xref: /openbmc/linux/drivers/usb/core/hcd.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
31 #include <linux/mm.h>
32 #include <asm/io.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
36 #include <asm/irq.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
41 
42 #include <linux/usb.h>
43 #include <linux/usb/hcd.h>
44 
45 #include "usb.h"
46 
47 
48 /*-------------------------------------------------------------------------*/
49 
50 /*
51  * USB Host Controller Driver framework
52  *
53  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
54  * HCD-specific behaviors/bugs.
55  *
56  * This does error checks, tracks devices and urbs, and delegates to a
57  * "hc_driver" only for code (and data) that really needs to know about
58  * hardware differences.  That includes root hub registers, i/o queues,
59  * and so on ... but as little else as possible.
60  *
61  * Shared code includes most of the "root hub" code (these are emulated,
62  * though each HC's hardware works differently) and PCI glue, plus request
63  * tracking overhead.  The HCD code should only block on spinlocks or on
64  * hardware handshaking; blocking on software events (such as other kernel
65  * threads releasing resources, or completing actions) is all generic.
66  *
67  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
68  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
69  * only by the hub driver ... and that neither should be seen or used by
70  * usb client device drivers.
71  *
72  * Contributors of ideas or unattributed patches include: David Brownell,
73  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
74  *
75  * HISTORY:
76  * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
77  *		associated cleanup.  "usb_hcd" still != "usb_bus".
78  * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
79  */
80 
81 /*-------------------------------------------------------------------------*/
82 
83 /* Keep track of which host controller drivers are loaded */
84 unsigned long usb_hcds_loaded;
85 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
86 
87 /* host controllers we manage */
88 LIST_HEAD (usb_bus_list);
89 EXPORT_SYMBOL_GPL (usb_bus_list);
90 
91 /* used when allocating bus numbers */
92 #define USB_MAXBUS		64
93 struct usb_busmap {
94 	unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
95 };
96 static struct usb_busmap busmap;
97 
98 /* used when updating list of hcds */
99 DEFINE_MUTEX(usb_bus_list_lock);	/* exported only for usbfs */
100 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
101 
102 /* used for controlling access to virtual root hubs */
103 static DEFINE_SPINLOCK(hcd_root_hub_lock);
104 
105 /* used when updating an endpoint's URB list */
106 static DEFINE_SPINLOCK(hcd_urb_list_lock);
107 
108 /* used to protect against unlinking URBs after the device is gone */
109 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
110 
111 /* wait queue for synchronous unlinks */
112 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
113 
114 static inline int is_root_hub(struct usb_device *udev)
115 {
116 	return (udev->parent == NULL);
117 }
118 
119 /*-------------------------------------------------------------------------*/
120 
121 /*
122  * Sharable chunks of root hub code.
123  */
124 
125 /*-------------------------------------------------------------------------*/
126 
127 #define KERNEL_REL	((LINUX_VERSION_CODE >> 16) & 0x0ff)
128 #define KERNEL_VER	((LINUX_VERSION_CODE >> 8) & 0x0ff)
129 
130 /* usb 3.0 root hub device descriptor */
131 static const u8 usb3_rh_dev_descriptor[18] = {
132 	0x12,       /*  __u8  bLength; */
133 	0x01,       /*  __u8  bDescriptorType; Device */
134 	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
135 
136 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
137 	0x00,	    /*  __u8  bDeviceSubClass; */
138 	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
139 	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
140 
141 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
142 	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
143 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
144 
145 	0x03,       /*  __u8  iManufacturer; */
146 	0x02,       /*  __u8  iProduct; */
147 	0x01,       /*  __u8  iSerialNumber; */
148 	0x01        /*  __u8  bNumConfigurations; */
149 };
150 
151 /* usb 2.0 root hub device descriptor */
152 static const u8 usb2_rh_dev_descriptor [18] = {
153 	0x12,       /*  __u8  bLength; */
154 	0x01,       /*  __u8  bDescriptorType; Device */
155 	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
156 
157 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
158 	0x00,	    /*  __u8  bDeviceSubClass; */
159 	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
160 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
161 
162 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
163 	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
164 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
165 
166 	0x03,       /*  __u8  iManufacturer; */
167 	0x02,       /*  __u8  iProduct; */
168 	0x01,       /*  __u8  iSerialNumber; */
169 	0x01        /*  __u8  bNumConfigurations; */
170 };
171 
172 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
173 
174 /* usb 1.1 root hub device descriptor */
175 static const u8 usb11_rh_dev_descriptor [18] = {
176 	0x12,       /*  __u8  bLength; */
177 	0x01,       /*  __u8  bDescriptorType; Device */
178 	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
179 
180 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
181 	0x00,	    /*  __u8  bDeviceSubClass; */
182 	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
183 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
184 
185 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
186 	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
187 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
188 
189 	0x03,       /*  __u8  iManufacturer; */
190 	0x02,       /*  __u8  iProduct; */
191 	0x01,       /*  __u8  iSerialNumber; */
192 	0x01        /*  __u8  bNumConfigurations; */
193 };
194 
195 
196 /*-------------------------------------------------------------------------*/
197 
198 /* Configuration descriptors for our root hubs */
199 
200 static const u8 fs_rh_config_descriptor [] = {
201 
202 	/* one configuration */
203 	0x09,       /*  __u8  bLength; */
204 	0x02,       /*  __u8  bDescriptorType; Configuration */
205 	0x19, 0x00, /*  __le16 wTotalLength; */
206 	0x01,       /*  __u8  bNumInterfaces; (1) */
207 	0x01,       /*  __u8  bConfigurationValue; */
208 	0x00,       /*  __u8  iConfiguration; */
209 	0xc0,       /*  __u8  bmAttributes;
210 				 Bit 7: must be set,
211 				     6: Self-powered,
212 				     5: Remote wakeup,
213 				     4..0: resvd */
214 	0x00,       /*  __u8  MaxPower; */
215 
216 	/* USB 1.1:
217 	 * USB 2.0, single TT organization (mandatory):
218 	 *	one interface, protocol 0
219 	 *
220 	 * USB 2.0, multiple TT organization (optional):
221 	 *	two interfaces, protocols 1 (like single TT)
222 	 *	and 2 (multiple TT mode) ... config is
223 	 *	sometimes settable
224 	 *	NOT IMPLEMENTED
225 	 */
226 
227 	/* one interface */
228 	0x09,       /*  __u8  if_bLength; */
229 	0x04,       /*  __u8  if_bDescriptorType; Interface */
230 	0x00,       /*  __u8  if_bInterfaceNumber; */
231 	0x00,       /*  __u8  if_bAlternateSetting; */
232 	0x01,       /*  __u8  if_bNumEndpoints; */
233 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
234 	0x00,       /*  __u8  if_bInterfaceSubClass; */
235 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
236 	0x00,       /*  __u8  if_iInterface; */
237 
238 	/* one endpoint (status change endpoint) */
239 	0x07,       /*  __u8  ep_bLength; */
240 	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
241 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
242  	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
243  	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
244 	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
245 };
246 
247 static const u8 hs_rh_config_descriptor [] = {
248 
249 	/* one configuration */
250 	0x09,       /*  __u8  bLength; */
251 	0x02,       /*  __u8  bDescriptorType; Configuration */
252 	0x19, 0x00, /*  __le16 wTotalLength; */
253 	0x01,       /*  __u8  bNumInterfaces; (1) */
254 	0x01,       /*  __u8  bConfigurationValue; */
255 	0x00,       /*  __u8  iConfiguration; */
256 	0xc0,       /*  __u8  bmAttributes;
257 				 Bit 7: must be set,
258 				     6: Self-powered,
259 				     5: Remote wakeup,
260 				     4..0: resvd */
261 	0x00,       /*  __u8  MaxPower; */
262 
263 	/* USB 1.1:
264 	 * USB 2.0, single TT organization (mandatory):
265 	 *	one interface, protocol 0
266 	 *
267 	 * USB 2.0, multiple TT organization (optional):
268 	 *	two interfaces, protocols 1 (like single TT)
269 	 *	and 2 (multiple TT mode) ... config is
270 	 *	sometimes settable
271 	 *	NOT IMPLEMENTED
272 	 */
273 
274 	/* one interface */
275 	0x09,       /*  __u8  if_bLength; */
276 	0x04,       /*  __u8  if_bDescriptorType; Interface */
277 	0x00,       /*  __u8  if_bInterfaceNumber; */
278 	0x00,       /*  __u8  if_bAlternateSetting; */
279 	0x01,       /*  __u8  if_bNumEndpoints; */
280 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
281 	0x00,       /*  __u8  if_bInterfaceSubClass; */
282 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
283 	0x00,       /*  __u8  if_iInterface; */
284 
285 	/* one endpoint (status change endpoint) */
286 	0x07,       /*  __u8  ep_bLength; */
287 	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
288 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
289  	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
290 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
291 		     * see hub.c:hub_configure() for details. */
292 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
293 	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
294 };
295 
296 static const u8 ss_rh_config_descriptor[] = {
297 	/* one configuration */
298 	0x09,       /*  __u8  bLength; */
299 	0x02,       /*  __u8  bDescriptorType; Configuration */
300 	0x19, 0x00, /*  __le16 wTotalLength; FIXME */
301 	0x01,       /*  __u8  bNumInterfaces; (1) */
302 	0x01,       /*  __u8  bConfigurationValue; */
303 	0x00,       /*  __u8  iConfiguration; */
304 	0xc0,       /*  __u8  bmAttributes;
305 				 Bit 7: must be set,
306 				     6: Self-powered,
307 				     5: Remote wakeup,
308 				     4..0: resvd */
309 	0x00,       /*  __u8  MaxPower; */
310 
311 	/* one interface */
312 	0x09,       /*  __u8  if_bLength; */
313 	0x04,       /*  __u8  if_bDescriptorType; Interface */
314 	0x00,       /*  __u8  if_bInterfaceNumber; */
315 	0x00,       /*  __u8  if_bAlternateSetting; */
316 	0x01,       /*  __u8  if_bNumEndpoints; */
317 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
318 	0x00,       /*  __u8  if_bInterfaceSubClass; */
319 	0x00,       /*  __u8  if_bInterfaceProtocol; */
320 	0x00,       /*  __u8  if_iInterface; */
321 
322 	/* one endpoint (status change endpoint) */
323 	0x07,       /*  __u8  ep_bLength; */
324 	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
325 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
326 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
327 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
328 		     * see hub.c:hub_configure() for details. */
329 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
330 	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
331 	/*
332 	 * All 3.0 hubs should have an endpoint companion descriptor,
333 	 * but we're ignoring that for now.  FIXME?
