1 /* 2 * (C) Copyright Linus Torvalds 1999 3 * (C) Copyright Johannes Erdfelt 1999-2001 4 * (C) Copyright Andreas Gal 1999 5 * (C) Copyright Gregory P. Smith 1999 6 * (C) Copyright Deti Fliegl 1999 7 * (C) Copyright Randy Dunlap 2000 8 * (C) Copyright David Brownell 2000-2002 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the 12 * Free Software Foundation; either version 2 of the License, or (at your 13 * option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18 * for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software Foundation, 22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 #include <linux/bcd.h> 26 #include <linux/module.h> 27 #include <linux/version.h> 28 #include <linux/kernel.h> 29 #include <linux/slab.h> 30 #include <linux/completion.h> 31 #include <linux/utsname.h> 32 #include <linux/mm.h> 33 #include <asm/io.h> 34 #include <linux/device.h> 35 #include <linux/dma-mapping.h> 36 #include <linux/mutex.h> 37 #include <asm/irq.h> 38 #include <asm/byteorder.h> 39 #include <asm/unaligned.h> 40 #include <linux/platform_device.h> 41 #include <linux/workqueue.h> 42 #include <linux/pm_runtime.h> 43 #include <linux/types.h> 44 45 #include <linux/usb.h> 46 #include <linux/usb/hcd.h> 47 #include <linux/usb/phy.h> 48 49 #include "usb.h" 50 51 52 /*-------------------------------------------------------------------------*/ 53 54 /* 55 * USB Host Controller Driver framework 56 * 57 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 58 * HCD-specific behaviors/bugs. 59 * 60 * This does error checks, tracks devices and urbs, and delegates to a 61 * "hc_driver" only for code (and data) that really needs to know about 62 * hardware differences. That includes root hub registers, i/o queues, 63 * and so on ... but as little else as possible. 64 * 65 * Shared code includes most of the "root hub" code (these are emulated, 66 * though each HC's hardware works differently) and PCI glue, plus request 67 * tracking overhead. The HCD code should only block on spinlocks or on 68 * hardware handshaking; blocking on software events (such as other kernel 69 * threads releasing resources, or completing actions) is all generic. 70 * 71 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 72 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 73 * only by the hub driver ... and that neither should be seen or used by 74 * usb client device drivers. 75 * 76 * Contributors of ideas or unattributed patches include: David Brownell, 77 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 78 * 79 * HISTORY: 80 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 81 * associated cleanup. "usb_hcd" still != "usb_bus". 82 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 83 */ 84 85 /*-------------------------------------------------------------------------*/ 86 87 /* Keep track of which host controller drivers are loaded */ 88 unsigned long usb_hcds_loaded; 89 EXPORT_SYMBOL_GPL(usb_hcds_loaded); 90 91 /* host controllers we manage */ 92 LIST_HEAD (usb_bus_list); 93 EXPORT_SYMBOL_GPL (usb_bus_list); 94 95 /* used when allocating bus numbers */ 96 #define USB_MAXBUS 64 97 static DECLARE_BITMAP(busmap, USB_MAXBUS); 98 99 /* used when updating list of hcds */ 100 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */ 101 EXPORT_SYMBOL_GPL (usb_bus_list_lock); 102 103 /* used for controlling access to virtual root hubs */ 104 static DEFINE_SPINLOCK(hcd_root_hub_lock); 105 106 /* used when updating an endpoint's URB list */ 107 static DEFINE_SPINLOCK(hcd_urb_list_lock); 108 109 /* used to protect against unlinking URBs after the device is gone */ 110 static DEFINE_SPINLOCK(hcd_urb_unlink_lock); 111 112 /* wait queue for synchronous unlinks */ 113 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 114 115 static inline int is_root_hub(struct usb_device *udev) 116 { 117 return (udev->parent == NULL); 118 } 119 120 /*-------------------------------------------------------------------------*/ 121 122 /* 123 * Sharable chunks of root hub code. 124 */ 125 126 /*-------------------------------------------------------------------------*/ 127 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff)) 128 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff)) 129 130 /* usb 3.0 root hub device descriptor */ 131 static const u8 usb3_rh_dev_descriptor[18] = { 132 0x12, /* __u8 bLength; */ 133 0x01, /* __u8 bDescriptorType; Device */ 134 0x00, 0x03, /* __le16 bcdUSB; v3.0 */ 135 136 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 137 0x00, /* __u8 bDeviceSubClass; */ 138 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */ 139 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 140 141 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 142 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 143 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 144 145 0x03, /* __u8 iManufacturer; */ 146 0x02, /* __u8 iProduct; */ 147 0x01, /* __u8 iSerialNumber; */ 148 0x01 /* __u8 bNumConfigurations; */ 149 }; 150 151 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */ 152 static const u8 usb25_rh_dev_descriptor[18] = { 153 0x12, /* __u8 bLength; */ 154 0x01, /* __u8 bDescriptorType; Device */ 155 0x50, 0x02, /* __le16 bcdUSB; v2.5 */ 156 157 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 158 0x00, /* __u8 bDeviceSubClass; */ 159 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 160 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */ 161 162 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 163 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 164 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 165 166 0x03, /* __u8 iManufacturer; */ 167 0x02, /* __u8 iProduct; */ 168 0x01, /* __u8 iSerialNumber; */ 169 0x01 /* __u8 bNumConfigurations; */ 170 }; 171 172 /* usb 2.0 root hub device descriptor */ 173 static const u8 usb2_rh_dev_descriptor[18] = { 174 0x12, /* __u8 bLength; */ 175 0x01, /* __u8 bDescriptorType; Device */ 176 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 177 178 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 179 0x00, /* __u8 bDeviceSubClass; */ 180 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 181 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 182 183 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 184 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 185 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 186 187 0x03, /* __u8 iManufacturer; */ 188 0x02, /* __u8 iProduct; */ 189 0x01, /* __u8 iSerialNumber; */ 190 0x01 /* __u8 bNumConfigurations; */ 191 }; 192 193 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 194 195 /* usb 1.1 root hub device descriptor */ 196 static const u8 usb11_rh_dev_descriptor[18] = { 197 0x12, /* __u8 bLength; */ 198 0x01, /* __u8 bDescriptorType; Device */ 199 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 200 201 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 202 0x00, /* __u8 bDeviceSubClass; */ 203 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 204 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 205 206 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 207 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 208 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 209 210 0x03, /* __u8 iManufacturer; */ 211 0x02, /* __u8 iProduct; */ 212 0x01, /* __u8 iSerialNumber; */ 213 0x01 /* __u8 bNumConfigurations; */ 214 }; 215 216 217 /*-------------------------------------------------------------------------*/ 218 219 /* Configuration descriptors for our root hubs */ 220 221 static const u8 fs_rh_config_descriptor[] = { 222 223 /* one configuration */ 224 0x09, /* __u8 bLength; */ 225 0x02, /* __u8 bDescriptorType; Configuration */ 226 0x19, 0x00, /* __le16 wTotalLength; */ 227 0x01, /* __u8 bNumInterfaces; (1) */ 228 0x01, /* __u8 bConfigurationValue; */ 229 0x00, /* __u8 iConfiguration; */ 230 0xc0, /* __u8 bmAttributes; 231 Bit 7: must be set, 232 6: Self-powered, 233 5: Remote wakeup, 234 4..0: resvd */ 235 0x00, /* __u8 MaxPower; */ 236 237 /* USB 1.1: 238 * USB 2.0, single TT organization (mandatory): 239 * one interface, protocol 0 240 * 241 * USB 2.0, multiple TT organization (optional): 242 * two interfaces, protocols 1 (like single TT) 243 * and 2 (multiple TT mode) ... config is 244 * sometimes settable 245 * NOT IMPLEMENTED 246 */ 247 248 /* one interface */ 249 0x09, /* __u8 if_bLength; */ 250 0x04, /* __u8 if_bDescriptorType; Interface */ 251 0x00, /* __u8 if_bInterfaceNumber; */ 252 0x00, /* __u8 if_bAlternateSetting; */ 253 0x01, /* __u8 if_bNumEndpoints; */ 254 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 255 0x00, /* __u8 if_bInterfaceSubClass; */ 256 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 257 0x00, /* __u8 if_iInterface; */ 258 259 /* one endpoint (status change endpoint) */ 260 0x07, /* __u8 ep_bLength; */ 261 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 262 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 263 0x03, /* __u8 ep_bmAttributes; Interrupt */ 264 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 265 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 266 }; 267 268 static const u8 hs_rh_config_descriptor[] = { 269 270 /* one configuration */ 271 0x09, /* __u8 bLength; */ 272 0x02, /* __u8 bDescriptorType; Configuration */ 273 0x19, 0x00, /* __le16 wTotalLength; */ 274 0x01, /* __u8 bNumInterfaces; (1) */ 275 0x01, /* __u8 bConfigurationValue; */ 276 0x00, /* __u8 iConfiguration; */ 277 0xc0, /* __u8 bmAttributes; 278 Bit 7: must be set, 279 6: Self-powered, 280 5: Remote wakeup, 281 4..0: resvd */ 282 0x00, /* __u8 MaxPower; */ 283 284 /* USB 1.1: 285 * USB 2.0, single TT organization (mandatory): 286 * one interface, protocol 0 287 * 288 * USB 2.0, multiple TT organization (optional): 289 * two interfaces, protocols 1 (like single TT) 290 * and 2 (multiple TT mode) ... config is 291 * sometimes settable 292 * NOT IMPLEMENTED 293 */ 294 295 /* one interface */ 296 0x09, /* __u8 if_bLength; */ 297 0x04, /* __u8 if_bDescriptorType; Interface */ 298 0x00, /* __u8 if_bInterfaceNumber; */ 299 0x00, /* __u8 if_bAlternateSetting; */ 300 0x01, /* __u8 if_bNumEndpoints; */ 301 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 302 0x00, /* __u8 if_bInterfaceSubClass; */ 303 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 304 0x00, /* __u8 if_iInterface; */ 305 306 /* one endpoint (status change endpoint) */ 307 0x07, /* __u8 ep_bLength; */ 308 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 309 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 310 0x03, /* __u8 ep_bmAttributes; Interrupt */ 311 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 312 * see hub.c:hub_configure() for details. */ 313 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 314 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 315 }; 316 317 static const u8 ss_rh_config_descriptor[] = { 318 /* one configuration */ 319 0x09, /* __u8 bLength; */ 320 0x02, /* __u8 bDescriptorType; Configuration */ 321 0x1f, 0x00, /* __le16 wTotalLength; */ 322 0x01, /* __u8 bNumInterfaces; (1) */ 323 0x01, /* __u8 bConfigurationValue; */ 324 0x00, /* __u8 iConfiguration; */ 325 0xc0, /* __u8 bmAttributes; 326 Bit 7: must be set, 327 6: Self-powered, 328 5: Remote wakeup, 329 4..0: resvd */ 330 0x00, /* __u8 MaxPower; */ 331 332 /* one interface */ 333 0x09, /* __u8 if_bLength; */ 334 0x04, /* __u8 if_bDescriptorType; Interface */ 335 0x00, /* __u8 if_bInterfaceNumber; */ 336 0x00, /* __u8 if_bAlternateSetting; */ 337 0x01, /* __u8 if_bNumEndpoints; */ 338 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 339 