1 /* 2 * (C) Copyright Linus Torvalds 1999 3 * (C) Copyright Johannes Erdfelt 1999-2001 4 * (C) Copyright Andreas Gal 1999 5 * (C) Copyright Gregory P. Smith 1999 6 * (C) Copyright Deti Fliegl 1999 7 * (C) Copyright Randy Dunlap 2000 8 * (C) Copyright David Brownell 2000-2002 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the 12 * Free Software Foundation; either version 2 of the License, or (at your 13 * option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18 * for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software Foundation, 22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 #include <linux/bcd.h> 26 #include <linux/module.h> 27 #include <linux/version.h> 28 #include <linux/kernel.h> 29 #include <linux/slab.h> 30 #include <linux/completion.h> 31 #include <linux/utsname.h> 32 #include <linux/mm.h> 33 #include <asm/io.h> 34 #include <linux/device.h> 35 #include <linux/dma-mapping.h> 36 #include <linux/mutex.h> 37 #include <asm/irq.h> 38 #include <asm/byteorder.h> 39 #include <asm/unaligned.h> 40 #include <linux/platform_device.h> 41 #include <linux/workqueue.h> 42 #include <linux/pm_runtime.h> 43 #include <linux/types.h> 44 45 #include <linux/phy/phy.h> 46 #include <linux/usb.h> 47 #include <linux/usb/hcd.h> 48 #include <linux/usb/phy.h> 49 #include <linux/usb/otg.h> 50 51 #include "usb.h" 52 53 54 /*-------------------------------------------------------------------------*/ 55 56 /* 57 * USB Host Controller Driver framework 58 * 59 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 60 * HCD-specific behaviors/bugs. 61 * 62 * This does error checks, tracks devices and urbs, and delegates to a 63 * "hc_driver" only for code (and data) that really needs to know about 64 * hardware differences. That includes root hub registers, i/o queues, 65 * and so on ... but as little else as possible. 66 * 67 * Shared code includes most of the "root hub" code (these are emulated, 68 * though each HC's hardware works differently) and PCI glue, plus request 69 * tracking overhead. The HCD code should only block on spinlocks or on 70 * hardware handshaking; blocking on software events (such as other kernel 71 * threads releasing resources, or completing actions) is all generic. 72 * 73 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 74 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 75 * only by the hub driver ... and that neither should be seen or used by 76 * usb client device drivers. 77 * 78 * Contributors of ideas or unattributed patches include: David Brownell, 79 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 80 * 81 * HISTORY: 82 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 83 * associated cleanup. "usb_hcd" still != "usb_bus". 84 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 85 */ 86 87 /*-------------------------------------------------------------------------*/ 88 89 /* Keep track of which host controller drivers are loaded */ 90 unsigned long usb_hcds_loaded; 91 EXPORT_SYMBOL_GPL(usb_hcds_loaded); 92 93 /* host controllers we manage */ 94 DEFINE_IDR (usb_bus_idr); 95 EXPORT_SYMBOL_GPL (usb_bus_idr); 96 97 /* used when allocating bus numbers */ 98 #define USB_MAXBUS 64 99 100 /* used when updating list of hcds */ 101 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */ 102 EXPORT_SYMBOL_GPL (usb_bus_idr_lock); 103 104 /* used for controlling access to virtual root hubs */ 105 static DEFINE_SPINLOCK(hcd_root_hub_lock); 106 107 /* used when updating an endpoint's URB list */ 108 static DEFINE_SPINLOCK(hcd_urb_list_lock); 109 110 /* used to protect against unlinking URBs after the device is gone */ 111 static DEFINE_SPINLOCK(hcd_urb_unlink_lock); 112 113 /* wait queue for synchronous unlinks */ 114 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 115 116 static inline int is_root_hub(struct usb_device *udev) 117 { 118 return (udev->parent == NULL); 119 } 120 121 /*-------------------------------------------------------------------------*/ 122 123 /* 124 * Sharable chunks of root hub code. 125 */ 126 127 /*-------------------------------------------------------------------------*/ 128 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff)) 129 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff)) 130 131 /* usb 3.1 root hub device descriptor */ 132 static const u8 usb31_rh_dev_descriptor[18] = { 133 0x12, /* __u8 bLength; */ 134 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 135 0x10, 0x03, /* __le16 bcdUSB; v3.1 */ 136 137 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 138 0x00, /* __u8 bDeviceSubClass; */ 139 0x03, /* __u8 bDeviceProtocol; USB 3 hub */ 140 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 141 142 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 143 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 144 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 145 146 0x03, /* __u8 iManufacturer; */ 147 0x02, /* __u8 iProduct; */ 148 0x01, /* __u8 iSerialNumber; */ 149 0x01 /* __u8 bNumConfigurations; */ 150 }; 151 152 /* usb 3.0 root hub device descriptor */ 153 static const u8 usb3_rh_dev_descriptor[18] = { 154 0x12, /* __u8 bLength; */ 155 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 156 0x00, 0x03, /* __le16 bcdUSB; v3.0 */ 157 158 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 159 0x00, /* __u8 bDeviceSubClass; */ 160 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */ 161 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 162 163 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 164 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 165 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 166 167 0x03, /* __u8 iManufacturer; */ 168 0x02, /* __u8 iProduct; */ 169 0x01, /* __u8 iSerialNumber; */ 170 0x01 /* __u8 bNumConfigurations; */ 171 }; 172 173 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */ 174 static const u8 usb25_rh_dev_descriptor[18] = { 175 0x12, /* __u8 bLength; */ 176 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 177 0x50, 0x02, /* __le16 bcdUSB; v2.5 */ 178 179 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 180 0x00, /* __u8 bDeviceSubClass; */ 181 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 182 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */ 183 184 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 185 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 186 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 187 188 0x03, /* __u8 iManufacturer; */ 189 0x02, /* __u8 iProduct; */ 190 0x01, /* __u8 iSerialNumber; */ 191 0x01 /* __u8 bNumConfigurations; */ 192 }; 193 194 /* usb 2.0 root hub device descriptor */ 195 static const u8 usb2_rh_dev_descriptor[18] = { 196 0x12, /* __u8 bLength; */ 197 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 198 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 199 200 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 201 0x00, /* __u8 bDeviceSubClass; */ 202 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 203 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 204 205 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 206 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 207 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 208 209 0x03, /* __u8 iManufacturer; */ 210 0x02, /* __u8 iProduct; */ 211 0x01, /* __u8 iSerialNumber; */ 212 0x01 /* __u8 bNumConfigurations; */ 213 }; 214 215 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 216 217 /* usb 1.1 root hub device descriptor */ 218 static const u8 usb11_rh_dev_descriptor[18] = { 219 0x12, /* __u8 bLength; */ 220 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 221 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 222 223 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 224 0x00, /* __u8 bDeviceSubClass; */ 225 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 226 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 227 228 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 229 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 230 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 231 232 0x03, /* __u8 iManufacturer; */ 233 0x02, /* __u8 iProduct; */ 234 0x01, /* __u8 iSerialNumber; */ 235 0x01 /* __u8 bNumConfigurations; */ 236 }; 237 238 239 /*-------------------------------------------------------------------------*/ 240 241 /* Configuration descriptors for our root hubs */ 242 243 static const u8 fs_rh_config_descriptor[] = { 244 245 /* one configuration */ 246 0x09, /* __u8 bLength; */ 247 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 248 0x19, 0x00, /* __le16 wTotalLength; */ 249 0x01, /* __u8 bNumInterfaces; (1) */ 250 0x01, /* __u8 bConfigurationValue; */ 251 0x00, /* __u8 iConfiguration; */ 252 0xc0, /* __u8 bmAttributes; 253 Bit 7: must be set, 254 6: Self-powered, 255 5: Remote wakeup, 256 4..0: resvd */ 257 0x00, /* __u8 MaxPower; */ 258 259 /* USB 1.1: 260 * USB 2.0, single TT organization (mandatory): 261 * one interface, protocol 0 262 * 263 * USB 2.0, multiple TT organization (optional): 264 * two interfaces, protocols 1 (like single TT) 265 * and 2 (multiple TT mode) ... config is 266 * sometimes settable 267 * NOT IMPLEMENTED 268 */ 269 270 /* one interface */ 271 0x09, /* __u8 if_bLength; */ 272 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 273 0x00, /* __u8 if_bInterfaceNumber; */ 274 0x00, /* __u8 if_bAlternateSetting; */ 275 0x01, /* __u8 if_bNumEndpoints; */ 276 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 277 0x00, /* __u8 if_bInterfaceSubClass; */ 278 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 279 0x00, /* __u8 if_iInterface; */ 280 281 /* one endpoint (status change endpoint) */ 282 0x07, /* __u8 ep_bLength; */ 283 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 284 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 285 0x03, /* __u8 ep_bmAttributes; Interrupt */ 286 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 287 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 288 }; 289 290 static const u8 hs_rh_config_descriptor[] = { 291 292 /* one configuration */ 293 0x09, /* __u8 bLength; */ 294 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 295 0x19, 0x00, /* __le16 wTotalLength; */ 296 0x01, /* __u8 bNumInterfaces; (1) */ 297 0x01, /* __u8 bConfigurationValue; */ 298 0x00, /* __u8 iConfiguration; */ 299 0xc0, /* __u8 bmAttributes; 300 Bit 7: must be set, 301 6: Self-powered, 302 5: Remote wakeup, 303 4..0: resvd */ 304 0x00, /* __u8 MaxPower; */ 305 306 /* USB 1.1: 307 * USB 2.0, single TT organization (mandatory): 308 * one interface, protocol 0 309 * 310 * USB 2.0, multiple TT organization (optional): 311 * two interfaces, protocols 1 (like single TT) 312 * and 2 (multiple TT mode) ... config is 313 * sometimes settable 314 * NOT IMPLEMENTED 315 */ 316 317 /* one interface */ 318 0x09, /* __u8 if_bLength; */ 319 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 320 0x00, /* __u8 if_bInterfaceNumber; */ 321 0x00, /* __u8 if_bAlternateSetting; */ 322 0x01, /* __u8 if_bNumEndpoints; */ 323 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 324 0x00, /* __u8 if_bInterfaceSubClass; */ 325 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 326 0x00, /* __u8 if_iInterface; */ 327 328 /* one endpoint (status change endpoint) */ 329 0x07, /* __u8 ep_bLength; */ 330 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 331 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 332 0x03, /* __u8 ep_bmAttributes; Interrupt */ 333 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 334 * see hub.c:hub_configure() for details. */ 335 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 336 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 337 }; 338 339 static const u8 ss_rh_config_descriptor[] = { 340 /* one configuration */ 341 0x09, /* __u8 bLength; */ 342 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 343 0x1f, 0x00, /* __le16 wTotalLength; */ 344 0x01, /* __u8 bNumInterfaces; (1) */ 345 0x01, /* __u8 bConfigurationValue; */ 346 0x00, /* __u8 iConfiguration; */ 347 0xc0, /* __u8 bmAttributes; 348 Bit 7: must be set, 349 6: Self-powered, 350 5: Remote wakeup, 351 4..0: resvd */ 352 0x00, /* __u8 MaxPower; */ 353 354 /* one interface */ 355 