host controllers with limited dma capabilities we provide dma
1353  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1354  * For this to work properly the host controller code must first use the
1355  * function dma_declare_coherent_memory() to point out which memory area
1356  * that should be used for dma allocations.
1357  *
1358  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1359  * dma using dma_alloc_coherent() which in turn allocates from the memory
1360  * area pointed out with dma_declare_coherent_memory().
1361  *
1362  * So, to summarize...
1363  *
1364  * - We need "local" memory, canonical example being
1365  *   a small SRAM on a discrete controller being the
1366  *   only memory that the controller can read ...
1367  *   (a) "normal" kernel memory is no good, and
1368  *   (b) there's not enough to share
1369  *
1370  * - The only *portable* hook for such stuff in the
1371  *   DMA framework is dma_declare_coherent_memory()
1372  *
1373  * - So we use that, even though the primary requirement
1374  *   is that the memory be "local" (hence addressable
1375  *   by that device), not "coherent".
1376  *
1377  */
1378 
1379 static int hcd_alloc_coherent(struct usb_bus *bus,
1380 			      gfp_t mem_flags, dma_addr_t *dma_handle,
1381 			      void **vaddr_handle, size_t size,
1382 			      enum dma_data_direction dir)
1383 {
1384 	unsigned char *vaddr;
1385 
1386 	if (*vaddr_handle == NULL) {
1387 		WARN_ON_ONCE(1);
1388 		return -EFAULT;
1389 	}
1390 
1391 	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1392 				 mem_flags, dma_handle);
1393 	if (!vaddr)
1394 		return -ENOMEM;
1395 
1396 	/*
1397 	 * Store the virtual address of the buffer at the end
1398 	 * of the allocated dma buffer. The size of the buffer
1399 	 * may be uneven so use unaligned functions instead
1400 	 * of just rounding up. It makes sense to optimize for
1401 	 * memory footprint over access speed since the amount
1402 	 * of memory available for dma may be limited.
1403 	 */
1404 	put_unaligned((unsigned long)*vaddr_handle,
1405 		      (unsigned long *)(vaddr + size));
1406 
1407 	if (dir == DMA_TO_DEVICE)
1408 		memcpy(vaddr, *vaddr_handle, size);
1409 
1410 	*vaddr_handle = vaddr;
1411 	return 0;
1412 }
1413 
1414 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1415 			      void **vaddr_handle, size_t size,
1416 			      enum dma_data_direction dir)
1417 {
1418 	unsigned char *vaddr = *vaddr_handle;
1419 
1420 	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1421 
1422 	if (dir == DMA_FROM_DEVICE)
1423 		memcpy(vaddr, *vaddr_handle, size);
1424 
1425 	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1426 
1427 	*vaddr_handle = vaddr;
1428 	*dma_handle = 0;
1429 }
1430 
1431 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1432 {
1433 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1434 	    (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1435 		dma_unmap_single(hcd->self.controller,
1436 				urb->setup_dma,
1437 				sizeof(struct usb_ctrlrequest),
1438 				DMA_TO_DEVICE);
1439 	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1440 		hcd_free_coherent(urb->dev->bus,
1441 				&urb->setup_dma,
1442 				(void **) &urb->setup_packet,
1443 				sizeof(struct usb_ctrlrequest),
1444 				DMA_TO_DEVICE);
1445 
1446 	/* Make it safe to call this routine more than once */
1447 	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1448 }
1449 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1450 
1451 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1452 {
1453 	if (hcd->driver->unmap_urb_for_dma)
1454 		hcd->driver->unmap_urb_for_dma(hcd, urb);
1455 	else
1456 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1457 }
1458 
1459 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1460 {
1461 	enum dma_data_direction dir;
1462 
1463 	usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1464 
1465 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1466 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1467 	    (urb->transfer_flags & URB_DMA_MAP_SG))
1468 		dma_unmap_sg(hcd->self.controller,
1469 				urb->sg,
1470 				urb->num_sgs,
1471 				dir);
1472 	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1473 		 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1474 		dma_unmap_page(hcd->self.controller,
1475 				urb->transfer_dma,
1476 				urb->transfer_buffer_length,
1477 				dir);
1478 	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1479 		 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1480 		dma_unmap_single(hcd->self.controller,
1481 				urb->transfer_dma,
1482 				urb->transfer_buffer_length,
1483 				dir);
1484 	else if (urb->transfer_flags & URB_MAP_LOCAL)
1485 		hcd_free_coherent(urb->dev->bus,
1486 				&urb->transfer_dma,
1487 				&urb->transfer_buffer,
1488 				urb->transfer_buffer_length,
1489 				dir);
1490 
1491 	/* Make it safe to call this routine more than once */
1492 	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1493 			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1494 }
1495 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1496 
1497 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1498 			   gfp_t mem_flags)
1499 {
1500 	if (hcd->driver->map_urb_for_dma)
1501 		return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1502 	else
1503 		return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1504 }
1505 
1506 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1507 			    gfp_t mem_flags)
1508 {
1509 	enum dma_data_direction dir;
1510 	int ret = 0;
1511 
1512 	/* Map the URB's buffers for DMA access.
1513 	 * Lower level HCD code should use *_dma exclusively,
1514 	 * unless it uses pio or talks to another transport,
1515 	 * or uses the provided scatter gather list for bulk.
1516 	 */
1517 
1518 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1519 		if (hcd->self.uses_pio_for_control)
1520 			return ret;
1521 		if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1522 			urb->setup_dma = dma_map_single(
1523 					hcd->self.controller,
1524 					urb->setup_packet,
1525 					sizeof(struct usb_ctrlrequest),
1526 					DMA_TO_DEVICE);
1527 			if (dma_mapping_error(hcd->self.controller,
1528 						urb->setup_dma))
1529 				return -EAGAIN;
1530 			urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1531 		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1532 			ret = hcd_alloc_coherent(
1533 					urb->dev->bus, mem_flags,
1534 					&urb->setup_dma,
1535 					(void **)&urb->setup_packet,
1536 					sizeof(struct usb_ctrlrequest),
1537 					DMA_TO_DEVICE);
1538 			if (ret)
1539 				return ret;
1540 			urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1541 		}
1542 	}
1543 
1544 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1545 	if (urb->transfer_buffer_length != 0
1546 	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1547 		if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1548 			if (urb->num_sgs) {
1549 				int n;
1550 
1551 				/* We don't support sg for isoc transfers ! */
1552 				if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1553 					WARN_ON(1);
1554 					return -EINVAL;
1555 				}
1556 
1557 				n = dma_map_sg(
1558 						hcd->self.controller,
1559 						urb->sg,
1560 						urb->num_sgs,
1561 						dir);
1562 				if (n <= 0)
1563 					ret = -EAGAIN;
1564 				else
1565 					urb->transfer_flags |= URB_DMA_MAP_SG;
1566 				urb->num_mapped_sgs = n;
1567 				if (n != urb->num_sgs)
1568 					urb->transfer_flags |=
1569 							URB_DMA_SG_COMBINED;
1570 			} else if (urb->sg) {
1571 				struct scatterlist *sg = urb->sg;
1572 				urb->transfer_dma = dma_map_page(
1573 						hcd->self.controller,
1574 						sg_page(sg),
1575 						sg->offset,
1576 						urb->transfer_buffer_length,
1577 						dir);
1578 				if (dma_mapping_error(hcd->self.controller,
1579 						urb->transfer_dma))
1580 					ret = -EAGAIN;
1581 				else
1582 					urb->transfer_flags |= URB_DMA_MAP_PAGE;
1583 			} else if (is_vmalloc_addr(urb->transfer_buffer)) {
1584 				WARN_ONCE(1, "transfer buffer not dma capable\n");
1585 				ret = -EAGAIN;
1586 			} else {
1587 				urb->transfer_dma = dma_map_single(
1588 						hcd->self.controller,
1589 						urb->transfer_buffer,
1590 						urb->transfer_buffer_length,
1591 						dir);
1592 				if (dma_mapping_error(hcd->self.controller,
1593 						urb->transfer_dma))
1594 					ret = -EAGAIN;
1595 				else
1596 					urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1597 			}
1598 		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1599 			ret = hcd_alloc_coherent(
1600 					urb->dev->bus, mem_flags,
1601 					&urb->transfer_dma,
1602 					&urb->transfer_buffer,
1603 					urb->transfer_buffer_length,
1604 					dir);
1605 			if (ret == 0)
1606 				urb->transfer_flags |= URB_MAP_LOCAL;
1607 		}
1608 		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1609 				URB_SETUP_MAP_LOCAL)))
1610 			usb_hcd_unmap_urb_for_dma(hcd, urb);
1611 	}
1612 	return ret;
1613 }
1614 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1615 
1616 /*-------------------------------------------------------------------------*/
1617 
1618 /* may be called in any context with a valid urb->dev usecount
1619  * caller surrenders "ownership" of urb
1620  * expects usb_submit_urb() to have sanity checked and conditioned all
1621  * inputs in the urb
1622  */
1623 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1624 {
1625 	int			status;
1626 	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1627 
1628 	/* increment urb's reference count as part of giving it to the HCD
1629 	 * (which will control it).  HCD guarantees that it either returns
1630 	 * an error or calls giveback(), but not both.