0x00, /* __u8 if_bInterfaceSubClass; */ 340 0x00, /* __u8 if_bInterfaceProtocol; */ 341 0x00, /* __u8 if_iInterface; */ 342 343 /* one endpoint (status change endpoint) */ 344 0x07, /* __u8 ep_bLength; */ 345 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 346 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 347 0x03, /* __u8 ep_bmAttributes; Interrupt */ 348 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 349 * see hub.c:hub_configure() for details. */ 350 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 351 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 352 353 /* one SuperSpeed endpoint companion descriptor */ 354 0x06, /* __u8 ss_bLength */ 355 0x30, /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */ 356 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */ 357 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */ 358 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */ 359 }; 360 361 /* authorized_default behaviour: 362 * -1 is authorized for all devices except wireless (old behaviour) 363 * 0 is unauthorized for all devices 364 * 1 is authorized for all devices 365 */ 366 static int authorized_default = -1; 367 module_param(authorized_default, int, S_IRUGO|S_IWUSR); 368 MODULE_PARM_DESC(authorized_default, 369 "Default USB device authorization: 0 is not authorized, 1 is " 370 "authorized, -1 is authorized except for wireless USB (default, " 371 "old behaviour"); 372 /*-------------------------------------------------------------------------*/ 373 374 /** 375 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors 376 * @s: Null-terminated ASCII (actually ISO-8859-1) string 377 * @buf: Buffer for USB string descriptor (header + UTF-16LE) 378 * @len: Length (in bytes; may be odd) of descriptor buffer. 379 * 380 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len, 381 * whichever is less. 382 * 383 * Note: 384 * USB String descriptors can contain at most 126 characters; input 385 * strings longer than that are truncated. 386 */ 387 static unsigned 388 ascii2desc(char const *s, u8 *buf, unsigned len) 389 { 390 unsigned n, t = 2 + 2*strlen(s); 391 392 if (t > 254) 393 t = 254; /* Longest possible UTF string descriptor */ 394 if (len > t) 395 len = t; 396 397 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */ 398 399 n = len; 400 while (n--) { 401 *buf++ = t; 402 if (!n--) 403 break; 404 *buf++ = t >> 8; 405 t = (unsigned char)*s++; 406 } 407 return len; 408 } 409 410 /** 411 * rh_string() - provides string descriptors for root hub 412 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor) 413 * @hcd: the host controller for this root hub 414 * @data: buffer for output packet 415 * @len: length of the provided buffer 416 * 417 * Produces either a manufacturer, product or serial number string for the 418 * virtual root hub device. 419 * 420 * Return: The number of bytes filled in: the length of the descriptor or 421 * of the provided buffer, whichever is less. 422 */ 423 static unsigned 424 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len) 425 { 426 char buf[100]; 427 char const *s; 428 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04}; 429 430 /* language ids */ 431 switch (id) { 432 case 0: 433 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */ 434 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */ 435 if (len > 4) 436 len = 4; 437 memcpy(data, langids, len); 438 return len; 439 case 1: 440 /* Serial number */ 441 s = hcd->self.bus_name; 442 break; 443 case 2: 444 /* Product name */ 445 s = hcd->product_desc; 446 break; 447 case 3: 448 /* Manufacturer */ 449 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 450 init_utsname()->release, hcd->driver->description); 451 s = buf; 452 break; 453 default: 454 /* Can't happen; caller guarantees it */ 455 return 0; 456 } 457 458 return ascii2desc(s, data, len); 459 } 460 461 462 /* Root hub control transfers execute synchronously */ 463 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 464 { 465 struct usb_ctrlrequest *cmd; 466 u16 typeReq, wValue, wIndex, wLength; 467 u8 *ubuf = urb->transfer_buffer; 468 unsigned len = 0; 469 int status; 470 u8 patch_wakeup = 0; 471 u8 patch_protocol = 0; 472 u16 tbuf_size; 473 u8 *tbuf = NULL; 474 const u8 *bufp; 475 476 might_sleep(); 477 478 spin_lock_irq(&hcd_root_hub_lock); 479 status = usb_hcd_link_urb_to_ep(hcd, urb); 480 spin_unlock_irq(&hcd_root_hub_lock); 481 if (status) 482 return status; 483 urb->hcpriv = hcd; /* Indicate it's queued */ 484 485 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 486 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 487 wValue = le16_to_cpu (cmd->wValue); 488 wIndex = le16_to_cpu (cmd->wIndex); 489 wLength = le16_to_cpu (cmd->wLength); 490 491 if (wLength > urb->transfer_buffer_length) 492 goto error; 493 494 /* 495 * tbuf should be at least as big as the 496 * USB hub descriptor. 497 */ 498 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength); 499 tbuf = kzalloc(tbuf_size, GFP_KERNEL); 500 if (!tbuf) 501 return -ENOMEM; 502 503 bufp = tbuf; 504 505 506 urb->actual_length = 0; 507 switch (typeReq) { 508 509 /* DEVICE REQUESTS */ 510 511 /* The root hub's remote wakeup enable bit is implemented using 512 * driver model wakeup flags. If this system supports wakeup 513 * through USB, userspace may change the default "allow wakeup" 514 * policy through sysfs or these calls. 515 * 516 * Most root hubs support wakeup from downstream devices, for 517 * runtime power management (disabling USB clocks and reducing 518 * VBUS power usage). However, not all of them do so; silicon, 519 * board, and BIOS bugs here are not uncommon, so these can't 520 * be treated quite like external hubs. 521 * 522 * Likewise, not all root hubs will pass wakeup events upstream, 523 * to wake up the whole system. So don't assume root hub and 524 * controller capabilities are identical. 525 */ 526 527 case DeviceRequest | USB_REQ_GET_STATUS: 528 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev) 529 << USB_DEVICE_REMOTE_WAKEUP) 530 | (1 << USB_DEVICE_SELF_POWERED); 531 tbuf[1] = 0; 532 len = 2; 533 break; 534 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 535 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 536 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 537 else 538 goto error; 539 break; 540 case DeviceOutRequest | USB_REQ_SET_FEATURE: 541 if (device_can_wakeup(&hcd->self.root_hub->dev) 542 && wValue == USB_DEVICE_REMOTE_WAKEUP) 543 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 544 else 545 goto error; 546 break; 547 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 548 tbuf[0] = 1; 549 len = 1; 550 /* FALLTHROUGH */ 551 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 552 break; 553 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 554 switch (wValue & 0xff00) { 555 case USB_DT_DEVICE << 8: 556 switch (hcd->speed) { 557 case HCD_USB3: 558 bufp = usb3_rh_dev_descriptor; 559 break; 560 case HCD_USB25: 561 bufp = usb25_rh_dev_descriptor; 562 break; 563 case HCD_USB2: 564 bufp = usb2_rh_dev_descriptor; 565 break; 566 case HCD_USB11: 567 bufp = usb11_rh_dev_descriptor; 568 break; 569 default: 570 goto error; 571 } 572 len = 18; 573 if (hcd->has_tt) 574 patch_protocol = 1; 575 break; 576 case USB_DT_CONFIG << 8: 577 switch (hcd->speed) { 578 case HCD_USB3: 579 bufp = ss_rh_config_descriptor; 580 len = sizeof ss_rh_config_descriptor; 581 break; 582 case HCD_USB25: 583 case HCD_USB2: 584 bufp = hs_rh_config_descriptor; 585 len = sizeof hs_rh_config_descriptor; 586 break; 587 case HCD_USB11: 588 bufp = fs_rh_config_descriptor; 589 len = sizeof fs_rh_config_descriptor; 590 break; 591 default: 592 goto error; 593 } 594 if (device_can_wakeup(&hcd->self.root_hub->dev)) 595 patch_wakeup = 1; 596 break; 597 case USB_DT_STRING << 8: 598 if ((wValue & 0xff) < 4) 599 urb->actual_length = rh_string(wValue & 0xff, 600 hcd, ubuf, wLength); 601 else /* unsupported IDs --> "protocol stall" */ 602 goto error; 603 break; 604 case USB_DT_BOS << 8: 605 goto nongeneric; 606 default: 607 goto error; 608 } 609 break; 610 case DeviceRequest | USB_REQ_GET_INTERFACE: 611 tbuf[0] = 0; 612 len = 1; 613 /* FALLTHROUGH */ 614 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 615 break; 616 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 617 /* wValue == urb->dev->devaddr */ 618 dev_dbg (hcd->self.controller, "root hub device address %d\n", 619 wValue); 620 break; 621 622 /* INTERFACE REQUESTS (no defined feature/status flags) */ 623 624 /* ENDPOINT REQUESTS */ 625 626 case EndpointRequest | USB_REQ_GET_STATUS: 627 /* ENDPOINT_HALT flag */ 628 tbuf[0] = 0; 629 tbuf[1] = 0; 630 len = 2; 631 /* FALLTHROUGH */ 632 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 633 case EndpointOutRequest | USB_REQ_SET_FEATURE: 634 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 635 break; 636 637 /* CLASS REQUESTS (and errors) */ 638 639 default: 640 nongeneric: 641 /* non-generic request */ 642 switch (typeReq) { 643 case GetHubStatus: 644 case GetPortStatus: 645 len = 4; 646 break; 647 case GetHubDescriptor: 648 len = sizeof (struct usb_hub_descriptor); 649 break; 650 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 651 /* len is returned by hub_control */ 652 break; 653 } 654 status = hcd->driver->hub_control (hcd, 655 typeReq, wValue, wIndex, 656 tbuf, wLength); 657 658 if (typeReq == GetHubDescriptor) 659 usb_hub_adjust_deviceremovable(hcd->self.root_hub, 660 (struct usb_hub_descriptor *)tbuf); 661 break; 662 error: 663 /* "protocol stall" on error */ 664 status = -EPIPE; 665 } 666 667 if (status < 0) { 668 len = 0; 669 if (status != -EPIPE) { 670 dev_dbg (hcd->self.controller, 671 "CTRL: TypeReq=0x%x val=0x%x " 672 "idx=0x%x len=%d ==> %d\n", 673 typeReq, wValue, wIndex, 674 wLength, status); 675 } 676 } else if (status > 0) { 677 /* hub_control may return the length of data copied. */ 678 len = status; 679 status = 0; 680 } 681 if (len) { 682 if (urb->transfer_buffer_length < len) 683 len = urb->transfer_buffer_length; 684 urb->actual_length = len; 685 /* always USB_DIR_IN, toward host */ 686 memcpy (ubuf, bufp, len); 687 688 /* report whether RH hardware supports remote wakeup */ 689 if (patch_wakeup && 690 len > offsetof (struct usb_config_descriptor, 691 bmAttributes)) 692 ((struct usb_config_descriptor *)ubuf)->bmAttributes 693 |= USB_CONFIG_ATT_WAKEUP; 694 695 /* report whether RH hardware has an integrated TT */ 696 if (patch_protocol && 697 len > offsetof(struct usb_device_descriptor, 698 bDeviceProtocol)) 699 ((struct usb_device_descriptor *) ubuf)-> 700 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT; 701 } 702 703 kfree(tbuf); 704 705 /* any errors get returned through the urb completion */ 706 spin_lock_irq(&hcd_root_hub_lock); 707 usb_hcd_unlink_urb_from_ep(hcd, urb); 708 usb_hcd_giveback_urb(hcd, urb, status); 709 spin_unlock_irq(&hcd_root_hub_lock); 710 return 0; 711 } 712 713 /*-------------------------------------------------------------------------*/ 714 715 /* 716 * Root Hub interrupt transfers are polled using a timer if the 717 * driver requests it; otherwise the driver is responsible for 718 * calling usb_hcd_poll_rh_status() when an event occurs. 719 * 720 * Completions are called in_interrupt(), but they may or may not 721 * be in_irq(). 