0x09, /* __u8 if_bLength; */ 356 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 357 0x00, /* __u8 if_bInterfaceNumber; */ 358 0x00, /* __u8 if_bAlternateSetting; */ 359 0x01, /* __u8 if_bNumEndpoints; */ 360 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 361 0x00, /* __u8 if_bInterfaceSubClass; */ 362 0x00, /* __u8 if_bInterfaceProtocol; */ 363 0x00, /* __u8 if_iInterface; */ 364 365 /* one endpoint (status change endpoint) */ 366 0x07, /* __u8 ep_bLength; */ 367 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 368 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 369 0x03, /* __u8 ep_bmAttributes; Interrupt */ 370 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 371 * see hub.c:hub_configure() for details. */ 372 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 373 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 374 375 /* one SuperSpeed endpoint companion descriptor */ 376 0x06, /* __u8 ss_bLength */ 377 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */ 378 /* Companion */ 379 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */ 380 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */ 381 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */ 382 }; 383 384 /* authorized_default behaviour: 385 * -1 is authorized for all devices except wireless (old behaviour) 386 * 0 is unauthorized for all devices 387 * 1 is authorized for all devices 388 */ 389 static int authorized_default = -1; 390 module_param(authorized_default, int, S_IRUGO|S_IWUSR); 391 MODULE_PARM_DESC(authorized_default, 392 "Default USB device authorization: 0 is not authorized, 1 is " 393 "authorized, -1 is authorized except for wireless USB (default, " 394 "old behaviour"); 395 /*-------------------------------------------------------------------------*/ 396 397 /** 398 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors 399 * @s: Null-terminated ASCII (actually ISO-8859-1) string 400 * @buf: Buffer for USB string descriptor (header + UTF-16LE) 401 * @len: Length (in bytes; may be odd) of descriptor buffer. 402 * 403 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len, 404 * whichever is less. 405 * 406 * Note: 407 * USB String descriptors can contain at most 126 characters; input 408 * strings longer than that are truncated. 409 */ 410 static unsigned 411 ascii2desc(char const *s, u8 *buf, unsigned len) 412 { 413 unsigned n, t = 2 + 2*strlen(s); 414 415 if (t > 254) 416 t = 254; /* Longest possible UTF string descriptor */ 417 if (len > t) 418 len = t; 419 420 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */ 421 422 n = len; 423 while (n--) { 424 *buf++ = t; 425 if (!n--) 426 break; 427 *buf++ = t >> 8; 428 t = (unsigned char)*s++; 429 } 430 return len; 431 } 432 433 /** 434 * rh_string() - provides string descriptors for root hub 435 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor) 436 * @hcd: the host controller for this root hub 437 * @data: buffer for output packet 438 * @len: length of the provided buffer 439 * 440 * Produces either a manufacturer, product or serial number string for the 441 * virtual root hub device. 442 * 443 * Return: The number of bytes filled in: the length of the descriptor or 444 * of the provided buffer, whichever is less. 445 */ 446 static unsigned 447 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len) 448 { 449 char buf[100]; 450 char const *s; 451 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04}; 452 453 /* language ids */ 454 switch (id) { 455 case 0: 456 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */ 457 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */ 458 if (len > 4) 459 len = 4; 460 memcpy(data, langids, len); 461 return len; 462 case 1: 463 /* Serial number */ 464 s = hcd->self.bus_name; 465 break; 466 case 2: 467 /* Product name */ 468 s = hcd->product_desc; 469 break; 470 case 3: 471 /* Manufacturer */ 472 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 473 init_utsname()->release, hcd->driver->description); 474 s = buf; 475 break; 476 default: 477 /* Can't happen; caller guarantees it */ 478 return 0; 479 } 480 481 return ascii2desc(s, data, len); 482 } 483 484 485 /* Root hub control transfers execute synchronously */ 486 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 487 { 488 struct usb_ctrlrequest *cmd; 489 u16 typeReq, wValue, wIndex, wLength; 490 u8 *ubuf = urb->transfer_buffer; 491 unsigned len = 0; 492 int status; 493 u8 patch_wakeup = 0; 494 u8 patch_protocol = 0; 495 u16 tbuf_size; 496 u8 *tbuf = NULL; 497 const u8 *bufp; 498 499 might_sleep(); 500 501 spin_lock_irq(&hcd_root_hub_lock); 502 status = usb_hcd_link_urb_to_ep(hcd, urb); 503 spin_unlock_irq(&hcd_root_hub_lock); 504 if (status) 505 return status; 506 urb->hcpriv = hcd; /* Indicate it's queued */ 507 508 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 509 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 510 wValue = le16_to_cpu (cmd->wValue); 511 wIndex = le16_to_cpu (cmd->wIndex); 512 wLength = le16_to_cpu (cmd->wLength); 513 514 if (wLength > urb->transfer_buffer_length) 515 goto error; 516 517 /* 518 * tbuf should be at least as big as the 519 * USB hub descriptor. 520 */ 521 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength); 522 tbuf = kzalloc(tbuf_size, GFP_KERNEL); 523 if (!tbuf) { 524 status = -ENOMEM; 525 goto err_alloc; 526 } 527 528 bufp = tbuf; 529 530 531 urb->actual_length = 0; 532 switch (typeReq) { 533 534 /* DEVICE REQUESTS */ 535 536 /* The root hub's remote wakeup enable bit is implemented using 537 * driver model wakeup flags. If this system supports wakeup 538 * through USB, userspace may change the default "allow wakeup" 539 * policy through sysfs or these calls. 540 * 541 * Most root hubs support wakeup from downstream devices, for 542 * runtime power management (disabling USB clocks and reducing 543 * VBUS power usage). However, not all of them do so; silicon, 544 * board, and BIOS bugs here are not uncommon, so these can't 545 * be treated quite like external hubs. 546 * 547 * Likewise, not all root hubs will pass wakeup events upstream, 548 * to wake up the whole system. So don't assume root hub and 549 * controller capabilities are identical. 550 */ 551 552 case DeviceRequest | USB_REQ_GET_STATUS: 553 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev) 554 << USB_DEVICE_REMOTE_WAKEUP) 555 | (1 << USB_DEVICE_SELF_POWERED); 556 tbuf[1] = 0; 557 len = 2; 558 break; 559 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 560 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 561 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 562 else 563 goto error; 564 break; 565 case DeviceOutRequest | USB_REQ_SET_FEATURE: 566 if (device_can_wakeup(&hcd->self.root_hub->dev) 567 && wValue == USB_DEVICE_REMOTE_WAKEUP) 568 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 569 else 570 goto error; 571 break; 572 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 573 tbuf[0] = 1; 574 len = 1; 575 /* FALLTHROUGH */ 576 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 577 break; 578 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 579 switch (wValue & 0xff00) { 580 case USB_DT_DEVICE << 8: 581 switch (hcd->speed) { 582 case HCD_USB31: 583 bufp = usb31_rh_dev_descriptor; 584 break; 585 case HCD_USB3: 586 bufp = usb3_rh_dev_descriptor; 587 break; 588 case HCD_USB25: 589 bufp = usb25_rh_dev_descriptor; 590 break; 591 case HCD_USB2: 592 bufp = usb2_rh_dev_descriptor; 593 break; 594 case HCD_USB11: 595 bufp = usb11_rh_dev_descriptor; 596 break; 597 default: 598 goto error; 599 } 600 len = 18; 601 if (hcd->has_tt) 602 patch_protocol = 1; 603 break; 604 case USB_DT_CONFIG << 8: 605 switch (hcd->speed) { 606 case HCD_USB31: 607 case HCD_USB3: 608 bufp = ss_rh_config_descriptor; 609 len = sizeof ss_rh_config_descriptor; 610 break; 611 case HCD_USB25: 612 case HCD_USB2: 613 bufp = hs_rh_config_descriptor; 614 len = sizeof hs_rh_config_descriptor; 615 break; 616 case HCD_USB11: 617 bufp = fs_rh_config_descriptor; 618 len = sizeof fs_rh_config_descriptor; 619 break; 620 default: 621 goto error; 622 } 623 if (device_can_wakeup(&hcd->self.root_hub->dev)) 624 patch_wakeup = 1; 625 break; 626 case USB_DT_STRING << 8: 627 if ((wValue & 0xff) < 4) 628 urb->actual_length = rh_string(wValue & 0xff, 629 hcd, ubuf, wLength); 630 else /* unsupported IDs --> "protocol stall" */ 631 goto error; 632 break; 633 case USB_DT_BOS << 8: 634 goto nongeneric; 635 default: 636 goto error; 637 } 638 break; 639 case DeviceRequest | USB_REQ_GET_INTERFACE: 640 tbuf[0] = 0; 641 len = 1; 642 /* FALLTHROUGH */ 643 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 644 break; 645 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 646 /* wValue == urb->dev->devaddr */ 647 dev_dbg (hcd->self.controller, "root hub device address %d\n", 648 wValue); 649 break; 650 651 /* INTERFACE REQUESTS (no defined feature/status flags) */ 652 653 /* ENDPOINT REQUESTS */ 654 655 case EndpointRequest | USB_REQ_GET_STATUS: 656 /* ENDPOINT_HALT flag */ 657 tbuf[0] = 0; 658 tbuf[1] = 0; 659 len = 2; 660 /* FALLTHROUGH */ 661 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 662 case EndpointOutRequest | USB_REQ_SET_FEATURE: 663 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 664 break; 665 666 /* CLASS REQUESTS (and errors) */ 667 668 default: 669 nongeneric: 670 /* non-generic request */ 671 switch (typeReq) { 672 case GetHubStatus: 673 len = 4; 674 break; 675 case GetPortStatus: 676 if (wValue == HUB_PORT_STATUS) 677 len = 4; 678 else 679 /* other port status types return 8 bytes */ 680 len = 8; 681 break; 682 case GetHubDescriptor: 683 len = sizeof (struct usb_hub_descriptor); 684 break; 685 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 686 /* len is returned by hub_control */ 687 break; 688 } 689 status = hcd->driver->hub_control (hcd, 690 typeReq, wValue, wIndex, 691 tbuf, wLength); 692 693 if (typeReq == GetHubDescriptor) 694 usb_hub_adjust_deviceremovable(hcd->self.root_hub, 695 (struct usb_hub_descriptor *)tbuf); 696 break; 697 error: 698 /* "protocol stall" on error */ 699 status = -EPIPE; 700 } 701 702 if (status < 0) { 703 len = 0; 704 if (status != -EPIPE) { 705 dev_dbg (hcd->self.controller, 706 "CTRL: TypeReq=0x%x val=0x%x " 707 "idx=0x%x len=%d ==> %d\n", 708 typeReq, wValue, wIndex, 709 wLength, status); 710 } 711 } else if (status > 0) { 712 /* hub_control may return the length of data copied. */ 713 len = status; 714 status = 0; 715 } 716 if (len) { 717 if (urb->transfer_buffer_length < len) 718 len = urb->transfer_buffer_length; 719 urb->actual_length = len; 720 /* always USB_DIR_IN, toward host */ 721 memcpy (ubuf, bufp, len); 722 723 /* report whether RH hardware supports remote wakeup */ 724 if (patch_wakeup && 725 len > offsetof (struct usb_config_descriptor, 726 bmAttributes)) 727 ((struct usb_config_descriptor *)ubuf)->bmAttributes 728 |= USB_CONFIG_ATT_WAKEUP; 729 730 /* report whether RH hardware has an integrated TT */ 731 if (patch_protocol && 732 len > offsetof(struct usb_device_descriptor, 733 bDeviceProtocol)) 734 ((struct usb_device_descriptor *) ubuf)-> 735 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT; 736 } 737 738 kfree(tbuf); 739 err_alloc: 740 741 /* any errors get returned through the urb completion */ 742 spin_lock_irq(&hcd_root_hub_lock); 743 usb_hcd_unlink_urb_from_ep(hcd, urb); 744 usb_hcd_giveback_urb(hcd, urb, status); 745 spin_unlock_irq(&hcd_root_hub_lock); 746 return 0; 747 } 748 749 /*-------------------------------------------------------------------------*/ 750 751 /* 752 * Root Hub interrupt transfers are polled using a timer if the 753 * driver requests it; otherwise the driver is responsible for 754 * calling usb_hcd_poll_rh_status() when an event occurs. 755 * 756 * Completions are called in_interrupt(), but they may or may not 757 * be in_irq(). 