xref: /openbmc/linux/drivers/usb/core/hcd.c (revision e6dec923)
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 
25 #include <linux/bcd.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/sched/task_stack.h>
30 #include <linux/slab.h>
31 #include <linux/completion.h>
32 #include <linux/utsname.h>
33 #include <linux/mm.h>
34 #include <asm/io.h>
35 #include <linux/device.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/mutex.h>
38 #include <asm/irq.h>
39 #include <asm/byteorder.h>
40 #include <asm/unaligned.h>
41 #include <linux/platform_device.h>
42 #include <linux/workqueue.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/types.h>
45 
46 #include <linux/phy/phy.h>
47 #include <linux/usb.h>
48 #include <linux/usb/hcd.h>
49 #include <linux/usb/phy.h>
50 #include <linux/usb/otg.h>
51 
52 #include "usb.h"
53 
54 
55 /*-------------------------------------------------------------------------*/
56 
57 /*
58  * USB Host Controller Driver framework
59  *
60  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
61  * HCD-specific behaviors/bugs.
62  *
63  * This does error checks, tracks devices and urbs, and delegates to a
64  * "hc_driver" only for code (and data) that really needs to know about
65  * hardware differences.  That includes root hub registers, i/o queues,
66  * and so on ... but as little else as possible.
67  *
68  * Shared code includes most of the "root hub" code (these are emulated,
69  * though each HC's hardware works differently) and PCI glue, plus request
70  * tracking overhead.  The HCD code should only block on spinlocks or on
71  * hardware handshaking; blocking on software events (such as other kernel
72  * threads releasing resources, or completing actions) is all generic.
73  *
74  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
75  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
76  * only by the hub driver ... and that neither should be seen or used by
77  * usb client device drivers.
78  *
79  * Contributors of ideas or unattributed patches include: David Brownell,
80  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
81  *
82  * HISTORY:
83  * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
84  *		associated cleanup.  "usb_hcd" still != "usb_bus".
85  * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
86  */
87 
88 /*-------------------------------------------------------------------------*/
89 
90 /* Keep track of which host controller drivers are loaded */
91 unsigned long usb_hcds_loaded;
92 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
93 
94 /* host controllers we manage */
95 DEFINE_IDR (usb_bus_idr);
96 EXPORT_SYMBOL_GPL (usb_bus_idr);
97 
98 /* used when allocating bus numbers */
99 #define USB_MAXBUS		64
100 
101 /* used when updating list of hcds */
102 DEFINE_MUTEX(usb_bus_idr_lock);	/* exported only for usbfs */
103 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
104 
105 /* used for controlling access to virtual root hubs */
106 static DEFINE_SPINLOCK(hcd_root_hub_lock);
107 
108 /* used when updating an endpoint's URB list */
109 static DEFINE_SPINLOCK(hcd_urb_list_lock);
110 
111 /* used to protect against unlinking URBs after the device is gone */
112 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
113 
114 /* wait queue for synchronous unlinks */
115 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
116 
117 static inline int is_root_hub(struct usb_device *udev)
118 {
119 	return (udev->parent == NULL);
120 }
121 
122 /*-------------------------------------------------------------------------*/
123 
124 /*
125  * Sharable chunks of root hub code.
126  */
127 
128 /*-------------------------------------------------------------------------*/
129 #define KERNEL_REL	bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
130 #define KERNEL_VER	bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
131 
132 /* usb 3.1 root hub device descriptor */
133 static const u8 usb31_rh_dev_descriptor[18] = {
134 	0x12,       /*  __u8  bLength; */
135 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
136 	0x10, 0x03, /*  __le16 bcdUSB; v3.1 */
137 
138 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
139 	0x00,	    /*  __u8  bDeviceSubClass; */
140 	0x03,       /*  __u8  bDeviceProtocol; USB 3 hub */
141 	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
142 
143 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
144 	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
145 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
146 
147 	0x03,       /*  __u8  iManufacturer; */
148 	0x02,       /*  __u8  iProduct; */
149 	0x01,       /*  __u8  iSerialNumber; */
150 	0x01        /*  __u8  bNumConfigurations; */
151 };
152 
153 /* usb 3.0 root hub device descriptor */
154 static const u8 usb3_rh_dev_descriptor[18] = {
155 	0x12,       /*  __u8  bLength; */
156 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
157 	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
158 
159 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
160 	0x00,	    /*  __u8  bDeviceSubClass; */
161 	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
162 	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
163 
164 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
165 	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
166 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
167 
168 	0x03,       /*  __u8  iManufacturer; */
169 	0x02,       /*  __u8  iProduct; */
170 	0x01,       /*  __u8  iSerialNumber; */
171 	0x01        /*  __u8  bNumConfigurations; */
172 };
173 
174 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
175 static const u8 usb25_rh_dev_descriptor[18] = {
176 	0x12,       /*  __u8  bLength; */
177 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
178 	0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
179 
180 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
181 	0x00,	    /*  __u8  bDeviceSubClass; */
182 	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
183 	0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
184 
185 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
186 	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
187 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
188 
189 	0x03,       /*  __u8  iManufacturer; */
190 	0x02,       /*  __u8  iProduct; */
191 	0x01,       /*  __u8  iSerialNumber; */
192 	0x01        /*  __u8  bNumConfigurations; */
193 };
194 
195 /* usb 2.0 root hub device descriptor */
196 static const u8 usb2_rh_dev_descriptor[18] = {
197 	0x12,       /*  __u8  bLength; */
198 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
199 	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
200 
201 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
202 	0x00,	    /*  __u8  bDeviceSubClass; */
203 	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
204 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
205 
206 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
207 	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
208 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
209 
210 	0x03,       /*  __u8  iManufacturer; */
211 	0x02,       /*  __u8  iProduct; */
212 	0x01,       /*  __u8  iSerialNumber; */
213 	0x01        /*  __u8  bNumConfigurations; */
214 };
215 
216 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
217 
218 /* usb 1.1 root hub device descriptor */
219 static const u8 usb11_rh_dev_descriptor[18] = {
220 	0x12,       /*  __u8  bLength; */
221 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
222 	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
223 
224 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
225 	0x00,	    /*  __u8  bDeviceSubClass; */
226 	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
227 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
228 
229 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
230 	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
231 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
232 
233 	0x03,       /*  __u8  iManufacturer; */
234 	0x02,       /*  __u8  iProduct; */
235 	0x01,       /*  __u8  iSerialNumber; */
236 	0x01        /*  __u8  bNumConfigurations; */
237 };
238 
239 
240 /*-------------------------------------------------------------------------*/
241 
242 /* Configuration descriptors for our root hubs */
243 
244 static const u8 fs_rh_config_descriptor[] = {
245 
246 	/* one configuration */
247 	0x09,       /*  __u8  bLength; */
248 	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
249 	0x19, 0x00, /*  __le16 wTotalLength; */
250 	0x01,       /*  __u8  bNumInterfaces; (1) */
251 	0x01,       /*  __u8  bConfigurationValue; */
252 	0x00,       /*  __u8  iConfiguration; */
253 	0xc0,       /*  __u8  bmAttributes;
254 				 Bit 7: must be set,
255 				     6: Self-powered,
256 				     5: Remote wakeup,
257 				     4..0: resvd */
258 	0x00,       /*  __u8  MaxPower; */
259 
260 	/* USB 1.1:
261 	 * USB 2.0, single TT organization (mandatory):
262 	 *	one interface, protocol 0
263 	 *
264 	 * USB 2.0, multiple TT organization (optional):
265 	 *	two interfaces, protocols 1 (like single TT)
266 	 *	and 2 (multiple TT mode) ... config is
267 	 *	sometimes settable
268 	 *	NOT IMPLEMENTED
269 	 */
270 
271 	/* one interface */
272 	0x09,       /*  __u8  if_bLength; */
273 	USB_DT_INTERFACE,  /* __u8 if_bDescriptorType; Interface */
274 	0x00,       /*  __u8  if_bInterfaceNumber; */
275 	0x00,       /*  __u8  if_bAlternateSetting; */
276 	0x01,       /*  __u8  if_bNumEndpoints; */
277 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
278 	0x00,       /*  __u8  if_bInterfaceSubClass; */
279 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
280 	0x00,       /*  __u8  if_iInterface; */
281 
282 	/* one endpoint (status change endpoint) */
283 	0x07,       /*  __u8  ep_bLength; */
284 	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
285 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
286 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
287 	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
288 	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
289 };
290 
291 static const u8 hs_rh_config_descriptor[] = {
292 
293 	/* one configuration */
294 	0x09,       /*  __u8  bLength; */
295 	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
296 	0x19, 0x00, /*  __le16 wTotalLength; */
297 	0x01,       /*  __u8  bNumInterfaces; (1) */
298 	0x01,       /*  __u8  bConfigurationValue; */
299 	0x00,       /*  __u8  iConfiguration; */
300 	0xc0,       /*  __u8  bmAttributes;
301 				 Bit 7: must be set,
302 				     6: Self-powered,
303 				     5: Remote wakeup,
304 				     4..0: resvd */
305 	0x00,       /*  __u8  MaxPower; */
306 
307 	/* USB 1.1:
308 	 * USB 2.0, single TT organization (mandatory):
309 	 *	one interface, protocol 0
310 	 *
311 	 * USB 2.0, multiple TT organization (optional):
312 	 *	two interfaces, protocols 1 (like single TT)
313 	 *	and 2 (multiple TT mode) ... config is
314 	 *	sometimes settable
315 	 *	NOT IMPLEMENTED
316 	 */
317 
318 	/* one interface */
319 	0x09,       /*  __u8  if_bLength; */
320 	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
321 	0x00,       /*  __u8  if_bInterfaceNumber; */
322 	0x00,       /*  __u8  if_bAlternateSetting; */
323 	0x01,       /*  __u8  if_bNumEndpoints; */
324 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
325 	0x00,       /*  __u8  if_bInterfaceSubClass; */
326 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
327 	0x00,       /*  __u8  if_iInterface; */
328 
329 	/* one endpoint (status change endpoint) */
330 	0x07,       /*  __u8  ep_bLength; */
331 	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
332 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
333 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
334 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
335 		     * see hub.c:hub_configure() for details. */
336 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
337 	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
338 };
339 
340 static const u8 ss_rh_config_descriptor[] = {
341 	/* one configuration */
342 	0x09,       /*  __u8  bLength; */
343 	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
344 	0x1f, 0x00, /*  __le16 wTotalLength; */
345 	0x01,       /*  __u8  bNumInterfaces; (1) */
346 	0x01,       /*  __u8  bConfigurationValue; */
347 	0x00,       /*  __u8  iConfiguration; */
348 	0xc0,       /*  __u8  bmAttributes;
349 				 Bit 7: must be set,
350 				     6: Self-powered,
351 				     5: Remote wakeup,
352 				     4..0: resvd */
353 	0x00,       /*  __u8  MaxPower; */
354 
355 	/* one interface */
356 	0x09,       /*  __u8  if_bLength; */
357 	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
358 	0x00,       /*  __u8  if_bInterfaceNumber; */
359 	0x00,       /*  __u8  if_bAlternateSetting; */
360 	0x01,       /*  __u8  if_bNumEndpoints; */
361 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
362 	0x00,       /*  __u8  if_bInterfaceSubClass; */
363 	0x00,       /*  __u8  if_bInterfaceProtocol; */
364 	0x00,       /*  __u8  if_iInterface; */
365 
366 	/* one endpoint (status change endpoint) */
367 	0x07,       /*  __u8  ep_bLength; */
368 	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
369 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
370 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
371 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
372 		     * see hub.c:hub_configure() for details. */
373 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
374 	0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
375 
376 	/* one SuperSpeed endpoint companion descriptor */
377 	0x06,        /* __u8 ss_bLength */
378 	USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
379 		     /* Companion */
380 	0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
381 	0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
382 	0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
383 };
384 
385 /* authorized_default behaviour:
386  * -1 is authorized for all devices except wireless (old behaviour)
387  * 0 is unauthorized for all devices
388  * 1 is authorized for all devices
389  */
390 static int authorized_default = -1;
391 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
392 MODULE_PARM_DESC(authorized_default,
393 		"Default USB device authorization: 0 is not authorized, 1 is "
394 		"authorized, -1 is authorized except for wireless USB (default, "
395 		"old behaviour");
396 /*-------------------------------------------------------------------------*/
397 
398 /**
399  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
400  * @s: Null-terminated ASCII (actually ISO-8859-1) string
401  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
402  * @len: Length (in bytes; may be odd) of descriptor buffer.
403  *
404  * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
405  * whichever is less.
406  *
407  * Note:
408  * USB String descriptors can contain at most 126 characters; input
409  * strings longer than that are truncated.
