1 /* 2 * (C) Copyright Linus Torvalds 1999 3 * (C) Copyright Johannes Erdfelt 1999-2001 4 * (C) Copyright Andreas Gal 1999 5 * (C) Copyright Gregory P. Smith 1999 6 * (C) Copyright Deti Fliegl 1999 7 * (C) Copyright Randy Dunlap 2000 8 * (C) Copyright David Brownell 2000-2002 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the 12 * Free Software Foundation; either version 2 of the License, or (at your 13 * option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18 * for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software Foundation, 22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 #include <linux/bcd.h> 26 #include <linux/module.h> 27 #include <linux/version.h> 28 #include <linux/kernel.h> 29 #include <linux/sched/task_stack.h> 30 #include <linux/slab.h> 31 #include <linux/completion.h> 32 #include <linux/utsname.h> 33 #include <linux/mm.h> 34 #include <asm/io.h> 35 #include <linux/device.h> 36 #include <linux/dma-mapping.h> 37 #include <linux/mutex.h> 38 #include <asm/irq.h> 39 #include <asm/byteorder.h> 40 #include <asm/unaligned.h> 41 #include <linux/platform_device.h> 42 #include <linux/workqueue.h> 43 #include <linux/pm_runtime.h> 44 #include <linux/types.h> 45 46 #include <linux/phy/phy.h> 47 #include <linux/usb.h> 48 #include <linux/usb/hcd.h> 49 #include <linux/usb/phy.h> 50 #include <linux/usb/otg.h> 51 52 #include "usb.h" 53 54 55 /*-------------------------------------------------------------------------*/ 56 57 /* 58 * USB Host Controller Driver framework 59 * 60 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 61 * HCD-specific behaviors/bugs. 62 * 63 * This does error checks, tracks devices and urbs, and delegates to a 64 * "hc_driver" only for code (and data) that really needs to know about 65 * hardware differences. That includes root hub registers, i/o queues, 66 * and so on ... but as little else as possible. 67 * 68 * Shared code includes most of the "root hub" code (these are emulated, 69 * though each HC's hardware works differently) and PCI glue, plus request 70 * tracking overhead. The HCD code should only block on spinlocks or on 71 * hardware handshaking; blocking on software events (such as other kernel 72 * threads releasing resources, or completing actions) is all generic. 73 * 74 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 75 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 76 * only by the hub driver ... and that neither should be seen or used by 77 * usb client device drivers. 78 * 79 * Contributors of ideas or unattributed patches include: David Brownell, 80 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 81 * 82 * HISTORY: 83 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 84 * associated cleanup. "usb_hcd" still != "usb_bus". 85 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 86 */ 87 88 /*-------------------------------------------------------------------------*/ 89 90 /* Keep track of which host controller drivers are loaded */ 91 unsigned long usb_hcds_loaded; 92 EXPORT_SYMBOL_GPL(usb_hcds_loaded); 93 94 /* host controllers we manage */ 95 DEFINE_IDR (usb_bus_idr); 96 EXPORT_SYMBOL_GPL (usb_bus_idr); 97 98 /* used when allocating bus numbers */ 99 #define USB_MAXBUS 64 100 101 /* used when updating list of hcds */ 102 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */ 103 EXPORT_SYMBOL_GPL (usb_bus_idr_lock); 104 105 /* used for controlling access to virtual root hubs */ 106 static DEFINE_SPINLOCK(hcd_root_hub_lock); 107 108 /* used when updating an endpoint's URB list */ 109 static DEFINE_SPINLOCK(hcd_urb_list_lock); 110 111 /* used to protect against unlinking URBs after the device is gone */ 112 static DEFINE_SPINLOCK(hcd_urb_unlink_lock); 113 114 /* wait queue for synchronous unlinks */ 115 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 116 117 static inline int is_root_hub(struct usb_device *udev) 118 { 119 return (udev->parent == NULL); 120 } 121 122 /*-------------------------------------------------------------------------*/ 123 124 /* 125 * Sharable chunks of root hub code. 126 */ 127 128 /*-------------------------------------------------------------------------*/ 129 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff)) 130 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff)) 131 132 /* usb 3.1 root hub device descriptor */ 133 static const u8 usb31_rh_dev_descriptor[18] = { 134 0x12, /* __u8 bLength; */ 135 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 136 0x10, 0x03, /* __le16 bcdUSB; v3.1 */ 137 138 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 139 0x00, /* __u8 bDeviceSubClass; */ 140 0x03, /* __u8 bDeviceProtocol; USB 3 hub */ 141 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 142 143 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 144 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 145 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 146 147 0x03, /* __u8 iManufacturer; */ 148 0x02, /* __u8 iProduct; */ 149 0x01, /* __u8 iSerialNumber; */ 150 0x01 /* __u8 bNumConfigurations; */ 151 }; 152 153 /* usb 3.0 root hub device descriptor */ 154 static const u8 usb3_rh_dev_descriptor[18] = { 155 0x12, /* __u8 bLength; */ 156 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 157 0x00, 0x03, /* __le16 bcdUSB; v3.0 */ 158 159 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 160 0x00, /* __u8 bDeviceSubClass; */ 161 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */ 162 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 163 164 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 165 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 166 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 167 168 0x03, /* __u8 iManufacturer; */ 169 0x02, /* __u8 iProduct; */ 170 0x01, /* __u8 iSerialNumber; */ 171 0x01 /* __u8 bNumConfigurations; */ 172 }; 173 174 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */ 175 static const u8 usb25_rh_dev_descriptor[18] = { 176 0x12, /* __u8 bLength; */ 177 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 178 0x50, 0x02, /* __le16 bcdUSB; v2.5 */ 179 180 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 181 0x00, /* __u8 bDeviceSubClass; */ 182 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 183 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */ 184 185 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 186 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 187 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 188 189 0x03, /* __u8 iManufacturer; */ 190 0x02, /* __u8 iProduct; */ 191 0x01, /* __u8 iSerialNumber; */ 192 0x01 /* __u8 bNumConfigurations; */ 193 }; 194 195 /* usb 2.0 root hub device descriptor */ 196 static const u8 usb2_rh_dev_descriptor[18] = { 197 0x12, /* __u8 bLength; */ 198 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 199 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 200 201 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 202 0x00, /* __u8 bDeviceSubClass; */ 203 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 204 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 205 206 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 207 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 208 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 209 210 0x03, /* __u8 iManufacturer; */ 211 0x02, /* __u8 iProduct; */ 212 0x01, /* __u8 iSerialNumber; */ 213 0x01 /* __u8 bNumConfigurations; */ 214 }; 215 216 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 217 218 /* usb 1.1 root hub device descriptor */ 219 static const u8 usb11_rh_dev_descriptor[18] = { 220 0x12, /* __u8 bLength; */ 221 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 222 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 223 224 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 225 0x00, /* __u8 bDeviceSubClass; */ 226 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 227 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 228 229 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 230 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 231 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 232 233 0x03, /* __u8 iManufacturer; */ 234 0x02, /* __u8 iProduct; */ 235 0x01, /* __u8 iSerialNumber; */ 236 0x01 /* __u8 bNumConfigurations; */ 237 }; 238 239 240 /*-------------------------------------------------------------------------*/ 241 242 /* Configuration descriptors for our root hubs */ 243 244 static const u8 fs_rh_config_descriptor[] = { 245 246 /* one configuration */ 247 0x09, /* __u8 bLength; */ 248 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 249 0x19, 0x00, /* __le16 wTotalLength; */ 250 0x01, /* __u8 bNumInterfaces; (1) */ 251 0x01, /* __u8 bConfigurationValue; */ 252 0x00, /* __u8 iConfiguration; */ 253 0xc0, /* __u8 bmAttributes; 254 Bit 7: must be set, 255 6: Self-powered, 256 5: Remote wakeup, 257 4..0: resvd */ 258 0x00, /* __u8 MaxPower; */ 259 260 /* USB 1.1: 261 * USB 2.0, single TT organization (mandatory): 262 * one interface, protocol 0 263 * 264 * USB 2.0, multiple TT organization (optional): 265 * two interfaces, protocols 1 (like single TT) 266 * and 2 (multiple TT mode) ... config is 267 * sometimes settable 268 * NOT IMPLEMENTED 269 */ 270 271 /* one interface */ 272 0x09, /* __u8 if_bLength; */ 273 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 274 0x00, /* __u8 if_bInterfaceNumber; */ 275 0x00, /* __u8 if_bAlternateSetting; */ 276 0x01, /* __u8 if_bNumEndpoints; */ 277 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 278 0x00, /* __u8 if_bInterfaceSubClass; */ 279 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 280 0x00, /* __u8 if_iInterface; */ 281 282 /* one endpoint (status change endpoint) */ 283 0x07, /* __u8 ep_bLength; */ 284 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 285 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 286 0x03, /* __u8 ep_bmAttributes; Interrupt */ 287 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 288 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 289 }; 290 291 static const u8 hs_rh_config_descriptor[] = { 292 293 /* one configuration */ 294 0x09, /* __u8 bLength; */ 295 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 296 0x19, 0x00, /* __le16 wTotalLength; */ 297 0x01, /* __u8 bNumInterfaces; (1) */ 298 0x01, /* __u8 bConfigurationValue; */ 299 0x00, /* __u8 iConfiguration; */ 300 0xc0, /* __u8 bmAttributes; 301 Bit 7: must be set, 302 6: Self-powered, 303 5: Remote wakeup, 