1631 	 */
1632 	usb_get_urb(urb);
1633 	atomic_inc(&urb->use_count);
1634 	atomic_inc(&urb->dev->urbnum);
1635 	usbmon_urb_submit(&hcd->self, urb);
1636 
1637 	/* NOTE requirements on root-hub callers (usbfs and the hub
1638 	 * driver, for now):  URBs' urb->transfer_buffer must be
1639 	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1640 	 * they could clobber root hub response data.  Also, control
1641 	 * URBs must be submitted in process context with interrupts
1642 	 * enabled.
1643 	 */
1644 
1645 	if (is_root_hub(urb->dev)) {
1646 		status = rh_urb_enqueue(hcd, urb);
1647 	} else {
1648 		status = map_urb_for_dma(hcd, urb, mem_flags);
1649 		if (likely(status == 0)) {
1650 			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1651 			if (unlikely(status))
1652 				unmap_urb_for_dma(hcd, urb);
1653 		}
1654 	}
1655 
1656 	if (unlikely(status)) {
1657 		usbmon_urb_submit_error(&hcd->self, urb, status);
1658 		urb->hcpriv = NULL;
1659 		INIT_LIST_HEAD(&urb->urb_list);
1660 		atomic_dec(&urb->use_count);
1661 		atomic_dec(&urb->dev->urbnum);
1662 		if (atomic_read(&urb->reject))
1663 			wake_up(&usb_kill_urb_queue);
1664 		usb_put_urb(urb);
1665 	}
1666 	return status;
1667 }
1668 
1669 /*-------------------------------------------------------------------------*/
1670 
1671 /* this makes the hcd giveback() the urb more quickly, by kicking it
1672  * off hardware queues (which may take a while) and returning it as
1673  * soon as practical.  we've already set up the urb's return status,
1674  * but we can't know if the callback completed already.
1675  */
1676 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1677 {
1678 	int		value;
1679 
1680 	if (is_root_hub(urb->dev))
1681 		value = usb_rh_urb_dequeue(hcd, urb, status);
1682 	else {
1683 
1684 		/* The only reason an HCD might fail this call is if
1685 		 * it has not yet fully queued the urb to begin with.
1686 		 * Such failures should be harmless. */
1687 		value = hcd->driver->urb_dequeue(hcd, urb, status);
1688 	}
1689 	return value;
1690 }
1691 
1692 /*
1693  * called in any context
1694  *
1695  * caller guarantees urb won't be recycled till both unlink()
1696  * and the urb's completion function return
1697  */
1698 int usb_hcd_unlink_urb (struct urb *urb, int status)
1699 {
1700 	struct usb_hcd		*hcd;
1701 	struct usb_device	*udev = urb->dev;
1702 	int			retval = -EIDRM;
1703 	unsigned long		flags;
1704 
1705 	/* Prevent the device and bus from going away while
1706 	 * the unlink is carried out.  If they are already gone
1707 	 * then urb->use_count must be 0, since disconnected
1708 	 * devices can't have any active URBs.
1709 	 */
1710 	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1711 	if (atomic_read(&urb->use_count) > 0) {
1712 		retval = 0;
1713 		usb_get_dev(udev);
1714 	}
1715 	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1716 	if (retval == 0) {
1717 		hcd = bus_to_hcd(urb->dev->bus);
1718 		retval = unlink1(hcd, urb, status);
1719 		if (retval == 0)
1720 			retval = -EINPROGRESS;
1721 		else if (retval != -EIDRM && retval != -EBUSY)
1722 			dev_dbg(&udev->dev, "hcd_unlink_urb %p fail %d\n",
1723 					urb, retval);
1724 		usb_put_dev(udev);
1725 	}
1726 	return retval;
1727 }
1728 
1729 /*-------------------------------------------------------------------------*/
1730 
1731 static void __usb_hcd_giveback_urb(struct urb *urb)
1732 {
1733 	struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1734 	struct usb_anchor *anchor = urb->anchor;
1735 	int status = urb->unlinked;
1736 	unsigned long flags;
1737 
1738 	urb->hcpriv = NULL;
1739 	if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1740 	    urb->actual_length < urb->transfer_buffer_length &&
1741 	    !status))
1742 		status = -EREMOTEIO;
1743 
1744 	unmap_urb_for_dma(hcd, urb);
1745 	usbmon_urb_complete(&hcd->self, urb, status);
1746 	usb_anchor_suspend_wakeups(anchor);
1747 	usb_unanchor_urb(urb);
1748 	if (likely(status == 0))
1749 		usb_led_activity(USB_LED_EVENT_HOST);
1750 
1751 	/* pass ownership to the completion handler */
1752 	urb->status = status;
1753 
1754 	/*
1755 	 * We disable local IRQs here avoid possible deadlock because
1756 	 * drivers may call spin_lock() to hold lock which might be
1757 	 * acquired in one hard interrupt handler.
1758 	 *
1759 	 * The local_irq_save()/local_irq_restore() around complete()
1760 	 * will be removed if current USB drivers have been cleaned up
1761 	 * and no one may trigger the above deadlock situation when
1762 	 * running complete() in tasklet.