334 	 */
335 };
336 
337 /*-------------------------------------------------------------------------*/
338 
339 /**
340  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
341  * @s: Null-terminated ASCII (actually ISO-8859-1) string
342  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
343  * @len: Length (in bytes; may be odd) of descriptor buffer.
344  *
345  * The return value is the number of bytes filled in: 2 + 2*strlen(s) or
346  * buflen, whichever is less.
347  *
348  * USB String descriptors can contain at most 126 characters; input
349  * strings longer than that are truncated.
350  */
351 static unsigned
352 ascii2desc(char const *s, u8 *buf, unsigned len)
353 {
354 	unsigned n, t = 2 + 2*strlen(s);
355 
356 	if (t > 254)
357 		t = 254;	/* Longest possible UTF string descriptor */
358 	if (len > t)
359 		len = t;
360 
361 	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
362 
363 	n = len;
364 	while (n--) {
365 		*buf++ = t;
366 		if (!n--)
367 			break;
368 		*buf++ = t >> 8;
369 		t = (unsigned char)*s++;
370 	}
371 	return len;
372 }
373 
374 /**
375  * rh_string() - provides string descriptors for root hub
376  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
377  * @hcd: the host controller for this root hub
378  * @data: buffer for output packet
379  * @len: length of the provided buffer
380  *
381  * Produces either a manufacturer, product or serial number string for the
382  * virtual root hub device.
383  * Returns the number of bytes filled in: the length of the descriptor or
384  * of the provided buffer, whichever is less.
385  */
386 static unsigned
387 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
388 {
389 	char buf[100];
390 	char const *s;
391 	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
392 
393 	// language ids
394 	switch (id) {
395 	case 0:
396 		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
397 		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
398 		if (len > 4)
399 			len = 4;
400 		memcpy(data, langids, len);
401 		return len;
402 	case 1:
403 		/* Serial number */
404 		s = hcd->self.bus_name;
405 		break;
406 	case 2:
407 		/* Product name */
408 		s = hcd->product_desc;
409 		break;
410 	case 3:
411 		/* Manufacturer */
412 		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
413 			init_utsname()->release, hcd->driver->description);
414 		s = buf;
415 		break;
416 	default:
417 		/* Can't happen; caller guarantees it */
418 		return 0;
419 	}
420 
421 	return ascii2desc(s, data, len);
422 }
423 
424 
425 /* Root hub control transfers execute synchronously */
426 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
427 {
428 	struct usb_ctrlrequest *cmd;
429  	u16		typeReq, wValue, wIndex, wLength;
430 	u8		*ubuf = urb->transfer_buffer;
431 	u8		tbuf [sizeof (struct usb_hub_descriptor)]
432 		__attribute__((aligned(4)));
433 	const u8	*bufp = tbuf;
434 	unsigned	len = 0;
435 	int		status;
436 	u8		patch_wakeup = 0;
437 	u8		patch_protocol = 0;
438 
439 	might_sleep();
440 
441 	spin_lock_irq(&hcd_root_hub_lock);
442 	status = usb_hcd_link_urb_to_ep(hcd, urb);
443 	spin_unlock_irq(&hcd_root_hub_lock);
444 	if (status)
445 		return status;
446 	urb->hcpriv = hcd;	/* Indicate it's queued */
447 
448 	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
449 	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
450 	wValue   = le16_to_cpu (cmd->wValue);
451 	wIndex   = le16_to_cpu (cmd->wIndex);
452 	wLength  = le16_to_cpu (cmd->wLength);
453 
454 	if (wLength > urb->transfer_buffer_length)
455 		goto error;
456 
457 	urb->actual_length = 0;
458 	switch (typeReq) {
459 
460 	/* DEVICE REQUESTS */
461 
462 	/* The root hub's remote wakeup enable bit is implemented using
463 	 * driver model wakeup flags.  If this system supports wakeup
464 	 * through USB, userspace may change the default "allow wakeup"
465 	 * policy through sysfs or these calls.
466 	 *
467 	 * Most root hubs support wakeup from downstream devices, for
468 	 * runtime power management (disabling USB clocks and reducing
469 	 * VBUS power usage).  However, not all of them do so; silicon,
470 	 * board, and BIOS bugs here are not uncommon, so these can't
471 	 * be treated quite like external hubs.
472 	 *
473 	 * Likewise, not all root hubs will pass wakeup events upstream,
474 	 * to wake up the whole system.  So don't assume root hub and
475 	 * controller capabilities are identical.
476 	 */
477 
478 	case DeviceRequest | USB_REQ_GET_STATUS:
479 		tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
480 					<< USB_DEVICE_REMOTE_WAKEUP)
481 				| (1 << USB_DEVICE_SELF_POWERED);
482 		tbuf [1] = 0;
483 		len = 2;
484 		break;
485 	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
486 		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
487 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
488 		else
489 			goto error;
490 		break;
491 	case DeviceOutRequest | USB_REQ_SET_FEATURE:
492 		if (device_can_wakeup(&hcd->self.root_hub->dev)
493 				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
494 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
495 		else
496 			goto error;
497 		break;
498 	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
499 		tbuf [0] = 1;
500 		len = 1;
501 			/* FALLTHROUGH */
502 	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
503 		break;
504 	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
505 		switch (wValue & 0xff00) {
506 		case USB_DT_DEVICE << 8:
507 			switch (hcd->driver->flags & HCD_MASK) {
508 			case HCD_USB3:
509 				bufp = usb3_rh_dev_descriptor;
510 				break;
511 			case HCD_USB2:
512 				bufp = usb2_rh_dev_descriptor;
513 				break;
514 			case HCD_USB11:
515 				bufp = usb11_rh_dev_descriptor;
516 				break;
517 			default:
518 				goto error;
519 			}
520 			len = 18;
521 			if (hcd->has_tt)
522 				patch_protocol = 1;
523 			break;
524 		case USB_DT_CONFIG << 8:
525 			switch (hcd->driver->flags & HCD_MASK) {
526 			case HCD_USB3:
527 				bufp = ss_rh_config_descriptor;
528 				len = sizeof ss_rh_config_descriptor;
529 				break;
530 			case HCD_USB2:
531 				bufp = hs_rh_config_descriptor;
532 				len = sizeof hs_rh_config_descriptor;
533 				break;
534 			case HCD_USB11:
535 				bufp = fs_rh_config_descriptor;
536 				len = sizeof fs_rh_config_descriptor;
537 				break;
538 			default:
539 				goto error;
540 			}
541 			if (device_can_wakeup(&hcd->self.root_hub->dev))
542 				patch_wakeup = 1;
543 			break;
544 		case USB_DT_STRING << 8:
545 			if ((wValue & 0xff) < 4)
546 				urb->actual_length = rh_string(wValue & 0xff,
547 						hcd, ubuf, wLength);
548 			else /* unsupported IDs --> "protocol stall" */
549 				goto error;
550 			break;
551 		default:
552 			goto error;
553 		}
554 		break;
555 	case DeviceRequest | USB_REQ_GET_INTERFACE:
556 		tbuf [0] = 0;
557 		len = 1;
558 			/* FALLTHROUGH */
559 	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
560 		break;
561 	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
562 		// wValue == urb->dev->devaddr
563 		dev_dbg (hcd->self.controller, "root hub device address %d\n",
564 			wValue);
565 		break;
566 
567 	/* INTERFACE REQUESTS (no defined feature/status flags) */
568 
569 	/* ENDPOINT REQUESTS */
570 
571 	case EndpointRequest | USB_REQ_GET_STATUS:
572 		// ENDPOINT_HALT flag
573 		tbuf [0] = 0;
574 		tbuf [1] = 0;
575 		len = 2;
576 			/* FALLTHROUGH */
577 	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
578 	case EndpointOutRequest | USB_REQ_SET_FEATURE:
579 		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
580 		break;
581 
582 	/* CLASS REQUESTS (and errors) */
583 
584 	default:
585 		/* non-generic request */
586 		switch (typeReq) {
587 		case GetHubStatus:
588 		case GetPortStatus:
589 			len = 4;
590 			break;
591 		case GetHubDescriptor:
592 			len = sizeof (struct usb_hub_descriptor);
593 			break;
594 		}
595 		status = hcd->driver->hub_control (hcd,
596 			typeReq, wValue, wIndex,
597 			tbuf, wLength);
598 		break;
599 error:
600 		/* "protocol stall" on error */
601 		status = -EPIPE;
602 	}
603 
604 	if (status) {
605 		len = 0;
606 		if (status != -EPIPE) {
607 			dev_dbg (hcd->self.controller,
608 				"CTRL: TypeReq=0x%x val=0x%x "
609 				"idx=0x%x len=%d ==> %d\n",
610 				typeReq, wValue, wIndex,
611 				wLength, status);
612 		}
613 	}
614 	if (len) {
615 		if (urb->transfer_buffer_length < len)
616 			len = urb->transfer_buffer_length;
617 		urb->actual_length = len;
618 		// always USB_DIR_IN, toward host
619 		memcpy (ubuf, bufp, len);
620 
621 		/* report whether RH hardware supports remote wakeup */
622 		if (patch_wakeup &&
623 				len > offsetof (struct usb_config_descriptor,
624 						bmAttributes))
625 			((struct usb_config_descriptor *)ubuf)->bmAttributes
626 				|= USB_CONFIG_ATT_WAKEUP;
627 
628 		/* report whether RH hardware has an integrated TT */
629 		if (patch_protocol &&
630 				len > offsetof(struct usb_device_descriptor,
631 						bDeviceProtocol))
632 			((struct usb_device_descriptor *) ubuf)->
633 					bDeviceProtocol = 1;
634 	}
635 
636 	/* any errors get returned through the urb completion */
637 	spin_lock_irq(&hcd_root_hub_lock);
638 	usb_hcd_unlink_urb_from_ep(hcd, urb);
639 
640 	/* This peculiar use of spinlocks echoes what real HC drivers do.
641 	 * Avoiding calls to local_irq_disable/enable makes the code
642 	 * RT-friendly.
643 	 */
644 	spin_unlock(&hcd_root_hub_lock);
645 	usb_hcd_giveback_urb(hcd, urb, status);
646 	spin_lock(&hcd_root_hub_lock);
647 
648 	spin_unlock_irq(&hcd_root_hub_lock);
649 	return 0;
650 }
651 
652 /*-------------------------------------------------------------------------*/
653 
654 /*
655  * Root Hub interrupt transfers are polled using a timer if the
656  * driver requests it; otherwise the driver is responsible for
657  * calling usb_hcd_poll_rh_status() when an event occurs.