758 */ 759 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 760 { 761 struct urb *urb; 762 int length; 763 unsigned long flags; 764 char buffer[6]; /* Any root hubs with > 31 ports? */ 765 766 if (unlikely(!hcd->rh_pollable)) 767 return; 768 if (!hcd->uses_new_polling && !hcd->status_urb) 769 return; 770 771 length = hcd->driver->hub_status_data(hcd, buffer); 772 if (length > 0) { 773 774 /* try to complete the status urb */ 775 spin_lock_irqsave(&hcd_root_hub_lock, flags); 776 urb = hcd->status_urb; 777 if (urb) { 778 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 779 hcd->status_urb = NULL; 780 urb->actual_length = length; 781 memcpy(urb->transfer_buffer, buffer, length); 782 783 usb_hcd_unlink_urb_from_ep(hcd, urb); 784 usb_hcd_giveback_urb(hcd, urb, 0); 785 } else { 786 length = 0; 787 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 788 } 789 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 790 } 791 792 /* The USB 2.0 spec says 256 ms. This is close enough and won't 793 * exceed that limit if HZ is 100. The math is more clunky than 794 * maybe expected, this is to make sure that all timers for USB devices 795 * fire at the same time to give the CPU a break in between */ 796 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) : 797 (length == 0 && hcd->status_urb != NULL)) 798 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 799 } 800 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 801 802 /* timer callback */ 803 static void rh_timer_func (unsigned long _hcd) 804 { 805 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd); 806 } 807 808 /*-------------------------------------------------------------------------*/ 809 810 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 811 { 812 int retval; 813 unsigned long flags; 814 unsigned len = 1 + (urb->dev->maxchild / 8); 815 816 spin_lock_irqsave (&hcd_root_hub_lock, flags); 817 if (hcd->status_urb || urb->transfer_buffer_length < len) { 818 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 819 retval = -EINVAL; 820 goto done; 821 } 822 823 retval = usb_hcd_link_urb_to_ep(hcd, urb); 824 if (retval) 825 goto done; 826 827 hcd->status_urb = urb; 828 urb->hcpriv = hcd; /* indicate it's queued */ 829 if (!hcd->uses_new_polling) 830 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 831 832 /* If a status change has already occurred, report it ASAP */ 833 else if (HCD_POLL_PENDING(hcd)) 834 mod_timer(&hcd->rh_timer, jiffies); 835 retval = 0; 836 done: 837 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 838 return retval; 839 } 840 841 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 842 { 843 if (usb_endpoint_xfer_int(&urb->ep->desc)) 844 return rh_queue_status (hcd, urb); 845 if (usb_endpoint_xfer_control(&urb->ep->desc)) 846 return rh_call_control (hcd, urb); 847 return -EINVAL; 848 } 849 850 /*-------------------------------------------------------------------------*/ 851 852 /* Unlinks of root-hub control URBs are legal, but they don't do anything 853 * since these URBs always execute synchronously. 854 */ 855 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 856 { 857 unsigned long flags; 858 int rc; 859 860 spin_lock_irqsave(&hcd_root_hub_lock, flags); 861 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 862 if (rc) 863 goto done; 864 865 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 866 ; /* Do nothing */ 867 868 } else { /* Status URB */ 869 if (!hcd->uses_new_polling) 870 del_timer (&hcd->rh_timer); 871 if (urb == hcd->status_urb) { 872 hcd->status_urb = NULL; 873 usb_hcd_unlink_urb_from_ep(hcd, urb); 874 usb_hcd_giveback_urb(hcd, urb, status); 875 } 876 } 877 done: 878 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 879 return rc; 880 } 881 882 883 884 /* 885 * Show & store the current value of authorized_default 886 */ 887 static ssize_t authorized_default_show(struct device *dev, 888 struct device_attribute *attr, char *buf) 889 { 890 struct usb_device *rh_usb_dev = to_usb_device(dev); 891 struct usb_bus *usb_bus = rh_usb_dev->bus; 892 struct usb_hcd *hcd; 893 894 hcd = bus_to_hcd(usb_bus); 895 return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd)); 896 } 897 898 static ssize_t authorized_default_store(struct device *dev, 899 struct device_attribute *attr, 900 const char *buf, size_t size) 901 { 902 ssize_t result; 903 unsigned val; 904 struct usb_device *rh_usb_dev = to_usb_device(dev); 905 struct usb_bus *usb_bus = rh_usb_dev->bus; 906 struct usb_hcd *hcd; 907 908 hcd = bus_to_hcd(usb_bus); 909 result = sscanf(buf, "%u\n", &val); 910 if (result == 1) { 911 if (val) 912 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 913 else 914 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 915 916 result = size; 917 } else { 918 result = -EINVAL; 919 } 920 return result; 921 } 922 static DEVICE_ATTR_RW(authorized_default); 923 924 /* 925 * interface_authorized_default_show - show default authorization status 926 * for USB interfaces 927 * 928 * note: interface_authorized_default is the default value 929 * for initializing the authorized attribute of interfaces 930 */ 931 static ssize_t interface_authorized_default_show(struct device *dev, 932 struct device_attribute *attr, char *buf) 933 { 934 struct usb_device *usb_dev = to_usb_device(dev); 935 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus); 936 937 return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd)); 938 } 939 940 /* 941 * interface_authorized_default_store - store default authorization status 942 * for USB interfaces 943 * 944 * note: interface_authorized_default is the default value 945 * for initializing the authorized attribute of interfaces 946 */ 947 static ssize_t interface_authorized_default_store(struct device *dev, 948 struct device_attribute *attr, const char *buf, size_t count) 949 { 950 struct usb_device *usb_dev = to_usb_device(dev); 951 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus); 952 int rc = count; 953 bool val; 954 955 if (strtobool(buf, &val) != 0) 956 return -EINVAL; 957 958 if (val) 959 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 960 else 961 clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 962 963 return rc; 964 } 965 static DEVICE_ATTR_RW(interface_authorized_default); 966 967 /* Group all the USB bus attributes */ 968 static struct attribute *usb_bus_attrs[] = { 969 &dev_attr_authorized_default.attr, 970 &dev_attr_interface_authorized_default.attr, 971 NULL, 972 }; 973 974 static struct attribute_group usb_bus_attr_group = { 975 .name = NULL, /* we want them in the same directory */ 976 .attrs = usb_bus_attrs, 977 }; 978 979 980 981 /*-------------------------------------------------------------------------*/ 982 983 /** 984 * usb_bus_init - shared initialization code 985 * @bus: the bus structure being initialized 986 * 987 * This code is used to initialize a usb_bus structure, memory for which is 988 * separately managed. 989 */ 990 static void usb_bus_init (struct usb_bus *bus) 991 { 992 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 993 994 bus->devnum_next = 1; 995 996 bus->root_hub = NULL; 997 bus->busnum = -1; 998 bus->bandwidth_allocated = 0; 999 bus->bandwidth_int_reqs = 0; 1000 bus->bandwidth_isoc_reqs = 0; 1001 mutex_init(&bus->devnum_next_mutex); 1002 } 1003 1004 /*-------------------------------------------------------------------------*/ 1005 1006 /** 1007 * usb_register_bus - registers the USB host controller with the usb core 1008 * @bus: pointer to the bus to register 1009 * Context: !in_interrupt() 1010 * 1011 * Assigns a bus number, and links the controller into usbcore data 1012 * structures so that it can be seen by scanning the bus list. 1013 * 1014 * Return: 0 if successful. A negative error code otherwise. 1015 */ 1016 static int usb_register_bus(struct usb_bus *bus) 1017 { 1018 int result = -E2BIG; 1019 int busnum; 1020 1021 mutex_lock(&usb_bus_idr_lock); 1022 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL); 1023 if (busnum < 0) { 1024 pr_err("%s: failed to get bus number\n", usbcore_name); 1025 goto error_find_busnum; 1026 } 1027 bus->busnum = busnum; 1028 mutex_unlock(&usb_bus_idr_lock); 1029 1030 usb_notify_add_bus(bus); 1031 1032 dev_info (bus->controller, "new USB bus registered, assigned bus " 1033 "number %d\n", bus->busnum); 1034 return 0; 1035 1036 error_find_busnum: 1037 mutex_unlock(&usb_bus_idr_lock); 1038 return result; 1039 } 1040 1041 /** 1042 * usb_deregister_bus - deregisters the USB host controller 1043 * @bus: pointer to the bus to deregister 1044 * Context: !in_interrupt() 1045 * 1046 * Recycles the bus number, and unlinks the controller from usbcore data 1047 * structures so that it won't be seen by scanning the bus list. 1048 */ 1049 static void usb_deregister_bus (struct usb_bus *bus) 1050 { 1051 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 1052 1053 /* 1054 * NOTE: make sure that all the devices are removed by the 1055 * controller code, as well as having it call this when cleaning 1056 * itself up 1057 */ 1058 mutex_lock(&usb_bus_idr_lock); 1059 idr_remove(&usb_bus_idr, bus->busnum); 1060 mutex_unlock(&usb_bus_idr_lock); 1061 1062 usb_notify_remove_bus(bus); 1063 } 1064 1065 /** 1066 * register_root_hub - called by usb_add_hcd() to register a root hub 1067 * @hcd: host controller for this root hub 1068 * 1069 * This function registers the root hub with the USB subsystem. It sets up 1070 * the device properly in the device tree and then calls usb_new_device() 1071 * to register the usb device. It also assigns the root hub's USB address 1072 * (always 1). 1073 * 1074 * Return: 0 if successful. A negative error code otherwise. 1075 */ 1076 static int register_root_hub(struct usb_hcd *hcd) 1077 { 1078 struct device *parent_dev = hcd->self.controller; 1079 struct device *sysdev = hcd->self.sysdev; 1080 struct usb_device *usb_dev = hcd->self.root_hub; 1081 const int devnum = 1; 1082 int retval; 1083 1084 usb_dev->devnum = devnum; 1085 usb_dev->bus->devnum_next = devnum + 1; 1086 memset (&usb_dev->bus->devmap.devicemap, 0, 1087 sizeof usb_dev->bus->devmap.devicemap); 1088 set_bit (devnum, usb_dev->bus->devmap.devicemap); 1089 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 1090 1091 mutex_lock(&usb_bus_idr_lock); 1092 1093 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); 1094 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); 1095 if (retval != sizeof usb_dev->descriptor) { 1096 mutex_unlock(&usb_bus_idr_lock); 1097 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 1098 dev_name(&usb_dev->dev), retval); 1099 return (retval < 0) ? retval : -EMSGSIZE; 1100 } 1101 1102 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) { 1103 retval = usb_get_bos_descriptor(usb_dev); 1104 if (!retval) { 1105 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev); 1106 } else if (usb_dev->speed >= USB_SPEED_SUPER) { 1107 mutex_unlock(&usb_bus_idr_lock); 1108 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n", 1109 dev_name(&usb_dev->dev), retval); 1110 return retval; 1111 } 1112 } 1113 1114 retval = usb_new_device (usb_dev); 1115 if (retval) { 1116 dev_err (parent_dev, "can't register root hub for %s, %d\n", 1117 dev_name(&usb_dev->dev), retval); 1118 } else { 1119 spin_lock_irq (&hcd_root_hub_lock); 1120 hcd->rh_registered = 1; 1121 spin_unlock_irq (&hcd_root_hub_lock); 1122 1123 /* Did the HC die before the root hub was registered? */ 1124 if (HCD_DEAD(hcd)) 1125 usb_hc_died (hcd); /* This time clean up */ 1126 usb_dev->dev.of_node = sysdev->of_node; 1127 } 1128 mutex_unlock(&usb_bus_idr_lock); 1129 1130 return retval; 1131 } 1132 1133 /* 1134 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal 1135 * @bus: the bus which the root hub belongs to 1136 * @portnum: the port which is being resumed 1137 * 1138 * HCDs should call this function when they know that a resume signal is 1139 * being sent to a root-hub port. The root hub will be prevented from 1140 * going into autosuspend until usb_hcd_end_port_resume() is called. 1141 * 1142 * The bus's private lock must be held by the caller. 1143 */ 1144 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum) 1145 { 1146 unsigned bit = 1 << portnum; 1147 1148 if (!(bus->resuming_ports & bit)) { 1149 bus->resuming_ports |= bit; 1150 pm_runtime_get_noresume(&bus->root_hub->dev); 1151 } 1152 } 1153 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume); 1154 1155 /* 1156 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal 1157 * @bus: the bus which the root hub belongs to 1158 * @portnum: the port which is being resumed 1159 * 1160 * HCDs should call this function when they know that a resume signal has 1161 * stopped being sent to a root-hub port. The root hub will be allowed to 1162 * autosuspend again. 