xref: /openbmc/linux/drivers/usb/core/hcd.c (revision ca79522c)
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 
25 #include <linux/bcd.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/utsname.h>
32 #include <linux/mm.h>
33 #include <asm/io.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
37 #include <asm/irq.h>
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <linux/platform_device.h>
41 #include <linux/workqueue.h>
42 #include <linux/pm_runtime.h>
43 
44 #include <linux/usb.h>
45 #include <linux/usb/hcd.h>
46 
47 #include "usb.h"
48 
49 
50 /*-------------------------------------------------------------------------*/
51 
52 /*
53  * USB Host Controller Driver framework
54  *
55  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
56  * HCD-specific behaviors/bugs.
57  *
58  * This does error checks, tracks devices and urbs, and delegates to a
59  * "hc_driver" only for code (and data) that really needs to know about
60  * hardware differences.  That includes root hub registers, i/o queues,
61  * and so on ... but as little else as possible.
62  *
63  * Shared code includes most of the "root hub" code (these are emulated,
64  * though each HC's hardware works differently) and PCI glue, plus request
65  * tracking overhead.  The HCD code should only block on spinlocks or on
66  * hardware handshaking; blocking on software events (such as other kernel
67  * threads releasing resources, or completing actions) is all generic.
68  *
69  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
70  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
71  * only by the hub driver ... and that neither should be seen or used by
72  * usb client device drivers.
73  *
74  * Contributors of ideas or unattributed patches include: David Brownell,
75  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
76  *
77  * HISTORY:
78  * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
79  *		associated cleanup.  "usb_hcd" still != "usb_bus".
80  * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
81  */
82 
83 /*-------------------------------------------------------------------------*/
84 
85 /* Keep track of which host controller drivers are loaded */
86 unsigned long usb_hcds_loaded;
87 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
88 
89 /* host controllers we manage */
90 LIST_HEAD (usb_bus_list);
91 EXPORT_SYMBOL_GPL (usb_bus_list);
92 
93 /* used when allocating bus numbers */
94 #define USB_MAXBUS		64
95 struct usb_busmap {
96 	unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
97 };
98 static struct usb_busmap busmap;
99 
100 /* used when updating list of hcds */
101 DEFINE_MUTEX(usb_bus_list_lock);	/* exported only for usbfs */
102 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
103 
104 /* used for controlling access to virtual root hubs */
105 static DEFINE_SPINLOCK(hcd_root_hub_lock);
106 
107 /* used when updating an endpoint's URB list */
108 static DEFINE_SPINLOCK(hcd_urb_list_lock);
109 
110 /* used to protect against unlinking URBs after the device is gone */
111 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
112 
113 /* wait queue for synchronous unlinks */
114 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
115 
116 static inline int is_root_hub(struct usb_device *udev)
117 {
118 	return (udev->parent == NULL);
119 }
120 
121 /*-------------------------------------------------------------------------*/
122 
123 /*
124  * Sharable chunks of root hub code.
125  */
126 
127 /*-------------------------------------------------------------------------*/
128 #define KERNEL_REL	bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
129 #define KERNEL_VER	bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
130 
131 /* usb 3.0 root hub device descriptor */
132 static const u8 usb3_rh_dev_descriptor[18] = {
133 	0x12,       /*  __u8  bLength; */
134 	0x01,       /*  __u8  bDescriptorType; Device */
135 	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
136 
137 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
138 	0x00,	    /*  __u8  bDeviceSubClass; */
139 	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
140 	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
141 
142 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
143 	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
144 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
145 
146 	0x03,       /*  __u8  iManufacturer; */
147 	0x02,       /*  __u8  iProduct; */
148 	0x01,       /*  __u8  iSerialNumber; */
149 	0x01        /*  __u8  bNumConfigurations; */
150 };
151 
152 /* usb 2.0 root hub device descriptor */
153 static const u8 usb2_rh_dev_descriptor [18] = {
154 	0x12,       /*  __u8  bLength; */
155 	0x01,       /*  __u8  bDescriptorType; Device */
156 	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
157 
158 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
159 	0x00,	    /*  __u8  bDeviceSubClass; */
160 	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
161 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
162 
163 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
164 	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
165 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
166 
167 	0x03,       /*  __u8  iManufacturer; */
168 	0x02,       /*  __u8  iProduct; */
169 	0x01,       /*  __u8  iSerialNumber; */
170 	0x01        /*  __u8  bNumConfigurations; */
171 };
172 
173 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
174 
175 /* usb 1.1 root hub device descriptor */
176 static const u8 usb11_rh_dev_descriptor [18] = {
177 	0x12,       /*  __u8  bLength; */
178 	0x01,       /*  __u8  bDescriptorType; Device */
179 	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
180 
181 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
182 	0x00,	    /*  __u8  bDeviceSubClass; */
183 	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
184 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
185 
186 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
187 	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
188 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
189 
190 	0x03,       /*  __u8  iManufacturer; */
191 	0x02,       /*  __u8  iProduct; */
192 	0x01,       /*  __u8  iSerialNumber; */
193 	0x01        /*  __u8  bNumConfigurations; */
194 };
195 
196 
197 /*-------------------------------------------------------------------------*/
198 
199 /* Configuration descriptors for our root hubs */
200 
201 static const u8 fs_rh_config_descriptor [] = {
202 
203 	/* one configuration */
204 	0x09,       /*  __u8  bLength; */
205 	0x02,       /*  __u8  bDescriptorType; Configuration */
206 	0x19, 0x00, /*  __le16 wTotalLength; */
207 	0x01,       /*  __u8  bNumInterfaces; (1) */
208 	0x01,       /*  __u8  bConfigurationValue; */
209 	0x00,       /*  __u8  iConfiguration; */
210 	0xc0,       /*  __u8  bmAttributes;
211 				 Bit 7: must be set,
212 				     6: Self-powered,
213 				     5: Remote wakeup,
214 				     4..0: resvd */
215 	0x00,       /*  __u8  MaxPower; */
216 
217 	/* USB 1.1:
218 	 * USB 2.0, single TT organization (mandatory):
219 	 *	one interface, protocol 0
220 	 *
221 	 * USB 2.0, multiple TT organization (optional):
222 	 *	two interfaces, protocols 1 (like single TT)
223 	 *	and 2 (multiple TT mode) ... config is
224 	 *	sometimes settable
225 	 *	NOT IMPLEMENTED
226 	 */
227 
228 	/* one interface */
229 	0x09,       /*  __u8  if_bLength; */
230 	0x04,       /*  __u8  if_bDescriptorType; Interface */
231 	0x00,       /*  __u8  if_bInterfaceNumber; */
232 	0x00,       /*  __u8  if_bAlternateSetting; */
233 	0x01,       /*  __u8  if_bNumEndpoints; */
234 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
235 	0x00,       /*  __u8  if_bInterfaceSubClass; */
236 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
237 	0x00,       /*  __u8  if_iInterface; */
238 
239 	/* one endpoint (status change endpoint) */
240 	0x07,       /*  __u8  ep_bLength; */
241 	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
242 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
243  	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
244  	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
245 	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
246 };
247 
248 static const u8 hs_rh_config_descriptor [] = {
249 
250 	/* one configuration */
251 	0x09,       /*  __u8  bLength; */
252 	0x02,       /*  __u8  bDescriptorType; Configuration */
253 	0x19, 0x00, /*  __le16 wTotalLength; */
254 	0x01,       /*  __u8  bNumInterfaces; (1) */
255 	0x01,       /*  __u8  bConfigurationValue; */
256 	0x00,       /*  __u8  iConfiguration; */
257 	0xc0,       /*  __u8  bmAttributes;
258 				 Bit 7: must be set,
259 				     6: Self-powered,
260 				     5: Remote wakeup,
261 				     4..0: resvd */
262 	0x00,       /*  __u8  MaxPower; */
263 
264 	/* USB 1.1:
265 	 * USB 2.0, single TT organization (mandatory):
266 	 *	one interface, protocol 0
267 	 *
268 	 * USB 2.0, multiple TT organization (optional):
269 	 *	two interfaces, protocols 1 (like single TT)
270 	 *	and 2 (multiple TT mode) ... config is
271 	 *	sometimes settable
272 	 *	NOT IMPLEMENTED
273 	 */
274 
275 	/* one interface */
276 	0x09,       /*  __u8  if_bLength; */
277 	0x04,       /*  __u8  if_bDescriptorType; Interface */
278 	0x00,       /*  __u8  if_bInterfaceNumber; */
279 	0x00,       /*  __u8  if_bAlternateSetting; */
280 	0x01,       /*  __u8  if_bNumEndpoints; */
281 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
282 	0x00,       /*  __u8  if_bInterfaceSubClass; */
283 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
284 	0x00,       /*  __u8  if_iInterface; */
285 
286 	/* one endpoint (status change endpoint) */
287 	0x07,       /*  __u8  ep_bLength; */
288 	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
289 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
290  	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
291 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
292 		     * see hub.c:hub_configure() for details. */
293 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
294 	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
295 };
296 
297 static const u8 ss_rh_config_descriptor[] = {
298 	/* one configuration */
299 	0x09,       /*  __u8  bLength; */
300 	0x02,       /*  __u8  bDescriptorType; Configuration */
301 	0x1f, 0x00, /*  __le16 wTotalLength; */
302 	0x01,       /*  __u8  bNumInterfaces; (1) */
303 	0x01,       /*  __u8  bConfigurationValue; */
304 	0x00,       /*  __u8  iConfiguration; */
305 	0xc0,       /*  __u8  bmAttributes;
306 				 Bit 7: must be set,
307 				     6: Self-powered,
308 				     5: Remote wakeup,
309 				     4..0: resvd */
310 	0x00,       /*  __u8  MaxPower; */
311 
312 	/* one interface */
313 	0x09,       /*  __u8  if_bLength; */
314 	0x04,       /*  __u8  if_bDescriptorType; Interface */
315 	0x00,       /*  __u8  if_bInterfaceNumber; */
316 	0x00,       /*  __u8  if_bAlternateSetting; */
317 	0x01,       /*  __u8  if_bNumEndpoints; */
318 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
319 	0x00,       /*  __u8  if_bInterfaceSubClass; */
320 	0x00,       /*  __u8  if_bInterfaceProtocol; */
321 	0x00,       /*  __u8  if_iInterface; */
322 
323 	/* one endpoint (status change endpoint) */
324 	0x07,       /*  __u8  ep_bLength; */
325 	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
326 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
327 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
328 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
329 		     * see hub.c:hub_configure() for details. */
330 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
331 	0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
332 
333 	/* one SuperSpeed endpoint companion descriptor */
334 	0x06,        /* __u8 ss_bLength */
335 	0x30,        /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
336 	0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
337 	0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
338 	0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
339 };
340 
341 /* authorized_default behaviour:
342  * -1 is authorized for all devices except wireless (old behaviour)
343  * 0 is unauthorized for all devices
344  * 1 is authorized for all devices
345  */
346 static int authorized_default = -1;
347 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
348 MODULE_PARM_DESC(authorized_default,
349 		"Default USB device authorization: 0 is not authorized, 1 is "
350 		"authorized, -1 is authorized except for wireless USB (default, "
351 		"old behaviour");
352 /*-------------------------------------------------------------------------*/
353 
354 /**
355  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
356  * @s: Null-terminated ASCII (actually ISO-8859-1) string
357  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
358  * @len: Length (in bytes; may be odd) of descriptor buffer.
359  *
360  * The return value is the number of bytes filled in: 2 + 2*strlen(s) or
361  * buflen, whichever is less.
