xref: /openbmc/linux/drivers/usb/core/hcd.c (revision e5c86679)
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 
25 #include <linux/bcd.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/utsname.h>
32 #include <linux/mm.h>
33 #include <asm/io.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
37 #include <asm/irq.h>
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <linux/platform_device.h>
41 #include <linux/workqueue.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/types.h>
44 
45 #include <linux/phy/phy.h>
46 #include <linux/usb.h>
47 #include <linux/usb/hcd.h>
48 #include <linux/usb/phy.h>
49 #include <linux/usb/otg.h>
50 
51 #include "usb.h"
52 
53 
54 /*-------------------------------------------------------------------------*/
55 
56 /*
57  * USB Host Controller Driver framework
58  *
59  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
60  * HCD-specific behaviors/bugs.
61  *
62  * This does error checks, tracks devices and urbs, and delegates to a
63  * "hc_driver" only for code (and data) that really needs to know about
64  * hardware differences.  That includes root hub registers, i/o queues,
65  * and so on ... but as little else as possible.
66  *
67  * Shared code includes most of the "root hub" code (these are emulated,
68  * though each HC's hardware works differently) and PCI glue, plus request
69  * tracking overhead.  The HCD code should only block on spinlocks or on
70  * hardware handshaking; blocking on software events (such as other kernel
71  * threads releasing resources, or completing actions) is all generic.
72  *
73  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
74  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
75  * only by the hub driver ... and that neither should be seen or used by
76  * usb client device drivers.
77  *
78  * Contributors of ideas or unattributed patches include: David Brownell,
79  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
80  *
81  * HISTORY:
82  * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
83  *		associated cleanup.  "usb_hcd" still != "usb_bus".
84  * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
85  */
86 
87 /*-------------------------------------------------------------------------*/
88 
89 /* Keep track of which host controller drivers are loaded */
90 unsigned long usb_hcds_loaded;
91 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
92 
93 /* host controllers we manage */
94 DEFINE_IDR (usb_bus_idr);
95 EXPORT_SYMBOL_GPL (usb_bus_idr);
96 
97 /* used when allocating bus numbers */
98 #define USB_MAXBUS		64
99 
100 /* used when updating list of hcds */
101 DEFINE_MUTEX(usb_bus_idr_lock);	/* exported only for usbfs */
102 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
103 
104 /* used for controlling access to virtual root hubs */
105 static DEFINE_SPINLOCK(hcd_root_hub_lock);
106 
107 /* used when updating an endpoint's URB list */
108 static DEFINE_SPINLOCK(hcd_urb_list_lock);
109 
110 /* used to protect against unlinking URBs after the device is gone */
111 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
112 
113 /* wait queue for synchronous unlinks */
114 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
115 
116 static inline int is_root_hub(struct usb_device *udev)
117 {
118 	return (udev->parent == NULL);
119 }
120 
121 /*-------------------------------------------------------------------------*/
122 
123 /*
124  * Sharable chunks of root hub code.
125  */
126 
127 /*-------------------------------------------------------------------------*/
128 #define KERNEL_REL	bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
129 #define KERNEL_VER	bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
130 
131 /* usb 3.1 root hub device descriptor */
132 static const u8 usb31_rh_dev_descriptor[18] = {
133 	0x12,       /*  __u8  bLength; */
134 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
135 	0x10, 0x03, /*  __le16 bcdUSB; v3.1 */
136 
137 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
138 	0x00,	    /*  __u8  bDeviceSubClass; */
139 	0x03,       /*  __u8  bDeviceProtocol; USB 3 hub */
140 	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
141 
142 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
143 	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
144 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
145 
146 	0x03,       /*  __u8  iManufacturer; */
147 	0x02,       /*  __u8  iProduct; */
148 	0x01,       /*  __u8  iSerialNumber; */
149 	0x01        /*  __u8  bNumConfigurations; */
150 };
151 
152 /* usb 3.0 root hub device descriptor */
153 static const u8 usb3_rh_dev_descriptor[18] = {
154 	0x12,       /*  __u8  bLength; */
155 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
156 	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
157 
158 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
159 	0x00,	    /*  __u8  bDeviceSubClass; */
160 	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
161 	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
162 
163 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
164 	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
165 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
166 
167 	0x03,       /*  __u8  iManufacturer; */
168 	0x02,       /*  __u8  iProduct; */
169 	0x01,       /*  __u8  iSerialNumber; */
170 	0x01        /*  __u8  bNumConfigurations; */
171 };
172 
173 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
174 static const u8 usb25_rh_dev_descriptor[18] = {
175 	0x12,       /*  __u8  bLength; */
176 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
177 	0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
178 
179 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
180 	0x00,	    /*  __u8  bDeviceSubClass; */
181 	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
182 	0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
183 
184 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
185 	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
186 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
187 
188 	0x03,       /*  __u8  iManufacturer; */
189 	0x02,       /*  __u8  iProduct; */
190 	0x01,       /*  __u8  iSerialNumber; */
191 	0x01        /*  __u8  bNumConfigurations; */
192 };
193 
194 /* usb 2.0 root hub device descriptor */
195 static const u8 usb2_rh_dev_descriptor[18] = {
196 	0x12,       /*  __u8  bLength; */
197 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
198 	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
199 
200 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
201 	0x00,	    /*  __u8  bDeviceSubClass; */
202 	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
203 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
204 
205 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
206 	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
207 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
208 
209 	0x03,       /*  __u8  iManufacturer; */
210 	0x02,       /*  __u8  iProduct; */
211 	0x01,       /*  __u8  iSerialNumber; */
212 	0x01        /*  __u8  bNumConfigurations; */
213 };
214 
215 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
216 
217 /* usb 1.1 root hub device descriptor */
218 static const u8 usb11_rh_dev_descriptor[18] = {
219 	0x12,       /*  __u8  bLength; */
220 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
221 	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
222 
223 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
224 	0x00,	    /*  __u8  bDeviceSubClass; */
225 	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
226 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
227 
228 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
229 	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
230 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
231 
232 	0x03,       /*  __u8  iManufacturer; */
233 	0x02,       /*  __u8  iProduct; */
234 	0x01,       /*  __u8  iSerialNumber; */
235 	0x01        /*  __u8  bNumConfigurations; */
236 };
237 
238 
239 /*-------------------------------------------------------------------------*/
240 
241 /* Configuration descriptors for our root hubs */
242 
243 static const u8 fs_rh_config_descriptor[] = {
244 
245 	/* one configuration */
246 	0x09,       /*  __u8  bLength; */
247 	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
248 	0x19, 0x00, /*  __le16 wTotalLength; */
249 	0x01,       /*  __u8  bNumInterfaces; (1) */
250 	0x01,       /*  __u8  bConfigurationValue; */
251 	0x00,       /*  __u8  iConfiguration; */
252 	0xc0,       /*  __u8  bmAttributes;
253 				 Bit 7: must be set,
254 				     6: Self-powered,
255 				     5: Remote wakeup,
256 				     4..0: resvd */
257 	0x00,       /*  __u8  MaxPower; */
258 
259 	/* USB 1.1:
260 	 * USB 2.0, single TT organization (mandatory):
261 	 *	one interface, protocol 0
262 	 *
263 	 * USB 2.0, multiple TT organization (optional):
264 	 *	two interfaces, protocols 1 (like single TT)
265 	 *	and 2 (multiple TT mode) ... config is
266 	 *	sometimes settable
267 	 *	NOT IMPLEMENTED
268 	 */
269 
270 	/* one interface */
271 	0x09,       /*  __u8  if_bLength; */
272 	USB_DT_INTERFACE,  /* __u8 if_bDescriptorType; Interface */
273 	0x00,       /*  __u8  if_bInterfaceNumber; */
274 	0x00,       /*  __u8  if_bAlternateSetting; */
275 	0x01,       /*  __u8  if_bNumEndpoints; */
276 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
277 	0x00,       /*  __u8  if_bInterfaceSubClass; */
278 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
279 	0x00,       /*  __u8  if_iInterface; */
280 
281 	/* one endpoint (status change endpoint) */
282 	0x07,       /*  __u8  ep_bLength; */
283 	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
284 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
285 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
286 	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
287 	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
288 };
289 
290 static const u8 hs_rh_config_descriptor[] = {
291 
292 	/* one configuration */
293 	0x09,       /*  __u8  bLength; */
294 	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
295 	0x19, 0x00, /*  __le16 wTotalLength; */
296 	0x01,       /*  __u8  bNumInterfaces; (1) */
297 	0x01,       /*  __u8  bConfigurationValue; */
298 	0x00,       /*  __u8  iConfiguration; */
299 	0xc0,       /*  __u8  bmAttributes;
300 				 Bit 7: must be set,
301 				     6: Self-powered,
302 				     5: Remote wakeup,
303 				     4..0: resvd */
304 	0x00,       /*  __u8  MaxPower; */
305 
306 	/* USB 1.1:
307 	 * USB 2.0, single TT organization (mandatory):
308 	 *	one interface, protocol 0
309 	 *
310 	 * USB 2.0, multiple TT organization (optional):
311 	 *	two interfaces, protocols 1 (like single TT)
312 	 *	and 2 (multiple TT mode) ... config is
313 	 *	sometimes settable
314 	 *	NOT IMPLEMENTED
315 	 */
316 
317 	/* one interface */
318 	0x09,       /*  __u8  if_bLength; */
319 	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
320 	0x00,       /*  __u8  if_bInterfaceNumber; */
321 	0x00,       /*  __u8  if_bAlternateSetting; */
322 	0x01,       /*  __u8  if_bNumEndpoints; */
323 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
324 	0x00,       /*  __u8  if_bInterfaceSubClass; */
325 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
326 	0x00,       /*  __u8  if_iInterface; */
327 
328 	/* one endpoint (status change endpoint) */
329 	0x07,       /*  __u8  ep_bLength; */
330 	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
331 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
332 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
333 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
334 		     * see hub.c:hub_configure() for details. */
335 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
336 	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
337 };
338 
339 static const u8 ss_rh_config_descriptor[] = {
340 	/* one configuration */
341 	0x09,       /*  __u8  bLength; */
342 	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
343 	0x1f, 0x00, /*  __le16 wTotalLength; */
344 	0x01,       /*  __u8  bNumInterfaces; (1) */
345 	0x01,       /*  __u8  bConfigurationValue; */
346 	0x00,       /*  __u8  iConfiguration; */
347 	0xc0,       /*  __u8  bmAttributes;
348 				 Bit 7: must be set,
349 				     6: Self-powered,
350 				     5: Remote wakeup,
351 				     4..0: resvd */
352 	0x00,       /*  __u8  MaxPower; */
353 
354 	/* one interface */
355 	0x09,       /*  __u8  if_bLength; */
356 	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
357 	0x00,       /*  __u8  if_bInterfaceNumber; */
358 	0x00,       /*  __u8  if_bAlternateSetting; */
359 	0x01,       /*  __u8  if_bNumEndpoints; */
360 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
361 	0x00,       /*  __u8  if_bInterfaceSubClass; */
362 	0x00,       /*  __u8  if_bInterfaceProtocol; */
363 	0x00,       /*  __u8  if_iInterface; */
364 
365 	/* one endpoint (status change endpoint) */
366 	0x07,       /*  __u8  ep_bLength; */
367 	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
368 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
369 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
370 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
371 		     * see hub.c:hub_configure() for details. */
372 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
373 	0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
374 
375 	/* one SuperSpeed endpoint companion descriptor */
376 	0x06,        /* __u8 ss_bLength */
377 	USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
378 		     /* Companion */
379 	0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
380 	0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
381 	0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
382 };
383 
384 /* authorized_default behaviour:
385  * -1 is authorized for all devices except wireless (old behaviour)
386  * 0 is unauthorized for all devices
387  * 1 is authorized for all devices
388  */
389 static int authorized_default = -1;
390 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
391 MODULE_PARM_DESC(authorized_default,
392 		"Default USB device authorization: 0 is not authorized, 1 is "
393 		"authorized, -1 is authorized except for wireless USB (default, "
394 		"old behaviour");
395 /*-------------------------------------------------------------------------*/
396 
397 /**
398  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
399  * @s: Null-terminated ASCII (actually ISO-8859-1) string
400  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
401  * @len: Length (in bytes; may be odd) of descriptor buffer.
402  *
403  * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
404  * whichever is less.
405  *
406  * Note:
407  * USB String descriptors can contain at most 126 characters; input
408  * strings longer than that are truncated.