304 4..0: resvd */ 305 0x00, /* __u8 MaxPower; */ 306 307 /* USB 1.1: 308 * USB 2.0, single TT organization (mandatory): 309 * one interface, protocol 0 310 * 311 * USB 2.0, multiple TT organization (optional): 312 * two interfaces, protocols 1 (like single TT) 313 * and 2 (multiple TT mode) ... config is 314 * sometimes settable 315 * NOT IMPLEMENTED 316 */ 317 318 /* one interface */ 319 0x09, /* __u8 if_bLength; */ 320 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 321 0x00, /* __u8 if_bInterfaceNumber; */ 322 0x00, /* __u8 if_bAlternateSetting; */ 323 0x01, /* __u8 if_bNumEndpoints; */ 324 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 325 0x00, /* __u8 if_bInterfaceSubClass; */ 326 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 327 0x00, /* __u8 if_iInterface; */ 328 329 /* one endpoint (status change endpoint) */ 330 0x07, /* __u8 ep_bLength; */ 331 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 332 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 333 0x03, /* __u8 ep_bmAttributes; Interrupt */ 334 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 335 * see hub.c:hub_configure() for details. */ 336 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 337 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 338 }; 339 340 static const u8 ss_rh_config_descriptor[] = { 341 /* one configuration */ 342 0x09, /* __u8 bLength; */ 343 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 344 0x1f, 0x00, /* __le16 wTotalLength; */ 345 0x01, /* __u8 bNumInterfaces; (1) */ 346 0x01, /* __u8 bConfigurationValue; */ 347 0x00, /* __u8 iConfiguration; */ 348 0xc0, /* __u8 bmAttributes; 349 Bit 7: must be set, 350 6: Self-powered, 351 5: Remote wakeup, 352 4..0: resvd */ 353 0x00, /* __u8 MaxPower; */ 354 355 /* one interface */ 356 0x09, /* __u8 if_bLength; */ 357 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 358 0x00, /* __u8 if_bInterfaceNumber; */ 359 0x00, /* __u8 if_bAlternateSetting; */ 360 0x01, /* __u8 if_bNumEndpoints; */ 361 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 362 0x00, /* __u8 if_bInterfaceSubClass; */ 363 0x00, /* __u8 if_bInterfaceProtocol; */ 364 0x00, /* __u8 if_iInterface; */ 365 366 /* one endpoint (status change endpoint) */ 367 0x07, /* __u8 ep_bLength; */ 368 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 369 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 370 0x03, /* __u8 ep_bmAttributes; Interrupt */ 371 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 372 * see hub.c:hub_configure() for details. */ 373 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 374 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 375 376 /* one SuperSpeed endpoint companion descriptor */ 377 0x06, /* __u8 ss_bLength */ 378 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */ 379 /* Companion */ 380 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */ 381 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */ 382 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */ 383 }; 384 385 /* authorized_default behaviour: 386 * -1 is authorized for all devices except wireless (old behaviour) 387 * 0 is unauthorized for all devices 388 * 1 is authorized for all devices 389 */ 390 static int authorized_default = -1; 391 module_param(authorized_default, int, S_IRUGO|S_IWUSR); 392 MODULE_PARM_DESC(authorized_default, 393 "Default USB device authorization: 0 is not authorized, 1 is " 394 "authorized, -1 is authorized except for wireless USB (default, " 395 "old behaviour"); 396 /*-------------------------------------------------------------------------*/ 397 398 /** 399 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors 400 * @s: Null-terminated ASCII (actually ISO-8859-1) string 401 * @buf: Buffer for USB string descriptor (header + UTF-16LE) 402 * @len: Length (in bytes; may be odd) of descriptor buffer. 403 * 404 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len, 405 * whichever is less. 406 * 407 * Note: 408 * USB String descriptors can contain at most 126 characters; input 409 * strings longer than that are truncated. 410 */ 411 static unsigned 412 ascii2desc(char const *s, u8 *buf, unsigned len) 413 { 414 unsigned n, t = 2 + 2*strlen(s); 415 416 if (t > 254) 417 t = 254; /* Longest possible UTF string descriptor */ 418 if (len > t) 419 len = t; 420 421 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */ 422 423 n = len; 424 while (n--) { 425 *buf++ = t; 426 if (!n--) 427 break; 428 *buf++ = t >> 8; 429 t = (unsigned char)*s++; 430 } 431 return len; 432 } 433 434 /** 435 * rh_string() - provides string descriptors for root hub 436 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor) 437 * @hcd: the host controller for this root hub 438 * @data: buffer for output packet 439 * @len: length of the provided buffer 440 * 441 * Produces either a manufacturer, product or serial number string for the 442 * virtual root hub device. 443 * 444 * Return: The number of bytes filled in: the length of the descriptor or 445 * of the provided buffer, whichever is less. 446 */ 447 static unsigned 448 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len) 449 { 450 char buf[100]; 451 char const *s; 452 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04}; 453 454 /* language ids */ 455 switch (id) { 456 case 0: 457 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */ 458 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */ 459 if (len > 4) 460 len = 4; 461 memcpy(data, langids, len); 462 return len; 463 case 1: 464 /* Serial number */ 465 s = hcd->self.bus_name; 466 break; 467 case 2: 468 /* Product name */ 469 s = hcd->product_desc; 470 break; 471 case 3: 472 /* Manufacturer */ 473 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 474 init_utsname()->release, hcd->driver->description); 475 s = buf; 476 break; 477 default: 478 /* Can't happen; caller guarantees it */ 479 return 0; 480 } 481 482 return ascii2desc(s, data, len); 483 } 484 485 486 /* Root hub control transfers execute synchronously */ 487 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 488 { 489 struct usb_ctrlrequest *cmd; 490 u16 typeReq, wValue, wIndex, wLength; 491 u8 *ubuf = urb->transfer_buffer; 492 unsigned len = 0; 493 int status; 494 u8 patch_wakeup = 0; 495 u8 patch_protocol = 0; 496 u16 tbuf_size; 497 u8 *tbuf = NULL; 498 const u8 *bufp; 499 500 might_sleep(); 501 502 spin_lock_irq(&hcd_root_hub_lock); 503 status = usb_hcd_link_urb_to_ep(hcd, urb); 504 spin_unlock_irq(&hcd_root_hub_lock); 505 if (status) 506 return status; 507 urb->hcpriv = hcd; /* Indicate it's queued */ 508 509 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 510 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 511 wValue = le16_to_cpu (cmd->wValue); 512 wIndex = le16_to_cpu (cmd->wIndex); 513 wLength = le16_to_cpu (cmd->wLength); 514 515 if (wLength > urb->transfer_buffer_length) 516 goto error; 517 518 /* 519 * tbuf should be at least as big as the 520 * USB hub descriptor. 521 */ 522 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength); 523 tbuf = kzalloc(tbuf_size, GFP_KERNEL); 524 if (!tbuf) { 525 status = -ENOMEM; 526 goto err_alloc; 527 } 528 529 bufp = tbuf; 530 531 532 urb->actual_length = 0; 533 switch (typeReq) { 534 535 /* DEVICE REQUESTS */ 536 537 /* The root hub's remote wakeup enable bit is implemented using 538 * driver model wakeup flags. If this system supports wakeup 539 * through USB, userspace may change the default "allow wakeup" 540 * policy through sysfs or these calls. 541 * 542 * Most root hubs support wakeup from downstream devices, for 543 * runtime power management (disabling USB clocks and reducing 544 * VBUS power usage). However, not all of them do so; silicon, 545 * board, and BIOS bugs here are not uncommon, so these can't 546 * be treated quite like external hubs. 547 * 548 * Likewise, not all root hubs will pass wakeup events upstream, 549 * to wake up the whole system. So don't assume root hub and 550 * controller capabilities are identical. 551 */ 552 553 case DeviceRequest | USB_REQ_GET_STATUS: 554 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev) 555 << USB_DEVICE_REMOTE_WAKEUP) 556 | (1 << USB_DEVICE_SELF_POWERED); 557 tbuf[1] = 0; 558 len = 2; 559 break; 560 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 561 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 562 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 563 else 564 goto error; 565 break; 566 case DeviceOutRequest | USB_REQ_SET_FEATURE: 567 if (device_can_wakeup(&hcd->self.root_hub->dev) 568 && wValue == USB_DEVICE_REMOTE_WAKEUP) 569 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 570 else 571 goto error; 572 break; 573 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 574 tbuf[0] = 1; 575 len = 1; 576 /* FALLTHROUGH */ 577 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 578 break; 579 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 580 switch (wValue & 0xff00) { 581 case USB_DT_DEVICE << 8: 582 switch (hcd->speed) { 583 case HCD_USB31: 584 bufp = usb31_rh_dev_descriptor; 585 break; 586 case HCD_USB3: 587 bufp = usb3_rh_dev_descriptor; 588 break; 589 case HCD_USB25: 590 bufp = usb25_rh_dev_descriptor; 591 break; 592 case HCD_USB2: 593 bufp = usb2_rh_dev_descriptor; 594 break; 595 case HCD_USB11: 596 bufp = usb11_rh_dev_descriptor; 597 break; 598 default: 599 goto error; 600 } 601 len = 18; 602 if (hcd->has_tt) 603 patch_protocol = 1; 604 break; 605 case USB_DT_CONFIG << 8: 606 switch (hcd->speed) { 607 case HCD_USB31: 608 case HCD_USB3: 609 bufp = ss_rh_config_descriptor; 610 len = sizeof ss_rh_config_descriptor; 611 break; 612 case HCD_USB25: 613 case HCD_USB2: 614 bufp = hs_rh_config_descriptor; 615 len = sizeof hs_rh_config_descriptor; 616 break; 617 case HCD_USB11: 618 bufp = fs_rh_config_descriptor; 619 len = sizeof fs_rh_config_descriptor; 620 break; 621 default: 622 goto error; 623 } 624 if (device_can_wakeup(&hcd->self.root_hub->dev)) 625 patch_wakeup = 1; 626 break; 627 case USB_DT_STRING << 8: 628 if ((wValue & 0xff) < 4) 629 urb->actual_length = rh_string(wValue & 0xff, 630 hcd, ubuf, wLength); 631 else /* unsupported IDs --> "protocol stall" */ 632 goto error; 633 break; 634 case USB_DT_BOS << 8: 635 goto nongeneric; 636 default: 637 goto error; 638 } 639 break; 640 case DeviceRequest | USB_REQ_GET_INTERFACE: 641 tbuf[0] = 0; 642 len = 1; 643 /* FALLTHROUGH */ 644 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 645 break; 646 