362  *
363  * USB String descriptors can contain at most 126 characters; input
364  * strings longer than that are truncated.
365  */
366 static unsigned
367 ascii2desc(char const *s, u8 *buf, unsigned len)
368 {
369 	unsigned n, t = 2 + 2*strlen(s);
370 
371 	if (t > 254)
372 		t = 254;	/* Longest possible UTF string descriptor */
373 	if (len > t)
374 		len = t;
375 
376 	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
377 
378 	n = len;
379 	while (n--) {
380 		*buf++ = t;
381 		if (!n--)
382 			break;
383 		*buf++ = t >> 8;
384 		t = (unsigned char)*s++;
385 	}
386 	return len;
387 }
388 
389 /**
390  * rh_string() - provides string descriptors for root hub
391  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
392  * @hcd: the host controller for this root hub
393  * @data: buffer for output packet
394  * @len: length of the provided buffer
395  *
396  * Produces either a manufacturer, product or serial number string for the
397  * virtual root hub device.
398  * Returns the number of bytes filled in: the length of the descriptor or
399  * of the provided buffer, whichever is less.
400  */
401 static unsigned
402 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
403 {
404 	char buf[100];
405 	char const *s;
406 	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
407 
408 	// language ids
409 	switch (id) {
410 	case 0:
411 		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
412 		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
413 		if (len > 4)
414 			len = 4;
415 		memcpy(data, langids, len);
416 		return len;
417 	case 1:
418 		/* Serial number */
419 		s = hcd->self.bus_name;
420 		break;
421 	case 2:
422 		/* Product name */
423 		s = hcd->product_desc;
424 		break;
425 	case 3:
426 		/* Manufacturer */
427 		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
428 			init_utsname()->release, hcd->driver->description);
429 		s = buf;
430 		break;
431 	default:
432 		/* Can't happen; caller guarantees it */
433 		return 0;
434 	}
435 
436 	return ascii2desc(s, data, len);
437 }
438 
439 
440 /* Root hub control transfers execute synchronously */
441 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
442 {
443 	struct usb_ctrlrequest *cmd;
444  	u16		typeReq, wValue, wIndex, wLength;
445 	u8		*ubuf = urb->transfer_buffer;
446 	/*
447 	 * tbuf should be as big as the BOS descriptor and
448 	 * the USB hub descriptor.
449 	 */
450 	u8		tbuf[USB_DT_BOS_SIZE + USB_DT_USB_SS_CAP_SIZE]
451 		__attribute__((aligned(4)));
452 	const u8	*bufp = tbuf;
453 	unsigned	len = 0;
454 	int		status;
455 	u8		patch_wakeup = 0;
456 	u8		patch_protocol = 0;
457 
458 	might_sleep();
459 
460 	spin_lock_irq(&hcd_root_hub_lock);
461 	status = usb_hcd_link_urb_to_ep(hcd, urb);
462 	spin_unlock_irq(&hcd_root_hub_lock);
463 	if (status)
464 		return status;
465 	urb->hcpriv = hcd;	/* Indicate it's queued */
466 
467 	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
468 	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
469 	wValue   = le16_to_cpu (cmd->wValue);
470 	wIndex   = le16_to_cpu (cmd->wIndex);
471 	wLength  = le16_to_cpu (cmd->wLength);
472 
473 	if (wLength > urb->transfer_buffer_length)
474 		goto error;
475 
476 	urb->actual_length = 0;
477 	switch (typeReq) {
478 
479 	/* DEVICE REQUESTS */
480 
481 	/* The root hub's remote wakeup enable bit is implemented using
482 	 * driver model wakeup flags.  If this system supports wakeup
483 	 * through USB, userspace may change the default "allow wakeup"
484 	 * policy through sysfs or these calls.
485 	 *
486 	 * Most root hubs support wakeup from downstream devices, for
487 	 * runtime power management (disabling USB clocks and reducing
488 	 * VBUS power usage).  However, not all of them do so; silicon,
489 	 * board, and BIOS bugs here are not uncommon, so these can't
490 	 * be treated quite like external hubs.
491 	 *
492 	 * Likewise, not all root hubs will pass wakeup events upstream,
493 	 * to wake up the whole system.  So don't assume root hub and
494 	 * controller capabilities are identical.
495 	 */
496 
497 	case DeviceRequest | USB_REQ_GET_STATUS:
498 		tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
499 					<< USB_DEVICE_REMOTE_WAKEUP)
500 				| (1 << USB_DEVICE_SELF_POWERED);
501 		tbuf [1] = 0;
502 		len = 2;
503 		break;
504 	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
505 		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
506 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
507 		else
508 			goto error;
509 		break;
510 	case DeviceOutRequest | USB_REQ_SET_FEATURE:
511 		if (device_can_wakeup(&hcd->self.root_hub->dev)
512 				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
513 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
514 		else
515 			goto error;
516 		break;
517 	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
518 		tbuf [0] = 1;
519 		len = 1;
520 			/* FALLTHROUGH */
521 	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
522 		break;
523 	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
524 		switch (wValue & 0xff00) {
525 		case USB_DT_DEVICE << 8:
526 			switch (hcd->speed) {
527 			case HCD_USB3:
528 				bufp = usb3_rh_dev_descriptor;
529 				break;
530 			case HCD_USB2:
531 				bufp = usb2_rh_dev_descriptor;
532 				break;
533 			case HCD_USB11:
534 				bufp = usb11_rh_dev_descriptor;
535 				break;
536 			default:
537 				goto error;
538 			}
539 			len = 18;
540 			if (hcd->has_tt)
541 				patch_protocol = 1;
542 			break;
543 		case USB_DT_CONFIG << 8:
544 			switch (hcd->speed) {
545 			case HCD_USB3:
546 				bufp = ss_rh_config_descriptor;
547 				len = sizeof ss_rh_config_descriptor;
548 				break;
549 			case HCD_USB2:
550 				bufp = hs_rh_config_descriptor;
551 				len = sizeof hs_rh_config_descriptor;
552 				break;
553 			case HCD_USB11:
554 				bufp = fs_rh_config_descriptor;
555 				len = sizeof fs_rh_config_descriptor;
556 				break;
557 			default:
558 				goto error;
559 			}
560 			if (device_can_wakeup(&hcd->self.root_hub->dev))
561 				patch_wakeup = 1;
562 			break;
563 		case USB_DT_STRING << 8:
564 			if ((wValue & 0xff) < 4)
565 				urb->actual_length = rh_string(wValue & 0xff,
566 						hcd, ubuf, wLength);
567 			else /* unsupported IDs --> "protocol stall" */
568 				goto error;
569 			break;
570 		case USB_DT_BOS << 8:
571 			goto nongeneric;
572 		default:
573 			goto error;
574 		}
575 		break;
576 	case DeviceRequest | USB_REQ_GET_INTERFACE:
577 		tbuf [0] = 0;
578 		len = 1;
579 			/* FALLTHROUGH */
580 	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
581 		break;
582 	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
583 		// wValue == urb->dev->devaddr
584 		dev_dbg (hcd->self.controller, "root hub device address %d\n",
585 			wValue);
586 		break;
587 
588 	/* INTERFACE REQUESTS (no defined feature/status flags) */
589 
590 	/* ENDPOINT REQUESTS */
591 
592 	case EndpointRequest | USB_REQ_GET_STATUS:
593 		// ENDPOINT_HALT flag
594 		tbuf [0] = 0;
595 		tbuf [1] = 0;
596 		len = 2;
597 			/* FALLTHROUGH */
598 	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
599 	case EndpointOutRequest | USB_REQ_SET_FEATURE:
600 		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
601 		break;
602 
603 	/* CLASS REQUESTS (and errors) */
604 
605 	default:
606 nongeneric:
607 		/* non-generic request */
608 		switch (typeReq) {
609 		case GetHubStatus:
610 		case GetPortStatus:
611 			len = 4;
612 			break;
613 		case GetHubDescriptor:
614 			len = sizeof (struct usb_hub_descriptor);
615 			break;
616 		case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
617 			/* len is returned by hub_control */
618 			break;
619 		}
620 		status = hcd->driver->hub_control (hcd,
621 			typeReq, wValue, wIndex,
622 			tbuf, wLength);
623 
624 		if (typeReq == GetHubDescriptor)
625 			usb_hub_adjust_deviceremovable(hcd->self.root_hub,
626 				(struct usb_hub_descriptor *)tbuf);
627 		break;
628 error:
629 		/* "protocol stall" on error */
630 		status = -EPIPE;
631 	}
632 
633 	if (status < 0) {
634 		len = 0;
635 		if (status != -EPIPE) {
636 			dev_dbg (hcd->self.controller,
637 				"CTRL: TypeReq=0x%x val=0x%x "
638 				"idx=0x%x len=%d ==> %d\n",
639 				typeReq, wValue, wIndex,
640 				wLength, status);
641 		}
642 	} else if (status > 0) {
643 		/* hub_control may return the length of data copied. */
644 		len = status;
645 		status = 0;
646 	}
647 	if (len) {
648 		if (urb->transfer_buffer_length < len)
649 			len = urb->transfer_buffer_length;
650 		urb->actual_length = len;
651 		// always USB_DIR_IN, toward host
652 		memcpy (ubuf, bufp, len);
653 
654 		/* report whether RH hardware supports remote wakeup */
655 		if (patch_wakeup &&
656 				len > offsetof (struct usb_config_descriptor,
657 						bmAttributes))
658 			((struct usb_config_descriptor *)ubuf)->bmAttributes
659 				|= USB_CONFIG_ATT_WAKEUP;
660 
661 		/* report whether RH hardware has an integrated TT */
662 		if (patch_protocol &&
663 				len > offsetof(struct usb_device_descriptor,
664 						bDeviceProtocol))
665 			((struct usb_device_descriptor *) ubuf)->
666 				bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
667 	}
668 
669 	/* any errors get returned through the urb completion */
670 	spin_lock_irq(&hcd_root_hub_lock);
671 	usb_hcd_unlink_urb_from_ep(hcd, urb);
672 
673 	/* This peculiar use of spinlocks echoes what real HC drivers do.
674 	 * Avoiding calls to local_irq_disable/enable makes the code
675 	 * RT-friendly.
676 	 */
677 	spin_unlock(&hcd_root_hub_lock);
678 	usb_hcd_giveback_urb(hcd, urb, status);
679 	spin_lock(&hcd_root_hub_lock);
680 
681 	spin_unlock_irq(&hcd_root_hub_lock);
682 	return 0;
683 }
684 
685 /*-------------------------------------------------------------------------*/
686 
687 /*
688  * Root Hub interrupt transfers are polled using a timer if the
689  * driver requests it; otherwise the driver is responsible for
690  * calling usb_hcd_poll_rh_status() when an event occurs.
691  *
692  * Completions are called in_interrupt(), but they may or may not
693  * be in_irq().