409  */
410 static unsigned
411 ascii2desc(char const *s, u8 *buf, unsigned len)
412 {
413 	unsigned n, t = 2 + 2*strlen(s);
414 
415 	if (t > 254)
416 		t = 254;	/* Longest possible UTF string descriptor */
417 	if (len > t)
418 		len = t;
419 
420 	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
421 
422 	n = len;
423 	while (n--) {
424 		*buf++ = t;
425 		if (!n--)
426 			break;
427 		*buf++ = t >> 8;
428 		t = (unsigned char)*s++;
429 	}
430 	return len;
431 }
432 
433 /**
434  * rh_string() - provides string descriptors for root hub
435  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
436  * @hcd: the host controller for this root hub
437  * @data: buffer for output packet
438  * @len: length of the provided buffer
439  *
440  * Produces either a manufacturer, product or serial number string for the
441  * virtual root hub device.
442  *
443  * Return: The number of bytes filled in: the length of the descriptor or
444  * of the provided buffer, whichever is less.
445  */
446 static unsigned
447 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
448 {
449 	char buf[100];
450 	char const *s;
451 	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
452 
453 	/* language ids */
454 	switch (id) {
455 	case 0:
456 		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
457 		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
458 		if (len > 4)
459 			len = 4;
460 		memcpy(data, langids, len);
461 		return len;
462 	case 1:
463 		/* Serial number */
464 		s = hcd->self.bus_name;
465 		break;
466 	case 2:
467 		/* Product name */
468 		s = hcd->product_desc;
469 		break;
470 	case 3:
471 		/* Manufacturer */
472 		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
473 			init_utsname()->release, hcd->driver->description);
474 		s = buf;
475 		break;
476 	default:
477 		/* Can't happen; caller guarantees it */
478 		return 0;
479 	}
480 
481 	return ascii2desc(s, data, len);
482 }
483 
484 
485 /* Root hub control transfers execute synchronously */
486 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
487 {
488 	struct usb_ctrlrequest *cmd;
489 	u16		typeReq, wValue, wIndex, wLength;
490 	u8		*ubuf = urb->transfer_buffer;
491 	unsigned	len = 0;
492 	int		status;
493 	u8		patch_wakeup = 0;
494 	u8		patch_protocol = 0;
495 	u16		tbuf_size;
496 	u8		*tbuf = NULL;
497 	const u8	*bufp;
498 
499 	might_sleep();
500 
501 	spin_lock_irq(&hcd_root_hub_lock);
502 	status = usb_hcd_link_urb_to_ep(hcd, urb);
503 	spin_unlock_irq(&hcd_root_hub_lock);
504 	if (status)
505 		return status;
506 	urb->hcpriv = hcd;	/* Indicate it's queued */
507 
508 	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
509 	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
510 	wValue   = le16_to_cpu (cmd->wValue);
511 	wIndex   = le16_to_cpu (cmd->wIndex);
512 	wLength  = le16_to_cpu (cmd->wLength);
513 
514 	if (wLength > urb->transfer_buffer_length)
515 		goto error;
516 
517 	/*
518 	 * tbuf should be at least as big as the
519 	 * USB hub descriptor.
520 	 */
521 	tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
522 	tbuf = kzalloc(tbuf_size, GFP_KERNEL);
523 	if (!tbuf) {
524 		status = -ENOMEM;
525 		goto err_alloc;
526 	}
527 
528 	bufp = tbuf;
529 
530 
531 	urb->actual_length = 0;
532 	switch (typeReq) {
533 
534 	/* DEVICE REQUESTS */
535 
536 	/* The root hub's remote wakeup enable bit is implemented using
537 	 * driver model wakeup flags.  If this system supports wakeup
538 	 * through USB, userspace may change the default "allow wakeup"
539 	 * policy through sysfs or these calls.
540 	 *
541 	 * Most root hubs support wakeup from downstream devices, for
542 	 * runtime power management (disabling USB clocks and reducing
543 	 * VBUS power usage).  However, not all of them do so; silicon,
544 	 * board, and BIOS bugs here are not uncommon, so these can't
545 	 * be treated quite like external hubs.
546 	 *
547 	 * Likewise, not all root hubs will pass wakeup events upstream,
548 	 * to wake up the whole system.  So don't assume root hub and
549 	 * controller capabilities are identical.
550 	 */
551 
552 	case DeviceRequest | USB_REQ_GET_STATUS:
553 		tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
554 					<< USB_DEVICE_REMOTE_WAKEUP)
555 				| (1 << USB_DEVICE_SELF_POWERED);
556 		tbuf[1] = 0;
557 		len = 2;
558 		break;
559 	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
560 		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
561 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
562 		else
563 			goto error;
564 		break;
565 	case DeviceOutRequest | USB_REQ_SET_FEATURE:
566 		if (device_can_wakeup(&hcd->self.root_hub->dev)
567 				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
568 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
569 		else
570 			goto error;
571 		break;
572 	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
573 		tbuf[0] = 1;
574 		len = 1;
575 			/* FALLTHROUGH */
576 	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
577 		break;
578 	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
579 		switch (wValue & 0xff00) {
580 		case USB_DT_DEVICE << 8:
581 			switch (hcd->speed) {
582 			case HCD_USB31:
583 				bufp = usb31_rh_dev_descriptor;
584 				break;
585 			case HCD_USB3:
586 				bufp = usb3_rh_dev_descriptor;
587 				break;
588 			case HCD_USB25:
589 				bufp = usb25_rh_dev_descriptor;
590 				break;
591 			case HCD_USB2:
592 				bufp = usb2_rh_dev_descriptor;
593 				break;
594 			case HCD_USB11:
595 				bufp = usb11_rh_dev_descriptor;
596 				break;
597 			default:
598 				goto error;
599 			}
600 			len = 18;
601 			if (hcd->has_tt)
602 				patch_protocol = 1;
603 			break;
604 		case USB_DT_CONFIG << 8:
605 			switch (hcd->speed) {
606 			case HCD_USB31:
607 			case HCD_USB3:
608 				bufp = ss_rh_config_descriptor;
609 				len = sizeof ss_rh_config_descriptor;
610 				break;
611 			case HCD_USB25:
612 			case HCD_USB2:
613 				bufp = hs_rh_config_descriptor;
614 				len = sizeof hs_rh_config_descriptor;
615 				break;
616 			case HCD_USB11:
617 				bufp = fs_rh_config_descriptor;
618 				len = sizeof fs_rh_config_descriptor;
619 				break;
620 			default:
621 				goto error;
622 			}
623 			if (device_can_wakeup(&hcd->self.root_hub->dev))
624 				patch_wakeup = 1;
625 			break;
626 		case USB_DT_STRING << 8:
627 			if ((wValue & 0xff) < 4)
628 				urb->actual_length = rh_string(wValue & 0xff,
629 						hcd, ubuf, wLength);
630 			else /* unsupported IDs --> "protocol stall" */
631 				goto error;
632 			break;
633 		case USB_DT_BOS << 8:
634 			goto nongeneric;
635 		default:
636 			goto error;
637 		}
638 		break;
639 	case DeviceRequest | USB_REQ_GET_INTERFACE:
640 		tbuf[0] = 0;
641 		len = 1;
642 			/* FALLTHROUGH */
643 	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
644 		break;
645 	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
646 		/* wValue == urb->dev->devaddr */
647 		dev_dbg (hcd->self.controller, "root hub device address %d\n",
648 			wValue);
649 		break;
650 
651 	/* INTERFACE REQUESTS (no defined feature/status flags) */
652 
653 	/* ENDPOINT REQUESTS */
654 
655 	case EndpointRequest | USB_REQ_GET_STATUS:
656 		/* ENDPOINT_HALT flag */
657 		tbuf[0] = 0;
658 		tbuf[1] = 0;
659 		len = 2;
660 			/* FALLTHROUGH */
661 	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
662 	case EndpointOutRequest | USB_REQ_SET_FEATURE:
663 		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
664 		break;
665 
666 	/* CLASS REQUESTS (and errors) */
667 
668 	default:
669 nongeneric:
670 		/* non-generic request */
671 		switch (typeReq) {
672 		case GetHubStatus:
673 			len = 4;
674 			break;
675 		case GetPortStatus:
676 			if (wValue == HUB_PORT_STATUS)
677 				len = 4;
678 			else
679 				/* other port status types return 8 bytes */
680 				len = 8;
681 			break;
682 		case GetHubDescriptor:
683 			len = sizeof (struct usb_hub_descriptor);
684 			break;
685 		case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
686 			/* len is returned by hub_control */
687 			break;
688 		}
689 		status = hcd->driver->hub_control (hcd,
690 			typeReq, wValue, wIndex,
691 			tbuf, wLength);
692 
693 		if (typeReq == GetHubDescriptor)
694 			usb_hub_adjust_deviceremovable(hcd->self.root_hub,
695 				(struct usb_hub_descriptor *)tbuf);
696 		break;
697 error:
698 		/* "protocol stall" on error */
699 		status = -EPIPE;
700 	}
701 
702 	if (status < 0) {
703 		len = 0;
704 		if (status != -EPIPE) {
705 			dev_dbg (hcd->self.controller,
706 				"CTRL: TypeReq=0x%x val=0x%x "
707 				"idx=0x%x len=%d ==> %d\n",
708 				typeReq, wValue, wIndex,
709 				wLength, status);
710 		}
711 	} else if (status > 0) {
712 		/* hub_control may return the length of data copied. */
713 		len = status;
714 		status = 0;
715 	}
716 	if (len) {
717 		if (urb->transfer_buffer_length < len)
718 			len = urb->transfer_buffer_length;
719 		urb->actual_length = len;
720 		/* always USB_DIR_IN, toward host */
721 		memcpy (ubuf, bufp, len);
722 
723 		/* report whether RH hardware supports remote wakeup */
724 		if (patch_wakeup &&
725 				len > offsetof (struct usb_config_descriptor,
726 						bmAttributes))
727 			((struct usb_config_descriptor *)ubuf)->bmAttributes
728 				|= USB_CONFIG_ATT_WAKEUP;
729 
730 		/* report whether RH hardware has an integrated TT */
731 		if (patch_protocol &&
732 				len > offsetof(struct usb_device_descriptor,
733 						bDeviceProtocol))
734 			((struct usb_device_descriptor *) ubuf)->
735 				bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
736 	}
737 
738 	kfree(tbuf);
739  err_alloc:
740 
741 	/* any errors get returned through the urb completion */
742 	spin_lock_irq(&hcd_root_hub_lock);
743 	usb_hcd_unlink_urb_from_ep(hcd, urb);
744 	usb_hcd_giveback_urb(hcd, urb, status);
745 	spin_unlock_irq(&hcd_root_hub_lock);
746 	return 0;
747 }
748 
749 /*-------------------------------------------------------------------------*/
750 
751 /*
752  * Root Hub interrupt transfers are polled using a timer if the
753  * driver requests it; otherwise the driver is responsible for
754  * calling usb_hcd_poll_rh_status() when an event occurs.
755  *
756  * Completions are called in_interrupt(), but they may or may not
757  * be in_irq().
758  */
759 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
760 {
761 	struct urb	*urb;
762 	int		length;
763 	unsigned long	flags;
764 	char		buffer[6];	/* Any root hubs with > 31 ports? */
765 
766 	if (unlikely(!hcd->rh_pollable))
767 		return;
768 	if (!hcd->uses_new_polling && !hcd->status_urb)
769 		return;
770 
771 	length = hcd->driver->hub_status_data(hcd, buffer);
772 	if (length > 0) {
773 
774 		/* try to complete the status urb */
775 		spin_lock_irqsave(&hcd_root_hub_lock, flags);
776 		urb = hcd->status_urb;
777 		if (urb) {
778 			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
779 			hcd->status_urb = NULL;
780 			urb->actual_length = length;
781 			memcpy(urb->transfer_buffer, buffer, length);
782 
783 			usb_hcd_unlink_urb_from_ep(hcd, urb);
784 			usb_hcd_giveback_urb(hcd, urb, 0);
785 		} else {
786 			length = 0;
787 			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
788 		}
789 		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
790 	}
791 
792 	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
793 	 * exceed that limit if HZ is 100. The math is more clunky than
794 	 * maybe expected, this is to make sure that all timers for USB devices
795 	 * fire at the same time to give the CPU a break in between */
796 	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
797 			(length == 0 && hcd->status_urb != NULL))
798 		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
799 }
800 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
801 
802 /* timer callback */
803 static void rh_timer_func (unsigned long _hcd)
804 {
805 	usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
806 }
807 
808 /*-------------------------------------------------------------------------*/
809 
810 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
811 {
812 	int		retval;
813 	unsigned long	flags;
814 	unsigned	len = 1 + (urb->dev->maxchild / 8);
815 
816 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
817 	if (hcd->status_urb || urb->transfer_buffer_length < len) {
818 		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
819 		retval = -EINVAL;
820 		goto done;
821 	}
822 
823 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
824 	if (retval)
825 		goto done;
826 
827 	hcd->status_urb = urb;
828 	urb->hcpriv = hcd;	/* indicate it's queued */
829 	if (!hcd->uses_new_polling)
830 		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
831 
832 	/* If a status change has already occurred, report it ASAP */
833 	else if (HCD_POLL_PENDING(hcd))
834 		mod_timer(&hcd->rh_timer, jiffies);
835 	retval = 0;
836  done:
837 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
838 	return retval;
839 }
840 
841 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
842 {
843 	if (usb_endpoint_xfer_int(&urb->ep->desc))
844 		return rh_queue_status (hcd, urb);
845 	if (usb_endpoint_xfer_control(&urb->ep->desc))
846 		return rh_call_control (hcd, urb);
847 	return -EINVAL;
848 }
849 
850 /*-------------------------------------------------------------------------*/
851 
852 /* Unlinks of root-hub control URBs are legal, but they don't do anything
853  * since these URBs always execute synchronously.