410  */
411 static unsigned
412 ascii2desc(char const *s, u8 *buf, unsigned len)
413 {
414 	unsigned n, t = 2 + 2*strlen(s);
415 
416 	if (t > 254)
417 		t = 254;	/* Longest possible UTF string descriptor */
418 	if (len > t)
419 		len = t;
420 
421 	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
422 
423 	n = len;
424 	while (n--) {
425 		*buf++ = t;
426 		if (!n--)
427 			break;
428 		*buf++ = t >> 8;
429 		t = (unsigned char)*s++;
430 	}
431 	return len;
432 }
433 
434 /**
435  * rh_string() - provides string descriptors for root hub
436  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
437  * @hcd: the host controller for this root hub
438  * @data: buffer for output packet
439  * @len: length of the provided buffer
440  *
441  * Produces either a manufacturer, product or serial number string for the
442  * virtual root hub device.
443  *
444  * Return: The number of bytes filled in: the length of the descriptor or
445  * of the provided buffer, whichever is less.
446  */
447 static unsigned
448 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
449 {
450 	char buf[100];
451 	char const *s;
452 	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
453 
454 	/* language ids */
455 	switch (id) {
456 	case 0:
457 		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
458 		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
459 		if (len > 4)
460 			len = 4;
461 		memcpy(data, langids, len);
462 		return len;
463 	case 1:
464 		/* Serial number */
465 		s = hcd->self.bus_name;
466 		break;
467 	case 2:
468 		/* Product name */
469 		s = hcd->product_desc;
470 		break;
471 	case 3:
472 		/* Manufacturer */
473 		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
474 			init_utsname()->release, hcd->driver->description);
475 		s = buf;
476 		break;
477 	default:
478 		/* Can't happen; caller guarantees it */
479 		return 0;
480 	}
481 
482 	return ascii2desc(s, data, len);
483 }
484 
485 
486 /* Root hub control transfers execute synchronously */
487 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
488 {
489 	struct usb_ctrlrequest *cmd;
490 	u16		typeReq, wValue, wIndex, wLength;
491 	u8		*ubuf = urb->transfer_buffer;
492 	unsigned	len = 0;
493 	int		status;
494 	u8		patch_wakeup = 0;
495 	u8		patch_protocol = 0;
496 	u16		tbuf_size;
497 	u8		*tbuf = NULL;
498 	const u8	*bufp;
499 
500 	might_sleep();
501 
502 	spin_lock_irq(&hcd_root_hub_lock);
503 	status = usb_hcd_link_urb_to_ep(hcd, urb);
504 	spin_unlock_irq(&hcd_root_hub_lock);
505 	if (status)
506 		return status;
507 	urb->hcpriv = hcd;	/* Indicate it's queued */
508 
509 	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
510 	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
511 	wValue   = le16_to_cpu (cmd->wValue);
512 	wIndex   = le16_to_cpu (cmd->wIndex);
513 	wLength  = le16_to_cpu (cmd->wLength);
514 
515 	if (wLength > urb->transfer_buffer_length)
516 		goto error;
517 
518 	/*
519 	 * tbuf should be at least as big as the
520 	 * USB hub descriptor.
521 	 */
522 	tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
523 	tbuf = kzalloc(tbuf_size, GFP_KERNEL);
524 	if (!tbuf) {
525 		status = -ENOMEM;
526 		goto err_alloc;
527 	}
528 
529 	bufp = tbuf;
530 
531 
532 	urb->actual_length = 0;
533 	switch (typeReq) {
534 
535 	/* DEVICE REQUESTS */
536 
537 	/* The root hub's remote wakeup enable bit is implemented using
538 	 * driver model wakeup flags.  If this system supports wakeup
539 	 * through USB, userspace may change the default "allow wakeup"
540 	 * policy through sysfs or these calls.
541 	 *
542 	 * Most root hubs support wakeup from downstream devices, for
543 	 * runtime power management (disabling USB clocks and reducing
544 	 * VBUS power usage).  However, not all of them do so; silicon,
545 	 * board, and BIOS bugs here are not uncommon, so these can't
546 	 * be treated quite like external hubs.
547 	 *
548 	 * Likewise, not all root hubs will pass wakeup events upstream,
549 	 * to wake up the whole system.  So don't assume root hub and
550 	 * controller capabilities are identical.
551 	 */
552 
553 	case DeviceRequest | USB_REQ_GET_STATUS:
554 		tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
555 					<< USB_DEVICE_REMOTE_WAKEUP)
556 				| (1 << USB_DEVICE_SELF_POWERED);
557 		tbuf[1] = 0;
558 		len = 2;
559 		break;
560 	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
561 		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
562 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
563 		else
564 			goto error;
565 		break;
566 	case DeviceOutRequest | USB_REQ_SET_FEATURE:
567 		if (device_can_wakeup(&hcd->self.root_hub->dev)
568 				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
569 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
570 		else
571 			goto error;
572 		break;
573 	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
574 		tbuf[0] = 1;
575 		len = 1;
576 			/* FALLTHROUGH */
577 	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
578 		break;
579 	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
580 		switch (wValue & 0xff00) {
581 		case USB_DT_DEVICE << 8:
582 			switch (hcd->speed) {
583 			case HCD_USB31:
584 				bufp = usb31_rh_dev_descriptor;
585 				break;
586 			case HCD_USB3:
587 				bufp = usb3_rh_dev_descriptor;
588 				break;
589 			case HCD_USB25:
590 				bufp = usb25_rh_dev_descriptor;
591 				break;
592 			case HCD_USB2:
593 				bufp = usb2_rh_dev_descriptor;
594 				break;
595 			case HCD_USB11:
596 				bufp = usb11_rh_dev_descriptor;
597 				break;
598 			default:
599 				goto error;
600 			}
601 			len = 18;
602 			if (hcd->has_tt)
603 				patch_protocol = 1;
604 			break;
605 		case USB_DT_CONFIG << 8:
606 			switch (hcd->speed) {
607 			case HCD_USB31:
608 			case HCD_USB3:
609 				bufp = ss_rh_config_descriptor;
610 				len = sizeof ss_rh_config_descriptor;
611 				break;
612 			case HCD_USB25:
613 			case HCD_USB2:
614 				bufp = hs_rh_config_descriptor;
615 				len = sizeof hs_rh_config_descriptor;
616 				break;
617 			case HCD_USB11:
618 				bufp = fs_rh_config_descriptor;
619 				len = sizeof fs_rh_config_descriptor;
620 				break;
621 			default:
622 				goto error;
623 			}
624 			if (device_can_wakeup(&hcd->self.root_hub->dev))
625 				patch_wakeup = 1;
626 			break;
627 		case USB_DT_STRING << 8:
628 			if ((wValue & 0xff) < 4)
629 				urb->actual_length = rh_string(wValue & 0xff,
630 						hcd, ubuf, wLength);
631 			else /* unsupported IDs --> "protocol stall" */
632 				goto error;
633 			break;
634 		case USB_DT_BOS << 8:
635 			goto nongeneric;
636 		default:
637 			goto error;
638 		}
639 		break;
640 	case DeviceRequest | USB_REQ_GET_INTERFACE:
641 		tbuf[0] = 0;
642 		len = 1;
643 			/* FALLTHROUGH */
644 	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
645 		break;
646 	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
647 		/* wValue == urb->dev->devaddr */
648 		dev_dbg (hcd->self.controller, "root hub device address %d\n",
649 			wValue);
650 		break;
651 
652 	/* INTERFACE REQUESTS (no defined feature/status flags) */
653 
654 	/* ENDPOINT REQUESTS */
655 
656 	case EndpointRequest | USB_REQ_GET_STATUS:
657 		/* ENDPOINT_HALT flag */
658 		tbuf[0] = 0;
659 		tbuf[1] = 0;
660 		len = 2;
661 			/* FALLTHROUGH */
662 	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
663 	case EndpointOutRequest | USB_REQ_SET_FEATURE:
664 		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
665 		break;
666 
667 	/* CLASS REQUESTS (and errors) */
668 
669 	default:
670 nongeneric:
671 		/* non-generic request */
672 		switch (typeReq) {
673 		case GetHubStatus:
674 			len = 4;
675 			break;
676 		case GetPortStatus:
677 			if (wValue == HUB_PORT_STATUS)
678 				len = 4;
679 			else
680 				/* other port status types return 8 bytes */
681 				len = 8;
682 			break;
683 		case GetHubDescriptor:
684 			len = sizeof (struct usb_hub_descriptor);
685 			break;
686 		case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
687 			/* len is returned by hub_control */
688 			break;
689 		}
690 		status = hcd->driver->hub_control (hcd,
691 			typeReq, wValue, wIndex,
692 			tbuf, wLength);
693 
694 		if (typeReq == GetHubDescriptor)
695 			usb_hub_adjust_deviceremovable(hcd->self.root_hub,
696 				(struct usb_hub_descriptor *)tbuf);
697 		break;
698 error:
699 		/* "protocol stall" on error */
700 		status = -EPIPE;
701 	}
702 
703 	if (status < 0) {
704 		len = 0;
705 		if (status != -EPIPE) {
706 			dev_dbg (hcd->self.controller,
707 				"CTRL: TypeReq=0x%x val=0x%x "
708 				"idx=0x%x len=%d ==> %d\n",
709 				typeReq, wValue, wIndex,
710 				wLength, status);
711 		}
712 	} else if (status > 0) {
713 		/* hub_control may return the length of data copied. */
714 		len = status;
715 		status = 0;
716 	}
717 	if (len) {
718 		if (urb->transfer_buffer_length < len)
719 			len = urb->transfer_buffer_length;
720 		urb->actual_length = len;
721 		/* always USB_DIR_IN, toward host */
722 		memcpy (ubuf, bufp, len);
723 
724 		/* report whether RH hardware supports remote wakeup */
725 		if (patch_wakeup &&
726 				len > offsetof (struct usb_config_descriptor,
727 						bmAttributes))
728 			((struct usb_config_descriptor *)ubuf)->bmAttributes
729 				|= USB_CONFIG_ATT_WAKEUP;
730 
731 		/* report whether RH hardware has an integrated TT */
732 		if (patch_protocol &&
733 				len > offsetof(struct usb_device_descriptor,
734 						bDeviceProtocol))
735 			((struct usb_device_descriptor *) ubuf)->
736 				bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
737 	}
738 
739 	kfree(tbuf);
740  err_alloc:
741 
742 	/* any errors get returned through the urb completion */
743 	spin_lock_irq(&hcd_root_hub_lock);
744 	usb_hcd_unlink_urb_from_ep(hcd, urb);
745 	usb_hcd_giveback_urb(hcd, urb, status);
746 	spin_unlock_irq(&hcd_root_hub_lock);
747 	return 0;
748 }
749 
750 /*-------------------------------------------------------------------------*/
751 
752 /*
753  * Root Hub interrupt transfers are polled using a timer if the
754  * driver requests it; otherwise the driver is responsible for
755  * calling usb_hcd_poll_rh_status() when an event occurs.
756  *
757  * Completions are called in_interrupt(), but they may or may not
758  * be in_irq().
759  */
760 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
761 {
762 	struct urb	*urb;
763 	int		length;
764 	unsigned long	flags;
765 	char		buffer[6];	/* Any root hubs with > 31 ports? */
766 
767 	if (unlikely(!hcd->rh_pollable))
768 		return;
769 	if (!hcd->uses_new_polling && !hcd->status_urb)
770 		return;
771 
772 	length = hcd->driver->hub_status_data(hcd, buffer);
773 	if (length > 0) {
774 
775 		/* try to complete the status urb */
776 		spin_lock_irqsave(&hcd_root_hub_lock, flags);
777 		urb = hcd->status_urb;
778 		if (urb) {
779 			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
780 			hcd->status_urb = NULL;
781 			urb->actual_length = length;
782 			memcpy(urb->transfer_buffer, buffer, length);
783 
784 			usb_hcd_unlink_urb_from_ep(hcd, urb);
785 			usb_hcd_giveback_urb(hcd, urb, 0);
786 		} else {
787 			length = 0;
788 			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
789 		}
790 		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
791 	}
792 
793 	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
794 	 * exceed that limit if HZ is 100. The math is more clunky than
795 	 * maybe expected, this is to make sure that all timers for USB devices
796 	 * fire at the same time to give the CPU a break in between */
797 	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
798 			(length == 0 && hcd->status_urb != NULL))
799 		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
800 }
801 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
802 
803 /* timer callback */
804 static void rh_timer_func (unsigned long _hcd)
805 {
806 	usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
807 }
808 
809 /*-------------------------------------------------------------------------*/
810 
811 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
812 {
813 	int		retval;
814 	unsigned long	flags;
815 	unsigned	len = 1 + (urb->dev->maxchild / 8);
816 
817 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
818 	if (hcd->status_urb || urb->transfer_buffer_length < len) {
819 		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
820 		retval = -EINVAL;
821 		goto done;
822 	}
823 
824 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
825 	if (retval)
826 		goto done;
827 
828 	hcd->status_urb = urb;
829 	urb->hcpriv = hcd;	/* indicate it's queued */
830 	if (!hcd->uses_new_polling)
831 		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
832 
833 	/* If a status change has already occurred, report it ASAP */
834 	else if (HCD_POLL_PENDING(hcd))
835 		mod_timer(&hcd->rh_timer, jiffies);
836 	retval = 0;
837  done:
838 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
839 	return retval;
840 }
841 
842 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
843 {
844 	if (usb_endpoint_xfer_int(&urb->ep->desc))
845 		return rh_queue_status (hcd, urb);
846 	if (usb_endpoint_xfer_control(&urb->ep->desc))
847 		return rh_call_control (hcd, urb);
848 	return -EINVAL;
849 }
850 
851 /*-------------------------------------------------------------------------*/
852 
853 /* Unlinks of root-hub control URBs are legal, but they don't do anything
854  * since these URBs always execute synchronously.