722 */ 723 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 724 { 725 struct urb *urb; 726 int length; 727 unsigned long flags; 728 char buffer[6]; /* Any root hubs with > 31 ports? */ 729 730 if (unlikely(!hcd->rh_pollable)) 731 return; 732 if (!hcd->uses_new_polling && !hcd->status_urb) 733 return; 734 735 length = hcd->driver->hub_status_data(hcd, buffer); 736 if (length > 0) { 737 738 /* try to complete the status urb */ 739 spin_lock_irqsave(&hcd_root_hub_lock, flags); 740 urb = hcd->status_urb; 741 if (urb) { 742 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 743 hcd->status_urb = NULL; 744 urb->actual_length = length; 745 memcpy(urb->transfer_buffer, buffer, length); 746 747 usb_hcd_unlink_urb_from_ep(hcd, urb); 748 usb_hcd_giveback_urb(hcd, urb, 0); 749 } else { 750 length = 0; 751 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 752 } 753 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 754 } 755 756 /* The USB 2.0 spec says 256 ms. This is close enough and won't 757 * exceed that limit if HZ is 100. The math is more clunky than 758 * maybe expected, this is to make sure that all timers for USB devices 759 * fire at the same time to give the CPU a break in between */ 760 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) : 761 (length == 0 && hcd->status_urb != NULL)) 762 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 763 } 764 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 765 766 /* timer callback */ 767 static void rh_timer_func (unsigned long _hcd) 768 { 769 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd); 770 } 771 772 /*-------------------------------------------------------------------------*/ 773 774 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 775 { 776 int retval; 777 unsigned long flags; 778 unsigned len = 1 + (urb->dev->maxchild / 8); 779 780 spin_lock_irqsave (&hcd_root_hub_lock, flags); 781 if (hcd->status_urb || urb->transfer_buffer_length < len) { 782 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 783 retval = -EINVAL; 784 goto done; 785 } 786 787 retval = usb_hcd_link_urb_to_ep(hcd, urb); 788 if (retval) 789 goto done; 790 791 hcd->status_urb = urb; 792 urb->hcpriv = hcd; /* indicate it's queued */ 793 if (!hcd->uses_new_polling) 794 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 795 796 /* If a status change has already occurred, report it ASAP */ 797 else if (HCD_POLL_PENDING(hcd)) 798 mod_timer(&hcd->rh_timer, jiffies); 799 retval = 0; 800 done: 801 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 802 return retval; 803 } 804 805 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 806 { 807 if (usb_endpoint_xfer_int(&urb->ep->desc)) 808 return rh_queue_status (hcd, urb); 809 if (usb_endpoint_xfer_control(&urb->ep->desc)) 810 return rh_call_control (hcd, urb); 811 return -EINVAL; 812 } 813 814 /*-------------------------------------------------------------------------*/ 815 816 /* Unlinks of root-hub control URBs are legal, but they don't do anything 817 * since these URBs always execute synchronously. 818 */ 819 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 820 { 821 unsigned long flags; 822 int rc; 823 824 spin_lock_irqsave(&hcd_root_hub_lock, flags); 825 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 826 if (rc) 827 goto done; 828 829 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 830 ; /* Do nothing */ 831 832 } else { /* Status URB */ 833 if (!hcd->uses_new_polling) 834 del_timer (&hcd->rh_timer); 835 if (urb == hcd->status_urb) { 836 hcd->status_urb = NULL; 837 usb_hcd_unlink_urb_from_ep(hcd, urb); 838 usb_hcd_giveback_urb(hcd, urb, status); 839 } 840 } 841 done: 842 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 843 return rc; 844 } 845 846 847 848 /* 849 * Show & store the current value of authorized_default 850 */ 851 static ssize_t authorized_default_show(struct device *dev, 852 struct device_attribute *attr, char *buf) 853 { 854 struct usb_device *rh_usb_dev = to_usb_device(dev); 855 struct usb_bus *usb_bus = rh_usb_dev->bus; 856 struct usb_hcd *usb_hcd; 857 858 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */ 859 return -ENODEV; 860 usb_hcd = bus_to_hcd(usb_bus); 861 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default); 862 } 863 864 static ssize_t authorized_default_store(struct device *dev, 865 struct device_attribute *attr, 866 const char *buf, size_t size) 867 { 868 ssize_t result; 869 unsigned val; 870 struct usb_device *rh_usb_dev = to_usb_device(dev); 871 struct usb_bus *usb_bus = rh_usb_dev->bus; 872 struct usb_hcd *usb_hcd; 873 874 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */ 875 return -ENODEV; 876 usb_hcd = bus_to_hcd(usb_bus); 877 result = sscanf(buf, "%u\n", &val); 878 if (result == 1) { 879 usb_hcd->authorized_default = val ? 1 : 0; 880 result = size; 881 } else { 882 result = -EINVAL; 883 } 884 return result; 885 } 886 static DEVICE_ATTR_RW(authorized_default); 887 888 /* Group all the USB bus attributes */ 889 static struct attribute *usb_bus_attrs[] = { 890 &dev_attr_authorized_default.attr, 891 NULL, 892 }; 893 894 static struct attribute_group usb_bus_attr_group = { 895 .name = NULL, /* we want them in the same directory */ 896 .attrs = usb_bus_attrs, 897 }; 898 899 900 901 /*-------------------------------------------------------------------------*/ 902 903 /** 904 * usb_bus_init - shared initialization code 905 * @bus: the bus structure being initialized 906 * 907 * This code is used to initialize a usb_bus structure, memory for which is 908 * separately managed. 909 */ 910 static void usb_bus_init (struct usb_bus *bus) 911 { 912 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 913 914 bus->devnum_next = 1; 915 916 bus->root_hub = NULL; 917 bus->busnum = -1; 918 bus->bandwidth_allocated = 0; 919 bus->bandwidth_int_reqs = 0; 920 bus->bandwidth_isoc_reqs = 0; 921 mutex_init(&bus->usb_address0_mutex); 922 923 INIT_LIST_HEAD (&bus->bus_list); 924 } 925 926 /*-------------------------------------------------------------------------*/ 927 928 /** 929 * usb_register_bus - registers the USB host controller with the usb core 930 * @bus: pointer to the bus to register 931 * Context: !in_interrupt() 932 * 933 * Assigns a bus number, and links the controller into usbcore data 934 * structures so that it can be seen by scanning the bus list. 935 * 936 * Return: 0 if successful. A negative error code otherwise. 937 */ 938 static int usb_register_bus(struct usb_bus *bus) 939 { 940 int result = -E2BIG; 941 int busnum; 942 943 mutex_lock(&usb_bus_list_lock); 944 busnum = find_next_zero_bit(busmap, USB_MAXBUS, 1); 945 if (busnum >= USB_MAXBUS) { 946 printk (KERN_ERR "%s: too many buses\n", usbcore_name); 947 goto error_find_busnum; 948 } 949 set_bit(busnum, busmap); 950 bus->busnum = busnum; 951 952 /* Add it to the local list of buses */ 953 list_add (&bus->bus_list, &usb_bus_list); 954 mutex_unlock(&usb_bus_list_lock); 955 956 usb_notify_add_bus(bus); 957 958 dev_info (bus->controller, "new USB bus registered, assigned bus " 959 "number %d\n", bus->busnum); 960 return 0; 961 962 error_find_busnum: 963 mutex_unlock(&usb_bus_list_lock); 964 return result; 965 } 966 967 /** 968 * usb_deregister_bus - deregisters the USB host controller 969 * @bus: pointer to the bus to deregister 970 * Context: !in_interrupt() 971 * 972 * Recycles the bus number, and unlinks the controller from usbcore data 973 * structures so that it won't be seen by scanning the bus list. 974 */ 975 static void usb_deregister_bus (struct usb_bus *bus) 976 { 977 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 978 979 /* 980 * NOTE: make sure that all the devices are removed by the 981 * controller code, as well as having it call this when cleaning 982 * itself up 983 */ 984 mutex_lock(&usb_bus_list_lock); 985 list_del (&bus->bus_list); 986 mutex_unlock(&usb_bus_list_lock); 987 988 usb_notify_remove_bus(bus); 989 990 clear_bit(bus->busnum, busmap); 991 } 992 993 /** 994 * register_root_hub - called by usb_add_hcd() to register a root hub 995 * @hcd: host controller for this root hub 996 * 997 * This function registers the root hub with the USB subsystem. It sets up 998 * the device properly in the device tree and then calls usb_new_device() 999 * to register the usb device. It also assigns the root hub's USB address 1000 * (always 1). 1001 * 1002 * Return: 0 if successful. A negative error code otherwise. 1003 */ 1004 static int register_root_hub(struct usb_hcd *hcd) 1005 { 1006 struct device *parent_dev = hcd->self.controller; 1007 struct usb_device *usb_dev = hcd->self.root_hub; 1008 const int devnum = 1; 1009 int retval; 1010 1011 usb_dev->devnum = devnum; 1012 usb_dev->bus->devnum_next = devnum + 1; 1013 memset (&usb_dev->bus->devmap.devicemap, 0, 1014 sizeof usb_dev->bus->devmap.devicemap); 1015 set_bit (devnum, usb_dev->bus->devmap.devicemap); 1016 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 1017 1018 mutex_lock(&usb_bus_list_lock); 1019 1020 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); 1021 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); 1022 if (retval != sizeof usb_dev->descriptor) { 1023 mutex_unlock(&usb_bus_list_lock); 1024 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 1025 dev_name(&usb_dev->dev), retval); 1026 return (retval < 0) ? retval : -EMSGSIZE; 1027 } 1028 if (usb_dev->speed == USB_SPEED_SUPER) { 1029 retval = usb_get_bos_descriptor(usb_dev); 1030 if (retval < 0) { 1031 mutex_unlock(&usb_bus_list_lock); 1032 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n", 1033 dev_name(&usb_dev->dev), retval); 1034 return retval; 1035 } 1036 } 1037 1038 retval = usb_new_device (usb_dev); 1039 if (retval) { 1040 dev_err (parent_dev, "can't register root hub for %s, %d\n", 1041 dev_name(&usb_dev->dev), retval); 1042 } else { 1043 spin_lock_irq (&hcd_root_hub_lock); 1044 hcd->rh_registered = 1; 1045 spin_unlock_irq (&hcd_root_hub_lock); 1046 1047 /* Did the HC die before the root hub was registered? */ 1048 if (HCD_DEAD(hcd)) 1049 usb_hc_died (hcd); /* This time clean up */ 1050 } 1051 mutex_unlock(&usb_bus_list_lock); 1052 1053 return retval; 1054 } 1055 1056 /* 1057 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal 1058 * @bus: the bus which the root hub belongs to 1059 * @portnum: the port which is being resumed 1060 * 1061 * HCDs should call this function when they know that a resume signal is 1062 * being sent to a root-hub port. The root hub will be prevented from 1063 * going into autosuspend until usb_hcd_end_port_resume() is called. 1064 * 1065 * The bus's private lock must be held by the caller. 1066 */ 1067 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum) 1068 { 1069 unsigned bit = 1 << portnum; 1070 1071 if (!(bus->resuming_ports & bit)) { 1072 bus->resuming_ports |= bit; 1073 pm_runtime_get_noresume(&bus->root_hub->dev); 1074 } 1075 } 1076 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume); 1077 1078 /* 1079 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal 1080 * @bus: the bus which the root hub belongs to 1081 * @portnum: the port which is being resumed 1082 * 1083 * HCDs should call this function when they know that a resume signal has 1084 * stopped being sent to a root-hub port. The root hub will be allowed to 1085 * autosuspend again. 1086 * 1087 * The bus's private lock must be held by the caller. 1088 */ 1089 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum) 1090 { 1091 unsigned bit = 1 << portnum; 1092 1093 if (bus->resuming_ports & bit) { 1094 bus->resuming_ports &= ~bit; 1095 pm_runtime_put_noidle(&bus->root_hub->dev); 1096 } 1097 } 1098 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume); 1099 1100 /*-------------------------------------------------------------------------*/ 1101 1102 /** 1103 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 1104 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 1105 * @is_input: true iff the transaction sends data to the host 1106 * @isoc: true for isochronous transactions, false for interrupt ones 1107 * @bytecount: how many bytes in the transaction. 