1 /* 2 * (C) Copyright Linus Torvalds 1999 3 * (C) Copyright Johannes Erdfelt 1999-2001 4 * (C) Copyright Andreas Gal 1999 5 * (C) Copyright Gregory P. Smith 1999 6 * (C) Copyright Deti Fliegl 1999 7 * (C) Copyright Randy Dunlap 2000 8 * (C) Copyright David Brownell 2000-2002 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the 12 * Free Software Foundation; either version 2 of the License, or (at your 13 * option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18 * for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software Foundation, 22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/version.h> 27 #include <linux/kernel.h> 28 #include <linux/slab.h> 29 #include <linux/completion.h> 30 #include <linux/utsname.h> 31 #include <linux/mm.h> 32 #include <asm/io.h> 33 #include <linux/device.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/mutex.h> 36 #include <asm/irq.h> 37 #include <asm/byteorder.h> 38 #include <asm/unaligned.h> 39 #include <linux/platform_device.h> 40 #include <linux/workqueue.h> 41 42 #include <linux/usb.h> 43 #include <linux/usb/hcd.h> 44 45 #include "usb.h" 46 47 48 /*-------------------------------------------------------------------------*/ 49 50 /* 51 * USB Host Controller Driver framework 52 * 53 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 54 * HCD-specific behaviors/bugs. 55 * 56 * This does error checks, tracks devices and urbs, and delegates to a 57 * "hc_driver" only for code (and data) that really needs to know about 58 * hardware differences. That includes root hub registers, i/o queues, 59 * and so on ... but as little else as possible. 60 * 61 * Shared code includes most of the "root hub" code (these are emulated, 62 * though each HC's hardware works differently) and PCI glue, plus request 63 * tracking overhead. The HCD code should only block on spinlocks or on 64 * hardware handshaking; blocking on software events (such as other kernel 65 * threads releasing resources, or completing actions) is all generic. 66 * 67 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 68 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 69 * only by the hub driver ... and that neither should be seen or used by 70 * usb client device drivers. 71 * 72 * Contributors of ideas or unattributed patches include: David Brownell, 73 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 74 * 75 * HISTORY: 76 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 77 * associated cleanup. "usb_hcd" still != "usb_bus". 78 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 79 */ 80 81 /*-------------------------------------------------------------------------*/ 82 83 /* Keep track of which host controller drivers are loaded */ 84 unsigned long usb_hcds_loaded; 85 EXPORT_SYMBOL_GPL(usb_hcds_loaded); 86 87 /* host controllers we manage */ 88 LIST_HEAD (usb_bus_list); 89 EXPORT_SYMBOL_GPL (usb_bus_list); 90 91 /* used when allocating bus numbers */ 92 #define USB_MAXBUS 64 93 struct usb_busmap { 94 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))]; 95 }; 96 static struct usb_busmap busmap; 97 98 /* used when updating list of hcds */ 99 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */ 100 EXPORT_SYMBOL_GPL (usb_bus_list_lock); 101 102 /* used for controlling access to virtual root hubs */ 103 static DEFINE_SPINLOCK(hcd_root_hub_lock); 104 105 /* used when updating an endpoint's URB list */ 106 static DEFINE_SPINLOCK(hcd_urb_list_lock); 107 108 /* used to protect against unlinking URBs after the device is gone */ 109 static DEFINE_SPINLOCK(hcd_urb_unlink_lock); 110 111 /* wait queue for synchronous unlinks */ 112 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 113 114 static inline int is_root_hub(struct usb_device *udev) 115 { 116 return (udev->parent == NULL); 117 } 118 119 /*-------------------------------------------------------------------------*/ 120 121 /* 122 * Sharable chunks of root hub code. 123 */ 124 125 /*-------------------------------------------------------------------------*/ 126 127 #define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff) 128 #define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff) 129 130 /* usb 3.0 root hub device descriptor */ 131 static const u8 usb3_rh_dev_descriptor[18] = { 132 0x12, /* __u8 bLength; */ 133 0x01, /* __u8 bDescriptorType; Device */ 134 0x00, 0x03, /* __le16 bcdUSB; v3.0 */ 135 136 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 137 0x00, /* __u8 bDeviceSubClass; */ 138 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */ 139 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 140 141 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */ 142 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 143 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 144 145 0x03, /* __u8 iManufacturer; */ 146 0x02, /* __u8 iProduct; */ 147 0x01, /* __u8 iSerialNumber; */ 148 0x01 /* __u8 bNumConfigurations; */ 149 }; 150 151 /* usb 2.0 root hub device descriptor */ 152 static const u8 usb2_rh_dev_descriptor [18] = { 153 0x12, /* __u8 bLength; */ 154 0x01, /* __u8 bDescriptorType; Device */ 155 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 156 157 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 158 0x00, /* __u8 bDeviceSubClass; */ 159 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 160 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 161 162 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */ 163 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 164 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 165 166 0x03, /* __u8 iManufacturer; */ 167 0x02, /* __u8 iProduct; */ 168 0x01, /* __u8 iSerialNumber; */ 169 0x01 /* __u8 bNumConfigurations; */ 170 }; 171 172 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 173 174 /* usb 1.1 root hub device descriptor */ 175 static const u8 usb11_rh_dev_descriptor [18] = { 176 0x12, /* __u8 bLength; */ 177 0x01, /* __u8 bDescriptorType; Device */ 178 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 179 180 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 181 0x00, /* __u8 bDeviceSubClass; */ 182 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 183 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 184 185 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */ 186 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 187 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 188 189 0x03, /* __u8 iManufacturer; */ 190 0x02, /* __u8 iProduct; */ 191 0x01, /* __u8 iSerialNumber; */ 192 0x01 /* __u8 bNumConfigurations; */ 193 }; 194 195 196 /*-------------------------------------------------------------------------*/ 197 198 /* Configuration descriptors for our root hubs */ 199 200 static const u8 fs_rh_config_descriptor [] = { 201 202 /* one configuration */ 203 0x09, /* __u8 bLength; */ 204 0x02, /* __u8 bDescriptorType; Configuration */ 205 0x19, 0x00, /* __le16 wTotalLength; */ 206 0x01, /* __u8 bNumInterfaces; (1) */ 207 0x01, /* __u8 bConfigurationValue; */ 208 0x00, /* __u8 iConfiguration; */ 209 0xc0, /* __u8 bmAttributes; 210 Bit 7: must be set, 211 6: Self-powered, 212 5: Remote wakeup, 213 4..0: resvd */ 214 0x00, /* __u8 MaxPower; */ 215 216 /* USB 1.1: 217 * USB 2.0, single TT organization (mandatory): 218 * one interface, protocol 0 219 * 220 * USB 2.0, multiple TT organization (optional): 221 * two interfaces, protocols 1 (like single TT) 222 * and 2 (multiple TT mode) ... config is 223 * sometimes settable 224 * NOT IMPLEMENTED 225 */ 226 227 /* one interface */ 228 0x09, /* __u8 if_bLength; */ 229 0x04, /* __u8 if_bDescriptorType; Interface */ 230 0x00, /* __u8 if_bInterfaceNumber; */ 231 0x00, /* __u8 if_bAlternateSetting; */ 232 0x01, /* __u8 if_bNumEndpoints; */ 233 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 234 0x00, /* __u8 if_bInterfaceSubClass; */ 235 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 236 0x00, /* __u8 if_iInterface; */ 237 238 /* one endpoint (status change endpoint) */ 239 0x07, /* __u8 ep_bLength; */ 240 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 241 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 242 0x03, /* __u8 ep_bmAttributes; Interrupt */ 243 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 244 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 245 }; 246 247 static const u8 hs_rh_config_descriptor [] = { 248 249 /* one configuration */ 250 0x09, /* __u8 bLength; */ 251 0x02, /* __u8 bDescriptorType; Configuration */ 252 0x19, 0x00, /* __le16 wTotalLength; */ 253 0x01, /* __u8 bNumInterfaces; (1) */ 254 0x01, /* __u8 bConfigurationValue; */ 255 0x00, /* __u8 iConfiguration; */ 256 0xc0, /* __u8 bmAttributes; 257 Bit 7: must be set, 258 6: Self-powered, 259 5: Remote wakeup, 260 4..0: resvd */ 261 0x00, /* __u8 MaxPower; */ 262 263 /* USB 1.1: 264 * USB 2.0, single TT organization (mandatory): 265 * one interface, protocol 0 266 * 267 * USB 2.0, multiple TT organization (optional): 268 * two interfaces, protocols 1 (like single TT) 269 * and 2 (multiple TT mode) ... config is 270 * sometimes settable 271 * NOT IMPLEMENTED 272 */ 273 274 /* one interface */ 275 0x09, /* __u8 if_bLength; */ 276 0x04, /* __u8 if_bDescriptorType; Interface */ 277 0x00, /* __u8 if_bInterfaceNumber; */ 278 0x00, /* __u8 if_bAlternateSetting; */ 279 0x01, /* __u8 if_bNumEndpoints; */ 280 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 281 0x00, /* __u8 if_bInterfaceSubClass; */ 282 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 283 0x00, /* __u8 if_iInterface; */ 284 285 /* one endpoint (status change endpoint) */ 286 0x07, /* __u8 ep_bLength; */ 287 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 288 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 289 0x03, /* __u8 ep_bmAttributes; Interrupt */ 290 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 