1163 * 1164 * The bus's private lock must be held by the caller. 1165 */ 1166 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum) 1167 { 1168 unsigned bit = 1 << portnum; 1169 1170 if (bus->resuming_ports & bit) { 1171 bus->resuming_ports &= ~bit; 1172 pm_runtime_put_noidle(&bus->root_hub->dev); 1173 } 1174 } 1175 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume); 1176 1177 /*-------------------------------------------------------------------------*/ 1178 1179 /** 1180 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 1181 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 1182 * @is_input: true iff the transaction sends data to the host 1183 * @isoc: true for isochronous transactions, false for interrupt ones 1184 * @bytecount: how many bytes in the transaction. 1185 * 1186 * Return: Approximate bus time in nanoseconds for a periodic transaction. 1187 * 1188 * Note: 1189 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 1190 * scheduled in software, this function is only used for such scheduling. 1191 */ 1192 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 1193 { 1194 unsigned long tmp; 1195 1196 switch (speed) { 1197 case USB_SPEED_LOW: /* INTR only */ 1198 if (is_input) { 1199 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 1200 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1201 } else { 1202 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 1203 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1204 } 1205 case USB_SPEED_FULL: /* ISOC or INTR */ 1206 if (isoc) { 1207 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1208 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp; 1209 } else { 1210 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1211 return 9107L + BW_HOST_DELAY + tmp; 1212 } 1213 case USB_SPEED_HIGH: /* ISOC or INTR */ 1214 /* FIXME adjust for input vs output */ 1215 if (isoc) 1216 tmp = HS_NSECS_ISO (bytecount); 1217 else 1218 tmp = HS_NSECS (bytecount); 1219 return tmp; 1220 default: 1221 pr_debug ("%s: bogus device speed!\n", usbcore_name); 1222 return -1; 1223 } 1224 } 1225 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 1226 1227 1228 /*-------------------------------------------------------------------------*/ 1229 1230 /* 1231 * Generic HC operations. 1232 */ 1233 1234 /*-------------------------------------------------------------------------*/ 1235 1236 /** 1237 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 1238 * @hcd: host controller to which @urb was submitted 1239 * @urb: URB being submitted 1240 * 1241 * Host controller drivers should call this routine in their enqueue() 1242 * method. The HCD's private spinlock must be held and interrupts must 1243 * be disabled. The actions carried out here are required for URB 1244 * submission, as well as for endpoint shutdown and for usb_kill_urb. 1245 * 1246 * Return: 0 for no error, otherwise a negative error code (in which case 1247 * the enqueue() method must fail). If no error occurs but enqueue() fails 1248 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 1249 * the private spinlock and returning. 1250 */ 1251 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1252 { 1253 int rc = 0; 1254 1255 spin_lock(&hcd_urb_list_lock); 1256 1257 /* Check that the URB isn't being killed */ 1258 if (unlikely(atomic_read(&urb->reject))) { 1259 rc = -EPERM; 1260 goto done; 1261 } 1262 1263 if (unlikely(!urb->ep->enabled)) { 1264 rc = -ENOENT; 1265 goto done; 1266 } 1267 1268 if (unlikely(!urb->dev->can_submit)) { 1269 rc = -EHOSTUNREACH; 1270 goto done; 1271 } 1272 1273 /* 1274 * Check the host controller's state and add the URB to the 1275 * endpoint's queue. 1276 */ 1277 if (HCD_RH_RUNNING(hcd)) { 1278 urb->unlinked = 0; 1279 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1280 } else { 1281 rc = -ESHUTDOWN; 1282 goto done; 1283 } 1284 done: 1285 spin_unlock(&hcd_urb_list_lock); 1286 return rc; 1287 } 1288 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1289 1290 /** 1291 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1292 * @hcd: host controller to which @urb was submitted 1293 * @urb: URB being checked for unlinkability 1294 * @status: error code to store in @urb if the unlink succeeds 1295 * 1296 * Host controller drivers should call this routine in their dequeue() 1297 * method. The HCD's private spinlock must be held and interrupts must 1298 * be disabled. The actions carried out here are required for making 1299 * sure than an unlink is valid. 1300 * 1301 * Return: 0 for no error, otherwise a negative error code (in which case 1302 * the dequeue() method must fail). The possible error codes are: 1303 * 1304 * -EIDRM: @urb was not submitted or has already completed. 1305 * The completion function may not have been called yet. 1306 * 1307 * -EBUSY: @urb has already been unlinked. 1308 */ 1309 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1310 int status) 1311 { 1312 struct list_head *tmp; 1313 1314 /* insist the urb is still queued */ 1315 list_for_each(tmp, &urb->ep->urb_list) { 1316 if (tmp == &urb->urb_list) 1317 break; 1318 } 1319 if (tmp != &urb->urb_list) 1320 return -EIDRM; 1321 1322 /* Any status except -EINPROGRESS means something already started to 1323 * unlink this URB from the hardware. So there's no more work to do. 1324 */ 1325 if (urb->unlinked) 1326 return -EBUSY; 1327 urb->unlinked = status; 1328 return 0; 1329 } 1330 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1331 1332 /** 1333 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1334 * @hcd: host controller to which @urb was submitted 1335 * @urb: URB being unlinked 1336 * 1337 * Host controller drivers should call this routine before calling 1338 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1339 * interrupts must be disabled. The actions carried out here are required 1340 * for URB completion. 1341 */ 1342 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1343 { 1344 /* clear all state linking urb to this dev (and hcd) */ 1345 spin_lock(&hcd_urb_list_lock); 1346 list_del_init(&urb->urb_list); 1347 spin_unlock(&hcd_urb_list_lock); 1348 } 1349 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1350 1351 /* 1352 * Some usb host controllers can only perform dma using a small SRAM area. 1353 * The usb core itself is however optimized for host controllers that can dma 1354 * using regular system memory - like pci devices doing bus mastering. 1355 * 1356 * To support host controllers with limited dma capabilities we provide dma 1357 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag. 1358 * For this to work properly the host controller code must first use the 1359 * function dma_declare_coherent_memory() to point out which memory area 1360 * that should be used for dma allocations. 1361 * 1362 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for 1363 * dma using dma_alloc_coherent() which in turn allocates from the memory 1364 * area pointed out with dma_declare_coherent_memory(). 1365 * 1366 * So, to summarize... 1367 * 1368 * - We need "local" memory, canonical example being 1369 * a small SRAM on a discrete controller being the 1370 * only memory that the controller can read ... 1371 * (a) "normal" kernel memory is no good, and 1372 * (b) there's not enough to share 1373 * 1374 * - The only *portable* hook for such stuff in the 1375 * DMA framework is dma_declare_coherent_memory() 1376 * 1377 * - So we use that, even though the primary requirement 1378 * is that the memory be "local" (hence addressable 1379 * by that device), not "coherent". 1380 * 1381 */ 1382 1383 static int hcd_alloc_coherent(struct usb_bus *bus, 1384 gfp_t mem_flags, dma_addr_t *dma_handle, 1385 void **vaddr_handle, size_t size, 1386 enum dma_data_direction dir) 1387 { 1388 unsigned char *vaddr; 1389 1390 if (*vaddr_handle == NULL) { 1391 WARN_ON_ONCE(1); 1392 return -EFAULT; 1393 } 1394 1395 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr), 1396 mem_flags, dma_handle); 1397 if (!vaddr) 1398 return -ENOMEM; 1399 1400 /* 1401 * Store the virtual address of the buffer at the end 1402 * of the allocated dma buffer. The size of the buffer 1403 * may be uneven so use unaligned functions instead 1404 * of just rounding up. It makes sense to optimize for 1405 * memory footprint over access speed since the amount 1406 * of memory available for dma may be limited. 1407 */ 1408 put_unaligned((unsigned long)*vaddr_handle, 1409 (unsigned long *)(vaddr + size)); 1410 1411 if (dir == DMA_TO_DEVICE) 1412 memcpy(vaddr, *vaddr_handle, size); 1413 1414 *vaddr_handle = vaddr; 1415 return 0; 1416 } 1417 1418 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1419 void **vaddr_handle, size_t size, 1420 enum dma_data_direction dir) 1421 { 1422 unsigned char *vaddr = *vaddr_handle; 1423 1424 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1425 1426 if (dir == DMA_FROM_DEVICE) 1427 memcpy(vaddr, *vaddr_handle, size); 1428 1429 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1430 1431 *vaddr_handle = vaddr; 1432 *dma_handle = 0; 1433 } 1434 1435 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb) 1436 { 1437 if (IS_ENABLED(CONFIG_HAS_DMA) && 1438 (urb->transfer_flags & URB_SETUP_MAP_SINGLE)) 1439 dma_unmap_single(hcd->self.sysdev, 1440 urb->setup_dma, 1441 sizeof(struct usb_ctrlrequest), 1442 DMA_TO_DEVICE); 1443 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL) 1444 hcd_free_coherent(urb->dev->bus, 1445 &urb->setup_dma, 1446 (void **) &urb->setup_packet, 1447 sizeof(struct usb_ctrlrequest), 1448 DMA_TO_DEVICE); 1449 1450 /* Make it safe to call this routine more than once */ 1451 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL); 1452 } 1453 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma); 1454 1455 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1456 { 1457 if (hcd->driver->unmap_urb_for_dma) 1458 hcd->driver->unmap_urb_for_dma(hcd, urb); 1459 else 1460 usb_hcd_unmap_urb_for_dma(hcd, urb); 1461 } 1462 1463 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1464 { 1465 enum dma_data_direction dir; 1466 1467 usb_hcd_unmap_urb_setup_for_dma(hcd, urb); 1468 1469 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1470 if (IS_ENABLED(CONFIG_HAS_DMA) && 1471 (urb->transfer_flags & URB_DMA_MAP_SG)) 1472 dma_unmap_sg(hcd->self.sysdev, 1473 urb->sg, 1474 urb->num_sgs, 1475 dir); 1476 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1477 (urb->transfer_flags & URB_DMA_MAP_PAGE)) 1478 dma_unmap_page(hcd->self.sysdev, 1479 urb->transfer_dma, 1480 urb->transfer_buffer_length, 1481 dir); 1482 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1483 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1484 dma_unmap_single(hcd->self.sysdev, 1485 urb->transfer_dma, 1486 urb->transfer_buffer_length, 1487 dir); 1488 else if (urb->transfer_flags & URB_MAP_LOCAL) 1489 hcd_free_coherent(urb->dev->bus, 1490 &urb->transfer_dma, 1491 &urb->transfer_buffer, 1492 urb->transfer_buffer_length, 1493 dir); 1494 1495 /* Make it safe to call this routine more than once */ 1496 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE | 1497 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL); 1498 } 1499 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma); 1500 1501 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1502 gfp_t mem_flags) 1503 { 1504 if (hcd->driver->map_urb_for_dma) 1505 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags); 1506 else 1507 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1508 } 1509 1510 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1511 gfp_t mem_flags) 1512 { 1513 enum dma_data_direction dir; 1514 int ret = 0; 1515 1516 /* Map the URB's buffers for DMA access. 