1108 * 1109 * Return: Approximate bus time in nanoseconds for a periodic transaction. 1110 * 1111 * Note: 1112 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 1113 * scheduled in software, this function is only used for such scheduling. 1114 */ 1115 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 1116 { 1117 unsigned long tmp; 1118 1119 switch (speed) { 1120 case USB_SPEED_LOW: /* INTR only */ 1121 if (is_input) { 1122 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 1123 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1124 } else { 1125 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 1126 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1127 } 1128 case USB_SPEED_FULL: /* ISOC or INTR */ 1129 if (isoc) { 1130 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1131 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp; 1132 } else { 1133 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1134 return 9107L + BW_HOST_DELAY + tmp; 1135 } 1136 case USB_SPEED_HIGH: /* ISOC or INTR */ 1137 /* FIXME adjust for input vs output */ 1138 if (isoc) 1139 tmp = HS_NSECS_ISO (bytecount); 1140 else 1141 tmp = HS_NSECS (bytecount); 1142 return tmp; 1143 default: 1144 pr_debug ("%s: bogus device speed!\n", usbcore_name); 1145 return -1; 1146 } 1147 } 1148 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 1149 1150 1151 /*-------------------------------------------------------------------------*/ 1152 1153 /* 1154 * Generic HC operations. 1155 */ 1156 1157 /*-------------------------------------------------------------------------*/ 1158 1159 /** 1160 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 1161 * @hcd: host controller to which @urb was submitted 1162 * @urb: URB being submitted 1163 * 1164 * Host controller drivers should call this routine in their enqueue() 1165 * method. The HCD's private spinlock must be held and interrupts must 1166 * be disabled. The actions carried out here are required for URB 1167 * submission, as well as for endpoint shutdown and for usb_kill_urb. 1168 * 1169 * Return: 0 for no error, otherwise a negative error code (in which case 1170 * the enqueue() method must fail). If no error occurs but enqueue() fails 1171 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 1172 * the private spinlock and returning. 1173 */ 1174 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1175 { 1176 int rc = 0; 1177 1178 spin_lock(&hcd_urb_list_lock); 1179 1180 /* Check that the URB isn't being killed */ 1181 if (unlikely(atomic_read(&urb->reject))) { 1182 rc = -EPERM; 1183 goto done; 1184 } 1185 1186 if (unlikely(!urb->ep->enabled)) { 1187 rc = -ENOENT; 1188 goto done; 1189 } 1190 1191 if (unlikely(!urb->dev->can_submit)) { 1192 rc = -EHOSTUNREACH; 1193 goto done; 1194 } 1195 1196 /* 1197 * Check the host controller's state and add the URB to the 1198 * endpoint's queue. 1199 */ 1200 if (HCD_RH_RUNNING(hcd)) { 1201 urb->unlinked = 0; 1202 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1203 } else { 1204 rc = -ESHUTDOWN; 1205 goto done; 1206 } 1207 done: 1208 spin_unlock(&hcd_urb_list_lock); 1209 return rc; 1210 } 1211 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1212 1213 /** 1214 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1215 * @hcd: host controller to which @urb was submitted 1216 * @urb: URB being checked for unlinkability 1217 * @status: error code to store in @urb if the unlink succeeds 1218 * 1219 * Host controller drivers should call this routine in their dequeue() 1220 * method. The HCD's private spinlock must be held and interrupts must 1221 * be disabled. The actions carried out here are required for making 1222 * sure than an unlink is valid. 1223 * 1224 * Return: 0 for no error, otherwise a negative error code (in which case 1225 * the dequeue() method must fail). The possible error codes are: 1226 * 1227 * -EIDRM: @urb was not submitted or has already completed. 1228 * The completion function may not have been called yet. 1229 * 1230 * -EBUSY: @urb has already been unlinked. 1231 */ 1232 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1233 int status) 1234 { 1235 struct list_head *tmp; 1236 1237 /* insist the urb is still queued */ 1238 list_for_each(tmp, &urb->ep->urb_list) { 1239 if (tmp == &urb->urb_list) 1240 break; 1241 } 1242 if (tmp != &urb->urb_list) 1243 return -EIDRM; 1244 1245 /* Any status except -EINPROGRESS means something already started to 1246 * unlink this URB from the hardware. So there's no more work to do. 1247 */ 1248 if (urb->unlinked) 1249 return -EBUSY; 1250 urb->unlinked = status; 1251 return 0; 1252 } 1253 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1254 1255 /** 1256 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1257 * @hcd: host controller to which @urb was submitted 1258 * @urb: URB being unlinked 1259 * 1260 * Host controller drivers should call this routine before calling 1261 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1262 * interrupts must be disabled. The actions carried out here are required 1263 * for URB completion. 1264 */ 1265 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1266 { 1267 /* clear all state linking urb to this dev (and hcd) */ 1268 spin_lock(&hcd_urb_list_lock); 1269 list_del_init(&urb->urb_list); 1270 spin_unlock(&hcd_urb_list_lock); 1271 } 1272 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1273 1274 /* 1275 * Some usb host controllers can only perform dma using a small SRAM area. 1276 * The usb core itself is however optimized for host controllers that can dma 1277 * using regular system memory - like pci devices doing bus mastering. 1278 * 1279 * To support host controllers with limited dma capabilites we provide dma 1280 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag. 1281 * For this to work properly the host controller code must first use the 1282 * function dma_declare_coherent_memory() to point out which memory area 1283 * that should be used for dma allocations. 1284 * 1285 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for 1286 * dma using dma_alloc_coherent() which in turn allocates from the memory 1287 * area pointed out with dma_declare_coherent_memory(). 1288 * 1289 * So, to summarize... 1290 * 1291 * - We need "local" memory, canonical example being 1292 * a small SRAM on a discrete controller being the 1293 * only memory that the controller can read ... 1294 * (a) "normal" kernel memory is no good, and 1295 * (b) there's not enough to share 1296 * 1297 * - The only *portable* hook for such stuff in the 1298 * DMA framework is dma_declare_coherent_memory() 1299 * 1300 * - So we use that, even though the primary requirement 1301 * is that the memory be "local" (hence addressable 1302 * by that device), not "coherent". 1303 * 1304 */ 1305 1306 static int hcd_alloc_coherent(struct usb_bus *bus, 1307 gfp_t mem_flags, dma_addr_t *dma_handle, 1308 void **vaddr_handle, size_t size, 1309 enum dma_data_direction dir) 1310 { 1311 unsigned char *vaddr; 1312 1313 if (*vaddr_handle == NULL) { 1314 WARN_ON_ONCE(1); 1315 return -EFAULT; 1316 } 1317 1318 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr), 1319 mem_flags, dma_handle); 1320 if (!vaddr) 1321 return -ENOMEM; 1322 1323 /* 1324 * Store the virtual address of the buffer at the end 1325 * of the allocated dma buffer. The size of the buffer 1326 * may be uneven so use unaligned functions instead 1327 * of just rounding up. It makes sense to optimize for 1328 * memory footprint over access speed since the amount 1329 * of memory available for dma may be limited. 1330 */ 1331 put_unaligned((unsigned long)*vaddr_handle, 1332 (unsigned long *)(vaddr + size)); 1333 1334 if (dir == DMA_TO_DEVICE) 1335 memcpy(vaddr, *vaddr_handle, size); 1336 1337 *vaddr_handle = vaddr; 1338 return 0; 1339 } 1340 1341 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1342 void **vaddr_handle, size_t size, 1343 enum dma_data_direction dir) 1344 { 1345 unsigned char *vaddr = *vaddr_handle; 1346 1347 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1348 1349 if (dir == DMA_FROM_DEVICE) 1350 memcpy(vaddr, *vaddr_handle, size); 1351 1352 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1353 1354 *vaddr_handle = vaddr; 1355 *dma_handle = 0; 1356 } 1357 1358 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb) 1359 { 1360 if (urb->transfer_flags & URB_SETUP_MAP_SINGLE) 1361 dma_unmap_single(hcd->self.controller, 1362 urb->setup_dma, 1363 sizeof(struct usb_ctrlrequest), 1364 DMA_TO_DEVICE); 1365 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL) 1366 hcd_free_coherent(urb->dev->bus, 1367 &urb->setup_dma, 1368 (void **) &urb->setup_packet, 1369 sizeof(struct usb_ctrlrequest), 1370 DMA_TO_DEVICE); 1371 1372 /* Make it safe to call this routine more than once */ 1373 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL); 1374 } 1375 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma); 1376 1377 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1378 { 1379 if (hcd->driver->unmap_urb_for_dma) 1380 hcd->driver->unmap_urb_for_dma(hcd, urb); 1381 else 1382 usb_hcd_unmap_urb_for_dma(hcd, urb); 1383 } 1384 1385 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1386 { 1387 enum dma_data_direction dir; 1388 1389 usb_hcd_unmap_urb_setup_for_dma(hcd, urb); 1390 1391 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1392 if (urb->transfer_flags & URB_DMA_MAP_SG) 1393 dma_unmap_sg(hcd->self.controller, 1394 urb->sg, 1395 urb->num_sgs, 1396 dir); 1397 else if (urb->transfer_flags & URB_DMA_MAP_PAGE) 1398 dma_unmap_page(hcd->self.controller, 1399 urb->transfer_dma, 1400 urb->transfer_buffer_length, 1401 dir); 1402 else if (urb->transfer_flags & URB_DMA_MAP_SINGLE) 1403 dma_unmap_single(hcd->self.controller, 1404 urb->transfer_dma, 1405 urb->transfer_buffer_length, 1406 dir); 1407 else if (urb->transfer_flags & URB_MAP_LOCAL) 1408 hcd_free_coherent(urb->dev->bus, 1409 &urb->transfer_dma, 1410 &urb->transfer_buffer, 1411 urb->transfer_buffer_length, 1412 dir); 1413 1414 /* Make it safe to call this routine more than once */ 1415 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE | 1416 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL); 1417 } 1418 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma); 1419 1420 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1421 gfp_t mem_flags) 1422 { 1423 if (hcd->driver->map_urb_for_dma) 1424 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags); 1425 else 1426 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1427 } 1428 1429 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1430 gfp_t mem_flags) 1431 { 1432 enum dma_data_direction dir; 1433 int ret = 0; 1434 1435 /* Map the URB's buffers for DMA access. 