1763 	 */
1764 	local_irq_save(flags);
1765 	urb->complete(urb);
1766 	local_irq_restore(flags);
1767 
1768 	usb_anchor_resume_wakeups(anchor);
1769 	atomic_dec(&urb->use_count);
1770 	if (unlikely(atomic_read(&urb->reject)))
1771 		wake_up(&usb_kill_urb_queue);
1772 	usb_put_urb(urb);
1773 }
1774 
1775 static void usb_giveback_urb_bh(unsigned long param)
1776 {
1777 	struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1778 	struct list_head local_list;
1779 
1780 	spin_lock_irq(&bh->lock);
1781 	bh->running = true;
1782  restart:
1783 	list_replace_init(&bh->head, &local_list);
1784 	spin_unlock_irq(&bh->lock);
1785 
1786 	while (!list_empty(&local_list)) {
1787 		struct urb *urb;
1788 
1789 		urb = list_entry(local_list.next, struct urb, urb_list);
1790 		list_del_init(&urb->urb_list);
1791 		bh->completing_ep = urb->ep;
1792 		__usb_hcd_giveback_urb(urb);
1793 		bh->completing_ep = NULL;
1794 	}
1795 
1796 	/* check if there are new URBs to giveback */
1797 	spin_lock_irq(&bh->lock);
1798 	if (!list_empty(&bh->head))
1799 		goto restart;
1800 	bh->running = false;
1801 	spin_unlock_irq(&bh->lock);
1802 }
1803 
1804 /**
1805  * usb_hcd_giveback_urb - return URB from HCD to device driver
1806  * @hcd: host controller returning the URB
1807  * @urb: urb being returned to the USB device driver.
1808  * @status: completion status code for the URB.
1809  * Context: in_interrupt()
1810  *
1811  * This hands the URB from HCD to its USB device driver, using its
1812  * completion function.  The HCD has freed all per-urb resources
1813  * (and is done using urb->hcpriv).  It also released all HCD locks;
1814  * the device driver won't cause problems if it frees, modifies,
1815  * or resubmits this URB.
1816  *
1817  * If @urb was unlinked, the value of @status will be overridden by
1818  * @urb->unlinked.  Erroneous short transfers are detected in case
1819  * the HCD hasn't checked for them.
1820  */
1821 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1822 {
1823 	struct giveback_urb_bh *bh;
1824 	bool running, high_prio_bh;
1825 
1826 	/* pass status to tasklet via unlinked */
1827 	if (likely(!urb->unlinked))
1828 		urb->unlinked = status;
1829 
1830 	if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1831 		__usb_hcd_giveback_urb(urb);
1832 		return;
1833 	}
1834 
1835 	if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1836 		bh = &hcd->high_prio_bh;
1837 		high_prio_bh = true;
1838 	} else {
1839 		bh = &hcd->low_prio_bh;
1840 		high_prio_bh = false;
1841 	}
1842 
1843 	spin_lock(&bh->lock);
1844 	list_add_tail(&urb->urb_list, &bh->head);
1845 	running = bh->running;
1846 	spin_unlock(&bh->lock);
1847 
1848 	if (running)
1849 		;
1850 	else if (high_prio_bh)
1851 		tasklet_hi_schedule(&bh->bh);
1852 	else
1853 		tasklet_schedule(&bh->bh);
1854 }
1855 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1856 
1857 /*-------------------------------------------------------------------------*/
1858 
1859 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1860  * queue to drain completely.  The caller must first insure that no more
1861  * URBs can be submitted for this endpoint.
1862  */
1863 void usb_hcd_flush_endpoint(struct usb_device *udev,
1864 		struct usb_host_endpoint *ep)
1865 {
1866 	struct usb_hcd		*hcd;
1867 	struct urb		*urb;
1868 
1869 	if (!ep)
1870 		return;
1871 	might_sleep();
1872 	hcd = bus_to_hcd(udev->bus);
1873 
1874 	/* No more submits can occur */
1875 	spin_lock_irq(&hcd_urb_list_lock);
1876 rescan:
1877 	list_for_each_entry (urb, &ep->urb_list, urb_list) {
1878 		int	is_in;
1879 
1880 		if (urb->unlinked)
1881 			continue;
1882 		usb_get_urb (urb);
1883 		is_in = usb_urb_dir_in(urb);
1884 		spin_unlock(&hcd_urb_list_lock);
1885 
1886 		/* kick hcd */
1887 		unlink1(hcd, urb, -ESHUTDOWN);
1888 		dev_dbg (hcd->self.controller,
1889 			"shutdown urb %p ep%d%s%s\n",
1890 			urb, usb_endpoint_num(&ep->desc),
1891 			is_in ? "in" : "out",
1892 			({	char *s;
1893 
1894 				 switch (usb_endpoint_type(&ep->desc)) {
1895 				 case USB_ENDPOINT_XFER_CONTROL:
1896 					s = ""; break;
1897 				 case USB_ENDPOINT_XFER_BULK:
1898 					s = "-bulk"; break;
1899 				 case USB_ENDPOINT_XFER_INT:
1900 					s = "-intr"; break;
1901 				 default:
1902 					s = "-iso"; break;
1903 				};
1904 				s;
1905 			}));
1906 		usb_put_urb (urb);
1907 
1908 		/* list contents may have changed */
1909 		spin_lock(&hcd_urb_list_lock);
1910 		goto rescan;
1911 	}
1912 	spin_unlock_irq(&hcd_urb_list_lock);
1913 
1914 	/* Wait until the endpoint queue is completely empty */
1915 	while (!list_empty (&ep->urb_list)) {
1916 		spin_lock_irq(&hcd_urb_list_lock);
1917 
1918 		/* The list may have changed while we acquired the spinlock */
1919 		urb = NULL;
1920 		if (!list_empty (&ep->urb_list)) {
1921 			urb = list_entry (ep->urb_list.prev, struct urb,
1922 					urb_list);
1923 			usb_get_urb (urb);
1924 		}
1925 		spin_unlock_irq(&hcd_urb_list_lock);
1926 
1927 		if (urb) {
1928 			usb_kill_urb (urb);
1929 			usb_put_urb (urb);
1930 		}
1931 	}
1932 }
1933 
1934 /**
1935  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1936  *				the bus bandwidth
1937  * @udev: target &usb_device
1938  * @new_config: new configuration to install
1939  * @cur_alt: the current alternate interface setting
1940  * @new_alt: alternate interface setting that is being installed
1941  *
1942  * To change configurations, pass in the new configuration in new_config,
1943  * and pass NULL for cur_alt and new_alt.
1944  *
1945  * To reset a device's configuration (put the device in the ADDRESSED state),
1946  * pass in NULL for new_config, cur_alt, and new_alt.
1947  *
1948  * To change alternate interface settings, pass in NULL for new_config,
1949  * pass in the current alternate interface setting in cur_alt,
1950  * and pass in the new alternate interface setting in new_alt.
1951  *
1952  * Return: An error if the requested bandwidth change exceeds the
1953  * bus bandwidth or host controller internal resources.
1954  */
1955 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1956 		struct usb_host_config *new_config,
1957 		struct usb_host_interface *cur_alt,
1958 		struct usb_host_interface *new_alt)
1959 {
1960 	int num_intfs, i, j;
1961 	struct usb_host_interface *alt = NULL;
1962 	int ret = 0;
1963 	struct usb_hcd *hcd;
1964 	struct usb_host_endpoint *ep;
1965 
1966 	hcd = bus_to_hcd(udev->bus);
1967 	if (!hcd->driver->check_bandwidth)
1968 		return 0;
1969 
1970 	/* Configuration is being removed - set configuration 0 */
1971 	if (!new_config && !cur_alt) {
1972 		for (i = 1; i < 16; ++i) {
1973 			ep = udev->ep_out[i];
1974 			if (ep)
1975 				hcd->driver->drop_endpoint(hcd, udev, ep);
1976 			ep = udev->ep_in[i];
1977 			if (ep)
1978 				hcd->driver->drop_endpoint(hcd, udev, ep);
1979 		}
1980 		hcd->driver->check_bandwidth(hcd, udev);
1981 		return 0;
1982 	}
1983 	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1984 	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1985 	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1986 	 * ok to exclude it.