694  */
695 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
696 {
697 	struct urb	*urb;
698 	int		length;
699 	unsigned long	flags;
700 	char		buffer[6];	/* Any root hubs with > 31 ports? */
701 
702 	if (unlikely(!hcd->rh_pollable))
703 		return;
704 	if (!hcd->uses_new_polling && !hcd->status_urb)
705 		return;
706 
707 	length = hcd->driver->hub_status_data(hcd, buffer);
708 	if (length > 0) {
709 
710 		/* try to complete the status urb */
711 		spin_lock_irqsave(&hcd_root_hub_lock, flags);
712 		urb = hcd->status_urb;
713 		if (urb) {
714 			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
715 			hcd->status_urb = NULL;
716 			urb->actual_length = length;
717 			memcpy(urb->transfer_buffer, buffer, length);
718 
719 			usb_hcd_unlink_urb_from_ep(hcd, urb);
720 			spin_unlock(&hcd_root_hub_lock);
721 			usb_hcd_giveback_urb(hcd, urb, 0);
722 			spin_lock(&hcd_root_hub_lock);
723 		} else {
724 			length = 0;
725 			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
726 		}
727 		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
728 	}
729 
730 	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
731 	 * exceed that limit if HZ is 100. The math is more clunky than
732 	 * maybe expected, this is to make sure that all timers for USB devices
733 	 * fire at the same time to give the CPU a break in between */
734 	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
735 			(length == 0 && hcd->status_urb != NULL))
736 		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
737 }
738 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
739 
740 /* timer callback */
741 static void rh_timer_func (unsigned long _hcd)
742 {
743 	usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
744 }
745 
746 /*-------------------------------------------------------------------------*/
747 
748 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
749 {
750 	int		retval;
751 	unsigned long	flags;
752 	unsigned	len = 1 + (urb->dev->maxchild / 8);
753 
754 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
755 	if (hcd->status_urb || urb->transfer_buffer_length < len) {
756 		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
757 		retval = -EINVAL;
758 		goto done;
759 	}
760 
761 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
762 	if (retval)
763 		goto done;
764 
765 	hcd->status_urb = urb;
766 	urb->hcpriv = hcd;	/* indicate it's queued */
767 	if (!hcd->uses_new_polling)
768 		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
769 
770 	/* If a status change has already occurred, report it ASAP */
771 	else if (HCD_POLL_PENDING(hcd))
772 		mod_timer(&hcd->rh_timer, jiffies);
773 	retval = 0;
774  done:
775 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
776 	return retval;
777 }
778 
779 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
780 {
781 	if (usb_endpoint_xfer_int(&urb->ep->desc))
782 		return rh_queue_status (hcd, urb);
783 	if (usb_endpoint_xfer_control(&urb->ep->desc))
784 		return rh_call_control (hcd, urb);
785 	return -EINVAL;
786 }
787 
788 /*-------------------------------------------------------------------------*/
789 
790 /* Unlinks of root-hub control URBs are legal, but they don't do anything
791  * since these URBs always execute synchronously.
792  */
793 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
794 {
795 	unsigned long	flags;
796 	int		rc;
797 
798 	spin_lock_irqsave(&hcd_root_hub_lock, flags);
799 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
800 	if (rc)
801 		goto done;
802 
803 	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
804 		;	/* Do nothing */
805 
806 	} else {				/* Status URB */
807 		if (!hcd->uses_new_polling)
808 			del_timer (&hcd->rh_timer);
809 		if (urb == hcd->status_urb) {
810 			hcd->status_urb = NULL;
811 			usb_hcd_unlink_urb_from_ep(hcd, urb);
812 
813 			spin_unlock(&hcd_root_hub_lock);
814 			usb_hcd_giveback_urb(hcd, urb, status);
815 			spin_lock(&hcd_root_hub_lock);
816 		}
817 	}
818  done:
819 	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
820 	return rc;
821 }
822 
823 
824 
825 /*
826  * Show & store the current value of authorized_default
827  */
828 static ssize_t usb_host_authorized_default_show(struct device *dev,
829 						struct device_attribute *attr,
830 						char *buf)
831 {
832 	struct usb_device *rh_usb_dev = to_usb_device(dev);
833 	struct usb_bus *usb_bus = rh_usb_dev->bus;
834 	struct usb_hcd *usb_hcd;
835 
836 	if (usb_bus == NULL)	/* FIXME: not sure if this case is possible */
837 		return -ENODEV;
838 	usb_hcd = bus_to_hcd(usb_bus);
839 	return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
840 }
841 
842 static ssize_t usb_host_authorized_default_store(struct device *dev,
843 						 struct device_attribute *attr,
844 						 const char *buf, size_t size)
845 {
846 	ssize_t result;
847 	unsigned val;
848 	struct usb_device *rh_usb_dev = to_usb_device(dev);
849 	struct usb_bus *usb_bus = rh_usb_dev->bus;
850 	struct usb_hcd *usb_hcd;
851 
852 	if (usb_bus == NULL)	/* FIXME: not sure if this case is possible */
853 		return -ENODEV;
854 	usb_hcd = bus_to_hcd(usb_bus);
855 	result = sscanf(buf, "%u\n", &val);
856 	if (result == 1) {
857 		usb_hcd->authorized_default = val? 1 : 0;
858 		result = size;
859 	}
860 	else
861 		result = -EINVAL;
862 	return result;
863 }
864 
865 static DEVICE_ATTR(authorized_default, 0644,
866 	    usb_host_authorized_default_show,
867 	    usb_host_authorized_default_store);
868 
869 
870 /* Group all the USB bus attributes */
871 static struct attribute *usb_bus_attrs[] = {
872 		&dev_attr_authorized_default.attr,
873 		NULL,
874 };
875 
876 static struct attribute_group usb_bus_attr_group = {
877 	.name = NULL,	/* we want them in the same directory */
878 	.attrs = usb_bus_attrs,
879 };
880 
881 
882 
883 /*-------------------------------------------------------------------------*/
884 
885 /**
886  * usb_bus_init - shared initialization code
887  * @bus: the bus structure being initialized
888  *
889  * This code is used to initialize a usb_bus structure, memory for which is
890  * separately managed.
891  */
892 static void usb_bus_init (struct usb_bus *bus)
893 {
894 	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
895 
896 	bus->devnum_next = 1;
897 
898 	bus->root_hub = NULL;
899 	bus->busnum = -1;
900 	bus->bandwidth_allocated = 0;
901 	bus->bandwidth_int_reqs  = 0;
902 	bus->bandwidth_isoc_reqs = 0;
903 
904 	INIT_LIST_HEAD (&bus->bus_list);
905 }
906 
907 /*-------------------------------------------------------------------------*/
908 
909 /**
910  * usb_register_bus - registers the USB host controller with the usb core
911  * @bus: pointer to the bus to register
912  * Context: !in_interrupt()
913  *
914  * Assigns a bus number, and links the controller into usbcore data
915  * structures so that it can be seen by scanning the bus list.
916  */
917 static int usb_register_bus(struct usb_bus *bus)
918 {
919 	int result = -E2BIG;
920 	int busnum;
921 
922 	mutex_lock(&usb_bus_list_lock);
923 	busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
924 	if (busnum >= USB_MAXBUS) {
925 		printk (KERN_ERR "%s: too many buses\n", usbcore_name);
926 		goto error_find_busnum;
927 	}
928 	set_bit (busnum, busmap.busmap);
929 	bus->busnum = busnum;
930 
931 	/* Add it to the local list of buses */
932 	list_add (&bus->bus_list, &usb_bus_list);
933 	mutex_unlock(&usb_bus_list_lock);
934 
935 	usb_notify_add_bus(bus);
936 
937 	dev_info (bus->controller, "new USB bus registered, assigned bus "
938 		  "number %d\n", bus->busnum);
939 	return 0;
940 
941 error_find_busnum:
942 	mutex_unlock(&usb_bus_list_lock);
943 	return result;
944 }
945 
946 /**
947  * usb_deregister_bus - deregisters the USB host controller
948  * @bus: pointer to the bus to deregister
949  * Context: !in_interrupt()
950  *
951  * Recycles the bus number, and unlinks the controller from usbcore data
952  * structures so that it won't be seen by scanning the bus list.
953  */
954 static void usb_deregister_bus (struct usb_bus *bus)
955 {
956 	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
957 
958 	/*
959 	 * NOTE: make sure that all the devices are removed by the
960 	 * controller code, as well as having it call this when cleaning
961 	 * itself up
962 	 */
963 	mutex_lock(&usb_bus_list_lock);
964 	list_del (&bus->bus_list);
965 	mutex_unlock(&usb_bus_list_lock);
966 
967 	usb_notify_remove_bus(bus);
968 
969 	clear_bit (bus->busnum, busmap.busmap);
970 }
971 
972 /**
973  * register_root_hub - called by usb_add_hcd() to register a root hub
974  * @hcd: host controller for this root hub
975  *
976  * This function registers the root hub with the USB subsystem.  It sets up
977  * the device properly in the device tree and then calls usb_new_device()
978  * to register the usb device.  It also assigns the root hub's USB address
979  * (always 1).
980  */
981 static int register_root_hub(struct usb_hcd *hcd)
982 {
983 	struct device *parent_dev = hcd->self.controller;
984 	struct usb_device *usb_dev = hcd->self.root_hub;
985 	const int devnum = 1;
986 	int retval;
987 
988 	usb_dev->devnum = devnum;
989 	usb_dev->bus->devnum_next = devnum + 1;
990 	memset (&usb_dev->bus->devmap.devicemap, 0,
991 			sizeof usb_dev->bus->devmap.devicemap);
992 	set_bit (devnum, usb_dev->bus->devmap.devicemap);
993 	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
994 
995 	mutex_lock(&usb_bus_list_lock);
996 
997 	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
998 	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
999 	if (retval != sizeof usb_dev->descriptor) {
1000 		mutex_unlock(&usb_bus_list_lock);
1001 		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1002 				dev_name(&usb_dev->dev), retval);
1003 		return (retval < 0) ? retval : -EMSGSIZE;
1004 	}
1005 	if (usb_dev->speed == USB_SPEED_SUPER) {
1006 		retval = usb_get_bos_descriptor(usb_dev);
1007 		if (retval < 0) {
1008 			mutex_unlock(&usb_bus_list_lock);
1009 			dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1010 					dev_name(&usb_dev->dev), retval);
1011 			return retval;
1012 		}
1013 	}
1014 
1015 	retval = usb_new_device (usb_dev);
1016 	if (retval) {
1017 		dev_err (parent_dev, "can't register root hub for %s, %d\n",
1018 				dev_name(&usb_dev->dev), retval);
1019 	} else {
1020 		spin_lock_irq (&hcd_root_hub_lock);
1021 		hcd->rh_registered = 1;
1022 		spin_unlock_irq (&hcd_root_hub_lock);
1023 
1024 		/* Did the HC die before the root hub was registered? */
1025 		if (HCD_DEAD(hcd))
1026 			usb_hc_died (hcd);	/* This time clean up */
1027 	}
1028 	mutex_unlock(&usb_bus_list_lock);
1029 
1030 	return retval;
1031 }
1032 
1033 /*
1034  * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1035  * @bus: the bus which the root hub belongs to
1036  * @portnum: the port which is being resumed
1037  *
1038  * HCDs should call this function when they know that a resume signal is
1039  * being sent to a root-hub port.  The root hub will be prevented from
1040  * going into autosuspend until usb_hcd_end_port_resume() is called.
1041  *
1042  * The bus's private lock must be held by the caller.
1043  */
1044 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1045 {
1046 	unsigned bit = 1 << portnum;
1047 
1048 	if (!(bus->resuming_ports & bit)) {
1049 		bus->resuming_ports |= bit;
1050 		pm_runtime_get_noresume(&bus->root_hub->dev);
1051 	}
1052 }
1053 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1054 
1055 /*
1056  * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1057  * @bus: the bus which the root hub belongs to
1058  * @portnum: the port which is being resumed
1059  *
1060  * HCDs should call this function when they know that a resume signal has
1061  * stopped being sent to a root-hub port.  The root hub will be allowed to
1062  * autosuspend again.
1063  *
1064  * The bus's private lock must be held by the caller.