291 * see hub.c:hub_configure() for details. */ 292 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 293 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 294 }; 295 296 static const u8 ss_rh_config_descriptor[] = { 297 /* one configuration */ 298 0x09, /* __u8 bLength; */ 299 0x02, /* __u8 bDescriptorType; Configuration */ 300 0x19, 0x00, /* __le16 wTotalLength; FIXME */ 301 0x01, /* __u8 bNumInterfaces; (1) */ 302 0x01, /* __u8 bConfigurationValue; */ 303 0x00, /* __u8 iConfiguration; */ 304 0xc0, /* __u8 bmAttributes; 305 Bit 7: must be set, 306 6: Self-powered, 307 5: Remote wakeup, 308 4..0: resvd */ 309 0x00, /* __u8 MaxPower; */ 310 311 /* one interface */ 312 0x09, /* __u8 if_bLength; */ 313 0x04, /* __u8 if_bDescriptorType; Interface */ 314 0x00, /* __u8 if_bInterfaceNumber; */ 315 0x00, /* __u8 if_bAlternateSetting; */ 316 0x01, /* __u8 if_bNumEndpoints; */ 317 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 318 0x00, /* __u8 if_bInterfaceSubClass; */ 319 0x00, /* __u8 if_bInterfaceProtocol; */ 320 0x00, /* __u8 if_iInterface; */ 321 322 /* one endpoint (status change endpoint) */ 323 0x07, /* __u8 ep_bLength; */ 324 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 325 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 326 0x03, /* __u8 ep_bmAttributes; Interrupt */ 327 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 328 * see hub.c:hub_configure() for details. */ 329 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 330 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 331 /* 332 * All 3.0 hubs should have an endpoint companion descriptor, 333 * but we're ignoring that for now. FIXME? 334 */ 335 }; 336 337 /*-------------------------------------------------------------------------*/ 338 339 /** 340 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors 341 * @s: Null-terminated ASCII (actually ISO-8859-1) string 342 * @buf: Buffer for USB string descriptor (header + UTF-16LE) 343 * @len: Length (in bytes; may be odd) of descriptor buffer. 344 * 345 * The return value is the number of bytes filled in: 2 + 2*strlen(s) or 346 * buflen, whichever is less. 347 * 348 * USB String descriptors can contain at most 126 characters; input 349 * strings longer than that are truncated. 350 */ 351 static unsigned 352 ascii2desc(char const *s, u8 *buf, unsigned len) 353 { 354 unsigned n, t = 2 + 2*strlen(s); 355 356 if (t > 254) 357 t = 254; /* Longest possible UTF string descriptor */ 358 if (len > t) 359 len = t; 360 361 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */ 362 363 n = len; 364 while (n--) { 365 *buf++ = t; 366 if (!n--) 367 break; 368 *buf++ = t >> 8; 369 t = (unsigned char)*s++; 370 } 371 return len; 372 } 373 374 /** 375 * rh_string() - provides string descriptors for root hub 376 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor) 377 * @hcd: the host controller for this root hub 378 * @data: buffer for output packet 379 * @len: length of the provided buffer 380 * 381 * Produces either a manufacturer, product or serial number string for the 382 * virtual root hub device. 383 * Returns the number of bytes filled in: the length of the descriptor or 384 * of the provided buffer, whichever is less. 385 */ 386 static unsigned 387 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len) 388 { 389 char buf[100]; 390 char const *s; 391 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04}; 392 393 // language ids 394 switch (id) { 395 case 0: 396 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */ 397 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */ 398 if (len > 4) 399 len = 4; 400 memcpy(data, langids, len); 401 return len; 402 case 1: 403 /* Serial number */ 404 s = hcd->self.bus_name; 405 break; 406 case 2: 407 /* Product name */ 408 s = hcd->product_desc; 409 break; 410 case 3: 411 /* Manufacturer */ 412 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 413 init_utsname()->release, hcd->driver->description); 414 s = buf; 415 break; 416 default: 417 /* Can't happen; caller guarantees it */ 418 return 0; 419 } 420 421 return ascii2desc(s, data, len); 422 } 423 424 425 /* Root hub control transfers execute synchronously */ 426 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 427 { 428 struct usb_ctrlrequest *cmd; 429 u16 typeReq, wValue, wIndex, wLength; 430 u8 *ubuf = urb->transfer_buffer; 431 u8 tbuf [sizeof (struct usb_hub_descriptor)] 432 __attribute__((aligned(4))); 433 const u8 *bufp = tbuf; 434 unsigned len = 0; 435 int status; 436 u8 patch_wakeup = 0; 437 u8 patch_protocol = 0; 438 439 might_sleep(); 440 441 spin_lock_irq(&hcd_root_hub_lock); 442 status = usb_hcd_link_urb_to_ep(hcd, urb); 443 spin_unlock_irq(&hcd_root_hub_lock); 444 if (status) 445 return status; 446 urb->hcpriv = hcd; /* Indicate it's queued */ 447 448 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 449 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 450 wValue = le16_to_cpu (cmd->wValue); 451 wIndex = le16_to_cpu (cmd->wIndex); 452 wLength = le16_to_cpu (cmd->wLength); 453 454 if (wLength > urb->transfer_buffer_length) 455 goto error; 456 457 urb->actual_length = 0; 458 switch (typeReq) { 459 460 /* DEVICE REQUESTS */ 461 462 /* The root hub's remote wakeup enable bit is implemented using 463 * driver model wakeup flags. If this system supports wakeup 464 * through USB, userspace may change the default "allow wakeup" 465 * policy through sysfs or these calls. 466 * 467 * Most root hubs support wakeup from downstream devices, for 468 * runtime power management (disabling USB clocks and reducing 469 * VBUS power usage). However, not all of them do so; silicon, 470 * board, and BIOS bugs here are not uncommon, so these can't 471 * be treated quite like external hubs. 472 * 473 * Likewise, not all root hubs will pass wakeup events upstream, 474 * to wake up the whole system. So don't assume root hub and 475 * controller capabilities are identical. 476 */ 477 478 case DeviceRequest | USB_REQ_GET_STATUS: 479 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev) 480 << USB_DEVICE_REMOTE_WAKEUP) 481 | (1 << USB_DEVICE_SELF_POWERED); 482 tbuf [1] = 0; 483 len = 2; 484 break; 485 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 486 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 487 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 488 else 489 goto error; 490 break; 491 case DeviceOutRequest | USB_REQ_SET_FEATURE: 492 if (device_can_wakeup(&hcd->self.root_hub->dev) 493 && wValue == USB_DEVICE_REMOTE_WAKEUP) 494 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 495 else 496 goto error; 497 break; 498 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 499 tbuf [0] = 1; 500 len = 1; 501 /* FALLTHROUGH */ 502 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 503 break; 504 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 505 switch (wValue & 0xff00) { 506 case USB_DT_DEVICE << 8: 507 switch (hcd->driver->flags & HCD_MASK) { 508 case HCD_USB3: 509 bufp = usb3_rh_dev_descriptor; 510 break; 511 case HCD_USB2: 512 bufp = usb2_rh_dev_descriptor; 513 break; 514 case HCD_USB11: 515 bufp = usb11_rh_dev_descriptor; 516 break; 517 default: 518 goto error; 519 } 520 len = 18; 521 if (hcd->has_tt) 522 patch_protocol = 1; 523 break; 524 case USB_DT_CONFIG << 8: 525 switch (hcd->driver->flags & HCD_MASK) { 526 case HCD_USB3: 527 bufp = ss_rh_config_descriptor; 528 len = sizeof ss_rh_config_descriptor; 529 break; 530 case HCD_USB2: 531 bufp = hs_rh_config_descriptor; 532 len = sizeof hs_rh_config_descriptor; 533 break; 534 case HCD_USB11: 535 bufp = fs_rh_config_descriptor; 536 len = sizeof fs_rh_config_descriptor; 537 break; 538 default: 539 goto error; 540 } 541 if (device_can_wakeup(&hcd->self.root_hub->dev)) 542 patch_wakeup = 1; 543 break; 544 case USB_DT_STRING << 8: 545 if ((wValue & 0xff) < 4) 546 urb->actual_length = rh_string(wValue & 0xff, 547 hcd, ubuf, wLength); 548 else /* unsupported IDs --> "protocol stall" */ 549 goto error; 550 break; 551 default: 552 goto error; 553 } 554 break; 555 case DeviceRequest | USB_REQ_GET_INTERFACE: 556 tbuf [0] = 0; 557 len = 1; 558 /* FALLTHROUGH */ 559 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 560 break; 561 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 562 // wValue == urb->dev->devaddr 563 dev_dbg (hcd->self.controller, "root hub device address %d\n", 564 wValue); 565 break; 566 567 /* INTERFACE REQUESTS (no defined feature/status flags) */ 568 569 /* ENDPOINT REQUESTS */ 570 571 case EndpointRequest | USB_REQ_GET_STATUS: 572 // ENDPOINT_HALT flag 573 tbuf [0] = 0; 574 tbuf [1] = 0; 575 len = 2; 576 /* FALLTHROUGH */ 577 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 578 case EndpointOutRequest | USB_REQ_SET_FEATURE: 579 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 580 break; 581 582 /* CLASS REQUESTS (and errors) */ 583 584 default: 585 /* non-generic request */ 586 switch (typeReq) { 587 case GetHubStatus: 588 case GetPortStatus: 589 len = 4; 590 break; 591 case GetHubDescriptor: 592 len = sizeof (struct usb_hub_descriptor); 593 break; 594 } 595 status = hcd->driver->hub_control (hcd, 596 typeReq, wValue, wIndex, 597 tbuf, wLength); 598 break; 599 error: 600 /* "protocol stall" on error */ 601 status = -EPIPE; 602 } 603 604 if (status) { 605 len = 0; 606 if (status != -EPIPE) { 607 dev_dbg (hcd->self.controller, 608 "CTRL: TypeReq=0x%x val=0x%x " 609 "idx=0x%x len=%d ==> %d\n", 610 typeReq, wValue, wIndex, 611 wLength, status); 612 } 613 } 614 if (len) { 615 if (urb->transfer_buffer_length < len) 616 len = urb->transfer_buffer_length; 617 urb->actual_length = len; 618 // always USB_DIR_IN, toward host 619 memcpy (ubuf, bufp, len); 620 621 /* report whether RH hardware supports remote wakeup */ 622 if (patch_wakeup && 623 len > offsetof (struct usb_config_descriptor, 624 bmAttributes)) 625 ((struct usb_config_descriptor *)ubuf)->bmAttributes 626 |= USB_CONFIG_ATT_WAKEUP; 627 628 /* report whether RH hardware has an integrated TT */ 629 if (patch_protocol && 630 len > offsetof(struct usb_device_descriptor, 631 bDeviceProtocol)) 632 ((struct usb_device_descriptor *) ubuf)-> 633 bDeviceProtocol = 1; 634 } 635 636 /* any errors get returned through the urb completion */ 637 spin_lock_irq(&hcd_root_hub_lock); 638 usb_hcd_unlink_urb_from_ep(hcd, urb); 639 640 /* This peculiar use of spinlocks echoes what real HC drivers do. 641 * Avoiding calls to local_irq_disable/enable makes the code 642 * RT-friendly. 