658  *
659  * Completions are called in_interrupt(), but they may or may not
660  * be in_irq().
661  */
662 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
663 {
664 	struct urb	*urb;
665 	int		length;
666 	unsigned long	flags;
667 	char		buffer[6];	/* Any root hubs with > 31 ports? */
668 
669 	if (unlikely(!hcd->rh_pollable))
670 		return;
671 	if (!hcd->uses_new_polling && !hcd->status_urb)
672 		return;
673 
674 	length = hcd->driver->hub_status_data(hcd, buffer);
675 	if (length > 0) {
676 
677 		/* try to complete the status urb */
678 		spin_lock_irqsave(&hcd_root_hub_lock, flags);
679 		urb = hcd->status_urb;
680 		if (urb) {
681 			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
682 			hcd->status_urb = NULL;
683 			urb->actual_length = length;
684 			memcpy(urb->transfer_buffer, buffer, length);
685 
686 			usb_hcd_unlink_urb_from_ep(hcd, urb);
687 			spin_unlock(&hcd_root_hub_lock);
688 			usb_hcd_giveback_urb(hcd, urb, 0);
689 			spin_lock(&hcd_root_hub_lock);
690 		} else {
691 			length = 0;
692 			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
693 		}
694 		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
695 	}
696 
697 	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
698 	 * exceed that limit if HZ is 100. The math is more clunky than
699 	 * maybe expected, this is to make sure that all timers for USB devices
700 	 * fire at the same time to give the CPU a break inbetween */
701 	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
702 			(length == 0 && hcd->status_urb != NULL))
703 		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
704 }
705 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
706 
707 /* timer callback */
708 static void rh_timer_func (unsigned long _hcd)
709 {
710 	usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
711 }
712 
713 /*-------------------------------------------------------------------------*/
714 
715 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
716 {
717 	int		retval;
718 	unsigned long	flags;
719 	unsigned	len = 1 + (urb->dev->maxchild / 8);
720 
721 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
722 	if (hcd->status_urb || urb->transfer_buffer_length < len) {
723 		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
724 		retval = -EINVAL;
725 		goto done;
726 	}
727 
728 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
729 	if (retval)
730 		goto done;
731 
732 	hcd->status_urb = urb;
733 	urb->hcpriv = hcd;	/* indicate it's queued */
734 	if (!hcd->uses_new_polling)
735 		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
736 
737 	/* If a status change has already occurred, report it ASAP */
738 	else if (HCD_POLL_PENDING(hcd))
739 		mod_timer(&hcd->rh_timer, jiffies);
740 	retval = 0;
741  done:
742 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
743 	return retval;
744 }
745 
746 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
747 {
748 	if (usb_endpoint_xfer_int(&urb->ep->desc))
749 		return rh_queue_status (hcd, urb);
750 	if (usb_endpoint_xfer_control(&urb->ep->desc))
751 		return rh_call_control (hcd, urb);
752 	return -EINVAL;
753 }
754 
755 /*-------------------------------------------------------------------------*/
756 
757 /* Unlinks of root-hub control URBs are legal, but they don't do anything
758  * since these URBs always execute synchronously.
759  */
760 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
761 {
762 	unsigned long	flags;
763 	int		rc;
764 
765 	spin_lock_irqsave(&hcd_root_hub_lock, flags);
766 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
767 	if (rc)
768 		goto done;
769 
770 	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
771 		;	/* Do nothing */
772 
773 	} else {				/* Status URB */
774 		if (!hcd->uses_new_polling)
775 			del_timer (&hcd->rh_timer);
776 		if (urb == hcd->status_urb) {
777 			hcd->status_urb = NULL;
778 			usb_hcd_unlink_urb_from_ep(hcd, urb);
779 
780 			spin_unlock(&hcd_root_hub_lock);
781 			usb_hcd_giveback_urb(hcd, urb, status);
782 			spin_lock(&hcd_root_hub_lock);
783 		}
784 	}
785  done:
786 	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
787 	return rc;
788 }
789 
790 
791 
792 /*
793  * Show & store the current value of authorized_default
794  */
795 static ssize_t usb_host_authorized_default_show(struct device *dev,
796 						struct device_attribute *attr,
797 						char *buf)
798 {
799 	struct usb_device *rh_usb_dev = to_usb_device(dev);
800 	struct usb_bus *usb_bus = rh_usb_dev->bus;
801 	struct usb_hcd *usb_hcd;
802 
803 	if (usb_bus == NULL)	/* FIXME: not sure if this case is possible */
804 		return -ENODEV;
805 	usb_hcd = bus_to_hcd(usb_bus);
806 	return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
807 }
808 
809 static ssize_t usb_host_authorized_default_store(struct device *dev,
810 						 struct device_attribute *attr,
811 						 const char *buf, size_t size)
812 {
813 	ssize_t result;
814 	unsigned val;
815 	struct usb_device *rh_usb_dev = to_usb_device(dev);
816 	struct usb_bus *usb_bus = rh_usb_dev->bus;
817 	struct usb_hcd *usb_hcd;
818 
819 	if (usb_bus == NULL)	/* FIXME: not sure if this case is possible */
820 		return -ENODEV;
821 	usb_hcd = bus_to_hcd(usb_bus);
822 	result = sscanf(buf, "%u\n", &val);
823 	if (result == 1) {
824 		usb_hcd->authorized_default = val? 1 : 0;
825 		result = size;
826 	}
827 	else
828 		result = -EINVAL;
829 	return result;
830 }
831 
832 static DEVICE_ATTR(authorized_default, 0644,
833 	    usb_host_authorized_default_show,
834 	    usb_host_authorized_default_store);
835 
836 
837 /* Group all the USB bus attributes */
838 static struct attribute *usb_bus_attrs[] = {
839 		&dev_attr_authorized_default.attr,
840 		NULL,
841 };
842 
843 static struct attribute_group usb_bus_attr_group = {
844 	.name = NULL,	/* we want them in the same directory */
845 	.attrs = usb_bus_attrs,
846 };
847 
848 
849 
850 /*-------------------------------------------------------------------------*/
851 
852 /**
853  * usb_bus_init - shared initialization code
854  * @bus: the bus structure being initialized
855  *
856  * This code is used to initialize a usb_bus structure, memory for which is
857  * separately managed.
858  */
859 static void usb_bus_init (struct usb_bus *bus)
860 {
861 	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
862 
863 	bus->devnum_next = 1;
864 
865 	bus->root_hub = NULL;
866 	bus->busnum = -1;
867 	bus->bandwidth_allocated = 0;
868 	bus->bandwidth_int_reqs  = 0;
869 	bus->bandwidth_isoc_reqs = 0;
870 
871 	INIT_LIST_HEAD (&bus->bus_list);
872 }
873 
874 /*-------------------------------------------------------------------------*/
875 
876 /**
877  * usb_register_bus - registers the USB host controller with the usb core
878  * @bus: pointer to the bus to register
879  * Context: !in_interrupt()
880  *
881  * Assigns a bus number, and links the controller into usbcore data
882  * structures so that it can be seen by scanning the bus list.
883  */
884 static int usb_register_bus(struct usb_bus *bus)
885 {
886 	int result = -E2BIG;
887 	int busnum;
888 
889 	mutex_lock(&usb_bus_list_lock);
890 	busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
891 	if (busnum >= USB_MAXBUS) {
892 		printk (KERN_ERR "%s: too many buses\n", usbcore_name);
893 		goto error_find_busnum;
894 	}
895 	set_bit (busnum, busmap.busmap);
896 	bus->busnum = busnum;
897 
898 	/* Add it to the local list of buses */
899 	list_add (&bus->bus_list, &usb_bus_list);
900 	mutex_unlock(&usb_bus_list_lock);
901 
902 	usb_notify_add_bus(bus);
903 
904 	dev_info (bus->controller, "new USB bus registered, assigned bus "
905 		  "number %d\n", bus->busnum);
906 	return 0;
907 
908 error_find_busnum:
909 	mutex_unlock(&usb_bus_list_lock);
910 	return result;
911 }
912 
913 /**
914  * usb_deregister_bus - deregisters the USB host controller
915  * @bus: pointer to the bus to deregister
916  * Context: !in_interrupt()
917  *
918  * Recycles the bus number, and unlinks the controller from usbcore data
919  * structures so that it won't be seen by scanning the bus list.
920  */
921 static void usb_deregister_bus (struct usb_bus *bus)
922 {
923 	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
924 
925 	/*
926 	 * NOTE: make sure that all the devices are removed by the
927 	 * controller code, as well as having it call this when cleaning
928 	 * itself up
929 	 */
930 	mutex_lock(&usb_bus_list_lock);
931 	list_del (&bus->bus_list);
932 	mutex_unlock(&usb_bus_list_lock);
933 
934 	usb_notify_remove_bus(bus);
935 
936 	clear_bit (bus->busnum, busmap.busmap);
937 }
938 
939 /**
940  * register_root_hub - called by usb_add_hcd() to register a root hub
941  * @hcd: host controller for this root hub
942  *
943  * This function registers the root hub with the USB subsystem.  It sets up
944  * the device properly in the device tree and then calls usb_new_device()
945  * to register the usb device.  It also assigns the root hub's USB address
946  * (always 1).
947  */
948 static int register_root_hub(struct usb_hcd *hcd)
949 {
950 	struct device *parent_dev = hcd->self.controller;
951 	struct usb_device *usb_dev = hcd->self.root_hub;
952 	const int devnum = 1;
953 	int retval;
954 
955 	usb_dev->devnum = devnum;
956 	usb_dev->bus->devnum_next = devnum + 1;
957 	memset (&usb_dev->bus->devmap.devicemap, 0,
958 			sizeof usb_dev->bus->devmap.devicemap);
959 	set_bit (devnum, usb_dev->bus->devmap.devicemap);
960 	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
961 
962 	mutex_lock(&usb_bus_list_lock);
963 
964 	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
965 	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
966 	if (retval != sizeof usb_dev->descriptor) {
967 		mutex_unlock(&usb_bus_list_lock);
968 		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
969 				dev_name(&usb_dev->dev), retval);
970 		return (retval < 0) ? retval : -EMSGSIZE;
971 	}
972 
973 	retval = usb_new_device (usb_dev);
974 	if (retval) {
975 		dev_err (parent_dev, "can't register root hub for %s, %d\n",
976 				dev_name(&usb_dev->dev), retval);
977 	}
978 	mutex_unlock(&usb_bus_list_lock);
979 
980 	if (retval == 0) {
981 		spin_lock_irq (&hcd_root_hub_lock);
982 		hcd->rh_registered = 1;
983 		spin_unlock_irq (&hcd_root_hub_lock);
984 
985 		/* Did the HC die before the root hub was registered? */
986 		if (hcd->state == HC_STATE_HALT)
987 			usb_hc_died (hcd);	/* This time clean up */
988 	}
989 
990 	return retval;
991 }
992 
993 
994 /*-------------------------------------------------------------------------*/
995 
996 /**
997  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
998  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
999  * @is_input: true iff the transaction sends data to the host
1000  * @isoc: true for isochronous transactions, false for interrupt ones
1001  * @bytecount: how many bytes in the transaction.