1987 	 */
1988 	if (new_config) {
1989 		num_intfs = new_config->desc.bNumInterfaces;
1990 		/* Remove endpoints (except endpoint 0, which is always on the
1991 		 * schedule) from the old config from the schedule
1992 		 */
1993 		for (i = 1; i < 16; ++i) {
1994 			ep = udev->ep_out[i];
1995 			if (ep) {
1996 				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1997 				if (ret < 0)
1998 					goto reset;
1999 			}
2000 			ep = udev->ep_in[i];
2001 			if (ep) {
2002 				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2003 				if (ret < 0)
2004 					goto reset;
2005 			}
2006 		}
2007 		for (i = 0; i < num_intfs; ++i) {
2008 			struct usb_host_interface *first_alt;
2009 			int iface_num;
2010 
2011 			first_alt = &new_config->intf_cache[i]->altsetting[0];
2012 			iface_num = first_alt->desc.bInterfaceNumber;
2013 			/* Set up endpoints for alternate interface setting 0 */
2014 			alt = usb_find_alt_setting(new_config, iface_num, 0);
2015 			if (!alt)
2016 				/* No alt setting 0? Pick the first setting. */
2017 				alt = first_alt;
2018 
2019 			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
2020 				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
2021 				if (ret < 0)
2022 					goto reset;
2023 			}
2024 		}
2025 	}
2026 	if (cur_alt && new_alt) {
2027 		struct usb_interface *iface = usb_ifnum_to_if(udev,
2028 				cur_alt->desc.bInterfaceNumber);
2029 
2030 		if (!iface)
2031 			return -EINVAL;
2032 		if (iface->resetting_device) {
2033 			/*
2034 			 * The USB core just reset the device, so the xHCI host
2035 			 * and the device will think alt setting 0 is installed.
2036 			 * However, the USB core will pass in the alternate
2037 			 * setting installed before the reset as cur_alt.  Dig
2038 			 * out the alternate setting 0 structure, or the first
2039 			 * alternate setting if a broken device doesn't have alt
2040 			 * setting 0.
2041 			 */
2042 			cur_alt = usb_altnum_to_altsetting(iface, 0);
2043 			if (!cur_alt)
2044 				cur_alt = &iface->altsetting[0];
2045 		}
2046 
2047 		/* Drop all the endpoints in the current alt setting */
2048 		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
2049 			ret = hcd->driver->drop_endpoint(hcd, udev,
2050 					&cur_alt->endpoint[i]);
2051 			if (ret < 0)
2052 				goto reset;
2053 		}
2054 		/* Add all the endpoints in the new alt setting */
2055 		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
2056 			ret = hcd->driver->add_endpoint(hcd, udev,
2057 					&new_alt->endpoint[i]);
2058 			if (ret < 0)
2059 				goto reset;
2060 		}
2061 	}
2062 	ret = hcd->driver->check_bandwidth(hcd, udev);
2063 reset:
2064 	if (ret < 0)
2065 		hcd->driver->reset_bandwidth(hcd, udev);
2066 	return ret;
2067 }
2068 
2069 /* Disables the endpoint: synchronizes with the hcd to make sure all
2070  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
2071  * have been called previously.  Use for set_configuration, set_interface,
2072  * driver removal, physical disconnect.
2073  *
2074  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
2075  * type, maxpacket size, toggle, halt status, and scheduling.
2076  */
2077 void usb_hcd_disable_endpoint(struct usb_device *udev,
2078 		struct usb_host_endpoint *ep)
2079 {
2080 	struct usb_hcd		*hcd;
2081 
2082 	might_sleep();
2083 	hcd = bus_to_hcd(udev->bus);
2084 	if (hcd->driver->endpoint_disable)
2085 		hcd->driver->endpoint_disable(hcd, ep);
2086 }
2087 
2088 /**
2089  * usb_hcd_reset_endpoint - reset host endpoint state
2090  * @udev: USB device.
2091  * @ep:   the endpoint to reset.
2092  *
2093  * Resets any host endpoint state such as the toggle bit, sequence
2094  * number and current window.
2095  */
2096 void usb_hcd_reset_endpoint(struct usb_device *udev,
2097 			    struct usb_host_endpoint *ep)
2098 {
2099 	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2100 
2101 	if (hcd->driver->endpoint_reset)
2102 		hcd->driver->endpoint_reset(hcd, ep);
2103 	else {
2104 		int epnum = usb_endpoint_num(&ep->desc);
2105 		int is_out = usb_endpoint_dir_out(&ep->desc);
2106 		int is_control = usb_endpoint_xfer_control(&ep->desc);
2107 
2108 		usb_settoggle(udev, epnum, is_out, 0);
2109 		if (is_control)
2110 			usb_settoggle(udev, epnum, !is_out, 0);
2111 	}
2112 }
2113 
2114 /**
2115  * usb_alloc_streams - allocate bulk endpoint stream IDs.
2116  * @interface:		alternate setting that includes all endpoints.
2117  * @eps:		array of endpoints that need streams.
2118  * @num_eps:		number of endpoints in the array.
2119  * @num_streams:	number of streams to allocate.
2120  * @mem_flags:		flags hcd should use to allocate memory.
2121  *
2122  * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2123  * Drivers may queue multiple transfers to different stream IDs, which may
2124  * complete in a different order than they were queued.
2125  *
2126  * Return: On success, the number of allocated streams. On failure, a negative
2127  * error code.
2128  */
2129 int usb_alloc_streams(struct usb_interface *interface,
2130 		struct usb_host_endpoint **eps, unsigned int num_eps,
2131 		unsigned int num_streams, gfp_t mem_flags)
2132 {
2133 	struct usb_hcd *hcd;
2134 	struct usb_device *dev;
2135 	int i, ret;
2136 
2137 	dev = interface_to_usbdev(interface);
2138 	hcd = bus_to_hcd(dev->bus);
2139 	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2140 		return -EINVAL;
2141 	if (dev->speed < USB_SPEED_SUPER)
2142 		return -EINVAL;
2143 	if (dev->state < USB_STATE_CONFIGURED)
2144 		return -ENODEV;
2145 
2146 	for (i = 0; i < num_eps; i++) {
2147 		/* Streams only apply to bulk endpoints. */
2148 		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2149 			return -EINVAL;
2150 		/* Re-alloc is not allowed */
2151 		if (eps[i]->streams)
2152 			return -EINVAL;
2153 	}
2154 
2155 	ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2156 			num_streams, mem_flags);
2157 	if (ret < 0)
2158 		return ret;
2159 
2160 	for (i = 0; i < num_eps; i++)
2161 		eps[i]->streams = ret;
2162 
2163 	return ret;
2164 }
2165 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2166 
2167 /**
2168  * usb_free_streams - free bulk endpoint stream IDs.
2169  * @interface:	alternate setting that includes all endpoints.
2170  * @eps:	array of endpoints to remove streams from.
2171  * @num_eps:	number of endpoints in the array.
2172  * @mem_flags:	flags hcd should use to allocate memory.
2173  *
2174  * Reverts a group of bulk endpoints back to not using stream IDs.
2175  * Can fail if we are given bad arguments, or HCD is broken.
2176  *
2177  * Return: 0 on success. On failure, a negative error code.