643 */ 644 spin_unlock(&hcd_root_hub_lock); 645 usb_hcd_giveback_urb(hcd, urb, status); 646 spin_lock(&hcd_root_hub_lock); 647 648 spin_unlock_irq(&hcd_root_hub_lock); 649 return 0; 650 } 651 652 /*-------------------------------------------------------------------------*/ 653 654 /* 655 * Root Hub interrupt transfers are polled using a timer if the 656 * driver requests it; otherwise the driver is responsible for 657 * calling usb_hcd_poll_rh_status() when an event occurs. 658 * 659 * Completions are called in_interrupt(), but they may or may not 660 * be in_irq(). 661 */ 662 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 663 { 664 struct urb *urb; 665 int length; 666 unsigned long flags; 667 char buffer[6]; /* Any root hubs with > 31 ports? */ 668 669 if (unlikely(!hcd->rh_pollable)) 670 return; 671 if (!hcd->uses_new_polling && !hcd->status_urb) 672 return; 673 674 length = hcd->driver->hub_status_data(hcd, buffer); 675 if (length > 0) { 676 677 /* try to complete the status urb */ 678 spin_lock_irqsave(&hcd_root_hub_lock, flags); 679 urb = hcd->status_urb; 680 if (urb) { 681 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 682 hcd->status_urb = NULL; 683 urb->actual_length = length; 684 memcpy(urb->transfer_buffer, buffer, length); 685 686 usb_hcd_unlink_urb_from_ep(hcd, urb); 687 spin_unlock(&hcd_root_hub_lock); 688 usb_hcd_giveback_urb(hcd, urb, 0); 689 spin_lock(&hcd_root_hub_lock); 690 } else { 691 length = 0; 692 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 693 } 694 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 695 } 696 697 /* The USB 2.0 spec says 256 ms. This is close enough and won't 698 * exceed that limit if HZ is 100. The math is more clunky than 699 * maybe expected, this is to make sure that all timers for USB devices 700 * fire at the same time to give the CPU a break inbetween */ 701 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) : 702 (length == 0 && hcd->status_urb != NULL)) 703 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 704 } 705 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 706 707 /* timer callback */ 708 static void rh_timer_func (unsigned long _hcd) 709 { 710 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd); 711 } 712 713 /*-------------------------------------------------------------------------*/ 714 715 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 716 { 717 int retval; 718 unsigned long flags; 719 unsigned len = 1 + (urb->dev->maxchild / 8); 720 721 spin_lock_irqsave (&hcd_root_hub_lock, flags); 722 if (hcd->status_urb || urb->transfer_buffer_length < len) { 723 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 724 retval = -EINVAL; 725 goto done; 726 } 727 728 retval = usb_hcd_link_urb_to_ep(hcd, urb); 729 if (retval) 730 goto done; 731 732 hcd->status_urb = urb; 733 urb->hcpriv = hcd; /* indicate it's queued */ 734 if (!hcd->uses_new_polling) 735 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 736 737 /* If a status change has already occurred, report it ASAP */ 738 else if (HCD_POLL_PENDING(hcd)) 739 mod_timer(&hcd->rh_timer, jiffies); 740 retval = 0; 741 done: 742 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 743 return retval; 744 } 745 746 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 747 { 748 if (usb_endpoint_xfer_int(&urb->ep->desc)) 749 return rh_queue_status (hcd, urb); 750 if (usb_endpoint_xfer_control(&urb->ep->desc)) 751 return rh_call_control (hcd, urb); 752 return -EINVAL; 753 } 754 755 /*-------------------------------------------------------------------------*/ 756 757 /* Unlinks of root-hub control URBs are legal, but they don't do anything 758 * since these URBs always execute synchronously. 759 */ 760 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 761 { 762 unsigned long flags; 763 int rc; 764 765 spin_lock_irqsave(&hcd_root_hub_lock, flags); 766 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 767 if (rc) 768 goto done; 769 770 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 771 ; /* Do nothing */ 772 773 } else { /* Status URB */ 774 if (!hcd->uses_new_polling) 775 del_timer (&hcd->rh_timer); 776 if (urb == hcd->status_urb) { 777 hcd->status_urb = NULL; 778 usb_hcd_unlink_urb_from_ep(hcd, urb); 779 780 spin_unlock(&hcd_root_hub_lock); 781 usb_hcd_giveback_urb(hcd, urb, status); 782 spin_lock(&hcd_root_hub_lock); 783 } 784 } 785 done: 786 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 787 return rc; 788 } 789 790 791 792 /* 793 * Show & store the current value of authorized_default 794 */ 795 static ssize_t usb_host_authorized_default_show(struct device *dev, 796 struct device_attribute *attr, 797 char *buf) 798 { 799 struct usb_device *rh_usb_dev = to_usb_device(dev); 800 struct usb_bus *usb_bus = rh_usb_dev->bus; 801 struct usb_hcd *usb_hcd; 802 803 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */ 804 return -ENODEV; 805 usb_hcd = bus_to_hcd(usb_bus); 806 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default); 807 } 808 809 static ssize_t usb_host_authorized_default_store(struct device *dev, 810 struct device_attribute *attr, 811 const char *buf, size_t size) 812 { 813 ssize_t result; 814 unsigned val; 815 struct usb_device *rh_usb_dev = to_usb_device(dev); 816 struct usb_bus *usb_bus = rh_usb_dev->bus; 817 struct usb_hcd *usb_hcd; 818 819 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */ 820 return -ENODEV; 821 usb_hcd = bus_to_hcd(usb_bus); 822 result = sscanf(buf, "%u\n", &val); 823 if (result == 1) { 824 usb_hcd->authorized_default = val? 1 : 0; 825 result = size; 826 } 827 else 828 result = -EINVAL; 829 return result; 830 } 831 832 static DEVICE_ATTR(authorized_default, 0644, 833 usb_host_authorized_default_show, 834 usb_host_authorized_default_store); 835 836 837 /* Group all the USB bus attributes */ 838 static struct attribute *usb_bus_attrs[] = { 839 &dev_attr_authorized_default.attr, 840 NULL, 841 }; 842 843 static struct attribute_group usb_bus_attr_group = { 844 .name = NULL, /* we want them in the same directory */ 845 .attrs = usb_bus_attrs, 846 }; 847 848 849 850 /*-------------------------------------------------------------------------*/ 851 852 /** 853 * usb_bus_init - shared initialization code 854 * @bus: the bus structure being initialized 855 * 856 * This code is used to initialize a usb_bus structure, memory for which is 857 * separately managed. 858 */ 859 static void usb_bus_init (struct usb_bus *bus) 860 { 861 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 862 863 bus->devnum_next = 1; 864 865 bus->root_hub = NULL; 866 bus->busnum = -1; 867 bus->bandwidth_allocated = 0; 868 bus->bandwidth_int_reqs = 0; 869 bus->bandwidth_isoc_reqs = 0; 870 871 INIT_LIST_HEAD (&bus->bus_list); 872 } 873 874 /*-------------------------------------------------------------------------*/ 875 876 /** 877 * usb_register_bus - registers the USB host controller with the usb core 878 * @bus: pointer to the bus to register 879 * Context: !in_interrupt() 880 * 881 * Assigns a bus number, and links the controller into usbcore data 882 * structures so that it can be seen by scanning the bus list. 883 */ 884 static int usb_register_bus(struct usb_bus *bus) 885 { 886 int result = -E2BIG; 887 int busnum; 888 889 mutex_lock(&usb_bus_list_lock); 890 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1); 891 if (busnum >= USB_MAXBUS) { 892 printk (KERN_ERR "%s: too many buses\n", usbcore_name); 893 goto error_find_busnum; 894 } 895 set_bit (busnum, busmap.busmap); 896 bus->busnum = busnum; 897 898 /* Add it to the local list of buses */ 899 list_add (&bus->bus_list, &usb_bus_list); 900 mutex_unlock(&usb_bus_list_lock); 901 902 usb_notify_add_bus(bus); 903 904 dev_info (bus->controller, "new USB bus registered, assigned bus " 905 "number %d\n", bus->busnum); 906 return 0; 907 908 error_find_busnum: 909 mutex_unlock(&usb_bus_list_lock); 910 return result; 911 } 912 913 /** 914 * usb_deregister_bus - deregisters the USB host controller 915 * @bus: pointer to the bus to deregister 916 * Context: !in_interrupt() 917 * 918 * Recycles the bus number, and unlinks the controller from usbcore data 919 * structures so that it won't be seen by scanning the bus list. 920 */ 921 static void usb_deregister_bus (struct usb_bus *bus) 922 { 923 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 924 925 /* 926 * NOTE: make sure that all the devices are removed by the 927 * controller code, as well as having it call this when cleaning 928 * itself up 929 */ 930 mutex_lock(&usb_bus_list_lock); 931 list_del (&bus->bus_list); 932 mutex_unlock(&usb_bus_list_lock); 933 934 usb_notify_remove_bus(bus); 935 936 clear_bit (bus->busnum, busmap.busmap); 937 } 938 939 /** 940 * register_root_hub - called by usb_add_hcd() to register a root hub 941 * @hcd: host controller for this root hub 942 * 943 * This function registers the root hub with the USB subsystem. It sets up 944 * the device properly in the device tree and then calls usb_new_device() 945 * to register the usb device. It also assigns the root hub's USB address 946 * (always 1). 