1517 * Lower level HCD code should use *_dma exclusively, 1518 * unless it uses pio or talks to another transport, 1519 * or uses the provided scatter gather list for bulk. 1520 */ 1521 1522 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1523 if (hcd->self.uses_pio_for_control) 1524 return ret; 1525 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) { 1526 urb->setup_dma = dma_map_single( 1527 hcd->self.sysdev, 1528 urb->setup_packet, 1529 sizeof(struct usb_ctrlrequest), 1530 DMA_TO_DEVICE); 1531 if (dma_mapping_error(hcd->self.sysdev, 1532 urb->setup_dma)) 1533 return -EAGAIN; 1534 urb->transfer_flags |= URB_SETUP_MAP_SINGLE; 1535 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1536 ret = hcd_alloc_coherent( 1537 urb->dev->bus, mem_flags, 1538 &urb->setup_dma, 1539 (void **)&urb->setup_packet, 1540 sizeof(struct usb_ctrlrequest), 1541 DMA_TO_DEVICE); 1542 if (ret) 1543 return ret; 1544 urb->transfer_flags |= URB_SETUP_MAP_LOCAL; 1545 } 1546 } 1547 1548 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1549 if (urb->transfer_buffer_length != 0 1550 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1551 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) { 1552 if (urb->num_sgs) { 1553 int n; 1554 1555 /* We don't support sg for isoc transfers ! */ 1556 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) { 1557 WARN_ON(1); 1558 return -EINVAL; 1559 } 1560 1561 n = dma_map_sg( 1562 hcd->self.sysdev, 1563 urb->sg, 1564 urb->num_sgs, 1565 dir); 1566 if (n <= 0) 1567 ret = -EAGAIN; 1568 else 1569 urb->transfer_flags |= URB_DMA_MAP_SG; 1570 urb->num_mapped_sgs = n; 1571 if (n != urb->num_sgs) 1572 urb->transfer_flags |= 1573 URB_DMA_SG_COMBINED; 1574 } else if (urb->sg) { 1575 struct scatterlist *sg = urb->sg; 1576 urb->transfer_dma = dma_map_page( 1577 hcd->self.sysdev, 1578 sg_page(sg), 1579 sg->offset, 1580 urb->transfer_buffer_length, 1581 dir); 1582 if (dma_mapping_error(hcd->self.sysdev, 1583 urb->transfer_dma)) 1584 ret = -EAGAIN; 1585 else 1586 urb->transfer_flags |= URB_DMA_MAP_PAGE; 1587 } else if (is_vmalloc_addr(urb->transfer_buffer)) { 1588 WARN_ONCE(1, "transfer buffer not dma capable\n"); 1589 ret = -EAGAIN; 1590 } else { 1591 urb->transfer_dma = dma_map_single( 1592 hcd->self.sysdev, 1593 urb->transfer_buffer, 1594 urb->transfer_buffer_length, 1595 dir); 1596 if (dma_mapping_error(hcd->self.sysdev, 1597 urb->transfer_dma)) 1598 ret = -EAGAIN; 1599 else 1600 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1601 } 1602 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1603 ret = hcd_alloc_coherent( 1604 urb->dev->bus, mem_flags, 1605 &urb->transfer_dma, 1606 &urb->transfer_buffer, 1607 urb->transfer_buffer_length, 1608 dir); 1609 if (ret == 0) 1610 urb->transfer_flags |= URB_MAP_LOCAL; 1611 } 1612 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE | 1613 URB_SETUP_MAP_LOCAL))) 1614 usb_hcd_unmap_urb_for_dma(hcd, urb); 1615 } 1616 return ret; 1617 } 1618 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma); 1619 1620 /*-------------------------------------------------------------------------*/ 1621 1622 /* may be called in any context with a valid urb->dev usecount 1623 * caller surrenders "ownership" of urb 1624 * expects usb_submit_urb() to have sanity checked and conditioned all 1625 * inputs in the urb 1626 */ 1627 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1628 { 1629 int status; 1630 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1631 1632 /* increment urb's reference count as part of giving it to the HCD 1633 * (which will control it). HCD guarantees that it either returns 1634 * an error or calls giveback(), but not both. 1635 */ 1636 usb_get_urb(urb); 1637 atomic_inc(&urb->use_count); 1638 atomic_inc(&urb->dev->urbnum); 1639 usbmon_urb_submit(&hcd->self, urb); 1640 1641 /* NOTE requirements on root-hub callers (usbfs and the hub 1642 * driver, for now): URBs' urb->transfer_buffer must be 1643 * valid and usb_buffer_{sync,unmap}() not be needed, since 1644 * they could clobber root hub response data. Also, control 1645 * URBs must be submitted in process context with interrupts 1646 * enabled. 1647 */ 1648 1649 if (is_root_hub(urb->dev)) { 1650 status = rh_urb_enqueue(hcd, urb); 1651 } else { 1652 status = map_urb_for_dma(hcd, urb, mem_flags); 1653 if (likely(status == 0)) { 1654 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1655 if (unlikely(status)) 1656 unmap_urb_for_dma(hcd, urb); 1657 } 1658 } 1659 1660 if (unlikely(status)) { 1661 usbmon_urb_submit_error(&hcd->self, urb, status); 1662 urb->hcpriv = NULL; 1663 INIT_LIST_HEAD(&urb->urb_list); 1664 atomic_dec(&urb->use_count); 1665 atomic_dec(&urb->dev->urbnum); 1666 if (atomic_read(&urb->reject)) 1667 wake_up(&usb_kill_urb_queue); 1668 usb_put_urb(urb); 1669 } 1670 return status; 1671 } 1672 1673 /*-------------------------------------------------------------------------*/ 1674 1675 /* this makes the hcd giveback() the urb more quickly, by kicking it 1676 * off hardware queues (which may take a while) and returning it as 1677 * soon as practical. we've already set up the urb's return status, 1678 * but we can't know if the callback completed already. 1679 */ 1680 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1681 { 1682 int value; 1683 1684 if (is_root_hub(urb->dev)) 1685 value = usb_rh_urb_dequeue(hcd, urb, status); 1686 else { 1687 1688 /* The only reason an HCD might fail this call is if 1689 * it has not yet fully queued the urb to begin with. 1690 * Such failures should be harmless. */ 1691 value = hcd->driver->urb_dequeue(hcd, urb, status); 1692 } 1693 return value; 1694 } 1695 1696 /* 1697 * called in any context 1698 * 1699 * caller guarantees urb won't be recycled till both unlink() 1700 * and the urb's completion function return 1701 */ 1702 int usb_hcd_unlink_urb (struct urb *urb, int status) 1703 { 1704 struct usb_hcd *hcd; 1705 struct usb_device *udev = urb->dev; 1706 int retval = -EIDRM; 1707 unsigned long flags; 1708 1709 /* Prevent the device and bus from going away while 1710 * the unlink is carried out. If they are already gone 1711 * then urb->use_count must be 0, since disconnected 1712 * devices can't have any active URBs. 1713 */ 1714 spin_lock_irqsave(&hcd_urb_unlink_lock, flags); 1715 if (atomic_read(&urb->use_count) > 0) { 1716 retval = 0; 1717 usb_get_dev(udev); 1718 } 1719 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); 1720 if (retval == 0) { 1721 hcd = bus_to_hcd(urb->dev->bus); 1722 retval = unlink1(hcd, urb, status); 1723 if (retval == 0) 1724 retval = -EINPROGRESS; 1725 else if (retval != -EIDRM && retval != -EBUSY) 1726 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n", 1727 urb, retval); 1728 usb_put_dev(udev); 1729 } 1730 return retval; 1731 } 1732 1733 /*-------------------------------------------------------------------------*/ 1734 1735 static void __usb_hcd_giveback_urb(struct urb *urb) 1736 { 1737 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1738 struct usb_anchor *anchor = urb->anchor; 1739 int status = urb->unlinked; 1740 unsigned long flags; 1741 1742 urb->hcpriv = NULL; 1743 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1744 urb->actual_length < urb->transfer_buffer_length && 1745 !status)) 1746 status = -EREMOTEIO; 1747 1748 unmap_urb_for_dma(hcd, urb); 1749 usbmon_urb_complete(&hcd->self, urb, status); 1750 usb_anchor_suspend_wakeups(anchor); 1751 usb_unanchor_urb(urb); 1752 if (likely(status == 0)) 1753 usb_led_activity(USB_LED_EVENT_HOST); 1754 1755 /* pass ownership to the completion handler */ 1756 urb->status = status; 1757 1758 /* 1759 * We disable local IRQs here avoid possible deadlock because 1760 * drivers may call spin_lock() to hold lock which might be 1761 * acquired in one hard interrupt handler. 1762 * 1763 * The local_irq_save()/local_irq_restore() around complete() 1764 * will be removed if current USB drivers have been cleaned up 1765 * and no one may trigger the above deadlock situation when 1766 * running complete() in tasklet. 1767 */ 1768 local_irq_save(flags); 1769 urb->complete(urb); 1770 local_irq_restore(flags); 1771 1772 usb_anchor_resume_wakeups(anchor); 1773 atomic_dec(&urb->use_count); 1774 if (unlikely(atomic_read(&urb->reject))) 1775 wake_up(&usb_kill_urb_queue); 1776 usb_put_urb(urb); 1777 } 1778 1779 static void usb_giveback_urb_bh(unsigned long param) 1780 { 1781 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param; 1782 struct list_head local_list; 1783 1784 spin_lock_irq(&bh->lock); 1785 bh->running = true; 1786 restart: 1787 list_replace_init(&bh->head, &local_list); 1788 spin_unlock_irq(&bh->lock); 1789 1790 while (!list_empty(&local_list)) { 1791 struct urb *urb; 1792 1793 urb = list_entry(local_list.next, struct urb, urb_list); 1794 list_del_init(&urb->urb_list); 1795 bh->completing_ep = urb->ep; 1796 __usb_hcd_giveback_urb(urb); 1797 bh->completing_ep = NULL; 1798 } 1799 1800 /* check if there are new URBs to giveback */ 1801 spin_lock_irq(&bh->lock); 1802 if (!list_empty(&bh->head)) 1803 goto restart; 1804 bh->running = false; 1805 spin_unlock_irq(&bh->lock); 1806 } 1807 1808 /** 1809 * usb_hcd_giveback_urb - return URB from HCD to device driver 1810 * @hcd: host controller returning the URB 1811 * @urb: urb being returned to the USB device driver. 1812 * @status: completion status code for the URB. 1813 * Context: in_interrupt() 1814 * 1815 * This hands the URB from HCD to its USB device driver, using its 1816 * completion function. The HCD has freed all per-urb resources 1817 * (and is done using urb->hcpriv). It also released all HCD locks; 1818 * the device driver won't cause problems if it frees, modifies, 1819 * or resubmits this URB. 1820 * 1821 * If @urb was unlinked, the value of @status will be overridden by 1822 * @urb->unlinked. Erroneous short transfers are detected in case 1823 * the HCD hasn't checked for them. 1824 */ 1825 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1826 { 1827 struct giveback_urb_bh *bh; 1828 bool running, high_prio_bh; 1829 1830 /* pass status to tasklet via unlinked */ 1831 if (likely(!urb->unlinked)) 1832 urb->unlinked = status; 1833 1834 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) { 1835 __usb_hcd_giveback_urb(urb); 1836 return; 1837 } 1838 1839 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) { 1840 bh = &hcd->high_prio_bh; 1841 high_prio_bh = true; 1842 } else { 1843 bh = &hcd->low_prio_bh; 1844 high_prio_bh = false; 1845 } 1846 1847 spin_lock(&bh->lock); 1848 list_add_tail(&urb->urb_list, &bh->head); 1849 running = bh->running; 1850 spin_unlock(&bh->lock); 1851 1852 if (running) 1853 ; 1854 else if (high_prio_bh) 1855 tasklet_hi_schedule(&bh->bh); 1856 else 1857 tasklet_schedule(&bh->bh); 1858 } 1859 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1860 1861 /*-------------------------------------------------------------------------*/ 1862 1863 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1864 * queue to drain completely. The caller must first insure that no more 1865 * URBs can be submitted for this endpoint. 1866 */ 1867 void usb_hcd_flush_endpoint(struct usb_device *udev, 1868 struct usb_host_endpoint *ep) 1869 { 1870 struct usb_hcd *hcd; 1871 struct urb *urb; 1872 1873 if (!ep) 1874 return; 1875 might_sleep(); 1876 hcd = bus_to_hcd(udev->bus); 1877 1878 /* No more submits can occur */ 1879 spin_lock_irq(&hcd_urb_list_lock); 1880 rescan: 1881 list_for_each_entry (urb, &ep->urb_list, urb_list) { 1882 int is_in; 1883 1884 if (urb->unlinked) 1885 continue; 1886 usb_get_urb (urb); 1887 is_in = usb_urb_dir_in(urb); 1888 spin_unlock(&hcd_urb_list_lock); 1889 1890 /* kick hcd */ 1891 unlink1(hcd, urb, -ESHUTDOWN); 1892 dev_dbg (hcd->self.controller, 1893 "shutdown urb %pK ep%d%s%s\n", 1894 urb, usb_endpoint_num(&ep->desc), 1895 is_in ? "in" : "out", 1896 ({ char *s; 1897 1898 switch (usb_endpoint_type(&ep->desc)) { 1899 case USB_ENDPOINT_XFER_CONTROL: 1900 s = ""; break; 1901 case USB_ENDPOINT_XFER_BULK: 1902 s = "-bulk"; break; 1903 case USB_ENDPOINT_XFER_INT: 1904 s = "-intr"; break; 1905 default: 1906 s = "-iso"; break; 1907 }; 1908 s; 1909 })); 1910 usb_put_urb (urb); 1911 1912 /* list contents may have changed */ 1913 spin_lock(&hcd_urb_list_lock); 1914 goto rescan; 1915 } 1916 spin_unlock_irq(&hcd_urb_list_lock); 1917 1918 /* Wait until the endpoint queue is completely empty */ 1919 while (!list_empty (&ep->urb_list)) { 1920 spin_lock_irq(&hcd_urb_list_lock); 1921 1922 /* The list may have changed while we acquired the spinlock */ 1923 urb = NULL; 1924 if (!list_empty (&ep->urb_list)) { 1925 urb = list_entry (ep->urb_list.prev, struct urb, 1926 urb_list); 1927 usb_get_urb (urb); 1928 } 1929 spin_unlock_irq(&hcd_urb_list_lock); 1930 1931 if (urb) { 1932 usb_kill_urb (urb); 1933 usb_put_urb (urb); 1934 } 1935 } 1936 } 1937 1938 /** 1939 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds 1940 * the bus bandwidth 1941 * @udev: target &usb_device 1942 * @new_config: new configuration to install 1943 * @cur_alt: the current alternate interface setting 1944 * @new_alt: alternate interface setting that is being installed 1945 * 1946 * To change configurations, pass in the new configuration in new_config, 1947 * and pass NULL for cur_alt and new_alt. 1948 * 1949 * To reset a device's configuration (put the device in the ADDRESSED state), 1950 * pass in NULL for new_config, cur_alt, and new_alt. 1951 * 1952 * To change alternate interface settings, pass in NULL for new_config, 1953 * pass in the current alternate interface setting in cur_alt, 1954 * and pass in the new alternate interface setting in new_alt. 1955 * 1956 * Return: An error if the requested bandwidth change exceeds the 1957 * bus bandwidth or host controller internal resources. 