1436 * Lower level HCD code should use *_dma exclusively, 1437 * unless it uses pio or talks to another transport, 1438 * or uses the provided scatter gather list for bulk. 1439 */ 1440 1441 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1442 if (hcd->self.uses_pio_for_control) 1443 return ret; 1444 if (hcd->self.uses_dma) { 1445 urb->setup_dma = dma_map_single( 1446 hcd->self.controller, 1447 urb->setup_packet, 1448 sizeof(struct usb_ctrlrequest), 1449 DMA_TO_DEVICE); 1450 if (dma_mapping_error(hcd->self.controller, 1451 urb->setup_dma)) 1452 return -EAGAIN; 1453 urb->transfer_flags |= URB_SETUP_MAP_SINGLE; 1454 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1455 ret = hcd_alloc_coherent( 1456 urb->dev->bus, mem_flags, 1457 &urb->setup_dma, 1458 (void **)&urb->setup_packet, 1459 sizeof(struct usb_ctrlrequest), 1460 DMA_TO_DEVICE); 1461 if (ret) 1462 return ret; 1463 urb->transfer_flags |= URB_SETUP_MAP_LOCAL; 1464 } 1465 } 1466 1467 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1468 if (urb->transfer_buffer_length != 0 1469 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1470 if (hcd->self.uses_dma) { 1471 if (urb->num_sgs) { 1472 int n; 1473 1474 /* We don't support sg for isoc transfers ! */ 1475 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) { 1476 WARN_ON(1); 1477 return -EINVAL; 1478 } 1479 1480 n = dma_map_sg( 1481 hcd->self.controller, 1482 urb->sg, 1483 urb->num_sgs, 1484 dir); 1485 if (n <= 0) 1486 ret = -EAGAIN; 1487 else 1488 urb->transfer_flags |= URB_DMA_MAP_SG; 1489 urb->num_mapped_sgs = n; 1490 if (n != urb->num_sgs) 1491 urb->transfer_flags |= 1492 URB_DMA_SG_COMBINED; 1493 } else if (urb->sg) { 1494 struct scatterlist *sg = urb->sg; 1495 urb->transfer_dma = dma_map_page( 1496 hcd->self.controller, 1497 sg_page(sg), 1498 sg->offset, 1499 urb->transfer_buffer_length, 1500 dir); 1501 if (dma_mapping_error(hcd->self.controller, 1502 urb->transfer_dma)) 1503 ret = -EAGAIN; 1504 else 1505 urb->transfer_flags |= URB_DMA_MAP_PAGE; 1506 } else if (is_vmalloc_addr(urb->transfer_buffer)) { 1507 WARN_ONCE(1, "transfer buffer not dma capable\n"); 1508 ret = -EAGAIN; 1509 } else { 1510 urb->transfer_dma = dma_map_single( 1511 hcd->self.controller, 1512 urb->transfer_buffer, 1513 urb->transfer_buffer_length, 1514 dir); 1515 if (dma_mapping_error(hcd->self.controller, 1516 urb->transfer_dma)) 1517 ret = -EAGAIN; 1518 else 1519 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1520 } 1521 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1522 ret = hcd_alloc_coherent( 1523 urb->dev->bus, mem_flags, 1524 &urb->transfer_dma, 1525 &urb->transfer_buffer, 1526 urb->transfer_buffer_length, 1527 dir); 1528 if (ret == 0) 1529 urb->transfer_flags |= URB_MAP_LOCAL; 1530 } 1531 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE | 1532 URB_SETUP_MAP_LOCAL))) 1533 usb_hcd_unmap_urb_for_dma(hcd, urb); 1534 } 1535 return ret; 1536 } 1537 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma); 1538 1539 /*-------------------------------------------------------------------------*/ 1540 1541 /* may be called in any context with a valid urb->dev usecount 1542 * caller surrenders "ownership" of urb 1543 * expects usb_submit_urb() to have sanity checked and conditioned all 1544 * inputs in the urb 1545 */ 1546 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1547 { 1548 int status; 1549 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1550 1551 /* increment urb's reference count as part of giving it to the HCD 1552 * (which will control it). HCD guarantees that it either returns 1553 * an error or calls giveback(), but not both. 1554 */ 1555 usb_get_urb(urb); 1556 atomic_inc(&urb->use_count); 1557 atomic_inc(&urb->dev->urbnum); 1558 usbmon_urb_submit(&hcd->self, urb); 1559 1560 /* NOTE requirements on root-hub callers (usbfs and the hub 1561 * driver, for now): URBs' urb->transfer_buffer must be 1562 * valid and usb_buffer_{sync,unmap}() not be needed, since 1563 * they could clobber root hub response data. Also, control 1564 * URBs must be submitted in process context with interrupts 1565 * enabled. 1566 */ 1567 1568 if (is_root_hub(urb->dev)) { 1569 status = rh_urb_enqueue(hcd, urb); 1570 } else { 1571 status = map_urb_for_dma(hcd, urb, mem_flags); 1572 if (likely(status == 0)) { 1573 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1574 if (unlikely(status)) 1575 unmap_urb_for_dma(hcd, urb); 1576 } 1577 } 1578 1579 if (unlikely(status)) { 1580 usbmon_urb_submit_error(&hcd->self, urb, status); 1581 urb->hcpriv = NULL; 1582 INIT_LIST_HEAD(&urb->urb_list); 1583 atomic_dec(&urb->use_count); 1584 atomic_dec(&urb->dev->urbnum); 1585 if (atomic_read(&urb->reject)) 1586 wake_up(&usb_kill_urb_queue); 1587 usb_put_urb(urb); 1588 } 1589 return status; 1590 } 1591 1592 /*-------------------------------------------------------------------------*/ 1593 1594 /* this makes the hcd giveback() the urb more quickly, by kicking it 1595 * off hardware queues (which may take a while) and returning it as 1596 * soon as practical. we've already set up the urb's return status, 1597 * but we can't know if the callback completed already. 1598 */ 1599 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1600 { 1601 int value; 1602 1603 if (is_root_hub(urb->dev)) 1604 value = usb_rh_urb_dequeue(hcd, urb, status); 1605 else { 1606 1607 /* The only reason an HCD might fail this call is if 1608 * it has not yet fully queued the urb to begin with. 1609 * Such failures should be harmless. */ 1610 value = hcd->driver->urb_dequeue(hcd, urb, status); 1611 } 1612 return value; 1613 } 1614 1615 /* 1616 * called in any context 1617 * 1618 * caller guarantees urb won't be recycled till both unlink() 1619 * and the urb's completion function return 1620 */ 1621 int usb_hcd_unlink_urb (struct urb *urb, int status) 1622 { 1623 struct usb_hcd *hcd; 1624 int retval = -EIDRM; 1625 unsigned long flags; 1626 1627 /* Prevent the device and bus from going away while 1628 * the unlink is carried out. If they are already gone 1629 * then urb->use_count must be 0, since disconnected 1630 * devices can't have any active URBs. 1631 */ 1632 spin_lock_irqsave(&hcd_urb_unlink_lock, flags); 1633 if (atomic_read(&urb->use_count) > 0) { 1634 retval = 0; 1635 usb_get_dev(urb->dev); 1636 } 1637 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); 1638 if (retval == 0) { 1639 hcd = bus_to_hcd(urb->dev->bus); 1640 retval = unlink1(hcd, urb, status); 1641 usb_put_dev(urb->dev); 1642 } 1643 1644 if (retval == 0) 1645 retval = -EINPROGRESS; 1646 else if (retval != -EIDRM && retval != -EBUSY) 1647 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n", 1648 urb, retval); 1649 return retval; 1650 } 1651 1652 /*-------------------------------------------------------------------------*/ 1653 1654 static void __usb_hcd_giveback_urb(struct urb *urb) 1655 { 1656 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1657 struct usb_anchor *anchor = urb->anchor; 1658 int status = urb->unlinked; 1659 unsigned long flags; 1660 1661 urb->hcpriv = NULL; 1662 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1663 urb->actual_length < urb->transfer_buffer_length && 1664 !status)) 1665 status = -EREMOTEIO; 1666 1667 unmap_urb_for_dma(hcd, urb); 1668 usbmon_urb_complete(&hcd->self, urb, status); 1669 usb_anchor_suspend_wakeups(anchor); 1670 usb_unanchor_urb(urb); 1671 1672 /* pass ownership to the completion handler */ 1673 urb->status = status; 1674 1675 /* 1676 * We disable local IRQs here avoid possible deadlock because 1677 * drivers may call spin_lock() to hold lock which might be 1678 * acquired in one hard interrupt handler. 1679 * 1680 * The local_irq_save()/local_irq_restore() around complete() 1681 * will be removed if current USB drivers have been cleaned up 1682 * and no one may trigger the above deadlock situation when 1683 * running complete() in tasklet. 1684 */ 1685 local_irq_save(flags); 1686 urb->complete(urb); 1687 local_irq_restore(flags); 1688 1689 usb_anchor_resume_wakeups(anchor); 1690 atomic_dec(&urb->use_count); 1691 if (unlikely(atomic_read(&urb->reject))) 1692 wake_up(&usb_kill_urb_queue); 1693 usb_put_urb(urb); 1694 } 1695 1696 static void usb_giveback_urb_bh(unsigned long param) 1697 { 1698 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param; 1699 struct list_head local_list; 1700 1701 spin_lock_irq(&bh->lock); 1702 bh->running = true; 1703 restart: 1704 list_replace_init(&bh->head, &local_list); 1705 spin_unlock_irq(&bh->lock); 1706 1707 while (!list_empty(&local_list)) { 1708 struct urb *urb; 1709 1710 urb = list_entry(local_list.next, struct urb, urb_list); 1711 list_del_init(&urb->urb_list); 1712 bh->completing_ep = urb->ep; 1713 __usb_hcd_giveback_urb(urb); 1714 bh->completing_ep = NULL; 1715 } 1716 1717 /* check if there are new URBs to giveback */ 1718 spin_lock_irq(&bh->lock); 1719 if (!list_empty(&bh->head)) 1720 goto restart; 1721 bh->running = false; 1722 spin_unlock_irq(&bh->lock); 1723 } 1724 1725 /** 1726 * usb_hcd_giveback_urb - return URB from HCD to device driver 1727 * @hcd: host controller returning the URB 1728 * @urb: urb being returned to the USB device driver. 1729 * @status: completion status code for the URB. 1730 * Context: in_interrupt() 1731 * 1732 * This hands the URB from HCD to its USB device driver, using its 1733 * completion function. The HCD has freed all per-urb resources 1734 * (and is done using urb->hcpriv). It also released all HCD locks; 1735 * the device driver won't cause problems if it frees, modifies, 1736 * or resubmits this URB. 1737 * 1738 * If @urb was unlinked, the value of @status will be overridden by 1739 * @urb->unlinked. Erroneous short transfers are detected in case 1740 * the HCD hasn't checked for them. 1741 */ 1742 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1743 { 1744 struct giveback_urb_bh *bh; 1745 bool running, high_prio_bh; 1746 1747 /* pass status to tasklet via unlinked */ 1748 if (likely(!urb->unlinked)) 1749 urb->unlinked = status; 1750 1751 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) { 1752 __usb_hcd_giveback_urb(urb); 1753 return; 1754 } 1755 1756 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) { 1757 bh = &hcd->high_prio_bh; 1758 high_prio_bh = true; 1759 } else { 1760 bh = &hcd->low_prio_bh; 1761 high_prio_bh = false; 1762 } 1763 1764 spin_lock(&bh->lock); 1765 list_add_tail(&urb->urb_list, &bh->head); 1766 running = bh->running; 1767 spin_unlock(&bh->lock); 1768 1769 if (running) 1770 ; 1771 else if (high_prio_bh) 1772 tasklet_hi_schedule(&bh->bh); 1773 else 1774 tasklet_schedule(&bh->bh); 1775 } 1776 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1777 1778 /*-------------------------------------------------------------------------*/ 1779 1780 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1781 * queue to drain completely. The caller must first insure that no more 1782 * URBs can be submitted for this endpoint. 1783 */ 1784 void usb_hcd_flush_endpoint(struct usb_device *udev, 1785 struct usb_host_endpoint *ep) 1786 { 1787 struct usb_hcd *hcd; 1788 struct urb *urb; 1789 1790 if (!ep) 1791 return; 1792 might_sleep(); 1793 hcd = bus_to_hcd(udev->bus); 1794 1795 /* No more submits can occur */ 1796 spin_lock_irq(&hcd_urb_list_lock); 1797 rescan: 1798 list_for_each_entry (urb, &ep->urb_list, urb_list) { 1799 int is_in; 1800 1801 if (urb->unlinked) 1802 continue; 1803 usb_get_urb (urb); 1804 is_in = usb_urb_dir_in(urb); 1805 spin_unlock(&hcd_urb_list_lock); 1806 1807 /* kick hcd */ 1808 unlink1(hcd, urb, -ESHUTDOWN); 1809 dev_dbg (hcd->self.controller, 1810 "shutdown urb %p ep%d%s%s\n", 1811 urb, usb_endpoint_num(&ep->desc), 1812 is_in ? "in" : "out", 1813 ({ char *s; 1814 1815 switch (usb_endpoint_type(&ep->desc)) { 1816 case USB_ENDPOINT_XFER_CONTROL: 1817 s = ""; break; 1818 case USB_ENDPOINT_XFER_BULK: 1819 s = "-bulk"; break; 1820 case USB_ENDPOINT_XFER_INT: 1821 s = "-intr"; break; 1822 default: 1823 s = "-iso"; break; 1824 }; 1825 s; 1826 })); 1827 usb_put_urb (urb); 1828 1829 /* list contents may have changed */ 1830 spin_lock(&hcd_urb_list_lock); 1831 goto rescan; 1832 } 1833 spin_unlock_irq(&hcd_urb_list_lock); 1834 1835 /* Wait until the endpoint queue is completely empty */ 1836 while (!list_empty (&ep->urb_list)) { 1837 spin_lock_irq(&hcd_urb_list_lock); 1838 1839 /* The list may have changed while we acquired the spinlock */ 1840 urb = NULL; 1841 if (!list_empty (&ep->urb_list)) { 1842 urb = list_entry (ep->urb_list.prev, struct urb, 1843 urb_list); 1844 usb_get_urb (urb); 1845 } 1846 spin_unlock_irq(&hcd_urb_list_lock); 1847 1848 if (urb) { 1849 usb_kill_urb (urb); 1850 usb_put_urb (urb); 1851 } 1852 } 1853 } 1854 1855 /** 1856 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds 1857 * the bus bandwidth 1858 * @udev: target &usb_device 1859 * @new_config: new configuration to install 1860 * @cur_alt: the current alternate interface setting 1861 * @new_alt: alternate interface setting that is being installed 1862 * 1863 * To change configurations, pass in the new configuration in new_config, 1864 * and pass NULL for cur_alt and new_alt. 1865 * 1866 * To reset a device's configuration (put the device in the ADDRESSED state), 1867 * pass in NULL for new_config, cur_alt, and new_alt. 1868 * 1869 * To change alternate interface settings, pass in NULL for new_config, 1870 * pass in the current alternate interface setting in cur_alt, 1871 * and pass in the new alternate interface setting in new_alt. 1872 * 1873 * Return: An error if the requested bandwidth change exceeds the 1874 * bus bandwidth or host controller internal resources. 