947 */ 948 static int register_root_hub(struct usb_hcd *hcd) 949 { 950 struct device *parent_dev = hcd->self.controller; 951 struct usb_device *usb_dev = hcd->self.root_hub; 952 const int devnum = 1; 953 int retval; 954 955 usb_dev->devnum = devnum; 956 usb_dev->bus->devnum_next = devnum + 1; 957 memset (&usb_dev->bus->devmap.devicemap, 0, 958 sizeof usb_dev->bus->devmap.devicemap); 959 set_bit (devnum, usb_dev->bus->devmap.devicemap); 960 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 961 962 mutex_lock(&usb_bus_list_lock); 963 964 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); 965 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); 966 if (retval != sizeof usb_dev->descriptor) { 967 mutex_unlock(&usb_bus_list_lock); 968 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 969 dev_name(&usb_dev->dev), retval); 970 return (retval < 0) ? retval : -EMSGSIZE; 971 } 972 973 retval = usb_new_device (usb_dev); 974 if (retval) { 975 dev_err (parent_dev, "can't register root hub for %s, %d\n", 976 dev_name(&usb_dev->dev), retval); 977 } 978 mutex_unlock(&usb_bus_list_lock); 979 980 if (retval == 0) { 981 spin_lock_irq (&hcd_root_hub_lock); 982 hcd->rh_registered = 1; 983 spin_unlock_irq (&hcd_root_hub_lock); 984 985 /* Did the HC die before the root hub was registered? */ 986 if (hcd->state == HC_STATE_HALT) 987 usb_hc_died (hcd); /* This time clean up */ 988 } 989 990 return retval; 991 } 992 993 994 /*-------------------------------------------------------------------------*/ 995 996 /** 997 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 998 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 999 * @is_input: true iff the transaction sends data to the host 1000 * @isoc: true for isochronous transactions, false for interrupt ones 1001 * @bytecount: how many bytes in the transaction. 1002 * 1003 * Returns approximate bus time in nanoseconds for a periodic transaction. 1004 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 1005 * scheduled in software, this function is only used for such scheduling. 1006 */ 1007 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 1008 { 1009 unsigned long tmp; 1010 1011 switch (speed) { 1012 case USB_SPEED_LOW: /* INTR only */ 1013 if (is_input) { 1014 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 1015 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp); 1016 } else { 1017 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 1018 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp); 1019 } 1020 case USB_SPEED_FULL: /* ISOC or INTR */ 1021 if (isoc) { 1022 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1023 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp); 1024 } else { 1025 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1026 return (9107L + BW_HOST_DELAY + tmp); 1027 } 1028 case USB_SPEED_HIGH: /* ISOC or INTR */ 1029 // FIXME adjust for input vs output 1030 if (isoc) 1031 tmp = HS_NSECS_ISO (bytecount); 1032 else 1033 tmp = HS_NSECS (bytecount); 1034 return tmp; 1035 default: 1036 pr_debug ("%s: bogus device speed!\n", usbcore_name); 1037 return -1; 1038 } 1039 } 1040 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 1041 1042 1043 /*-------------------------------------------------------------------------*/ 1044 1045 /* 1046 * Generic HC operations. 1047 */ 1048 1049 /*-------------------------------------------------------------------------*/ 1050 1051 /** 1052 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 1053 * @hcd: host controller to which @urb was submitted 1054 * @urb: URB being submitted 1055 * 1056 * Host controller drivers should call this routine in their enqueue() 1057 * method. The HCD's private spinlock must be held and interrupts must 1058 * be disabled. The actions carried out here are required for URB 1059 * submission, as well as for endpoint shutdown and for usb_kill_urb. 1060 * 1061 * Returns 0 for no error, otherwise a negative error code (in which case 1062 * the enqueue() method must fail). If no error occurs but enqueue() fails 1063 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 1064 * the private spinlock and returning. 1065 */ 1066 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1067 { 1068 int rc = 0; 1069 1070 spin_lock(&hcd_urb_list_lock); 1071 1072 /* Check that the URB isn't being killed */ 1073 if (unlikely(atomic_read(&urb->reject))) { 1074 rc = -EPERM; 1075 goto done; 1076 } 1077 1078 if (unlikely(!urb->ep->enabled)) { 1079 rc = -ENOENT; 1080 goto done; 1081 } 1082 1083 if (unlikely(!urb->dev->can_submit)) { 1084 rc = -EHOSTUNREACH; 1085 goto done; 1086 } 1087 1088 /* 1089 * Check the host controller's state and add the URB to the 1090 * endpoint's queue. 1091 */ 1092 switch (hcd->state) { 1093 case HC_STATE_RUNNING: 1094 case HC_STATE_RESUMING: 1095 urb->unlinked = 0; 1096 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1097 break; 1098 default: 1099 rc = -ESHUTDOWN; 1100 goto done; 1101 } 1102 done: 1103 spin_unlock(&hcd_urb_list_lock); 1104 return rc; 1105 } 1106 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1107 1108 /** 1109 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1110 * @hcd: host controller to which @urb was submitted 1111 * @urb: URB being checked for unlinkability 1112 * @status: error code to store in @urb if the unlink succeeds 1113 * 1114 * Host controller drivers should call this routine in their dequeue() 1115 * method. The HCD's private spinlock must be held and interrupts must 1116 * be disabled. The actions carried out here are required for making 1117 * sure than an unlink is valid. 1118 * 1119 * Returns 0 for no error, otherwise a negative error code (in which case 1120 * the dequeue() method must fail). The possible error codes are: 1121 * 1122 * -EIDRM: @urb was not submitted or has already completed. 1123 * The completion function may not have been called yet. 1124 * 1125 * -EBUSY: @urb has already been unlinked. 1126 */ 1127 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1128 int status) 1129 { 1130 struct list_head *tmp; 1131 1132 /* insist the urb is still queued */ 1133 list_for_each(tmp, &urb->ep->urb_list) { 1134 if (tmp == &urb->urb_list) 1135 break; 1136 } 1137 if (tmp != &urb->urb_list) 1138 return -EIDRM; 1139 1140 /* Any status except -EINPROGRESS means something already started to 1141 * unlink this URB from the hardware. So there's no more work to do. 1142 */ 1143 if (urb->unlinked) 1144 return -EBUSY; 1145 urb->unlinked = status; 1146 1147 /* IRQ setup can easily be broken so that USB controllers 1148 * never get completion IRQs ... maybe even the ones we need to 1149 * finish unlinking the initial failed usb_set_address() 1150 * or device descriptor fetch. 1151 */ 1152 if (!HCD_SAW_IRQ(hcd) && !is_root_hub(urb->dev)) { 1153 dev_warn(hcd->self.controller, "Unlink after no-IRQ? " 1154 "Controller is probably using the wrong IRQ.\n"); 1155 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags); 1156 } 1157 1158 return 0; 1159 } 1160 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1161 1162 /** 1163 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1164 * @hcd: host controller to which @urb was submitted 1165 * @urb: URB being unlinked 1166 * 1167 * Host controller drivers should call this routine before calling 1168 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1169 * interrupts must be disabled. The actions carried out here are required 1170 * for URB completion. 1171 */ 1172 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1173 { 1174 /* clear all state linking urb to this dev (and hcd) */ 1175 spin_lock(&hcd_urb_list_lock); 1176 list_del_init(&urb->urb_list); 1177 spin_unlock(&hcd_urb_list_lock); 1178 } 1179 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1180 1181 /* 1182 * Some usb host controllers can only perform dma using a small SRAM area. 1183 * The usb core itself is however optimized for host controllers that can dma 1184 * using regular system memory - like pci devices doing bus mastering. 1185 * 1186 * To support host controllers with limited dma capabilites we provide dma 1187 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag. 1188 * For this to work properly the host controller code must first use the 1189 * function dma_declare_coherent_memory() to point out which memory area 1190 * that should be used for dma allocations. 1191 * 1192 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for 1193 * dma using dma_alloc_coherent() which in turn allocates from the memory 1194 * area pointed out with dma_declare_coherent_memory(). 1195 * 1196 * So, to summarize... 1197 * 1198 * - We need "local" memory, canonical example being 1199 * a small SRAM on a discrete controller being the 1200 * only memory that the controller can read ... 1201 * (a) "normal" kernel memory is no good, and 1202 * (b) there's not enough to share 1203 * 1204 * - The only *portable* hook for such stuff in the 1205 * DMA framework is dma_declare_coherent_memory() 1206 * 1207 * - So we use that, even though the primary requirement 1208 * is that the memory be "local" (hence addressible 1209 * by that device), not "coherent". 1210 * 1211 */ 1212 1213 static int hcd_alloc_coherent(struct usb_bus *bus, 1214 gfp_t mem_flags, dma_addr_t *dma_handle, 1215 void **vaddr_handle, size_t size, 1216 enum dma_data_direction dir) 1217 { 1218 unsigned char *vaddr; 1219 1220 if (*vaddr_handle == NULL) { 1221 WARN_ON_ONCE(1); 1222 return -EFAULT; 1223 } 1224 1225 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr), 1226 mem_flags, dma_handle); 1227 if (!vaddr) 1228 return -ENOMEM; 1229 1230 /* 1231 * Store the virtual address of the buffer at the end 1232 * of the allocated dma buffer. The size of the buffer 1233 * may be uneven so use unaligned functions instead 1234 * of just rounding up. It makes sense to optimize for 1235 * memory footprint over access speed since the amount 1236 * of memory available for dma may be limited. 