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 647 /* wValue == urb->dev->devaddr */ 648 dev_dbg (hcd->self.controller, "root hub device address %d\n", 649 wValue); 650 break; 651 652 /* INTERFACE REQUESTS (no defined feature/status flags) */ 653 654 /* ENDPOINT REQUESTS */ 655 656 case EndpointRequest | USB_REQ_GET_STATUS: 657 /* ENDPOINT_HALT flag */ 658 tbuf[0] = 0; 659 tbuf[1] = 0; 660 len = 2; 661 /* FALLTHROUGH */ 662 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 663 case EndpointOutRequest | USB_REQ_SET_FEATURE: 664 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 665 break; 666 667 /* CLASS REQUESTS (and errors) */ 668 669 default: 670 nongeneric: 671 /* non-generic request */ 672 switch (typeReq) { 673 case GetHubStatus: 674 len = 4; 675 break; 676 case GetPortStatus: 677 if (wValue == HUB_PORT_STATUS) 678 len = 4; 679 else 680 /* other port status types return 8 bytes */ 681 len = 8; 682 break; 683 case GetHubDescriptor: 684 len = sizeof (struct usb_hub_descriptor); 685 break; 686 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 687 /* len is returned by hub_control */ 688 break; 689 } 690 status = hcd->driver->hub_control (hcd, 691 typeReq, wValue, wIndex, 692 tbuf, wLength); 693 694 if (typeReq == GetHubDescriptor) 695 usb_hub_adjust_deviceremovable(hcd->self.root_hub, 696 (struct usb_hub_descriptor *)tbuf); 697 break; 698 error: 699 /* "protocol stall" on error */ 700 status = -EPIPE; 701 } 702 703 if (status < 0) { 704 len = 0; 705 if (status != -EPIPE) { 706 dev_dbg (hcd->self.controller, 707 "CTRL: TypeReq=0x%x val=0x%x " 708 "idx=0x%x len=%d ==> %d\n", 709 typeReq, wValue, wIndex, 710 wLength, status); 711 } 712 } else if (status > 0) { 713 /* hub_control may return the length of data copied. */ 714 len = status; 715 status = 0; 716 } 717 if (len) { 718 if (urb->transfer_buffer_length < len) 719 len = urb->transfer_buffer_length; 720 urb->actual_length = len; 721 /* always USB_DIR_IN, toward host */ 722 memcpy (ubuf, bufp, len); 723 724 /* report whether RH hardware supports remote wakeup */ 725 if (patch_wakeup && 726 len > offsetof (struct usb_config_descriptor, 727 bmAttributes)) 728 ((struct usb_config_descriptor *)ubuf)->bmAttributes 729 |= USB_CONFIG_ATT_WAKEUP; 730 731 /* report whether RH hardware has an integrated TT */ 732 if (patch_protocol && 733 len > offsetof(struct usb_device_descriptor, 734 bDeviceProtocol)) 735 ((struct usb_device_descriptor *) ubuf)-> 736 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT; 737 } 738 739 kfree(tbuf); 740 err_alloc: 741 742 /* any errors get returned through the urb completion */ 743 spin_lock_irq(&hcd_root_hub_lock); 744 usb_hcd_unlink_urb_from_ep(hcd, urb); 745 usb_hcd_giveback_urb(hcd, urb, status); 746 spin_unlock_irq(&hcd_root_hub_lock); 747 return 0; 748 } 749 750 /*-------------------------------------------------------------------------*/ 751 752 /* 753 * Root Hub interrupt transfers are polled using a timer if the 754 * driver requests it; otherwise the driver is responsible for 755 * calling usb_hcd_poll_rh_status() when an event occurs. 756 * 757 * Completions are called in_interrupt(), but they may or may not 758 * be in_irq(). 759 */ 760 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 761 { 762 struct urb *urb; 763 int length; 764 unsigned long flags; 765 char buffer[6]; /* Any root hubs with > 31 ports? */ 766 767 if (unlikely(!hcd->rh_pollable)) 768 return; 769 if (!hcd->uses_new_polling && !hcd->status_urb) 770 return; 771 772 length = hcd->driver->hub_status_data(hcd, buffer); 773 if (length > 0) { 774 775 /* try to complete the status urb */ 776 spin_lock_irqsave(&hcd_root_hub_lock, flags); 777 urb = hcd->status_urb; 778 if (urb) { 779 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 780 hcd->status_urb = NULL; 781 urb->actual_length = length; 782 memcpy(urb->transfer_buffer, buffer, length); 783 784 usb_hcd_unlink_urb_from_ep(hcd, urb); 785 usb_hcd_giveback_urb(hcd, urb, 0); 786 } else { 787 length = 0; 788 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 789 } 790 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 791 } 792 793 /* The USB 2.0 spec says 256 ms. This is close enough and won't 794 * exceed that limit if HZ is 100. The math is more clunky than 795 * maybe expected, this is to make sure that all timers for USB devices 796 * fire at the same time to give the CPU a break in between */ 797 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) : 798 (length == 0 && hcd->status_urb != NULL)) 799 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 800 } 801 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 802 803 /* timer callback */ 804 static void rh_timer_func (unsigned long _hcd) 805 { 806 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd); 807 } 808 809 /*-------------------------------------------------------------------------*/ 810 811 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 812 { 813 int retval; 814 unsigned long flags; 815 unsigned len = 1 + (urb->dev->maxchild / 8); 816 817 spin_lock_irqsave (&hcd_root_hub_lock, flags); 818 if (hcd->status_urb || urb->transfer_buffer_length < len) { 819 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 820 retval = -EINVAL; 821 goto done; 822 } 823 824 retval = usb_hcd_link_urb_to_ep(hcd, urb); 825 if (retval) 826 goto done; 827 828 hcd->status_urb = urb; 829 urb->hcpriv = hcd; /* indicate it's queued */ 830 if (!hcd->uses_new_polling) 831 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 832 833 /* If a status change has already occurred, report it ASAP */ 834 else if (HCD_POLL_PENDING(hcd)) 835 mod_timer(&hcd->rh_timer, jiffies); 836 retval = 0; 837 done: 838 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 839 return retval; 840 } 841 842 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 843 { 844 if (usb_endpoint_xfer_int(&urb->ep->desc)) 845 return rh_queue_status (hcd, urb); 846 if (usb_endpoint_xfer_control(&urb->ep->desc)) 847 return rh_call_control (hcd, urb); 848 return -EINVAL; 849 } 850 851 /*-------------------------------------------------------------------------*/ 852 853 /* Unlinks of root-hub control URBs are legal, but they don't do anything 854 * since these URBs always execute synchronously. 855 */ 856 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 857 { 858 unsigned long flags; 859 int rc; 860 861 spin_lock_irqsave(&hcd_root_hub_lock, flags); 862 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 863 if (rc) 864 goto done; 865 866 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 867 ; /* Do nothing */ 868 869 } else { /* Status URB */ 870 if (!hcd->uses_new_polling) 871 del_timer (&hcd->rh_timer); 872 if (urb == hcd->status_urb) { 873 hcd->status_urb = NULL; 874 usb_hcd_unlink_urb_from_ep(hcd, urb); 875 usb_hcd_giveback_urb(hcd, urb, status); 876 } 877 } 878 done: 879 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 880 return rc; 881 } 882 883 884 885 /* 886 * Show & store the current value of authorized_default 887 */ 888 static ssize_t authorized_default_show(struct device *dev, 889 struct device_attribute *attr, char *buf) 890 { 891 struct usb_device *rh_usb_dev = to_usb_device(dev); 892 struct usb_bus *usb_bus = rh_usb_dev->bus; 893 struct usb_hcd *hcd; 894 895 hcd = bus_to_hcd(usb_bus); 896 return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd)); 897 } 898 899 static ssize_t authorized_default_store(struct device *dev, 900 struct device_attribute *attr, 901 const char *buf, size_t size) 902 { 903 ssize_t result; 904 unsigned val; 905 struct usb_device *rh_usb_dev = to_usb_device(dev); 906 struct usb_bus *usb_bus = rh_usb_dev->bus; 907 struct usb_hcd *hcd; 908 909 hcd = bus_to_hcd(usb_bus); 910 result = sscanf(buf, "%u\n", &val); 911 if (result == 1) { 912 if (val) 913 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 914 else 915 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 916 917 result = size; 918 } else { 919 result = -EINVAL; 920 } 921 return result; 922 } 923 static DEVICE_ATTR_RW(authorized_default); 924 925 /* 926 * interface_authorized_default_show - show default authorization status 927 * for USB interfaces 928 * 929 * note: interface_authorized_default is the default value 930 * for initializing the authorized attribute of interfaces 931 */ 932 static ssize_t interface_authorized_default_show(struct device *dev, 933 struct device_attribute *attr, char *buf) 934 { 935 struct usb_device *usb_dev = to_usb_device(dev); 936 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus); 937 938 return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd)); 939 } 940 941 /* 942 * interface_authorized_default_store - store default authorization status 943 * for USB interfaces 944 * 945 * note: interface_authorized_default is the default value 946 * for initializing the authorized attribute of interfaces 947 */ 948 static ssize_t interface_authorized_default_store(struct device *dev, 949 struct device_attribute *attr, const char *buf, size_t count) 950 { 951 struct usb_device *usb_dev = to_usb_device(dev); 952 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus); 953 int rc = count; 954 bool val; 955 956 if (strtobool(buf, &val) != 0) 957 return -EINVAL; 958 959 if (val) 960 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 961 else 962 clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 963 964 return rc; 965 } 966 static DEVICE_ATTR_RW(interface_authorized_default); 967 968 /* Group all the USB bus attributes */ 969 static struct attribute *usb_bus_attrs[] = { 970 &dev_attr_authorized_default.attr, 971 &dev_attr_interface_authorized_default.attr, 972 NULL, 973 }; 974 975 static struct attribute_group usb_bus_attr_group = { 976 .name = NULL, /* we want them in the same directory */ 977 .attrs = usb_bus_attrs, 978 }; 979 980 981 982 /*-------------------------------------------------------------------------*/ 983 984 /** 985 * usb_bus_init - shared initialization code 986 * @bus: the bus structure being initialized 987 * 988 * This code is used to initialize a usb_bus structure, memory for which is 989 * separately managed. 