1875 */ 1876 int usb_hcd_alloc_bandwidth(struct usb_device *udev, 1877 struct usb_host_config *new_config, 1878 struct usb_host_interface *cur_alt, 1879 struct usb_host_interface *new_alt) 1880 { 1881 int num_intfs, i, j; 1882 struct usb_host_interface *alt = NULL; 1883 int ret = 0; 1884 struct usb_hcd *hcd; 1885 struct usb_host_endpoint *ep; 1886 1887 hcd = bus_to_hcd(udev->bus); 1888 if (!hcd->driver->check_bandwidth) 1889 return 0; 1890 1891 /* Configuration is being removed - set configuration 0 */ 1892 if (!new_config && !cur_alt) { 1893 for (i = 1; i < 16; ++i) { 1894 ep = udev->ep_out[i]; 1895 if (ep) 1896 hcd->driver->drop_endpoint(hcd, udev, ep); 1897 ep = udev->ep_in[i]; 1898 if (ep) 1899 hcd->driver->drop_endpoint(hcd, udev, ep); 1900 } 1901 hcd->driver->check_bandwidth(hcd, udev); 1902 return 0; 1903 } 1904 /* Check if the HCD says there's enough bandwidth. Enable all endpoints 1905 * each interface's alt setting 0 and ask the HCD to check the bandwidth 1906 * of the bus. There will always be bandwidth for endpoint 0, so it's 1907 * ok to exclude it. 1908 */ 1909 if (new_config) { 1910 num_intfs = new_config->desc.bNumInterfaces; 1911 /* Remove endpoints (except endpoint 0, which is always on the 1912 * schedule) from the old config from the schedule 1913 */ 1914 for (i = 1; i < 16; ++i) { 1915 ep = udev->ep_out[i]; 1916 if (ep) { 1917 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1918 if (ret < 0) 1919 goto reset; 1920 } 1921 ep = udev->ep_in[i]; 1922 if (ep) { 1923 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1924 if (ret < 0) 1925 goto reset; 1926 } 1927 } 1928 for (i = 0; i < num_intfs; ++i) { 1929 struct usb_host_interface *first_alt; 1930 int iface_num; 1931 1932 first_alt = &new_config->intf_cache[i]->altsetting[0]; 1933 iface_num = first_alt->desc.bInterfaceNumber; 1934 /* Set up endpoints for alternate interface setting 0 */ 1935 alt = usb_find_alt_setting(new_config, iface_num, 0); 1936 if (!alt) 1937 /* No alt setting 0? Pick the first setting. */ 1938 alt = first_alt; 1939 1940 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 1941 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); 1942 if (ret < 0) 1943 goto reset; 1944 } 1945 } 1946 } 1947 if (cur_alt && new_alt) { 1948 struct usb_interface *iface = usb_ifnum_to_if(udev, 1949 cur_alt->desc.bInterfaceNumber); 1950 1951 if (!iface) 1952 return -EINVAL; 1953 if (iface->resetting_device) { 1954 /* 1955 * The USB core just reset the device, so the xHCI host 1956 * and the device will think alt setting 0 is installed. 1957 * However, the USB core will pass in the alternate 1958 * setting installed before the reset as cur_alt. Dig 1959 * out the alternate setting 0 structure, or the first 1960 * alternate setting if a broken device doesn't have alt 1961 * setting 0. 1962 */ 1963 cur_alt = usb_altnum_to_altsetting(iface, 0); 1964 if (!cur_alt) 1965 cur_alt = &iface->altsetting[0]; 1966 } 1967 1968 /* Drop all the endpoints in the current alt setting */ 1969 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) { 1970 ret = hcd->driver->drop_endpoint(hcd, udev, 1971 &cur_alt->endpoint[i]); 1972 if (ret < 0) 1973 goto reset; 1974 } 1975 /* Add all the endpoints in the new alt setting */ 1976 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) { 1977 ret = hcd->driver->add_endpoint(hcd, udev, 1978 &new_alt->endpoint[i]); 1979 if (ret < 0) 1980 goto reset; 1981 } 1982 } 1983 ret = hcd->driver->check_bandwidth(hcd, udev); 1984 reset: 1985 if (ret < 0) 1986 hcd->driver->reset_bandwidth(hcd, udev); 1987 return ret; 1988 } 1989 1990 /* Disables the endpoint: synchronizes with the hcd to make sure all 1991 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 1992 * have been called previously. Use for set_configuration, set_interface, 1993 * driver removal, physical disconnect. 1994 * 1995 * example: a qh stored in ep->hcpriv, holding state related to endpoint 1996 * type, maxpacket size, toggle, halt status, and scheduling. 1997 */ 1998 void usb_hcd_disable_endpoint(struct usb_device *udev, 1999 struct usb_host_endpoint *ep) 2000 { 2001 struct usb_hcd *hcd; 2002 2003 might_sleep(); 2004 hcd = bus_to_hcd(udev->bus); 2005 if (hcd->driver->endpoint_disable) 2006 hcd->driver->endpoint_disable(hcd, ep); 2007 } 2008 2009 /** 2010 * usb_hcd_reset_endpoint - reset host endpoint state 2011 * @udev: USB device. 2012 * @ep: the endpoint to reset. 2013 * 2014 * Resets any host endpoint state such as the toggle bit, sequence 2015 * number and current window. 2016 */ 2017 void usb_hcd_reset_endpoint(struct usb_device *udev, 2018 struct usb_host_endpoint *ep) 2019 { 2020 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2021 2022 if (hcd->driver->endpoint_reset) 2023 hcd->driver->endpoint_reset(hcd, ep); 2024 else { 2025 int epnum = usb_endpoint_num(&ep->desc); 2026 int is_out = usb_endpoint_dir_out(&ep->desc); 2027 int is_control = usb_endpoint_xfer_control(&ep->desc); 2028 2029 usb_settoggle(udev, epnum, is_out, 0); 2030 if (is_control) 2031 usb_settoggle(udev, epnum, !is_out, 0); 2032 } 2033 } 2034 2035 /** 2036 * usb_alloc_streams - allocate bulk endpoint stream IDs. 2037 * @interface: alternate setting that includes all endpoints. 2038 * @eps: array of endpoints that need streams. 2039 * @num_eps: number of endpoints in the array. 2040 * @num_streams: number of streams to allocate. 2041 * @mem_flags: flags hcd should use to allocate memory. 2042 * 2043 * Sets up a group of bulk endpoints to have @num_streams stream IDs available. 2044 * Drivers may queue multiple transfers to different stream IDs, which may 2045 * complete in a different order than they were queued. 2046 * 2047 * Return: On success, the number of allocated streams. On failure, a negative 2048 * error code. 2049 */ 2050 int usb_alloc_streams(struct usb_interface *interface, 2051 struct usb_host_endpoint **eps, unsigned int num_eps, 2052 unsigned int num_streams, gfp_t mem_flags) 2053 { 2054 struct usb_hcd *hcd; 2055 struct usb_device *dev; 2056 int i, ret; 2057 2058 dev = interface_to_usbdev(interface); 2059 hcd = bus_to_hcd(dev->bus); 2060 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams) 2061 return -EINVAL; 2062 if (dev->speed != USB_SPEED_SUPER) 2063 return -EINVAL; 2064 2065 for (i = 0; i < num_eps; i++) { 2066 /* Streams only apply to bulk endpoints. */ 2067 if (!usb_endpoint_xfer_bulk(&eps[i]->desc)) 2068 return -EINVAL; 2069 /* Re-alloc is not allowed */ 2070 if (eps[i]->streams) 2071 return -EINVAL; 2072 } 2073 2074 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps, 2075 num_streams, mem_flags); 2076 if (ret < 0) 2077 return ret; 2078 2079 for (i = 0; i < num_eps; i++) 2080 eps[i]->streams = ret; 2081 2082 return ret; 2083 } 2084 EXPORT_SYMBOL_GPL(usb_alloc_streams); 2085 2086 /** 2087 * usb_free_streams - free bulk endpoint stream IDs. 2088 * @interface: alternate setting that includes all endpoints. 2089 * @eps: array of endpoints to remove streams from. 2090 * @num_eps: number of endpoints in the array. 2091 * @mem_flags: flags hcd should use to allocate memory. 2092 * 2093 * Reverts a group of bulk endpoints back to not using stream IDs. 2094 * Can fail if we are given bad arguments, or HCD is broken. 2095 * 2096 * Return: 0 on success. On failure, a negative error code. 2097 */ 2098 int usb_free_streams(struct usb_interface *interface, 2099 struct usb_host_endpoint **eps, unsigned int num_eps, 2100 gfp_t mem_flags) 2101 { 2102 struct usb_hcd *hcd; 2103 struct usb_device *dev; 2104 int i, ret; 2105 2106 dev = interface_to_usbdev(interface); 2107 hcd = bus_to_hcd(dev->bus); 2108 if (dev->speed != USB_SPEED_SUPER) 2109 return -EINVAL; 2110 2111 /* Double-free is not allowed */ 2112 for (i = 0; i < num_eps; i++) 2113 if (!eps[i] || !eps[i]->streams) 2114 return -EINVAL; 2115 2116 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags); 2117 if (ret < 0) 2118 return ret; 2119 2120 for (i = 0; i < num_eps; i++) 2121 eps[i]->streams = 0; 2122 2123 return ret; 2124 } 2125 EXPORT_SYMBOL_GPL(usb_free_streams); 2126 2127 /* Protect against drivers that try to unlink URBs after the device 2128 * is gone, by waiting until all unlinks for @udev are finished. 2129 * Since we don't currently track URBs by device, simply wait until 2130 * nothing is running in the locked region of usb_hcd_unlink_urb(). 2131 */ 2132 void usb_hcd_synchronize_unlinks(struct usb_device *udev) 2133 { 2134 spin_lock_irq(&hcd_urb_unlink_lock); 2135 spin_unlock_irq(&hcd_urb_unlink_lock); 2136 } 2137 2138 /*-------------------------------------------------------------------------*/ 2139 2140 /* called in any context */ 2141 int usb_hcd_get_frame_number (struct usb_device *udev) 2142 { 2143 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2144 2145 if (!HCD_RH_RUNNING(hcd)) 2146 return -ESHUTDOWN; 2147 return hcd->driver->get_frame_number (hcd); 2148 } 2149 2150 /*-------------------------------------------------------------------------*/ 2151 2152 #ifdef CONFIG_PM 2153 2154 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) 2155 { 2156 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 2157 int status; 2158 int old_state = hcd->state; 2159 2160 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n", 2161 (PMSG_IS_AUTO(msg) ? "auto-" : ""), 2162 rhdev->do_remote_wakeup); 2163 if (HCD_DEAD(hcd)) { 2164 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend"); 2165 return 0; 2166 } 2167 2168 if (!hcd->driver->bus_suspend) { 2169 status = -ENOENT; 2170 } else { 2171 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2172 hcd->state = HC_STATE_QUIESCING; 2173 status = hcd->driver->bus_suspend(hcd); 2174 } 2175 if (status == 0) { 2176 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 2177 hcd->state = HC_STATE_SUSPENDED; 2178 2179 /* Did we race with a root-hub wakeup event? */ 2180 if (rhdev->do_remote_wakeup) { 2181 char buffer[6]; 2182 2183 status = hcd->driver->hub_status_data(hcd, buffer); 2184 if (status != 0) { 2185 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n"); 2186 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME); 2187 status = -EBUSY; 2188 } 2189 } 2190 } else { 2191 spin_lock_irq(&hcd_root_hub_lock); 2192 if (!HCD_DEAD(hcd)) { 2193 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2194 hcd->state = old_state; 2195 } 2196 spin_unlock_irq(&hcd_root_hub_lock); 2197 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2198 "suspend", status); 2199 } 2200 return status; 2201 } 2202 2203 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) 2204 { 2205 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 2206 int status; 2207 int old_state = hcd->state; 2208 2209 dev_dbg(&rhdev->dev, "usb %sresume\n", 2210 (PMSG_IS_AUTO(msg) ? "auto-" : "")); 2211 if (HCD_DEAD(hcd)) { 2212 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume"); 2213 return 0; 2214 } 2215 if (!hcd->driver->bus_resume) 2216 return -ENOENT; 2217 if (HCD_RH_RUNNING(hcd)) 2218 return 0; 2219 2220 hcd->state = HC_STATE_RESUMING; 2221 status = hcd->driver->bus_resume(hcd); 2222 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2223 if (status == 0) { 2224 struct usb_device *udev; 2225 int port1; 2226 2227 spin_lock_irq(&hcd_root_hub_lock); 2228 if (!HCD_DEAD(hcd)) { 2229 usb_set_device_state(rhdev, rhdev->actconfig 2230 ? USB_STATE_CONFIGURED 2231 : USB_STATE_ADDRESS); 2232 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2233 hcd->state = HC_STATE_RUNNING; 2234 } 2235 spin_unlock_irq(&hcd_root_hub_lock); 2236 2237 /* 2238 * Check whether any of the enabled ports on the root hub are 2239 * unsuspended. If they are then a TRSMRCY delay is needed 2240 * (this is what the USB-2 spec calls a "global resume"). 