1002  *
1003  * Returns approximate bus time in nanoseconds for a periodic transaction.
1004  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1005  * scheduled in software, this function is only used for such scheduling.
1006  */
1007 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1008 {
1009 	unsigned long	tmp;
1010 
1011 	switch (speed) {
1012 	case USB_SPEED_LOW: 	/* INTR only */
1013 		if (is_input) {
1014 			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1015 			return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1016 		} else {
1017 			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1018 			return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1019 		}
1020 	case USB_SPEED_FULL:	/* ISOC or INTR */
1021 		if (isoc) {
1022 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1023 			return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
1024 		} else {
1025 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1026 			return (9107L + BW_HOST_DELAY + tmp);
1027 		}
1028 	case USB_SPEED_HIGH:	/* ISOC or INTR */
1029 		// FIXME adjust for input vs output
1030 		if (isoc)
1031 			tmp = HS_NSECS_ISO (bytecount);
1032 		else
1033 			tmp = HS_NSECS (bytecount);
1034 		return tmp;
1035 	default:
1036 		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1037 		return -1;
1038 	}
1039 }
1040 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1041 
1042 
1043 /*-------------------------------------------------------------------------*/
1044 
1045 /*
1046  * Generic HC operations.
1047  */
1048 
1049 /*-------------------------------------------------------------------------*/
1050 
1051 /**
1052  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1053  * @hcd: host controller to which @urb was submitted
1054  * @urb: URB being submitted
1055  *
1056  * Host controller drivers should call this routine in their enqueue()
1057  * method.  The HCD's private spinlock must be held and interrupts must
1058  * be disabled.  The actions carried out here are required for URB
1059  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1060  *
1061  * Returns 0 for no error, otherwise a negative error code (in which case
1062  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1063  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1064  * the private spinlock and returning.
1065  */
1066 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1067 {
1068 	int		rc = 0;
1069 
1070 	spin_lock(&hcd_urb_list_lock);
1071 
1072 	/* Check that the URB isn't being killed */
1073 	if (unlikely(atomic_read(&urb->reject))) {
1074 		rc = -EPERM;
1075 		goto done;
1076 	}
1077 
1078 	if (unlikely(!urb->ep->enabled)) {
1079 		rc = -ENOENT;
1080 		goto done;
1081 	}
1082 
1083 	if (unlikely(!urb->dev->can_submit)) {
1084 		rc = -EHOSTUNREACH;
1085 		goto done;
1086 	}
1087 
1088 	/*
1089 	 * Check the host controller's state and add the URB to the
1090 	 * endpoint's queue.
1091 	 */
1092 	switch (hcd->state) {
1093 	case HC_STATE_RUNNING:
1094 	case HC_STATE_RESUMING:
1095 		urb->unlinked = 0;
1096 		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1097 		break;
1098 	default:
1099 		rc = -ESHUTDOWN;
1100 		goto done;
1101 	}
1102  done:
1103 	spin_unlock(&hcd_urb_list_lock);
1104 	return rc;
1105 }
1106 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1107 
1108 /**
1109  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1110  * @hcd: host controller to which @urb was submitted
1111  * @urb: URB being checked for unlinkability
1112  * @status: error code to store in @urb if the unlink succeeds
1113  *
1114  * Host controller drivers should call this routine in their dequeue()
1115  * method.  The HCD's private spinlock must be held and interrupts must
1116  * be disabled.  The actions carried out here are required for making
1117  * sure than an unlink is valid.
1118  *
1119  * Returns 0 for no error, otherwise a negative error code (in which case
1120  * the dequeue() method must fail).  The possible error codes are:
1121  *
1122  *	-EIDRM: @urb was not submitted or has already completed.
1123  *		The completion function may not have been called yet.
1124  *
1125  *	-EBUSY: @urb has already been unlinked.
1126  */
1127 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1128 		int status)
1129 {
1130 	struct list_head	*tmp;
1131 
1132 	/* insist the urb is still queued */
1133 	list_for_each(tmp, &urb->ep->urb_list) {
1134 		if (tmp == &urb->urb_list)
1135 			break;
1136 	}
1137 	if (tmp != &urb->urb_list)
1138 		return -EIDRM;
1139 
1140 	/* Any status except -EINPROGRESS means something already started to
1141 	 * unlink this URB from the hardware.  So there's no more work to do.
1142 	 */
1143 	if (urb->unlinked)
1144 		return -EBUSY;
1145 	urb->unlinked = status;
1146 
1147 	/* IRQ setup can easily be broken so that USB controllers
1148 	 * never get completion IRQs ... maybe even the ones we need to
1149 	 * finish unlinking the initial failed usb_set_address()
1150 	 * or device descriptor fetch.
1151 	 */
1152 	if (!HCD_SAW_IRQ(hcd) && !is_root_hub(urb->dev)) {
1153 		dev_warn(hcd->self.controller, "Unlink after no-IRQ?  "
1154 			"Controller is probably using the wrong IRQ.\n");
1155 		set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1156 	}
1157 
1158 	return 0;
1159 }
1160 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1161 
1162 /**
1163  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1164  * @hcd: host controller to which @urb was submitted
1165  * @urb: URB being unlinked
1166  *
1167  * Host controller drivers should call this routine before calling
1168  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1169  * interrupts must be disabled.  The actions carried out here are required
1170  * for URB completion.
1171  */
1172 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1173 {
1174 	/* clear all state linking urb to this dev (and hcd) */
1175 	spin_lock(&hcd_urb_list_lock);
1176 	list_del_init(&urb->urb_list);
1177 	spin_unlock(&hcd_urb_list_lock);
1178 }
1179 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1180 
1181 /*
1182  * Some usb host controllers can only perform dma using a small SRAM area.
1183  * The usb core itself is however optimized for host controllers that can dma
1184  * using regular system memory - like pci devices doing bus mastering.
1185  *
1186  * To support host controllers with limited dma capabilites we provide dma
1187  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1188  * For this to work properly the host controller code must first use the
1189  * function dma_declare_coherent_memory() to point out which memory area
1190  * that should be used for dma allocations.
1191  *
1192  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1193  * dma using dma_alloc_coherent() which in turn allocates from the memory
1194  * area pointed out with dma_declare_coherent_memory().
1195  *
1196  * So, to summarize...
1197  *
1198  * - We need "local" memory, canonical example being
1199  *   a small SRAM on a discrete controller being the
1200  *   only memory that the controller can read ...
1201  *   (a) "normal" kernel memory is no good, and
1202  *   (b) there's not enough to share
1203  *
1204  * - The only *portable* hook for such stuff in the
1205  *   DMA framework is dma_declare_coherent_memory()
1206  *
1207  * - So we use that, even though the primary requirement
1208  *   is that the memory be "local" (hence addressible
1209  *   by that device), not "coherent".
1210  *
1211  */
1212 
1213 static int hcd_alloc_coherent(struct usb_bus *bus,
1214 			      gfp_t mem_flags, dma_addr_t *dma_handle,
1215 			      void **vaddr_handle, size_t size,
1216 			      enum dma_data_direction dir)
1217 {
1218 	unsigned char *vaddr;
1219 
1220 	if (*vaddr_handle == NULL) {
1221 		WARN_ON_ONCE(1);
1222 		return -EFAULT;
1223 	}
1224 
1225 	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1226 				 mem_flags, dma_handle);
1227 	if (!vaddr)
1228 		return -ENOMEM;
1229 
1230 	/*
1231 	 * Store the virtual address of the buffer at the end
1232 	 * of the allocated dma buffer. The size of the buffer
1233 	 * may be uneven so use unaligned functions instead
1234 	 * of just rounding up. It makes sense to optimize for
1235 	 * memory footprint over access speed since the amount
1236 	 * of memory available for dma may be limited.
1237 	 */
1238 	put_unaligned((unsigned long)*vaddr_handle,
1239 		      (unsigned long *)(vaddr + size));
1240 
1241 	if (dir == DMA_TO_DEVICE)
1242 		memcpy(vaddr, *vaddr_handle, size);
1243 
1244 	*vaddr_handle = vaddr;
1245 	return 0;
1246 }
1247 
1248 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1249 			      void **vaddr_handle, size_t size,
1250 			      enum dma_data_direction dir)
1251 {
1252 	unsigned char *vaddr = *vaddr_handle;
1253 
1254 	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1255 
1256 	if (dir == DMA_FROM_DEVICE)
1257 		memcpy(vaddr, *vaddr_handle, size);
1258 
1259 	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1260 
1261 	*vaddr_handle = vaddr;
1262 	*dma_handle = 0;
1263 }
1264 
1265 void unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1266 {
1267 	if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1268 		dma_unmap_single(hcd->self.controller,
1269 				urb->setup_dma,
1270 				sizeof(struct usb_ctrlrequest),
1271 				DMA_TO_DEVICE);
1272 	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1273 		hcd_free_coherent(urb->dev->bus,
1274 				&urb->setup_dma,
1275 				(void **) &urb->setup_packet,
1276 				sizeof(struct usb_ctrlrequest),
1277 				DMA_TO_DEVICE);
1278 
1279 	/* Make it safe to call this routine more than once */
1280 	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1281 }
1282 EXPORT_SYMBOL_GPL(unmap_urb_setup_for_dma);
1283 
1284 void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1285 {
1286 	enum dma_data_direction dir;
1287 
1288 	unmap_urb_setup_for_dma(hcd, urb);
1289 
1290 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1291 	if (urb->transfer_flags & URB_DMA_MAP_SG)
1292 		dma_unmap_sg(hcd->self.controller,
1293 				urb->sg,
1294 				urb->num_sgs,
1295 				dir);
1296 	else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1297 		dma_unmap_page(hcd->self.controller,
1298 				urb->transfer_dma,
1299 				urb->transfer_buffer_length,
1300 				dir);
1301 	else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1302 		dma_unmap_single(hcd->self.controller,
1303 				urb->transfer_dma,
1304 				urb->transfer_buffer_length,
1305 				dir);
1306 	else if (urb->transfer_flags & URB_MAP_LOCAL)
1307 		hcd_free_coherent(urb->dev->bus,
1308 				&urb->transfer_dma,
1309 				&urb->transfer_buffer,
1310 				urb->transfer_buffer_length,
1311 				dir);
1312 
1313 	/* Make it safe to call this routine more than once */
1314 	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1315 			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1316 }
1317 EXPORT_SYMBOL_GPL(unmap_urb_for_dma);
1318 
1319 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1320 			   gfp_t mem_flags)
1321 {
1322 	enum dma_data_direction dir;
1323 	int ret = 0;
1324 
1325 	/* Map the URB's buffers for DMA access.