990 */ 991 static void usb_bus_init (struct usb_bus *bus) 992 { 993 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 994 995 bus->devnum_next = 1; 996 997 bus->root_hub = NULL; 998 bus->busnum = -1; 999 bus->bandwidth_allocated = 0; 1000 bus->bandwidth_int_reqs = 0; 1001 bus->bandwidth_isoc_reqs = 0; 1002 mutex_init(&bus->devnum_next_mutex); 1003 } 1004 1005 /*-------------------------------------------------------------------------*/ 1006 1007 /** 1008 * usb_register_bus - registers the USB host controller with the usb core 1009 * @bus: pointer to the bus to register 1010 * Context: !in_interrupt() 1011 * 1012 * Assigns a bus number, and links the controller into usbcore data 1013 * structures so that it can be seen by scanning the bus list. 1014 * 1015 * Return: 0 if successful. A negative error code otherwise. 1016 */ 1017 static int usb_register_bus(struct usb_bus *bus) 1018 { 1019 int result = -E2BIG; 1020 int busnum; 1021 1022 mutex_lock(&usb_bus_idr_lock); 1023 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL); 1024 if (busnum < 0) { 1025 pr_err("%s: failed to get bus number\n", usbcore_name); 1026 goto error_find_busnum; 1027 } 1028 bus->busnum = busnum; 1029 mutex_unlock(&usb_bus_idr_lock); 1030 1031 usb_notify_add_bus(bus); 1032 1033 dev_info (bus->controller, "new USB bus registered, assigned bus " 1034 "number %d\n", bus->busnum); 1035 return 0; 1036 1037 error_find_busnum: 1038 mutex_unlock(&usb_bus_idr_lock); 1039 return result; 1040 } 1041 1042 /** 1043 * usb_deregister_bus - deregisters the USB host controller 1044 * @bus: pointer to the bus to deregister 1045 * Context: !in_interrupt() 1046 * 1047 * Recycles the bus number, and unlinks the controller from usbcore data 1048 * structures so that it won't be seen by scanning the bus list. 1049 */ 1050 static void usb_deregister_bus (struct usb_bus *bus) 1051 { 1052 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 1053 1054 /* 1055 * NOTE: make sure that all the devices are removed by the 1056 * controller code, as well as having it call this when cleaning 1057 * itself up 1058 */ 1059 mutex_lock(&usb_bus_idr_lock); 1060 idr_remove(&usb_bus_idr, bus->busnum); 1061 mutex_unlock(&usb_bus_idr_lock); 1062 1063 usb_notify_remove_bus(bus); 1064 } 1065 1066 /** 1067 * register_root_hub - called by usb_add_hcd() to register a root hub 1068 * @hcd: host controller for this root hub 1069 * 1070 * This function registers the root hub with the USB subsystem. It sets up 1071 * the device properly in the device tree and then calls usb_new_device() 1072 * to register the usb device. It also assigns the root hub's USB address 1073 * (always 1). 1074 * 1075 * Return: 0 if successful. A negative error code otherwise. 1076 */ 1077 static int register_root_hub(struct usb_hcd *hcd) 1078 { 1079 struct device *parent_dev = hcd->self.controller; 1080 struct usb_device *usb_dev = hcd->self.root_hub; 1081 const int devnum = 1; 1082 int retval; 1083 1084 usb_dev->devnum = devnum; 1085 usb_dev->bus->devnum_next = devnum + 1; 1086 memset (&usb_dev->bus->devmap.devicemap, 0, 1087 sizeof usb_dev->bus->devmap.devicemap); 1088 set_bit (devnum, usb_dev->bus->devmap.devicemap); 1089 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 1090 1091 mutex_lock(&usb_bus_idr_lock); 1092 1093 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); 1094 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); 1095 if (retval != sizeof usb_dev->descriptor) { 1096 mutex_unlock(&usb_bus_idr_lock); 1097 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 1098 dev_name(&usb_dev->dev), retval); 1099 return (retval < 0) ? retval : -EMSGSIZE; 1100 } 1101 1102 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) { 1103 retval = usb_get_bos_descriptor(usb_dev); 1104 if (!retval) { 1105 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev); 1106 } else if (usb_dev->speed >= USB_SPEED_SUPER) { 1107 mutex_unlock(&usb_bus_idr_lock); 1108 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n", 1109 dev_name(&usb_dev->dev), retval); 1110 return retval; 1111 } 1112 } 1113 1114 retval = usb_new_device (usb_dev); 1115 if (retval) { 1116 dev_err (parent_dev, "can't register root hub for %s, %d\n", 1117 dev_name(&usb_dev->dev), retval); 1118 } else { 1119 spin_lock_irq (&hcd_root_hub_lock); 1120 hcd->rh_registered = 1; 1121 spin_unlock_irq (&hcd_root_hub_lock); 1122 1123 /* Did the HC die before the root hub was registered? */ 1124 if (HCD_DEAD(hcd)) 1125 usb_hc_died (hcd); /* This time clean up */ 1126 } 1127 mutex_unlock(&usb_bus_idr_lock); 1128 1129 return retval; 1130 } 1131 1132 /* 1133 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal 1134 * @bus: the bus which the root hub belongs to 1135 * @portnum: the port which is being resumed 1136 * 1137 * HCDs should call this function when they know that a resume signal is 1138 * being sent to a root-hub port. The root hub will be prevented from 1139 * going into autosuspend until usb_hcd_end_port_resume() is called. 1140 * 1141 * The bus's private lock must be held by the caller. 1142 */ 1143 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum) 1144 { 1145 unsigned bit = 1 << portnum; 1146 1147 if (!(bus->resuming_ports & bit)) { 1148 bus->resuming_ports |= bit; 1149 pm_runtime_get_noresume(&bus->root_hub->dev); 1150 } 1151 } 1152 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume); 1153 1154 /* 1155 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal 1156 * @bus: the bus which the root hub belongs to 1157 * @portnum: the port which is being resumed 1158 * 1159 * HCDs should call this function when they know that a resume signal has 1160 * stopped being sent to a root-hub port. The root hub will be allowed to 1161 * autosuspend again. 1162 * 1163 * The bus's private lock must be held by the caller. 1164 */ 1165 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum) 1166 { 1167 unsigned bit = 1 << portnum; 1168 1169 if (bus->resuming_ports & bit) { 1170 bus->resuming_ports &= ~bit; 1171 pm_runtime_put_noidle(&bus->root_hub->dev); 1172 } 1173 } 1174 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume); 1175 1176 /*-------------------------------------------------------------------------*/ 1177 1178 /** 1179 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 1180 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 1181 * @is_input: true iff the transaction sends data to the host 1182 * @isoc: true for isochronous transactions, false for interrupt ones 1183 * @bytecount: how many bytes in the transaction. 1184 * 1185 * Return: Approximate bus time in nanoseconds for a periodic transaction. 1186 * 1187 * Note: 1188 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 1189 * scheduled in software, this function is only used for such scheduling. 1190 */ 1191 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 1192 { 1193 unsigned long tmp; 1194 1195 switch (speed) { 1196 case USB_SPEED_LOW: /* INTR only */ 1197 if (is_input) { 1198 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 1199 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1200 } else { 1201 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 1202 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1203 } 1204 case USB_SPEED_FULL: /* ISOC or INTR */ 1205 if (isoc) { 1206 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1207 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp; 1208 } else { 1209 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1210 return 9107L + BW_HOST_DELAY + tmp; 1211 } 1212 case USB_SPEED_HIGH: /* ISOC or INTR */ 1213 /* FIXME adjust for input vs output */ 1214 if (isoc) 1215 tmp = HS_NSECS_ISO (bytecount); 1216 else 1217 tmp = HS_NSECS (bytecount); 1218 return tmp; 1219 default: 1220 pr_debug ("%s: bogus device speed!\n", usbcore_name); 1221 return -1; 1222 } 1223 } 1224 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 1225 1226 1227 /*-------------------------------------------------------------------------*/ 1228 1229 /* 1230 * Generic HC operations. 1231 */ 1232 1233 /*-------------------------------------------------------------------------*/ 1234 1235 /** 1236 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 1237 * @hcd: host controller to which @urb was submitted 1238 * @urb: URB being submitted 1239 * 1240 * Host controller drivers should call this routine in their enqueue() 1241 * method. The HCD's private spinlock must be held and interrupts must 1242 * be disabled. The actions carried out here are required for URB 1243 * submission, as well as for endpoint shutdown and for usb_kill_urb. 1244 * 1245 * Return: 0 for no error, otherwise a negative error code (in which case 1246 * the enqueue() method must fail). If no error occurs but enqueue() fails 1247 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 1248 * the private spinlock and returning. 1249 */ 1250 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1251 { 1252 int rc = 0; 1253 1254 spin_lock(&hcd_urb_list_lock); 1255 1256 /* Check that the URB isn't being killed */ 1257 if (unlikely(atomic_read(&urb->reject))) { 1258 rc = -EPERM; 1259 goto done; 1260 } 1261 1262 if (unlikely(!urb->ep->enabled)) { 1263 rc = -ENOENT; 1264 goto done; 1265 } 1266 1267 if (unlikely(!urb->dev->can_submit)) { 1268 rc = -EHOSTUNREACH; 1269 goto done; 1270 } 1271 1272 /* 1273 * Check the host controller's state and add the URB to the 1274 * endpoint's queue. 1275 */ 1276 if (HCD_RH_RUNNING(hcd)) { 1277 urb->unlinked = 0; 1278 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1279 } else { 1280 rc = -ESHUTDOWN; 1281 goto done; 1282 } 1283 done: 1284 spin_unlock(&hcd_urb_list_lock); 1285 return rc; 1286 } 1287 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1288 1289 /** 1290 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1291 * @hcd: host controller to which @urb was submitted 1292 * @urb: URB being checked for unlinkability 1293 * @status: error code to store in @urb if the unlink succeeds 1294 * 1295 * Host controller drivers should call this routine in their dequeue() 1296 * method. The HCD's private spinlock must be held and interrupts must 1297 * be disabled. The actions carried out here are required for making 1298 * sure than an unlink is valid. 1299 * 1300 * Return: 0 for no error, otherwise a negative error code (in which case 1301 * the dequeue() method must fail). The possible error codes are: 1302 * 1303 * -EIDRM: @urb was not submitted or has already completed. 1304 * The completion function may not have been called yet. 1305 * 1306 * -EBUSY: @urb has already been unlinked. 