854  */
855 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
856 {
857 	unsigned long	flags;
858 	int		rc;
859 
860 	spin_lock_irqsave(&hcd_root_hub_lock, flags);
861 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
862 	if (rc)
863 		goto done;
864 
865 	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
866 		;	/* Do nothing */
867 
868 	} else {				/* Status URB */
869 		if (!hcd->uses_new_polling)
870 			del_timer (&hcd->rh_timer);
871 		if (urb == hcd->status_urb) {
872 			hcd->status_urb = NULL;
873 			usb_hcd_unlink_urb_from_ep(hcd, urb);
874 			usb_hcd_giveback_urb(hcd, urb, status);
875 		}
876 	}
877  done:
878 	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
879 	return rc;
880 }
881 
882 
883 
884 /*
885  * Show & store the current value of authorized_default
886  */
887 static ssize_t authorized_default_show(struct device *dev,
888 				       struct device_attribute *attr, char *buf)
889 {
890 	struct usb_device *rh_usb_dev = to_usb_device(dev);
891 	struct usb_bus *usb_bus = rh_usb_dev->bus;
892 	struct usb_hcd *hcd;
893 
894 	hcd = bus_to_hcd(usb_bus);
895 	return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd));
896 }
897 
898 static ssize_t authorized_default_store(struct device *dev,
899 					struct device_attribute *attr,
900 					const char *buf, size_t size)
901 {
902 	ssize_t result;
903 	unsigned val;
904 	struct usb_device *rh_usb_dev = to_usb_device(dev);
905 	struct usb_bus *usb_bus = rh_usb_dev->bus;
906 	struct usb_hcd *hcd;
907 
908 	hcd = bus_to_hcd(usb_bus);
909 	result = sscanf(buf, "%u\n", &val);
910 	if (result == 1) {
911 		if (val)
912 			set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
913 		else
914 			clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
915 
916 		result = size;
917 	} else {
918 		result = -EINVAL;
919 	}
920 	return result;
921 }
922 static DEVICE_ATTR_RW(authorized_default);
923 
924 /*
925  * interface_authorized_default_show - show default authorization status
926  * for USB interfaces
927  *
928  * note: interface_authorized_default is the default value
929  *       for initializing the authorized attribute of interfaces
930  */
931 static ssize_t interface_authorized_default_show(struct device *dev,
932 		struct device_attribute *attr, char *buf)
933 {
934 	struct usb_device *usb_dev = to_usb_device(dev);
935 	struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
936 
937 	return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd));
938 }
939 
940 /*
941  * interface_authorized_default_store - store default authorization status
942  * for USB interfaces
943  *
944  * note: interface_authorized_default is the default value
945  *       for initializing the authorized attribute of interfaces
946  */
947 static ssize_t interface_authorized_default_store(struct device *dev,
948 		struct device_attribute *attr, const char *buf, size_t count)
949 {
950 	struct usb_device *usb_dev = to_usb_device(dev);
951 	struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
952 	int rc = count;
953 	bool val;
954 
955 	if (strtobool(buf, &val) != 0)
956 		return -EINVAL;
957 
958 	if (val)
959 		set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
960 	else
961 		clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
962 
963 	return rc;
964 }
965 static DEVICE_ATTR_RW(interface_authorized_default);
966 
967 /* Group all the USB bus attributes */
968 static struct attribute *usb_bus_attrs[] = {
969 		&dev_attr_authorized_default.attr,
970 		&dev_attr_interface_authorized_default.attr,
971 		NULL,
972 };
973 
974 static struct attribute_group usb_bus_attr_group = {
975 	.name = NULL,	/* we want them in the same directory */
976 	.attrs = usb_bus_attrs,
977 };
978 
979 
980 
981 /*-------------------------------------------------------------------------*/
982 
983 /**
984  * usb_bus_init - shared initialization code
985  * @bus: the bus structure being initialized
986  *
987  * This code is used to initialize a usb_bus structure, memory for which is
988  * separately managed.
989  */
990 static void usb_bus_init (struct usb_bus *bus)
991 {
992 	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
993 
994 	bus->devnum_next = 1;
995 
996 	bus->root_hub = NULL;
997 	bus->busnum = -1;
998 	bus->bandwidth_allocated = 0;
999 	bus->bandwidth_int_reqs  = 0;
1000 	bus->bandwidth_isoc_reqs = 0;
1001 	mutex_init(&bus->devnum_next_mutex);
1002 }
1003 
1004 /*-------------------------------------------------------------------------*/
1005 
1006 /**
1007  * usb_register_bus - registers the USB host controller with the usb core
1008  * @bus: pointer to the bus to register
1009  * Context: !in_interrupt()
1010  *
1011  * Assigns a bus number, and links the controller into usbcore data
1012  * structures so that it can be seen by scanning the bus list.
1013  *
1014  * Return: 0 if successful. A negative error code otherwise.
1015  */
1016 static int usb_register_bus(struct usb_bus *bus)
1017 {
1018 	int result = -E2BIG;
1019 	int busnum;
1020 
1021 	mutex_lock(&usb_bus_idr_lock);
1022 	busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
1023 	if (busnum < 0) {
1024 		pr_err("%s: failed to get bus number\n", usbcore_name);
1025 		goto error_find_busnum;
1026 	}
1027 	bus->busnum = busnum;
1028 	mutex_unlock(&usb_bus_idr_lock);
1029 
1030 	usb_notify_add_bus(bus);
1031 
1032 	dev_info (bus->controller, "new USB bus registered, assigned bus "
1033 		  "number %d\n", bus->busnum);
1034 	return 0;
1035 
1036 error_find_busnum:
1037 	mutex_unlock(&usb_bus_idr_lock);
1038 	return result;
1039 }
1040 
1041 /**
1042  * usb_deregister_bus - deregisters the USB host controller
1043  * @bus: pointer to the bus to deregister
1044  * Context: !in_interrupt()
1045  *
1046  * Recycles the bus number, and unlinks the controller from usbcore data
1047  * structures so that it won't be seen by scanning the bus list.
1048  */
1049 static void usb_deregister_bus (struct usb_bus *bus)
1050 {
1051 	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
1052 
1053 	/*
1054 	 * NOTE: make sure that all the devices are removed by the
1055 	 * controller code, as well as having it call this when cleaning
1056 	 * itself up
1057 	 */
1058 	mutex_lock(&usb_bus_idr_lock);
1059 	idr_remove(&usb_bus_idr, bus->busnum);
1060 	mutex_unlock(&usb_bus_idr_lock);
1061 
1062 	usb_notify_remove_bus(bus);
1063 }
1064 
1065 /**
1066  * register_root_hub - called by usb_add_hcd() to register a root hub
1067  * @hcd: host controller for this root hub
1068  *
1069  * This function registers the root hub with the USB subsystem.  It sets up
1070  * the device properly in the device tree and then calls usb_new_device()
1071  * to register the usb device.  It also assigns the root hub's USB address
1072  * (always 1).
1073  *
1074  * Return: 0 if successful. A negative error code otherwise.
1075  */
1076 static int register_root_hub(struct usb_hcd *hcd)
1077 {
1078 	struct device *parent_dev = hcd->self.controller;
1079 	struct usb_device *usb_dev = hcd->self.root_hub;
1080 	const int devnum = 1;
1081 	int retval;
1082 
1083 	usb_dev->devnum = devnum;
1084 	usb_dev->bus->devnum_next = devnum + 1;
1085 	memset (&usb_dev->bus->devmap.devicemap, 0,
1086 			sizeof usb_dev->bus->devmap.devicemap);
1087 	set_bit (devnum, usb_dev->bus->devmap.devicemap);
1088 	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1089 
1090 	mutex_lock(&usb_bus_idr_lock);
1091 
1092 	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1093 	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1094 	if (retval != sizeof usb_dev->descriptor) {
1095 		mutex_unlock(&usb_bus_idr_lock);
1096 		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1097 				dev_name(&usb_dev->dev), retval);
1098 		return (retval < 0) ? retval : -EMSGSIZE;
1099 	}
1100 
1101 	if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1102 		retval = usb_get_bos_descriptor(usb_dev);
1103 		if (!retval) {
1104 			usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1105 		} else if (usb_dev->speed >= USB_SPEED_SUPER) {
1106 			mutex_unlock(&usb_bus_idr_lock);
1107 			dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1108 					dev_name(&usb_dev->dev), retval);
1109 			return retval;
1110 		}
1111 	}
1112 
1113 	retval = usb_new_device (usb_dev);
1114 	if (retval) {
1115 		dev_err (parent_dev, "can't register root hub for %s, %d\n",
1116 				dev_name(&usb_dev->dev), retval);
1117 	} else {
1118 		spin_lock_irq (&hcd_root_hub_lock);
1119 		hcd->rh_registered = 1;
1120 		spin_unlock_irq (&hcd_root_hub_lock);
1121 
1122 		/* Did the HC die before the root hub was registered? */
1123 		if (HCD_DEAD(hcd))
1124 			usb_hc_died (hcd);	/* This time clean up */
1125 		usb_dev->dev.of_node = parent_dev->of_node;
1126 	}
1127 	mutex_unlock(&usb_bus_idr_lock);
1128 
1129 	return retval;
1130 }
1131 
1132 /*
1133  * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1134  * @bus: the bus which the root hub belongs to
1135  * @portnum: the port which is being resumed
1136  *
1137  * HCDs should call this function when they know that a resume signal is
1138  * being sent to a root-hub port.  The root hub will be prevented from
1139  * going into autosuspend until usb_hcd_end_port_resume() is called.
1140  *
1141  * The bus's private lock must be held by the caller.
1142  */
1143 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1144 {
1145 	unsigned bit = 1 << portnum;
1146 
1147 	if (!(bus->resuming_ports & bit)) {
1148 		bus->resuming_ports |= bit;
1149 		pm_runtime_get_noresume(&bus->root_hub->dev);
1150 	}
1151 }
1152 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1153 
1154 /*
1155  * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1156  * @bus: the bus which the root hub belongs to
1157  * @portnum: the port which is being resumed
1158  *
1159  * HCDs should call this function when they know that a resume signal has
1160  * stopped being sent to a root-hub port.  The root hub will be allowed to
1161  * autosuspend again.
1162  *
1163  * The bus's private lock must be held by the caller.
1164  */
1165 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1166 {
1167 	unsigned bit = 1 << portnum;
1168 
1169 	if (bus->resuming_ports & bit) {
1170 		bus->resuming_ports &= ~bit;
1171 		pm_runtime_put_noidle(&bus->root_hub->dev);
1172 	}
1173 }
1174 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1175 
1176 /*-------------------------------------------------------------------------*/
1177 
1178 /**
1179  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1180  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1181  * @is_input: true iff the transaction sends data to the host
1182  * @isoc: true for isochronous transactions, false for interrupt ones
1183  * @bytecount: how many bytes in the transaction.
1184  *
1185  * Return: Approximate bus time in nanoseconds for a periodic transaction.
1186  *
1187  * Note:
1188  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1189  * scheduled in software, this function is only used for such scheduling.
1190  */
1191 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1192 {
1193 	unsigned long	tmp;
1194 
1195 	switch (speed) {
1196 	case USB_SPEED_LOW: 	/* INTR only */
1197 		if (is_input) {
1198 			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1199 			return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1200 		} else {
1201 			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1202 			return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1203 		}
1204 	case USB_SPEED_FULL:	/* ISOC or INTR */
1205 		if (isoc) {
1206 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1207 			return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1208 		} else {
1209 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1210 			return 9107L + BW_HOST_DELAY + tmp;
1211 		}
1212 	case USB_SPEED_HIGH:	/* ISOC or INTR */
1213 		/* FIXME adjust for input vs output */
1214 		if (isoc)
1215 			tmp = HS_NSECS_ISO (bytecount);
1216 		else
1217 			tmp = HS_NSECS (bytecount);
1218 		return tmp;
1219 	default:
1220 		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1221 		return -1;
1222 	}
1223 }
1224 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1225 
1226 
1227 /*-------------------------------------------------------------------------*/
1228 
1229 /*
1230  * Generic HC operations.