1237 */ 1238 put_unaligned((unsigned long)*vaddr_handle, 1239 (unsigned long *)(vaddr + size)); 1240 1241 if (dir == DMA_TO_DEVICE) 1242 memcpy(vaddr, *vaddr_handle, size); 1243 1244 *vaddr_handle = vaddr; 1245 return 0; 1246 } 1247 1248 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1249 void **vaddr_handle, size_t size, 1250 enum dma_data_direction dir) 1251 { 1252 unsigned char *vaddr = *vaddr_handle; 1253 1254 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1255 1256 if (dir == DMA_FROM_DEVICE) 1257 memcpy(vaddr, *vaddr_handle, size); 1258 1259 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1260 1261 *vaddr_handle = vaddr; 1262 *dma_handle = 0; 1263 } 1264 1265 void unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb) 1266 { 1267 if (urb->transfer_flags & URB_SETUP_MAP_SINGLE) 1268 dma_unmap_single(hcd->self.controller, 1269 urb->setup_dma, 1270 sizeof(struct usb_ctrlrequest), 1271 DMA_TO_DEVICE); 1272 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL) 1273 hcd_free_coherent(urb->dev->bus, 1274 &urb->setup_dma, 1275 (void **) &urb->setup_packet, 1276 sizeof(struct usb_ctrlrequest), 1277 DMA_TO_DEVICE); 1278 1279 /* Make it safe to call this routine more than once */ 1280 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL); 1281 } 1282 EXPORT_SYMBOL_GPL(unmap_urb_setup_for_dma); 1283 1284 void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1285 { 1286 enum dma_data_direction dir; 1287 1288 unmap_urb_setup_for_dma(hcd, urb); 1289 1290 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1291 if (urb->transfer_flags & URB_DMA_MAP_SG) 1292 dma_unmap_sg(hcd->self.controller, 1293 urb->sg, 1294 urb->num_sgs, 1295 dir); 1296 else if (urb->transfer_flags & URB_DMA_MAP_PAGE) 1297 dma_unmap_page(hcd->self.controller, 1298 urb->transfer_dma, 1299 urb->transfer_buffer_length, 1300 dir); 1301 else if (urb->transfer_flags & URB_DMA_MAP_SINGLE) 1302 dma_unmap_single(hcd->self.controller, 1303 urb->transfer_dma, 1304 urb->transfer_buffer_length, 1305 dir); 1306 else if (urb->transfer_flags & URB_MAP_LOCAL) 1307 hcd_free_coherent(urb->dev->bus, 1308 &urb->transfer_dma, 1309 &urb->transfer_buffer, 1310 urb->transfer_buffer_length, 1311 dir); 1312 1313 /* Make it safe to call this routine more than once */ 1314 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE | 1315 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL); 1316 } 1317 EXPORT_SYMBOL_GPL(unmap_urb_for_dma); 1318 1319 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1320 gfp_t mem_flags) 1321 { 1322 enum dma_data_direction dir; 1323 int ret = 0; 1324 1325 /* Map the URB's buffers for DMA access. 1326 * Lower level HCD code should use *_dma exclusively, 1327 * unless it uses pio or talks to another transport, 1328 * or uses the provided scatter gather list for bulk. 1329 */ 1330 1331 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1332 if (hcd->self.uses_pio_for_control) 1333 return ret; 1334 if (hcd->self.uses_dma) { 1335 urb->setup_dma = dma_map_single( 1336 hcd->self.controller, 1337 urb->setup_packet, 1338 sizeof(struct usb_ctrlrequest), 1339 DMA_TO_DEVICE); 1340 if (dma_mapping_error(hcd->self.controller, 1341 urb->setup_dma)) 1342 return -EAGAIN; 1343 urb->transfer_flags |= URB_SETUP_MAP_SINGLE; 1344 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1345 ret = hcd_alloc_coherent( 1346 urb->dev->bus, mem_flags, 1347 &urb->setup_dma, 1348 (void **)&urb->setup_packet, 1349 sizeof(struct usb_ctrlrequest), 1350 DMA_TO_DEVICE); 1351 if (ret) 1352 return ret; 1353 urb->transfer_flags |= URB_SETUP_MAP_LOCAL; 1354 } 1355 } 1356 1357 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1358 if (urb->transfer_buffer_length != 0 1359 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1360 if (hcd->self.uses_dma) { 1361 if (urb->num_sgs) { 1362 int n = dma_map_sg( 1363 hcd->self.controller, 1364 urb->sg, 1365 urb->num_sgs, 1366 dir); 1367 if (n <= 0) 1368 ret = -EAGAIN; 1369 else 1370 urb->transfer_flags |= URB_DMA_MAP_SG; 1371 if (n != urb->num_sgs) { 1372 urb->num_sgs = n; 1373 urb->transfer_flags |= 1374 URB_DMA_SG_COMBINED; 1375 } 1376 } else if (urb->sg) { 1377 struct scatterlist *sg = urb->sg; 1378 urb->transfer_dma = dma_map_page( 1379 hcd->self.controller, 1380 sg_page(sg), 1381 sg->offset, 1382 urb->transfer_buffer_length, 1383 dir); 1384 if (dma_mapping_error(hcd->self.controller, 1385 urb->transfer_dma)) 1386 ret = -EAGAIN; 1387 else 1388 urb->transfer_flags |= URB_DMA_MAP_PAGE; 1389 } else { 1390 urb->transfer_dma = dma_map_single( 1391 hcd->self.controller, 1392 urb->transfer_buffer, 1393 urb->transfer_buffer_length, 1394 dir); 1395 if (dma_mapping_error(hcd->self.controller, 1396 urb->transfer_dma)) 1397 ret = -EAGAIN; 1398 else 1399 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1400 } 1401 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1402 ret = hcd_alloc_coherent( 1403 urb->dev->bus, mem_flags, 1404 &urb->transfer_dma, 1405 &urb->transfer_buffer, 1406 urb->transfer_buffer_length, 1407 dir); 1408 if (ret == 0) 1409 urb->transfer_flags |= URB_MAP_LOCAL; 1410 } 1411 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE | 1412 URB_SETUP_MAP_LOCAL))) 1413 unmap_urb_for_dma(hcd, urb); 1414 } 1415 return ret; 1416 } 1417 1418 /*-------------------------------------------------------------------------*/ 1419 1420 /* may be called in any context with a valid urb->dev usecount 1421 * caller surrenders "ownership" of urb 1422 * expects usb_submit_urb() to have sanity checked and conditioned all 1423 * inputs in the urb 1424 */ 1425 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1426 { 1427 int status; 1428 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1429 1430 /* increment urb's reference count as part of giving it to the HCD 1431 * (which will control it). HCD guarantees that it either returns 1432 * an error or calls giveback(), but not both. 1433 */ 1434 usb_get_urb(urb); 1435 atomic_inc(&urb->use_count); 1436 atomic_inc(&urb->dev->urbnum); 1437 usbmon_urb_submit(&hcd->self, urb); 1438 1439 /* NOTE requirements on root-hub callers (usbfs and the hub 1440 * driver, for now): URBs' urb->transfer_buffer must be 1441 * valid and usb_buffer_{sync,unmap}() not be needed, since 1442 * they could clobber root hub response data. Also, control 1443 * URBs must be submitted in process context with interrupts 1444 * enabled. 1445 */ 1446 1447 if (is_root_hub(urb->dev)) { 1448 status = rh_urb_enqueue(hcd, urb); 1449 } else { 1450 status = map_urb_for_dma(hcd, urb, mem_flags); 1451 if (likely(status == 0)) { 1452 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1453 if (unlikely(status)) 1454 unmap_urb_for_dma(hcd, urb); 1455 } 1456 } 1457 1458 if (unlikely(status)) { 1459 usbmon_urb_submit_error(&hcd->self, urb, status); 1460 urb->hcpriv = NULL; 1461 INIT_LIST_HEAD(&urb->urb_list); 1462 atomic_dec(&urb->use_count); 1463 atomic_dec(&urb->dev->urbnum); 1464 if (atomic_read(&urb->reject)) 1465 wake_up(&usb_kill_urb_queue); 1466 usb_put_urb(urb); 1467 } 1468 return status; 1469 } 1470 1471 /*-------------------------------------------------------------------------*/ 1472 1473 /* this makes the hcd giveback() the urb more quickly, by kicking it 1474 * off hardware queues (which may take a while) and returning it as 1475 * soon as practical. we've already set up the urb's return status, 1476 * but we can't know if the callback completed already. 1477 */ 1478 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1479 { 1480 int value; 1481 1482 if (is_root_hub(urb->dev)) 1483 value = usb_rh_urb_dequeue(hcd, urb, status); 1484 else { 1485 1486 /* The only reason an HCD might fail this call is if 1487 * it has not yet fully queued the urb to begin with. 1488 * Such failures should be harmless. */ 1489 value = hcd->driver->urb_dequeue(hcd, urb, status); 1490 } 1491 return value; 1492 } 1493 1494 /* 1495 * called in any context 1496 * 1497 * caller guarantees urb won't be recycled till both unlink() 1498 * and the urb's completion function return 1499 */ 1500 int usb_hcd_unlink_urb (struct urb *urb, int status) 1501 { 1502 struct usb_hcd *hcd; 1503 int retval = -EIDRM; 1504 unsigned long flags; 1505 1506 /* Prevent the device and bus from going away while 1507 * the unlink is carried out. If they are already gone 1508 * then urb->use_count must be 0, since disconnected 1509 * devices can't have any active URBs. 1510 */ 1511 spin_lock_irqsave(&hcd_urb_unlink_lock, flags); 1512 if (atomic_read(&urb->use_count) > 0) { 1513 retval = 0; 1514 usb_get_dev(urb->dev); 1515 } 1516 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); 1517 if (retval == 0) { 1518 hcd = bus_to_hcd(urb->dev->bus); 1519 retval = unlink1(hcd, urb, status); 1520 usb_put_dev(urb->dev); 1521 } 1522 1523 if (retval == 0) 1524 retval = -EINPROGRESS; 1525 else if (retval != -EIDRM && retval != -EBUSY) 1526 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n", 1527 urb, retval); 1528 return retval; 1529 } 1530 1531 /*-------------------------------------------------------------------------*/ 1532 1533 /** 1534 * usb_hcd_giveback_urb - return URB from HCD to device driver 1535 * @hcd: host controller returning the URB 1536 * @urb: urb being returned to the USB device driver. 