1326 	 * Lower level HCD code should use *_dma exclusively,
1327 	 * unless it uses pio or talks to another transport,
1328 	 * or uses the provided scatter gather list for bulk.
1329 	 */
1330 
1331 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1332 		if (hcd->self.uses_pio_for_control)
1333 			return ret;
1334 		if (hcd->self.uses_dma) {
1335 			urb->setup_dma = dma_map_single(
1336 					hcd->self.controller,
1337 					urb->setup_packet,
1338 					sizeof(struct usb_ctrlrequest),
1339 					DMA_TO_DEVICE);
1340 			if (dma_mapping_error(hcd->self.controller,
1341 						urb->setup_dma))
1342 				return -EAGAIN;
1343 			urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1344 		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1345 			ret = hcd_alloc_coherent(
1346 					urb->dev->bus, mem_flags,
1347 					&urb->setup_dma,
1348 					(void **)&urb->setup_packet,
1349 					sizeof(struct usb_ctrlrequest),
1350 					DMA_TO_DEVICE);
1351 			if (ret)
1352 				return ret;
1353 			urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1354 		}
1355 	}
1356 
1357 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1358 	if (urb->transfer_buffer_length != 0
1359 	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1360 		if (hcd->self.uses_dma) {
1361 			if (urb->num_sgs) {
1362 				int n = dma_map_sg(
1363 						hcd->self.controller,
1364 						urb->sg,
1365 						urb->num_sgs,
1366 						dir);
1367 				if (n <= 0)
1368 					ret = -EAGAIN;
1369 				else
1370 					urb->transfer_flags |= URB_DMA_MAP_SG;
1371 				if (n != urb->num_sgs) {
1372 					urb->num_sgs = n;
1373 					urb->transfer_flags |=
1374 							URB_DMA_SG_COMBINED;
1375 				}
1376 			} else if (urb->sg) {
1377 				struct scatterlist *sg = urb->sg;
1378 				urb->transfer_dma = dma_map_page(
1379 						hcd->self.controller,
1380 						sg_page(sg),
1381 						sg->offset,
1382 						urb->transfer_buffer_length,
1383 						dir);
1384 				if (dma_mapping_error(hcd->self.controller,
1385 						urb->transfer_dma))
1386 					ret = -EAGAIN;
1387 				else
1388 					urb->transfer_flags |= URB_DMA_MAP_PAGE;
1389 			} else {
1390 				urb->transfer_dma = dma_map_single(
1391 						hcd->self.controller,
1392 						urb->transfer_buffer,
1393 						urb->transfer_buffer_length,
1394 						dir);
1395 				if (dma_mapping_error(hcd->self.controller,
1396 						urb->transfer_dma))
1397 					ret = -EAGAIN;
1398 				else
1399 					urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1400 			}
1401 		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1402 			ret = hcd_alloc_coherent(
1403 					urb->dev->bus, mem_flags,
1404 					&urb->transfer_dma,
1405 					&urb->transfer_buffer,
1406 					urb->transfer_buffer_length,
1407 					dir);
1408 			if (ret == 0)
1409 				urb->transfer_flags |= URB_MAP_LOCAL;
1410 		}
1411 		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1412 				URB_SETUP_MAP_LOCAL)))
1413 			unmap_urb_for_dma(hcd, urb);
1414 	}
1415 	return ret;
1416 }
1417 
1418 /*-------------------------------------------------------------------------*/
1419 
1420 /* may be called in any context with a valid urb->dev usecount
1421  * caller surrenders "ownership" of urb
1422  * expects usb_submit_urb() to have sanity checked and conditioned all
1423  * inputs in the urb
1424  */
1425 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1426 {
1427 	int			status;
1428 	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1429 
1430 	/* increment urb's reference count as part of giving it to the HCD
1431 	 * (which will control it).  HCD guarantees that it either returns
1432 	 * an error or calls giveback(), but not both.
1433 	 */
1434 	usb_get_urb(urb);
1435 	atomic_inc(&urb->use_count);
1436 	atomic_inc(&urb->dev->urbnum);
1437 	usbmon_urb_submit(&hcd->self, urb);
1438 
1439 	/* NOTE requirements on root-hub callers (usbfs and the hub
1440 	 * driver, for now):  URBs' urb->transfer_buffer must be
1441 	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1442 	 * they could clobber root hub response data.  Also, control
1443 	 * URBs must be submitted in process context with interrupts
1444 	 * enabled.
1445 	 */
1446 
1447 	if (is_root_hub(urb->dev)) {
1448 		status = rh_urb_enqueue(hcd, urb);
1449 	} else {
1450 		status = map_urb_for_dma(hcd, urb, mem_flags);
1451 		if (likely(status == 0)) {
1452 			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1453 			if (unlikely(status))
1454 				unmap_urb_for_dma(hcd, urb);
1455 		}
1456 	}
1457 
1458 	if (unlikely(status)) {
1459 		usbmon_urb_submit_error(&hcd->self, urb, status);
1460 		urb->hcpriv = NULL;
1461 		INIT_LIST_HEAD(&urb->urb_list);
1462 		atomic_dec(&urb->use_count);
1463 		atomic_dec(&urb->dev->urbnum);
1464 		if (atomic_read(&urb->reject))
1465 			wake_up(&usb_kill_urb_queue);
1466 		usb_put_urb(urb);
1467 	}
1468 	return status;
1469 }
1470 
1471 /*-------------------------------------------------------------------------*/
1472 
1473 /* this makes the hcd giveback() the urb more quickly, by kicking it
1474  * off hardware queues (which may take a while) and returning it as
1475  * soon as practical.  we've already set up the urb's return status,
1476  * but we can't know if the callback completed already.
1477  */
1478 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1479 {
1480 	int		value;
1481 
1482 	if (is_root_hub(urb->dev))
1483 		value = usb_rh_urb_dequeue(hcd, urb, status);
1484 	else {
1485 
1486 		/* The only reason an HCD might fail this call is if
1487 		 * it has not yet fully queued the urb to begin with.
1488 		 * Such failures should be harmless. */
1489 		value = hcd->driver->urb_dequeue(hcd, urb, status);
1490 	}
1491 	return value;
1492 }
1493 
1494 /*
1495  * called in any context
1496  *
1497  * caller guarantees urb won't be recycled till both unlink()
1498  * and the urb's completion function return
1499  */
1500 int usb_hcd_unlink_urb (struct urb *urb, int status)
1501 {
1502 	struct usb_hcd		*hcd;
1503 	int			retval = -EIDRM;
1504 	unsigned long		flags;
1505 
1506 	/* Prevent the device and bus from going away while
1507 	 * the unlink is carried out.  If they are already gone
1508 	 * then urb->use_count must be 0, since disconnected
1509 	 * devices can't have any active URBs.
1510 	 */
1511 	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1512 	if (atomic_read(&urb->use_count) > 0) {
1513 		retval = 0;
1514 		usb_get_dev(urb->dev);
1515 	}
1516 	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1517 	if (retval == 0) {
1518 		hcd = bus_to_hcd(urb->dev->bus);
1519 		retval = unlink1(hcd, urb, status);
1520 		usb_put_dev(urb->dev);
1521 	}
1522 
1523 	if (retval == 0)
1524 		retval = -EINPROGRESS;
1525 	else if (retval != -EIDRM && retval != -EBUSY)
1526 		dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1527 				urb, retval);
1528 	return retval;
1529 }
1530 
1531 /*-------------------------------------------------------------------------*/
1532 
1533 /**
1534  * usb_hcd_giveback_urb - return URB from HCD to device driver
1535  * @hcd: host controller returning the URB
1536  * @urb: urb being returned to the USB device driver.
1537  * @status: completion status code for the URB.
1538  * Context: in_interrupt()
1539  *
1540  * This hands the URB from HCD to its USB device driver, using its
1541  * completion function.  The HCD has freed all per-urb resources
1542  * (and is done using urb->hcpriv).  It also released all HCD locks;
1543  * the device driver won't cause problems if it frees, modifies,
1544  * or resubmits this URB.
1545  *
1546  * If @urb was unlinked, the value of @status will be overridden by
1547  * @urb->unlinked.  Erroneous short transfers are detected in case
1548  * the HCD hasn't checked for them.
1549  */
1550 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1551 {
1552 	urb->hcpriv = NULL;
1553 	if (unlikely(urb->unlinked))
1554 		status = urb->unlinked;
1555 	else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1556 			urb->actual_length < urb->transfer_buffer_length &&
1557 			!status))
1558 		status = -EREMOTEIO;
1559 
1560 	unmap_urb_for_dma(hcd, urb);
1561 	usbmon_urb_complete(&hcd->self, urb, status);
1562 	usb_unanchor_urb(urb);
1563 
1564 	/* pass ownership to the completion handler */
1565 	urb->status = status;
1566 	urb->complete (urb);
1567 	atomic_dec (&urb->use_count);
1568 	if (unlikely(atomic_read(&urb->reject)))
1569 		wake_up (&usb_kill_urb_queue);
1570 	usb_put_urb (urb);
1571 }
1572 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1573 
1574 /*-------------------------------------------------------------------------*/
1575 
1576 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1577  * queue to drain completely.  The caller must first insure that no more
1578  * URBs can be submitted for this endpoint.