855  */
856 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
857 {
858 	unsigned long	flags;
859 	int		rc;
860 
861 	spin_lock_irqsave(&hcd_root_hub_lock, flags);
862 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
863 	if (rc)
864 		goto done;
865 
866 	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
867 		;	/* Do nothing */
868 
869 	} else {				/* Status URB */
870 		if (!hcd->uses_new_polling)
871 			del_timer (&hcd->rh_timer);
872 		if (urb == hcd->status_urb) {
873 			hcd->status_urb = NULL;
874 			usb_hcd_unlink_urb_from_ep(hcd, urb);
875 			usb_hcd_giveback_urb(hcd, urb, status);
876 		}
877 	}
878  done:
879 	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
880 	return rc;
881 }
882 
883 
884 
885 /*
886  * Show & store the current value of authorized_default
887  */
888 static ssize_t authorized_default_show(struct device *dev,
889 				       struct device_attribute *attr, char *buf)
890 {
891 	struct usb_device *rh_usb_dev = to_usb_device(dev);
892 	struct usb_bus *usb_bus = rh_usb_dev->bus;
893 	struct usb_hcd *hcd;
894 
895 	hcd = bus_to_hcd(usb_bus);
896 	return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd));
897 }
898 
899 static ssize_t authorized_default_store(struct device *dev,
900 					struct device_attribute *attr,
901 					const char *buf, size_t size)
902 {
903 	ssize_t result;
904 	unsigned val;
905 	struct usb_device *rh_usb_dev = to_usb_device(dev);
906 	struct usb_bus *usb_bus = rh_usb_dev->bus;
907 	struct usb_hcd *hcd;
908 
909 	hcd = bus_to_hcd(usb_bus);
910 	result = sscanf(buf, "%u\n", &val);
911 	if (result == 1) {
912 		if (val)
913 			set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
914 		else
915 			clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
916 
917 		result = size;
918 	} else {
919 		result = -EINVAL;
920 	}
921 	return result;
922 }
923 static DEVICE_ATTR_RW(authorized_default);
924 
925 /*
926  * interface_authorized_default_show - show default authorization status
927  * for USB interfaces
928  *
929  * note: interface_authorized_default is the default value
930  *       for initializing the authorized attribute of interfaces
931  */
932 static ssize_t interface_authorized_default_show(struct device *dev,
933 		struct device_attribute *attr, char *buf)
934 {
935 	struct usb_device *usb_dev = to_usb_device(dev);
936 	struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
937 
938 	return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd));
939 }
940 
941 /*
942  * interface_authorized_default_store - store default authorization status
943  * for USB interfaces
944  *
945  * note: interface_authorized_default is the default value
946  *       for initializing the authorized attribute of interfaces
947  */
948 static ssize_t interface_authorized_default_store(struct device *dev,
949 		struct device_attribute *attr, const char *buf, size_t count)
950 {
951 	struct usb_device *usb_dev = to_usb_device(dev);
952 	struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
953 	int rc = count;
954 	bool val;
955 
956 	if (strtobool(buf, &val) != 0)
957 		return -EINVAL;
958 
959 	if (val)
960 		set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
961 	else
962 		clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
963 
964 	return rc;
965 }
966 static DEVICE_ATTR_RW(interface_authorized_default);
967 
968 /* Group all the USB bus attributes */
969 static struct attribute *usb_bus_attrs[] = {
970 		&dev_attr_authorized_default.attr,
971 		&dev_attr_interface_authorized_default.attr,
972 		NULL,
973 };
974 
975 static struct attribute_group usb_bus_attr_group = {
976 	.name = NULL,	/* we want them in the same directory */
977 	.attrs = usb_bus_attrs,
978 };
979 
980 
981 
982 /*-------------------------------------------------------------------------*/
983 
984 /**
985  * usb_bus_init - shared initialization code
986  * @bus: the bus structure being initialized
987  *
988  * This code is used to initialize a usb_bus structure, memory for which is
989  * separately managed.
990  */
991 static void usb_bus_init (struct usb_bus *bus)
992 {
993 	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
994 
995 	bus->devnum_next = 1;
996 
997 	bus->root_hub = NULL;
998 	bus->busnum = -1;
999 	bus->bandwidth_allocated = 0;
1000 	bus->bandwidth_int_reqs  = 0;
1001 	bus->bandwidth_isoc_reqs = 0;
1002 	mutex_init(&bus->devnum_next_mutex);
1003 }
1004 
1005 /*-------------------------------------------------------------------------*/
1006 
1007 /**
1008  * usb_register_bus - registers the USB host controller with the usb core
1009  * @bus: pointer to the bus to register
1010  * Context: !in_interrupt()
1011  *
1012  * Assigns a bus number, and links the controller into usbcore data
1013  * structures so that it can be seen by scanning the bus list.
1014  *
1015  * Return: 0 if successful. A negative error code otherwise.
1016  */
1017 static int usb_register_bus(struct usb_bus *bus)
1018 {
1019 	int result = -E2BIG;
1020 	int busnum;
1021 
1022 	mutex_lock(&usb_bus_idr_lock);
1023 	busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
1024 	if (busnum < 0) {
1025 		pr_err("%s: failed to get bus number\n", usbcore_name);
1026 		goto error_find_busnum;
1027 	}
1028 	bus->busnum = busnum;
1029 	mutex_unlock(&usb_bus_idr_lock);
1030 
1031 	usb_notify_add_bus(bus);
1032 
1033 	dev_info (bus->controller, "new USB bus registered, assigned bus "
1034 		  "number %d\n", bus->busnum);
1035 	return 0;
1036 
1037 error_find_busnum:
1038 	mutex_unlock(&usb_bus_idr_lock);
1039 	return result;
1040 }
1041 
1042 /**
1043  * usb_deregister_bus - deregisters the USB host controller
1044  * @bus: pointer to the bus to deregister
1045  * Context: !in_interrupt()
1046  *
1047  * Recycles the bus number, and unlinks the controller from usbcore data
1048  * structures so that it won't be seen by scanning the bus list.
1049  */
1050 static void usb_deregister_bus (struct usb_bus *bus)
1051 {
1052 	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
1053 
1054 	/*
1055 	 * NOTE: make sure that all the devices are removed by the
1056 	 * controller code, as well as having it call this when cleaning
1057 	 * itself up
1058 	 */
1059 	mutex_lock(&usb_bus_idr_lock);
1060 	idr_remove(&usb_bus_idr, bus->busnum);
1061 	mutex_unlock(&usb_bus_idr_lock);
1062 
1063 	usb_notify_remove_bus(bus);
1064 }
1065 
1066 /**
1067  * register_root_hub - called by usb_add_hcd() to register a root hub
1068  * @hcd: host controller for this root hub
1069  *
1070  * This function registers the root hub with the USB subsystem.  It sets up
1071  * the device properly in the device tree and then calls usb_new_device()
1072  * to register the usb device.  It also assigns the root hub's USB address
1073  * (always 1).
1074  *
1075  * Return: 0 if successful. A negative error code otherwise.
1076  */
1077 static int register_root_hub(struct usb_hcd *hcd)
1078 {
1079 	struct device *parent_dev = hcd->self.controller;
1080 	struct usb_device *usb_dev = hcd->self.root_hub;
1081 	const int devnum = 1;
1082 	int retval;
1083 
1084 	usb_dev->devnum = devnum;
1085 	usb_dev->bus->devnum_next = devnum + 1;
1086 	memset (&usb_dev->bus->devmap.devicemap, 0,
1087 			sizeof usb_dev->bus->devmap.devicemap);
1088 	set_bit (devnum, usb_dev->bus->devmap.devicemap);
1089 	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1090 
1091 	mutex_lock(&usb_bus_idr_lock);
1092 
1093 	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1094 	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1095 	if (retval != sizeof usb_dev->descriptor) {
1096 		mutex_unlock(&usb_bus_idr_lock);
1097 		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1098 				dev_name(&usb_dev->dev), retval);
1099 		return (retval < 0) ? retval : -EMSGSIZE;
1100 	}
1101 
1102 	if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1103 		retval = usb_get_bos_descriptor(usb_dev);
1104 		if (!retval) {
1105 			usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1106 		} else if (usb_dev->speed >= USB_SPEED_SUPER) {
1107 			mutex_unlock(&usb_bus_idr_lock);
1108 			dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1109 					dev_name(&usb_dev->dev), retval);
1110 			return retval;
1111 		}
1112 	}
1113 
1114 	retval = usb_new_device (usb_dev);
1115 	if (retval) {
1116 		dev_err (parent_dev, "can't register root hub for %s, %d\n",
1117 				dev_name(&usb_dev->dev), retval);
1118 	} else {
1119 		spin_lock_irq (&hcd_root_hub_lock);
1120 		hcd->rh_registered = 1;
1121 		spin_unlock_irq (&hcd_root_hub_lock);
1122 
1123 		/* Did the HC die before the root hub was registered? */
1124 		if (HCD_DEAD(hcd))
1125 			usb_hc_died (hcd);	/* This time clean up */
1126 	}
1127 	mutex_unlock(&usb_bus_idr_lock);
1128 
1129 	return retval;
1130 }
1131 
1132 /*
1133  * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1134  * @bus: the bus which the root hub belongs to
1135  * @portnum: the port which is being resumed
1136  *
1137  * HCDs should call this function when they know that a resume signal is
1138  * being sent to a root-hub port.  The root hub will be prevented from
1139  * going into autosuspend until usb_hcd_end_port_resume() is called.
1140  *
1141  * The bus's private lock must be held by the caller.
1142  */
1143 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1144 {
1145 	unsigned bit = 1 << portnum;
1146 
1147 	if (!(bus->resuming_ports & bit)) {
1148 		bus->resuming_ports |= bit;
1149 		pm_runtime_get_noresume(&bus->root_hub->dev);
1150 	}
1151 }
1152 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1153 
1154 /*
1155  * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1156  * @bus: the bus which the root hub belongs to
1157  * @portnum: the port which is being resumed
1158  *
1159  * HCDs should call this function when they know that a resume signal has
1160  * stopped being sent to a root-hub port.  The root hub will be allowed to
1161  * autosuspend again.
1162  *
1163  * The bus's private lock must be held by the caller.
1164  */
1165 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1166 {
1167 	unsigned bit = 1 << portnum;
1168 
1169 	if (bus->resuming_ports & bit) {
1170 		bus->resuming_ports &= ~bit;
1171 		pm_runtime_put_noidle(&bus->root_hub->dev);
1172 	}
1173 }
1174 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1175 
1176 /*-------------------------------------------------------------------------*/
1177 
1178 /**
1179  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1180  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1181  * @is_input: true iff the transaction sends data to the host
1182  * @isoc: true for isochronous transactions, false for interrupt ones
1183  * @bytecount: how many bytes in the transaction.
1184  *
1185  * Return: Approximate bus time in nanoseconds for a periodic transaction.
1186  *
1187  * Note:
1188  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1189  * scheduled in software, this function is only used for such scheduling.
1190  */
1191 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1192 {
1193 	unsigned long	tmp;
1194 
1195 	switch (speed) {
1196 	case USB_SPEED_LOW: 	/* INTR only */
1197 		if (is_input) {
1198 			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1199 			return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1200 		} else {
1201 			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1202 			return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1203 		}
1204 	case USB_SPEED_FULL:	/* ISOC or INTR */
1205 		if (isoc) {
1206 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1207 			return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1208 		} else {
1209 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1210 			return 9107L + BW_HOST_DELAY + tmp;
1211 		}
1212 	case USB_SPEED_HIGH:	/* ISOC or INTR */
1213 		/* FIXME adjust for input vs output */
1214 		if (isoc)
1215 			tmp = HS_NSECS_ISO (bytecount);
1216 		else
1217 			tmp = HS_NSECS (bytecount);
1218 		return tmp;
1219 	default:
1220 		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1221 		return -1;
1222 	}
1223 }
1224 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1225 
1226 
1227 /*-------------------------------------------------------------------------*/
1228 
1229 /*
1230  * Generic HC operations.