1307 */ 1308 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1309 int status) 1310 { 1311 struct list_head *tmp; 1312 1313 /* insist the urb is still queued */ 1314 list_for_each(tmp, &urb->ep->urb_list) { 1315 if (tmp == &urb->urb_list) 1316 break; 1317 } 1318 if (tmp != &urb->urb_list) 1319 return -EIDRM; 1320 1321 /* Any status except -EINPROGRESS means something already started to 1322 * unlink this URB from the hardware. So there's no more work to do. 1323 */ 1324 if (urb->unlinked) 1325 return -EBUSY; 1326 urb->unlinked = status; 1327 return 0; 1328 } 1329 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1330 1331 /** 1332 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1333 * @hcd: host controller to which @urb was submitted 1334 * @urb: URB being unlinked 1335 * 1336 * Host controller drivers should call this routine before calling 1337 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1338 * interrupts must be disabled. The actions carried out here are required 1339 * for URB completion. 1340 */ 1341 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1342 { 1343 /* clear all state linking urb to this dev (and hcd) */ 1344 spin_lock(&hcd_urb_list_lock); 1345 list_del_init(&urb->urb_list); 1346 spin_unlock(&hcd_urb_list_lock); 1347 } 1348 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1349 1350 /* 1351 * Some usb host controllers can only perform dma using a small SRAM area. 1352 * The usb core itself is however optimized for host controllers that can dma 1353 * using regular system memory - like pci devices doing bus mastering. 1354 * 1355 * To support host controllers with limited dma capabilities we provide dma 1356 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag. 1357 * For this to work properly the host controller code must first use the 1358 * function dma_declare_coherent_memory() to point out which memory area 1359 * that should be used for dma allocations. 1360 * 1361 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for 1362 * dma using dma_alloc_coherent() which in turn allocates from the memory 1363 * area pointed out with dma_declare_coherent_memory(). 1364 * 1365 * So, to summarize... 1366 * 1367 * - We need "local" memory, canonical example being 1368 * a small SRAM on a discrete controller being the 1369 * only memory that the controller can read ... 1370 * (a) "normal" kernel memory is no good, and 1371 * (b) there's not enough to share 1372 * 1373 * - The only *portable* hook for such stuff in the 1374 * DMA framework is dma_declare_coherent_memory() 1375 * 1376 * - So we use that, even though the primary requirement 1377 * is that the memory be "local" (hence addressable 1378 * by that device), not "coherent". 1379 * 1380 */ 1381 1382 static int hcd_alloc_coherent(struct usb_bus *bus, 1383 gfp_t mem_flags, dma_addr_t *dma_handle, 1384 void **vaddr_handle, size_t size, 1385 enum dma_data_direction dir) 1386 { 1387 unsigned char *vaddr; 1388 1389 if (*vaddr_handle == NULL) { 1390 WARN_ON_ONCE(1); 1391 return -EFAULT; 1392 } 1393 1394 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr), 1395 mem_flags, dma_handle); 1396 if (!vaddr) 1397 return -ENOMEM; 1398 1399 /* 1400 * Store the virtual address of the buffer at the end 1401 * of the allocated dma buffer. The size of the buffer 1402 * may be uneven so use unaligned functions instead 1403 * of just rounding up. It makes sense to optimize for 1404 * memory footprint over access speed since the amount 1405 * of memory available for dma may be limited. 1406 */ 1407 put_unaligned((unsigned long)*vaddr_handle, 1408 (unsigned long *)(vaddr + size)); 1409 1410 if (dir == DMA_TO_DEVICE) 1411 memcpy(vaddr, *vaddr_handle, size); 1412 1413 *vaddr_handle = vaddr; 1414 return 0; 1415 } 1416 1417 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1418 void **vaddr_handle, size_t size, 1419 enum dma_data_direction dir) 1420 { 1421 unsigned char *vaddr = *vaddr_handle; 1422 1423 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1424 1425 if (dir == DMA_FROM_DEVICE) 1426 memcpy(vaddr, *vaddr_handle, size); 1427 1428 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1429 1430 *vaddr_handle = vaddr; 1431 *dma_handle = 0; 1432 } 1433 1434 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb) 1435 { 1436 if (IS_ENABLED(CONFIG_HAS_DMA) && 1437 (urb->transfer_flags & URB_SETUP_MAP_SINGLE)) 1438 dma_unmap_single(hcd->self.sysdev, 1439 urb->setup_dma, 1440 sizeof(struct usb_ctrlrequest), 1441 DMA_TO_DEVICE); 1442 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL) 1443 hcd_free_coherent(urb->dev->bus, 1444 &urb->setup_dma, 1445 (void **) &urb->setup_packet, 1446 sizeof(struct usb_ctrlrequest), 1447 DMA_TO_DEVICE); 1448 1449 /* Make it safe to call this routine more than once */ 1450 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL); 1451 } 1452 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma); 1453 1454 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1455 { 1456 if (hcd->driver->unmap_urb_for_dma) 1457 hcd->driver->unmap_urb_for_dma(hcd, urb); 1458 else 1459 usb_hcd_unmap_urb_for_dma(hcd, urb); 1460 } 1461 1462 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1463 { 1464 enum dma_data_direction dir; 1465 1466 usb_hcd_unmap_urb_setup_for_dma(hcd, urb); 1467 1468 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1469 if (IS_ENABLED(CONFIG_HAS_DMA) && 1470 (urb->transfer_flags & URB_DMA_MAP_SG)) 1471 dma_unmap_sg(hcd->self.sysdev, 1472 urb->sg, 1473 urb->num_sgs, 1474 dir); 1475 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1476 (urb->transfer_flags & URB_DMA_MAP_PAGE)) 1477 dma_unmap_page(hcd->self.sysdev, 1478 urb->transfer_dma, 1479 urb->transfer_buffer_length, 1480 dir); 1481 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1482 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1483 dma_unmap_single(hcd->self.sysdev, 1484 urb->transfer_dma, 1485 urb->transfer_buffer_length, 1486 dir); 1487 else if (urb->transfer_flags & URB_MAP_LOCAL) 1488 hcd_free_coherent(urb->dev->bus, 1489 &urb->transfer_dma, 1490 &urb->transfer_buffer, 1491 urb->transfer_buffer_length, 1492 dir); 1493 1494 /* Make it safe to call this routine more than once */ 1495 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE | 1496 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL); 1497 } 1498 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma); 1499 1500 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1501 gfp_t mem_flags) 1502 { 1503 if (hcd->driver->map_urb_for_dma) 1504 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags); 1505 else 1506 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1507 } 1508 1509 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1510 gfp_t mem_flags) 1511 { 1512 enum dma_data_direction dir; 1513 int ret = 0; 1514 1515 /* Map the URB's buffers for DMA access. 1516 * Lower level HCD code should use *_dma exclusively, 1517 * unless it uses pio or talks to another transport, 1518 * or uses the provided scatter gather list for bulk. 1519 */ 1520 1521 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1522 if (hcd->self.uses_pio_for_control) 1523 return ret; 1524 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) { 1525 if (is_vmalloc_addr(urb->setup_packet)) { 1526 WARN_ONCE(1, "setup packet is not dma capable\n"); 1527 return -EAGAIN; 1528 } else if (object_is_on_stack(urb->setup_packet)) { 1529 WARN_ONCE(1, "setup packet is on stack\n"); 1530 return -EAGAIN; 1531 } 1532 1533 urb->setup_dma = dma_map_single( 1534 hcd->self.sysdev, 1535 urb->setup_packet, 1536 sizeof(struct usb_ctrlrequest), 1537 DMA_TO_DEVICE); 1538 if (dma_mapping_error(hcd->self.sysdev, 1539 urb->setup_dma)) 1540 return -EAGAIN; 1541 urb->transfer_flags |= URB_SETUP_MAP_SINGLE; 1542 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1543 ret = hcd_alloc_coherent( 1544 urb->dev->bus, mem_flags, 1545 &urb->setup_dma, 1546 (void **)&urb->setup_packet, 1547 sizeof(struct usb_ctrlrequest), 1548 DMA_TO_DEVICE); 1549 if (ret) 1550 return ret; 1551 urb->transfer_flags |= URB_SETUP_MAP_LOCAL; 1552 } 1553 } 1554 1555 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1556 if (urb->transfer_buffer_length != 0 1557 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1558 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) { 1559 if (urb->num_sgs) { 1560 int n; 1561 1562 /* We don't support sg for isoc transfers ! */ 1563 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) { 1564 WARN_ON(1); 1565 return -EINVAL; 1566 } 1567 1568 n = dma_map_sg( 1569 hcd->self.sysdev, 1570 urb->sg, 1571 urb->num_sgs, 1572 dir); 1573 if (n <= 0) 1574 ret = -EAGAIN; 1575 else 1576 urb->transfer_flags |= URB_DMA_MAP_SG; 1577 urb->num_mapped_sgs = n; 1578 if (n != urb->num_sgs) 1579 urb->transfer_flags |= 1580 URB_DMA_SG_COMBINED; 1581 } else if (urb->sg) { 1582 struct scatterlist *sg = urb->sg; 1583 urb->transfer_dma = dma_map_page( 1584 hcd->self.sysdev, 1585 sg_page(sg), 1586 sg->offset, 1587 urb->transfer_buffer_length, 1588 dir); 1589 if (dma_mapping_error(hcd->self.sysdev, 1590 urb->transfer_dma)) 1591 ret = -EAGAIN; 1592 else 1593 urb->transfer_flags |= URB_DMA_MAP_PAGE; 1594 } else if (is_vmalloc_addr(urb->transfer_buffer)) { 1595 WARN_ONCE(1, "transfer buffer not dma capable\n"); 1596 ret = -EAGAIN; 1597 } else if (object_is_on_stack(urb->transfer_buffer)) { 1598 WARN_ONCE(1, "transfer buffer is on stack\n"); 1599 ret = -EAGAIN; 1600 } else { 1601 urb->transfer_dma = dma_map_single( 1602 hcd->self.sysdev, 1603 urb->transfer_buffer, 1604 urb->transfer_buffer_length, 1605 dir); 1606 if (dma_mapping_error(hcd->self.sysdev, 1607 urb->transfer_dma)) 1608 ret = -EAGAIN; 1609 else 1610 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1611 } 1612 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1613 ret = hcd_alloc_coherent( 1614 urb->dev->bus, mem_flags, 1615 &urb->transfer_dma, 1616 &urb->transfer_buffer, 1617 urb->transfer_buffer_length, 1618 dir); 1619 if (ret == 0) 1620 urb->transfer_flags |= URB_MAP_LOCAL; 1621 } 1622 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE | 1623 URB_SETUP_MAP_LOCAL))) 1624 usb_hcd_unmap_urb_for_dma(hcd, urb); 1625 } 1626 return ret; 1627 } 1628 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma); 1629 1630 /*-------------------------------------------------------------------------*/ 1631 1632 /* may be called in any context with a valid urb->dev usecount 1633 * caller surrenders "ownership" of urb 1634 * expects usb_submit_urb() to have sanity checked and conditioned all 1635 * inputs in the urb 1636 */ 1637 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1638 { 1639 int status; 1640 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1641 1642 /* increment urb's reference count as part of giving it to the HCD 1643 * (which will control it). HCD guarantees that it either returns 1644 * an error or calls giveback(), but not both. 1645 */ 1646 usb_get_urb(urb); 1647 atomic_inc(&urb->use_count); 1648 atomic_inc(&urb->dev->urbnum); 1649 usbmon_urb_submit(&hcd->self, urb); 1650 1651 /* NOTE requirements on root-hub callers (usbfs and the hub 1652 * driver, for now): URBs' urb->transfer_buffer must be 1653 * valid and usb_buffer_{sync,unmap}() not be needed, since 1654 * they could clobber root hub response data. Also, control 1655 * URBs must be submitted in process context with interrupts 1656 * enabled. 