2178  */
2179 int usb_free_streams(struct usb_interface *interface,
2180 		struct usb_host_endpoint **eps, unsigned int num_eps,
2181 		gfp_t mem_flags)
2182 {
2183 	struct usb_hcd *hcd;
2184 	struct usb_device *dev;
2185 	int i, ret;
2186 
2187 	dev = interface_to_usbdev(interface);
2188 	hcd = bus_to_hcd(dev->bus);
2189 	if (dev->speed < USB_SPEED_SUPER)
2190 		return -EINVAL;
2191 
2192 	/* Double-free is not allowed */
2193 	for (i = 0; i < num_eps; i++)
2194 		if (!eps[i] || !eps[i]->streams)
2195 			return -EINVAL;
2196 
2197 	ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2198 	if (ret < 0)
2199 		return ret;
2200 
2201 	for (i = 0; i < num_eps; i++)
2202 		eps[i]->streams = 0;
2203 
2204 	return ret;
2205 }
2206 EXPORT_SYMBOL_GPL(usb_free_streams);
2207 
2208 /* Protect against drivers that try to unlink URBs after the device
2209  * is gone, by waiting until all unlinks for @udev are finished.
2210  * Since we don't currently track URBs by device, simply wait until
2211  * nothing is running in the locked region of usb_hcd_unlink_urb().
2212  */
2213 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2214 {
2215 	spin_lock_irq(&hcd_urb_unlink_lock);
2216 	spin_unlock_irq(&hcd_urb_unlink_lock);
2217 }
2218 
2219 /*-------------------------------------------------------------------------*/
2220 
2221 /* called in any context */
2222 int usb_hcd_get_frame_number (struct usb_device *udev)
2223 {
2224 	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
2225 
2226 	if (!HCD_RH_RUNNING(hcd))
2227 		return -ESHUTDOWN;
2228 	return hcd->driver->get_frame_number (hcd);
2229 }
2230 
2231 /*-------------------------------------------------------------------------*/
2232 
2233 #ifdef	CONFIG_PM
2234 
2235 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2236 {
2237 	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2238 	int		status;
2239 	int		old_state = hcd->state;
2240 
2241 	dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2242 			(PMSG_IS_AUTO(msg) ? "auto-" : ""),
2243 			rhdev->do_remote_wakeup);
2244 	if (HCD_DEAD(hcd)) {
2245 		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2246 		return 0;
2247 	}
2248 
2249 	if (!hcd->driver->bus_suspend) {
2250 		status = -ENOENT;
2251 	} else {
2252 		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2253 		hcd->state = HC_STATE_QUIESCING;
2254 		status = hcd->driver->bus_suspend(hcd);
2255 	}
2256 	if (status == 0) {
2257 		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2258 		hcd->state = HC_STATE_SUSPENDED;
2259 
2260 		/* Did we race with a root-hub wakeup event? */
2261 		if (rhdev->do_remote_wakeup) {
2262 			char	buffer[6];
2263 
2264 			status = hcd->driver->hub_status_data(hcd, buffer);
2265 			if (status != 0) {
2266 				dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2267 				hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2268 				status = -EBUSY;
2269 			}
2270 		}
2271 	} else {
2272 		spin_lock_irq(&hcd_root_hub_lock);
2273 		if (!HCD_DEAD(hcd)) {
2274 			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2275 			hcd->state = old_state;
2276 		}
2277 		spin_unlock_irq(&hcd_root_hub_lock);
2278 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2279 				"suspend", status);
2280 	}
2281 	return status;
2282 }
2283 
2284 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2285 {
2286 	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2287 	int		status;
2288 	int		old_state = hcd->state;
2289 
2290 	dev_dbg(&rhdev->dev, "usb %sresume\n",
2291 			(PMSG_IS_AUTO(msg) ? "auto-" : ""));
2292 	if (HCD_DEAD(hcd)) {
2293 		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2294 		return 0;
2295 	}
2296 	if (!hcd->driver->bus_resume)
2297 		return -ENOENT;
2298 	if (HCD_RH_RUNNING(hcd))
2299 		return 0;
2300 
2301 	hcd->state = HC_STATE_RESUMING;
2302 	status = hcd->driver->bus_resume(hcd);
2303 	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2304 	if (status == 0) {
2305 		struct usb_device *udev;
2306 		int port1;
2307 
2308 		spin_lock_irq(&hcd_root_hub_lock);
2309 		if (!HCD_DEAD(hcd)) {
2310 			usb_set_device_state(rhdev, rhdev->actconfig
2311 					? USB_STATE_CONFIGURED
2312 					: USB_STATE_ADDRESS);
2313 			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2314 			hcd->state = HC_STATE_RUNNING;
2315 		}
2316 		spin_unlock_irq(&hcd_root_hub_lock);
2317 
2318 		/*
2319 		 * Check whether any of the enabled ports on the root hub are
2320 		 * unsuspended.  If they are then a TRSMRCY delay is needed
2321 		 * (this is what the USB-2 spec calls a "global resume").
2322 		 * Otherwise we can skip the delay.
2323 		 */
2324 		usb_hub_for_each_child(rhdev, port1, udev) {
2325 			if (udev->state != USB_STATE_NOTATTACHED &&
2326 					!udev->port_is_suspended) {
2327 				usleep_range(10000, 11000);	/* TRSMRCY */
2328 				break;
2329 			}
2330 		}
2331 	} else {
2332 		hcd->state = old_state;
2333 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2334 				"resume", status);
2335 		if (status != -ESHUTDOWN)
2336 			usb_hc_died(hcd);
2337 	}
2338 	return status;
2339 }
2340 
2341 /* Workqueue routine for root-hub remote wakeup */
2342 static void hcd_resume_work(struct work_struct *work)
2343 {
2344 	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2345 	struct usb_device *udev = hcd->self.root_hub;
2346 
2347 	usb_remote_wakeup(udev);
2348 }
2349 
2350 /**
2351  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2352  * @hcd: host controller for this root hub
2353  *
2354  * The USB host controller calls this function when its root hub is
2355  * suspended (with the remote wakeup feature enabled) and a remote
2356  * wakeup request is received.  The routine submits a workqueue request
2357  * to resume the root hub (that is, manage its downstream ports again).
2358  */
2359 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2360 {
2361 	unsigned long flags;
2362 
2363 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2364 	if (hcd->rh_registered) {
2365 		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2366 		queue_work(pm_wq, &hcd->wakeup_work);
2367 	}
2368 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2369 }
2370 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2371 
2372 #endif	/* CONFIG_PM */
2373 
2374 /*-------------------------------------------------------------------------*/
2375 
2376 #ifdef	CONFIG_USB_OTG
2377 
2378 /**
2379  * usb_bus_start_enum - start immediate enumeration (for OTG)
2380  * @bus: the bus (must use hcd framework)
2381  * @port_num: 1-based number of port; usually bus->otg_port
2382  * Context: in_interrupt()
2383  *
2384  * Starts enumeration, with an immediate reset followed later by
2385  * hub_wq identifying and possibly configuring the device.
2386  * This is needed by OTG controller drivers, where it helps meet
2387  * HNP protocol timing requirements for starting a port reset.
2388  *
2389  * Return: 0 if successful.
2390  */
2391 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2392 {
2393 	struct usb_hcd		*hcd;
2394 	int			status = -EOPNOTSUPP;
2395 
2396 	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2397 	 * boards with root hubs hooked up to internal devices (instead of
2398 	 * just the OTG port) may need more attention to resetting...
2399 	 */
2400 	hcd = bus_to_hcd(bus);
2401 	if (port_num && hcd->driver->start_port_reset)
2402 		status = hcd->driver->start_port_reset(hcd, port_num);
2403 
2404 	/* allocate hub_wq shortly after (first) root port reset finishes;
2405 	 * it may issue others, until at least 50 msecs have passed.