1231  */
1232 
1233 /*-------------------------------------------------------------------------*/
1234 
1235 /**
1236  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1237  * @hcd: host controller to which @urb was submitted
1238  * @urb: URB being submitted
1239  *
1240  * Host controller drivers should call this routine in their enqueue()
1241  * method.  The HCD's private spinlock must be held and interrupts must
1242  * be disabled.  The actions carried out here are required for URB
1243  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1244  *
1245  * Return: 0 for no error, otherwise a negative error code (in which case
1246  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1247  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1248  * the private spinlock and returning.
1249  */
1250 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1251 {
1252 	int		rc = 0;
1253 
1254 	spin_lock(&hcd_urb_list_lock);
1255 
1256 	/* Check that the URB isn't being killed */
1257 	if (unlikely(atomic_read(&urb->reject))) {
1258 		rc = -EPERM;
1259 		goto done;
1260 	}
1261 
1262 	if (unlikely(!urb->ep->enabled)) {
1263 		rc = -ENOENT;
1264 		goto done;
1265 	}
1266 
1267 	if (unlikely(!urb->dev->can_submit)) {
1268 		rc = -EHOSTUNREACH;
1269 		goto done;
1270 	}
1271 
1272 	/*
1273 	 * Check the host controller's state and add the URB to the
1274 	 * endpoint's queue.
1275 	 */
1276 	if (HCD_RH_RUNNING(hcd)) {
1277 		urb->unlinked = 0;
1278 		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1279 	} else {
1280 		rc = -ESHUTDOWN;
1281 		goto done;
1282 	}
1283  done:
1284 	spin_unlock(&hcd_urb_list_lock);
1285 	return rc;
1286 }
1287 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1288 
1289 /**
1290  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1291  * @hcd: host controller to which @urb was submitted
1292  * @urb: URB being checked for unlinkability
1293  * @status: error code to store in @urb if the unlink succeeds
1294  *
1295  * Host controller drivers should call this routine in their dequeue()
1296  * method.  The HCD's private spinlock must be held and interrupts must
1297  * be disabled.  The actions carried out here are required for making
1298  * sure than an unlink is valid.
1299  *
1300  * Return: 0 for no error, otherwise a negative error code (in which case
1301  * the dequeue() method must fail).  The possible error codes are:
1302  *
1303  *	-EIDRM: @urb was not submitted or has already completed.
1304  *		The completion function may not have been called yet.
1305  *
1306  *	-EBUSY: @urb has already been unlinked.
1307  */
1308 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1309 		int status)
1310 {
1311 	struct list_head	*tmp;
1312 
1313 	/* insist the urb is still queued */
1314 	list_for_each(tmp, &urb->ep->urb_list) {
1315 		if (tmp == &urb->urb_list)
1316 			break;
1317 	}
1318 	if (tmp != &urb->urb_list)
1319 		return -EIDRM;
1320 
1321 	/* Any status except -EINPROGRESS means something already started to
1322 	 * unlink this URB from the hardware.  So there's no more work to do.
1323 	 */
1324 	if (urb->unlinked)
1325 		return -EBUSY;
1326 	urb->unlinked = status;
1327 	return 0;
1328 }
1329 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1330 
1331 /**
1332  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1333  * @hcd: host controller to which @urb was submitted
1334  * @urb: URB being unlinked
1335  *
1336  * Host controller drivers should call this routine before calling
1337  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1338  * interrupts must be disabled.  The actions carried out here are required
1339  * for URB completion.
1340  */
1341 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1342 {
1343 	/* clear all state linking urb to this dev (and hcd) */
1344 	spin_lock(&hcd_urb_list_lock);
1345 	list_del_init(&urb->urb_list);
1346 	spin_unlock(&hcd_urb_list_lock);
1347 }
1348 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1349 
1350 /*
1351  * Some usb host controllers can only perform dma using a small SRAM area.
1352  * The usb core itself is however optimized for host controllers that can dma
1353  * using regular system memory - like pci devices doing bus mastering.
1354  *
1355  * To support host controllers with limited dma capabilities we provide dma
1356  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1357  * For this to work properly the host controller code must first use the
1358  * function dma_declare_coherent_memory() to point out which memory area
1359  * that should be used for dma allocations.
1360  *
1361  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1362  * dma using dma_alloc_coherent() which in turn allocates from the memory
1363  * area pointed out with dma_declare_coherent_memory().
1364  *
1365  * So, to summarize...
1366  *
1367  * - We need "local" memory, canonical example being
1368  *   a small SRAM on a discrete controller being the
1369  *   only memory that the controller can read ...
1370  *   (a) "normal" kernel memory is no good, and
1371  *   (b) there's not enough to share
1372  *
1373  * - The only *portable* hook for such stuff in the
1374  *   DMA framework is dma_declare_coherent_memory()
1375  *
1376  * - So we use that, even though the primary requirement
1377  *   is that the memory be "local" (hence addressable
1378  *   by that device), not "coherent".
1379  *
1380  */
1381 
1382 static int hcd_alloc_coherent(struct usb_bus *bus,
1383 			      gfp_t mem_flags, dma_addr_t *dma_handle,
1384 			      void **vaddr_handle, size_t size,
1385 			      enum dma_data_direction dir)
1386 {
1387 	unsigned char *vaddr;
1388 
1389 	if (*vaddr_handle == NULL) {
1390 		WARN_ON_ONCE(1);
1391 		return -EFAULT;
1392 	}
1393 
1394 	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1395 				 mem_flags, dma_handle);
1396 	if (!vaddr)
1397 		return -ENOMEM;
1398 
1399 	/*
1400 	 * Store the virtual address of the buffer at the end
1401 	 * of the allocated dma buffer. The size of the buffer
1402 	 * may be uneven so use unaligned functions instead
1403 	 * of just rounding up. It makes sense to optimize for
1404 	 * memory footprint over access speed since the amount
1405 	 * of memory available for dma may be limited.
1406 	 */
1407 	put_unaligned((unsigned long)*vaddr_handle,
1408 		      (unsigned long *)(vaddr + size));
1409 
1410 	if (dir == DMA_TO_DEVICE)
1411 		memcpy(vaddr, *vaddr_handle, size);
1412 
1413 	*vaddr_handle = vaddr;
1414 	return 0;
1415 }
1416 
1417 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1418 			      void **vaddr_handle, size_t size,
1419 			      enum dma_data_direction dir)
1420 {
1421 	unsigned char *vaddr = *vaddr_handle;
1422 
1423 	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1424 
1425 	if (dir == DMA_FROM_DEVICE)
1426 		memcpy(vaddr, *vaddr_handle, size);
1427 
1428 	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1429 
1430 	*vaddr_handle = vaddr;
1431 	*dma_handle = 0;
1432 }
1433 
1434 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1435 {
1436 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1437 	    (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1438 		dma_unmap_single(hcd->self.controller,
1439 				urb->setup_dma,
1440 				sizeof(struct usb_ctrlrequest),
1441 				DMA_TO_DEVICE);
1442 	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1443 		hcd_free_coherent(urb->dev->bus,
1444 				&urb->setup_dma,
1445 				(void **) &urb->setup_packet,
1446 				sizeof(struct usb_ctrlrequest),
1447 				DMA_TO_DEVICE);
1448 
1449 	/* Make it safe to call this routine more than once */
1450 	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1451 }
1452 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1453 
1454 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1455 {
1456 	if (hcd->driver->unmap_urb_for_dma)
1457 		hcd->driver->unmap_urb_for_dma(hcd, urb);
1458 	else
1459 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1460 }
1461 
1462 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1463 {
1464 	enum dma_data_direction dir;
1465 
1466 	usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1467 
1468 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1469 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1470 	    (urb->transfer_flags & URB_DMA_MAP_SG))
1471 		dma_unmap_sg(hcd->self.controller,
1472 				urb->sg,
1473 				urb->num_sgs,
1474 				dir);
1475 	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1476 		 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1477 		dma_unmap_page(hcd->self.controller,
1478 				urb->transfer_dma,
1479 				urb->transfer_buffer_length,
1480 				dir);
1481 	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1482 		 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1483 		dma_unmap_single(hcd->self.controller,
1484 				urb->transfer_dma,
1485 				urb->transfer_buffer_length,
1486 				dir);
1487 	else if (urb->transfer_flags & URB_MAP_LOCAL)
1488 		hcd_free_coherent(urb->dev->bus,
1489 				&urb->transfer_dma,
1490 				&urb->transfer_buffer,
1491 				urb->transfer_buffer_length,
1492 				dir);
1493 
1494 	/* Make it safe to call this routine more than once */
1495 	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1496 			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1497 }
1498 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1499 
1500 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1501 			   gfp_t mem_flags)
1502 {
1503 	if (hcd->driver->map_urb_for_dma)
1504 		return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1505 	else
1506 		return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1507 }
1508 
1509 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1510 			    gfp_t mem_flags)
1511 {
1512 	enum dma_data_direction dir;
1513 	int ret = 0;
1514 
1515 	/* Map the URB's buffers for DMA access.
1516 	 * Lower level HCD code should use *_dma exclusively,
1517 	 * unless it uses pio or talks to another transport,
1518 	 * or uses the provided scatter gather list for bulk.
1519 	 */
1520 
1521 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1522 		if (hcd->self.uses_pio_for_control)
1523 			return ret;
1524 		if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1525 			urb->setup_dma = dma_map_single(
1526 					hcd->self.controller,
1527 					urb->setup_packet,
1528 					sizeof(struct usb_ctrlrequest),
1529 					DMA_TO_DEVICE);
1530 			if (dma_mapping_error(hcd->self.controller,
1531 						urb->setup_dma))
1532 				return -EAGAIN;
1533 			urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1534 		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1535 			ret = hcd_alloc_coherent(
1536 					urb->dev->bus, mem_flags,
1537 					&urb->setup_dma,
1538 					(void **)&urb->setup_packet,
1539 					sizeof(struct usb_ctrlrequest),
1540 					DMA_TO_DEVICE);
1541 			if (ret)
1542 				return ret;
1543 			urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1544 		}
1545 	}
1546 
1547 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1548 	if (urb->transfer_buffer_length != 0
1549 	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1550 		if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1551 			if (urb->num_sgs) {
1552 				int n;
1553 
1554 				/* We don't support sg for isoc transfers ! */
1555 				if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1556 					WARN_ON(1);
1557 					return -EINVAL;
1558 				}
1559 
1560 				n = dma_map_sg(
1561 						hcd->self.controller,
1562 						urb->sg,
1563 						urb->num_sgs,
1564 						dir);
1565 				if (n <= 0)
1566 					ret = -EAGAIN;
1567 				else
1568 					urb->transfer_flags |= URB_DMA_MAP_SG;
1569 				urb->num_mapped_sgs = n;
1570 				if (n != urb->num_sgs)
1571 					urb->transfer_flags |=
1572 							URB_DMA_SG_COMBINED;
1573 			} else if (urb->sg) {
1574 				struct scatterlist *sg = urb->sg;
1575 				urb->transfer_dma = dma_map_page(
1576 						hcd->self.controller,
1577 						sg_page(sg),
1578 						sg->offset,
1579 						urb->transfer_buffer_length,
1580 						dir);
1581 				if (dma_mapping_error(hcd->self.controller,
1582 						urb->transfer_dma))
1583 					ret = -EAGAIN;
1584 				else
1585 					urb->transfer_flags |= URB_DMA_MAP_PAGE;
1586 			} else if (is_vmalloc_addr(urb->transfer_buffer)) {
1587 				WARN_ONCE(1, "transfer buffer not dma capable\n");
1588 				ret = -EAGAIN;
1589 			} else {
1590 				urb->transfer_dma = dma_map_single(
1591 						hcd->self.controller,
1592 						urb->transfer_buffer,
1593 						urb->transfer_buffer_length,
1594 						dir);
1595 				if (dma_mapping_error(hcd->self.controller,
1596 						urb->transfer_dma))
1597 					ret = -EAGAIN;
1598 				else
1599 					urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1600 			}
1601 		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1602 			ret = hcd_alloc_coherent(
1603 					urb->dev->bus, mem_flags,
1604 					&urb->transfer_dma,
1605 					&urb->transfer_buffer,
1606 					urb->transfer_buffer_length,
1607 					dir);
1608 			if (ret == 0)
1609 				urb->transfer_flags |= URB_MAP_LOCAL;
1610 		}
1611 		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1612 				URB_SETUP_MAP_LOCAL)))
1613 			usb_hcd_unmap_urb_for_dma(hcd, urb);
1614 	}
1615 	return ret;
1616 }
1617 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1618 
1619 /*-------------------------------------------------------------------------*/
1620 
1621 /* may be called in any context with a valid urb->dev usecount
1622  * caller surrenders "ownership" of urb
1623  * expects usb_submit_urb() to have sanity checked and conditioned all
1624  * inputs in the urb
1625  */
1626 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1627 {
1628 	int			status;
1629 	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1630 
1631 	/* increment urb's reference count as part of giving it to the HCD
1632 	 * (which will control it).  HCD guarantees that it either returns
1633 	 * an error or calls giveback(), but not both.