1065  */
1066 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1067 {
1068 	unsigned bit = 1 << portnum;
1069 
1070 	if (bus->resuming_ports & bit) {
1071 		bus->resuming_ports &= ~bit;
1072 		pm_runtime_put_noidle(&bus->root_hub->dev);
1073 	}
1074 }
1075 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1076 
1077 /*-------------------------------------------------------------------------*/
1078 
1079 /**
1080  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1081  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1082  * @is_input: true iff the transaction sends data to the host
1083  * @isoc: true for isochronous transactions, false for interrupt ones
1084  * @bytecount: how many bytes in the transaction.
1085  *
1086  * Returns approximate bus time in nanoseconds for a periodic transaction.
1087  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1088  * scheduled in software, this function is only used for such scheduling.
1089  */
1090 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1091 {
1092 	unsigned long	tmp;
1093 
1094 	switch (speed) {
1095 	case USB_SPEED_LOW: 	/* INTR only */
1096 		if (is_input) {
1097 			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1098 			return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1099 		} else {
1100 			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1101 			return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1102 		}
1103 	case USB_SPEED_FULL:	/* ISOC or INTR */
1104 		if (isoc) {
1105 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1106 			return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
1107 		} else {
1108 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1109 			return (9107L + BW_HOST_DELAY + tmp);
1110 		}
1111 	case USB_SPEED_HIGH:	/* ISOC or INTR */
1112 		// FIXME adjust for input vs output
1113 		if (isoc)
1114 			tmp = HS_NSECS_ISO (bytecount);
1115 		else
1116 			tmp = HS_NSECS (bytecount);
1117 		return tmp;
1118 	default:
1119 		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1120 		return -1;
1121 	}
1122 }
1123 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1124 
1125 
1126 /*-------------------------------------------------------------------------*/
1127 
1128 /*
1129  * Generic HC operations.
1130  */
1131 
1132 /*-------------------------------------------------------------------------*/
1133 
1134 /**
1135  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1136  * @hcd: host controller to which @urb was submitted
1137  * @urb: URB being submitted
1138  *
1139  * Host controller drivers should call this routine in their enqueue()
1140  * method.  The HCD's private spinlock must be held and interrupts must
1141  * be disabled.  The actions carried out here are required for URB
1142  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1143  *
1144  * Returns 0 for no error, otherwise a negative error code (in which case
1145  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1146  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1147  * the private spinlock and returning.
1148  */
1149 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1150 {
1151 	int		rc = 0;
1152 
1153 	spin_lock(&hcd_urb_list_lock);
1154 
1155 	/* Check that the URB isn't being killed */
1156 	if (unlikely(atomic_read(&urb->reject))) {
1157 		rc = -EPERM;
1158 		goto done;
1159 	}
1160 
1161 	if (unlikely(!urb->ep->enabled)) {
1162 		rc = -ENOENT;
1163 		goto done;
1164 	}
1165 
1166 	if (unlikely(!urb->dev->can_submit)) {
1167 		rc = -EHOSTUNREACH;
1168 		goto done;
1169 	}
1170 
1171 	/*
1172 	 * Check the host controller's state and add the URB to the
1173 	 * endpoint's queue.
1174 	 */
1175 	if (HCD_RH_RUNNING(hcd)) {
1176 		urb->unlinked = 0;
1177 		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1178 	} else {
1179 		rc = -ESHUTDOWN;
1180 		goto done;
1181 	}
1182  done:
1183 	spin_unlock(&hcd_urb_list_lock);
1184 	return rc;
1185 }
1186 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1187 
1188 /**
1189  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1190  * @hcd: host controller to which @urb was submitted
1191  * @urb: URB being checked for unlinkability
1192  * @status: error code to store in @urb if the unlink succeeds
1193  *
1194  * Host controller drivers should call this routine in their dequeue()
1195  * method.  The HCD's private spinlock must be held and interrupts must
1196  * be disabled.  The actions carried out here are required for making
1197  * sure than an unlink is valid.
1198  *
1199  * Returns 0 for no error, otherwise a negative error code (in which case
1200  * the dequeue() method must fail).  The possible error codes are:
1201  *
1202  *	-EIDRM: @urb was not submitted or has already completed.
1203  *		The completion function may not have been called yet.
1204  *
1205  *	-EBUSY: @urb has already been unlinked.
1206  */
1207 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1208 		int status)
1209 {
1210 	struct list_head	*tmp;
1211 
1212 	/* insist the urb is still queued */
1213 	list_for_each(tmp, &urb->ep->urb_list) {
1214 		if (tmp == &urb->urb_list)
1215 			break;
1216 	}
1217 	if (tmp != &urb->urb_list)
1218 		return -EIDRM;
1219 
1220 	/* Any status except -EINPROGRESS means something already started to
1221 	 * unlink this URB from the hardware.  So there's no more work to do.
1222 	 */
1223 	if (urb->unlinked)
1224 		return -EBUSY;
1225 	urb->unlinked = status;
1226 	return 0;
1227 }
1228 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1229 
1230 /**
1231  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1232  * @hcd: host controller to which @urb was submitted
1233  * @urb: URB being unlinked
1234  *
1235  * Host controller drivers should call this routine before calling
1236  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1237  * interrupts must be disabled.  The actions carried out here are required
1238  * for URB completion.
1239  */
1240 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1241 {
1242 	/* clear all state linking urb to this dev (and hcd) */
1243 	spin_lock(&hcd_urb_list_lock);
1244 	list_del_init(&urb->urb_list);
1245 	spin_unlock(&hcd_urb_list_lock);
1246 }
1247 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1248 
1249 /*
1250  * Some usb host controllers can only perform dma using a small SRAM area.
1251  * The usb core itself is however optimized for host controllers that can dma
1252  * using regular system memory - like pci devices doing bus mastering.
1253  *
1254  * To support host controllers with limited dma capabilites we provide dma
1255  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1256  * For this to work properly the host controller code must first use the
1257  * function dma_declare_coherent_memory() to point out which memory area
1258  * that should be used for dma allocations.
1259  *
1260  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1261  * dma using dma_alloc_coherent() which in turn allocates from the memory
1262  * area pointed out with dma_declare_coherent_memory().
1263  *
1264  * So, to summarize...
1265  *
1266  * - We need "local" memory, canonical example being
1267  *   a small SRAM on a discrete controller being the
1268  *   only memory that the controller can read ...
1269  *   (a) "normal" kernel memory is no good, and
1270  *   (b) there's not enough to share
1271  *
1272  * - The only *portable* hook for such stuff in the
1273  *   DMA framework is dma_declare_coherent_memory()
1274  *
1275  * - So we use that, even though the primary requirement
1276  *   is that the memory be "local" (hence addressible
1277  *   by that device), not "coherent".
1278  *
1279  */
1280 
1281 static int hcd_alloc_coherent(struct usb_bus *bus,
1282 			      gfp_t mem_flags, dma_addr_t *dma_handle,
1283 			      void **vaddr_handle, size_t size,
1284 			      enum dma_data_direction dir)
1285 {
1286 	unsigned char *vaddr;
1287 
1288 	if (*vaddr_handle == NULL) {
1289 		WARN_ON_ONCE(1);
1290 		return -EFAULT;
1291 	}
1292 
1293 	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1294 				 mem_flags, dma_handle);
1295 	if (!vaddr)
1296 		return -ENOMEM;
1297 
1298 	/*
1299 	 * Store the virtual address of the buffer at the end
1300 	 * of the allocated dma buffer. The size of the buffer
1301 	 * may be uneven so use unaligned functions instead
1302 	 * of just rounding up. It makes sense to optimize for
1303 	 * memory footprint over access speed since the amount
1304 	 * of memory available for dma may be limited.
1305 	 */
1306 	put_unaligned((unsigned long)*vaddr_handle,
1307 		      (unsigned long *)(vaddr + size));
1308 
1309 	if (dir == DMA_TO_DEVICE)
1310 		memcpy(vaddr, *vaddr_handle, size);
1311 
1312 	*vaddr_handle = vaddr;
1313 	return 0;
1314 }
1315 
1316 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1317 			      void **vaddr_handle, size_t size,
1318 			      enum dma_data_direction dir)
1319 {
1320 	unsigned char *vaddr = *vaddr_handle;
1321 
1322 	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1323 
1324 	if (dir == DMA_FROM_DEVICE)
1325 		memcpy(vaddr, *vaddr_handle, size);
1326 
1327 	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1328 
1329 	*vaddr_handle = vaddr;
1330 	*dma_handle = 0;
1331 }
1332 
1333 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1334 {
1335 	if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1336 		dma_unmap_single(hcd->self.controller,
1337 				urb->setup_dma,
1338 				sizeof(struct usb_ctrlrequest),
1339 				DMA_TO_DEVICE);
1340 	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1341 		hcd_free_coherent(urb->dev->bus,
1342 				&urb->setup_dma,
1343 				(void **) &urb->setup_packet,
1344 				sizeof(struct usb_ctrlrequest),
1345 				DMA_TO_DEVICE);
1346 
1347 	/* Make it safe to call this routine more than once */
1348 	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1349 }
1350 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1351 
1352 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1353 {
1354 	if (hcd->driver->unmap_urb_for_dma)
1355 		hcd->driver->unmap_urb_for_dma(hcd, urb);
1356 	else
1357 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1358 }
1359 
1360 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1361 {
1362 	enum dma_data_direction dir;
1363 
1364 	usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1365 
1366 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1367 	if (urb->transfer_flags & URB_DMA_MAP_SG)
1368 		dma_unmap_sg(hcd->self.controller,
1369 				urb->sg,
1370 				urb->num_sgs,
1371 				dir);
1372 	else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1373 		dma_unmap_page(hcd->self.controller,
1374 				urb->transfer_dma,
1375 				urb->transfer_buffer_length,
1376 				dir);
1377 	else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1378 		dma_unmap_single(hcd->self.controller,
1379 				urb->transfer_dma,
1380 				urb->transfer_buffer_length,
1381 				dir);
1382 	else if (urb->transfer_flags & URB_MAP_LOCAL)
1383 		hcd_free_coherent(urb->dev->bus,
1384 				&urb->transfer_dma,
1385 				&urb->transfer_buffer,
1386 				urb->transfer_buffer_length,
1387 				dir);
1388 
1389 	/* Make it safe to call this routine more than once */
1390 	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1391 			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1392 }
1393 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1394 
1395 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1396 			   gfp_t mem_flags)
1397 {
1398 	if (hcd->driver->map_urb_for_dma)
1399 		return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1400 	else
1401 		return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1402 }
1403 
1404 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1405 			    gfp_t mem_flags)
1406 {
1407 	enum dma_data_direction dir;
1408 	int ret = 0;
1409 
1410 	/* Map the URB's buffers for DMA access.
1411 	 * Lower level HCD code should use *_dma exclusively,
1412 	 * unless it uses pio or talks to another transport,
1413 	 * or uses the provided scatter gather list for bulk.