1657 */ 1658 1659 if (is_root_hub(urb->dev)) { 1660 status = rh_urb_enqueue(hcd, urb); 1661 } else { 1662 status = map_urb_for_dma(hcd, urb, mem_flags); 1663 if (likely(status == 0)) { 1664 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1665 if (unlikely(status)) 1666 unmap_urb_for_dma(hcd, urb); 1667 } 1668 } 1669 1670 if (unlikely(status)) { 1671 usbmon_urb_submit_error(&hcd->self, urb, status); 1672 urb->hcpriv = NULL; 1673 INIT_LIST_HEAD(&urb->urb_list); 1674 atomic_dec(&urb->use_count); 1675 atomic_dec(&urb->dev->urbnum); 1676 if (atomic_read(&urb->reject)) 1677 wake_up(&usb_kill_urb_queue); 1678 usb_put_urb(urb); 1679 } 1680 return status; 1681 } 1682 1683 /*-------------------------------------------------------------------------*/ 1684 1685 /* this makes the hcd giveback() the urb more quickly, by kicking it 1686 * off hardware queues (which may take a while) and returning it as 1687 * soon as practical. we've already set up the urb's return status, 1688 * but we can't know if the callback completed already. 1689 */ 1690 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1691 { 1692 int value; 1693 1694 if (is_root_hub(urb->dev)) 1695 value = usb_rh_urb_dequeue(hcd, urb, status); 1696 else { 1697 1698 /* The only reason an HCD might fail this call is if 1699 * it has not yet fully queued the urb to begin with. 1700 * Such failures should be harmless. */ 1701 value = hcd->driver->urb_dequeue(hcd, urb, status); 1702 } 1703 return value; 1704 } 1705 1706 /* 1707 * called in any context 1708 * 1709 * caller guarantees urb won't be recycled till both unlink() 1710 * and the urb's completion function return 1711 */ 1712 int usb_hcd_unlink_urb (struct urb *urb, int status) 1713 { 1714 struct usb_hcd *hcd; 1715 struct usb_device *udev = urb->dev; 1716 int retval = -EIDRM; 1717 unsigned long flags; 1718 1719 /* Prevent the device and bus from going away while 1720 * the unlink is carried out. If they are already gone 1721 * then urb->use_count must be 0, since disconnected 1722 * devices can't have any active URBs. 1723 */ 1724 spin_lock_irqsave(&hcd_urb_unlink_lock, flags); 1725 if (atomic_read(&urb->use_count) > 0) { 1726 retval = 0; 1727 usb_get_dev(udev); 1728 } 1729 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); 1730 if (retval == 0) { 1731 hcd = bus_to_hcd(urb->dev->bus); 1732 retval = unlink1(hcd, urb, status); 1733 if (retval == 0) 1734 retval = -EINPROGRESS; 1735 else if (retval != -EIDRM && retval != -EBUSY) 1736 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n", 1737 urb, retval); 1738 usb_put_dev(udev); 1739 } 1740 return retval; 1741 } 1742 1743 /*-------------------------------------------------------------------------*/ 1744 1745 static void __usb_hcd_giveback_urb(struct urb *urb) 1746 { 1747 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1748 struct usb_anchor *anchor = urb->anchor; 1749 int status = urb->unlinked; 1750 unsigned long flags; 1751 1752 urb->hcpriv = NULL; 1753 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1754 urb->actual_length < urb->transfer_buffer_length && 1755 !status)) 1756 status = -EREMOTEIO; 1757 1758 unmap_urb_for_dma(hcd, urb); 1759 usbmon_urb_complete(&hcd->self, urb, status); 1760 usb_anchor_suspend_wakeups(anchor); 1761 usb_unanchor_urb(urb); 1762 if (likely(status == 0)) 1763 usb_led_activity(USB_LED_EVENT_HOST); 1764 1765 /* pass ownership to the completion handler */ 1766 urb->status = status; 1767 1768 /* 1769 * We disable local IRQs here avoid possible deadlock because 1770 * drivers may call spin_lock() to hold lock which might be 1771 * acquired in one hard interrupt handler. 1772 * 1773 * The local_irq_save()/local_irq_restore() around complete() 1774 * will be removed if current USB drivers have been cleaned up 1775 * and no one may trigger the above deadlock situation when 1776 * running complete() in tasklet. 1777 */ 1778 local_irq_save(flags); 1779 urb->complete(urb); 1780 local_irq_restore(flags); 1781 1782 usb_anchor_resume_wakeups(anchor); 1783 atomic_dec(&urb->use_count); 1784 if (unlikely(atomic_read(&urb->reject))) 1785 wake_up(&usb_kill_urb_queue); 1786 usb_put_urb(urb); 1787 } 1788 1789 static void usb_giveback_urb_bh(unsigned long param) 1790 { 1791 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param; 1792 struct list_head local_list; 1793 1794 spin_lock_irq(&bh->lock); 1795 bh->running = true; 1796 restart: 1797 list_replace_init(&bh->head, &local_list); 1798 spin_unlock_irq(&bh->lock); 1799 1800 while (!list_empty(&local_list)) { 1801 struct urb *urb; 1802 1803 urb = list_entry(local_list.next, struct urb, urb_list); 1804 list_del_init(&urb->urb_list); 1805 bh->completing_ep = urb->ep; 1806 __usb_hcd_giveback_urb(urb); 1807 bh->completing_ep = NULL; 1808 } 1809 1810 /* check if there are new URBs to giveback */ 1811 spin_lock_irq(&bh->lock); 1812 if (!list_empty(&bh->head)) 1813 goto restart; 1814 bh->running = false; 1815 spin_unlock_irq(&bh->lock); 1816 } 1817 1818 /** 1819 * usb_hcd_giveback_urb - return URB from HCD to device driver 1820 * @hcd: host controller returning the URB 1821 * @urb: urb being returned to the USB device driver. 1822 * @status: completion status code for the URB. 1823 * Context: in_interrupt() 1824 * 1825 * This hands the URB from HCD to its USB device driver, using its 1826 * completion function. The HCD has freed all per-urb resources 1827 * (and is done using urb->hcpriv). It also released all HCD locks; 1828 * the device driver won't cause problems if it frees, modifies, 1829 * or resubmits this URB. 1830 * 1831 * If @urb was unlinked, the value of @status will be overridden by 1832 * @urb->unlinked. Erroneous short transfers are detected in case 1833 * the HCD hasn't checked for them. 1834 */ 1835 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1836 { 1837 struct giveback_urb_bh *bh; 1838 bool running, high_prio_bh; 1839 1840 /* pass status to tasklet via unlinked */ 1841 if (likely(!urb->unlinked)) 1842 urb->unlinked = status; 1843 1844 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) { 1845 __usb_hcd_giveback_urb(urb); 1846 return; 1847 } 1848 1849 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) { 1850 bh = &hcd->high_prio_bh; 1851 high_prio_bh = true; 1852 } else { 1853 bh = &hcd->low_prio_bh; 1854 high_prio_bh = false; 1855 } 1856 1857 spin_lock(&bh->lock); 1858 list_add_tail(&urb->urb_list, &bh->head); 1859 running = bh->running; 1860 spin_unlock(&bh->lock); 1861 1862 if (running) 1863 ; 1864 else if (high_prio_bh) 1865 tasklet_hi_schedule(&bh->bh); 1866 else 1867 tasklet_schedule(&bh->bh); 1868 } 1869 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1870 1871 /*-------------------------------------------------------------------------*/ 1872 1873 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1874 * queue to drain completely. The caller must first insure that no more 1875 * URBs can be submitted for this endpoint. 1876 */ 1877 void usb_hcd_flush_endpoint(struct usb_device *udev, 1878 struct usb_host_endpoint *ep) 1879 { 1880 struct usb_hcd *hcd; 1881 struct urb *urb; 1882 1883 if (!ep) 1884 return; 1885 might_sleep(); 1886 hcd = bus_to_hcd(udev->bus); 1887 1888 /* No more submits can occur */ 1889 spin_lock_irq(&hcd_urb_list_lock); 1890 rescan: 1891 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) { 1892 int is_in; 1893 1894 if (urb->unlinked) 1895 continue; 1896 usb_get_urb (urb); 1897 is_in = usb_urb_dir_in(urb); 1898 spin_unlock(&hcd_urb_list_lock); 1899 1900 /* kick hcd */ 1901 unlink1(hcd, urb, -ESHUTDOWN); 1902 dev_dbg (hcd->self.controller, 1903 "shutdown urb %pK ep%d%s%s\n", 1904 urb, usb_endpoint_num(&ep->desc), 1905 is_in ? "in" : "out", 1906 ({ char *s; 1907 1908 switch (usb_endpoint_type(&ep->desc)) { 1909 case USB_ENDPOINT_XFER_CONTROL: 1910 s = ""; break; 1911 case USB_ENDPOINT_XFER_BULK: 1912 s = "-bulk"; break; 1913 case USB_ENDPOINT_XFER_INT: 1914 s = "-intr"; break; 1915 default: 1916 s = "-iso"; break; 1917 }; 1918 s; 1919 })); 1920 usb_put_urb (urb); 1921 1922 /* list contents may have changed */ 1923 spin_lock(&hcd_urb_list_lock); 1924 goto rescan; 1925 } 1926 spin_unlock_irq(&hcd_urb_list_lock); 1927 1928 /* Wait until the endpoint queue is completely empty */ 1929 while (!list_empty (&ep->urb_list)) { 1930 spin_lock_irq(&hcd_urb_list_lock); 1931 1932 /* The list may have changed while we acquired the spinlock */ 1933 urb = NULL; 1934 if (!list_empty (&ep->urb_list)) { 1935 urb = list_entry (ep->urb_list.prev, struct urb, 1936 urb_list); 1937 usb_get_urb (urb); 1938 } 1939 spin_unlock_irq(&hcd_urb_list_lock); 1940 1941 if (urb) { 1942 usb_kill_urb (urb); 1943 usb_put_urb (urb); 1944 } 1945 } 1946 } 1947 1948 /** 1949 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds 1950 * the bus bandwidth 1951 * @udev: target &usb_device 1952 * @new_config: new configuration to install 1953 * @cur_alt: the current alternate interface setting 1954 * @new_alt: alternate interface setting that is being installed 1955 * 1956 * To change configurations, pass in the new configuration in new_config, 1957 * and pass NULL for cur_alt and new_alt. 1958 * 1959 * To reset a device's configuration (put the device in the ADDRESSED state), 1960 * pass in NULL for new_config, cur_alt, and new_alt. 1961 * 1962 * To change alternate interface settings, pass in NULL for new_config, 1963 * pass in the current alternate interface setting in cur_alt, 1964 * and pass in the new alternate interface setting in new_alt. 1965 * 1966 * Return: An error if the requested bandwidth change exceeds the 1967 * bus bandwidth or host controller internal resources. 