2406 	 */
2407 	if (status == 0)
2408 		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2409 	return status;
2410 }
2411 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2412 
2413 #endif
2414 
2415 /*-------------------------------------------------------------------------*/
2416 
2417 /**
2418  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2419  * @irq: the IRQ being raised
2420  * @__hcd: pointer to the HCD whose IRQ is being signaled
2421  *
2422  * If the controller isn't HALTed, calls the driver's irq handler.
2423  * Checks whether the controller is now dead.
2424  *
2425  * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2426  */
2427 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2428 {
2429 	struct usb_hcd		*hcd = __hcd;
2430 	irqreturn_t		rc;
2431 
2432 	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2433 		rc = IRQ_NONE;
2434 	else if (hcd->driver->irq(hcd) == IRQ_NONE)
2435 		rc = IRQ_NONE;
2436 	else
2437 		rc = IRQ_HANDLED;
2438 
2439 	return rc;
2440 }
2441 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2442 
2443 /*-------------------------------------------------------------------------*/
2444 
2445 /**
2446  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2447  * @hcd: pointer to the HCD representing the controller
2448  *
2449  * This is called by bus glue to report a USB host controller that died
2450  * while operations may still have been pending.  It's called automatically
2451  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2452  *
2453  * Only call this function with the primary HCD.
2454  */
2455 void usb_hc_died (struct usb_hcd *hcd)
2456 {
2457 	unsigned long flags;
2458 
2459 	dev_err (hcd->self.controller, "HC died; cleaning up\n");
2460 
2461 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2462 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2463 	set_bit(HCD_FLAG_DEAD, &hcd->flags);
2464 	if (hcd->rh_registered) {
2465 		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2466 
2467 		/* make hub_wq clean up old urbs and devices */
2468 		usb_set_device_state (hcd->self.root_hub,
2469 				USB_STATE_NOTATTACHED);
2470 		usb_kick_hub_wq(hcd->self.root_hub);
2471 	}
2472 	if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2473 		hcd = hcd->shared_hcd;
2474 		if (hcd->rh_registered) {
2475 			clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2476 
2477 			/* make hub_wq clean up old urbs and devices */
2478 			usb_set_device_state(hcd->self.root_hub,
2479 					USB_STATE_NOTATTACHED);
2480 			usb_kick_hub_wq(hcd->self.root_hub);
2481 		}
2482 	}
2483 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2484 	/* Make sure that the other roothub is also deallocated. */
2485 }
2486 EXPORT_SYMBOL_GPL (usb_hc_died);
2487 
2488 /*-------------------------------------------------------------------------*/
2489 
2490 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2491 {
2492 
2493 	spin_lock_init(&bh->lock);
2494 	INIT_LIST_HEAD(&bh->head);
2495 	tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2496 }
2497 
2498 /**
2499  * usb_create_shared_hcd - create and initialize an HCD structure
2500  * @driver: HC driver that will use this hcd
2501  * @dev: device for this HC, stored in hcd->self.controller
2502  * @bus_name: value to store in hcd->self.bus_name
2503  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2504  *              PCI device.  Only allocate certain resources for the primary HCD
2505  * Context: !in_interrupt()
2506  *
2507  * Allocate a struct usb_hcd, with extra space at the end for the
2508  * HC driver's private data.  Initialize the generic members of the
2509  * hcd structure.
2510  *
2511  * Return: On success, a pointer to the created and initialized HCD structure.
2512  * On failure (e.g. if memory is unavailable), %NULL.
2513  */
2514 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2515 		struct device *dev, const char *bus_name,
2516 		struct usb_hcd *primary_hcd)
2517 {
2518 	struct usb_hcd *hcd;
2519 
2520 	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2521 	if (!hcd)
2522 		return NULL;
2523 	if (primary_hcd == NULL) {
2524 		hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2525 				GFP_KERNEL);
2526 		if (!hcd->address0_mutex) {
2527 			kfree(hcd);
2528 			dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2529 			return NULL;
2530 		}
2531 		mutex_init(hcd->address0_mutex);
2532 		hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2533 				GFP_KERNEL);
2534 		if (!hcd->bandwidth_mutex) {
2535 			kfree(hcd);
2536 			dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2537 			return NULL;
2538 		}
2539 		mutex_init(hcd->bandwidth_mutex);
2540 		dev_set_drvdata(dev, hcd);
2541 	} else {
2542 		mutex_lock(&usb_port_peer_mutex);
2543 		hcd->address0_mutex = primary_hcd->address0_mutex;
2544 		hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2545 		hcd->primary_hcd = primary_hcd;
2546 		primary_hcd->primary_hcd = primary_hcd;
2547 		hcd->shared_hcd = primary_hcd;
2548 		primary_hcd->shared_hcd = hcd;
2549 		mutex_unlock(&usb_port_peer_mutex);
2550 	}
2551 
2552 	kref_init(&hcd->kref);
2553 
2554 	usb_bus_init(&hcd->self);
2555 	hcd->self.controller = dev;
2556 	hcd->self.bus_name = bus_name;
2557 	hcd->self.uses_dma = (dev->dma_mask != NULL);
2558 
2559 	init_timer(&hcd->rh_timer);
2560 	hcd->rh_timer.function = rh_timer_func;
2561 	hcd->rh_timer.data = (unsigned long) hcd;
2562 #ifdef CONFIG_PM
2563 	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2564 #endif
2565 
2566 	hcd->driver = driver;
2567 	hcd->speed = driver->flags & HCD_MASK;
2568 	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2569 			"USB Host Controller";
2570 	return hcd;
2571 }
2572 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2573 
2574 /**
2575  * usb_create_hcd - create and initialize an HCD structure
2576  * @driver: HC driver that will use this hcd
2577  * @dev: device for this HC, stored in hcd->self.controller
2578  * @bus_name: value to store in hcd->self.bus_name
2579  * Context: !in_interrupt()
2580  *
2581  * Allocate a struct usb_hcd, with extra space at the end for the
2582  * HC driver's private data.  Initialize the generic members of the
2583  * hcd structure.
2584  *
2585  * Return: On success, a pointer to the created and initialized HCD
2586  * structure. On failure (e.g. if memory is unavailable), %NULL.
2587  */
2588 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2589 		struct device *dev, const char *bus_name)
2590 {
2591 	return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2592 }
2593 EXPORT_SYMBOL_GPL(usb_create_hcd);
2594 
2595 /*
2596  * Roothubs that share one PCI device must also share the bandwidth mutex.
2597  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2598  * deallocated.