1414 	 */
1415 
1416 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1417 		if (hcd->self.uses_pio_for_control)
1418 			return ret;
1419 		if (hcd->self.uses_dma) {
1420 			urb->setup_dma = dma_map_single(
1421 					hcd->self.controller,
1422 					urb->setup_packet,
1423 					sizeof(struct usb_ctrlrequest),
1424 					DMA_TO_DEVICE);
1425 			if (dma_mapping_error(hcd->self.controller,
1426 						urb->setup_dma))
1427 				return -EAGAIN;
1428 			urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1429 		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1430 			ret = hcd_alloc_coherent(
1431 					urb->dev->bus, mem_flags,
1432 					&urb->setup_dma,
1433 					(void **)&urb->setup_packet,
1434 					sizeof(struct usb_ctrlrequest),
1435 					DMA_TO_DEVICE);
1436 			if (ret)
1437 				return ret;
1438 			urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1439 		}
1440 	}
1441 
1442 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1443 	if (urb->transfer_buffer_length != 0
1444 	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1445 		if (hcd->self.uses_dma) {
1446 			if (urb->num_sgs) {
1447 				int n;
1448 
1449 				/* We don't support sg for isoc transfers ! */
1450 				if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1451 					WARN_ON(1);
1452 					return -EINVAL;
1453 				}
1454 
1455 				n = dma_map_sg(
1456 						hcd->self.controller,
1457 						urb->sg,
1458 						urb->num_sgs,
1459 						dir);
1460 				if (n <= 0)
1461 					ret = -EAGAIN;
1462 				else
1463 					urb->transfer_flags |= URB_DMA_MAP_SG;
1464 				urb->num_mapped_sgs = n;
1465 				if (n != urb->num_sgs)
1466 					urb->transfer_flags |=
1467 							URB_DMA_SG_COMBINED;
1468 			} else if (urb->sg) {
1469 				struct scatterlist *sg = urb->sg;
1470 				urb->transfer_dma = dma_map_page(
1471 						hcd->self.controller,
1472 						sg_page(sg),
1473 						sg->offset,
1474 						urb->transfer_buffer_length,
1475 						dir);
1476 				if (dma_mapping_error(hcd->self.controller,
1477 						urb->transfer_dma))
1478 					ret = -EAGAIN;
1479 				else
1480 					urb->transfer_flags |= URB_DMA_MAP_PAGE;
1481 			} else {
1482 				urb->transfer_dma = dma_map_single(
1483 						hcd->self.controller,
1484 						urb->transfer_buffer,
1485 						urb->transfer_buffer_length,
1486 						dir);
1487 				if (dma_mapping_error(hcd->self.controller,
1488 						urb->transfer_dma))
1489 					ret = -EAGAIN;
1490 				else
1491 					urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1492 			}
1493 		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1494 			ret = hcd_alloc_coherent(
1495 					urb->dev->bus, mem_flags,
1496 					&urb->transfer_dma,
1497 					&urb->transfer_buffer,
1498 					urb->transfer_buffer_length,
1499 					dir);
1500 			if (ret == 0)
1501 				urb->transfer_flags |= URB_MAP_LOCAL;
1502 		}
1503 		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1504 				URB_SETUP_MAP_LOCAL)))
1505 			usb_hcd_unmap_urb_for_dma(hcd, urb);
1506 	}
1507 	return ret;
1508 }
1509 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1510 
1511 /*-------------------------------------------------------------------------*/
1512 
1513 /* may be called in any context with a valid urb->dev usecount
1514  * caller surrenders "ownership" of urb
1515  * expects usb_submit_urb() to have sanity checked and conditioned all
1516  * inputs in the urb
1517  */
1518 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1519 {
1520 	int			status;
1521 	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1522 
1523 	/* increment urb's reference count as part of giving it to the HCD
1524 	 * (which will control it).  HCD guarantees that it either returns
1525 	 * an error or calls giveback(), but not both.
1526 	 */
1527 	usb_get_urb(urb);
1528 	atomic_inc(&urb->use_count);
1529 	atomic_inc(&urb->dev->urbnum);
1530 	usbmon_urb_submit(&hcd->self, urb);
1531 
1532 	/* NOTE requirements on root-hub callers (usbfs and the hub
1533 	 * driver, for now):  URBs' urb->transfer_buffer must be
1534 	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1535 	 * they could clobber root hub response data.  Also, control
1536 	 * URBs must be submitted in process context with interrupts
1537 	 * enabled.
1538 	 */
1539 
1540 	if (is_root_hub(urb->dev)) {
1541 		status = rh_urb_enqueue(hcd, urb);
1542 	} else {
1543 		status = map_urb_for_dma(hcd, urb, mem_flags);
1544 		if (likely(status == 0)) {
1545 			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1546 			if (unlikely(status))
1547 				unmap_urb_for_dma(hcd, urb);
1548 		}
1549 	}
1550 
1551 	if (unlikely(status)) {
1552 		usbmon_urb_submit_error(&hcd->self, urb, status);
1553 		urb->hcpriv = NULL;
1554 		INIT_LIST_HEAD(&urb->urb_list);
1555 		atomic_dec(&urb->use_count);
1556 		atomic_dec(&urb->dev->urbnum);
1557 		if (atomic_read(&urb->reject))
1558 			wake_up(&usb_kill_urb_queue);
1559 		usb_put_urb(urb);
1560 	}
1561 	return status;
1562 }
1563 
1564 /*-------------------------------------------------------------------------*/
1565 
1566 /* this makes the hcd giveback() the urb more quickly, by kicking it
1567  * off hardware queues (which may take a while) and returning it as
1568  * soon as practical.  we've already set up the urb's return status,
1569  * but we can't know if the callback completed already.
1570  */
1571 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1572 {
1573 	int		value;
1574 
1575 	if (is_root_hub(urb->dev))
1576 		value = usb_rh_urb_dequeue(hcd, urb, status);
1577 	else {
1578 
1579 		/* The only reason an HCD might fail this call is if
1580 		 * it has not yet fully queued the urb to begin with.
1581 		 * Such failures should be harmless. */
1582 		value = hcd->driver->urb_dequeue(hcd, urb, status);
1583 	}
1584 	return value;
1585 }
1586 
1587 /*
1588  * called in any context
1589  *
1590  * caller guarantees urb won't be recycled till both unlink()
1591  * and the urb's completion function return
1592  */
1593 int usb_hcd_unlink_urb (struct urb *urb, int status)
1594 {
1595 	struct usb_hcd		*hcd;
1596 	int			retval = -EIDRM;
1597 	unsigned long		flags;
1598 
1599 	/* Prevent the device and bus from going away while
1600 	 * the unlink is carried out.  If they are already gone
1601 	 * then urb->use_count must be 0, since disconnected
1602 	 * devices can't have any active URBs.
1603 	 */
1604 	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1605 	if (atomic_read(&urb->use_count) > 0) {
1606 		retval = 0;
1607 		usb_get_dev(urb->dev);
1608 	}
1609 	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1610 	if (retval == 0) {
1611 		hcd = bus_to_hcd(urb->dev->bus);
1612 		retval = unlink1(hcd, urb, status);
1613 		usb_put_dev(urb->dev);
1614 	}
1615 
1616 	if (retval == 0)
1617 		retval = -EINPROGRESS;
1618 	else if (retval != -EIDRM && retval != -EBUSY)
1619 		dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1620 				urb, retval);
1621 	return retval;
1622 }
1623 
1624 /*-------------------------------------------------------------------------*/
1625 
1626 /**
1627  * usb_hcd_giveback_urb - return URB from HCD to device driver
1628  * @hcd: host controller returning the URB
1629  * @urb: urb being returned to the USB device driver.
1630  * @status: completion status code for the URB.
1631  * Context: in_interrupt()
1632  *
1633  * This hands the URB from HCD to its USB device driver, using its
1634  * completion function.  The HCD has freed all per-urb resources
1635  * (and is done using urb->hcpriv).  It also released all HCD locks;
1636  * the device driver won't cause problems if it frees, modifies,
1637  * or resubmits this URB.
1638  *
1639  * If @urb was unlinked, the value of @status will be overridden by
1640  * @urb->unlinked.  Erroneous short transfers are detected in case
1641  * the HCD hasn't checked for them.
1642  */
1643 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1644 {
1645 	urb->hcpriv = NULL;
1646 	if (unlikely(urb->unlinked))
1647 		status = urb->unlinked;
1648 	else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1649 			urb->actual_length < urb->transfer_buffer_length &&
1650 			!status))
1651 		status = -EREMOTEIO;
1652 
1653 	unmap_urb_for_dma(hcd, urb);
1654 	usbmon_urb_complete(&hcd->self, urb, status);
1655 	usb_unanchor_urb(urb);
1656 
1657 	/* pass ownership to the completion handler */
1658 	urb->status = status;
1659 	urb->complete (urb);
1660 	atomic_dec (&urb->use_count);
1661 	if (unlikely(atomic_read(&urb->reject)))
1662 		wake_up (&usb_kill_urb_queue);
1663 	usb_put_urb (urb);
1664 }
1665 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1666 
1667 /*-------------------------------------------------------------------------*/
1668 
1669 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1670  * queue to drain completely.  The caller must first insure that no more
1671  * URBs can be submitted for this endpoint.
1672  */
1673 void usb_hcd_flush_endpoint(struct usb_device *udev,
1674 		struct usb_host_endpoint *ep)
1675 {
1676 	struct usb_hcd		*hcd;
1677 	struct urb		*urb;
1678 
1679 	if (!ep)
1680 		return;
1681 	might_sleep();
1682 	hcd = bus_to_hcd(udev->bus);
1683 
1684 	/* No more submits can occur */
1685 	spin_lock_irq(&hcd_urb_list_lock);
1686 rescan:
1687 	list_for_each_entry (urb, &ep->urb_list, urb_list) {
1688 		int	is_in;
1689 
1690 		if (urb->unlinked)
1691 			continue;
1692 		usb_get_urb (urb);
1693 		is_in = usb_urb_dir_in(urb);
1694 		spin_unlock(&hcd_urb_list_lock);
1695 
1696 		/* kick hcd */
1697 		unlink1(hcd, urb, -ESHUTDOWN);
1698 		dev_dbg (hcd->self.controller,
1699 			"shutdown urb %p ep%d%s%s\n",
1700 			urb, usb_endpoint_num(&ep->desc),
1701 			is_in ? "in" : "out",
1702 			({	char *s;
1703 
1704 				 switch (usb_endpoint_type(&ep->desc)) {
1705 				 case USB_ENDPOINT_XFER_CONTROL:
1706 					s = ""; break;
1707 				 case USB_ENDPOINT_XFER_BULK:
1708 					s = "-bulk"; break;
1709 				 case USB_ENDPOINT_XFER_INT:
1710 					s = "-intr"; break;
1711 				 default:
1712 			 		s = "-iso"; break;
1713 				};
1714 				s;
1715 			}));
1716 		usb_put_urb (urb);
1717 
1718 		/* list contents may have changed */
1719 		spin_lock(&hcd_urb_list_lock);
1720 		goto rescan;
1721 	}
1722 	spin_unlock_irq(&hcd_urb_list_lock);
1723 
1724 	/* Wait until the endpoint queue is completely empty */
1725 	while (!list_empty (&ep->urb_list)) {
1726 		spin_lock_irq(&hcd_urb_list_lock);
1727 
1728 		/* The list may have changed while we acquired the spinlock */
1729 		urb = NULL;
1730 		if (!list_empty (&ep->urb_list)) {
1731 			urb = list_entry (ep->urb_list.prev, struct urb,
1732 					urb_list);
1733 			usb_get_urb (urb);
1734 		}
1735 		spin_unlock_irq(&hcd_urb_list_lock);
1736 
1737 		if (urb) {
1738 			usb_kill_urb (urb);
1739 			usb_put_urb (urb);
1740 		}
1741 	}
1742 }
1743 
1744 /**
1745  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1746  *				the bus bandwidth
1747  * @udev: target &usb_device
1748  * @new_config: new configuration to install
1749  * @cur_alt: the current alternate interface setting
1750  * @new_alt: alternate interface setting that is being installed
1751  *
1752  * To change configurations, pass in the new configuration in new_config,
1753  * and pass NULL for cur_alt and new_alt.