1968 */ 1969 int usb_hcd_alloc_bandwidth(struct usb_device *udev, 1970 struct usb_host_config *new_config, 1971 struct usb_host_interface *cur_alt, 1972 struct usb_host_interface *new_alt) 1973 { 1974 int num_intfs, i, j; 1975 struct usb_host_interface *alt = NULL; 1976 int ret = 0; 1977 struct usb_hcd *hcd; 1978 struct usb_host_endpoint *ep; 1979 1980 hcd = bus_to_hcd(udev->bus); 1981 if (!hcd->driver->check_bandwidth) 1982 return 0; 1983 1984 /* Configuration is being removed - set configuration 0 */ 1985 if (!new_config && !cur_alt) { 1986 for (i = 1; i < 16; ++i) { 1987 ep = udev->ep_out[i]; 1988 if (ep) 1989 hcd->driver->drop_endpoint(hcd, udev, ep); 1990 ep = udev->ep_in[i]; 1991 if (ep) 1992 hcd->driver->drop_endpoint(hcd, udev, ep); 1993 } 1994 hcd->driver->check_bandwidth(hcd, udev); 1995 return 0; 1996 } 1997 /* Check if the HCD says there's enough bandwidth. Enable all endpoints 1998 * each interface's alt setting 0 and ask the HCD to check the bandwidth 1999 * of the bus. There will always be bandwidth for endpoint 0, so it's 2000 * ok to exclude it. 2001 */ 2002 if (new_config) { 2003 num_intfs = new_config->desc.bNumInterfaces; 2004 /* Remove endpoints (except endpoint 0, which is always on the 2005 * schedule) from the old config from the schedule 2006 */ 2007 for (i = 1; i < 16; ++i) { 2008 ep = udev->ep_out[i]; 2009 if (ep) { 2010 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 2011 if (ret < 0) 2012 goto reset; 2013 } 2014 ep = udev->ep_in[i]; 2015 if (ep) { 2016 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 2017 if (ret < 0) 2018 goto reset; 2019 } 2020 } 2021 for (i = 0; i < num_intfs; ++i) { 2022 struct usb_host_interface *first_alt; 2023 int iface_num; 2024 2025 first_alt = &new_config->intf_cache[i]->altsetting[0]; 2026 iface_num = first_alt->desc.bInterfaceNumber; 2027 /* Set up endpoints for alternate interface setting 0 */ 2028 alt = usb_find_alt_setting(new_config, iface_num, 0); 2029 if (!alt) 2030 /* No alt setting 0? Pick the first setting. */ 2031 alt = first_alt; 2032 2033 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 2034 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); 2035 if (ret < 0) 2036 goto reset; 2037 } 2038 } 2039 } 2040 if (cur_alt && new_alt) { 2041 struct usb_interface *iface = usb_ifnum_to_if(udev, 2042 cur_alt->desc.bInterfaceNumber); 2043 2044 if (!iface) 2045 return -EINVAL; 2046 if (iface->resetting_device) { 2047 /* 2048 * The USB core just reset the device, so the xHCI host 2049 * and the device will think alt setting 0 is installed. 2050 * However, the USB core will pass in the alternate 2051 * setting installed before the reset as cur_alt. Dig 2052 * out the alternate setting 0 structure, or the first 2053 * alternate setting if a broken device doesn't have alt 2054 * setting 0. 2055 */ 2056 cur_alt = usb_altnum_to_altsetting(iface, 0); 2057 if (!cur_alt) 2058 cur_alt = &iface->altsetting[0]; 2059 } 2060 2061 /* Drop all the endpoints in the current alt setting */ 2062 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) { 2063 ret = hcd->driver->drop_endpoint(hcd, udev, 2064 &cur_alt->endpoint[i]); 2065 if (ret < 0) 2066 goto reset; 2067 } 2068 /* Add all the endpoints in the new alt setting */ 2069 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) { 2070 ret = hcd->driver->add_endpoint(hcd, udev, 2071 &new_alt->endpoint[i]); 2072 if (ret < 0) 2073 goto reset; 2074 } 2075 } 2076 ret = hcd->driver->check_bandwidth(hcd, udev); 2077 reset: 2078 if (ret < 0) 2079 hcd->driver->reset_bandwidth(hcd, udev); 2080 return ret; 2081 } 2082 2083 /* Disables the endpoint: synchronizes with the hcd to make sure all 2084 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 2085 * have been called previously. Use for set_configuration, set_interface, 2086 * driver removal, physical disconnect. 2087 * 2088 * example: a qh stored in ep->hcpriv, holding state related to endpoint 2089 * type, maxpacket size, toggle, halt status, and scheduling. 2090 */ 2091 void usb_hcd_disable_endpoint(struct usb_device *udev, 2092 struct usb_host_endpoint *ep) 2093 { 2094 struct usb_hcd *hcd; 2095 2096 might_sleep(); 2097 hcd = bus_to_hcd(udev->bus); 2098 if (hcd->driver->endpoint_disable) 2099 hcd->driver->endpoint_disable(hcd, ep); 2100 } 2101 2102 /** 2103 * usb_hcd_reset_endpoint - reset host endpoint state 2104 * @udev: USB device. 2105 * @ep: the endpoint to reset. 2106 * 2107 * Resets any host endpoint state such as the toggle bit, sequence 2108 * number and current window. 2109 */ 2110 void usb_hcd_reset_endpoint(struct usb_device *udev, 2111 struct usb_host_endpoint *ep) 2112 { 2113 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2114 2115 if (hcd->driver->endpoint_reset) 2116 hcd->driver->endpoint_reset(hcd, ep); 2117 else { 2118 int epnum = usb_endpoint_num(&ep->desc); 2119 int is_out = usb_endpoint_dir_out(&ep->desc); 2120 int is_control = usb_endpoint_xfer_control(&ep->desc); 2121 2122 usb_settoggle(udev, epnum, is_out, 0); 2123 if (is_control) 2124 usb_settoggle(udev, epnum, !is_out, 0); 2125 } 2126 } 2127 2128 /** 2129 * usb_alloc_streams - allocate bulk endpoint stream IDs. 2130 * @interface: alternate setting that includes all endpoints. 2131 * @eps: array of endpoints that need streams. 2132 * @num_eps: number of endpoints in the array. 2133 * @num_streams: number of streams to allocate. 2134 * @mem_flags: flags hcd should use to allocate memory. 2135 * 2136 * Sets up a group of bulk endpoints to have @num_streams stream IDs available. 2137 * Drivers may queue multiple transfers to different stream IDs, which may 2138 * complete in a different order than they were queued. 2139 * 2140 * Return: On success, the number of allocated streams. On failure, a negative 2141 * error code. 2142 */ 2143 int usb_alloc_streams(struct usb_interface *interface, 2144 struct usb_host_endpoint **eps, unsigned int num_eps, 2145 unsigned int num_streams, gfp_t mem_flags) 2146 { 2147 struct usb_hcd *hcd; 2148 struct usb_device *dev; 2149 int i, ret; 2150 2151 dev = interface_to_usbdev(interface); 2152 hcd = bus_to_hcd(dev->bus); 2153 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams) 2154 return -EINVAL; 2155 if (dev->speed < USB_SPEED_SUPER) 2156 return -EINVAL; 2157 if (dev->state < USB_STATE_CONFIGURED) 2158 return -ENODEV; 2159 2160 for (i = 0; i < num_eps; i++) { 2161 /* Streams only apply to bulk endpoints. */ 2162 if (!usb_endpoint_xfer_bulk(&eps[i]->desc)) 2163 return -EINVAL; 2164 /* Re-alloc is not allowed */ 2165 if (eps[i]->streams) 2166 return -EINVAL; 2167 } 2168 2169 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps, 2170 num_streams, mem_flags); 2171 if (ret < 0) 2172 return ret; 2173 2174 for (i = 0; i < num_eps; i++) 2175 eps[i]->streams = ret; 2176 2177 return ret; 2178 } 2179 EXPORT_SYMBOL_GPL(usb_alloc_streams); 2180 2181 /** 2182 * usb_free_streams - free bulk endpoint stream IDs. 2183 * @interface: alternate setting that includes all endpoints. 2184 * @eps: array of endpoints to remove streams from. 2185 * @num_eps: number of endpoints in the array. 2186 * @mem_flags: flags hcd should use to allocate memory. 2187 * 2188 * Reverts a group of bulk endpoints back to not using stream IDs. 2189 * Can fail if we are given bad arguments, or HCD is broken. 2190 * 2191 * Return: 0 on success. On failure, a negative error code. 2192 */ 2193 int usb_free_streams(struct usb_interface *interface, 2194 struct usb_host_endpoint **eps, unsigned int num_eps, 2195 gfp_t mem_flags) 2196 { 2197 struct usb_hcd *hcd; 2198 struct usb_device *dev; 2199 int i, ret; 2200 2201 dev = interface_to_usbdev(interface); 2202 hcd = bus_to_hcd(dev->bus); 2203 if (dev->speed < USB_SPEED_SUPER) 2204 return -EINVAL; 2205 2206 /* Double-free is not allowed */ 2207 for (i = 0; i < num_eps; i++) 2208 if (!eps[i] || !eps[i]->streams) 2209 return -EINVAL; 2210 2211 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags); 2212 if (ret < 0) 2213 return ret; 2214 2215 for (i = 0; i < num_eps; i++) 2216 eps[i]->streams = 0; 2217 2218 return ret; 2219 } 2220 EXPORT_SYMBOL_GPL(usb_free_streams); 2221 2222 /* Protect against drivers that try to unlink URBs after the device 2223 * is gone, by waiting until all unlinks for @udev are finished. 2224 * Since we don't currently track URBs by device, simply wait until 2225 * nothing is running in the locked region of usb_hcd_unlink_urb(). 2226 */ 2227 void usb_hcd_synchronize_unlinks(struct usb_device *udev) 2228 { 2229 spin_lock_irq(&hcd_urb_unlink_lock); 2230 spin_unlock_irq(&hcd_urb_unlink_lock); 2231 } 2232 2233 /*-------------------------------------------------------------------------*/ 2234 2235 /* called in any context */ 2236 int usb_hcd_get_frame_number (struct usb_device *udev) 2237 { 2238 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2239 2240 if (!HCD_RH_RUNNING(hcd)) 2241 return -ESHUTDOWN; 2242 return hcd->driver->get_frame_number (hcd); 2243 } 2244 2245 /*-------------------------------------------------------------------------*/ 2246 2247 #ifdef CONFIG_PM 2248 2249 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) 2250 { 2251 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2252 int status; 2253 int old_state = hcd->state; 2254 2255 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n", 2256 (PMSG_IS_AUTO(msg) ? "auto-" : ""), 2257 rhdev->do_remote_wakeup); 2258 if (HCD_DEAD(hcd)) { 2259 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend"); 2260 return 0; 2261 } 2262 2263 if (!hcd->driver->bus_suspend) { 2264 status = -ENOENT; 2265 } else { 2266 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2267 hcd->state = HC_STATE_QUIESCING; 2268 status = hcd->driver->bus_suspend(hcd); 2269 } 2270 if (status == 0) { 2271 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 2272 hcd->state = HC_STATE_SUSPENDED; 2273 2274 /* Did we race with a root-hub wakeup event? */ 2275 if (rhdev->do_remote_wakeup) { 2276 char buffer[6]; 2277 2278 status = hcd->driver->hub_status_data(hcd, buffer); 2279 if (status != 0) { 2280 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n"); 2281 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME); 2282 status = -EBUSY; 2283 } 2284 } 2285 } else { 2286 spin_lock_irq(&hcd_root_hub_lock); 2287 if (!HCD_DEAD(hcd)) { 2288 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2289 hcd->state = old_state; 2290 } 2291 spin_unlock_irq(&hcd_root_hub_lock); 2292 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2293 "suspend", status); 2294 } 2295 return status; 2296 } 2297 2298 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) 2299 { 2300 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2301 int status; 2302 int old_state = hcd->state; 2303 2304 dev_dbg(&rhdev->dev, "usb %sresume\n", 2305 (PMSG_IS_AUTO(msg) ? "auto-" : "")); 2306 if (HCD_DEAD(hcd)) { 2307 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume"); 2308 return 0; 2309 } 2310 if (!hcd->driver->bus_resume) 2311 return -ENOENT; 2312 if (HCD_RH_RUNNING(hcd)) 2313 return 0; 2314 2315 hcd->state = HC_STATE_RESUMING; 2316 status = hcd->driver->bus_resume(hcd); 2317 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2318 if (status == 0) { 2319 struct usb_device *udev; 2320 int port1; 2321 2322 spin_lock_irq(&hcd_root_hub_lock); 2323 if (!HCD_DEAD(hcd)) { 2324 usb_set_device_state(rhdev, rhdev->actconfig 2325 ? USB_STATE_CONFIGURED 2326 : USB_STATE_ADDRESS); 2327 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2328 hcd->state = HC_STATE_RUNNING; 2329 } 2330 spin_unlock_irq(&hcd_root_hub_lock); 2331 2332 /* 2333 * Check whether any of the enabled ports on the root hub are 2334 * unsuspended. If they are then a TRSMRCY delay is needed 2335 * (this is what the USB-2 spec calls a "global resume"). 