2599  *
2600  * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2601  * freed.  When hcd_release() is called for either hcd in a peer set,
2602  * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2603  */
2604 static void hcd_release(struct kref *kref)
2605 {
2606 	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2607 
2608 	mutex_lock(&usb_port_peer_mutex);
2609 	if (hcd->shared_hcd) {
2610 		struct usb_hcd *peer = hcd->shared_hcd;
2611 
2612 		peer->shared_hcd = NULL;
2613 		peer->primary_hcd = NULL;
2614 	} else {
2615 		kfree(hcd->address0_mutex);
2616 		kfree(hcd->bandwidth_mutex);
2617 	}
2618 	mutex_unlock(&usb_port_peer_mutex);
2619 	kfree(hcd);
2620 }
2621 
2622 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2623 {
2624 	if (hcd)
2625 		kref_get (&hcd->kref);
2626 	return hcd;
2627 }
2628 EXPORT_SYMBOL_GPL(usb_get_hcd);
2629 
2630 void usb_put_hcd (struct usb_hcd *hcd)
2631 {
2632 	if (hcd)
2633 		kref_put (&hcd->kref, hcd_release);
2634 }
2635 EXPORT_SYMBOL_GPL(usb_put_hcd);
2636 
2637 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2638 {
2639 	if (!hcd->primary_hcd)
2640 		return 1;
2641 	return hcd == hcd->primary_hcd;
2642 }
2643 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2644 
2645 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2646 {
2647 	if (!hcd->driver->find_raw_port_number)
2648 		return port1;
2649 
2650 	return hcd->driver->find_raw_port_number(hcd, port1);
2651 }
2652 
2653 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2654 		unsigned int irqnum, unsigned long irqflags)
2655 {
2656 	int retval;
2657 
2658 	if (hcd->driver->irq) {
2659 
2660 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2661 				hcd->driver->description, hcd->self.busnum);
2662 		retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2663 				hcd->irq_descr, hcd);
2664 		if (retval != 0) {
2665 			dev_err(hcd->self.controller,
2666 					"request interrupt %d failed\n",
2667 					irqnum);
2668 			return retval;
2669 		}
2670 		hcd->irq = irqnum;
2671 		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2672 				(hcd->driver->flags & HCD_MEMORY) ?
2673 					"io mem" : "io base",
2674 					(unsigned long long)hcd->rsrc_start);
2675 	} else {
2676 		hcd->irq = 0;
2677 		if (hcd->rsrc_start)
2678 			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2679 					(hcd->driver->flags & HCD_MEMORY) ?
2680 					"io mem" : "io base",
2681 					(unsigned long long)hcd->rsrc_start);
2682 	}
2683 	return 0;
2684 }
2685 
2686 /*
2687  * Before we free this root hub, flush in-flight peering attempts
2688  * and disable peer lookups
2689  */
2690 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2691 {
2692 	struct usb_device *rhdev;
2693 
2694 	mutex_lock(&usb_port_peer_mutex);
2695 	rhdev = hcd->self.root_hub;
2696 	hcd->self.root_hub = NULL;
2697 	mutex_unlock(&usb_port_peer_mutex);
2698 	usb_put_dev(rhdev);
2699 }
2700 
2701 /**
2702  * usb_add_hcd - finish generic HCD structure initialization and register
2703  * @hcd: the usb_hcd structure to initialize
2704  * @irqnum: Interrupt line to allocate
2705  * @irqflags: Interrupt type flags
2706  *
2707  * Finish the remaining parts of generic HCD initialization: allocate the
2708  * buffers of consistent memory, register the bus, request the IRQ line,
2709  * and call the driver's reset() and start() routines.
2710  */
2711 int usb_add_hcd(struct usb_hcd *hcd,
2712 		unsigned int irqnum, unsigned long irqflags)
2713 {
2714 	int retval;
2715 	struct usb_device *rhdev;
2716 
2717 	if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) {
2718 		struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0);
2719 
2720 		if (IS_ERR(phy)) {
2721 			retval = PTR_ERR(phy);
2722 			if (retval == -EPROBE_DEFER)
2723 				return retval;
2724 		} else {
2725 			retval = usb_phy_init(phy);
2726 			if (retval) {
2727 				usb_put_phy(phy);
2728 				return retval;
2729 			}
2730 			hcd->usb_phy = phy;
2731 			hcd->remove_phy = 1;
2732 		}
2733 	}
2734 
2735 	if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) {
2736 		struct phy *phy = phy_get(hcd->self.controller, "usb");
2737 
2738 		if (IS_ERR(phy)) {
2739 			retval = PTR_ERR(phy);
2740 			if (retval == -EPROBE_DEFER)
2741 				goto err_phy;
2742 		} else {
2743 			retval = phy_init(phy);
2744 			if (retval) {
2745 				phy_put(phy);
2746 				goto err_phy;
2747 			}
2748 			retval = phy_power_on(phy);
2749 			if (retval) {
2750 				phy_exit(phy);
2751 				phy_put(phy);
2752 				goto err_phy;
2753 			}
2754 			hcd->phy = phy;
2755 			hcd->remove_phy = 1;
2756 		}
2757 	}
2758 
2759 	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2760 
2761 	/* Keep old behaviour if authorized_default is not in [0, 1]. */
2762 	if (authorized_default < 0 || authorized_default > 1) {
2763 		if (hcd->wireless)
2764 			clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2765 		else
2766 			set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2767 	} else {
2768 		if (authorized_default)
2769 			set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2770 		else
2771 			clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2772 	}
2773 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2774 
2775 	/* per default all interfaces are authorized */
2776 	set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2777 
2778 	/* HC is in reset state, but accessible.  Now do the one-time init,
2779 	 * bottom up so that hcds can customize the root hubs before hub_wq
2780 	 * starts talking to them.  (Note, bus id is assigned early too.)
2781 	 */
2782 	retval = hcd_buffer_create(hcd);
2783 	if (retval != 0) {
2784 		dev_dbg(hcd->self.controller, "pool alloc failed\n");
2785 		goto err_create_buf;
2786 	}
2787 
2788 	retval = usb_register_bus(&hcd->self);
2789 	if (retval < 0)
2790 		goto err_register_bus;
2791 
2792 	rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2793 	if (rhdev == NULL) {
2794 		dev_err(hcd->self.controller, "unable to allocate root hub\n");
2795 		retval = -ENOMEM;
2796 		goto err_allocate_root_hub;
2797 	}
2798 	mutex_lock(&usb_port_peer_mutex);
2799 	hcd->self.root_hub = rhdev;
2800 	mutex_unlock(&usb_port_peer_mutex);
2801 
2802 	switch (hcd->speed) {
2803 	case HCD_USB11:
2804 		rhdev->speed = USB_SPEED_FULL;
2805 		break;
2806 	case HCD_USB2:
2807 		rhdev->speed = USB_SPEED_HIGH;
2808 		break;
2809 	case HCD_USB25:
2810 		rhdev->speed = USB_SPEED_WIRELESS;
2811 		break;
2812 	case HCD_USB3:
2813 		rhdev->speed = USB_SPEED_SUPER;
2814 		break;
2815 	case HCD_USB31:
2816 		rhdev->speed = USB_SPEED_SUPER_PLUS;
2817 		break;
2818 	default:
2819 		retval = -EINVAL;
2820 		goto err_set_rh_speed;
2821 	}
2822 
2823 	/* wakeup flag init defaults to "everything works" for root hubs,
2824 	 * but drivers can override it in reset() if needed, along with
2825 	 * recording the overall controller's system wakeup capability.
2826 	 */
2827 	device_set_wakeup_capable(&rhdev->dev, 1);
2828 
2829 	/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2830 	 * registered.  But since the controller can die at any time,
2831 	 * let's initialize the flag before touching the hardware.
2832 	 */
2833 	set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2834 
2835 	/* "reset" is misnamed; its role is now one-time init. the controller
2836 	 * should already have been reset (and boot firmware kicked off etc).
2837 	 */
2838 	if (hcd->driver->reset) {
2839 		retval = hcd->driver->reset(hcd);
2840 		if (retval < 0) {
2841 			dev_err(hcd->self.controller, "can't setup: %d\n",
2842 					retval);
2843 			goto err_hcd_driver_setup;
2844 		}
2845 	}
2846 	hcd->rh_pollable = 1;
2847 
2848 	/* NOTE: root hub and controller capabilities may not be the same */
2849 	if (device_can_wakeup(hcd->self.controller)
2850 			&& device_can_wakeup(&hcd->self.root_hub->dev))
2851 		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2852 
2853 	/* initialize tasklets */
2854 	init_giveback_urb_bh(&hcd->high_prio_bh);
2855 	init_giveback_urb_bh(&hcd->low_prio_bh);
2856 
2857 	/* enable irqs just before we start the controller,
2858 	 * if the BIOS provides legacy PCI irqs.