1231  */
1232 
1233 /*-------------------------------------------------------------------------*/
1234 
1235 /**
1236  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1237  * @hcd: host controller to which @urb was submitted
1238  * @urb: URB being submitted
1239  *
1240  * Host controller drivers should call this routine in their enqueue()
1241  * method.  The HCD's private spinlock must be held and interrupts must
1242  * be disabled.  The actions carried out here are required for URB
1243  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1244  *
1245  * Return: 0 for no error, otherwise a negative error code (in which case
1246  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1247  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1248  * the private spinlock and returning.
1249  */
1250 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1251 {
1252 	int		rc = 0;
1253 
1254 	spin_lock(&hcd_urb_list_lock);
1255 
1256 	/* Check that the URB isn't being killed */
1257 	if (unlikely(atomic_read(&urb->reject))) {
1258 		rc = -EPERM;
1259 		goto done;
1260 	}
1261 
1262 	if (unlikely(!urb->ep->enabled)) {
1263 		rc = -ENOENT;
1264 		goto done;
1265 	}
1266 
1267 	if (unlikely(!urb->dev->can_submit)) {
1268 		rc = -EHOSTUNREACH;
1269 		goto done;
1270 	}
1271 
1272 	/*
1273 	 * Check the host controller's state and add the URB to the
1274 	 * endpoint's queue.
1275 	 */
1276 	if (HCD_RH_RUNNING(hcd)) {
1277 		urb->unlinked = 0;
1278 		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1279 	} else {
1280 		rc = -ESHUTDOWN;
1281 		goto done;
1282 	}
1283  done:
1284 	spin_unlock(&hcd_urb_list_lock);
1285 	return rc;
1286 }
1287 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1288 
1289 /**
1290  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1291  * @hcd: host controller to which @urb was submitted
1292  * @urb: URB being checked for unlinkability
1293  * @status: error code to store in @urb if the unlink succeeds
1294  *
1295  * Host controller drivers should call this routine in their dequeue()
1296  * method.  The HCD's private spinlock must be held and interrupts must
1297  * be disabled.  The actions carried out here are required for making
1298  * sure than an unlink is valid.
1299  *
1300  * Return: 0 for no error, otherwise a negative error code (in which case
1301  * the dequeue() method must fail).  The possible error codes are:
1302  *
1303  *	-EIDRM: @urb was not submitted or has already completed.
1304  *		The completion function may not have been called yet.
1305  *
1306  *	-EBUSY: @urb has already been unlinked.
1307  */
1308 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1309 		int status)
1310 {
1311 	struct list_head	*tmp;
1312 
1313 	/* insist the urb is still queued */
1314 	list_for_each(tmp, &urb->ep->urb_list) {
1315 		if (tmp == &urb->urb_list)
1316 			break;
1317 	}
1318 	if (tmp != &urb->urb_list)
1319 		return -EIDRM;
1320 
1321 	/* Any status except -EINPROGRESS means something already started to
1322 	 * unlink this URB from the hardware.  So there's no more work to do.
1323 	 */
1324 	if (urb->unlinked)
1325 		return -EBUSY;
1326 	urb->unlinked = status;
1327 	return 0;
1328 }
1329 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1330 
1331 /**
1332  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1333  * @hcd: host controller to which @urb was submitted
1334  * @urb: URB being unlinked
1335  *
1336  * Host controller drivers should call this routine before calling
1337  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1338  * interrupts must be disabled.  The actions carried out here are required
1339  * for URB completion.
1340  */
1341 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1342 {
1343 	/* clear all state linking urb to this dev (and hcd) */
1344 	spin_lock(&hcd_urb_list_lock);
1345 	list_del_init(&urb->urb_list);
1346 	spin_unlock(&hcd_urb_list_lock);
1347 }
1348 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1349 
1350 /*
1351  * Some usb host controllers can only perform dma using a small SRAM area.
1352  * The usb core itself is however optimized for host controllers that can dma
1353  * using regular system memory - like pci devices doing bus mastering.
1354  *
1355  * To support host controllers with limited dma capabilities we provide dma
1356  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1357  * For this to work properly the host controller code must first use the
1358  * function dma_declare_coherent_memory() to point out which memory area
1359  * that should be used for dma allocations.
1360  *
1361  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1362  * dma using dma_alloc_coherent() which in turn allocates from the memory
1363  * area pointed out with dma_declare_coherent_memory().
1364  *
1365  * So, to summarize...
1366  *
1367  * - We need "local" memory, canonical example being
1368  *   a small SRAM on a discrete controller being the
1369  *   only memory that the controller can read ...
1370  *   (a) "normal" kernel memory is no good, and
1371  *   (b) there's not enough to share
1372  *
1373  * - The only *portable* hook for such stuff in the
1374  *   DMA framework is dma_declare_coherent_memory()
1375  *
1376  * - So we use that, even though the primary requirement
1377  *   is that the memory be "local" (hence addressable
1378  *   by that device), not "coherent".
1379  *
1380  */
1381 
1382 static int hcd_alloc_coherent(struct usb_bus *bus,
1383 			      gfp_t mem_flags, dma_addr_t *dma_handle,
1384 			      void **vaddr_handle, size_t size,
1385 			      enum dma_data_direction dir)
1386 {
1387 	unsigned char *vaddr;
1388 
1389 	if (*vaddr_handle == NULL) {
1390 		WARN_ON_ONCE(1);
1391 		return -EFAULT;
1392 	}
1393 
1394 	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1395 				 mem_flags, dma_handle);
1396 	if (!vaddr)
1397 		return -ENOMEM;
1398 
1399 	/*
1400 	 * Store the virtual address of the buffer at the end
1401 	 * of the allocated dma buffer. The size of the buffer
1402 	 * may be uneven so use unaligned functions instead
1403 	 * of just rounding up. It makes sense to optimize for
1404 	 * memory footprint over access speed since the amount
1405 	 * of memory available for dma may be limited.
1406 	 */
1407 	put_unaligned((unsigned long)*vaddr_handle,
1408 		      (unsigned long *)(vaddr + size));
1409 
1410 	if (dir == DMA_TO_DEVICE)
1411 		memcpy(vaddr, *vaddr_handle, size);
1412 
1413 	*vaddr_handle = vaddr;
1414 	return 0;
1415 }
1416 
1417 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1418 			      void **vaddr_handle, size_t size,
1419 			      enum dma_data_direction dir)
1420 {
1421 	unsigned char *vaddr = *vaddr_handle;
1422 
1423 	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1424 
1425 	if (dir == DMA_FROM_DEVICE)
1426 		memcpy(vaddr, *vaddr_handle, size);
1427 
1428 	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1429 
1430 	*vaddr_handle = vaddr;
1431 	*dma_handle = 0;
1432 }
1433 
1434 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1435 {
1436 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1437 	    (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1438 		dma_unmap_single(hcd->self.sysdev,
1439 				urb->setup_dma,
1440 				sizeof(struct usb_ctrlrequest),
1441 				DMA_TO_DEVICE);
1442 	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1443 		hcd_free_coherent(urb->dev->bus,
1444 				&urb->setup_dma,
1445 				(void **) &urb->setup_packet,
1446 				sizeof(struct usb_ctrlrequest),
1447 				DMA_TO_DEVICE);
1448 
1449 	/* Make it safe to call this routine more than once */
1450 	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1451 }
1452 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1453 
1454 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1455 {
1456 	if (hcd->driver->unmap_urb_for_dma)
1457 		hcd->driver->unmap_urb_for_dma(hcd, urb);
1458 	else
1459 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1460 }
1461 
1462 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1463 {
1464 	enum dma_data_direction dir;
1465 
1466 	usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1467 
1468 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1469 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1470 	    (urb->transfer_flags & URB_DMA_MAP_SG))
1471 		dma_unmap_sg(hcd->self.sysdev,
1472 				urb->sg,
1473 				urb->num_sgs,
1474 				dir);
1475 	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1476 		 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1477 		dma_unmap_page(hcd->self.sysdev,
1478 				urb->transfer_dma,
1479 				urb->transfer_buffer_length,
1480 				dir);
1481 	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1482 		 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1483 		dma_unmap_single(hcd->self.sysdev,
1484 				urb->transfer_dma,
1485 				urb->transfer_buffer_length,
1486 				dir);
1487 	else if (urb->transfer_flags & URB_MAP_LOCAL)
1488 		hcd_free_coherent(urb->dev->bus,
1489 				&urb->transfer_dma,
1490 				&urb->transfer_buffer,
1491 				urb->transfer_buffer_length,
1492 				dir);
1493 
1494 	/* Make it safe to call this routine more than once */
1495 	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1496 			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1497 }
1498 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1499 
1500 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1501 			   gfp_t mem_flags)
1502 {
1503 	if (hcd->driver->map_urb_for_dma)
1504 		return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1505 	else
1506 		return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1507 }
1508 
1509 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1510 			    gfp_t mem_flags)
1511 {
1512 	enum dma_data_direction dir;
1513 	int ret = 0;
1514 
1515 	/* Map the URB's buffers for DMA access.
1516 	 * Lower level HCD code should use *_dma exclusively,
1517 	 * unless it uses pio or talks to another transport,
1518 	 * or uses the provided scatter gather list for bulk.
1519 	 */
1520 
1521 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1522 		if (hcd->self.uses_pio_for_control)
1523 			return ret;
1524 		if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1525 			if (is_vmalloc_addr(urb->setup_packet)) {
1526 				WARN_ONCE(1, "setup packet is not dma capable\n");
1527 				return -EAGAIN;
1528 			} else if (object_is_on_stack(urb->setup_packet)) {
1529 				WARN_ONCE(1, "setup packet is on stack\n");
1530 				return -EAGAIN;
1531 			}
1532 
1533 			urb->setup_dma = dma_map_single(
1534 					hcd->self.sysdev,
1535 					urb->setup_packet,
1536 					sizeof(struct usb_ctrlrequest),
1537 					DMA_TO_DEVICE);
1538 			if (dma_mapping_error(hcd->self.sysdev,
1539 						urb->setup_dma))
1540 				return -EAGAIN;
1541 			urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1542 		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1543 			ret = hcd_alloc_coherent(
1544 					urb->dev->bus, mem_flags,
1545 					&urb->setup_dma,
1546 					(void **)&urb->setup_packet,
1547 					sizeof(struct usb_ctrlrequest),
1548 					DMA_TO_DEVICE);
1549 			if (ret)
1550 				return ret;
1551 			urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1552 		}
1553 	}
1554 
1555 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1556 	if (urb->transfer_buffer_length != 0
1557 	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1558 		if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1559 			if (urb->num_sgs) {
1560 				int n;
1561 
1562 				/* We don't support sg for isoc transfers ! */
1563 				if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1564 					WARN_ON(1);
1565 					return -EINVAL;
1566 				}
1567 
1568 				n = dma_map_sg(
1569 						hcd->self.sysdev,
1570 						urb->sg,
1571 						urb->num_sgs,
1572 						dir);
1573 				if (n <= 0)
1574 					ret = -EAGAIN;
1575 				else
1576 					urb->transfer_flags |= URB_DMA_MAP_SG;
1577 				urb->num_mapped_sgs = n;
1578 				if (n != urb->num_sgs)
1579 					urb->transfer_flags |=
1580 							URB_DMA_SG_COMBINED;
1581 			} else if (urb->sg) {
1582 				struct scatterlist *sg = urb->sg;
1583 				urb->transfer_dma = dma_map_page(
1584 						hcd->self.sysdev,
1585 						sg_page(sg),
1586 						sg->offset,
1587 						urb->transfer_buffer_length,
1588 						dir);
1589 				if (dma_mapping_error(hcd->self.sysdev,
1590 						urb->transfer_dma))
1591 					ret = -EAGAIN;
1592 				else
1593 					urb->transfer_flags |= URB_DMA_MAP_PAGE;
1594 			} else if (is_vmalloc_addr(urb->transfer_buffer)) {
1595 				WARN_ONCE(1, "transfer buffer not dma capable\n");
1596 				ret = -EAGAIN;
1597 			} else if (object_is_on_stack(urb->transfer_buffer)) {
1598 				WARN_ONCE(1, "transfer buffer is on stack\n");
1599 				ret = -EAGAIN;
1600 			} else {
1601 				urb->transfer_dma = dma_map_single(
1602 						hcd->self.sysdev,
1603 						urb->transfer_buffer,
1604 						urb->transfer_buffer_length,
1605 						dir);
1606 				if (dma_mapping_error(hcd->self.sysdev,
1607 						urb->transfer_dma))
1608 					ret = -EAGAIN;
1609 				else
1610 					urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1611 			}
1612 		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1613 			ret = hcd_alloc_coherent(
1614 					urb->dev->bus, mem_flags,
1615 					&urb->transfer_dma,
1616 					&urb->transfer_buffer,
1617 					urb->transfer_buffer_length,
1618 					dir);
1619 			if (ret == 0)
1620 				urb->transfer_flags |= URB_MAP_LOCAL;
1621 		}
1622 		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1623 				URB_SETUP_MAP_LOCAL)))
1624 			usb_hcd_unmap_urb_for_dma(hcd, urb);
1625 	}
1626 	return ret;
1627 }
1628 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1629 
1630 /*-------------------------------------------------------------------------*/
1631 
1632 /* may be called in any context with a valid urb->dev usecount
1633  * caller surrenders "ownership" of urb
1634  * expects usb_submit_urb() to have sanity checked and conditioned all
1635  * inputs in the urb
1636  */
1637 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1638 {
1639 	int			status;
1640 	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1641 
1642 	/* increment urb's reference count as part of giving it to the HCD
1643 	 * (which will control it).  HCD guarantees that it either returns
1644 	 * an error or calls giveback(), but not both.