1958 */ 1959 int usb_hcd_alloc_bandwidth(struct usb_device *udev, 1960 struct usb_host_config *new_config, 1961 struct usb_host_interface *cur_alt, 1962 struct usb_host_interface *new_alt) 1963 { 1964 int num_intfs, i, j; 1965 struct usb_host_interface *alt = NULL; 1966 int ret = 0; 1967 struct usb_hcd *hcd; 1968 struct usb_host_endpoint *ep; 1969 1970 hcd = bus_to_hcd(udev->bus); 1971 if (!hcd->driver->check_bandwidth) 1972 return 0; 1973 1974 /* Configuration is being removed - set configuration 0 */ 1975 if (!new_config && !cur_alt) { 1976 for (i = 1; i < 16; ++i) { 1977 ep = udev->ep_out[i]; 1978 if (ep) 1979 hcd->driver->drop_endpoint(hcd, udev, ep); 1980 ep = udev->ep_in[i]; 1981 if (ep) 1982 hcd->driver->drop_endpoint(hcd, udev, ep); 1983 } 1984 hcd->driver->check_bandwidth(hcd, udev); 1985 return 0; 1986 } 1987 /* Check if the HCD says there's enough bandwidth. Enable all endpoints 1988 * each interface's alt setting 0 and ask the HCD to check the bandwidth 1989 * of the bus. There will always be bandwidth for endpoint 0, so it's 1990 * ok to exclude it. 1991 */ 1992 if (new_config) { 1993 num_intfs = new_config->desc.bNumInterfaces; 1994 /* Remove endpoints (except endpoint 0, which is always on the 1995 * schedule) from the old config from the schedule 1996 */ 1997 for (i = 1; i < 16; ++i) { 1998 ep = udev->ep_out[i]; 1999 if (ep) { 2000 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 2001 if (ret < 0) 2002 goto reset; 2003 } 2004 ep = udev->ep_in[i]; 2005 if (ep) { 2006 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 2007 if (ret < 0) 2008 goto reset; 2009 } 2010 } 2011 for (i = 0; i < num_intfs; ++i) { 2012 struct usb_host_interface *first_alt; 2013 int iface_num; 2014 2015 first_alt = &new_config->intf_cache[i]->altsetting[0]; 2016 iface_num = first_alt->desc.bInterfaceNumber; 2017 /* Set up endpoints for alternate interface setting 0 */ 2018 alt = usb_find_alt_setting(new_config, iface_num, 0); 2019 if (!alt) 2020 /* No alt setting 0? Pick the first setting. */ 2021 alt = first_alt; 2022 2023 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 2024 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); 2025 if (ret < 0) 2026 goto reset; 2027 } 2028 } 2029 } 2030 if (cur_alt && new_alt) { 2031 struct usb_interface *iface = usb_ifnum_to_if(udev, 2032 cur_alt->desc.bInterfaceNumber); 2033 2034 if (!iface) 2035 return -EINVAL; 2036 if (iface->resetting_device) { 2037 /* 2038 * The USB core just reset the device, so the xHCI host 2039 * and the device will think alt setting 0 is installed. 2040 * However, the USB core will pass in the alternate 2041 * setting installed before the reset as cur_alt. Dig 2042 * out the alternate setting 0 structure, or the first 2043 * alternate setting if a broken device doesn't have alt 2044 * setting 0. 2045 */ 2046 cur_alt = usb_altnum_to_altsetting(iface, 0); 2047 if (!cur_alt) 2048 cur_alt = &iface->altsetting[0]; 2049 } 2050 2051 /* Drop all the endpoints in the current alt setting */ 2052 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) { 2053 ret = hcd->driver->drop_endpoint(hcd, udev, 2054 &cur_alt->endpoint[i]); 2055 if (ret < 0) 2056 goto reset; 2057 } 2058 /* Add all the endpoints in the new alt setting */ 2059 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) { 2060 ret = hcd->driver->add_endpoint(hcd, udev, 2061 &new_alt->endpoint[i]); 2062 if (ret < 0) 2063 goto reset; 2064 } 2065 } 2066 ret = hcd->driver->check_bandwidth(hcd, udev); 2067 reset: 2068 if (ret < 0) 2069 hcd->driver->reset_bandwidth(hcd, udev); 2070 return ret; 2071 } 2072 2073 /* Disables the endpoint: synchronizes with the hcd to make sure all 2074 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 2075 * have been called previously. Use for set_configuration, set_interface, 2076 * driver removal, physical disconnect. 2077 * 2078 * example: a qh stored in ep->hcpriv, holding state related to endpoint 2079 * type, maxpacket size, toggle, halt status, and scheduling. 2080 */ 2081 void usb_hcd_disable_endpoint(struct usb_device *udev, 2082 struct usb_host_endpoint *ep) 2083 { 2084 struct usb_hcd *hcd; 2085 2086 might_sleep(); 2087 hcd = bus_to_hcd(udev->bus); 2088 if (hcd->driver->endpoint_disable) 2089 hcd->driver->endpoint_disable(hcd, ep); 2090 } 2091 2092 /** 2093 * usb_hcd_reset_endpoint - reset host endpoint state 2094 * @udev: USB device. 2095 * @ep: the endpoint to reset. 2096 * 2097 * Resets any host endpoint state such as the toggle bit, sequence 2098 * number and current window. 2099 */ 2100 void usb_hcd_reset_endpoint(struct usb_device *udev, 2101 struct usb_host_endpoint *ep) 2102 { 2103 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2104 2105 if (hcd->driver->endpoint_reset) 2106 hcd->driver->endpoint_reset(hcd, ep); 2107 else { 2108 int epnum = usb_endpoint_num(&ep->desc); 2109 int is_out = usb_endpoint_dir_out(&ep->desc); 2110 int is_control = usb_endpoint_xfer_control(&ep->desc); 2111 2112 usb_settoggle(udev, epnum, is_out, 0); 2113 if (is_control) 2114 usb_settoggle(udev, epnum, !is_out, 0); 2115 } 2116 } 2117 2118 /** 2119 * usb_alloc_streams - allocate bulk endpoint stream IDs. 2120 * @interface: alternate setting that includes all endpoints. 2121 * @eps: array of endpoints that need streams. 2122 * @num_eps: number of endpoints in the array. 2123 * @num_streams: number of streams to allocate. 2124 * @mem_flags: flags hcd should use to allocate memory. 2125 * 2126 * Sets up a group of bulk endpoints to have @num_streams stream IDs available. 2127 * Drivers may queue multiple transfers to different stream IDs, which may 2128 * complete in a different order than they were queued. 2129 * 2130 * Return: On success, the number of allocated streams. On failure, a negative 2131 * error code. 2132 */ 2133 int usb_alloc_streams(struct usb_interface *interface, 2134 struct usb_host_endpoint **eps, unsigned int num_eps, 2135 unsigned int num_streams, gfp_t mem_flags) 2136 { 2137 struct usb_hcd *hcd; 2138 struct usb_device *dev; 2139 int i, ret; 2140 2141 dev = interface_to_usbdev(interface); 2142 hcd = bus_to_hcd(dev->bus); 2143 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams) 2144 return -EINVAL; 2145 if (dev->speed < USB_SPEED_SUPER) 2146 return -EINVAL; 2147 if (dev->state < USB_STATE_CONFIGURED) 2148 return -ENODEV; 2149 2150 for (i = 0; i < num_eps; i++) { 2151 /* Streams only apply to bulk endpoints. */ 2152 if (!usb_endpoint_xfer_bulk(&eps[i]->desc)) 2153 return -EINVAL; 2154 /* Re-alloc is not allowed */ 2155 if (eps[i]->streams) 2156 return -EINVAL; 2157 } 2158 2159 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps, 2160 num_streams, mem_flags); 2161 if (ret < 0) 2162 return ret; 2163 2164 for (i = 0; i < num_eps; i++) 2165 eps[i]->streams = ret; 2166 2167 return ret; 2168 } 2169 EXPORT_SYMBOL_GPL(usb_alloc_streams); 2170 2171 /** 2172 * usb_free_streams - free bulk endpoint stream IDs. 2173 * @interface: alternate setting that includes all endpoints. 2174 * @eps: array of endpoints to remove streams from. 2175 * @num_eps: number of endpoints in the array. 2176 * @mem_flags: flags hcd should use to allocate memory. 2177 * 2178 * Reverts a group of bulk endpoints back to not using stream IDs. 2179 * Can fail if we are given bad arguments, or HCD is broken. 2180 * 2181 * Return: 0 on success. On failure, a negative error code. 2182 */ 2183 int usb_free_streams(struct usb_interface *interface, 2184 struct usb_host_endpoint **eps, unsigned int num_eps, 2185 gfp_t mem_flags) 2186 { 2187 struct usb_hcd *hcd; 2188 struct usb_device *dev; 2189 int i, ret; 2190 2191 dev = interface_to_usbdev(interface); 2192 hcd = bus_to_hcd(dev->bus); 2193 if (dev->speed < USB_SPEED_SUPER) 2194 return -EINVAL; 2195 2196 /* Double-free is not allowed */ 2197 for (i = 0; i < num_eps; i++) 2198 if (!eps[i] || !eps[i]->streams) 2199 return -EINVAL; 2200 2201 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags); 2202 if (ret < 0) 2203 return ret; 2204 2205 for (i = 0; i < num_eps; i++) 2206 eps[i]->streams = 0; 2207 2208 return ret; 2209 } 2210 EXPORT_SYMBOL_GPL(usb_free_streams); 2211 2212 /* Protect against drivers that try to unlink URBs after the device 2213 * is gone, by waiting until all unlinks for @udev are finished. 2214 * Since we don't currently track URBs by device, simply wait until 2215 * nothing is running in the locked region of usb_hcd_unlink_urb(). 2216 */ 2217 void usb_hcd_synchronize_unlinks(struct usb_device *udev) 2218 { 2219 spin_lock_irq(&hcd_urb_unlink_lock); 2220 spin_unlock_irq(&hcd_urb_unlink_lock); 2221 } 2222 2223 /*-------------------------------------------------------------------------*/ 2224 2225 /* called in any context */ 2226 int usb_hcd_get_frame_number (struct usb_device *udev) 2227 { 2228 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2229 2230 if (!HCD_RH_RUNNING(hcd)) 2231 return -ESHUTDOWN; 2232 return hcd->driver->get_frame_number (hcd); 2233 } 2234 2235 /*-------------------------------------------------------------------------*/ 2236 2237 #ifdef CONFIG_PM 2238 2239 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) 2240 { 2241 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2242 int status; 2243 int old_state = hcd->state; 2244 2245 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n", 2246 (PMSG_IS_AUTO(msg) ? "auto-" : ""), 2247 rhdev->do_remote_wakeup); 2248 if (HCD_DEAD(hcd)) { 2249 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend"); 2250 return 0; 2251 } 2252 2253 if (!hcd->driver->bus_suspend) { 2254 status = -ENOENT; 2255 } else { 2256 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2257 hcd->state = HC_STATE_QUIESCING; 2258 status = hcd->driver->bus_suspend(hcd); 2259 } 2260 if (status == 0) { 2261 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 2262 hcd->state = HC_STATE_SUSPENDED; 2263 2264 /* Did we race with a root-hub wakeup event? */ 2265 if (rhdev->do_remote_wakeup) { 2266 char buffer[6]; 2267 2268 status = hcd->driver->hub_status_data(hcd, buffer); 2269 if (status != 0) { 2270 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n"); 2271 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME); 2272 status = -EBUSY; 2273 } 2274 } 2275 } else { 2276 spin_lock_irq(&hcd_root_hub_lock); 2277 if (!HCD_DEAD(hcd)) { 2278 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2279 hcd->state = old_state; 2280 } 2281 spin_unlock_irq(&hcd_root_hub_lock); 2282 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2283 "suspend", status); 2284 } 2285 return status; 2286 } 2287 2288 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) 2289 { 2290 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2291 int status; 2292 int old_state = hcd->state; 2293 2294 dev_dbg(&rhdev->dev, "usb %sresume\n", 2295 (PMSG_IS_AUTO(msg) ? "auto-" : "")); 2296 if (HCD_DEAD(hcd)) { 2297 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume"); 2298 return 0; 2299 } 2300 if (!hcd->driver->bus_resume) 2301 return -ENOENT; 2302 if (HCD_RH_RUNNING(hcd)) 2303 return 0; 2304 2305 hcd->state = HC_STATE_RESUMING; 2306 status = hcd->driver->bus_resume(hcd); 2307 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2308 if (status == 0) { 2309 struct usb_device *udev; 2310 int port1; 2311 2312 spin_lock_irq(&hcd_root_hub_lock); 2313 if (!HCD_DEAD(hcd)) { 2314 usb_set_device_state(rhdev, rhdev->actconfig 2315 ? USB_STATE_CONFIGURED 2316 : USB_STATE_ADDRESS); 2317 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2318 hcd->state = HC_STATE_RUNNING; 2319 } 2320 spin_unlock_irq(&hcd_root_hub_lock); 2321 2322 /* 2323 * Check whether any of the enabled ports on the root hub are 2324 * unsuspended. If they are then a TRSMRCY delay is needed 2325 * (this is what the USB-2 spec calls a "global resume"). 