1537 * @status: completion status code for the URB. 1538 * Context: in_interrupt() 1539 * 1540 * This hands the URB from HCD to its USB device driver, using its 1541 * completion function. The HCD has freed all per-urb resources 1542 * (and is done using urb->hcpriv). It also released all HCD locks; 1543 * the device driver won't cause problems if it frees, modifies, 1544 * or resubmits this URB. 1545 * 1546 * If @urb was unlinked, the value of @status will be overridden by 1547 * @urb->unlinked. Erroneous short transfers are detected in case 1548 * the HCD hasn't checked for them. 1549 */ 1550 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1551 { 1552 urb->hcpriv = NULL; 1553 if (unlikely(urb->unlinked)) 1554 status = urb->unlinked; 1555 else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1556 urb->actual_length < urb->transfer_buffer_length && 1557 !status)) 1558 status = -EREMOTEIO; 1559 1560 unmap_urb_for_dma(hcd, urb); 1561 usbmon_urb_complete(&hcd->self, urb, status); 1562 usb_unanchor_urb(urb); 1563 1564 /* pass ownership to the completion handler */ 1565 urb->status = status; 1566 urb->complete (urb); 1567 atomic_dec (&urb->use_count); 1568 if (unlikely(atomic_read(&urb->reject))) 1569 wake_up (&usb_kill_urb_queue); 1570 usb_put_urb (urb); 1571 } 1572 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1573 1574 /*-------------------------------------------------------------------------*/ 1575 1576 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1577 * queue to drain completely. The caller must first insure that no more 1578 * URBs can be submitted for this endpoint. 1579 */ 1580 void usb_hcd_flush_endpoint(struct usb_device *udev, 1581 struct usb_host_endpoint *ep) 1582 { 1583 struct usb_hcd *hcd; 1584 struct urb *urb; 1585 1586 if (!ep) 1587 return; 1588 might_sleep(); 1589 hcd = bus_to_hcd(udev->bus); 1590 1591 /* No more submits can occur */ 1592 spin_lock_irq(&hcd_urb_list_lock); 1593 rescan: 1594 list_for_each_entry (urb, &ep->urb_list, urb_list) { 1595 int is_in; 1596 1597 if (urb->unlinked) 1598 continue; 1599 usb_get_urb (urb); 1600 is_in = usb_urb_dir_in(urb); 1601 spin_unlock(&hcd_urb_list_lock); 1602 1603 /* kick hcd */ 1604 unlink1(hcd, urb, -ESHUTDOWN); 1605 dev_dbg (hcd->self.controller, 1606 "shutdown urb %p ep%d%s%s\n", 1607 urb, usb_endpoint_num(&ep->desc), 1608 is_in ? "in" : "out", 1609 ({ char *s; 1610 1611 switch (usb_endpoint_type(&ep->desc)) { 1612 case USB_ENDPOINT_XFER_CONTROL: 1613 s = ""; break; 1614 case USB_ENDPOINT_XFER_BULK: 1615 s = "-bulk"; break; 1616 case USB_ENDPOINT_XFER_INT: 1617 s = "-intr"; break; 1618 default: 1619 s = "-iso"; break; 1620 }; 1621 s; 1622 })); 1623 usb_put_urb (urb); 1624 1625 /* list contents may have changed */ 1626 spin_lock(&hcd_urb_list_lock); 1627 goto rescan; 1628 } 1629 spin_unlock_irq(&hcd_urb_list_lock); 1630 1631 /* Wait until the endpoint queue is completely empty */ 1632 while (!list_empty (&ep->urb_list)) { 1633 spin_lock_irq(&hcd_urb_list_lock); 1634 1635 /* The list may have changed while we acquired the spinlock */ 1636 urb = NULL; 1637 if (!list_empty (&ep->urb_list)) { 1638 urb = list_entry (ep->urb_list.prev, struct urb, 1639 urb_list); 1640 usb_get_urb (urb); 1641 } 1642 spin_unlock_irq(&hcd_urb_list_lock); 1643 1644 if (urb) { 1645 usb_kill_urb (urb); 1646 usb_put_urb (urb); 1647 } 1648 } 1649 } 1650 1651 /** 1652 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds 1653 * the bus bandwidth 1654 * @udev: target &usb_device 1655 * @new_config: new configuration to install 1656 * @cur_alt: the current alternate interface setting 1657 * @new_alt: alternate interface setting that is being installed 1658 * 1659 * To change configurations, pass in the new configuration in new_config, 1660 * and pass NULL for cur_alt and new_alt. 1661 * 1662 * To reset a device's configuration (put the device in the ADDRESSED state), 1663 * pass in NULL for new_config, cur_alt, and new_alt. 1664 * 1665 * To change alternate interface settings, pass in NULL for new_config, 1666 * pass in the current alternate interface setting in cur_alt, 1667 * and pass in the new alternate interface setting in new_alt. 1668 * 1669 * Returns an error if the requested bandwidth change exceeds the 1670 * bus bandwidth or host controller internal resources. 1671 */ 1672 int usb_hcd_alloc_bandwidth(struct usb_device *udev, 1673 struct usb_host_config *new_config, 1674 struct usb_host_interface *cur_alt, 1675 struct usb_host_interface *new_alt) 1676 { 1677 int num_intfs, i, j; 1678 struct usb_host_interface *alt = NULL; 1679 int ret = 0; 1680 struct usb_hcd *hcd; 1681 struct usb_host_endpoint *ep; 1682 1683 hcd = bus_to_hcd(udev->bus); 1684 if (!hcd->driver->check_bandwidth) 1685 return 0; 1686 1687 /* Configuration is being removed - set configuration 0 */ 1688 if (!new_config && !cur_alt) { 1689 for (i = 1; i < 16; ++i) { 1690 ep = udev->ep_out[i]; 1691 if (ep) 1692 hcd->driver->drop_endpoint(hcd, udev, ep); 1693 ep = udev->ep_in[i]; 1694 if (ep) 1695 hcd->driver->drop_endpoint(hcd, udev, ep); 1696 } 1697 hcd->driver->check_bandwidth(hcd, udev); 1698 return 0; 1699 } 1700 /* Check if the HCD says there's enough bandwidth. Enable all endpoints 1701 * each interface's alt setting 0 and ask the HCD to check the bandwidth 1702 * of the bus. There will always be bandwidth for endpoint 0, so it's 1703 * ok to exclude it. 1704 */ 1705 if (new_config) { 1706 num_intfs = new_config->desc.bNumInterfaces; 1707 /* Remove endpoints (except endpoint 0, which is always on the 1708 * schedule) from the old config from the schedule 1709 */ 1710 for (i = 1; i < 16; ++i) { 1711 ep = udev->ep_out[i]; 1712 if (ep) { 1713 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1714 if (ret < 0) 1715 goto reset; 1716 } 1717 ep = udev->ep_in[i]; 1718 if (ep) { 1719 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1720 if (ret < 0) 1721 goto reset; 1722 } 1723 } 1724 for (i = 0; i < num_intfs; ++i) { 1725 struct usb_host_interface *first_alt; 1726 int iface_num; 1727 1728 first_alt = &new_config->intf_cache[i]->altsetting[0]; 1729 iface_num = first_alt->desc.bInterfaceNumber; 1730 /* Set up endpoints for alternate interface setting 0 */ 1731 alt = usb_find_alt_setting(new_config, iface_num, 0); 1732 if (!alt) 1733 /* No alt setting 0? Pick the first setting. */ 1734 alt = first_alt; 1735 1736 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 1737 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); 1738 if (ret < 0) 1739 goto reset; 1740 } 1741 } 1742 } 1743 if (cur_alt && new_alt) { 1744 struct usb_interface *iface = usb_ifnum_to_if(udev, 1745 cur_alt->desc.bInterfaceNumber); 1746 1747 if (iface->resetting_device) { 1748 /* 1749 * The USB core just reset the device, so the xHCI host 1750 * and the device will think alt setting 0 is installed. 1751 * However, the USB core will pass in the alternate 1752 * setting installed before the reset as cur_alt. Dig 1753 * out the alternate setting 0 structure, or the first 1754 * alternate setting if a broken device doesn't have alt 1755 * setting 0. 1756 */ 1757 cur_alt = usb_altnum_to_altsetting(iface, 0); 1758 if (!cur_alt) 1759 cur_alt = &iface->altsetting[0]; 1760 } 1761 1762 /* Drop all the endpoints in the current alt setting */ 1763 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) { 1764 ret = hcd->driver->drop_endpoint(hcd, udev, 1765 &cur_alt->endpoint[i]); 1766 if (ret < 0) 1767 goto reset; 1768 } 1769 /* Add all the endpoints in the new alt setting */ 1770 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) { 1771 ret = hcd->driver->add_endpoint(hcd, udev, 1772 &new_alt->endpoint[i]); 1773 if (ret < 0) 1774 goto reset; 1775 } 1776 } 1777 ret = hcd->driver->check_bandwidth(hcd, udev); 1778 reset: 1779 if (ret < 0) 1780 hcd->driver->reset_bandwidth(hcd, udev); 1781 return ret; 1782 } 1783 1784 /* Disables the endpoint: synchronizes with the hcd to make sure all 1785 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 1786 * have been called previously. Use for set_configuration, set_interface, 1787 * driver removal, physical disconnect. 1788 * 1789 * example: a qh stored in ep->hcpriv, holding state related to endpoint 1790 * type, maxpacket size, toggle, halt status, and scheduling. 1791 */ 1792 void usb_hcd_disable_endpoint(struct usb_device *udev, 1793 struct usb_host_endpoint *ep) 1794 { 1795 struct usb_hcd *hcd; 1796 1797 might_sleep(); 1798 hcd = bus_to_hcd(udev->bus); 1799 if (hcd->driver->endpoint_disable) 1800 hcd->driver->endpoint_disable(hcd, ep); 1801 } 1802 1803 /** 1804 * usb_hcd_reset_endpoint - reset host endpoint state 1805 * @udev: USB device. 1806 * @ep: the endpoint to reset. 1807 * 1808 * Resets any host endpoint state such as the toggle bit, sequence 1809 * number and current window. 1810 */ 1811 void usb_hcd_reset_endpoint(struct usb_device *udev, 1812 struct usb_host_endpoint *ep) 1813 { 1814 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 1815 1816 if (hcd->driver->endpoint_reset) 1817 hcd->driver->endpoint_reset(hcd, ep); 1818 else { 1819 int epnum = usb_endpoint_num(&ep->desc); 1820 int is_out = usb_endpoint_dir_out(&ep->desc); 1821 int is_control = usb_endpoint_xfer_control(&ep->desc); 1822 1823 usb_settoggle(udev, epnum, is_out, 0); 1824 if (is_control) 1825 usb_settoggle(udev, epnum, !is_out, 0); 1826 } 1827 } 1828 1829 /** 1830 * usb_alloc_streams - allocate bulk endpoint stream IDs. 1831 * @interface: alternate setting that includes all endpoints. 1832 * @eps: array of endpoints that need streams. 1833 * @num_eps: number of endpoints in the array. 1834 * @num_streams: number of streams to allocate. 1835 * @mem_flags: flags hcd should use to allocate memory. 1836 * 1837 * Sets up a group of bulk endpoints to have num_streams stream IDs available. 1838 * Drivers may queue multiple transfers to different stream IDs, which may 1839 * complete in a different order than they were queued. 1840 */ 1841 int usb_alloc_streams(struct usb_interface *interface, 1842 struct usb_host_endpoint **eps, unsigned int num_eps, 1843 unsigned int num_streams, gfp_t mem_flags) 1844 { 1845 struct usb_hcd *hcd; 1846 struct usb_device *dev; 1847 int i; 1848 1849 dev = interface_to_usbdev(interface); 1850 hcd = bus_to_hcd(dev->bus); 1851 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams) 1852 return -EINVAL; 1853 if (dev->speed != USB_SPEED_SUPER) 1854 return -EINVAL; 1855 1856 /* Streams only apply to bulk endpoints. */ 1857 for (i = 0; i < num_eps; i++) 1858 if (!usb_endpoint_xfer_bulk(&eps[i]->desc)) 1859 return -EINVAL; 1860 1861 return hcd->driver->alloc_streams(hcd, dev, eps, num_eps, 1862 num_streams, mem_flags); 1863 } 1864 EXPORT_SYMBOL_GPL(usb_alloc_streams); 1865 1866 /** 1867 * usb_free_streams - free bulk endpoint stream IDs. 1868 * @interface: alternate setting that includes all endpoints. 