1754  *
1755  * To reset a device's configuration (put the device in the ADDRESSED state),
1756  * pass in NULL for new_config, cur_alt, and new_alt.
1757  *
1758  * To change alternate interface settings, pass in NULL for new_config,
1759  * pass in the current alternate interface setting in cur_alt,
1760  * and pass in the new alternate interface setting in new_alt.
1761  *
1762  * Returns an error if the requested bandwidth change exceeds the
1763  * bus bandwidth or host controller internal resources.
1764  */
1765 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1766 		struct usb_host_config *new_config,
1767 		struct usb_host_interface *cur_alt,
1768 		struct usb_host_interface *new_alt)
1769 {
1770 	int num_intfs, i, j;
1771 	struct usb_host_interface *alt = NULL;
1772 	int ret = 0;
1773 	struct usb_hcd *hcd;
1774 	struct usb_host_endpoint *ep;
1775 
1776 	hcd = bus_to_hcd(udev->bus);
1777 	if (!hcd->driver->check_bandwidth)
1778 		return 0;
1779 
1780 	/* Configuration is being removed - set configuration 0 */
1781 	if (!new_config && !cur_alt) {
1782 		for (i = 1; i < 16; ++i) {
1783 			ep = udev->ep_out[i];
1784 			if (ep)
1785 				hcd->driver->drop_endpoint(hcd, udev, ep);
1786 			ep = udev->ep_in[i];
1787 			if (ep)
1788 				hcd->driver->drop_endpoint(hcd, udev, ep);
1789 		}
1790 		hcd->driver->check_bandwidth(hcd, udev);
1791 		return 0;
1792 	}
1793 	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1794 	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1795 	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1796 	 * ok to exclude it.
1797 	 */
1798 	if (new_config) {
1799 		num_intfs = new_config->desc.bNumInterfaces;
1800 		/* Remove endpoints (except endpoint 0, which is always on the
1801 		 * schedule) from the old config from the schedule
1802 		 */
1803 		for (i = 1; i < 16; ++i) {
1804 			ep = udev->ep_out[i];
1805 			if (ep) {
1806 				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1807 				if (ret < 0)
1808 					goto reset;
1809 			}
1810 			ep = udev->ep_in[i];
1811 			if (ep) {
1812 				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1813 				if (ret < 0)
1814 					goto reset;
1815 			}
1816 		}
1817 		for (i = 0; i < num_intfs; ++i) {
1818 			struct usb_host_interface *first_alt;
1819 			int iface_num;
1820 
1821 			first_alt = &new_config->intf_cache[i]->altsetting[0];
1822 			iface_num = first_alt->desc.bInterfaceNumber;
1823 			/* Set up endpoints for alternate interface setting 0 */
1824 			alt = usb_find_alt_setting(new_config, iface_num, 0);
1825 			if (!alt)
1826 				/* No alt setting 0? Pick the first setting. */
1827 				alt = first_alt;
1828 
1829 			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1830 				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1831 				if (ret < 0)
1832 					goto reset;
1833 			}
1834 		}
1835 	}
1836 	if (cur_alt && new_alt) {
1837 		struct usb_interface *iface = usb_ifnum_to_if(udev,
1838 				cur_alt->desc.bInterfaceNumber);
1839 
1840 		if (!iface)
1841 			return -EINVAL;
1842 		if (iface->resetting_device) {
1843 			/*
1844 			 * The USB core just reset the device, so the xHCI host
1845 			 * and the device will think alt setting 0 is installed.
1846 			 * However, the USB core will pass in the alternate
1847 			 * setting installed before the reset as cur_alt.  Dig
1848 			 * out the alternate setting 0 structure, or the first
1849 			 * alternate setting if a broken device doesn't have alt
1850 			 * setting 0.
1851 			 */
1852 			cur_alt = usb_altnum_to_altsetting(iface, 0);
1853 			if (!cur_alt)
1854 				cur_alt = &iface->altsetting[0];
1855 		}
1856 
1857 		/* Drop all the endpoints in the current alt setting */
1858 		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1859 			ret = hcd->driver->drop_endpoint(hcd, udev,
1860 					&cur_alt->endpoint[i]);
1861 			if (ret < 0)
1862 				goto reset;
1863 		}
1864 		/* Add all the endpoints in the new alt setting */
1865 		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1866 			ret = hcd->driver->add_endpoint(hcd, udev,
1867 					&new_alt->endpoint[i]);
1868 			if (ret < 0)
1869 				goto reset;
1870 		}
1871 	}
1872 	ret = hcd->driver->check_bandwidth(hcd, udev);
1873 reset:
1874 	if (ret < 0)
1875 		hcd->driver->reset_bandwidth(hcd, udev);
1876 	return ret;
1877 }
1878 
1879 /* Disables the endpoint: synchronizes with the hcd to make sure all
1880  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1881  * have been called previously.  Use for set_configuration, set_interface,
1882  * driver removal, physical disconnect.
1883  *
1884  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1885  * type, maxpacket size, toggle, halt status, and scheduling.
1886  */
1887 void usb_hcd_disable_endpoint(struct usb_device *udev,
1888 		struct usb_host_endpoint *ep)
1889 {
1890 	struct usb_hcd		*hcd;
1891 
1892 	might_sleep();
1893 	hcd = bus_to_hcd(udev->bus);
1894 	if (hcd->driver->endpoint_disable)
1895 		hcd->driver->endpoint_disable(hcd, ep);
1896 }
1897 
1898 /**
1899  * usb_hcd_reset_endpoint - reset host endpoint state
1900  * @udev: USB device.
1901  * @ep:   the endpoint to reset.
1902  *
1903  * Resets any host endpoint state such as the toggle bit, sequence
1904  * number and current window.
1905  */
1906 void usb_hcd_reset_endpoint(struct usb_device *udev,
1907 			    struct usb_host_endpoint *ep)
1908 {
1909 	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1910 
1911 	if (hcd->driver->endpoint_reset)
1912 		hcd->driver->endpoint_reset(hcd, ep);
1913 	else {
1914 		int epnum = usb_endpoint_num(&ep->desc);
1915 		int is_out = usb_endpoint_dir_out(&ep->desc);
1916 		int is_control = usb_endpoint_xfer_control(&ep->desc);
1917 
1918 		usb_settoggle(udev, epnum, is_out, 0);
1919 		if (is_control)
1920 			usb_settoggle(udev, epnum, !is_out, 0);
1921 	}
1922 }
1923 
1924 /**
1925  * usb_alloc_streams - allocate bulk endpoint stream IDs.
1926  * @interface:		alternate setting that includes all endpoints.
1927  * @eps:		array of endpoints that need streams.
1928  * @num_eps:		number of endpoints in the array.
1929  * @num_streams:	number of streams to allocate.
1930  * @mem_flags:		flags hcd should use to allocate memory.
1931  *
1932  * Sets up a group of bulk endpoints to have num_streams stream IDs available.
1933  * Drivers may queue multiple transfers to different stream IDs, which may
1934  * complete in a different order than they were queued.
1935  */
1936 int usb_alloc_streams(struct usb_interface *interface,
1937 		struct usb_host_endpoint **eps, unsigned int num_eps,
1938 		unsigned int num_streams, gfp_t mem_flags)
1939 {
1940 	struct usb_hcd *hcd;
1941 	struct usb_device *dev;
1942 	int i;
1943 
1944 	dev = interface_to_usbdev(interface);
1945 	hcd = bus_to_hcd(dev->bus);
1946 	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
1947 		return -EINVAL;
1948 	if (dev->speed != USB_SPEED_SUPER)
1949 		return -EINVAL;
1950 
1951 	/* Streams only apply to bulk endpoints. */
1952 	for (i = 0; i < num_eps; i++)
1953 		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
1954 			return -EINVAL;
1955 
1956 	return hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
1957 			num_streams, mem_flags);
1958 }
1959 EXPORT_SYMBOL_GPL(usb_alloc_streams);
1960 
1961 /**
1962  * usb_free_streams - free bulk endpoint stream IDs.
1963  * @interface:	alternate setting that includes all endpoints.
1964  * @eps:	array of endpoints to remove streams from.
1965  * @num_eps:	number of endpoints in the array.
1966  * @mem_flags:	flags hcd should use to allocate memory.
1967  *
1968  * Reverts a group of bulk endpoints back to not using stream IDs.
1969  * Can fail if we are given bad arguments, or HCD is broken.
1970  */
1971 void usb_free_streams(struct usb_interface *interface,
1972 		struct usb_host_endpoint **eps, unsigned int num_eps,
1973 		gfp_t mem_flags)
1974 {
1975 	struct usb_hcd *hcd;
1976 	struct usb_device *dev;
1977 	int i;
1978 
1979 	dev = interface_to_usbdev(interface);
1980 	hcd = bus_to_hcd(dev->bus);
1981 	if (dev->speed != USB_SPEED_SUPER)
1982 		return;
1983 
1984 	/* Streams only apply to bulk endpoints. */
1985 	for (i = 0; i < num_eps; i++)
1986 		if (!eps[i] || !usb_endpoint_xfer_bulk(&eps[i]->desc))
1987 			return;
1988 
1989 	hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
1990 }
1991 EXPORT_SYMBOL_GPL(usb_free_streams);
1992 
1993 /* Protect against drivers that try to unlink URBs after the device
1994  * is gone, by waiting until all unlinks for @udev are finished.
1995  * Since we don't currently track URBs by device, simply wait until
1996  * nothing is running in the locked region of usb_hcd_unlink_urb().
1997  */
1998 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1999 {
2000 	spin_lock_irq(&hcd_urb_unlink_lock);
2001 	spin_unlock_irq(&hcd_urb_unlink_lock);
2002 }
2003 
2004 /*-------------------------------------------------------------------------*/
2005 
2006 /* called in any context */
2007 int usb_hcd_get_frame_number (struct usb_device *udev)
2008 {
2009 	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
2010 
2011 	if (!HCD_RH_RUNNING(hcd))
2012 		return -ESHUTDOWN;
2013 	return hcd->driver->get_frame_number (hcd);
2014 }
2015 
2016 /*-------------------------------------------------------------------------*/
2017 
2018 #ifdef	CONFIG_PM
2019 
2020 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2021 {
2022 	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
2023 	int		status;
2024 	int		old_state = hcd->state;
2025 
2026 	dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2027 			(PMSG_IS_AUTO(msg) ? "auto-" : ""),
2028 			rhdev->do_remote_wakeup);
2029 	if (HCD_DEAD(hcd)) {
2030 		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2031 		return 0;
2032 	}
2033 
2034 	if (!hcd->driver->bus_suspend) {
2035 		status = -ENOENT;
2036 	} else {
2037 		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2038 		hcd->state = HC_STATE_QUIESCING;
2039 		status = hcd->driver->bus_suspend(hcd);
2040 	}
2041 	if (status == 0) {
2042 		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2043 		hcd->state = HC_STATE_SUSPENDED;
2044 
2045 		/* Did we race with a root-hub wakeup event? */
2046 		if (rhdev->do_remote_wakeup) {
2047 			char	buffer[6];
2048 
2049 			status = hcd->driver->hub_status_data(hcd, buffer);
2050 			if (status != 0) {
2051 				dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2052 				hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2053 				status = -EBUSY;
2054 			}
2055 		}
2056 	} else {
2057 		spin_lock_irq(&hcd_root_hub_lock);
2058 		if (!HCD_DEAD(hcd)) {
2059 			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2060 			hcd->state = old_state;
2061 		}
2062 		spin_unlock_irq(&hcd_root_hub_lock);
2063 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2064 				"suspend", status);
2065 	}
2066 	return status;
2067 }
2068 
2069 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2070 {
2071 	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
2072 	int		status;
2073 	int		old_state = hcd->state;
2074 
2075 	dev_dbg(&rhdev->dev, "usb %sresume\n",
2076 			(PMSG_IS_AUTO(msg) ? "auto-" : ""));
2077 	if (HCD_DEAD(hcd)) {
2078 		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2079 		return 0;
2080 	}
2081 	if (!hcd->driver->bus_resume)
2082 		return -ENOENT;
2083 	if (HCD_RH_RUNNING(hcd))
2084 		return 0;
2085 
2086 	hcd->state = HC_STATE_RESUMING;
2087 	status = hcd->driver->bus_resume(hcd);
2088 	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2089 	if (status == 0) {
2090 		struct usb_device *udev;
2091 		int port1;
2092 
2093 		spin_lock_irq(&hcd_root_hub_lock);
2094 		if (!HCD_DEAD(hcd)) {
2095 			usb_set_device_state(rhdev, rhdev->actconfig
2096 					? USB_STATE_CONFIGURED
2097 					: USB_STATE_ADDRESS);
2098 			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2099 			hcd->state = HC_STATE_RUNNING;
2100 		}
2101 		spin_unlock_irq(&hcd_root_hub_lock);
2102 
2103 		/*
2104 		 * Check whether any of the enabled ports on the root hub are
2105 		 * unsuspended.  If they are then a TRSMRCY delay is needed
2106 		 * (this is what the USB-2 spec calls a "global resume").