2241 * Otherwise we can skip the delay. 2242 */ 2243 usb_hub_for_each_child(rhdev, port1, udev) { 2244 if (udev->state != USB_STATE_NOTATTACHED && 2245 !udev->port_is_suspended) { 2246 usleep_range(10000, 11000); /* TRSMRCY */ 2247 break; 2248 } 2249 } 2250 } else { 2251 hcd->state = old_state; 2252 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2253 "resume", status); 2254 if (status != -ESHUTDOWN) 2255 usb_hc_died(hcd); 2256 } 2257 return status; 2258 } 2259 2260 #endif /* CONFIG_PM */ 2261 2262 #ifdef CONFIG_PM_RUNTIME 2263 2264 /* Workqueue routine for root-hub remote wakeup */ 2265 static void hcd_resume_work(struct work_struct *work) 2266 { 2267 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 2268 struct usb_device *udev = hcd->self.root_hub; 2269 2270 usb_remote_wakeup(udev); 2271 } 2272 2273 /** 2274 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 2275 * @hcd: host controller for this root hub 2276 * 2277 * The USB host controller calls this function when its root hub is 2278 * suspended (with the remote wakeup feature enabled) and a remote 2279 * wakeup request is received. The routine submits a workqueue request 2280 * to resume the root hub (that is, manage its downstream ports again). 2281 */ 2282 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 2283 { 2284 unsigned long flags; 2285 2286 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2287 if (hcd->rh_registered) { 2288 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2289 queue_work(pm_wq, &hcd->wakeup_work); 2290 } 2291 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2292 } 2293 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 2294 2295 #endif /* CONFIG_PM_RUNTIME */ 2296 2297 /*-------------------------------------------------------------------------*/ 2298 2299 #ifdef CONFIG_USB_OTG 2300 2301 /** 2302 * usb_bus_start_enum - start immediate enumeration (for OTG) 2303 * @bus: the bus (must use hcd framework) 2304 * @port_num: 1-based number of port; usually bus->otg_port 2305 * Context: in_interrupt() 2306 * 2307 * Starts enumeration, with an immediate reset followed later by 2308 * khubd identifying and possibly configuring the device. 2309 * This is needed by OTG controller drivers, where it helps meet 2310 * HNP protocol timing requirements for starting a port reset. 2311 * 2312 * Return: 0 if successful. 2313 */ 2314 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 2315 { 2316 struct usb_hcd *hcd; 2317 int status = -EOPNOTSUPP; 2318 2319 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 2320 * boards with root hubs hooked up to internal devices (instead of 2321 * just the OTG port) may need more attention to resetting... 2322 */ 2323 hcd = container_of (bus, struct usb_hcd, self); 2324 if (port_num && hcd->driver->start_port_reset) 2325 status = hcd->driver->start_port_reset(hcd, port_num); 2326 2327 /* run khubd shortly after (first) root port reset finishes; 2328 * it may issue others, until at least 50 msecs have passed. 2329 */ 2330 if (status == 0) 2331 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 2332 return status; 2333 } 2334 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 2335 2336 #endif 2337 2338 /*-------------------------------------------------------------------------*/ 2339 2340 /** 2341 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 2342 * @irq: the IRQ being raised 2343 * @__hcd: pointer to the HCD whose IRQ is being signaled 2344 * 2345 * If the controller isn't HALTed, calls the driver's irq handler. 2346 * Checks whether the controller is now dead. 2347 * 2348 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise. 2349 */ 2350 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 2351 { 2352 struct usb_hcd *hcd = __hcd; 2353 irqreturn_t rc; 2354 2355 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) 2356 rc = IRQ_NONE; 2357 else if (hcd->driver->irq(hcd) == IRQ_NONE) 2358 rc = IRQ_NONE; 2359 else 2360 rc = IRQ_HANDLED; 2361 2362 return rc; 2363 } 2364 EXPORT_SYMBOL_GPL(usb_hcd_irq); 2365 2366 /*-------------------------------------------------------------------------*/ 2367 2368 /** 2369 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 2370 * @hcd: pointer to the HCD representing the controller 2371 * 2372 * This is called by bus glue to report a USB host controller that died 2373 * while operations may still have been pending. It's called automatically 2374 * by the PCI glue, so only glue for non-PCI busses should need to call it. 2375 * 2376 * Only call this function with the primary HCD. 2377 */ 2378 void usb_hc_died (struct usb_hcd *hcd) 2379 { 2380 unsigned long flags; 2381 2382 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 2383 2384 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2385 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2386 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2387 if (hcd->rh_registered) { 2388 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2389 2390 /* make khubd clean up old urbs and devices */ 2391 usb_set_device_state (hcd->self.root_hub, 2392 USB_STATE_NOTATTACHED); 2393 usb_kick_khubd (hcd->self.root_hub); 2394 } 2395 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) { 2396 hcd = hcd->shared_hcd; 2397 if (hcd->rh_registered) { 2398 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2399 2400 /* make khubd clean up old urbs and devices */ 2401 usb_set_device_state(hcd->self.root_hub, 2402 USB_STATE_NOTATTACHED); 2403 usb_kick_khubd(hcd->self.root_hub); 2404 } 2405 } 2406 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2407 /* Make sure that the other roothub is also deallocated. */ 2408 } 2409 EXPORT_SYMBOL_GPL (usb_hc_died); 2410 2411 /*-------------------------------------------------------------------------*/ 2412 2413 static void init_giveback_urb_bh(struct giveback_urb_bh *bh) 2414 { 2415 2416 spin_lock_init(&bh->lock); 2417 INIT_LIST_HEAD(&bh->head); 2418 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh); 2419 } 2420 2421 /** 2422 * usb_create_shared_hcd - create and initialize an HCD structure 2423 * @driver: HC driver that will use this hcd 2424 * @dev: device for this HC, stored in hcd->self.controller 2425 * @bus_name: value to store in hcd->self.bus_name 2426 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the 2427 * PCI device. Only allocate certain resources for the primary HCD 2428 * Context: !in_interrupt() 2429 * 2430 * Allocate a struct usb_hcd, with extra space at the end for the 2431 * HC driver's private data. Initialize the generic members of the 2432 * hcd structure. 2433 * 2434 * Return: On success, a pointer to the created and initialized HCD structure. 2435 * On failure (e.g. if memory is unavailable), %NULL. 2436 */ 2437 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver, 2438 struct device *dev, const char *bus_name, 2439 struct usb_hcd *primary_hcd) 2440 { 2441 struct usb_hcd *hcd; 2442 2443 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 2444 if (!hcd) { 2445 dev_dbg (dev, "hcd alloc failed\n"); 2446 return NULL; 2447 } 2448 if (primary_hcd == NULL) { 2449 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex), 2450 GFP_KERNEL); 2451 if (!hcd->bandwidth_mutex) { 2452 kfree(hcd); 2453 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n"); 2454 return NULL; 2455 } 2456 mutex_init(hcd->bandwidth_mutex); 2457 dev_set_drvdata(dev, hcd); 2458 } else { 2459 mutex_lock(&usb_port_peer_mutex); 2460 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex; 2461 hcd->primary_hcd = primary_hcd; 2462 primary_hcd->primary_hcd = primary_hcd; 2463 hcd->shared_hcd = primary_hcd; 2464 primary_hcd->shared_hcd = hcd; 2465 mutex_unlock(&usb_port_peer_mutex); 2466 } 2467 2468 kref_init(&hcd->kref); 2469 2470 usb_bus_init(&hcd->self); 2471 hcd->self.controller = dev; 2472 hcd->self.bus_name = bus_name; 2473 hcd->self.uses_dma = (dev->dma_mask != NULL); 2474 2475 init_timer(&hcd->rh_timer); 2476 hcd->rh_timer.function = rh_timer_func; 2477 hcd->rh_timer.data = (unsigned long) hcd; 2478 #ifdef CONFIG_PM_RUNTIME 2479 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 2480 #endif 2481 2482 hcd->driver = driver; 2483 hcd->speed = driver->flags & HCD_MASK; 2484 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 2485 "USB Host Controller"; 2486 return hcd; 2487 } 2488 EXPORT_SYMBOL_GPL(usb_create_shared_hcd); 2489 2490 /** 2491 * usb_create_hcd - create and initialize an HCD structure 2492 * @driver: HC driver that will use this hcd 2493 * @dev: device for this HC, stored in hcd->self.controller 2494 * @bus_name: value to store in hcd->self.bus_name 2495 * Context: !in_interrupt() 2496 * 2497 * Allocate a struct usb_hcd, with extra space at the end for the 2498 * HC driver's private data. Initialize the generic members of the 2499 * hcd structure. 2500 * 2501 * Return: On success, a pointer to the created and initialized HCD 2502 * structure. On failure (e.g. if memory is unavailable), %NULL. 2503 */ 2504 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver, 2505 struct device *dev, const char *bus_name) 2506 { 2507 return usb_create_shared_hcd(driver, dev, bus_name, NULL); 2508 } 2509 EXPORT_SYMBOL_GPL(usb_create_hcd); 2510 2511 /* 2512 * Roothubs that share one PCI device must also share the bandwidth mutex. 2513 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is 2514 * deallocated. 