1634 	 */
1635 	usb_get_urb(urb);
1636 	atomic_inc(&urb->use_count);
1637 	atomic_inc(&urb->dev->urbnum);
1638 	usbmon_urb_submit(&hcd->self, urb);
1639 
1640 	/* NOTE requirements on root-hub callers (usbfs and the hub
1641 	 * driver, for now):  URBs' urb->transfer_buffer must be
1642 	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1643 	 * they could clobber root hub response data.  Also, control
1644 	 * URBs must be submitted in process context with interrupts
1645 	 * enabled.
1646 	 */
1647 
1648 	if (is_root_hub(urb->dev)) {
1649 		status = rh_urb_enqueue(hcd, urb);
1650 	} else {
1651 		status = map_urb_for_dma(hcd, urb, mem_flags);
1652 		if (likely(status == 0)) {
1653 			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1654 			if (unlikely(status))
1655 				unmap_urb_for_dma(hcd, urb);
1656 		}
1657 	}
1658 
1659 	if (unlikely(status)) {
1660 		usbmon_urb_submit_error(&hcd->self, urb, status);
1661 		urb->hcpriv = NULL;
1662 		INIT_LIST_HEAD(&urb->urb_list);
1663 		atomic_dec(&urb->use_count);
1664 		atomic_dec(&urb->dev->urbnum);
1665 		if (atomic_read(&urb->reject))
1666 			wake_up(&usb_kill_urb_queue);
1667 		usb_put_urb(urb);
1668 	}
1669 	return status;
1670 }
1671 
1672 /*-------------------------------------------------------------------------*/
1673 
1674 /* this makes the hcd giveback() the urb more quickly, by kicking it
1675  * off hardware queues (which may take a while) and returning it as
1676  * soon as practical.  we've already set up the urb's return status,
1677  * but we can't know if the callback completed already.
1678  */
1679 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1680 {
1681 	int		value;
1682 
1683 	if (is_root_hub(urb->dev))
1684 		value = usb_rh_urb_dequeue(hcd, urb, status);
1685 	else {
1686 
1687 		/* The only reason an HCD might fail this call is if
1688 		 * it has not yet fully queued the urb to begin with.
1689 		 * Such failures should be harmless. */
1690 		value = hcd->driver->urb_dequeue(hcd, urb, status);
1691 	}
1692 	return value;
1693 }
1694 
1695 /*
1696  * called in any context
1697  *
1698  * caller guarantees urb won't be recycled till both unlink()
1699  * and the urb's completion function return
1700  */
1701 int usb_hcd_unlink_urb (struct urb *urb, int status)
1702 {
1703 	struct usb_hcd		*hcd;
1704 	struct usb_device	*udev = urb->dev;
1705 	int			retval = -EIDRM;
1706 	unsigned long		flags;
1707 
1708 	/* Prevent the device and bus from going away while
1709 	 * the unlink is carried out.  If they are already gone
1710 	 * then urb->use_count must be 0, since disconnected
1711 	 * devices can't have any active URBs.
1712 	 */
1713 	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1714 	if (atomic_read(&urb->use_count) > 0) {
1715 		retval = 0;
1716 		usb_get_dev(udev);
1717 	}
1718 	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1719 	if (retval == 0) {
1720 		hcd = bus_to_hcd(urb->dev->bus);
1721 		retval = unlink1(hcd, urb, status);
1722 		if (retval == 0)
1723 			retval = -EINPROGRESS;
1724 		else if (retval != -EIDRM && retval != -EBUSY)
1725 			dev_dbg(&udev->dev, "hcd_unlink_urb %p fail %d\n",
1726 					urb, retval);
1727 		usb_put_dev(udev);
1728 	}
1729 	return retval;
1730 }
1731 
1732 /*-------------------------------------------------------------------------*/
1733 
1734 static void __usb_hcd_giveback_urb(struct urb *urb)
1735 {
1736 	struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1737 	struct usb_anchor *anchor = urb->anchor;
1738 	int status = urb->unlinked;
1739 	unsigned long flags;
1740 
1741 	urb->hcpriv = NULL;
1742 	if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1743 	    urb->actual_length < urb->transfer_buffer_length &&
1744 	    !status))
1745 		status = -EREMOTEIO;
1746 
1747 	unmap_urb_for_dma(hcd, urb);
1748 	usbmon_urb_complete(&hcd->self, urb, status);
1749 	usb_anchor_suspend_wakeups(anchor);
1750 	usb_unanchor_urb(urb);
1751 	if (likely(status == 0))
1752 		usb_led_activity(USB_LED_EVENT_HOST);
1753 
1754 	/* pass ownership to the completion handler */
1755 	urb->status = status;
1756 
1757 	/*
1758 	 * We disable local IRQs here avoid possible deadlock because
1759 	 * drivers may call spin_lock() to hold lock which might be
1760 	 * acquired in one hard interrupt handler.
1761 	 *
1762 	 * The local_irq_save()/local_irq_restore() around complete()
1763 	 * will be removed if current USB drivers have been cleaned up
1764 	 * and no one may trigger the above deadlock situation when
1765 	 * running complete() in tasklet.
1766 	 */
1767 	local_irq_save(flags);
1768 	urb->complete(urb);
1769 	local_irq_restore(flags);
1770 
1771 	usb_anchor_resume_wakeups(anchor);
1772 	atomic_dec(&urb->use_count);
1773 	if (unlikely(atomic_read(&urb->reject)))
1774 		wake_up(&usb_kill_urb_queue);
1775 	usb_put_urb(urb);
1776 }
1777 
1778 static void usb_giveback_urb_bh(unsigned long param)
1779 {
1780 	struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1781 	struct list_head local_list;
1782 
1783 	spin_lock_irq(&bh->lock);
1784 	bh->running = true;
1785  restart:
1786 	list_replace_init(&bh->head, &local_list);
1787 	spin_unlock_irq(&bh->lock);
1788 
1789 	while (!list_empty(&local_list)) {
1790 		struct urb *urb;
1791 
1792 		urb = list_entry(local_list.next, struct urb, urb_list);
1793 		list_del_init(&urb->urb_list);
1794 		bh->completing_ep = urb->ep;
1795 		__usb_hcd_giveback_urb(urb);
1796 		bh->completing_ep = NULL;
1797 	}
1798 
1799 	/* check if there are new URBs to giveback */
1800 	spin_lock_irq(&bh->lock);
1801 	if (!list_empty(&bh->head))
1802 		goto restart;
1803 	bh->running = false;
1804 	spin_unlock_irq(&bh->lock);
1805 }
1806 
1807 /**
1808  * usb_hcd_giveback_urb - return URB from HCD to device driver
1809  * @hcd: host controller returning the URB
1810  * @urb: urb being returned to the USB device driver.
1811  * @status: completion status code for the URB.
1812  * Context: in_interrupt()
1813  *
1814  * This hands the URB from HCD to its USB device driver, using its
1815  * completion function.  The HCD has freed all per-urb resources
1816  * (and is done using urb->hcpriv).  It also released all HCD locks;
1817  * the device driver won't cause problems if it frees, modifies,
1818  * or resubmits this URB.
1819  *
1820  * If @urb was unlinked, the value of @status will be overridden by
1821  * @urb->unlinked.  Erroneous short transfers are detected in case
1822  * the HCD hasn't checked for them.
1823  */
1824 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1825 {
1826 	struct giveback_urb_bh *bh;
1827 	bool running, high_prio_bh;
1828 
1829 	/* pass status to tasklet via unlinked */
1830 	if (likely(!urb->unlinked))
1831 		urb->unlinked = status;
1832 
1833 	if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1834 		__usb_hcd_giveback_urb(urb);
1835 		return;
1836 	}
1837 
1838 	if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1839 		bh = &hcd->high_prio_bh;
1840 		high_prio_bh = true;
1841 	} else {
1842 		bh = &hcd->low_prio_bh;
1843 		high_prio_bh = false;
1844 	}
1845 
1846 	spin_lock(&bh->lock);
1847 	list_add_tail(&urb->urb_list, &bh->head);
1848 	running = bh->running;
1849 	spin_unlock(&bh->lock);
1850 
1851 	if (running)
1852 		;
1853 	else if (high_prio_bh)
1854 		tasklet_hi_schedule(&bh->bh);
1855 	else
1856 		tasklet_schedule(&bh->bh);
1857 }
1858 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1859 
1860 /*-------------------------------------------------------------------------*/
1861 
1862 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1863  * queue to drain completely.  The caller must first insure that no more
1864  * URBs can be submitted for this endpoint.
1865  */
1866 void usb_hcd_flush_endpoint(struct usb_device *udev,
1867 		struct usb_host_endpoint *ep)
1868 {
1869 	struct usb_hcd		*hcd;
1870 	struct urb		*urb;
1871 
1872 	if (!ep)
1873 		return;
1874 	might_sleep();
1875 	hcd = bus_to_hcd(udev->bus);
1876 
1877 	/* No more submits can occur */
1878 	spin_lock_irq(&hcd_urb_list_lock);
1879 rescan:
1880 	list_for_each_entry (urb, &ep->urb_list, urb_list) {
1881 		int	is_in;
1882 
1883 		if (urb->unlinked)
1884 			continue;
1885 		usb_get_urb (urb);
1886 		is_in = usb_urb_dir_in(urb);
1887 		spin_unlock(&hcd_urb_list_lock);
1888 
1889 		/* kick hcd */
1890 		unlink1(hcd, urb, -ESHUTDOWN);
1891 		dev_dbg (hcd->self.controller,
1892 			"shutdown urb %p ep%d%s%s\n",
1893 			urb, usb_endpoint_num(&ep->desc),
1894 			is_in ? "in" : "out",
1895 			({	char *s;
1896 
1897 				 switch (usb_endpoint_type(&ep->desc)) {
1898 				 case USB_ENDPOINT_XFER_CONTROL:
1899 					s = ""; break;
1900 				 case USB_ENDPOINT_XFER_BULK:
1901 					s = "-bulk"; break;
1902 				 case USB_ENDPOINT_XFER_INT:
1903 					s = "-intr"; break;
1904 				 default:
1905 					s = "-iso"; break;
1906 				};
1907 				s;
1908 			}));
1909 		usb_put_urb (urb);
1910 
1911 		/* list contents may have changed */
1912 		spin_lock(&hcd_urb_list_lock);
1913 		goto rescan;
1914 	}
1915 	spin_unlock_irq(&hcd_urb_list_lock);
1916 
1917 	/* Wait until the endpoint queue is completely empty */
1918 	while (!list_empty (&ep->urb_list)) {
1919 		spin_lock_irq(&hcd_urb_list_lock);
1920 
1921 		/* The list may have changed while we acquired the spinlock */
1922 		urb = NULL;
1923 		if (!list_empty (&ep->urb_list)) {
1924 			urb = list_entry (ep->urb_list.prev, struct urb,
1925 					urb_list);
1926 			usb_get_urb (urb);
1927 		}
1928 		spin_unlock_irq(&hcd_urb_list_lock);
1929 
1930 		if (urb) {
1931 			usb_kill_urb (urb);
1932 			usb_put_urb (urb);
1933 		}
1934 	}
1935 }
1936 
1937 /**
1938  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1939  *				the bus bandwidth
1940  * @udev: target &usb_device
1941  * @new_config: new configuration to install
1942  * @cur_alt: the current alternate interface setting
1943  * @new_alt: alternate interface setting that is being installed
1944  *
1945  * To change configurations, pass in the new configuration in new_config,
1946  * and pass NULL for cur_alt and new_alt.
1947  *
1948  * To reset a device's configuration (put the device in the ADDRESSED state),
1949  * pass in NULL for new_config, cur_alt, and new_alt.
1950  *
1951  * To change alternate interface settings, pass in NULL for new_config,
1952  * pass in the current alternate interface setting in cur_alt,
1953  * and pass in the new alternate interface setting in new_alt.
1954  *
1955  * Return: An error if the requested bandwidth change exceeds the
1956  * bus bandwidth or host controller internal resources.