1645 	 */
1646 	usb_get_urb(urb);
1647 	atomic_inc(&urb->use_count);
1648 	atomic_inc(&urb->dev->urbnum);
1649 	usbmon_urb_submit(&hcd->self, urb);
1650 
1651 	/* NOTE requirements on root-hub callers (usbfs and the hub
1652 	 * driver, for now):  URBs' urb->transfer_buffer must be
1653 	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1654 	 * they could clobber root hub response data.  Also, control
1655 	 * URBs must be submitted in process context with interrupts
1656 	 * enabled.
1657 	 */
1658 
1659 	if (is_root_hub(urb->dev)) {
1660 		status = rh_urb_enqueue(hcd, urb);
1661 	} else {
1662 		status = map_urb_for_dma(hcd, urb, mem_flags);
1663 		if (likely(status == 0)) {
1664 			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1665 			if (unlikely(status))
1666 				unmap_urb_for_dma(hcd, urb);
1667 		}
1668 	}
1669 
1670 	if (unlikely(status)) {
1671 		usbmon_urb_submit_error(&hcd->self, urb, status);
1672 		urb->hcpriv = NULL;
1673 		INIT_LIST_HEAD(&urb->urb_list);
1674 		atomic_dec(&urb->use_count);
1675 		atomic_dec(&urb->dev->urbnum);
1676 		if (atomic_read(&urb->reject))
1677 			wake_up(&usb_kill_urb_queue);
1678 		usb_put_urb(urb);
1679 	}
1680 	return status;
1681 }
1682 
1683 /*-------------------------------------------------------------------------*/
1684 
1685 /* this makes the hcd giveback() the urb more quickly, by kicking it
1686  * off hardware queues (which may take a while) and returning it as
1687  * soon as practical.  we've already set up the urb's return status,
1688  * but we can't know if the callback completed already.
1689  */
1690 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1691 {
1692 	int		value;
1693 
1694 	if (is_root_hub(urb->dev))
1695 		value = usb_rh_urb_dequeue(hcd, urb, status);
1696 	else {
1697 
1698 		/* The only reason an HCD might fail this call is if
1699 		 * it has not yet fully queued the urb to begin with.
1700 		 * Such failures should be harmless. */
1701 		value = hcd->driver->urb_dequeue(hcd, urb, status);
1702 	}
1703 	return value;
1704 }
1705 
1706 /*
1707  * called in any context
1708  *
1709  * caller guarantees urb won't be recycled till both unlink()
1710  * and the urb's completion function return
1711  */
1712 int usb_hcd_unlink_urb (struct urb *urb, int status)
1713 {
1714 	struct usb_hcd		*hcd;
1715 	struct usb_device	*udev = urb->dev;
1716 	int			retval = -EIDRM;
1717 	unsigned long		flags;
1718 
1719 	/* Prevent the device and bus from going away while
1720 	 * the unlink is carried out.  If they are already gone
1721 	 * then urb->use_count must be 0, since disconnected
1722 	 * devices can't have any active URBs.
1723 	 */
1724 	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1725 	if (atomic_read(&urb->use_count) > 0) {
1726 		retval = 0;
1727 		usb_get_dev(udev);
1728 	}
1729 	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1730 	if (retval == 0) {
1731 		hcd = bus_to_hcd(urb->dev->bus);
1732 		retval = unlink1(hcd, urb, status);
1733 		if (retval == 0)
1734 			retval = -EINPROGRESS;
1735 		else if (retval != -EIDRM && retval != -EBUSY)
1736 			dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1737 					urb, retval);
1738 		usb_put_dev(udev);
1739 	}
1740 	return retval;
1741 }
1742 
1743 /*-------------------------------------------------------------------------*/
1744 
1745 static void __usb_hcd_giveback_urb(struct urb *urb)
1746 {
1747 	struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1748 	struct usb_anchor *anchor = urb->anchor;
1749 	int status = urb->unlinked;
1750 	unsigned long flags;
1751 
1752 	urb->hcpriv = NULL;
1753 	if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1754 	    urb->actual_length < urb->transfer_buffer_length &&
1755 	    !status))
1756 		status = -EREMOTEIO;
1757 
1758 	unmap_urb_for_dma(hcd, urb);
1759 	usbmon_urb_complete(&hcd->self, urb, status);
1760 	usb_anchor_suspend_wakeups(anchor);
1761 	usb_unanchor_urb(urb);
1762 	if (likely(status == 0))
1763 		usb_led_activity(USB_LED_EVENT_HOST);
1764 
1765 	/* pass ownership to the completion handler */
1766 	urb->status = status;
1767 
1768 	/*
1769 	 * We disable local IRQs here avoid possible deadlock because
1770 	 * drivers may call spin_lock() to hold lock which might be
1771 	 * acquired in one hard interrupt handler.
1772 	 *
1773 	 * The local_irq_save()/local_irq_restore() around complete()
1774 	 * will be removed if current USB drivers have been cleaned up
1775 	 * and no one may trigger the above deadlock situation when
1776 	 * running complete() in tasklet.
1777 	 */
1778 	local_irq_save(flags);
1779 	urb->complete(urb);
1780 	local_irq_restore(flags);
1781 
1782 	usb_anchor_resume_wakeups(anchor);
1783 	atomic_dec(&urb->use_count);
1784 	if (unlikely(atomic_read(&urb->reject)))
1785 		wake_up(&usb_kill_urb_queue);
1786 	usb_put_urb(urb);
1787 }
1788 
1789 static void usb_giveback_urb_bh(unsigned long param)
1790 {
1791 	struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1792 	struct list_head local_list;
1793 
1794 	spin_lock_irq(&bh->lock);
1795 	bh->running = true;
1796  restart:
1797 	list_replace_init(&bh->head, &local_list);
1798 	spin_unlock_irq(&bh->lock);
1799 
1800 	while (!list_empty(&local_list)) {
1801 		struct urb *urb;
1802 
1803 		urb = list_entry(local_list.next, struct urb, urb_list);
1804 		list_del_init(&urb->urb_list);
1805 		bh->completing_ep = urb->ep;
1806 		__usb_hcd_giveback_urb(urb);
1807 		bh->completing_ep = NULL;
1808 	}
1809 
1810 	/* check if there are new URBs to giveback */
1811 	spin_lock_irq(&bh->lock);
1812 	if (!list_empty(&bh->head))
1813 		goto restart;
1814 	bh->running = false;
1815 	spin_unlock_irq(&bh->lock);
1816 }
1817 
1818 /**
1819  * usb_hcd_giveback_urb - return URB from HCD to device driver
1820  * @hcd: host controller returning the URB
1821  * @urb: urb being returned to the USB device driver.
1822  * @status: completion status code for the URB.
1823  * Context: in_interrupt()
1824  *
1825  * This hands the URB from HCD to its USB device driver, using its
1826  * completion function.  The HCD has freed all per-urb resources
1827  * (and is done using urb->hcpriv).  It also released all HCD locks;
1828  * the device driver won't cause problems if it frees, modifies,
1829  * or resubmits this URB.
1830  *
1831  * If @urb was unlinked, the value of @status will be overridden by
1832  * @urb->unlinked.  Erroneous short transfers are detected in case
1833  * the HCD hasn't checked for them.
1834  */
1835 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1836 {
1837 	struct giveback_urb_bh *bh;
1838 	bool running, high_prio_bh;
1839 
1840 	/* pass status to tasklet via unlinked */
1841 	if (likely(!urb->unlinked))
1842 		urb->unlinked = status;
1843 
1844 	if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1845 		__usb_hcd_giveback_urb(urb);
1846 		return;
1847 	}
1848 
1849 	if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1850 		bh = &hcd->high_prio_bh;
1851 		high_prio_bh = true;
1852 	} else {
1853 		bh = &hcd->low_prio_bh;
1854 		high_prio_bh = false;
1855 	}
1856 
1857 	spin_lock(&bh->lock);
1858 	list_add_tail(&urb->urb_list, &bh->head);
1859 	running = bh->running;
1860 	spin_unlock(&bh->lock);
1861 
1862 	if (running)
1863 		;
1864 	else if (high_prio_bh)
1865 		tasklet_hi_schedule(&bh->bh);
1866 	else
1867 		tasklet_schedule(&bh->bh);
1868 }
1869 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1870 
1871 /*-------------------------------------------------------------------------*/
1872 
1873 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1874  * queue to drain completely.  The caller must first insure that no more
1875  * URBs can be submitted for this endpoint.
1876  */
1877 void usb_hcd_flush_endpoint(struct usb_device *udev,
1878 		struct usb_host_endpoint *ep)
1879 {
1880 	struct usb_hcd		*hcd;
1881 	struct urb		*urb;
1882 
1883 	if (!ep)
1884 		return;
1885 	might_sleep();
1886 	hcd = bus_to_hcd(udev->bus);
1887 
1888 	/* No more submits can occur */
1889 	spin_lock_irq(&hcd_urb_list_lock);
1890 rescan:
1891 	list_for_each_entry (urb, &ep->urb_list, urb_list) {
1892 		int	is_in;
1893 
1894 		if (urb->unlinked)
1895 			continue;
1896 		usb_get_urb (urb);
1897 		is_in = usb_urb_dir_in(urb);
1898 		spin_unlock(&hcd_urb_list_lock);
1899 
1900 		/* kick hcd */
1901 		unlink1(hcd, urb, -ESHUTDOWN);
1902 		dev_dbg (hcd->self.controller,
1903 			"shutdown urb %pK ep%d%s%s\n",
1904 			urb, usb_endpoint_num(&ep->desc),
1905 			is_in ? "in" : "out",
1906 			({	char *s;
1907 
1908 				 switch (usb_endpoint_type(&ep->desc)) {
1909 				 case USB_ENDPOINT_XFER_CONTROL:
1910 					s = ""; break;
1911 				 case USB_ENDPOINT_XFER_BULK:
1912 					s = "-bulk"; break;
1913 				 case USB_ENDPOINT_XFER_INT:
1914 					s = "-intr"; break;
1915 				 default:
1916 					s = "-iso"; break;
1917 				};
1918 				s;
1919 			}));
1920 		usb_put_urb (urb);
1921 
1922 		/* list contents may have changed */
1923 		spin_lock(&hcd_urb_list_lock);
1924 		goto rescan;
1925 	}
1926 	spin_unlock_irq(&hcd_urb_list_lock);
1927 
1928 	/* Wait until the endpoint queue is completely empty */
1929 	while (!list_empty (&ep->urb_list)) {
1930 		spin_lock_irq(&hcd_urb_list_lock);
1931 
1932 		/* The list may have changed while we acquired the spinlock */
1933 		urb = NULL;
1934 		if (!list_empty (&ep->urb_list)) {
1935 			urb = list_entry (ep->urb_list.prev, struct urb,
1936 					urb_list);
1937 			usb_get_urb (urb);
1938 		}
1939 		spin_unlock_irq(&hcd_urb_list_lock);
1940 
1941 		if (urb) {
1942 			usb_kill_urb (urb);
1943 			usb_put_urb (urb);
1944 		}
1945 	}
1946 }
1947 
1948 /**
1949  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1950  *				the bus bandwidth
1951  * @udev: target &usb_device
1952  * @new_config: new configuration to install
1953  * @cur_alt: the current alternate interface setting
1954  * @new_alt: alternate interface setting that is being installed
1955  *
1956  * To change configurations, pass in the new configuration in new_config,
1957  * and pass NULL for cur_alt and new_alt.
1958  *
1959  * To reset a device's configuration (put the device in the ADDRESSED state),
1960  * pass in NULL for new_config, cur_alt, and new_alt.
1961  *
1962  * To change alternate interface settings, pass in NULL for new_config,
1963  * pass in the current alternate interface setting in cur_alt,
1964  * and pass in the new alternate interface setting in new_alt.
1965  *
1966  * Return: An error if the requested bandwidth change exceeds the
1967  * bus bandwidth or host controller internal resources.