2107 		 * Otherwise we can skip the delay.
2108 		 */
2109 		usb_hub_for_each_child(rhdev, port1, udev) {
2110 			if (udev->state != USB_STATE_NOTATTACHED &&
2111 					!udev->port_is_suspended) {
2112 				usleep_range(10000, 11000);	/* TRSMRCY */
2113 				break;
2114 			}
2115 		}
2116 	} else {
2117 		hcd->state = old_state;
2118 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2119 				"resume", status);
2120 		if (status != -ESHUTDOWN)
2121 			usb_hc_died(hcd);
2122 	}
2123 	return status;
2124 }
2125 
2126 #endif	/* CONFIG_PM */
2127 
2128 #ifdef	CONFIG_PM_RUNTIME
2129 
2130 /* Workqueue routine for root-hub remote wakeup */
2131 static void hcd_resume_work(struct work_struct *work)
2132 {
2133 	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2134 	struct usb_device *udev = hcd->self.root_hub;
2135 
2136 	usb_lock_device(udev);
2137 	usb_remote_wakeup(udev);
2138 	usb_unlock_device(udev);
2139 }
2140 
2141 /**
2142  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2143  * @hcd: host controller for this root hub
2144  *
2145  * The USB host controller calls this function when its root hub is
2146  * suspended (with the remote wakeup feature enabled) and a remote
2147  * wakeup request is received.  The routine submits a workqueue request
2148  * to resume the root hub (that is, manage its downstream ports again).
2149  */
2150 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2151 {
2152 	unsigned long flags;
2153 
2154 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2155 	if (hcd->rh_registered) {
2156 		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2157 		queue_work(pm_wq, &hcd->wakeup_work);
2158 	}
2159 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2160 }
2161 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2162 
2163 #endif	/* CONFIG_PM_RUNTIME */
2164 
2165 /*-------------------------------------------------------------------------*/
2166 
2167 #ifdef	CONFIG_USB_OTG
2168 
2169 /**
2170  * usb_bus_start_enum - start immediate enumeration (for OTG)
2171  * @bus: the bus (must use hcd framework)
2172  * @port_num: 1-based number of port; usually bus->otg_port
2173  * Context: in_interrupt()
2174  *
2175  * Starts enumeration, with an immediate reset followed later by
2176  * khubd identifying and possibly configuring the device.
2177  * This is needed by OTG controller drivers, where it helps meet
2178  * HNP protocol timing requirements for starting a port reset.
2179  */
2180 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2181 {
2182 	struct usb_hcd		*hcd;
2183 	int			status = -EOPNOTSUPP;
2184 
2185 	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2186 	 * boards with root hubs hooked up to internal devices (instead of
2187 	 * just the OTG port) may need more attention to resetting...
2188 	 */
2189 	hcd = container_of (bus, struct usb_hcd, self);
2190 	if (port_num && hcd->driver->start_port_reset)
2191 		status = hcd->driver->start_port_reset(hcd, port_num);
2192 
2193 	/* run khubd shortly after (first) root port reset finishes;
2194 	 * it may issue others, until at least 50 msecs have passed.
2195 	 */
2196 	if (status == 0)
2197 		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2198 	return status;
2199 }
2200 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2201 
2202 #endif
2203 
2204 /*-------------------------------------------------------------------------*/
2205 
2206 /**
2207  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2208  * @irq: the IRQ being raised
2209  * @__hcd: pointer to the HCD whose IRQ is being signaled
2210  *
2211  * If the controller isn't HALTed, calls the driver's irq handler.
2212  * Checks whether the controller is now dead.
2213  */
2214 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2215 {
2216 	struct usb_hcd		*hcd = __hcd;
2217 	unsigned long		flags;
2218 	irqreturn_t		rc;
2219 
2220 	/* IRQF_DISABLED doesn't work correctly with shared IRQs
2221 	 * when the first handler doesn't use it.  So let's just
2222 	 * assume it's never used.
2223 	 */
2224 	local_irq_save(flags);
2225 
2226 	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2227 		rc = IRQ_NONE;
2228 	else if (hcd->driver->irq(hcd) == IRQ_NONE)
2229 		rc = IRQ_NONE;
2230 	else
2231 		rc = IRQ_HANDLED;
2232 
2233 	local_irq_restore(flags);
2234 	return rc;
2235 }
2236 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2237 
2238 /*-------------------------------------------------------------------------*/
2239 
2240 /**
2241  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2242  * @hcd: pointer to the HCD representing the controller
2243  *
2244  * This is called by bus glue to report a USB host controller that died
2245  * while operations may still have been pending.  It's called automatically
2246  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2247  *
2248  * Only call this function with the primary HCD.
2249  */
2250 void usb_hc_died (struct usb_hcd *hcd)
2251 {
2252 	unsigned long flags;
2253 
2254 	dev_err (hcd->self.controller, "HC died; cleaning up\n");
2255 
2256 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2257 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2258 	set_bit(HCD_FLAG_DEAD, &hcd->flags);
2259 	if (hcd->rh_registered) {
2260 		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2261 
2262 		/* make khubd clean up old urbs and devices */
2263 		usb_set_device_state (hcd->self.root_hub,
2264 				USB_STATE_NOTATTACHED);
2265 		usb_kick_khubd (hcd->self.root_hub);
2266 	}
2267 	if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2268 		hcd = hcd->shared_hcd;
2269 		if (hcd->rh_registered) {
2270 			clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2271 
2272 			/* make khubd clean up old urbs and devices */
2273 			usb_set_device_state(hcd->self.root_hub,
2274 					USB_STATE_NOTATTACHED);
2275 			usb_kick_khubd(hcd->self.root_hub);
2276 		}
2277 	}
2278 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2279 	/* Make sure that the other roothub is also deallocated. */
2280 }
2281 EXPORT_SYMBOL_GPL (usb_hc_died);
2282 
2283 /*-------------------------------------------------------------------------*/
2284 
2285 /**
2286  * usb_create_shared_hcd - create and initialize an HCD structure
2287  * @driver: HC driver that will use this hcd
2288  * @dev: device for this HC, stored in hcd->self.controller
2289  * @bus_name: value to store in hcd->self.bus_name
2290  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2291  *              PCI device.  Only allocate certain resources for the primary HCD
2292  * Context: !in_interrupt()
2293  *
2294  * Allocate a struct usb_hcd, with extra space at the end for the
2295  * HC driver's private data.  Initialize the generic members of the
2296  * hcd structure.
2297  *
2298  * If memory is unavailable, returns NULL.
2299  */
2300 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2301 		struct device *dev, const char *bus_name,
2302 		struct usb_hcd *primary_hcd)
2303 {
2304 	struct usb_hcd *hcd;
2305 
2306 	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2307 	if (!hcd) {
2308 		dev_dbg (dev, "hcd alloc failed\n");
2309 		return NULL;
2310 	}
2311 	if (primary_hcd == NULL) {
2312 		hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2313 				GFP_KERNEL);
2314 		if (!hcd->bandwidth_mutex) {
2315 			kfree(hcd);
2316 			dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2317 			return NULL;
2318 		}
2319 		mutex_init(hcd->bandwidth_mutex);
2320 		dev_set_drvdata(dev, hcd);
2321 	} else {
2322 		hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2323 		hcd->primary_hcd = primary_hcd;
2324 		primary_hcd->primary_hcd = primary_hcd;
2325 		hcd->shared_hcd = primary_hcd;
2326 		primary_hcd->shared_hcd = hcd;
2327 	}
2328 
2329 	kref_init(&hcd->kref);
2330 
2331 	usb_bus_init(&hcd->self);
2332 	hcd->self.controller = dev;
2333 	hcd->self.bus_name = bus_name;
2334 	hcd->self.uses_dma = (dev->dma_mask != NULL);
2335 
2336 	init_timer(&hcd->rh_timer);
2337 	hcd->rh_timer.function = rh_timer_func;
2338 	hcd->rh_timer.data = (unsigned long) hcd;
2339 #ifdef CONFIG_PM_RUNTIME
2340 	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2341 #endif
2342 
2343 	hcd->driver = driver;
2344 	hcd->speed = driver->flags & HCD_MASK;
2345 	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2346 			"USB Host Controller";
2347 	return hcd;
2348 }
2349 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2350 
2351 /**
2352  * usb_create_hcd - create and initialize an HCD structure
2353  * @driver: HC driver that will use this hcd
2354  * @dev: device for this HC, stored in hcd->self.controller
2355  * @bus_name: value to store in hcd->self.bus_name
2356  * Context: !in_interrupt()
2357  *
2358  * Allocate a struct usb_hcd, with extra space at the end for the
2359  * HC driver's private data.  Initialize the generic members of the
2360  * hcd structure.
2361  *
2362  * If memory is unavailable, returns NULL.
2363  */
2364 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2365 		struct device *dev, const char *bus_name)
2366 {
2367 	return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2368 }
2369 EXPORT_SYMBOL_GPL(usb_create_hcd);
2370 
2371 /*
2372  * Roothubs that share one PCI device must also share the bandwidth mutex.
2373  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2374  * deallocated.
2375  *
2376  * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2377  * freed.  When hcd_release() is called for the non-primary HCD, set the
2378  * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be
2379  * freed shortly).