1957  */
1958 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1959 		struct usb_host_config *new_config,
1960 		struct usb_host_interface *cur_alt,
1961 		struct usb_host_interface *new_alt)
1962 {
1963 	int num_intfs, i, j;
1964 	struct usb_host_interface *alt = NULL;
1965 	int ret = 0;
1966 	struct usb_hcd *hcd;
1967 	struct usb_host_endpoint *ep;
1968 
1969 	hcd = bus_to_hcd(udev->bus);
1970 	if (!hcd->driver->check_bandwidth)
1971 		return 0;
1972 
1973 	/* Configuration is being removed - set configuration 0 */
1974 	if (!new_config && !cur_alt) {
1975 		for (i = 1; i < 16; ++i) {
1976 			ep = udev->ep_out[i];
1977 			if (ep)
1978 				hcd->driver->drop_endpoint(hcd, udev, ep);
1979 			ep = udev->ep_in[i];
1980 			if (ep)
1981 				hcd->driver->drop_endpoint(hcd, udev, ep);
1982 		}
1983 		hcd->driver->check_bandwidth(hcd, udev);
1984 		return 0;
1985 	}
1986 	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1987 	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1988 	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1989 	 * ok to exclude it.
1990 	 */
1991 	if (new_config) {
1992 		num_intfs = new_config->desc.bNumInterfaces;
1993 		/* Remove endpoints (except endpoint 0, which is always on the
1994 		 * schedule) from the old config from the schedule
1995 		 */
1996 		for (i = 1; i < 16; ++i) {
1997 			ep = udev->ep_out[i];
1998 			if (ep) {
1999 				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2000 				if (ret < 0)
2001 					goto reset;
2002 			}
2003 			ep = udev->ep_in[i];
2004 			if (ep) {
2005 				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2006 				if (ret < 0)
2007 					goto reset;
2008 			}
2009 		}
2010 		for (i = 0; i < num_intfs; ++i) {
2011 			struct usb_host_interface *first_alt;
2012 			int iface_num;
2013 
2014 			first_alt = &new_config->intf_cache[i]->altsetting[0];
2015 			iface_num = first_alt->desc.bInterfaceNumber;
2016 			/* Set up endpoints for alternate interface setting 0 */
2017 			alt = usb_find_alt_setting(new_config, iface_num, 0);
2018 			if (!alt)
2019 				/* No alt setting 0? Pick the first setting. */
2020 				alt = first_alt;
2021 
2022 			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
2023 				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
2024 				if (ret < 0)
2025 					goto reset;
2026 			}
2027 		}
2028 	}
2029 	if (cur_alt && new_alt) {
2030 		struct usb_interface *iface = usb_ifnum_to_if(udev,
2031 				cur_alt->desc.bInterfaceNumber);
2032 
2033 		if (!iface)
2034 			return -EINVAL;
2035 		if (iface->resetting_device) {
2036 			/*
2037 			 * The USB core just reset the device, so the xHCI host
2038 			 * and the device will think alt setting 0 is installed.
2039 			 * However, the USB core will pass in the alternate
2040 			 * setting installed before the reset as cur_alt.  Dig
2041 			 * out the alternate setting 0 structure, or the first
2042 			 * alternate setting if a broken device doesn't have alt
2043 			 * setting 0.
2044 			 */
2045 			cur_alt = usb_altnum_to_altsetting(iface, 0);
2046 			if (!cur_alt)
2047 				cur_alt = &iface->altsetting[0];
2048 		}
2049 
2050 		/* Drop all the endpoints in the current alt setting */
2051 		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
2052 			ret = hcd->driver->drop_endpoint(hcd, udev,
2053 					&cur_alt->endpoint[i]);
2054 			if (ret < 0)
2055 				goto reset;
2056 		}
2057 		/* Add all the endpoints in the new alt setting */
2058 		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
2059 			ret = hcd->driver->add_endpoint(hcd, udev,
2060 					&new_alt->endpoint[i]);
2061 			if (ret < 0)
2062 				goto reset;
2063 		}
2064 	}
2065 	ret = hcd->driver->check_bandwidth(hcd, udev);
2066 reset:
2067 	if (ret < 0)
2068 		hcd->driver->reset_bandwidth(hcd, udev);
2069 	return ret;
2070 }
2071 
2072 /* Disables the endpoint: synchronizes with the hcd to make sure all
2073  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
2074  * have been called previously.  Use for set_configuration, set_interface,
2075  * driver removal, physical disconnect.
2076  *
2077  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
2078  * type, maxpacket size, toggle, halt status, and scheduling.
2079  */
2080 void usb_hcd_disable_endpoint(struct usb_device *udev,
2081 		struct usb_host_endpoint *ep)
2082 {
2083 	struct usb_hcd		*hcd;
2084 
2085 	might_sleep();
2086 	hcd = bus_to_hcd(udev->bus);
2087 	if (hcd->driver->endpoint_disable)
2088 		hcd->driver->endpoint_disable(hcd, ep);
2089 }
2090 
2091 /**
2092  * usb_hcd_reset_endpoint - reset host endpoint state
2093  * @udev: USB device.
2094  * @ep:   the endpoint to reset.
2095  *
2096  * Resets any host endpoint state such as the toggle bit, sequence
2097  * number and current window.
2098  */
2099 void usb_hcd_reset_endpoint(struct usb_device *udev,
2100 			    struct usb_host_endpoint *ep)
2101 {
2102 	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2103 
2104 	if (hcd->driver->endpoint_reset)
2105 		hcd->driver->endpoint_reset(hcd, ep);
2106 	else {
2107 		int epnum = usb_endpoint_num(&ep->desc);
2108 		int is_out = usb_endpoint_dir_out(&ep->desc);
2109 		int is_control = usb_endpoint_xfer_control(&ep->desc);
2110 
2111 		usb_settoggle(udev, epnum, is_out, 0);
2112 		if (is_control)
2113 			usb_settoggle(udev, epnum, !is_out, 0);
2114 	}
2115 }
2116 
2117 /**
2118  * usb_alloc_streams - allocate bulk endpoint stream IDs.
2119  * @interface:		alternate setting that includes all endpoints.
2120  * @eps:		array of endpoints that need streams.
2121  * @num_eps:		number of endpoints in the array.
2122  * @num_streams:	number of streams to allocate.
2123  * @mem_flags:		flags hcd should use to allocate memory.
2124  *
2125  * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2126  * Drivers may queue multiple transfers to different stream IDs, which may
2127  * complete in a different order than they were queued.
2128  *
2129  * Return: On success, the number of allocated streams. On failure, a negative
2130  * error code.
2131  */
2132 int usb_alloc_streams(struct usb_interface *interface,
2133 		struct usb_host_endpoint **eps, unsigned int num_eps,
2134 		unsigned int num_streams, gfp_t mem_flags)
2135 {
2136 	struct usb_hcd *hcd;
2137 	struct usb_device *dev;
2138 	int i, ret;
2139 
2140 	dev = interface_to_usbdev(interface);
2141 	hcd = bus_to_hcd(dev->bus);
2142 	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2143 		return -EINVAL;
2144 	if (dev->speed < USB_SPEED_SUPER)
2145 		return -EINVAL;
2146 	if (dev->state < USB_STATE_CONFIGURED)
2147 		return -ENODEV;
2148 
2149 	for (i = 0; i < num_eps; i++) {
2150 		/* Streams only apply to bulk endpoints. */
2151 		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2152 			return -EINVAL;
2153 		/* Re-alloc is not allowed */
2154 		if (eps[i]->streams)
2155 			return -EINVAL;
2156 	}
2157 
2158 	ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2159 			num_streams, mem_flags);
2160 	if (ret < 0)
2161 		return ret;
2162 
2163 	for (i = 0; i < num_eps; i++)
2164 		eps[i]->streams = ret;
2165 
2166 	return ret;
2167 }
2168 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2169 
2170 /**
2171  * usb_free_streams - free bulk endpoint stream IDs.
2172  * @interface:	alternate setting that includes all endpoints.
2173  * @eps:	array of endpoints to remove streams from.
2174  * @num_eps:	number of endpoints in the array.
2175  * @mem_flags:	flags hcd should use to allocate memory.
2176  *
2177  * Reverts a group of bulk endpoints back to not using stream IDs.
2178  * Can fail if we are given bad arguments, or HCD is broken.
2179  *
2180  * Return: 0 on success. On failure, a negative error code.
2181  */
2182 int usb_free_streams(struct usb_interface *interface,
2183 		struct usb_host_endpoint **eps, unsigned int num_eps,
2184 		gfp_t mem_flags)
2185 {
2186 	struct usb_hcd *hcd;
2187 	struct usb_device *dev;
2188 	int i, ret;
2189 
2190 	dev = interface_to_usbdev(interface);
2191 	hcd = bus_to_hcd(dev->bus);
2192 	if (dev->speed < USB_SPEED_SUPER)
2193 		return -EINVAL;
2194 
2195 	/* Double-free is not allowed */
2196 	for (i = 0; i < num_eps; i++)
2197 		if (!eps[i] || !eps[i]->streams)
2198 			return -EINVAL;
2199 
2200 	ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2201 	if (ret < 0)
2202 		return ret;
2203 
2204 	for (i = 0; i < num_eps; i++)
2205 		eps[i]->streams = 0;
2206 
2207 	return ret;
2208 }
2209 EXPORT_SYMBOL_GPL(usb_free_streams);
2210 
2211 /* Protect against drivers that try to unlink URBs after the device
2212  * is gone, by waiting until all unlinks for @udev are finished.
2213  * Since we don't currently track URBs by device, simply wait until
2214  * nothing is running in the locked region of usb_hcd_unlink_urb().
2215  */
2216 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2217 {
2218 	spin_lock_irq(&hcd_urb_unlink_lock);
2219 	spin_unlock_irq(&hcd_urb_unlink_lock);
2220 }
2221 
2222 /*-------------------------------------------------------------------------*/
2223 
2224 /* called in any context */
2225 int usb_hcd_get_frame_number (struct usb_device *udev)
2226 {
2227 	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
2228 
2229 	if (!HCD_RH_RUNNING(hcd))
2230 		return -ESHUTDOWN;
2231 	return hcd->driver->get_frame_number (hcd);
2232 }
2233 
2234 /*-------------------------------------------------------------------------*/
2235 
2236 #ifdef	CONFIG_PM
2237 
2238 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2239 {
2240 	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2241 	int		status;
2242 	int		old_state = hcd->state;
2243 
2244 	dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2245 			(PMSG_IS_AUTO(msg) ? "auto-" : ""),
2246 			rhdev->do_remote_wakeup);
2247 	if (HCD_DEAD(hcd)) {
2248 		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2249 		return 0;
2250 	}
2251 
2252 	if (!hcd->driver->bus_suspend) {
2253 		status = -ENOENT;
2254 	} else {
2255 		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2256 		hcd->state = HC_STATE_QUIESCING;
2257 		status = hcd->driver->bus_suspend(hcd);
2258 	}
2259 	if (status == 0) {
2260 		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2261 		hcd->state = HC_STATE_SUSPENDED;
2262 
2263 		/* Did we race with a root-hub wakeup event? */
2264 		if (rhdev->do_remote_wakeup) {
2265 			char	buffer[6];
2266 
2267 			status = hcd->driver->hub_status_data(hcd, buffer);
2268 			if (status != 0) {
2269 				dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2270 				hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2271 				status = -EBUSY;
2272 			}
2273 		}
2274 	} else {
2275 		spin_lock_irq(&hcd_root_hub_lock);
2276 		if (!HCD_DEAD(hcd)) {
2277 			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2278 			hcd->state = old_state;
2279 		}
2280 		spin_unlock_irq(&hcd_root_hub_lock);
2281 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2282 				"suspend", status);
2283 	}
2284 	return status;
2285 }
2286 
2287 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2288 {
2289 	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2290 	int		status;
2291 	int		old_state = hcd->state;
2292 
2293 	dev_dbg(&rhdev->dev, "usb %sresume\n",
2294 			(PMSG_IS_AUTO(msg) ? "auto-" : ""));
2295 	if (HCD_DEAD(hcd)) {
2296 		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2297 		return 0;
2298 	}
2299 	if (!hcd->driver->bus_resume)
2300 		return -ENOENT;
2301 	if (HCD_RH_RUNNING(hcd))
2302 		return 0;
2303 
2304 	hcd->state = HC_STATE_RESUMING;
2305 	status = hcd->driver->bus_resume(hcd);
2306 	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2307 	if (status == 0) {
2308 		struct usb_device *udev;
2309 		int port1;
2310 
2311 		spin_lock_irq(&hcd_root_hub_lock);
2312 		if (!HCD_DEAD(hcd)) {
2313 			usb_set_device_state(rhdev, rhdev->actconfig
2314 					? USB_STATE_CONFIGURED
2315 					: USB_STATE_ADDRESS);
2316 			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2317 			hcd->state = HC_STATE_RUNNING;
2318 		}
2319 		spin_unlock_irq(&hcd_root_hub_lock);
2320 
2321 		/*
2322 		 * Check whether any of the enabled ports on the root hub are
2323 		 * unsuspended.  If they are then a TRSMRCY delay is needed
2324 		 * (this is what the USB-2 spec calls a "global resume").