1968  */
1969 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1970 		struct usb_host_config *new_config,
1971 		struct usb_host_interface *cur_alt,
1972 		struct usb_host_interface *new_alt)
1973 {
1974 	int num_intfs, i, j;
1975 	struct usb_host_interface *alt = NULL;
1976 	int ret = 0;
1977 	struct usb_hcd *hcd;
1978 	struct usb_host_endpoint *ep;
1979 
1980 	hcd = bus_to_hcd(udev->bus);
1981 	if (!hcd->driver->check_bandwidth)
1982 		return 0;
1983 
1984 	/* Configuration is being removed - set configuration 0 */
1985 	if (!new_config && !cur_alt) {
1986 		for (i = 1; i < 16; ++i) {
1987 			ep = udev->ep_out[i];
1988 			if (ep)
1989 				hcd->driver->drop_endpoint(hcd, udev, ep);
1990 			ep = udev->ep_in[i];
1991 			if (ep)
1992 				hcd->driver->drop_endpoint(hcd, udev, ep);
1993 		}
1994 		hcd->driver->check_bandwidth(hcd, udev);
1995 		return 0;
1996 	}
1997 	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1998 	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1999 	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
2000 	 * ok to exclude it.
2001 	 */
2002 	if (new_config) {
2003 		num_intfs = new_config->desc.bNumInterfaces;
2004 		/* Remove endpoints (except endpoint 0, which is always on the
2005 		 * schedule) from the old config from the schedule
2006 		 */
2007 		for (i = 1; i < 16; ++i) {
2008 			ep = udev->ep_out[i];
2009 			if (ep) {
2010 				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2011 				if (ret < 0)
2012 					goto reset;
2013 			}
2014 			ep = udev->ep_in[i];
2015 			if (ep) {
2016 				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2017 				if (ret < 0)
2018 					goto reset;
2019 			}
2020 		}
2021 		for (i = 0; i < num_intfs; ++i) {
2022 			struct usb_host_interface *first_alt;
2023 			int iface_num;
2024 
2025 			first_alt = &new_config->intf_cache[i]->altsetting[0];
2026 			iface_num = first_alt->desc.bInterfaceNumber;
2027 			/* Set up endpoints for alternate interface setting 0 */
2028 			alt = usb_find_alt_setting(new_config, iface_num, 0);
2029 			if (!alt)
2030 				/* No alt setting 0? Pick the first setting. */
2031 				alt = first_alt;
2032 
2033 			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
2034 				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
2035 				if (ret < 0)
2036 					goto reset;
2037 			}
2038 		}
2039 	}
2040 	if (cur_alt && new_alt) {
2041 		struct usb_interface *iface = usb_ifnum_to_if(udev,
2042 				cur_alt->desc.bInterfaceNumber);
2043 
2044 		if (!iface)
2045 			return -EINVAL;
2046 		if (iface->resetting_device) {
2047 			/*
2048 			 * The USB core just reset the device, so the xHCI host
2049 			 * and the device will think alt setting 0 is installed.
2050 			 * However, the USB core will pass in the alternate
2051 			 * setting installed before the reset as cur_alt.  Dig
2052 			 * out the alternate setting 0 structure, or the first
2053 			 * alternate setting if a broken device doesn't have alt
2054 			 * setting 0.
2055 			 */
2056 			cur_alt = usb_altnum_to_altsetting(iface, 0);
2057 			if (!cur_alt)
2058 				cur_alt = &iface->altsetting[0];
2059 		}
2060 
2061 		/* Drop all the endpoints in the current alt setting */
2062 		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
2063 			ret = hcd->driver->drop_endpoint(hcd, udev,
2064 					&cur_alt->endpoint[i]);
2065 			if (ret < 0)
2066 				goto reset;
2067 		}
2068 		/* Add all the endpoints in the new alt setting */
2069 		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
2070 			ret = hcd->driver->add_endpoint(hcd, udev,
2071 					&new_alt->endpoint[i]);
2072 			if (ret < 0)
2073 				goto reset;
2074 		}
2075 	}
2076 	ret = hcd->driver->check_bandwidth(hcd, udev);
2077 reset:
2078 	if (ret < 0)
2079 		hcd->driver->reset_bandwidth(hcd, udev);
2080 	return ret;
2081 }
2082 
2083 /* Disables the endpoint: synchronizes with the hcd to make sure all
2084  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
2085  * have been called previously.  Use for set_configuration, set_interface,
2086  * driver removal, physical disconnect.
2087  *
2088  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
2089  * type, maxpacket size, toggle, halt status, and scheduling.
2090  */
2091 void usb_hcd_disable_endpoint(struct usb_device *udev,
2092 		struct usb_host_endpoint *ep)
2093 {
2094 	struct usb_hcd		*hcd;
2095 
2096 	might_sleep();
2097 	hcd = bus_to_hcd(udev->bus);
2098 	if (hcd->driver->endpoint_disable)
2099 		hcd->driver->endpoint_disable(hcd, ep);
2100 }
2101 
2102 /**
2103  * usb_hcd_reset_endpoint - reset host endpoint state
2104  * @udev: USB device.
2105  * @ep:   the endpoint to reset.
2106  *
2107  * Resets any host endpoint state such as the toggle bit, sequence
2108  * number and current window.
2109  */
2110 void usb_hcd_reset_endpoint(struct usb_device *udev,
2111 			    struct usb_host_endpoint *ep)
2112 {
2113 	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2114 
2115 	if (hcd->driver->endpoint_reset)
2116 		hcd->driver->endpoint_reset(hcd, ep);
2117 	else {
2118 		int epnum = usb_endpoint_num(&ep->desc);
2119 		int is_out = usb_endpoint_dir_out(&ep->desc);
2120 		int is_control = usb_endpoint_xfer_control(&ep->desc);
2121 
2122 		usb_settoggle(udev, epnum, is_out, 0);
2123 		if (is_control)
2124 			usb_settoggle(udev, epnum, !is_out, 0);
2125 	}
2126 }
2127 
2128 /**
2129  * usb_alloc_streams - allocate bulk endpoint stream IDs.
2130  * @interface:		alternate setting that includes all endpoints.
2131  * @eps:		array of endpoints that need streams.
2132  * @num_eps:		number of endpoints in the array.
2133  * @num_streams:	number of streams to allocate.
2134  * @mem_flags:		flags hcd should use to allocate memory.
2135  *
2136  * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2137  * Drivers may queue multiple transfers to different stream IDs, which may
2138  * complete in a different order than they were queued.
2139  *
2140  * Return: On success, the number of allocated streams. On failure, a negative
2141  * error code.
2142  */
2143 int usb_alloc_streams(struct usb_interface *interface,
2144 		struct usb_host_endpoint **eps, unsigned int num_eps,
2145 		unsigned int num_streams, gfp_t mem_flags)
2146 {
2147 	struct usb_hcd *hcd;
2148 	struct usb_device *dev;
2149 	int i, ret;
2150 
2151 	dev = interface_to_usbdev(interface);
2152 	hcd = bus_to_hcd(dev->bus);
2153 	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2154 		return -EINVAL;
2155 	if (dev->speed < USB_SPEED_SUPER)
2156 		return -EINVAL;
2157 	if (dev->state < USB_STATE_CONFIGURED)
2158 		return -ENODEV;
2159 
2160 	for (i = 0; i < num_eps; i++) {
2161 		/* Streams only apply to bulk endpoints. */
2162 		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2163 			return -EINVAL;
2164 		/* Re-alloc is not allowed */
2165 		if (eps[i]->streams)
2166 			return -EINVAL;
2167 	}
2168 
2169 	ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2170 			num_streams, mem_flags);
2171 	if (ret < 0)
2172 		return ret;
2173 
2174 	for (i = 0; i < num_eps; i++)
2175 		eps[i]->streams = ret;
2176 
2177 	return ret;
2178 }
2179 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2180 
2181 /**
2182  * usb_free_streams - free bulk endpoint stream IDs.
2183  * @interface:	alternate setting that includes all endpoints.
2184  * @eps:	array of endpoints to remove streams from.
2185  * @num_eps:	number of endpoints in the array.
2186  * @mem_flags:	flags hcd should use to allocate memory.
2187  *
2188  * Reverts a group of bulk endpoints back to not using stream IDs.
2189  * Can fail if we are given bad arguments, or HCD is broken.
2190  *
2191  * Return: 0 on success. On failure, a negative error code.
2192  */
2193 int usb_free_streams(struct usb_interface *interface,
2194 		struct usb_host_endpoint **eps, unsigned int num_eps,
2195 		gfp_t mem_flags)
2196 {
2197 	struct usb_hcd *hcd;
2198 	struct usb_device *dev;
2199 	int i, ret;
2200 
2201 	dev = interface_to_usbdev(interface);
2202 	hcd = bus_to_hcd(dev->bus);
2203 	if (dev->speed < USB_SPEED_SUPER)
2204 		return -EINVAL;
2205 
2206 	/* Double-free is not allowed */
2207 	for (i = 0; i < num_eps; i++)
2208 		if (!eps[i] || !eps[i]->streams)
2209 			return -EINVAL;
2210 
2211 	ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2212 	if (ret < 0)
2213 		return ret;
2214 
2215 	for (i = 0; i < num_eps; i++)
2216 		eps[i]->streams = 0;
2217 
2218 	return ret;
2219 }
2220 EXPORT_SYMBOL_GPL(usb_free_streams);
2221 
2222 /* Protect against drivers that try to unlink URBs after the device
2223  * is gone, by waiting until all unlinks for @udev are finished.
2224  * Since we don't currently track URBs by device, simply wait until
2225  * nothing is running in the locked region of usb_hcd_unlink_urb().
2226  */
2227 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2228 {
2229 	spin_lock_irq(&hcd_urb_unlink_lock);
2230 	spin_unlock_irq(&hcd_urb_unlink_lock);
2231 }
2232 
2233 /*-------------------------------------------------------------------------*/
2234 
2235 /* called in any context */
2236 int usb_hcd_get_frame_number (struct usb_device *udev)
2237 {
2238 	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
2239 
2240 	if (!HCD_RH_RUNNING(hcd))
2241 		return -ESHUTDOWN;
2242 	return hcd->driver->get_frame_number (hcd);
2243 }
2244 
2245 /*-------------------------------------------------------------------------*/
2246 
2247 #ifdef	CONFIG_PM
2248 
2249 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2250 {
2251 	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2252 	int		status;
2253 	int		old_state = hcd->state;
2254 
2255 	dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2256 			(PMSG_IS_AUTO(msg) ? "auto-" : ""),
2257 			rhdev->do_remote_wakeup);
2258 	if (HCD_DEAD(hcd)) {
2259 		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2260 		return 0;
2261 	}
2262 
2263 	if (!hcd->driver->bus_suspend) {
2264 		status = -ENOENT;
2265 	} else {
2266 		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2267 		hcd->state = HC_STATE_QUIESCING;
2268 		status = hcd->driver->bus_suspend(hcd);
2269 	}
2270 	if (status == 0) {
2271 		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2272 		hcd->state = HC_STATE_SUSPENDED;
2273 
2274 		/* Did we race with a root-hub wakeup event? */
2275 		if (rhdev->do_remote_wakeup) {
2276 			char	buffer[6];
2277 
2278 			status = hcd->driver->hub_status_data(hcd, buffer);
2279 			if (status != 0) {
2280 				dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2281 				hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2282 				status = -EBUSY;
2283 			}
2284 		}
2285 	} else {
2286 		spin_lock_irq(&hcd_root_hub_lock);
2287 		if (!HCD_DEAD(hcd)) {
2288 			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2289 			hcd->state = old_state;
2290 		}
2291 		spin_unlock_irq(&hcd_root_hub_lock);
2292 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2293 				"suspend", status);
2294 	}
2295 	return status;
2296 }
2297 
2298 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2299 {
2300 	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2301 	int		status;
2302 	int		old_state = hcd->state;
2303 
2304 	dev_dbg(&rhdev->dev, "usb %sresume\n",
2305 			(PMSG_IS_AUTO(msg) ? "auto-" : ""));
2306 	if (HCD_DEAD(hcd)) {
2307 		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2308 		return 0;
2309 	}
2310 	if (!hcd->driver->bus_resume)
2311 		return -ENOENT;
2312 	if (HCD_RH_RUNNING(hcd))
2313 		return 0;
2314 
2315 	hcd->state = HC_STATE_RESUMING;
2316 	status = hcd->driver->bus_resume(hcd);
2317 	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2318 	if (status == 0) {
2319 		struct usb_device *udev;
2320 		int port1;
2321 
2322 		spin_lock_irq(&hcd_root_hub_lock);
2323 		if (!HCD_DEAD(hcd)) {
2324 			usb_set_device_state(rhdev, rhdev->actconfig
2325 					? USB_STATE_CONFIGURED
2326 					: USB_STATE_ADDRESS);
2327 			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2328 			hcd->state = HC_STATE_RUNNING;
2329 		}
2330 		spin_unlock_irq(&hcd_root_hub_lock);
2331 
2332 		/*
2333 		 * Check whether any of the enabled ports on the root hub are
2334 		 * unsuspended.  If they are then a TRSMRCY delay is needed
2335 		 * (this is what the USB-2 spec calls a "global resume").