1869 * @eps: array of endpoints to remove streams from. 1870 * @num_eps: number of endpoints in the array. 1871 * @mem_flags: flags hcd should use to allocate memory. 1872 * 1873 * Reverts a group of bulk endpoints back to not using stream IDs. 1874 * Can fail if we are given bad arguments, or HCD is broken. 1875 */ 1876 void usb_free_streams(struct usb_interface *interface, 1877 struct usb_host_endpoint **eps, unsigned int num_eps, 1878 gfp_t mem_flags) 1879 { 1880 struct usb_hcd *hcd; 1881 struct usb_device *dev; 1882 int i; 1883 1884 dev = interface_to_usbdev(interface); 1885 hcd = bus_to_hcd(dev->bus); 1886 if (dev->speed != USB_SPEED_SUPER) 1887 return; 1888 1889 /* Streams only apply to bulk endpoints. */ 1890 for (i = 0; i < num_eps; i++) 1891 if (!usb_endpoint_xfer_bulk(&eps[i]->desc)) 1892 return; 1893 1894 hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags); 1895 } 1896 EXPORT_SYMBOL_GPL(usb_free_streams); 1897 1898 /* Protect against drivers that try to unlink URBs after the device 1899 * is gone, by waiting until all unlinks for @udev are finished. 1900 * Since we don't currently track URBs by device, simply wait until 1901 * nothing is running in the locked region of usb_hcd_unlink_urb(). 1902 */ 1903 void usb_hcd_synchronize_unlinks(struct usb_device *udev) 1904 { 1905 spin_lock_irq(&hcd_urb_unlink_lock); 1906 spin_unlock_irq(&hcd_urb_unlink_lock); 1907 } 1908 1909 /*-------------------------------------------------------------------------*/ 1910 1911 /* called in any context */ 1912 int usb_hcd_get_frame_number (struct usb_device *udev) 1913 { 1914 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 1915 1916 if (!HC_IS_RUNNING (hcd->state)) 1917 return -ESHUTDOWN; 1918 return hcd->driver->get_frame_number (hcd); 1919 } 1920 1921 /*-------------------------------------------------------------------------*/ 1922 1923 #ifdef CONFIG_PM 1924 1925 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) 1926 { 1927 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 1928 int status; 1929 int old_state = hcd->state; 1930 1931 dev_dbg(&rhdev->dev, "bus %s%s\n", 1932 (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "suspend"); 1933 if (!hcd->driver->bus_suspend) { 1934 status = -ENOENT; 1935 } else { 1936 hcd->state = HC_STATE_QUIESCING; 1937 status = hcd->driver->bus_suspend(hcd); 1938 } 1939 if (status == 0) { 1940 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 1941 hcd->state = HC_STATE_SUSPENDED; 1942 } else { 1943 hcd->state = old_state; 1944 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 1945 "suspend", status); 1946 } 1947 return status; 1948 } 1949 1950 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) 1951 { 1952 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 1953 int status; 1954 int old_state = hcd->state; 1955 1956 dev_dbg(&rhdev->dev, "usb %s%s\n", 1957 (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "resume"); 1958 if (!hcd->driver->bus_resume) 1959 return -ENOENT; 1960 if (hcd->state == HC_STATE_RUNNING) 1961 return 0; 1962 1963 hcd->state = HC_STATE_RESUMING; 1964 status = hcd->driver->bus_resume(hcd); 1965 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 1966 if (status == 0) { 1967 /* TRSMRCY = 10 msec */ 1968 msleep(10); 1969 usb_set_device_state(rhdev, rhdev->actconfig 1970 ? USB_STATE_CONFIGURED 1971 : USB_STATE_ADDRESS); 1972 hcd->state = HC_STATE_RUNNING; 1973 } else { 1974 hcd->state = old_state; 1975 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 1976 "resume", status); 1977 if (status != -ESHUTDOWN) 1978 usb_hc_died(hcd); 1979 } 1980 return status; 1981 } 1982 1983 #endif /* CONFIG_PM */ 1984 1985 #ifdef CONFIG_USB_SUSPEND 1986 1987 /* Workqueue routine for root-hub remote wakeup */ 1988 static void hcd_resume_work(struct work_struct *work) 1989 { 1990 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 1991 struct usb_device *udev = hcd->self.root_hub; 1992 1993 usb_lock_device(udev); 1994 usb_remote_wakeup(udev); 1995 usb_unlock_device(udev); 1996 } 1997 1998 /** 1999 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 2000 * @hcd: host controller for this root hub 2001 * 2002 * The USB host controller calls this function when its root hub is 2003 * suspended (with the remote wakeup feature enabled) and a remote 2004 * wakeup request is received. The routine submits a workqueue request 2005 * to resume the root hub (that is, manage its downstream ports again). 2006 */ 2007 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 2008 { 2009 unsigned long flags; 2010 2011 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2012 if (hcd->rh_registered) { 2013 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2014 queue_work(pm_wq, &hcd->wakeup_work); 2015 } 2016 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2017 } 2018 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 2019 2020 #endif /* CONFIG_USB_SUSPEND */ 2021 2022 /*-------------------------------------------------------------------------*/ 2023 2024 #ifdef CONFIG_USB_OTG 2025 2026 /** 2027 * usb_bus_start_enum - start immediate enumeration (for OTG) 2028 * @bus: the bus (must use hcd framework) 2029 * @port_num: 1-based number of port; usually bus->otg_port 2030 * Context: in_interrupt() 2031 * 2032 * Starts enumeration, with an immediate reset followed later by 2033 * khubd identifying and possibly configuring the device. 2034 * This is needed by OTG controller drivers, where it helps meet 2035 * HNP protocol timing requirements for starting a port reset. 2036 */ 2037 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 2038 { 2039 struct usb_hcd *hcd; 2040 int status = -EOPNOTSUPP; 2041 2042 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 2043 * boards with root hubs hooked up to internal devices (instead of 2044 * just the OTG port) may need more attention to resetting... 2045 */ 2046 hcd = container_of (bus, struct usb_hcd, self); 2047 if (port_num && hcd->driver->start_port_reset) 2048 status = hcd->driver->start_port_reset(hcd, port_num); 2049 2050 /* run khubd shortly after (first) root port reset finishes; 2051 * it may issue others, until at least 50 msecs have passed. 2052 */ 2053 if (status == 0) 2054 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 2055 return status; 2056 } 2057 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 2058 2059 #endif 2060 2061 /*-------------------------------------------------------------------------*/ 2062 2063 /** 2064 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 2065 * @irq: the IRQ being raised 2066 * @__hcd: pointer to the HCD whose IRQ is being signaled 2067 * 2068 * If the controller isn't HALTed, calls the driver's irq handler. 2069 * Checks whether the controller is now dead. 2070 */ 2071 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 2072 { 2073 struct usb_hcd *hcd = __hcd; 2074 unsigned long flags; 2075 irqreturn_t rc; 2076 2077 /* IRQF_DISABLED doesn't work correctly with shared IRQs 2078 * when the first handler doesn't use it. So let's just 2079 * assume it's never used. 2080 */ 2081 local_irq_save(flags); 2082 2083 if (unlikely(hcd->state == HC_STATE_HALT || !HCD_HW_ACCESSIBLE(hcd))) { 2084 rc = IRQ_NONE; 2085 } else if (hcd->driver->irq(hcd) == IRQ_NONE) { 2086 rc = IRQ_NONE; 2087 } else { 2088 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags); 2089 2090 if (unlikely(hcd->state == HC_STATE_HALT)) 2091 usb_hc_died(hcd); 2092 rc = IRQ_HANDLED; 2093 } 2094 2095 local_irq_restore(flags); 2096 return rc; 2097 } 2098 EXPORT_SYMBOL_GPL(usb_hcd_irq); 2099 2100 /*-------------------------------------------------------------------------*/ 2101 2102 /** 2103 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 2104 * @hcd: pointer to the HCD representing the controller 2105 * 2106 * This is called by bus glue to report a USB host controller that died 2107 * while operations may still have been pending. It's called automatically 2108 * by the PCI glue, so only glue for non-PCI busses should need to call it. 2109 */ 2110 void usb_hc_died (struct usb_hcd *hcd) 2111 { 2112 unsigned long flags; 2113 2114 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 2115 2116 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2117 if (hcd->rh_registered) { 2118 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2119 2120 /* make khubd clean up old urbs and devices */ 2121 usb_set_device_state (hcd->self.root_hub, 2122 USB_STATE_NOTATTACHED); 2123 usb_kick_khubd (hcd->self.root_hub); 2124 } 2125 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2126 } 2127 EXPORT_SYMBOL_GPL (usb_hc_died); 2128 2129 /*-------------------------------------------------------------------------*/ 2130 2131 /** 2132 * usb_create_hcd - create and initialize an HCD structure 2133 * @driver: HC driver that will use this hcd 2134 * @dev: device for this HC, stored in hcd->self.controller 2135 * @bus_name: value to store in hcd->self.bus_name 2136 * Context: !in_interrupt() 2137 * 2138 * Allocate a struct usb_hcd, with extra space at the end for the 2139 * HC driver's private data. Initialize the generic members of the 2140 * hcd structure. 