1579  */
1580 void usb_hcd_flush_endpoint(struct usb_device *udev,
1581 		struct usb_host_endpoint *ep)
1582 {
1583 	struct usb_hcd		*hcd;
1584 	struct urb		*urb;
1585 
1586 	if (!ep)
1587 		return;
1588 	might_sleep();
1589 	hcd = bus_to_hcd(udev->bus);
1590 
1591 	/* No more submits can occur */
1592 	spin_lock_irq(&hcd_urb_list_lock);
1593 rescan:
1594 	list_for_each_entry (urb, &ep->urb_list, urb_list) {
1595 		int	is_in;
1596 
1597 		if (urb->unlinked)
1598 			continue;
1599 		usb_get_urb (urb);
1600 		is_in = usb_urb_dir_in(urb);
1601 		spin_unlock(&hcd_urb_list_lock);
1602 
1603 		/* kick hcd */
1604 		unlink1(hcd, urb, -ESHUTDOWN);
1605 		dev_dbg (hcd->self.controller,
1606 			"shutdown urb %p ep%d%s%s\n",
1607 			urb, usb_endpoint_num(&ep->desc),
1608 			is_in ? "in" : "out",
1609 			({	char *s;
1610 
1611 				 switch (usb_endpoint_type(&ep->desc)) {
1612 				 case USB_ENDPOINT_XFER_CONTROL:
1613 					s = ""; break;
1614 				 case USB_ENDPOINT_XFER_BULK:
1615 					s = "-bulk"; break;
1616 				 case USB_ENDPOINT_XFER_INT:
1617 					s = "-intr"; break;
1618 				 default:
1619 			 		s = "-iso"; break;
1620 				};
1621 				s;
1622 			}));
1623 		usb_put_urb (urb);
1624 
1625 		/* list contents may have changed */
1626 		spin_lock(&hcd_urb_list_lock);
1627 		goto rescan;
1628 	}
1629 	spin_unlock_irq(&hcd_urb_list_lock);
1630 
1631 	/* Wait until the endpoint queue is completely empty */
1632 	while (!list_empty (&ep->urb_list)) {
1633 		spin_lock_irq(&hcd_urb_list_lock);
1634 
1635 		/* The list may have changed while we acquired the spinlock */
1636 		urb = NULL;
1637 		if (!list_empty (&ep->urb_list)) {
1638 			urb = list_entry (ep->urb_list.prev, struct urb,
1639 					urb_list);
1640 			usb_get_urb (urb);
1641 		}
1642 		spin_unlock_irq(&hcd_urb_list_lock);
1643 
1644 		if (urb) {
1645 			usb_kill_urb (urb);
1646 			usb_put_urb (urb);
1647 		}
1648 	}
1649 }
1650 
1651 /**
1652  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1653  *				the bus bandwidth
1654  * @udev: target &usb_device
1655  * @new_config: new configuration to install
1656  * @cur_alt: the current alternate interface setting
1657  * @new_alt: alternate interface setting that is being installed
1658  *
1659  * To change configurations, pass in the new configuration in new_config,
1660  * and pass NULL for cur_alt and new_alt.
1661  *
1662  * To reset a device's configuration (put the device in the ADDRESSED state),
1663  * pass in NULL for new_config, cur_alt, and new_alt.
1664  *
1665  * To change alternate interface settings, pass in NULL for new_config,
1666  * pass in the current alternate interface setting in cur_alt,
1667  * and pass in the new alternate interface setting in new_alt.
1668  *
1669  * Returns an error if the requested bandwidth change exceeds the
1670  * bus bandwidth or host controller internal resources.
1671  */
1672 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1673 		struct usb_host_config *new_config,
1674 		struct usb_host_interface *cur_alt,
1675 		struct usb_host_interface *new_alt)
1676 {
1677 	int num_intfs, i, j;
1678 	struct usb_host_interface *alt = NULL;
1679 	int ret = 0;
1680 	struct usb_hcd *hcd;
1681 	struct usb_host_endpoint *ep;
1682 
1683 	hcd = bus_to_hcd(udev->bus);
1684 	if (!hcd->driver->check_bandwidth)
1685 		return 0;
1686 
1687 	/* Configuration is being removed - set configuration 0 */
1688 	if (!new_config && !cur_alt) {
1689 		for (i = 1; i < 16; ++i) {
1690 			ep = udev->ep_out[i];
1691 			if (ep)
1692 				hcd->driver->drop_endpoint(hcd, udev, ep);
1693 			ep = udev->ep_in[i];
1694 			if (ep)
1695 				hcd->driver->drop_endpoint(hcd, udev, ep);
1696 		}
1697 		hcd->driver->check_bandwidth(hcd, udev);
1698 		return 0;
1699 	}
1700 	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1701 	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1702 	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1703 	 * ok to exclude it.
1704 	 */
1705 	if (new_config) {
1706 		num_intfs = new_config->desc.bNumInterfaces;
1707 		/* Remove endpoints (except endpoint 0, which is always on the
1708 		 * schedule) from the old config from the schedule
1709 		 */
1710 		for (i = 1; i < 16; ++i) {
1711 			ep = udev->ep_out[i];
1712 			if (ep) {
1713 				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1714 				if (ret < 0)
1715 					goto reset;
1716 			}
1717 			ep = udev->ep_in[i];
1718 			if (ep) {
1719 				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1720 				if (ret < 0)
1721 					goto reset;
1722 			}
1723 		}
1724 		for (i = 0; i < num_intfs; ++i) {
1725 			struct usb_host_interface *first_alt;
1726 			int iface_num;
1727 
1728 			first_alt = &new_config->intf_cache[i]->altsetting[0];
1729 			iface_num = first_alt->desc.bInterfaceNumber;
1730 			/* Set up endpoints for alternate interface setting 0 */
1731 			alt = usb_find_alt_setting(new_config, iface_num, 0);
1732 			if (!alt)
1733 				/* No alt setting 0? Pick the first setting. */
1734 				alt = first_alt;
1735 
1736 			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1737 				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1738 				if (ret < 0)
1739 					goto reset;
1740 			}
1741 		}
1742 	}
1743 	if (cur_alt && new_alt) {
1744 		struct usb_interface *iface = usb_ifnum_to_if(udev,
1745 				cur_alt->desc.bInterfaceNumber);
1746 
1747 		if (iface->resetting_device) {
1748 			/*
1749 			 * The USB core just reset the device, so the xHCI host
1750 			 * and the device will think alt setting 0 is installed.
1751 			 * However, the USB core will pass in the alternate
1752 			 * setting installed before the reset as cur_alt.  Dig
1753 			 * out the alternate setting 0 structure, or the first
1754 			 * alternate setting if a broken device doesn't have alt
1755 			 * setting 0.
1756 			 */
1757 			cur_alt = usb_altnum_to_altsetting(iface, 0);
1758 			if (!cur_alt)
1759 				cur_alt = &iface->altsetting[0];
1760 		}
1761 
1762 		/* Drop all the endpoints in the current alt setting */
1763 		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1764 			ret = hcd->driver->drop_endpoint(hcd, udev,
1765 					&cur_alt->endpoint[i]);
1766 			if (ret < 0)
1767 				goto reset;
1768 		}
1769 		/* Add all the endpoints in the new alt setting */
1770 		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1771 			ret = hcd->driver->add_endpoint(hcd, udev,
1772 					&new_alt->endpoint[i]);
1773 			if (ret < 0)
1774 				goto reset;
1775 		}
1776 	}
1777 	ret = hcd->driver->check_bandwidth(hcd, udev);
1778 reset:
1779 	if (ret < 0)
1780 		hcd->driver->reset_bandwidth(hcd, udev);
1781 	return ret;
1782 }
1783 
1784 /* Disables the endpoint: synchronizes with the hcd to make sure all
1785  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1786  * have been called previously.  Use for set_configuration, set_interface,
1787  * driver removal, physical disconnect.
1788  *
1789  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1790  * type, maxpacket size, toggle, halt status, and scheduling.
1791  */
1792 void usb_hcd_disable_endpoint(struct usb_device *udev,
1793 		struct usb_host_endpoint *ep)
1794 {
1795 	struct usb_hcd		*hcd;
1796 
1797 	might_sleep();
1798 	hcd = bus_to_hcd(udev->bus);
1799 	if (hcd->driver->endpoint_disable)
1800 		hcd->driver->endpoint_disable(hcd, ep);
1801 }
1802 
1803 /**
1804  * usb_hcd_reset_endpoint - reset host endpoint state
1805  * @udev: USB device.
1806  * @ep:   the endpoint to reset.
1807  *
1808  * Resets any host endpoint state such as the toggle bit, sequence
1809  * number and current window.
1810  */
1811 void usb_hcd_reset_endpoint(struct usb_device *udev,
1812 			    struct usb_host_endpoint *ep)
1813 {
1814 	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1815 
1816 	if (hcd->driver->endpoint_reset)
1817 		hcd->driver->endpoint_reset(hcd, ep);
1818 	else {
1819 		int epnum = usb_endpoint_num(&ep->desc);
1820 		int is_out = usb_endpoint_dir_out(&ep->desc);
1821 		int is_control = usb_endpoint_xfer_control(&ep->desc);
1822 
1823 		usb_settoggle(udev, epnum, is_out, 0);
1824 		if (is_control)
1825 			usb_settoggle(udev, epnum, !is_out, 0);
1826 	}
1827 }
1828 
1829 /**
1830  * usb_alloc_streams - allocate bulk endpoint stream IDs.
1831  * @interface:		alternate setting that includes all endpoints.
1832  * @eps:		array of endpoints that need streams.
1833  * @num_eps:		number of endpoints in the array.
1834  * @num_streams:	number of streams to allocate.
1835  * @mem_flags:		flags hcd should use to allocate memory.
1836  *
1837  * Sets up a group of bulk endpoints to have num_streams stream IDs available.
1838  * Drivers may queue multiple transfers to different stream IDs, which may
1839  * complete in a different order than they were queued.
1840  */
1841 int usb_alloc_streams(struct usb_interface *interface,
1842 		struct usb_host_endpoint **eps, unsigned int num_eps,
1843 		unsigned int num_streams, gfp_t mem_flags)
1844 {
1845 	struct usb_hcd *hcd;
1846 	struct usb_device *dev;
1847 	int i;
1848 
1849 	dev = interface_to_usbdev(interface);
1850 	hcd = bus_to_hcd(dev->bus);
1851 	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
1852 		return -EINVAL;
1853 	if (dev->speed != USB_SPEED_SUPER)
1854 		return -EINVAL;
1855 
1856 	/* Streams only apply to bulk endpoints. */
1857 	for (i = 0; i < num_eps; i++)
1858 		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
1859 			return -EINVAL;
1860 
1861 	return hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
1862 			num_streams, mem_flags);
1863 }
1864 EXPORT_SYMBOL_GPL(usb_alloc_streams);
1865 
1866 /**
1867  * usb_free_streams - free bulk endpoint stream IDs.
1868  * @interface:	alternate setting that includes all endpoints.