2325 		 * Otherwise we can skip the delay.
2326 		 */
2327 		usb_hub_for_each_child(rhdev, port1, udev) {
2328 			if (udev->state != USB_STATE_NOTATTACHED &&
2329 					!udev->port_is_suspended) {
2330 				usleep_range(10000, 11000);	/* TRSMRCY */
2331 				break;
2332 			}
2333 		}
2334 	} else {
2335 		hcd->state = old_state;
2336 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2337 				"resume", status);
2338 		if (status != -ESHUTDOWN)
2339 			usb_hc_died(hcd);
2340 	}
2341 	return status;
2342 }
2343 
2344 /* Workqueue routine for root-hub remote wakeup */
2345 static void hcd_resume_work(struct work_struct *work)
2346 {
2347 	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2348 	struct usb_device *udev = hcd->self.root_hub;
2349 
2350 	usb_remote_wakeup(udev);
2351 }
2352 
2353 /**
2354  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2355  * @hcd: host controller for this root hub
2356  *
2357  * The USB host controller calls this function when its root hub is
2358  * suspended (with the remote wakeup feature enabled) and a remote
2359  * wakeup request is received.  The routine submits a workqueue request
2360  * to resume the root hub (that is, manage its downstream ports again).
2361  */
2362 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2363 {
2364 	unsigned long flags;
2365 
2366 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2367 	if (hcd->rh_registered) {
2368 		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2369 		queue_work(pm_wq, &hcd->wakeup_work);
2370 	}
2371 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2372 }
2373 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2374 
2375 #endif	/* CONFIG_PM */
2376 
2377 /*-------------------------------------------------------------------------*/
2378 
2379 #ifdef	CONFIG_USB_OTG
2380 
2381 /**
2382  * usb_bus_start_enum - start immediate enumeration (for OTG)
2383  * @bus: the bus (must use hcd framework)
2384  * @port_num: 1-based number of port; usually bus->otg_port
2385  * Context: in_interrupt()
2386  *
2387  * Starts enumeration, with an immediate reset followed later by
2388  * hub_wq identifying and possibly configuring the device.
2389  * This is needed by OTG controller drivers, where it helps meet
2390  * HNP protocol timing requirements for starting a port reset.
2391  *
2392  * Return: 0 if successful.
2393  */
2394 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2395 {
2396 	struct usb_hcd		*hcd;
2397 	int			status = -EOPNOTSUPP;
2398 
2399 	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2400 	 * boards with root hubs hooked up to internal devices (instead of
2401 	 * just the OTG port) may need more attention to resetting...
2402 	 */
2403 	hcd = bus_to_hcd(bus);
2404 	if (port_num && hcd->driver->start_port_reset)
2405 		status = hcd->driver->start_port_reset(hcd, port_num);
2406 
2407 	/* allocate hub_wq shortly after (first) root port reset finishes;
2408 	 * it may issue others, until at least 50 msecs have passed.
2409 	 */
2410 	if (status == 0)
2411 		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2412 	return status;
2413 }
2414 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2415 
2416 #endif
2417 
2418 /*-------------------------------------------------------------------------*/
2419 
2420 /**
2421  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2422  * @irq: the IRQ being raised
2423  * @__hcd: pointer to the HCD whose IRQ is being signaled
2424  *
2425  * If the controller isn't HALTed, calls the driver's irq handler.
2426  * Checks whether the controller is now dead.
2427  *
2428  * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2429  */
2430 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2431 {
2432 	struct usb_hcd		*hcd = __hcd;
2433 	irqreturn_t		rc;
2434 
2435 	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2436 		rc = IRQ_NONE;
2437 	else if (hcd->driver->irq(hcd) == IRQ_NONE)
2438 		rc = IRQ_NONE;
2439 	else
2440 		rc = IRQ_HANDLED;
2441 
2442 	return rc;
2443 }
2444 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2445 
2446 /*-------------------------------------------------------------------------*/
2447 
2448 /**
2449  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2450  * @hcd: pointer to the HCD representing the controller
2451  *
2452  * This is called by bus glue to report a USB host controller that died
2453  * while operations may still have been pending.  It's called automatically
2454  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2455  *
2456  * Only call this function with the primary HCD.
2457  */
2458 void usb_hc_died (struct usb_hcd *hcd)
2459 {
2460 	unsigned long flags;
2461 
2462 	dev_err (hcd->self.controller, "HC died; cleaning up\n");
2463 
2464 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2465 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2466 	set_bit(HCD_FLAG_DEAD, &hcd->flags);
2467 	if (hcd->rh_registered) {
2468 		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2469 
2470 		/* make hub_wq clean up old urbs and devices */
2471 		usb_set_device_state (hcd->self.root_hub,
2472 				USB_STATE_NOTATTACHED);
2473 		usb_kick_hub_wq(hcd->self.root_hub);
2474 	}
2475 	if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2476 		hcd = hcd->shared_hcd;
2477 		if (hcd->rh_registered) {
2478 			clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2479 
2480 			/* make hub_wq clean up old urbs and devices */
2481 			usb_set_device_state(hcd->self.root_hub,
2482 					USB_STATE_NOTATTACHED);
2483 			usb_kick_hub_wq(hcd->self.root_hub);
2484 		}
2485 	}
2486 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2487 	/* Make sure that the other roothub is also deallocated. */
2488 }
2489 EXPORT_SYMBOL_GPL (usb_hc_died);
2490 
2491 /*-------------------------------------------------------------------------*/
2492 
2493 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2494 {
2495 
2496 	spin_lock_init(&bh->lock);
2497 	INIT_LIST_HEAD(&bh->head);
2498 	tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2499 }
2500 
2501 /**
2502  * usb_create_shared_hcd - create and initialize an HCD structure
2503  * @driver: HC driver that will use this hcd
2504  * @dev: device for this HC, stored in hcd->self.controller
2505  * @bus_name: value to store in hcd->self.bus_name
2506  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2507  *              PCI device.  Only allocate certain resources for the primary HCD
2508  * Context: !in_interrupt()
2509  *
2510  * Allocate a struct usb_hcd, with extra space at the end for the
2511  * HC driver's private data.  Initialize the generic members of the
2512  * hcd structure.
2513  *
2514  * Return: On success, a pointer to the created and initialized HCD structure.
2515  * On failure (e.g. if memory is unavailable), %NULL.
2516  */
2517 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2518 		struct device *dev, const char *bus_name,
2519 		struct usb_hcd *primary_hcd)
2520 {
2521 	struct usb_hcd *hcd;
2522 
2523 	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2524 	if (!hcd)
2525 		return NULL;
2526 	if (primary_hcd == NULL) {
2527 		hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2528 				GFP_KERNEL);
2529 		if (!hcd->address0_mutex) {
2530 			kfree(hcd);
2531 			dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2532 			return NULL;
2533 		}
2534 		mutex_init(hcd->address0_mutex);
2535 		hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2536 				GFP_KERNEL);
2537 		if (!hcd->bandwidth_mutex) {
2538 			kfree(hcd);
2539 			dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2540 			return NULL;
2541 		}
2542 		mutex_init(hcd->bandwidth_mutex);
2543 		dev_set_drvdata(dev, hcd);
2544 	} else {
2545 		mutex_lock(&usb_port_peer_mutex);
2546 		hcd->address0_mutex = primary_hcd->address0_mutex;
2547 		hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2548 		hcd->primary_hcd = primary_hcd;
2549 		primary_hcd->primary_hcd = primary_hcd;
2550 		hcd->shared_hcd = primary_hcd;
2551 		primary_hcd->shared_hcd = hcd;
2552 		mutex_unlock(&usb_port_peer_mutex);
2553 	}
2554 
2555 	kref_init(&hcd->kref);
2556 
2557 	usb_bus_init(&hcd->self);
2558 	hcd->self.controller = dev;
2559 	hcd->self.bus_name = bus_name;
2560 	hcd->self.uses_dma = (dev->dma_mask != NULL);
2561 
2562 	init_timer(&hcd->rh_timer);
2563 	hcd->rh_timer.function = rh_timer_func;
2564 	hcd->rh_timer.data = (unsigned long) hcd;
2565 #ifdef CONFIG_PM
2566 	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2567 #endif
2568 
2569 	hcd->driver = driver;
2570 	hcd->speed = driver->flags & HCD_MASK;
2571 	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2572 			"USB Host Controller";
2573 	return hcd;
2574 }
2575 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2576 
2577 /**
2578  * usb_create_hcd - create and initialize an HCD structure
2579  * @driver: HC driver that will use this hcd
2580  * @dev: device for this HC, stored in hcd->self.controller
2581  * @bus_name: value to store in hcd->self.bus_name
2582  * Context: !in_interrupt()
2583  *
2584  * Allocate a struct usb_hcd, with extra space at the end for the
2585  * HC driver's private data.  Initialize the generic members of the
2586  * hcd structure.
2587  *
2588  * Return: On success, a pointer to the created and initialized HCD
2589  * structure. On failure (e.g. if memory is unavailable), %NULL.
2590  */
2591 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2592 		struct device *dev, const char *bus_name)
2593 {
2594 	return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2595 }
2596 EXPORT_SYMBOL_GPL(usb_create_hcd);
2597 
2598 /*
2599  * Roothubs that share one PCI device must also share the bandwidth mutex.
2600  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2601  * deallocated.
2602  *
2603  * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2604  * freed.  When hcd_release() is called for either hcd in a peer set,
2605  * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2606  */
2607 static void hcd_release(struct kref *kref)
2608 {
2609 	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2610 
2611 	mutex_lock(&usb_port_peer_mutex);
2612 	if (hcd->shared_hcd) {
2613 		struct usb_hcd *peer = hcd->shared_hcd;
2614 
2615 		peer->shared_hcd = NULL;
2616 		peer->primary_hcd = NULL;
2617 	} else {
2618 		kfree(hcd->address0_mutex);
2619 		kfree(hcd->bandwidth_mutex);
2620 	}
2621 	mutex_unlock(&usb_port_peer_mutex);
2622 	kfree(hcd);
2623 }
2624 
2625 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2626 {
2627 	if (hcd)
2628 		kref_get (&hcd->kref);
2629 	return hcd;
2630 }
2631 EXPORT_SYMBOL_GPL(usb_get_hcd);
2632 
2633 void usb_put_hcd (struct usb_hcd *hcd)
2634 {
2635 	if (hcd)
2636 		kref_put (&hcd->kref, hcd_release);
2637 }
2638 EXPORT_SYMBOL_GPL(usb_put_hcd);
2639 
2640 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2641 {
2642 	if (!hcd->primary_hcd)
2643 		return 1;
2644 	return hcd == hcd->primary_hcd;
2645 }
2646 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2647 
2648 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2649 {
2650 	if (!hcd->driver->find_raw_port_number)
2651 		return port1;
2652 
2653 	return hcd->driver->find_raw_port_number(hcd, port1);
2654 }
2655 
2656 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2657 		unsigned int irqnum, unsigned long irqflags)
2658 {
2659 	int retval;
2660 
2661 	if (hcd->driver->irq) {
2662 
2663 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2664 				hcd->driver->description, hcd->self.busnum);
2665 		retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2666 				hcd->irq_descr, hcd);
2667 		if (retval != 0) {
2668 			dev_err(hcd->self.controller,
2669 					"request interrupt %d failed\n",
2670 					irqnum);
2671 			return retval;
2672 		}
2673 		hcd->irq = irqnum;
2674 		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2675 				(hcd->driver->flags & HCD_MEMORY) ?
2676 					"io mem" : "io base",
2677 					(unsigned long long)hcd->rsrc_start);
2678 	} else {
2679 		hcd->irq = 0;
2680 		if (hcd->rsrc_start)
2681 			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2682 					(hcd->driver->flags & HCD_MEMORY) ?
2683 					"io mem" : "io base",
2684 					(unsigned long long)hcd->rsrc_start);
2685 	}
2686 	return 0;
2687 }
2688 
2689 /*
2690  * Before we free this root hub, flush in-flight peering attempts
2691  * and disable peer lookups
2692  */
2693 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2694 {
2695 	struct usb_device *rhdev;
2696 
2697 	mutex_lock(&usb_port_peer_mutex);
2698 	rhdev = hcd->self.root_hub;
2699 	hcd->self.root_hub = NULL;
2700 	mutex_unlock(&usb_port_peer_mutex);
2701 	usb_put_dev(rhdev);
2702 }
2703 
2704 /**
2705  * usb_add_hcd - finish generic HCD structure initialization and register
2706  * @hcd: the usb_hcd structure to initialize
2707  * @irqnum: Interrupt line to allocate
2708  * @irqflags: Interrupt type flags
2709  *
2710  * Finish the remaining parts of generic HCD initialization: allocate the
2711  * buffers of consistent memory, register the bus, request the IRQ line,
2712  * and call the driver's reset() and start() routines.