2380  */
2381 static void hcd_release (struct kref *kref)
2382 {
2383 	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2384 
2385 	if (usb_hcd_is_primary_hcd(hcd))
2386 		kfree(hcd->bandwidth_mutex);
2387 	else
2388 		hcd->shared_hcd->shared_hcd = NULL;
2389 	kfree(hcd);
2390 }
2391 
2392 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2393 {
2394 	if (hcd)
2395 		kref_get (&hcd->kref);
2396 	return hcd;
2397 }
2398 EXPORT_SYMBOL_GPL(usb_get_hcd);
2399 
2400 void usb_put_hcd (struct usb_hcd *hcd)
2401 {
2402 	if (hcd)
2403 		kref_put (&hcd->kref, hcd_release);
2404 }
2405 EXPORT_SYMBOL_GPL(usb_put_hcd);
2406 
2407 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2408 {
2409 	if (!hcd->primary_hcd)
2410 		return 1;
2411 	return hcd == hcd->primary_hcd;
2412 }
2413 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2414 
2415 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2416 {
2417 	if (!hcd->driver->find_raw_port_number)
2418 		return port1;
2419 
2420 	return hcd->driver->find_raw_port_number(hcd, port1);
2421 }
2422 
2423 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2424 		unsigned int irqnum, unsigned long irqflags)
2425 {
2426 	int retval;
2427 
2428 	if (hcd->driver->irq) {
2429 
2430 		/* IRQF_DISABLED doesn't work as advertised when used together
2431 		 * with IRQF_SHARED. As usb_hcd_irq() will always disable
2432 		 * interrupts we can remove it here.
2433 		 */
2434 		if (irqflags & IRQF_SHARED)
2435 			irqflags &= ~IRQF_DISABLED;
2436 
2437 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2438 				hcd->driver->description, hcd->self.busnum);
2439 		retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2440 				hcd->irq_descr, hcd);
2441 		if (retval != 0) {
2442 			dev_err(hcd->self.controller,
2443 					"request interrupt %d failed\n",
2444 					irqnum);
2445 			return retval;
2446 		}
2447 		hcd->irq = irqnum;
2448 		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2449 				(hcd->driver->flags & HCD_MEMORY) ?
2450 					"io mem" : "io base",
2451 					(unsigned long long)hcd->rsrc_start);
2452 	} else {
2453 		hcd->irq = 0;
2454 		if (hcd->rsrc_start)
2455 			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2456 					(hcd->driver->flags & HCD_MEMORY) ?
2457 					"io mem" : "io base",
2458 					(unsigned long long)hcd->rsrc_start);
2459 	}
2460 	return 0;
2461 }
2462 
2463 /**
2464  * usb_add_hcd - finish generic HCD structure initialization and register
2465  * @hcd: the usb_hcd structure to initialize
2466  * @irqnum: Interrupt line to allocate
2467  * @irqflags: Interrupt type flags
2468  *
2469  * Finish the remaining parts of generic HCD initialization: allocate the
2470  * buffers of consistent memory, register the bus, request the IRQ line,
2471  * and call the driver's reset() and start() routines.
2472  */
2473 int usb_add_hcd(struct usb_hcd *hcd,
2474 		unsigned int irqnum, unsigned long irqflags)
2475 {
2476 	int retval;
2477 	struct usb_device *rhdev;
2478 
2479 	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2480 
2481 	/* Keep old behaviour if authorized_default is not in [0, 1]. */
2482 	if (authorized_default < 0 || authorized_default > 1)
2483 		hcd->authorized_default = hcd->wireless? 0 : 1;
2484 	else
2485 		hcd->authorized_default = authorized_default;
2486 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2487 
2488 	/* HC is in reset state, but accessible.  Now do the one-time init,
2489 	 * bottom up so that hcds can customize the root hubs before khubd
2490 	 * starts talking to them.  (Note, bus id is assigned early too.)
2491 	 */
2492 	if ((retval = hcd_buffer_create(hcd)) != 0) {
2493 		dev_dbg(hcd->self.controller, "pool alloc failed\n");
2494 		return retval;
2495 	}
2496 
2497 	if ((retval = usb_register_bus(&hcd->self)) < 0)
2498 		goto err_register_bus;
2499 
2500 	if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2501 		dev_err(hcd->self.controller, "unable to allocate root hub\n");
2502 		retval = -ENOMEM;
2503 		goto err_allocate_root_hub;
2504 	}
2505 	hcd->self.root_hub = rhdev;
2506 
2507 	switch (hcd->speed) {
2508 	case HCD_USB11:
2509 		rhdev->speed = USB_SPEED_FULL;
2510 		break;
2511 	case HCD_USB2:
2512 		rhdev->speed = USB_SPEED_HIGH;
2513 		break;
2514 	case HCD_USB3:
2515 		rhdev->speed = USB_SPEED_SUPER;
2516 		break;
2517 	default:
2518 		retval = -EINVAL;
2519 		goto err_set_rh_speed;
2520 	}
2521 
2522 	/* wakeup flag init defaults to "everything works" for root hubs,
2523 	 * but drivers can override it in reset() if needed, along with
2524 	 * recording the overall controller's system wakeup capability.
2525 	 */
2526 	device_set_wakeup_capable(&rhdev->dev, 1);
2527 
2528 	/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2529 	 * registered.  But since the controller can die at any time,
2530 	 * let's initialize the flag before touching the hardware.
2531 	 */
2532 	set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2533 
2534 	/* "reset" is misnamed; its role is now one-time init. the controller
2535 	 * should already have been reset (and boot firmware kicked off etc).
2536 	 */
2537 	if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2538 		dev_err(hcd->self.controller, "can't setup\n");
2539 		goto err_hcd_driver_setup;
2540 	}
2541 	hcd->rh_pollable = 1;
2542 
2543 	/* NOTE: root hub and controller capabilities may not be the same */
2544 	if (device_can_wakeup(hcd->self.controller)
2545 			&& device_can_wakeup(&hcd->self.root_hub->dev))
2546 		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2547 
2548 	/* enable irqs just before we start the controller,
2549 	 * if the BIOS provides legacy PCI irqs.
2550 	 */
2551 	if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2552 		retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2553 		if (retval)
2554 			goto err_request_irq;
2555 	}
2556 
2557 	hcd->state = HC_STATE_RUNNING;
2558 	retval = hcd->driver->start(hcd);
2559 	if (retval < 0) {
2560 		dev_err(hcd->self.controller, "startup error %d\n", retval);
2561 		goto err_hcd_driver_start;
2562 	}
2563 
2564 	/* starting here, usbcore will pay attention to this root hub */
2565 	if ((retval = register_root_hub(hcd)) != 0)
2566 		goto err_register_root_hub;
2567 
2568 	retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2569 	if (retval < 0) {
2570 		printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2571 		       retval);
2572 		goto error_create_attr_group;
2573 	}
2574 	if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2575 		usb_hcd_poll_rh_status(hcd);
2576 
2577 	/*
2578 	 * Host controllers don't generate their own wakeup requests;
2579 	 * they only forward requests from the root hub.  Therefore
2580 	 * controllers should always be enabled for remote wakeup.
2581 	 */
2582 	device_wakeup_enable(hcd->self.controller);
2583 	return retval;
2584 
2585 error_create_attr_group:
2586 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2587 	if (HC_IS_RUNNING(hcd->state))
2588 		hcd->state = HC_STATE_QUIESCING;
2589 	spin_lock_irq(&hcd_root_hub_lock);
2590 	hcd->rh_registered = 0;
2591 	spin_unlock_irq(&hcd_root_hub_lock);
2592 
2593 #ifdef CONFIG_PM_RUNTIME
2594 	cancel_work_sync(&hcd->wakeup_work);
2595 #endif
2596 	mutex_lock(&usb_bus_list_lock);
2597 	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2598 	mutex_unlock(&usb_bus_list_lock);
2599 err_register_root_hub:
2600 	hcd->rh_pollable = 0;
2601 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2602 	del_timer_sync(&hcd->rh_timer);
2603 	hcd->driver->stop(hcd);
2604 	hcd->state = HC_STATE_HALT;
2605 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2606 	del_timer_sync(&hcd->rh_timer);
2607 err_hcd_driver_start:
2608 	if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2609 		free_irq(irqnum, hcd);
2610 err_request_irq:
2611 err_hcd_driver_setup:
2612 err_set_rh_speed:
2613 	usb_put_dev(hcd->self.root_hub);
2614 err_allocate_root_hub:
2615 	usb_deregister_bus(&hcd->self);
2616 err_register_bus:
2617 	hcd_buffer_destroy(hcd);
2618 	return retval;
2619 }
2620 EXPORT_SYMBOL_GPL(usb_add_hcd);
2621 
2622 /**
2623  * usb_remove_hcd - shutdown processing for generic HCDs
2624  * @hcd: the usb_hcd structure to remove
2625  * Context: !in_interrupt()
2626  *
2627  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2628  * invoking the HCD's stop() method.
2629  */
2630 void usb_remove_hcd(struct usb_hcd *hcd)
2631 {
2632 	struct usb_device *rhdev = hcd->self.root_hub;
2633 
2634 	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2635 
2636 	usb_get_dev(rhdev);
2637 	sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2638 
2639 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2640 	if (HC_IS_RUNNING (hcd->state))
2641 		hcd->state = HC_STATE_QUIESCING;
2642 
2643 	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2644 	spin_lock_irq (&hcd_root_hub_lock);
2645 	hcd->rh_registered = 0;
2646 	spin_unlock_irq (&hcd_root_hub_lock);
2647 
2648 #ifdef CONFIG_PM_RUNTIME
2649 	cancel_work_sync(&hcd->wakeup_work);
2650 #endif
2651 
2652 	mutex_lock(&usb_bus_list_lock);
2653 	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2654 	mutex_unlock(&usb_bus_list_lock);
2655 
2656 	/* Prevent any more root-hub status calls from the timer.
2657 	 * The HCD might still restart the timer (if a port status change
2658 	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2659 	 * the hub_status_data() callback.
2660 	 */
2661 	hcd->rh_pollable = 0;
2662 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2663 	del_timer_sync(&hcd->rh_timer);
2664 
2665 	hcd->driver->stop(hcd);
2666 	hcd->state = HC_STATE_HALT;
2667 
2668 	/* In case the HCD restarted the timer, stop it again. */
2669 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2670 	del_timer_sync(&hcd->rh_timer);
2671 
2672 	if (usb_hcd_is_primary_hcd(hcd)) {
2673 		if (hcd->irq > 0)
2674 			free_irq(hcd->irq, hcd);
2675 	}
2676 
2677 	usb_put_dev(hcd->self.root_hub);
2678 	usb_deregister_bus(&hcd->self);
2679 	hcd_buffer_destroy(hcd);
2680 }
2681 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2682 
2683 void
2684 usb_hcd_platform_shutdown(struct platform_device* dev)
2685 {
2686 	struct usb_hcd *hcd = platform_get_drvdata(dev);
2687 
2688 	if (hcd->driver->shutdown)
2689 		hcd->driver->shutdown(hcd);
2690 }
2691 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2692 
2693 /*-------------------------------------------------------------------------*/
2694 
2695 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2696 
2697 struct usb_mon_operations *mon_ops;
2698 
2699 /*
2700  * The registration is unlocked.
2701  * We do it this way because we do not want to lock in hot paths.
2702  *
2703  * Notice that the code is minimally error-proof. Because usbmon needs
2704  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2705  */
2706 
2707 int usb_mon_register (struct usb_mon_operations *ops)
2708 {
2709 
2710 	if (mon_ops)
2711 		return -EBUSY;
2712 
2713 	mon_ops = ops;
2714 	mb();
2715 	return 0;
2716 }
2717 EXPORT_SYMBOL_GPL (usb_mon_register);
2718 
2719 void usb_mon_deregister (void)
2720 {
2721 
2722 	if (mon_ops == NULL) {
2723 		printk(KERN_ERR "USB: monitor was not registered\n");
2724 		return;
2725 	}
2726 	mon_ops = NULL;
2727 	mb();
2728 }
2729 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2730 
2731 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
2732