2326 * Otherwise we can skip the delay. 2327 */ 2328 usb_hub_for_each_child(rhdev, port1, udev) { 2329 if (udev->state != USB_STATE_NOTATTACHED && 2330 !udev->port_is_suspended) { 2331 usleep_range(10000, 11000); /* TRSMRCY */ 2332 break; 2333 } 2334 } 2335 } else { 2336 hcd->state = old_state; 2337 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2338 "resume", status); 2339 if (status != -ESHUTDOWN) 2340 usb_hc_died(hcd); 2341 } 2342 return status; 2343 } 2344 2345 /* Workqueue routine for root-hub remote wakeup */ 2346 static void hcd_resume_work(struct work_struct *work) 2347 { 2348 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 2349 struct usb_device *udev = hcd->self.root_hub; 2350 2351 usb_remote_wakeup(udev); 2352 } 2353 2354 /** 2355 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 2356 * @hcd: host controller for this root hub 2357 * 2358 * The USB host controller calls this function when its root hub is 2359 * suspended (with the remote wakeup feature enabled) and a remote 2360 * wakeup request is received. The routine submits a workqueue request 2361 * to resume the root hub (that is, manage its downstream ports again). 2362 */ 2363 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 2364 { 2365 unsigned long flags; 2366 2367 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2368 if (hcd->rh_registered) { 2369 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2370 queue_work(pm_wq, &hcd->wakeup_work); 2371 } 2372 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2373 } 2374 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 2375 2376 #endif /* CONFIG_PM */ 2377 2378 /*-------------------------------------------------------------------------*/ 2379 2380 #ifdef CONFIG_USB_OTG 2381 2382 /** 2383 * usb_bus_start_enum - start immediate enumeration (for OTG) 2384 * @bus: the bus (must use hcd framework) 2385 * @port_num: 1-based number of port; usually bus->otg_port 2386 * Context: in_interrupt() 2387 * 2388 * Starts enumeration, with an immediate reset followed later by 2389 * hub_wq identifying and possibly configuring the device. 2390 * This is needed by OTG controller drivers, where it helps meet 2391 * HNP protocol timing requirements for starting a port reset. 2392 * 2393 * Return: 0 if successful. 2394 */ 2395 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 2396 { 2397 struct usb_hcd *hcd; 2398 int status = -EOPNOTSUPP; 2399 2400 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 2401 * boards with root hubs hooked up to internal devices (instead of 2402 * just the OTG port) may need more attention to resetting... 2403 */ 2404 hcd = bus_to_hcd(bus); 2405 if (port_num && hcd->driver->start_port_reset) 2406 status = hcd->driver->start_port_reset(hcd, port_num); 2407 2408 /* allocate hub_wq shortly after (first) root port reset finishes; 2409 * it may issue others, until at least 50 msecs have passed. 2410 */ 2411 if (status == 0) 2412 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 2413 return status; 2414 } 2415 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 2416 2417 #endif 2418 2419 /*-------------------------------------------------------------------------*/ 2420 2421 /** 2422 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 2423 * @irq: the IRQ being raised 2424 * @__hcd: pointer to the HCD whose IRQ is being signaled 2425 * 2426 * If the controller isn't HALTed, calls the driver's irq handler. 2427 * Checks whether the controller is now dead. 2428 * 2429 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise. 2430 */ 2431 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 2432 { 2433 struct usb_hcd *hcd = __hcd; 2434 irqreturn_t rc; 2435 2436 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) 2437 rc = IRQ_NONE; 2438 else if (hcd->driver->irq(hcd) == IRQ_NONE) 2439 rc = IRQ_NONE; 2440 else 2441 rc = IRQ_HANDLED; 2442 2443 return rc; 2444 } 2445 EXPORT_SYMBOL_GPL(usb_hcd_irq); 2446 2447 /*-------------------------------------------------------------------------*/ 2448 2449 /** 2450 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 2451 * @hcd: pointer to the HCD representing the controller 2452 * 2453 * This is called by bus glue to report a USB host controller that died 2454 * while operations may still have been pending. It's called automatically 2455 * by the PCI glue, so only glue for non-PCI busses should need to call it. 2456 * 2457 * Only call this function with the primary HCD. 2458 */ 2459 void usb_hc_died (struct usb_hcd *hcd) 2460 { 2461 unsigned long flags; 2462 2463 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 2464 2465 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2466 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2467 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2468 if (hcd->rh_registered) { 2469 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2470 2471 /* make hub_wq clean up old urbs and devices */ 2472 usb_set_device_state (hcd->self.root_hub, 2473 USB_STATE_NOTATTACHED); 2474 usb_kick_hub_wq(hcd->self.root_hub); 2475 } 2476 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) { 2477 hcd = hcd->shared_hcd; 2478 if (hcd->rh_registered) { 2479 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2480 2481 /* make hub_wq clean up old urbs and devices */ 2482 usb_set_device_state(hcd->self.root_hub, 2483 USB_STATE_NOTATTACHED); 2484 usb_kick_hub_wq(hcd->self.root_hub); 2485 } 2486 } 2487 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2488 /* Make sure that the other roothub is also deallocated. */ 2489 } 2490 EXPORT_SYMBOL_GPL (usb_hc_died); 2491 2492 /*-------------------------------------------------------------------------*/ 2493 2494 static void init_giveback_urb_bh(struct giveback_urb_bh *bh) 2495 { 2496 2497 spin_lock_init(&bh->lock); 2498 INIT_LIST_HEAD(&bh->head); 2499 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh); 2500 } 2501 2502 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver, 2503 struct device *sysdev, struct device *dev, const char *bus_name, 2504 struct usb_hcd *primary_hcd) 2505 { 2506 struct usb_hcd *hcd; 2507 2508 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 2509 if (!hcd) 2510 return NULL; 2511 if (primary_hcd == NULL) { 2512 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex), 2513 GFP_KERNEL); 2514 if (!hcd->address0_mutex) { 2515 kfree(hcd); 2516 dev_dbg(dev, "hcd address0 mutex alloc failed\n"); 2517 return NULL; 2518 } 2519 mutex_init(hcd->address0_mutex); 2520 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex), 2521 GFP_KERNEL); 2522 if (!hcd->bandwidth_mutex) { 2523 kfree(hcd->address0_mutex); 2524 kfree(hcd); 2525 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n"); 2526 return NULL; 2527 } 2528 mutex_init(hcd->bandwidth_mutex); 2529 dev_set_drvdata(dev, hcd); 2530 } else { 2531 mutex_lock(&usb_port_peer_mutex); 2532 hcd->address0_mutex = primary_hcd->address0_mutex; 2533 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex; 2534 hcd->primary_hcd = primary_hcd; 2535 primary_hcd->primary_hcd = primary_hcd; 2536 hcd->shared_hcd = primary_hcd; 2537 primary_hcd->shared_hcd = hcd; 2538 mutex_unlock(&usb_port_peer_mutex); 2539 } 2540 2541 kref_init(&hcd->kref); 2542 2543 usb_bus_init(&hcd->self); 2544 hcd->self.controller = dev; 2545 hcd->self.sysdev = sysdev; 2546 hcd->self.bus_name = bus_name; 2547 hcd->self.uses_dma = (sysdev->dma_mask != NULL); 2548 2549 init_timer(&hcd->rh_timer); 2550 hcd->rh_timer.function = rh_timer_func; 2551 hcd->rh_timer.data = (unsigned long) hcd; 2552 #ifdef CONFIG_PM 2553 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 2554 #endif 2555 2556 hcd->driver = driver; 2557 hcd->speed = driver->flags & HCD_MASK; 2558 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 2559 "USB Host Controller"; 2560 return hcd; 2561 } 2562 EXPORT_SYMBOL_GPL(__usb_create_hcd); 2563 2564 /** 2565 * usb_create_shared_hcd - create and initialize an HCD structure 2566 * @driver: HC driver that will use this hcd 2567 * @dev: device for this HC, stored in hcd->self.controller 2568 * @bus_name: value to store in hcd->self.bus_name 2569 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the 2570 * PCI device. Only allocate certain resources for the primary HCD 2571 * Context: !in_interrupt() 2572 * 2573 * Allocate a struct usb_hcd, with extra space at the end for the 2574 * HC driver's private data. Initialize the generic members of the 2575 * hcd structure. 2576 * 2577 * Return: On success, a pointer to the created and initialized HCD structure. 2578 * On failure (e.g. if memory is unavailable), %NULL. 2579 */ 2580 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver, 2581 struct device *dev, const char *bus_name, 2582 struct usb_hcd *primary_hcd) 2583 { 2584 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd); 2585 } 2586 EXPORT_SYMBOL_GPL(usb_create_shared_hcd); 2587 2588 /** 2589 * usb_create_hcd - create and initialize an HCD structure 2590 * @driver: HC driver that will use this hcd 2591 * @dev: device for this HC, stored in hcd->self.controller 2592 * @bus_name: value to store in hcd->self.bus_name 2593 * Context: !in_interrupt() 2594 * 2595 * Allocate a struct usb_hcd, with extra space at the end for the 2596 * HC driver's private data. Initialize the generic members of the 2597 * hcd structure. 2598 * 2599 * Return: On success, a pointer to the created and initialized HCD 2600 * structure. On failure (e.g. if memory is unavailable), %NULL. 2601 */ 2602 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver, 2603 struct device *dev, const char *bus_name) 2604 { 2605 return __usb_create_hcd(driver, dev, dev, bus_name, NULL); 2606 } 2607 EXPORT_SYMBOL_GPL(usb_create_hcd); 2608 2609 /* 2610 * Roothubs that share one PCI device must also share the bandwidth mutex. 2611 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is 2612 * deallocated. 2613 * 2614 * Make sure to deallocate the bandwidth_mutex only when the last HCD is 2615 * freed. When hcd_release() is called for either hcd in a peer set, 2616 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers. 2617 */ 2618 static void hcd_release(struct kref *kref) 2619 { 2620 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 2621 2622 mutex_lock(&usb_port_peer_mutex); 2623 if (hcd->shared_hcd) { 2624 struct usb_hcd *peer = hcd->shared_hcd; 2625 2626 peer->shared_hcd = NULL; 2627 peer->primary_hcd = NULL; 2628 } else { 2629 kfree(hcd->address0_mutex); 2630 kfree(hcd->bandwidth_mutex); 2631 } 2632 mutex_unlock(&usb_port_peer_mutex); 2633 kfree(hcd); 2634 } 2635 2636 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 2637 { 2638 if (hcd) 2639 kref_get (&hcd->kref); 2640 return hcd; 2641 } 2642 EXPORT_SYMBOL_GPL(usb_get_hcd); 2643 2644 void usb_put_hcd (struct usb_hcd *hcd) 2645 { 2646 if (hcd) 2647 kref_put (&hcd->kref, hcd_release); 2648 } 2649 EXPORT_SYMBOL_GPL(usb_put_hcd); 2650 2651 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd) 2652 { 2653 if (!hcd->primary_hcd) 2654 return 1; 2655 return hcd == hcd->primary_hcd; 2656 } 2657 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd); 2658 2659 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1) 2660 { 2661 if (!hcd->driver->find_raw_port_number) 2662 return port1; 2663 2664 return hcd->driver->find_raw_port_number(hcd, port1); 2665 } 2666 2667 static int usb_hcd_request_irqs(struct usb_hcd *hcd, 2668 unsigned int irqnum, unsigned long irqflags) 2669 { 2670 int retval; 2671 2672 if (hcd->driver->irq) { 2673 2674 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 2675 hcd->driver->description, hcd->self.busnum); 2676 retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 2677 hcd->irq_descr, hcd); 2678 if (retval != 0) { 2679 dev_err(hcd->self.controller, 2680 "request interrupt %d failed\n", 2681 irqnum); 2682 return retval; 2683 } 2684 hcd->irq = irqnum; 2685 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 2686 (hcd->driver->flags & HCD_MEMORY) ? 