2713  */
2714 int usb_add_hcd(struct usb_hcd *hcd,
2715 		unsigned int irqnum, unsigned long irqflags)
2716 {
2717 	int retval;
2718 	struct usb_device *rhdev;
2719 
2720 	if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) {
2721 		struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0);
2722 
2723 		if (IS_ERR(phy)) {
2724 			retval = PTR_ERR(phy);
2725 			if (retval == -EPROBE_DEFER)
2726 				return retval;
2727 		} else {
2728 			retval = usb_phy_init(phy);
2729 			if (retval) {
2730 				usb_put_phy(phy);
2731 				return retval;
2732 			}
2733 			hcd->usb_phy = phy;
2734 			hcd->remove_phy = 1;
2735 		}
2736 	}
2737 
2738 	if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) {
2739 		struct phy *phy = phy_get(hcd->self.controller, "usb");
2740 
2741 		if (IS_ERR(phy)) {
2742 			retval = PTR_ERR(phy);
2743 			if (retval == -EPROBE_DEFER)
2744 				goto err_phy;
2745 		} else {
2746 			retval = phy_init(phy);
2747 			if (retval) {
2748 				phy_put(phy);
2749 				goto err_phy;
2750 			}
2751 			retval = phy_power_on(phy);
2752 			if (retval) {
2753 				phy_exit(phy);
2754 				phy_put(phy);
2755 				goto err_phy;
2756 			}
2757 			hcd->phy = phy;
2758 			hcd->remove_phy = 1;
2759 		}
2760 	}
2761 
2762 	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2763 
2764 	/* Keep old behaviour if authorized_default is not in [0, 1]. */
2765 	if (authorized_default < 0 || authorized_default > 1) {
2766 		if (hcd->wireless)
2767 			clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2768 		else
2769 			set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2770 	} else {
2771 		if (authorized_default)
2772 			set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2773 		else
2774 			clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2775 	}
2776 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2777 
2778 	/* per default all interfaces are authorized */
2779 	set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2780 
2781 	/* HC is in reset state, but accessible.  Now do the one-time init,
2782 	 * bottom up so that hcds can customize the root hubs before hub_wq
2783 	 * starts talking to them.  (Note, bus id is assigned early too.)
2784 	 */
2785 	retval = hcd_buffer_create(hcd);
2786 	if (retval != 0) {
2787 		dev_dbg(hcd->self.controller, "pool alloc failed\n");
2788 		goto err_create_buf;
2789 	}
2790 
2791 	retval = usb_register_bus(&hcd->self);
2792 	if (retval < 0)
2793 		goto err_register_bus;
2794 
2795 	rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2796 	if (rhdev == NULL) {
2797 		dev_err(hcd->self.controller, "unable to allocate root hub\n");
2798 		retval = -ENOMEM;
2799 		goto err_allocate_root_hub;
2800 	}
2801 	mutex_lock(&usb_port_peer_mutex);
2802 	hcd->self.root_hub = rhdev;
2803 	mutex_unlock(&usb_port_peer_mutex);
2804 
2805 	switch (hcd->speed) {
2806 	case HCD_USB11:
2807 		rhdev->speed = USB_SPEED_FULL;
2808 		break;
2809 	case HCD_USB2:
2810 		rhdev->speed = USB_SPEED_HIGH;
2811 		break;
2812 	case HCD_USB25:
2813 		rhdev->speed = USB_SPEED_WIRELESS;
2814 		break;
2815 	case HCD_USB3:
2816 		rhdev->speed = USB_SPEED_SUPER;
2817 		break;
2818 	case HCD_USB31:
2819 		rhdev->speed = USB_SPEED_SUPER_PLUS;
2820 		break;
2821 	default:
2822 		retval = -EINVAL;
2823 		goto err_set_rh_speed;
2824 	}
2825 
2826 	/* wakeup flag init defaults to "everything works" for root hubs,
2827 	 * but drivers can override it in reset() if needed, along with
2828 	 * recording the overall controller's system wakeup capability.
2829 	 */
2830 	device_set_wakeup_capable(&rhdev->dev, 1);
2831 
2832 	/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2833 	 * registered.  But since the controller can die at any time,
2834 	 * let's initialize the flag before touching the hardware.
2835 	 */
2836 	set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2837 
2838 	/* "reset" is misnamed; its role is now one-time init. the controller
2839 	 * should already have been reset (and boot firmware kicked off etc).
2840 	 */
2841 	if (hcd->driver->reset) {
2842 		retval = hcd->driver->reset(hcd);
2843 		if (retval < 0) {
2844 			dev_err(hcd->self.controller, "can't setup: %d\n",
2845 					retval);
2846 			goto err_hcd_driver_setup;
2847 		}
2848 	}
2849 	hcd->rh_pollable = 1;
2850 
2851 	/* NOTE: root hub and controller capabilities may not be the same */
2852 	if (device_can_wakeup(hcd->self.controller)
2853 			&& device_can_wakeup(&hcd->self.root_hub->dev))
2854 		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2855 
2856 	/* initialize tasklets */
2857 	init_giveback_urb_bh(&hcd->high_prio_bh);
2858 	init_giveback_urb_bh(&hcd->low_prio_bh);
2859 
2860 	/* enable irqs just before we start the controller,
2861 	 * if the BIOS provides legacy PCI irqs.
2862 	 */
2863 	if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2864 		retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2865 		if (retval)
2866 			goto err_request_irq;
2867 	}
2868 
2869 	hcd->state = HC_STATE_RUNNING;
2870 	retval = hcd->driver->start(hcd);
2871 	if (retval < 0) {
2872 		dev_err(hcd->self.controller, "startup error %d\n", retval);
2873 		goto err_hcd_driver_start;
2874 	}
2875 
2876 	/* starting here, usbcore will pay attention to this root hub */
2877 	retval = register_root_hub(hcd);
2878 	if (retval != 0)
2879 		goto err_register_root_hub;
2880 
2881 	retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2882 	if (retval < 0) {
2883 		printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2884 		       retval);
2885 		goto error_create_attr_group;
2886 	}
2887 	if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2888 		usb_hcd_poll_rh_status(hcd);
2889 
2890 	return retval;
2891 
2892 error_create_attr_group:
2893 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2894 	if (HC_IS_RUNNING(hcd->state))
2895 		hcd->state = HC_STATE_QUIESCING;
2896 	spin_lock_irq(&hcd_root_hub_lock);
2897 	hcd->rh_registered = 0;
2898 	spin_unlock_irq(&hcd_root_hub_lock);
2899 
2900 #ifdef CONFIG_PM
2901 	cancel_work_sync(&hcd->wakeup_work);
2902 #endif
2903 	mutex_lock(&usb_bus_idr_lock);
2904 	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2905 	mutex_unlock(&usb_bus_idr_lock);
2906 err_register_root_hub:
2907 	hcd->rh_pollable = 0;
2908 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2909 	del_timer_sync(&hcd->rh_timer);
2910 	hcd->driver->stop(hcd);
2911 	hcd->state = HC_STATE_HALT;
2912 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2913 	del_timer_sync(&hcd->rh_timer);
2914 err_hcd_driver_start:
2915 	if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2916 		free_irq(irqnum, hcd);
2917 err_request_irq:
2918 err_hcd_driver_setup:
2919 err_set_rh_speed:
2920 	usb_put_invalidate_rhdev(hcd);
2921 err_allocate_root_hub:
2922 	usb_deregister_bus(&hcd->self);
2923 err_register_bus:
2924 	hcd_buffer_destroy(hcd);
2925 err_create_buf:
2926 	if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2927 		phy_power_off(hcd->phy);
2928 		phy_exit(hcd->phy);
2929 		phy_put(hcd->phy);
2930 		hcd->phy = NULL;
2931 	}
2932 err_phy:
2933 	if (hcd->remove_phy && hcd->usb_phy) {
2934 		usb_phy_shutdown(hcd->usb_phy);
2935 		usb_put_phy(hcd->usb_phy);
2936 		hcd->usb_phy = NULL;
2937 	}
2938 	return retval;
2939 }
2940 EXPORT_SYMBOL_GPL(usb_add_hcd);
2941 
2942 /**
2943  * usb_remove_hcd - shutdown processing for generic HCDs
2944  * @hcd: the usb_hcd structure to remove
2945  * Context: !in_interrupt()
2946  *
2947  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2948  * invoking the HCD's stop() method.
2949  */
2950 void usb_remove_hcd(struct usb_hcd *hcd)
2951 {
2952 	struct usb_device *rhdev = hcd->self.root_hub;
2953 
2954 	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2955 
2956 	usb_get_dev(rhdev);
2957 	sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2958 
2959 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2960 	if (HC_IS_RUNNING (hcd->state))
2961 		hcd->state = HC_STATE_QUIESCING;
2962 
2963 	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2964 	spin_lock_irq (&hcd_root_hub_lock);
2965 	hcd->rh_registered = 0;
2966 	spin_unlock_irq (&hcd_root_hub_lock);
2967 
2968 #ifdef CONFIG_PM
2969 	cancel_work_sync(&hcd->wakeup_work);
2970 #endif
2971 
2972 	mutex_lock(&usb_bus_idr_lock);
2973 	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2974 	mutex_unlock(&usb_bus_idr_lock);
2975 
2976 	/*
2977 	 * tasklet_kill() isn't needed here because:
2978 	 * - driver's disconnect() called from usb_disconnect() should
2979 	 *   make sure its URBs are completed during the disconnect()
2980 	 *   callback
2981 	 *
2982 	 * - it is too late to run complete() here since driver may have
2983 	 *   been removed already now
2984 	 */
2985 
2986 	/* Prevent any more root-hub status calls from the timer.
2987 	 * The HCD might still restart the timer (if a port status change
2988 	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2989 	 * the hub_status_data() callback.
2990 	 */
2991 	hcd->rh_pollable = 0;
2992 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2993 	del_timer_sync(&hcd->rh_timer);
2994 
2995 	hcd->driver->stop(hcd);
2996 	hcd->state = HC_STATE_HALT;
2997 
2998 	/* In case the HCD restarted the timer, stop it again. */
2999 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3000 	del_timer_sync(&hcd->rh_timer);
3001 
3002 	if (usb_hcd_is_primary_hcd(hcd)) {
3003 		if (hcd->irq > 0)
3004 			free_irq(hcd->irq, hcd);
3005 	}
3006 
3007 	usb_deregister_bus(&hcd->self);
3008 	hcd_buffer_destroy(hcd);
3009 
3010 	if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
3011 		phy_power_off(hcd->phy);
3012 		phy_exit(hcd->phy);
3013 		phy_put(hcd->phy);
3014 		hcd->phy = NULL;
3015 	}
3016 	if (hcd->remove_phy && hcd->usb_phy) {
3017 		usb_phy_shutdown(hcd->usb_phy);
3018 		usb_put_phy(hcd->usb_phy);
3019 		hcd->usb_phy = NULL;
3020 	}
3021 
3022 	usb_put_invalidate_rhdev(hcd);
3023 	hcd->flags = 0;
3024 }
3025 EXPORT_SYMBOL_GPL(usb_remove_hcd);
3026 
3027 void
3028 usb_hcd_platform_shutdown(struct platform_device *dev)
3029 {
3030 	struct usb_hcd *hcd = platform_get_drvdata(dev);
3031 
3032 	if (hcd->driver->shutdown)
3033 		hcd->driver->shutdown(hcd);
3034 }
3035 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3036 
3037 /*-------------------------------------------------------------------------*/
3038 
3039 #if IS_ENABLED(CONFIG_USB_MON)
3040 
3041 const struct usb_mon_operations *mon_ops;
3042 
3043 /*
3044  * The registration is unlocked.
3045  * We do it this way because we do not want to lock in hot paths.
3046  *
3047  * Notice that the code is minimally error-proof. Because usbmon needs
3048  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3049  */
3050 
3051 int usb_mon_register(const struct usb_mon_operations *ops)
3052 {
3053 
3054 	if (mon_ops)
3055 		return -EBUSY;
3056 
3057 	mon_ops = ops;
3058 	mb();
3059 	return 0;
3060 }
3061 EXPORT_SYMBOL_GPL (usb_mon_register);
3062 
3063 void usb_mon_deregister (void)
3064 {
3065 
3066 	if (mon_ops == NULL) {
3067 		printk(KERN_ERR "USB: monitor was not registered\n");
3068 		return;
3069 	}
3070 	mon_ops = NULL;
3071 	mb();
3072 }
3073 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3074 
3075 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
3076