2859 	 */
2860 	if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2861 		retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2862 		if (retval)
2863 			goto err_request_irq;
2864 	}
2865 
2866 	hcd->state = HC_STATE_RUNNING;
2867 	retval = hcd->driver->start(hcd);
2868 	if (retval < 0) {
2869 		dev_err(hcd->self.controller, "startup error %d\n", retval);
2870 		goto err_hcd_driver_start;
2871 	}
2872 
2873 	/* starting here, usbcore will pay attention to this root hub */
2874 	retval = register_root_hub(hcd);
2875 	if (retval != 0)
2876 		goto err_register_root_hub;
2877 
2878 	retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2879 	if (retval < 0) {
2880 		printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2881 		       retval);
2882 		goto error_create_attr_group;
2883 	}
2884 	if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2885 		usb_hcd_poll_rh_status(hcd);
2886 
2887 	return retval;
2888 
2889 error_create_attr_group:
2890 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2891 	if (HC_IS_RUNNING(hcd->state))
2892 		hcd->state = HC_STATE_QUIESCING;
2893 	spin_lock_irq(&hcd_root_hub_lock);
2894 	hcd->rh_registered = 0;
2895 	spin_unlock_irq(&hcd_root_hub_lock);
2896 
2897 #ifdef CONFIG_PM
2898 	cancel_work_sync(&hcd->wakeup_work);
2899 #endif
2900 	mutex_lock(&usb_bus_idr_lock);
2901 	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2902 	mutex_unlock(&usb_bus_idr_lock);
2903 err_register_root_hub:
2904 	hcd->rh_pollable = 0;
2905 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2906 	del_timer_sync(&hcd->rh_timer);
2907 	hcd->driver->stop(hcd);
2908 	hcd->state = HC_STATE_HALT;
2909 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2910 	del_timer_sync(&hcd->rh_timer);
2911 err_hcd_driver_start:
2912 	if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2913 		free_irq(irqnum, hcd);
2914 err_request_irq:
2915 err_hcd_driver_setup:
2916 err_set_rh_speed:
2917 	usb_put_invalidate_rhdev(hcd);
2918 err_allocate_root_hub:
2919 	usb_deregister_bus(&hcd->self);
2920 err_register_bus:
2921 	hcd_buffer_destroy(hcd);
2922 err_create_buf:
2923 	if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2924 		phy_power_off(hcd->phy);
2925 		phy_exit(hcd->phy);
2926 		phy_put(hcd->phy);
2927 		hcd->phy = NULL;
2928 	}
2929 err_phy:
2930 	if (hcd->remove_phy && hcd->usb_phy) {
2931 		usb_phy_shutdown(hcd->usb_phy);
2932 		usb_put_phy(hcd->usb_phy);
2933 		hcd->usb_phy = NULL;
2934 	}
2935 	return retval;
2936 }
2937 EXPORT_SYMBOL_GPL(usb_add_hcd);
2938 
2939 /**
2940  * usb_remove_hcd - shutdown processing for generic HCDs
2941  * @hcd: the usb_hcd structure to remove
2942  * Context: !in_interrupt()
2943  *
2944  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2945  * invoking the HCD's stop() method.
2946  */
2947 void usb_remove_hcd(struct usb_hcd *hcd)
2948 {
2949 	struct usb_device *rhdev = hcd->self.root_hub;
2950 
2951 	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2952 
2953 	usb_get_dev(rhdev);
2954 	sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2955 
2956 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2957 	if (HC_IS_RUNNING (hcd->state))
2958 		hcd->state = HC_STATE_QUIESCING;
2959 
2960 	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2961 	spin_lock_irq (&hcd_root_hub_lock);
2962 	hcd->rh_registered = 0;
2963 	spin_unlock_irq (&hcd_root_hub_lock);
2964 
2965 #ifdef CONFIG_PM
2966 	cancel_work_sync(&hcd->wakeup_work);
2967 #endif
2968 
2969 	mutex_lock(&usb_bus_idr_lock);
2970 	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2971 	mutex_unlock(&usb_bus_idr_lock);
2972 
2973 	/*
2974 	 * tasklet_kill() isn't needed here because:
2975 	 * - driver's disconnect() called from usb_disconnect() should
2976 	 *   make sure its URBs are completed during the disconnect()
2977 	 *   callback
2978 	 *
2979 	 * - it is too late to run complete() here since driver may have
2980 	 *   been removed already now
2981 	 */
2982 
2983 	/* Prevent any more root-hub status calls from the timer.
2984 	 * The HCD might still restart the timer (if a port status change
2985 	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2986 	 * the hub_status_data() callback.
2987 	 */
2988 	hcd->rh_pollable = 0;
2989 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2990 	del_timer_sync(&hcd->rh_timer);
2991 
2992 	hcd->driver->stop(hcd);
2993 	hcd->state = HC_STATE_HALT;
2994 
2995 	/* In case the HCD restarted the timer, stop it again. */
2996 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2997 	del_timer_sync(&hcd->rh_timer);
2998 
2999 	if (usb_hcd_is_primary_hcd(hcd)) {
3000 		if (hcd->irq > 0)
3001 			free_irq(hcd->irq, hcd);
3002 	}
3003 
3004 	usb_deregister_bus(&hcd->self);
3005 	hcd_buffer_destroy(hcd);
3006 
3007 	if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
3008 		phy_power_off(hcd->phy);
3009 		phy_exit(hcd->phy);
3010 		phy_put(hcd->phy);
3011 		hcd->phy = NULL;
3012 	}
3013 	if (hcd->remove_phy && hcd->usb_phy) {
3014 		usb_phy_shutdown(hcd->usb_phy);
3015 		usb_put_phy(hcd->usb_phy);
3016 		hcd->usb_phy = NULL;
3017 	}
3018 
3019 	usb_put_invalidate_rhdev(hcd);
3020 }
3021 EXPORT_SYMBOL_GPL(usb_remove_hcd);
3022 
3023 void
3024 usb_hcd_platform_shutdown(struct platform_device *dev)
3025 {
3026 	struct usb_hcd *hcd = platform_get_drvdata(dev);
3027 
3028 	if (hcd->driver->shutdown)
3029 		hcd->driver->shutdown(hcd);
3030 }
3031 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3032 
3033 /*-------------------------------------------------------------------------*/
3034 
3035 #if IS_ENABLED(CONFIG_USB_MON)
3036 
3037 const struct usb_mon_operations *mon_ops;
3038 
3039 /*
3040  * The registration is unlocked.
3041  * We do it this way because we do not want to lock in hot paths.
3042  *
3043  * Notice that the code is minimally error-proof. Because usbmon needs
3044  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3045  */
3046 
3047 int usb_mon_register(const struct usb_mon_operations *ops)
3048 {
3049 
3050 	if (mon_ops)
3051 		return -EBUSY;
3052 
3053 	mon_ops = ops;
3054 	mb();
3055 	return 0;
3056 }
3057 EXPORT_SYMBOL_GPL (usb_mon_register);
3058 
3059 void usb_mon_deregister (void)
3060 {
3061 
3062 	if (mon_ops == NULL) {
3063 		printk(KERN_ERR "USB: monitor was not registered\n");
3064 		return;
3065 	}
3066 	mon_ops = NULL;
3067 	mb();
3068 }
3069 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3070 
3071 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
3072