2336 		 * Otherwise we can skip the delay.
2337 		 */
2338 		usb_hub_for_each_child(rhdev, port1, udev) {
2339 			if (udev->state != USB_STATE_NOTATTACHED &&
2340 					!udev->port_is_suspended) {
2341 				usleep_range(10000, 11000);	/* TRSMRCY */
2342 				break;
2343 			}
2344 		}
2345 	} else {
2346 		hcd->state = old_state;
2347 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2348 				"resume", status);
2349 		if (status != -ESHUTDOWN)
2350 			usb_hc_died(hcd);
2351 	}
2352 	return status;
2353 }
2354 
2355 /* Workqueue routine for root-hub remote wakeup */
2356 static void hcd_resume_work(struct work_struct *work)
2357 {
2358 	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2359 	struct usb_device *udev = hcd->self.root_hub;
2360 
2361 	usb_remote_wakeup(udev);
2362 }
2363 
2364 /**
2365  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2366  * @hcd: host controller for this root hub
2367  *
2368  * The USB host controller calls this function when its root hub is
2369  * suspended (with the remote wakeup feature enabled) and a remote
2370  * wakeup request is received.  The routine submits a workqueue request
2371  * to resume the root hub (that is, manage its downstream ports again).
2372  */
2373 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2374 {
2375 	unsigned long flags;
2376 
2377 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2378 	if (hcd->rh_registered) {
2379 		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2380 		queue_work(pm_wq, &hcd->wakeup_work);
2381 	}
2382 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2383 }
2384 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2385 
2386 #endif	/* CONFIG_PM */
2387 
2388 /*-------------------------------------------------------------------------*/
2389 
2390 #ifdef	CONFIG_USB_OTG
2391 
2392 /**
2393  * usb_bus_start_enum - start immediate enumeration (for OTG)
2394  * @bus: the bus (must use hcd framework)
2395  * @port_num: 1-based number of port; usually bus->otg_port
2396  * Context: in_interrupt()
2397  *
2398  * Starts enumeration, with an immediate reset followed later by
2399  * hub_wq identifying and possibly configuring the device.
2400  * This is needed by OTG controller drivers, where it helps meet
2401  * HNP protocol timing requirements for starting a port reset.
2402  *
2403  * Return: 0 if successful.
2404  */
2405 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2406 {
2407 	struct usb_hcd		*hcd;
2408 	int			status = -EOPNOTSUPP;
2409 
2410 	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2411 	 * boards with root hubs hooked up to internal devices (instead of
2412 	 * just the OTG port) may need more attention to resetting...
2413 	 */
2414 	hcd = bus_to_hcd(bus);
2415 	if (port_num && hcd->driver->start_port_reset)
2416 		status = hcd->driver->start_port_reset(hcd, port_num);
2417 
2418 	/* allocate hub_wq shortly after (first) root port reset finishes;
2419 	 * it may issue others, until at least 50 msecs have passed.
2420 	 */
2421 	if (status == 0)
2422 		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2423 	return status;
2424 }
2425 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2426 
2427 #endif
2428 
2429 /*-------------------------------------------------------------------------*/
2430 
2431 /**
2432  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2433  * @irq: the IRQ being raised
2434  * @__hcd: pointer to the HCD whose IRQ is being signaled
2435  *
2436  * If the controller isn't HALTed, calls the driver's irq handler.
2437  * Checks whether the controller is now dead.
2438  *
2439  * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2440  */
2441 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2442 {
2443 	struct usb_hcd		*hcd = __hcd;
2444 	irqreturn_t		rc;
2445 
2446 	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2447 		rc = IRQ_NONE;
2448 	else if (hcd->driver->irq(hcd) == IRQ_NONE)
2449 		rc = IRQ_NONE;
2450 	else
2451 		rc = IRQ_HANDLED;
2452 
2453 	return rc;
2454 }
2455 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2456 
2457 /*-------------------------------------------------------------------------*/
2458 
2459 /**
2460  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2461  * @hcd: pointer to the HCD representing the controller
2462  *
2463  * This is called by bus glue to report a USB host controller that died
2464  * while operations may still have been pending.  It's called automatically
2465  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2466  *
2467  * Only call this function with the primary HCD.
2468  */
2469 void usb_hc_died (struct usb_hcd *hcd)
2470 {
2471 	unsigned long flags;
2472 
2473 	dev_err (hcd->self.controller, "HC died; cleaning up\n");
2474 
2475 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2476 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2477 	set_bit(HCD_FLAG_DEAD, &hcd->flags);
2478 	if (hcd->rh_registered) {
2479 		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2480 
2481 		/* make hub_wq clean up old urbs and devices */
2482 		usb_set_device_state (hcd->self.root_hub,
2483 				USB_STATE_NOTATTACHED);
2484 		usb_kick_hub_wq(hcd->self.root_hub);
2485 	}
2486 	if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2487 		hcd = hcd->shared_hcd;
2488 		if (hcd->rh_registered) {
2489 			clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2490 
2491 			/* make hub_wq clean up old urbs and devices */
2492 			usb_set_device_state(hcd->self.root_hub,
2493 					USB_STATE_NOTATTACHED);
2494 			usb_kick_hub_wq(hcd->self.root_hub);
2495 		}
2496 	}
2497 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2498 	/* Make sure that the other roothub is also deallocated. */
2499 }
2500 EXPORT_SYMBOL_GPL (usb_hc_died);
2501 
2502 /*-------------------------------------------------------------------------*/
2503 
2504 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2505 {
2506 
2507 	spin_lock_init(&bh->lock);
2508 	INIT_LIST_HEAD(&bh->head);
2509 	tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2510 }
2511 
2512 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2513 		struct device *sysdev, struct device *dev, const char *bus_name,
2514 		struct usb_hcd *primary_hcd)
2515 {
2516 	struct usb_hcd *hcd;
2517 
2518 	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2519 	if (!hcd)
2520 		return NULL;
2521 	if (primary_hcd == NULL) {
2522 		hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2523 				GFP_KERNEL);
2524 		if (!hcd->address0_mutex) {
2525 			kfree(hcd);
2526 			dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2527 			return NULL;
2528 		}
2529 		mutex_init(hcd->address0_mutex);
2530 		hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2531 				GFP_KERNEL);
2532 		if (!hcd->bandwidth_mutex) {
2533 			kfree(hcd->address0_mutex);
2534 			kfree(hcd);
2535 			dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2536 			return NULL;
2537 		}
2538 		mutex_init(hcd->bandwidth_mutex);
2539 		dev_set_drvdata(dev, hcd);
2540 	} else {
2541 		mutex_lock(&usb_port_peer_mutex);
2542 		hcd->address0_mutex = primary_hcd->address0_mutex;
2543 		hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2544 		hcd->primary_hcd = primary_hcd;
2545 		primary_hcd->primary_hcd = primary_hcd;
2546 		hcd->shared_hcd = primary_hcd;
2547 		primary_hcd->shared_hcd = hcd;
2548 		mutex_unlock(&usb_port_peer_mutex);
2549 	}
2550 
2551 	kref_init(&hcd->kref);
2552 
2553 	usb_bus_init(&hcd->self);
2554 	hcd->self.controller = dev;
2555 	hcd->self.sysdev = sysdev;
2556 	hcd->self.bus_name = bus_name;
2557 	hcd->self.uses_dma = (sysdev->dma_mask != NULL);
2558 
2559 	init_timer(&hcd->rh_timer);
2560 	hcd->rh_timer.function = rh_timer_func;
2561 	hcd->rh_timer.data = (unsigned long) hcd;
2562 #ifdef CONFIG_PM
2563 	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2564 #endif
2565 
2566 	hcd->driver = driver;
2567 	hcd->speed = driver->flags & HCD_MASK;
2568 	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2569 			"USB Host Controller";
2570 	return hcd;
2571 }
2572 EXPORT_SYMBOL_GPL(__usb_create_hcd);
2573 
2574 /**
2575  * usb_create_shared_hcd - create and initialize an HCD structure
2576  * @driver: HC driver that will use this hcd
2577  * @dev: device for this HC, stored in hcd->self.controller
2578  * @bus_name: value to store in hcd->self.bus_name
2579  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2580  *              PCI device.  Only allocate certain resources for the primary HCD
2581  * Context: !in_interrupt()
2582  *
2583  * Allocate a struct usb_hcd, with extra space at the end for the
2584  * HC driver's private data.  Initialize the generic members of the
2585  * hcd structure.
2586  *
2587  * Return: On success, a pointer to the created and initialized HCD structure.
2588  * On failure (e.g. if memory is unavailable), %NULL.
2589  */
2590 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2591 		struct device *dev, const char *bus_name,
2592 		struct usb_hcd *primary_hcd)
2593 {
2594 	return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2595 }
2596 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2597 
2598 /**
2599  * usb_create_hcd - create and initialize an HCD structure
2600  * @driver: HC driver that will use this hcd
2601  * @dev: device for this HC, stored in hcd->self.controller
2602  * @bus_name: value to store in hcd->self.bus_name
2603  * Context: !in_interrupt()
2604  *
2605  * Allocate a struct usb_hcd, with extra space at the end for the
2606  * HC driver's private data.  Initialize the generic members of the
2607  * hcd structure.
2608  *
2609  * Return: On success, a pointer to the created and initialized HCD
2610  * structure. On failure (e.g. if memory is unavailable), %NULL.
2611  */
2612 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2613 		struct device *dev, const char *bus_name)
2614 {
2615 	return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2616 }
2617 EXPORT_SYMBOL_GPL(usb_create_hcd);
2618 
2619 /*
2620  * Roothubs that share one PCI device must also share the bandwidth mutex.
2621  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2622  * deallocated.
2623  *
2624  * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2625  * freed.  When hcd_release() is called for either hcd in a peer set,
2626  * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2627  */
2628 static void hcd_release(struct kref *kref)
2629 {
2630 	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2631 
2632 	mutex_lock(&usb_port_peer_mutex);
2633 	if (hcd->shared_hcd) {
2634 		struct usb_hcd *peer = hcd->shared_hcd;
2635 
2636 		peer->shared_hcd = NULL;
2637 		peer->primary_hcd = NULL;
2638 	} else {
2639 		kfree(hcd->address0_mutex);
2640 		kfree(hcd->bandwidth_mutex);
2641 	}
2642 	mutex_unlock(&usb_port_peer_mutex);
2643 	kfree(hcd);
2644 }
2645 
2646 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2647 {
2648 	if (hcd)
2649 		kref_get (&hcd->kref);
2650 	return hcd;
2651 }
2652 EXPORT_SYMBOL_GPL(usb_get_hcd);
2653 
2654 void usb_put_hcd (struct usb_hcd *hcd)
2655 {
2656 	if (hcd)
2657 		kref_put (&hcd->kref, hcd_release);
2658 }
2659 EXPORT_SYMBOL_GPL(usb_put_hcd);
2660 
2661 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2662 {
2663 	if (!hcd->primary_hcd)
2664 		return 1;
2665 	return hcd == hcd->primary_hcd;
2666 }
2667 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2668 
2669 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2670 {
2671 	if (!hcd->driver->find_raw_port_number)
2672 		return port1;
2673 
2674 	return hcd->driver->find_raw_port_number(hcd, port1);
2675 }
2676 
2677 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2678 		unsigned int irqnum, unsigned long irqflags)
2679 {
2680 	int retval;
2681 
2682 	if (hcd->driver->irq) {
2683 
2684 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2685 				hcd->driver->description, hcd->self.busnum);
2686 		retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2687 				hcd->irq_descr, hcd);
2688 		if (retval != 0) {
2689 			dev_err(hcd->self.controller,
2690 					"request interrupt %d failed\n",
2691 					irqnum);
2692 			return retval;
2693 		}
2694 		hcd->irq = irqnum;
2695 		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2696 				(hcd->driver->flags & HCD_MEMORY) ?
2697 					"io mem" : "io base",
2698 					(unsigned long long)hcd->rsrc_start);
2699 	} else {
2700 		hcd->irq = 0;
2701 		if (hcd->rsrc_start)
2702 			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2703 					(hcd->driver->flags & HCD_MEMORY) ?
2704 					"io mem" : "io base",
2705 					(unsigned long long)hcd->rsrc_start);
2706 	}
2707 	return 0;
2708 }
2709 
2710 /*
2711  * Before we free this root hub, flush in-flight peering attempts
2712  * and disable peer lookups
2713  */
2714 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2715 {
2716 	struct usb_device *rhdev;
2717 
2718 	mutex_lock(&usb_port_peer_mutex);
2719 	rhdev = hcd->self.root_hub;
2720 	hcd->self.root_hub = NULL;
2721 	mutex_unlock(&usb_port_peer_mutex);
2722 	usb_put_dev(rhdev);
2723 }
2724 
2725 /**
2726  * usb_add_hcd - finish generic HCD structure initialization and register
2727  * @hcd: the usb_hcd structure to initialize
2728  * @irqnum: Interrupt line to allocate
2729  * @irqflags: Interrupt type flags
2730  *
2731  * Finish the remaining parts of generic HCD initialization: allocate the
2732  * buffers of consistent memory, register the bus, request the IRQ line,
2733  * and call the driver's reset() and start() routines.