2141 * 2142 * If memory is unavailable, returns NULL. 2143 */ 2144 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver, 2145 struct device *dev, const char *bus_name) 2146 { 2147 struct usb_hcd *hcd; 2148 2149 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 2150 if (!hcd) { 2151 dev_dbg (dev, "hcd alloc failed\n"); 2152 return NULL; 2153 } 2154 dev_set_drvdata(dev, hcd); 2155 kref_init(&hcd->kref); 2156 2157 usb_bus_init(&hcd->self); 2158 hcd->self.controller = dev; 2159 hcd->self.bus_name = bus_name; 2160 hcd->self.uses_dma = (dev->dma_mask != NULL); 2161 2162 init_timer(&hcd->rh_timer); 2163 hcd->rh_timer.function = rh_timer_func; 2164 hcd->rh_timer.data = (unsigned long) hcd; 2165 #ifdef CONFIG_USB_SUSPEND 2166 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 2167 #endif 2168 mutex_init(&hcd->bandwidth_mutex); 2169 2170 hcd->driver = driver; 2171 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 2172 "USB Host Controller"; 2173 return hcd; 2174 } 2175 EXPORT_SYMBOL_GPL(usb_create_hcd); 2176 2177 static void hcd_release (struct kref *kref) 2178 { 2179 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 2180 2181 kfree(hcd); 2182 } 2183 2184 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 2185 { 2186 if (hcd) 2187 kref_get (&hcd->kref); 2188 return hcd; 2189 } 2190 EXPORT_SYMBOL_GPL(usb_get_hcd); 2191 2192 void usb_put_hcd (struct usb_hcd *hcd) 2193 { 2194 if (hcd) 2195 kref_put (&hcd->kref, hcd_release); 2196 } 2197 EXPORT_SYMBOL_GPL(usb_put_hcd); 2198 2199 /** 2200 * usb_add_hcd - finish generic HCD structure initialization and register 2201 * @hcd: the usb_hcd structure to initialize 2202 * @irqnum: Interrupt line to allocate 2203 * @irqflags: Interrupt type flags 2204 * 2205 * Finish the remaining parts of generic HCD initialization: allocate the 2206 * buffers of consistent memory, register the bus, request the IRQ line, 2207 * and call the driver's reset() and start() routines. 2208 */ 2209 int usb_add_hcd(struct usb_hcd *hcd, 2210 unsigned int irqnum, unsigned long irqflags) 2211 { 2212 int retval; 2213 struct usb_device *rhdev; 2214 2215 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 2216 2217 hcd->authorized_default = hcd->wireless? 0 : 1; 2218 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2219 2220 /* HC is in reset state, but accessible. Now do the one-time init, 2221 * bottom up so that hcds can customize the root hubs before khubd 2222 * starts talking to them. (Note, bus id is assigned early too.) 2223 */ 2224 if ((retval = hcd_buffer_create(hcd)) != 0) { 2225 dev_dbg(hcd->self.controller, "pool alloc failed\n"); 2226 return retval; 2227 } 2228 2229 if ((retval = usb_register_bus(&hcd->self)) < 0) 2230 goto err_register_bus; 2231 2232 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) { 2233 dev_err(hcd->self.controller, "unable to allocate root hub\n"); 2234 retval = -ENOMEM; 2235 goto err_allocate_root_hub; 2236 } 2237 hcd->self.root_hub = rhdev; 2238 2239 switch (hcd->driver->flags & HCD_MASK) { 2240 case HCD_USB11: 2241 rhdev->speed = USB_SPEED_FULL; 2242 break; 2243 case HCD_USB2: 2244 rhdev->speed = USB_SPEED_HIGH; 2245 break; 2246 case HCD_USB3: 2247 rhdev->speed = USB_SPEED_SUPER; 2248 break; 2249 default: 2250 goto err_set_rh_speed; 2251 } 2252 2253 /* wakeup flag init defaults to "everything works" for root hubs, 2254 * but drivers can override it in reset() if needed, along with 2255 * recording the overall controller's system wakeup capability. 2256 */ 2257 device_init_wakeup(&rhdev->dev, 1); 2258 2259 /* "reset" is misnamed; its role is now one-time init. the controller 2260 * should already have been reset (and boot firmware kicked off etc). 2261 */ 2262 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) { 2263 dev_err(hcd->self.controller, "can't setup\n"); 2264 goto err_hcd_driver_setup; 2265 } 2266 hcd->rh_pollable = 1; 2267 2268 /* NOTE: root hub and controller capabilities may not be the same */ 2269 if (device_can_wakeup(hcd->self.controller) 2270 && device_can_wakeup(&hcd->self.root_hub->dev)) 2271 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 2272 2273 /* enable irqs just before we start the controller */ 2274 if (hcd->driver->irq) { 2275 2276 /* IRQF_DISABLED doesn't work as advertised when used together 2277 * with IRQF_SHARED. As usb_hcd_irq() will always disable 2278 * interrupts we can remove it here. 2279 */ 2280 if (irqflags & IRQF_SHARED) 2281 irqflags &= ~IRQF_DISABLED; 2282 2283 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 2284 hcd->driver->description, hcd->self.busnum); 2285 if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 2286 hcd->irq_descr, hcd)) != 0) { 2287 dev_err(hcd->self.controller, 2288 "request interrupt %d failed\n", irqnum); 2289 goto err_request_irq; 2290 } 2291 hcd->irq = irqnum; 2292 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 2293 (hcd->driver->flags & HCD_MEMORY) ? 2294 "io mem" : "io base", 2295 (unsigned long long)hcd->rsrc_start); 2296 } else { 2297 hcd->irq = -1; 2298 if (hcd->rsrc_start) 2299 dev_info(hcd->self.controller, "%s 0x%08llx\n", 2300 (hcd->driver->flags & HCD_MEMORY) ? 2301 "io mem" : "io base", 2302 (unsigned long long)hcd->rsrc_start); 2303 } 2304 2305 if ((retval = hcd->driver->start(hcd)) < 0) { 2306 dev_err(hcd->self.controller, "startup error %d\n", retval); 2307 goto err_hcd_driver_start; 2308 } 2309 2310 /* starting here, usbcore will pay attention to this root hub */ 2311 rhdev->bus_mA = min(500u, hcd->power_budget); 2312 if ((retval = register_root_hub(hcd)) != 0) 2313 goto err_register_root_hub; 2314 2315 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2316 if (retval < 0) { 2317 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n", 2318 retval); 2319 goto error_create_attr_group; 2320 } 2321 if (hcd->uses_new_polling && HCD_POLL_RH(hcd)) 2322 usb_hcd_poll_rh_status(hcd); 2323 return retval; 2324 2325 error_create_attr_group: 2326 if (HC_IS_RUNNING(hcd->state)) 2327 hcd->state = HC_STATE_QUIESCING; 2328 spin_lock_irq(&hcd_root_hub_lock); 2329 hcd->rh_registered = 0; 2330 spin_unlock_irq(&hcd_root_hub_lock); 2331 2332 #ifdef CONFIG_USB_SUSPEND 2333 cancel_work_sync(&hcd->wakeup_work); 2334 #endif 2335 mutex_lock(&usb_bus_list_lock); 2336 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2337 mutex_unlock(&usb_bus_list_lock); 2338 err_register_root_hub: 2339 hcd->rh_pollable = 0; 2340 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2341 del_timer_sync(&hcd->rh_timer); 2342 hcd->driver->stop(hcd); 2343 hcd->state = HC_STATE_HALT; 2344 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2345 del_timer_sync(&hcd->rh_timer); 2346 err_hcd_driver_start: 2347 if (hcd->irq >= 0) 2348 free_irq(irqnum, hcd); 2349 err_request_irq: 2350 err_hcd_driver_setup: 2351 err_set_rh_speed: 2352 usb_put_dev(hcd->self.root_hub); 2353 err_allocate_root_hub: 2354 usb_deregister_bus(&hcd->self); 2355 err_register_bus: 2356 hcd_buffer_destroy(hcd); 2357 return retval; 2358 } 2359 EXPORT_SYMBOL_GPL(usb_add_hcd); 2360 2361 /** 2362 * usb_remove_hcd - shutdown processing for generic HCDs 2363 * @hcd: the usb_hcd structure to remove 2364 * Context: !in_interrupt() 2365 * 2366 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 2367 * invoking the HCD's stop() method. 2368 */ 2369 void usb_remove_hcd(struct usb_hcd *hcd) 2370 { 2371 struct usb_device *rhdev = hcd->self.root_hub; 2372 2373 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 2374 2375 usb_get_dev(rhdev); 2376 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2377 2378 if (HC_IS_RUNNING (hcd->state)) 2379 hcd->state = HC_STATE_QUIESCING; 2380 2381 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 2382 spin_lock_irq (&hcd_root_hub_lock); 2383 hcd->rh_registered = 0; 2384 spin_unlock_irq (&hcd_root_hub_lock); 2385 2386 #ifdef CONFIG_USB_SUSPEND 2387 cancel_work_sync(&hcd->wakeup_work); 2388 #endif 2389 2390 mutex_lock(&usb_bus_list_lock); 2391 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2392 mutex_unlock(&usb_bus_list_lock); 2393 2394 /* Prevent any more root-hub status calls from the timer. 2395 * The HCD might still restart the timer (if a port status change 2396 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke 2397 * the hub_status_data() callback. 2398 */ 2399 hcd->rh_pollable = 0; 2400 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2401 del_timer_sync(&hcd->rh_timer); 2402 2403 hcd->driver->stop(hcd); 2404 hcd->state = HC_STATE_HALT; 2405 2406 /* In case the HCD restarted the timer, stop it again. */ 2407 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2408 del_timer_sync(&hcd->rh_timer); 2409 2410 if (hcd->irq >= 0) 2411 free_irq(hcd->irq, hcd); 2412 2413 usb_put_dev(hcd->self.root_hub); 2414 usb_deregister_bus(&hcd->self); 2415 hcd_buffer_destroy(hcd); 2416 } 2417 EXPORT_SYMBOL_GPL(usb_remove_hcd); 2418 2419 void 2420 usb_hcd_platform_shutdown(struct platform_device* dev) 2421 { 2422 struct usb_hcd *hcd = platform_get_drvdata(dev); 2423 2424 if (hcd->driver->shutdown) 2425 hcd->driver->shutdown(hcd); 2426 } 2427 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 2428 2429 /*-------------------------------------------------------------------------*/ 2430 2431 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 2432 2433 struct usb_mon_operations *mon_ops; 2434 2435 /* 2436 * The registration is unlocked. 2437 * We do it this way because we do not want to lock in hot paths. 2438 * 2439 * Notice that the code is minimally error-proof. Because usbmon needs 2440 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 2441 */ 2442 2443 int usb_mon_register (struct usb_mon_operations *ops) 2444 { 2445 2446 if (mon_ops) 2447 return -EBUSY; 2448 2449 mon_ops = ops; 2450 mb(); 2451 return 0; 2452 } 2453 EXPORT_SYMBOL_GPL (usb_mon_register); 2454 2455 void usb_mon_deregister (void) 2456 { 2457 2458 if (mon_ops == NULL) { 2459 printk(KERN_ERR "USB: monitor was not registered\n"); 2460 return; 2461 } 2462 mon_ops = NULL; 2463 mb(); 2464 } 2465 EXPORT_SYMBOL_GPL (usb_mon_deregister); 2466 2467 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ 2468