1869  * @eps:	array of endpoints to remove streams from.
1870  * @num_eps:	number of endpoints in the array.
1871  * @mem_flags:	flags hcd should use to allocate memory.
1872  *
1873  * Reverts a group of bulk endpoints back to not using stream IDs.
1874  * Can fail if we are given bad arguments, or HCD is broken.
1875  */
1876 void usb_free_streams(struct usb_interface *interface,
1877 		struct usb_host_endpoint **eps, unsigned int num_eps,
1878 		gfp_t mem_flags)
1879 {
1880 	struct usb_hcd *hcd;
1881 	struct usb_device *dev;
1882 	int i;
1883 
1884 	dev = interface_to_usbdev(interface);
1885 	hcd = bus_to_hcd(dev->bus);
1886 	if (dev->speed != USB_SPEED_SUPER)
1887 		return;
1888 
1889 	/* Streams only apply to bulk endpoints. */
1890 	for (i = 0; i < num_eps; i++)
1891 		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
1892 			return;
1893 
1894 	hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
1895 }
1896 EXPORT_SYMBOL_GPL(usb_free_streams);
1897 
1898 /* Protect against drivers that try to unlink URBs after the device
1899  * is gone, by waiting until all unlinks for @udev are finished.
1900  * Since we don't currently track URBs by device, simply wait until
1901  * nothing is running in the locked region of usb_hcd_unlink_urb().
1902  */
1903 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1904 {
1905 	spin_lock_irq(&hcd_urb_unlink_lock);
1906 	spin_unlock_irq(&hcd_urb_unlink_lock);
1907 }
1908 
1909 /*-------------------------------------------------------------------------*/
1910 
1911 /* called in any context */
1912 int usb_hcd_get_frame_number (struct usb_device *udev)
1913 {
1914 	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
1915 
1916 	if (!HC_IS_RUNNING (hcd->state))
1917 		return -ESHUTDOWN;
1918 	return hcd->driver->get_frame_number (hcd);
1919 }
1920 
1921 /*-------------------------------------------------------------------------*/
1922 
1923 #ifdef	CONFIG_PM
1924 
1925 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
1926 {
1927 	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
1928 	int		status;
1929 	int		old_state = hcd->state;
1930 
1931 	dev_dbg(&rhdev->dev, "bus %s%s\n",
1932 			(msg.event & PM_EVENT_AUTO ? "auto-" : ""), "suspend");
1933 	if (!hcd->driver->bus_suspend) {
1934 		status = -ENOENT;
1935 	} else {
1936 		hcd->state = HC_STATE_QUIESCING;
1937 		status = hcd->driver->bus_suspend(hcd);
1938 	}
1939 	if (status == 0) {
1940 		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1941 		hcd->state = HC_STATE_SUSPENDED;
1942 	} else {
1943 		hcd->state = old_state;
1944 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1945 				"suspend", status);
1946 	}
1947 	return status;
1948 }
1949 
1950 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
1951 {
1952 	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
1953 	int		status;
1954 	int		old_state = hcd->state;
1955 
1956 	dev_dbg(&rhdev->dev, "usb %s%s\n",
1957 			(msg.event & PM_EVENT_AUTO ? "auto-" : ""), "resume");
1958 	if (!hcd->driver->bus_resume)
1959 		return -ENOENT;
1960 	if (hcd->state == HC_STATE_RUNNING)
1961 		return 0;
1962 
1963 	hcd->state = HC_STATE_RESUMING;
1964 	status = hcd->driver->bus_resume(hcd);
1965 	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
1966 	if (status == 0) {
1967 		/* TRSMRCY = 10 msec */
1968 		msleep(10);
1969 		usb_set_device_state(rhdev, rhdev->actconfig
1970 				? USB_STATE_CONFIGURED
1971 				: USB_STATE_ADDRESS);
1972 		hcd->state = HC_STATE_RUNNING;
1973 	} else {
1974 		hcd->state = old_state;
1975 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1976 				"resume", status);
1977 		if (status != -ESHUTDOWN)
1978 			usb_hc_died(hcd);
1979 	}
1980 	return status;
1981 }
1982 
1983 #endif	/* CONFIG_PM */
1984 
1985 #ifdef	CONFIG_USB_SUSPEND
1986 
1987 /* Workqueue routine for root-hub remote wakeup */
1988 static void hcd_resume_work(struct work_struct *work)
1989 {
1990 	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
1991 	struct usb_device *udev = hcd->self.root_hub;
1992 
1993 	usb_lock_device(udev);
1994 	usb_remote_wakeup(udev);
1995 	usb_unlock_device(udev);
1996 }
1997 
1998 /**
1999  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2000  * @hcd: host controller for this root hub
2001  *
2002  * The USB host controller calls this function when its root hub is
2003  * suspended (with the remote wakeup feature enabled) and a remote
2004  * wakeup request is received.  The routine submits a workqueue request
2005  * to resume the root hub (that is, manage its downstream ports again).
2006  */
2007 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2008 {
2009 	unsigned long flags;
2010 
2011 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2012 	if (hcd->rh_registered) {
2013 		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2014 		queue_work(pm_wq, &hcd->wakeup_work);
2015 	}
2016 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2017 }
2018 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2019 
2020 #endif	/* CONFIG_USB_SUSPEND */
2021 
2022 /*-------------------------------------------------------------------------*/
2023 
2024 #ifdef	CONFIG_USB_OTG
2025 
2026 /**
2027  * usb_bus_start_enum - start immediate enumeration (for OTG)
2028  * @bus: the bus (must use hcd framework)
2029  * @port_num: 1-based number of port; usually bus->otg_port
2030  * Context: in_interrupt()
2031  *
2032  * Starts enumeration, with an immediate reset followed later by
2033  * khubd identifying and possibly configuring the device.
2034  * This is needed by OTG controller drivers, where it helps meet
2035  * HNP protocol timing requirements for starting a port reset.
2036  */
2037 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2038 {
2039 	struct usb_hcd		*hcd;
2040 	int			status = -EOPNOTSUPP;
2041 
2042 	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2043 	 * boards with root hubs hooked up to internal devices (instead of
2044 	 * just the OTG port) may need more attention to resetting...
2045 	 */
2046 	hcd = container_of (bus, struct usb_hcd, self);
2047 	if (port_num && hcd->driver->start_port_reset)
2048 		status = hcd->driver->start_port_reset(hcd, port_num);
2049 
2050 	/* run khubd shortly after (first) root port reset finishes;
2051 	 * it may issue others, until at least 50 msecs have passed.
2052 	 */
2053 	if (status == 0)
2054 		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2055 	return status;
2056 }
2057 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2058 
2059 #endif
2060 
2061 /*-------------------------------------------------------------------------*/
2062 
2063 /**
2064  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2065  * @irq: the IRQ being raised
2066  * @__hcd: pointer to the HCD whose IRQ is being signaled
2067  *
2068  * If the controller isn't HALTed, calls the driver's irq handler.
2069  * Checks whether the controller is now dead.
2070  */
2071 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2072 {
2073 	struct usb_hcd		*hcd = __hcd;
2074 	unsigned long		flags;
2075 	irqreturn_t		rc;
2076 
2077 	/* IRQF_DISABLED doesn't work correctly with shared IRQs
2078 	 * when the first handler doesn't use it.  So let's just
2079 	 * assume it's never used.
2080 	 */
2081 	local_irq_save(flags);
2082 
2083 	if (unlikely(hcd->state == HC_STATE_HALT || !HCD_HW_ACCESSIBLE(hcd))) {
2084 		rc = IRQ_NONE;
2085 	} else if (hcd->driver->irq(hcd) == IRQ_NONE) {
2086 		rc = IRQ_NONE;
2087 	} else {
2088 		set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
2089 
2090 		if (unlikely(hcd->state == HC_STATE_HALT))
2091 			usb_hc_died(hcd);
2092 		rc = IRQ_HANDLED;
2093 	}
2094 
2095 	local_irq_restore(flags);
2096 	return rc;
2097 }
2098 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2099 
2100 /*-------------------------------------------------------------------------*/
2101 
2102 /**
2103  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2104  * @hcd: pointer to the HCD representing the controller
2105  *
2106  * This is called by bus glue to report a USB host controller that died
2107  * while operations may still have been pending.  It's called automatically
2108  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2109  */
2110 void usb_hc_died (struct usb_hcd *hcd)
2111 {
2112 	unsigned long flags;
2113 
2114 	dev_err (hcd->self.controller, "HC died; cleaning up\n");
2115 
2116 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2117 	if (hcd->rh_registered) {
2118 		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2119 
2120 		/* make khubd clean up old urbs and devices */
2121 		usb_set_device_state (hcd->self.root_hub,
2122 				USB_STATE_NOTATTACHED);
2123 		usb_kick_khubd (hcd->self.root_hub);
2124 	}
2125 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2126 }
2127 EXPORT_SYMBOL_GPL (usb_hc_died);
2128 
2129 /*-------------------------------------------------------------------------*/
2130 
2131 /**
2132  * usb_create_hcd - create and initialize an HCD structure
2133  * @driver: HC driver that will use this hcd
2134  * @dev: device for this HC, stored in hcd->self.controller
2135  * @bus_name: value to store in hcd->self.bus_name
2136  * Context: !in_interrupt()
2137  *
2138  * Allocate a struct usb_hcd, with extra space at the end for the
2139  * HC driver's private data.  Initialize the generic members of the
2140  * hcd structure.
2141  *
2142  * If memory is unavailable, returns NULL.