2734  */
2735 int usb_add_hcd(struct usb_hcd *hcd,
2736 		unsigned int irqnum, unsigned long irqflags)
2737 {
2738 	int retval;
2739 	struct usb_device *rhdev;
2740 
2741 	if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) {
2742 		struct usb_phy *phy = usb_get_phy_dev(hcd->self.sysdev, 0);
2743 
2744 		if (IS_ERR(phy)) {
2745 			retval = PTR_ERR(phy);
2746 			if (retval == -EPROBE_DEFER)
2747 				return retval;
2748 		} else {
2749 			retval = usb_phy_init(phy);
2750 			if (retval) {
2751 				usb_put_phy(phy);
2752 				return retval;
2753 			}
2754 			hcd->usb_phy = phy;
2755 			hcd->remove_phy = 1;
2756 		}
2757 	}
2758 
2759 	if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) {
2760 		struct phy *phy = phy_get(hcd->self.sysdev, "usb");
2761 
2762 		if (IS_ERR(phy)) {
2763 			retval = PTR_ERR(phy);
2764 			if (retval == -EPROBE_DEFER)
2765 				goto err_phy;
2766 		} else {
2767 			retval = phy_init(phy);
2768 			if (retval) {
2769 				phy_put(phy);
2770 				goto err_phy;
2771 			}
2772 			retval = phy_power_on(phy);
2773 			if (retval) {
2774 				phy_exit(phy);
2775 				phy_put(phy);
2776 				goto err_phy;
2777 			}
2778 			hcd->phy = phy;
2779 			hcd->remove_phy = 1;
2780 		}
2781 	}
2782 
2783 	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2784 
2785 	/* Keep old behaviour if authorized_default is not in [0, 1]. */
2786 	if (authorized_default < 0 || authorized_default > 1) {
2787 		if (hcd->wireless)
2788 			clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2789 		else
2790 			set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2791 	} else {
2792 		if (authorized_default)
2793 			set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2794 		else
2795 			clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2796 	}
2797 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2798 
2799 	/* per default all interfaces are authorized */
2800 	set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2801 
2802 	/* HC is in reset state, but accessible.  Now do the one-time init,
2803 	 * bottom up so that hcds can customize the root hubs before hub_wq
2804 	 * starts talking to them.  (Note, bus id is assigned early too.)
2805 	 */
2806 	retval = hcd_buffer_create(hcd);
2807 	if (retval != 0) {
2808 		dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2809 		goto err_create_buf;
2810 	}
2811 
2812 	retval = usb_register_bus(&hcd->self);
2813 	if (retval < 0)
2814 		goto err_register_bus;
2815 
2816 	rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2817 	if (rhdev == NULL) {
2818 		dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2819 		retval = -ENOMEM;
2820 		goto err_allocate_root_hub;
2821 	}
2822 	mutex_lock(&usb_port_peer_mutex);
2823 	hcd->self.root_hub = rhdev;
2824 	mutex_unlock(&usb_port_peer_mutex);
2825 
2826 	switch (hcd->speed) {
2827 	case HCD_USB11:
2828 		rhdev->speed = USB_SPEED_FULL;
2829 		break;
2830 	case HCD_USB2:
2831 		rhdev->speed = USB_SPEED_HIGH;
2832 		break;
2833 	case HCD_USB25:
2834 		rhdev->speed = USB_SPEED_WIRELESS;
2835 		break;
2836 	case HCD_USB3:
2837 		rhdev->speed = USB_SPEED_SUPER;
2838 		break;
2839 	case HCD_USB31:
2840 		rhdev->speed = USB_SPEED_SUPER_PLUS;
2841 		break;
2842 	default:
2843 		retval = -EINVAL;
2844 		goto err_set_rh_speed;
2845 	}
2846 
2847 	/* wakeup flag init defaults to "everything works" for root hubs,
2848 	 * but drivers can override it in reset() if needed, along with
2849 	 * recording the overall controller's system wakeup capability.
2850 	 */
2851 	device_set_wakeup_capable(&rhdev->dev, 1);
2852 
2853 	/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2854 	 * registered.  But since the controller can die at any time,
2855 	 * let's initialize the flag before touching the hardware.
2856 	 */
2857 	set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2858 
2859 	/* "reset" is misnamed; its role is now one-time init. the controller
2860 	 * should already have been reset (and boot firmware kicked off etc).
2861 	 */
2862 	if (hcd->driver->reset) {
2863 		retval = hcd->driver->reset(hcd);
2864 		if (retval < 0) {
2865 			dev_err(hcd->self.controller, "can't setup: %d\n",
2866 					retval);
2867 			goto err_hcd_driver_setup;
2868 		}
2869 	}
2870 	hcd->rh_pollable = 1;
2871 
2872 	/* NOTE: root hub and controller capabilities may not be the same */
2873 	if (device_can_wakeup(hcd->self.controller)
2874 			&& device_can_wakeup(&hcd->self.root_hub->dev))
2875 		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2876 
2877 	/* initialize tasklets */
2878 	init_giveback_urb_bh(&hcd->high_prio_bh);
2879 	init_giveback_urb_bh(&hcd->low_prio_bh);
2880 
2881 	/* enable irqs just before we start the controller,
2882 	 * if the BIOS provides legacy PCI irqs.
2883 	 */
2884 	if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2885 		retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2886 		if (retval)
2887 			goto err_request_irq;
2888 	}
2889 
2890 	hcd->state = HC_STATE_RUNNING;
2891 	retval = hcd->driver->start(hcd);
2892 	if (retval < 0) {
2893 		dev_err(hcd->self.controller, "startup error %d\n", retval);
2894 		goto err_hcd_driver_start;
2895 	}
2896 
2897 	/* starting here, usbcore will pay attention to this root hub */
2898 	retval = register_root_hub(hcd);
2899 	if (retval != 0)
2900 		goto err_register_root_hub;
2901 
2902 	retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2903 	if (retval < 0) {
2904 		printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2905 		       retval);
2906 		goto error_create_attr_group;
2907 	}
2908 	if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2909 		usb_hcd_poll_rh_status(hcd);
2910 
2911 	return retval;
2912 
2913 error_create_attr_group:
2914 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2915 	if (HC_IS_RUNNING(hcd->state))
2916 		hcd->state = HC_STATE_QUIESCING;
2917 	spin_lock_irq(&hcd_root_hub_lock);
2918 	hcd->rh_registered = 0;
2919 	spin_unlock_irq(&hcd_root_hub_lock);
2920 
2921 #ifdef CONFIG_PM
2922 	cancel_work_sync(&hcd->wakeup_work);
2923 #endif
2924 	mutex_lock(&usb_bus_idr_lock);
2925 	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2926 	mutex_unlock(&usb_bus_idr_lock);
2927 err_register_root_hub:
2928 	hcd->rh_pollable = 0;
2929 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2930 	del_timer_sync(&hcd->rh_timer);
2931 	hcd->driver->stop(hcd);
2932 	hcd->state = HC_STATE_HALT;
2933 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2934 	del_timer_sync(&hcd->rh_timer);
2935 err_hcd_driver_start:
2936 	if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2937 		free_irq(irqnum, hcd);
2938 err_request_irq:
2939 err_hcd_driver_setup:
2940 err_set_rh_speed:
2941 	usb_put_invalidate_rhdev(hcd);
2942 err_allocate_root_hub:
2943 	usb_deregister_bus(&hcd->self);
2944 err_register_bus:
2945 	hcd_buffer_destroy(hcd);
2946 err_create_buf:
2947 	if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2948 		phy_power_off(hcd->phy);
2949 		phy_exit(hcd->phy);
2950 		phy_put(hcd->phy);
2951 		hcd->phy = NULL;
2952 	}
2953 err_phy:
2954 	if (hcd->remove_phy && hcd->usb_phy) {
2955 		usb_phy_shutdown(hcd->usb_phy);
2956 		usb_put_phy(hcd->usb_phy);
2957 		hcd->usb_phy = NULL;
2958 	}
2959 	return retval;
2960 }
2961 EXPORT_SYMBOL_GPL(usb_add_hcd);
2962 
2963 /**
2964  * usb_remove_hcd - shutdown processing for generic HCDs
2965  * @hcd: the usb_hcd structure to remove
2966  * Context: !in_interrupt()
2967  *
2968  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2969  * invoking the HCD's stop() method.
2970  */
2971 void usb_remove_hcd(struct usb_hcd *hcd)
2972 {
2973 	struct usb_device *rhdev = hcd->self.root_hub;
2974 
2975 	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2976 
2977 	usb_get_dev(rhdev);
2978 	sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2979 
2980 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2981 	if (HC_IS_RUNNING (hcd->state))
2982 		hcd->state = HC_STATE_QUIESCING;
2983 
2984 	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2985 	spin_lock_irq (&hcd_root_hub_lock);
2986 	hcd->rh_registered = 0;
2987 	spin_unlock_irq (&hcd_root_hub_lock);
2988 
2989 #ifdef CONFIG_PM
2990 	cancel_work_sync(&hcd->wakeup_work);
2991 #endif
2992 
2993 	mutex_lock(&usb_bus_idr_lock);
2994 	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2995 	mutex_unlock(&usb_bus_idr_lock);
2996 
2997 	/*
2998 	 * tasklet_kill() isn't needed here because:
2999 	 * - driver's disconnect() called from usb_disconnect() should
3000 	 *   make sure its URBs are completed during the disconnect()
3001 	 *   callback
3002 	 *
3003 	 * - it is too late to run complete() here since driver may have
3004 	 *   been removed already now
3005 	 */
3006 
3007 	/* Prevent any more root-hub status calls from the timer.
3008 	 * The HCD might still restart the timer (if a port status change
3009 	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
3010 	 * the hub_status_data() callback.
3011 	 */
3012 	hcd->rh_pollable = 0;
3013 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3014 	del_timer_sync(&hcd->rh_timer);
3015 
3016 	hcd->driver->stop(hcd);
3017 	hcd->state = HC_STATE_HALT;
3018 
3019 	/* In case the HCD restarted the timer, stop it again. */
3020 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3021 	del_timer_sync(&hcd->rh_timer);
3022 
3023 	if (usb_hcd_is_primary_hcd(hcd)) {
3024 		if (hcd->irq > 0)
3025 			free_irq(hcd->irq, hcd);
3026 	}
3027 
3028 	usb_deregister_bus(&hcd->self);
3029 	hcd_buffer_destroy(hcd);
3030 
3031 	if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
3032 		phy_power_off(hcd->phy);
3033 		phy_exit(hcd->phy);
3034 		phy_put(hcd->phy);
3035 		hcd->phy = NULL;
3036 	}
3037 	if (hcd->remove_phy && hcd->usb_phy) {
3038 		usb_phy_shutdown(hcd->usb_phy);
3039 		usb_put_phy(hcd->usb_phy);
3040 		hcd->usb_phy = NULL;
3041 	}
3042 
3043 	usb_put_invalidate_rhdev(hcd);
3044 	hcd->flags = 0;
3045 }
3046 EXPORT_SYMBOL_GPL(usb_remove_hcd);
3047 
3048 void
3049 usb_hcd_platform_shutdown(struct platform_device *dev)
3050 {
3051 	struct usb_hcd *hcd = platform_get_drvdata(dev);
3052 
3053 	if (hcd->driver->shutdown)
3054 		hcd->driver->shutdown(hcd);
3055 }
3056 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3057 
3058 /*-------------------------------------------------------------------------*/
3059 
3060 #if IS_ENABLED(CONFIG_USB_MON)
3061 
3062 const struct usb_mon_operations *mon_ops;
3063 
3064 /*
3065  * The registration is unlocked.
3066  * We do it this way because we do not want to lock in hot paths.
3067  *
3068  * Notice that the code is minimally error-proof. Because usbmon needs
3069  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3070  */
3071 
3072 int usb_mon_register(const struct usb_mon_operations *ops)
3073 {
3074 
3075 	if (mon_ops)
3076 		return -EBUSY;
3077 
3078 	mon_ops = ops;
3079 	mb();
3080 	return 0;
3081 }
3082 EXPORT_SYMBOL_GPL (usb_mon_register);
3083 
3084 void usb_mon_deregister (void)
3085 {
3086 
3087 	if (mon_ops == NULL) {
3088 		printk(KERN_ERR "USB: monitor was not registered\n");
3089 		return;
3090 	}
3091 	mon_ops = NULL;
3092 	mb();
3093 }
3094 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3095 
3096 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
3097