2687 "io mem" : "io base", 2688 (unsigned long long)hcd->rsrc_start); 2689 } else { 2690 hcd->irq = 0; 2691 if (hcd->rsrc_start) 2692 dev_info(hcd->self.controller, "%s 0x%08llx\n", 2693 (hcd->driver->flags & HCD_MEMORY) ? 2694 "io mem" : "io base", 2695 (unsigned long long)hcd->rsrc_start); 2696 } 2697 return 0; 2698 } 2699 2700 /* 2701 * Before we free this root hub, flush in-flight peering attempts 2702 * and disable peer lookups 2703 */ 2704 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd) 2705 { 2706 struct usb_device *rhdev; 2707 2708 mutex_lock(&usb_port_peer_mutex); 2709 rhdev = hcd->self.root_hub; 2710 hcd->self.root_hub = NULL; 2711 mutex_unlock(&usb_port_peer_mutex); 2712 usb_put_dev(rhdev); 2713 } 2714 2715 /** 2716 * usb_add_hcd - finish generic HCD structure initialization and register 2717 * @hcd: the usb_hcd structure to initialize 2718 * @irqnum: Interrupt line to allocate 2719 * @irqflags: Interrupt type flags 2720 * 2721 * Finish the remaining parts of generic HCD initialization: allocate the 2722 * buffers of consistent memory, register the bus, request the IRQ line, 2723 * and call the driver's reset() and start() routines. 2724 */ 2725 int usb_add_hcd(struct usb_hcd *hcd, 2726 unsigned int irqnum, unsigned long irqflags) 2727 { 2728 int retval; 2729 struct usb_device *rhdev; 2730 2731 if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) { 2732 struct usb_phy *phy = usb_get_phy_dev(hcd->self.sysdev, 0); 2733 2734 if (IS_ERR(phy)) { 2735 retval = PTR_ERR(phy); 2736 if (retval == -EPROBE_DEFER) 2737 return retval; 2738 } else { 2739 retval = usb_phy_init(phy); 2740 if (retval) { 2741 usb_put_phy(phy); 2742 return retval; 2743 } 2744 hcd->usb_phy = phy; 2745 hcd->remove_phy = 1; 2746 } 2747 } 2748 2749 if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) { 2750 struct phy *phy = phy_get(hcd->self.sysdev, "usb"); 2751 2752 if (IS_ERR(phy)) { 2753 retval = PTR_ERR(phy); 2754 if (retval == -EPROBE_DEFER) 2755 goto err_phy; 2756 } else { 2757 retval = phy_init(phy); 2758 if (retval) { 2759 phy_put(phy); 2760 goto err_phy; 2761 } 2762 retval = phy_power_on(phy); 2763 if (retval) { 2764 phy_exit(phy); 2765 phy_put(phy); 2766 goto err_phy; 2767 } 2768 hcd->phy = phy; 2769 hcd->remove_phy = 1; 2770 } 2771 } 2772 2773 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 2774 2775 /* Keep old behaviour if authorized_default is not in [0, 1]. */ 2776 if (authorized_default < 0 || authorized_default > 1) { 2777 if (hcd->wireless) 2778 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 2779 else 2780 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 2781 } else { 2782 if (authorized_default) 2783 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 2784 else 2785 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 2786 } 2787 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2788 2789 /* per default all interfaces are authorized */ 2790 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 2791 2792 /* HC is in reset state, but accessible. Now do the one-time init, 2793 * bottom up so that hcds can customize the root hubs before hub_wq 2794 * starts talking to them. (Note, bus id is assigned early too.) 2795 */ 2796 retval = hcd_buffer_create(hcd); 2797 if (retval != 0) { 2798 dev_dbg(hcd->self.sysdev, "pool alloc failed\n"); 2799 goto err_create_buf; 2800 } 2801 2802 retval = usb_register_bus(&hcd->self); 2803 if (retval < 0) 2804 goto err_register_bus; 2805 2806 rhdev = usb_alloc_dev(NULL, &hcd->self, 0); 2807 if (rhdev == NULL) { 2808 dev_err(hcd->self.sysdev, "unable to allocate root hub\n"); 2809 retval = -ENOMEM; 2810 goto err_allocate_root_hub; 2811 } 2812 mutex_lock(&usb_port_peer_mutex); 2813 hcd->self.root_hub = rhdev; 2814 mutex_unlock(&usb_port_peer_mutex); 2815 2816 switch (hcd->speed) { 2817 case HCD_USB11: 2818 rhdev->speed = USB_SPEED_FULL; 2819 break; 2820 case HCD_USB2: 2821 rhdev->speed = USB_SPEED_HIGH; 2822 break; 2823 case HCD_USB25: 2824 rhdev->speed = USB_SPEED_WIRELESS; 2825 break; 2826 case HCD_USB3: 2827 rhdev->speed = USB_SPEED_SUPER; 2828 break; 2829 case HCD_USB31: 2830 rhdev->speed = USB_SPEED_SUPER_PLUS; 2831 break; 2832 default: 2833 retval = -EINVAL; 2834 goto err_set_rh_speed; 2835 } 2836 2837 /* wakeup flag init defaults to "everything works" for root hubs, 2838 * but drivers can override it in reset() if needed, along with 2839 * recording the overall controller's system wakeup capability. 2840 */ 2841 device_set_wakeup_capable(&rhdev->dev, 1); 2842 2843 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is 2844 * registered. But since the controller can die at any time, 2845 * let's initialize the flag before touching the hardware. 2846 */ 2847 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2848 2849 /* "reset" is misnamed; its role is now one-time init. the controller 2850 * should already have been reset (and boot firmware kicked off etc). 2851 */ 2852 if (hcd->driver->reset) { 2853 retval = hcd->driver->reset(hcd); 2854 if (retval < 0) { 2855 dev_err(hcd->self.controller, "can't setup: %d\n", 2856 retval); 2857 goto err_hcd_driver_setup; 2858 } 2859 } 2860 hcd->rh_pollable = 1; 2861 2862 /* NOTE: root hub and controller capabilities may not be the same */ 2863 if (device_can_wakeup(hcd->self.controller) 2864 && device_can_wakeup(&hcd->self.root_hub->dev)) 2865 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 2866 2867 /* initialize tasklets */ 2868 init_giveback_urb_bh(&hcd->high_prio_bh); 2869 init_giveback_urb_bh(&hcd->low_prio_bh); 2870 2871 /* enable irqs just before we start the controller, 2872 * if the BIOS provides legacy PCI irqs. 2873 */ 2874 if (usb_hcd_is_primary_hcd(hcd) && irqnum) { 2875 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags); 2876 if (retval) 2877 goto err_request_irq; 2878 } 2879 2880 hcd->state = HC_STATE_RUNNING; 2881 retval = hcd->driver->start(hcd); 2882 if (retval < 0) { 2883 dev_err(hcd->self.controller, "startup error %d\n", retval); 2884 goto err_hcd_driver_start; 2885 } 2886 2887 /* starting here, usbcore will pay attention to this root hub */ 2888 retval = register_root_hub(hcd); 2889 if (retval != 0) 2890 goto err_register_root_hub; 2891 2892 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2893 if (retval < 0) { 2894 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n", 2895 retval); 2896 goto error_create_attr_group; 2897 } 2898 if (hcd->uses_new_polling && HCD_POLL_RH(hcd)) 2899 usb_hcd_poll_rh_status(hcd); 2900 2901 return retval; 2902 2903 error_create_attr_group: 2904 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2905 if (HC_IS_RUNNING(hcd->state)) 2906 hcd->state = HC_STATE_QUIESCING; 2907 spin_lock_irq(&hcd_root_hub_lock); 2908 hcd->rh_registered = 0; 2909 spin_unlock_irq(&hcd_root_hub_lock); 2910 2911 #ifdef CONFIG_PM 2912 cancel_work_sync(&hcd->wakeup_work); 2913 #endif 2914 mutex_lock(&usb_bus_idr_lock); 2915 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2916 mutex_unlock(&usb_bus_idr_lock); 2917 err_register_root_hub: 2918 hcd->rh_pollable = 0; 2919 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2920 del_timer_sync(&hcd->rh_timer); 2921 hcd->driver->stop(hcd); 2922 hcd->state = HC_STATE_HALT; 2923 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2924 del_timer_sync(&hcd->rh_timer); 2925 err_hcd_driver_start: 2926 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0) 2927 free_irq(irqnum, hcd); 2928 err_request_irq: 2929 err_hcd_driver_setup: 2930 err_set_rh_speed: 2931 usb_put_invalidate_rhdev(hcd); 2932 err_allocate_root_hub: 2933 usb_deregister_bus(&hcd->self); 2934 err_register_bus: 2935 hcd_buffer_destroy(hcd); 2936 err_create_buf: 2937 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) { 2938 phy_power_off(hcd->phy); 2939 phy_exit(hcd->phy); 2940 phy_put(hcd->phy); 2941 hcd->phy = NULL; 2942 } 2943 err_phy: 2944 if (hcd->remove_phy && hcd->usb_phy) { 2945 usb_phy_shutdown(hcd->usb_phy); 2946 usb_put_phy(hcd->usb_phy); 2947 hcd->usb_phy = NULL; 2948 } 2949 return retval; 2950 } 2951 EXPORT_SYMBOL_GPL(usb_add_hcd); 2952 2953 /** 2954 * usb_remove_hcd - shutdown processing for generic HCDs 2955 * @hcd: the usb_hcd structure to remove 2956 * Context: !in_interrupt() 2957 * 2958 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 2959 * invoking the HCD's stop() method. 2960 */ 2961 void usb_remove_hcd(struct usb_hcd *hcd) 2962 { 2963 struct usb_device *rhdev = hcd->self.root_hub; 2964 2965 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 2966 2967 usb_get_dev(rhdev); 2968 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2969 2970 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2971 if (HC_IS_RUNNING (hcd->state)) 2972 hcd->state = HC_STATE_QUIESCING; 2973 2974 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 2975 spin_lock_irq (&hcd_root_hub_lock); 2976 hcd->rh_registered = 0; 2977 spin_unlock_irq (&hcd_root_hub_lock); 2978 2979 #ifdef CONFIG_PM 2980 cancel_work_sync(&hcd->wakeup_work); 2981 #endif 2982 2983 mutex_lock(&usb_bus_idr_lock); 2984 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2985 mutex_unlock(&usb_bus_idr_lock); 2986 2987 /* 2988 * tasklet_kill() isn't needed here because: 2989 * - driver's disconnect() called from usb_disconnect() should 2990 * make sure its URBs are completed during the disconnect() 2991 * callback 2992 * 2993 * - it is too late to run complete() here since driver may have 2994 * been removed already now 2995 */ 2996 2997 /* Prevent any more root-hub status calls from the timer. 2998 * The HCD might still restart the timer (if a port status change 2999 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke 3000 * the hub_status_data() callback. 3001 */ 3002 hcd->rh_pollable = 0; 3003 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 3004 del_timer_sync(&hcd->rh_timer); 3005 3006 hcd->driver->stop(hcd); 3007 hcd->state = HC_STATE_HALT; 3008 3009 /* In case the HCD restarted the timer, stop it again. */ 3010 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 3011 del_timer_sync(&hcd->rh_timer); 3012 3013 if (usb_hcd_is_primary_hcd(hcd)) { 3014 if (hcd->irq > 0) 3015 free_irq(hcd->irq, hcd); 3016 } 3017 3018 usb_deregister_bus(&hcd->self); 3019 hcd_buffer_destroy(hcd); 3020 3021 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) { 3022 phy_power_off(hcd->phy); 3023 phy_exit(hcd->phy); 3024 phy_put(hcd->phy); 3025 hcd->phy = NULL; 3026 } 3027 if (hcd->remove_phy && hcd->usb_phy) { 3028 usb_phy_shutdown(hcd->usb_phy); 3029 usb_put_phy(hcd->usb_phy); 3030 hcd->usb_phy = NULL; 3031 } 3032 3033 usb_put_invalidate_rhdev(hcd); 3034 hcd->flags = 0; 3035 } 3036 EXPORT_SYMBOL_GPL(usb_remove_hcd); 3037 3038 void 3039 usb_hcd_platform_shutdown(struct platform_device *dev) 3040 { 3041 struct usb_hcd *hcd = platform_get_drvdata(dev); 3042 3043 if (hcd->driver->shutdown) 3044 hcd->driver->shutdown(hcd); 3045 } 3046 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 3047 3048 /*-------------------------------------------------------------------------*/ 3049 3050 #if IS_ENABLED(CONFIG_USB_MON) 3051 3052 const struct usb_mon_operations *mon_ops; 3053 3054 /* 3055 * The registration is unlocked. 3056 * We do it this way because we do not want to lock in hot paths. 3057 * 3058 * Notice that the code is minimally error-proof. Because usbmon needs 3059 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 3060 */ 3061 3062 int usb_mon_register(const struct usb_mon_operations *ops) 3063 { 3064 3065 if (mon_ops) 3066 return -EBUSY; 3067 3068 mon_ops = ops; 3069 mb(); 3070 return 0; 3071 } 3072 EXPORT_SYMBOL_GPL (usb_mon_register); 3073 3074 void usb_mon_deregister (void) 3075 { 3076 3077 if (mon_ops == NULL) { 3078 printk(KERN_ERR "USB: monitor was not registered\n"); 3079 return; 3080 } 3081 mon_ops = NULL; 3082 mb(); 3083 } 3084 EXPORT_SYMBOL_GPL (usb_mon_deregister); 3085 3086 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ 3087