2143  */
2144 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver,
2145 		struct device *dev, const char *bus_name)
2146 {
2147 	struct usb_hcd *hcd;
2148 
2149 	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2150 	if (!hcd) {
2151 		dev_dbg (dev, "hcd alloc failed\n");
2152 		return NULL;
2153 	}
2154 	dev_set_drvdata(dev, hcd);
2155 	kref_init(&hcd->kref);
2156 
2157 	usb_bus_init(&hcd->self);
2158 	hcd->self.controller = dev;
2159 	hcd->self.bus_name = bus_name;
2160 	hcd->self.uses_dma = (dev->dma_mask != NULL);
2161 
2162 	init_timer(&hcd->rh_timer);
2163 	hcd->rh_timer.function = rh_timer_func;
2164 	hcd->rh_timer.data = (unsigned long) hcd;
2165 #ifdef CONFIG_USB_SUSPEND
2166 	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2167 #endif
2168 	mutex_init(&hcd->bandwidth_mutex);
2169 
2170 	hcd->driver = driver;
2171 	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2172 			"USB Host Controller";
2173 	return hcd;
2174 }
2175 EXPORT_SYMBOL_GPL(usb_create_hcd);
2176 
2177 static void hcd_release (struct kref *kref)
2178 {
2179 	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2180 
2181 	kfree(hcd);
2182 }
2183 
2184 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2185 {
2186 	if (hcd)
2187 		kref_get (&hcd->kref);
2188 	return hcd;
2189 }
2190 EXPORT_SYMBOL_GPL(usb_get_hcd);
2191 
2192 void usb_put_hcd (struct usb_hcd *hcd)
2193 {
2194 	if (hcd)
2195 		kref_put (&hcd->kref, hcd_release);
2196 }
2197 EXPORT_SYMBOL_GPL(usb_put_hcd);
2198 
2199 /**
2200  * usb_add_hcd - finish generic HCD structure initialization and register
2201  * @hcd: the usb_hcd structure to initialize
2202  * @irqnum: Interrupt line to allocate
2203  * @irqflags: Interrupt type flags
2204  *
2205  * Finish the remaining parts of generic HCD initialization: allocate the
2206  * buffers of consistent memory, register the bus, request the IRQ line,
2207  * and call the driver's reset() and start() routines.
2208  */
2209 int usb_add_hcd(struct usb_hcd *hcd,
2210 		unsigned int irqnum, unsigned long irqflags)
2211 {
2212 	int retval;
2213 	struct usb_device *rhdev;
2214 
2215 	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2216 
2217 	hcd->authorized_default = hcd->wireless? 0 : 1;
2218 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2219 
2220 	/* HC is in reset state, but accessible.  Now do the one-time init,
2221 	 * bottom up so that hcds can customize the root hubs before khubd
2222 	 * starts talking to them.  (Note, bus id is assigned early too.)
2223 	 */
2224 	if ((retval = hcd_buffer_create(hcd)) != 0) {
2225 		dev_dbg(hcd->self.controller, "pool alloc failed\n");
2226 		return retval;
2227 	}
2228 
2229 	if ((retval = usb_register_bus(&hcd->self)) < 0)
2230 		goto err_register_bus;
2231 
2232 	if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2233 		dev_err(hcd->self.controller, "unable to allocate root hub\n");
2234 		retval = -ENOMEM;
2235 		goto err_allocate_root_hub;
2236 	}
2237 	hcd->self.root_hub = rhdev;
2238 
2239 	switch (hcd->driver->flags & HCD_MASK) {
2240 	case HCD_USB11:
2241 		rhdev->speed = USB_SPEED_FULL;
2242 		break;
2243 	case HCD_USB2:
2244 		rhdev->speed = USB_SPEED_HIGH;
2245 		break;
2246 	case HCD_USB3:
2247 		rhdev->speed = USB_SPEED_SUPER;
2248 		break;
2249 	default:
2250 		goto err_set_rh_speed;
2251 	}
2252 
2253 	/* wakeup flag init defaults to "everything works" for root hubs,
2254 	 * but drivers can override it in reset() if needed, along with
2255 	 * recording the overall controller's system wakeup capability.
2256 	 */
2257 	device_init_wakeup(&rhdev->dev, 1);
2258 
2259 	/* "reset" is misnamed; its role is now one-time init. the controller
2260 	 * should already have been reset (and boot firmware kicked off etc).
2261 	 */
2262 	if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2263 		dev_err(hcd->self.controller, "can't setup\n");
2264 		goto err_hcd_driver_setup;
2265 	}
2266 	hcd->rh_pollable = 1;
2267 
2268 	/* NOTE: root hub and controller capabilities may not be the same */
2269 	if (device_can_wakeup(hcd->self.controller)
2270 			&& device_can_wakeup(&hcd->self.root_hub->dev))
2271 		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2272 
2273 	/* enable irqs just before we start the controller */
2274 	if (hcd->driver->irq) {
2275 
2276 		/* IRQF_DISABLED doesn't work as advertised when used together
2277 		 * with IRQF_SHARED. As usb_hcd_irq() will always disable
2278 		 * interrupts we can remove it here.
2279 		 */
2280 		if (irqflags & IRQF_SHARED)
2281 			irqflags &= ~IRQF_DISABLED;
2282 
2283 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2284 				hcd->driver->description, hcd->self.busnum);
2285 		if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2286 				hcd->irq_descr, hcd)) != 0) {
2287 			dev_err(hcd->self.controller,
2288 					"request interrupt %d failed\n", irqnum);
2289 			goto err_request_irq;
2290 		}
2291 		hcd->irq = irqnum;
2292 		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2293 				(hcd->driver->flags & HCD_MEMORY) ?
2294 					"io mem" : "io base",
2295 					(unsigned long long)hcd->rsrc_start);
2296 	} else {
2297 		hcd->irq = -1;
2298 		if (hcd->rsrc_start)
2299 			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2300 					(hcd->driver->flags & HCD_MEMORY) ?
2301 					"io mem" : "io base",
2302 					(unsigned long long)hcd->rsrc_start);
2303 	}
2304 
2305 	if ((retval = hcd->driver->start(hcd)) < 0) {
2306 		dev_err(hcd->self.controller, "startup error %d\n", retval);
2307 		goto err_hcd_driver_start;
2308 	}
2309 
2310 	/* starting here, usbcore will pay attention to this root hub */
2311 	rhdev->bus_mA = min(500u, hcd->power_budget);
2312 	if ((retval = register_root_hub(hcd)) != 0)
2313 		goto err_register_root_hub;
2314 
2315 	retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2316 	if (retval < 0) {
2317 		printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2318 		       retval);
2319 		goto error_create_attr_group;
2320 	}
2321 	if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2322 		usb_hcd_poll_rh_status(hcd);
2323 	return retval;
2324 
2325 error_create_attr_group:
2326 	if (HC_IS_RUNNING(hcd->state))
2327 		hcd->state = HC_STATE_QUIESCING;
2328 	spin_lock_irq(&hcd_root_hub_lock);
2329 	hcd->rh_registered = 0;
2330 	spin_unlock_irq(&hcd_root_hub_lock);
2331 
2332 #ifdef CONFIG_USB_SUSPEND
2333 	cancel_work_sync(&hcd->wakeup_work);
2334 #endif
2335 	mutex_lock(&usb_bus_list_lock);
2336 	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2337 	mutex_unlock(&usb_bus_list_lock);
2338 err_register_root_hub:
2339 	hcd->rh_pollable = 0;
2340 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2341 	del_timer_sync(&hcd->rh_timer);
2342 	hcd->driver->stop(hcd);
2343 	hcd->state = HC_STATE_HALT;
2344 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2345 	del_timer_sync(&hcd->rh_timer);
2346 err_hcd_driver_start:
2347 	if (hcd->irq >= 0)
2348 		free_irq(irqnum, hcd);
2349 err_request_irq:
2350 err_hcd_driver_setup:
2351 err_set_rh_speed:
2352 	usb_put_dev(hcd->self.root_hub);
2353 err_allocate_root_hub:
2354 	usb_deregister_bus(&hcd->self);
2355 err_register_bus:
2356 	hcd_buffer_destroy(hcd);
2357 	return retval;
2358 }
2359 EXPORT_SYMBOL_GPL(usb_add_hcd);
2360 
2361 /**
2362  * usb_remove_hcd - shutdown processing for generic HCDs
2363  * @hcd: the usb_hcd structure to remove
2364  * Context: !in_interrupt()
2365  *
2366  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2367  * invoking the HCD's stop() method.
2368  */
2369 void usb_remove_hcd(struct usb_hcd *hcd)
2370 {
2371 	struct usb_device *rhdev = hcd->self.root_hub;
2372 
2373 	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2374 
2375 	usb_get_dev(rhdev);
2376 	sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2377 
2378 	if (HC_IS_RUNNING (hcd->state))
2379 		hcd->state = HC_STATE_QUIESCING;
2380 
2381 	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2382 	spin_lock_irq (&hcd_root_hub_lock);
2383 	hcd->rh_registered = 0;
2384 	spin_unlock_irq (&hcd_root_hub_lock);
2385 
2386 #ifdef CONFIG_USB_SUSPEND
2387 	cancel_work_sync(&hcd->wakeup_work);
2388 #endif
2389 
2390 	mutex_lock(&usb_bus_list_lock);
2391 	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2392 	mutex_unlock(&usb_bus_list_lock);
2393 
2394 	/* Prevent any more root-hub status calls from the timer.
2395 	 * The HCD might still restart the timer (if a port status change
2396 	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2397 	 * the hub_status_data() callback.
2398 	 */
2399 	hcd->rh_pollable = 0;
2400 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2401 	del_timer_sync(&hcd->rh_timer);
2402 
2403 	hcd->driver->stop(hcd);
2404 	hcd->state = HC_STATE_HALT;
2405 
2406 	/* In case the HCD restarted the timer, stop it again. */
2407 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2408 	del_timer_sync(&hcd->rh_timer);
2409 
2410 	if (hcd->irq >= 0)
2411 		free_irq(hcd->irq, hcd);
2412 
2413 	usb_put_dev(hcd->self.root_hub);
2414 	usb_deregister_bus(&hcd->self);
2415 	hcd_buffer_destroy(hcd);
2416 }
2417 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2418 
2419 void
2420 usb_hcd_platform_shutdown(struct platform_device* dev)
2421 {
2422 	struct usb_hcd *hcd = platform_get_drvdata(dev);
2423 
2424 	if (hcd->driver->shutdown)
2425 		hcd->driver->shutdown(hcd);
2426 }
2427 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2428 
2429 /*-------------------------------------------------------------------------*/
2430 
2431 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2432 
2433 struct usb_mon_operations *mon_ops;
2434 
2435 /*
2436  * The registration is unlocked.
2437  * We do it this way because we do not want to lock in hot paths.
2438  *
2439  * Notice that the code is minimally error-proof. Because usbmon needs
2440  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2441  */
2442 
2443 int usb_mon_register (struct usb_mon_operations *ops)
2444 {
2445 
2446 	if (mon_ops)
2447 		return -EBUSY;
2448 
2449 	mon_ops = ops;
2450 	mb();
2451 	return 0;
2452 }
2453 EXPORT_SYMBOL_GPL (usb_mon_register);
2454 
2455 void usb_mon_deregister (void)
2456 {
2457 
2458 	if (mon_ops == NULL) {
2459 		printk(KERN_ERR "USB: monitor was not registered\n");
2460 		return;
2461 	}
2462 	mon_ops = NULL;
2463 	mb();
2464 }
2465 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2466 
2467 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
2468