2515 * 2516 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is 2517 * freed. When hcd_release() is called for either hcd in a peer set 2518 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers to 2519 * block new peering attempts 2520 */ 2521 static void hcd_release(struct kref *kref) 2522 { 2523 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 2524 2525 mutex_lock(&usb_port_peer_mutex); 2526 if (usb_hcd_is_primary_hcd(hcd)) 2527 kfree(hcd->bandwidth_mutex); 2528 if (hcd->shared_hcd) { 2529 struct usb_hcd *peer = hcd->shared_hcd; 2530 2531 peer->shared_hcd = NULL; 2532 if (peer->primary_hcd == hcd) 2533 peer->primary_hcd = NULL; 2534 } 2535 mutex_unlock(&usb_port_peer_mutex); 2536 kfree(hcd); 2537 } 2538 2539 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 2540 { 2541 if (hcd) 2542 kref_get (&hcd->kref); 2543 return hcd; 2544 } 2545 EXPORT_SYMBOL_GPL(usb_get_hcd); 2546 2547 void usb_put_hcd (struct usb_hcd *hcd) 2548 { 2549 if (hcd) 2550 kref_put (&hcd->kref, hcd_release); 2551 } 2552 EXPORT_SYMBOL_GPL(usb_put_hcd); 2553 2554 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd) 2555 { 2556 if (!hcd->primary_hcd) 2557 return 1; 2558 return hcd == hcd->primary_hcd; 2559 } 2560 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd); 2561 2562 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1) 2563 { 2564 if (!hcd->driver->find_raw_port_number) 2565 return port1; 2566 2567 return hcd->driver->find_raw_port_number(hcd, port1); 2568 } 2569 2570 static int usb_hcd_request_irqs(struct usb_hcd *hcd, 2571 unsigned int irqnum, unsigned long irqflags) 2572 { 2573 int retval; 2574 2575 if (hcd->driver->irq) { 2576 2577 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 2578 hcd->driver->description, hcd->self.busnum); 2579 retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 2580 hcd->irq_descr, hcd); 2581 if (retval != 0) { 2582 dev_err(hcd->self.controller, 2583 "request interrupt %d failed\n", 2584 irqnum); 2585 return retval; 2586 } 2587 hcd->irq = irqnum; 2588 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 2589 (hcd->driver->flags & HCD_MEMORY) ? 2590 "io mem" : "io base", 2591 (unsigned long long)hcd->rsrc_start); 2592 } else { 2593 hcd->irq = 0; 2594 if (hcd->rsrc_start) 2595 dev_info(hcd->self.controller, "%s 0x%08llx\n", 2596 (hcd->driver->flags & HCD_MEMORY) ? 2597 "io mem" : "io base", 2598 (unsigned long long)hcd->rsrc_start); 2599 } 2600 return 0; 2601 } 2602 2603 /* 2604 * Before we free this root hub, flush in-flight peering attempts 2605 * and disable peer lookups 2606 */ 2607 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd) 2608 { 2609 struct usb_device *rhdev; 2610 2611 mutex_lock(&usb_port_peer_mutex); 2612 rhdev = hcd->self.root_hub; 2613 hcd->self.root_hub = NULL; 2614 mutex_unlock(&usb_port_peer_mutex); 2615 usb_put_dev(rhdev); 2616 } 2617 2618 /** 2619 * usb_add_hcd - finish generic HCD structure initialization and register 2620 * @hcd: the usb_hcd structure to initialize 2621 * @irqnum: Interrupt line to allocate 2622 * @irqflags: Interrupt type flags 2623 * 2624 * Finish the remaining parts of generic HCD initialization: allocate the 2625 * buffers of consistent memory, register the bus, request the IRQ line, 2626 * and call the driver's reset() and start() routines. 2627 */ 2628 int usb_add_hcd(struct usb_hcd *hcd, 2629 unsigned int irqnum, unsigned long irqflags) 2630 { 2631 int retval; 2632 struct usb_device *rhdev; 2633 2634 if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->phy) { 2635 struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0); 2636 2637 if (IS_ERR(phy)) { 2638 retval = PTR_ERR(phy); 2639 if (retval == -EPROBE_DEFER) 2640 return retval; 2641 } else { 2642 retval = usb_phy_init(phy); 2643 if (retval) { 2644 usb_put_phy(phy); 2645 return retval; 2646 } 2647 hcd->phy = phy; 2648 hcd->remove_phy = 1; 2649 } 2650 } 2651 2652 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 2653 2654 /* Keep old behaviour if authorized_default is not in [0, 1]. */ 2655 if (authorized_default < 0 || authorized_default > 1) 2656 hcd->authorized_default = hcd->wireless ? 0 : 1; 2657 else 2658 hcd->authorized_default = authorized_default; 2659 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2660 2661 /* HC is in reset state, but accessible. Now do the one-time init, 2662 * bottom up so that hcds can customize the root hubs before khubd 2663 * starts talking to them. (Note, bus id is assigned early too.) 2664 */ 2665 if ((retval = hcd_buffer_create(hcd)) != 0) { 2666 dev_dbg(hcd->self.controller, "pool alloc failed\n"); 2667 goto err_remove_phy; 2668 } 2669 2670 if ((retval = usb_register_bus(&hcd->self)) < 0) 2671 goto err_register_bus; 2672 2673 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) { 2674 dev_err(hcd->self.controller, "unable to allocate root hub\n"); 2675 retval = -ENOMEM; 2676 goto err_allocate_root_hub; 2677 } 2678 mutex_lock(&usb_port_peer_mutex); 2679 hcd->self.root_hub = rhdev; 2680 mutex_unlock(&usb_port_peer_mutex); 2681 2682 switch (hcd->speed) { 2683 case HCD_USB11: 2684 rhdev->speed = USB_SPEED_FULL; 2685 break; 2686 case HCD_USB2: 2687 rhdev->speed = USB_SPEED_HIGH; 2688 break; 2689 case HCD_USB25: 2690 rhdev->speed = USB_SPEED_WIRELESS; 2691 break; 2692 case HCD_USB3: 2693 rhdev->speed = USB_SPEED_SUPER; 2694 break; 2695 default: 2696 retval = -EINVAL; 2697 goto err_set_rh_speed; 2698 } 2699 2700 /* wakeup flag init defaults to "everything works" for root hubs, 2701 * but drivers can override it in reset() if needed, along with 2702 * recording the overall controller's system wakeup capability. 2703 */ 2704 device_set_wakeup_capable(&rhdev->dev, 1); 2705 2706 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is 2707 * registered. But since the controller can die at any time, 2708 * let's initialize the flag before touching the hardware. 2709 */ 2710 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2711 2712 /* "reset" is misnamed; its role is now one-time init. the controller 2713 * should already have been reset (and boot firmware kicked off etc). 2714 */ 2715 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) { 2716 dev_err(hcd->self.controller, "can't setup: %d\n", retval); 2717 goto err_hcd_driver_setup; 2718 } 2719 hcd->rh_pollable = 1; 2720 2721 /* NOTE: root hub and controller capabilities may not be the same */ 2722 if (device_can_wakeup(hcd->self.controller) 2723 && device_can_wakeup(&hcd->self.root_hub->dev)) 2724 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 2725 2726 /* initialize tasklets */ 2727 init_giveback_urb_bh(&hcd->high_prio_bh); 2728 init_giveback_urb_bh(&hcd->low_prio_bh); 2729 2730 /* enable irqs just before we start the controller, 2731 * if the BIOS provides legacy PCI irqs. 2732 */ 2733 if (usb_hcd_is_primary_hcd(hcd) && irqnum) { 2734 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags); 2735 if (retval) 2736 goto err_request_irq; 2737 } 2738 2739 hcd->state = HC_STATE_RUNNING; 2740 retval = hcd->driver->start(hcd); 2741 if (retval < 0) { 2742 dev_err(hcd->self.controller, "startup error %d\n", retval); 2743 goto err_hcd_driver_start; 2744 } 2745 2746 /* starting here, usbcore will pay attention to this root hub */ 2747 if ((retval = register_root_hub(hcd)) != 0) 2748 goto err_register_root_hub; 2749 2750 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2751 if (retval < 0) { 2752 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n", 2753 retval); 2754 goto error_create_attr_group; 2755 } 2756 if (hcd->uses_new_polling && HCD_POLL_RH(hcd)) 2757 usb_hcd_poll_rh_status(hcd); 2758 2759 return retval; 2760 2761 error_create_attr_group: 2762 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2763 if (HC_IS_RUNNING(hcd->state)) 2764 hcd->state = HC_STATE_QUIESCING; 2765 spin_lock_irq(&hcd_root_hub_lock); 2766 hcd->rh_registered = 0; 2767 spin_unlock_irq(&hcd_root_hub_lock); 2768 2769 #ifdef CONFIG_PM_RUNTIME 2770 cancel_work_sync(&hcd->wakeup_work); 2771 #endif 2772 mutex_lock(&usb_bus_list_lock); 2773 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2774 mutex_unlock(&usb_bus_list_lock); 2775 err_register_root_hub: 2776 hcd->rh_pollable = 0; 2777 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2778 del_timer_sync(&hcd->rh_timer); 2779 hcd->driver->stop(hcd); 2780 hcd->state = HC_STATE_HALT; 2781 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2782 del_timer_sync(&hcd->rh_timer); 2783 err_hcd_driver_start: 2784 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0) 2785 free_irq(irqnum, hcd); 2786 err_request_irq: 2787 err_hcd_driver_setup: 2788 err_set_rh_speed: 2789 usb_put_invalidate_rhdev(hcd); 2790 err_allocate_root_hub: 2791 usb_deregister_bus(&hcd->self); 2792 err_register_bus: 2793 hcd_buffer_destroy(hcd); 2794 err_remove_phy: 2795 if (hcd->remove_phy && hcd->phy) { 2796 usb_phy_shutdown(hcd->phy); 2797 usb_put_phy(hcd->phy); 2798 hcd->phy = NULL; 2799 } 2800 return retval; 2801 } 2802 EXPORT_SYMBOL_GPL(usb_add_hcd); 2803 2804 /** 2805 * usb_remove_hcd - shutdown processing for generic HCDs 2806 * @hcd: the usb_hcd structure to remove 2807 * Context: !in_interrupt() 2808 * 2809 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 2810 * invoking the HCD's stop() method. 2811 */ 2812 void usb_remove_hcd(struct usb_hcd *hcd) 2813 { 2814 struct usb_device *rhdev = hcd->self.root_hub; 2815 2816 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 2817 2818 usb_get_dev(rhdev); 2819 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2820 2821 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2822 if (HC_IS_RUNNING (hcd->state)) 2823 hcd->state = HC_STATE_QUIESCING; 2824 2825 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 2826 spin_lock_irq (&hcd_root_hub_lock); 2827 hcd->rh_registered = 0; 2828 spin_unlock_irq (&hcd_root_hub_lock); 2829 2830 #ifdef CONFIG_PM_RUNTIME 2831 cancel_work_sync(&hcd->wakeup_work); 2832 #endif 2833 2834 mutex_lock(&usb_bus_list_lock); 2835 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2836 mutex_unlock(&usb_bus_list_lock); 2837 2838 /* 2839 * tasklet_kill() isn't needed here because: 2840 * - driver's disconnect() called from usb_disconnect() should 2841 * make sure its URBs are completed during the disconnect() 2842 * callback 2843 * 2844 * - it is too late to run complete() here since driver may have 2845 * been removed already now 2846 */ 2847 2848 /* Prevent any more root-hub status calls from the timer. 2849 * The HCD might still restart the timer (if a port status change 2850 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke 2851 * the hub_status_data() callback. 2852 */ 2853 hcd->rh_pollable = 0; 2854 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2855 del_timer_sync(&hcd->rh_timer); 2856 2857 hcd->driver->stop(hcd); 2858 hcd->state = HC_STATE_HALT; 2859 2860 /* In case the HCD restarted the timer, stop it again. */ 2861 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2862 del_timer_sync(&hcd->rh_timer); 2863 2864 if (usb_hcd_is_primary_hcd(hcd)) { 2865 if (hcd->irq > 0) 2866 free_irq(hcd->irq, hcd); 2867 } 2868 2869 usb_deregister_bus(&hcd->self); 2870 hcd_buffer_destroy(hcd); 2871 if (hcd->remove_phy && hcd->phy) { 2872 usb_phy_shutdown(hcd->phy); 2873 usb_put_phy(hcd->phy); 2874 hcd->phy = NULL; 2875 } 2876 2877 usb_put_invalidate_rhdev(hcd); 2878 } 2879 EXPORT_SYMBOL_GPL(usb_remove_hcd); 2880 2881 void 2882 usb_hcd_platform_shutdown(struct platform_device *dev) 2883 { 2884 struct usb_hcd *hcd = platform_get_drvdata(dev); 2885 2886 if (hcd->driver->shutdown) 2887 hcd->driver->shutdown(hcd); 2888 } 2889 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 2890 2891 /*-------------------------------------------------------------------------*/ 2892 2893 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 2894 2895 struct usb_mon_operations *mon_ops; 2896 2897 /* 2898 * The registration is unlocked. 2899 * We do it this way because we do not want to lock in hot paths. 2900 * 2901 * Notice that the code is minimally error-proof. Because usbmon needs 2902 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 2903 */ 2904 2905 int usb_mon_register (struct usb_mon_operations *ops) 2906 { 2907 2908 if (mon_ops) 2909 return -EBUSY; 2910 2911 mon_ops = ops; 2912 mb(); 2913 return 0; 2914 } 2915 EXPORT_SYMBOL_GPL (usb_mon_register); 2916 2917 void usb_mon_deregister (void) 2918 { 2919 2920 if (mon_ops == NULL) { 2921 printk(KERN_ERR "USB: monitor was not registered\n"); 2922 return; 2923 } 2924 mon_ops = NULL; 2925 mb(); 2926 } 2927 EXPORT_SYMBOL_GPL (usb_mon_deregister); 2928 2929 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ 2930