2336 * Otherwise we can skip the delay. 2337 */ 2338 usb_hub_for_each_child(rhdev, port1, udev) { 2339 if (udev->state != USB_STATE_NOTATTACHED && 2340 !udev->port_is_suspended) { 2341 usleep_range(10000, 11000); /* TRSMRCY */ 2342 break; 2343 } 2344 } 2345 } else { 2346 hcd->state = old_state; 2347 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2348 "resume", status); 2349 if (status != -ESHUTDOWN) 2350 usb_hc_died(hcd); 2351 } 2352 return status; 2353 } 2354 2355 /* Workqueue routine for root-hub remote wakeup */ 2356 static void hcd_resume_work(struct work_struct *work) 2357 { 2358 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 2359 struct usb_device *udev = hcd->self.root_hub; 2360 2361 usb_remote_wakeup(udev); 2362 } 2363 2364 /** 2365 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 2366 * @hcd: host controller for this root hub 2367 * 2368 * The USB host controller calls this function when its root hub is 2369 * suspended (with the remote wakeup feature enabled) and a remote 2370 * wakeup request is received. The routine submits a workqueue request 2371 * to resume the root hub (that is, manage its downstream ports again). 2372 */ 2373 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 2374 { 2375 unsigned long flags; 2376 2377 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2378 if (hcd->rh_registered) { 2379 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2380 queue_work(pm_wq, &hcd->wakeup_work); 2381 } 2382 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2383 } 2384 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 2385 2386 #endif /* CONFIG_PM */ 2387 2388 /*-------------------------------------------------------------------------*/ 2389 2390 #ifdef CONFIG_USB_OTG 2391 2392 /** 2393 * usb_bus_start_enum - start immediate enumeration (for OTG) 2394 * @bus: the bus (must use hcd framework) 2395 * @port_num: 1-based number of port; usually bus->otg_port 2396 * Context: in_interrupt() 2397 * 2398 * Starts enumeration, with an immediate reset followed later by 2399 * hub_wq identifying and possibly configuring the device. 2400 * This is needed by OTG controller drivers, where it helps meet 2401 * HNP protocol timing requirements for starting a port reset. 2402 * 2403 * Return: 0 if successful. 2404 */ 2405 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 2406 { 2407 struct usb_hcd *hcd; 2408 int status = -EOPNOTSUPP; 2409 2410 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 2411 * boards with root hubs hooked up to internal devices (instead of 2412 * just the OTG port) may need more attention to resetting... 2413 */ 2414 hcd = bus_to_hcd(bus); 2415 if (port_num && hcd->driver->start_port_reset) 2416 status = hcd->driver->start_port_reset(hcd, port_num); 2417 2418 /* allocate hub_wq shortly after (first) root port reset finishes; 2419 * it may issue others, until at least 50 msecs have passed. 2420 */ 2421 if (status == 0) 2422 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 2423 return status; 2424 } 2425 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 2426 2427 #endif 2428 2429 /*-------------------------------------------------------------------------*/ 2430 2431 /** 2432 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 2433 * @irq: the IRQ being raised 2434 * @__hcd: pointer to the HCD whose IRQ is being signaled 2435 * 2436 * If the controller isn't HALTed, calls the driver's irq handler. 2437 * Checks whether the controller is now dead. 2438 * 2439 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise. 2440 */ 2441 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 2442 { 2443 struct usb_hcd *hcd = __hcd; 2444 irqreturn_t rc; 2445 2446 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) 2447 rc = IRQ_NONE; 2448 else if (hcd->driver->irq(hcd) == IRQ_NONE) 2449 rc = IRQ_NONE; 2450 else 2451 rc = IRQ_HANDLED; 2452 2453 return rc; 2454 } 2455 EXPORT_SYMBOL_GPL(usb_hcd_irq); 2456 2457 /*-------------------------------------------------------------------------*/ 2458 2459 /** 2460 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 2461 * @hcd: pointer to the HCD representing the controller 2462 * 2463 * This is called by bus glue to report a USB host controller that died 2464 * while operations may still have been pending. It's called automatically 2465 * by the PCI glue, so only glue for non-PCI busses should need to call it. 2466 * 2467 * Only call this function with the primary HCD. 2468 */ 2469 void usb_hc_died (struct usb_hcd *hcd) 2470 { 2471 unsigned long flags; 2472 2473 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 2474 2475 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2476 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2477 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2478 if (hcd->rh_registered) { 2479 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2480 2481 /* make hub_wq clean up old urbs and devices */ 2482 usb_set_device_state (hcd->self.root_hub, 2483 USB_STATE_NOTATTACHED); 2484 usb_kick_hub_wq(hcd->self.root_hub); 2485 } 2486 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) { 2487 hcd = hcd->shared_hcd; 2488 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2489 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2490 if (hcd->rh_registered) { 2491 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2492 2493 /* make hub_wq clean up old urbs and devices */ 2494 usb_set_device_state(hcd->self.root_hub, 2495 USB_STATE_NOTATTACHED); 2496 usb_kick_hub_wq(hcd->self.root_hub); 2497 } 2498 } 2499 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2500 /* Make sure that the other roothub is also deallocated. */ 2501 } 2502 EXPORT_SYMBOL_GPL (usb_hc_died); 2503 2504 /*-------------------------------------------------------------------------*/ 2505 2506 static void init_giveback_urb_bh(struct giveback_urb_bh *bh) 2507 { 2508 2509 spin_lock_init(&bh->lock); 2510 INIT_LIST_HEAD(&bh->head); 2511 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh); 2512 } 2513 2514 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver, 2515 struct device *sysdev, struct device *dev, const char *bus_name, 2516 struct usb_hcd *primary_hcd) 2517 { 2518 struct usb_hcd *hcd; 2519 2520 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 2521 if (!hcd) 2522 return NULL; 2523 if (primary_hcd == NULL) { 2524 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex), 2525 GFP_KERNEL); 2526 if (!hcd->address0_mutex) { 2527 kfree(hcd); 2528 dev_dbg(dev, "hcd address0 mutex alloc failed\n"); 2529 return NULL; 2530 } 2531 mutex_init(hcd->address0_mutex); 2532 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex), 2533 GFP_KERNEL); 2534 if (!hcd->bandwidth_mutex) { 2535 kfree(hcd->address0_mutex); 2536 kfree(hcd); 2537 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n"); 2538 return NULL; 2539 } 2540 mutex_init(hcd->bandwidth_mutex); 2541 dev_set_drvdata(dev, hcd); 2542 } else { 2543 mutex_lock(&usb_port_peer_mutex); 2544 hcd->address0_mutex = primary_hcd->address0_mutex; 2545 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex; 2546 hcd->primary_hcd = primary_hcd; 2547 primary_hcd->primary_hcd = primary_hcd; 2548 hcd->shared_hcd = primary_hcd; 2549 primary_hcd->shared_hcd = hcd; 2550 mutex_unlock(&usb_port_peer_mutex); 2551 } 2552 2553 kref_init(&hcd->kref); 2554 2555 usb_bus_init(&hcd->self); 2556 hcd->self.controller = dev; 2557 hcd->self.sysdev = sysdev; 2558 hcd->self.bus_name = bus_name; 2559 hcd->self.uses_dma = (sysdev->dma_mask != NULL); 2560 2561 init_timer(&hcd->rh_timer); 2562 hcd->rh_timer.function = rh_timer_func; 2563 hcd->rh_timer.data = (unsigned long) hcd; 2564 #ifdef CONFIG_PM 2565 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 2566 #endif 2567 2568 hcd->driver = driver; 2569 hcd->speed = driver->flags & HCD_MASK; 2570 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 2571 "USB Host Controller"; 2572 return hcd; 2573 } 2574 EXPORT_SYMBOL_GPL(__usb_create_hcd); 2575 2576 /** 2577 * usb_create_shared_hcd - create and initialize an HCD structure 2578 * @driver: HC driver that will use this hcd 2579 * @dev: device for this HC, stored in hcd->self.controller 2580 * @bus_name: value to store in hcd->self.bus_name 2581 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the 2582 * PCI device. Only allocate certain resources for the primary HCD 2583 * Context: !in_interrupt() 2584 * 2585 * Allocate a struct usb_hcd, with extra space at the end for the 2586 * HC driver's private data. Initialize the generic members of the 2587 * hcd structure. 2588 * 2589 * Return: On success, a pointer to the created and initialized HCD structure. 2590 * On failure (e.g. if memory is unavailable), %NULL. 2591 */ 2592 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver, 2593 struct device *dev, const char *bus_name, 2594 struct usb_hcd *primary_hcd) 2595 { 2596 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd); 2597 } 2598 EXPORT_SYMBOL_GPL(usb_create_shared_hcd); 2599 2600 /** 2601 * usb_create_hcd - create and initialize an HCD structure 2602 * @driver: HC driver that will use this hcd 2603 * @dev: device for this HC, stored in hcd->self.controller 2604 * @bus_name: value to store in hcd->self.bus_name 2605 * Context: !in_interrupt() 2606 * 2607 * Allocate a struct usb_hcd, with extra space at the end for the 2608 * HC driver's private data. Initialize the generic members of the 2609 * hcd structure. 2610 * 2611 * Return: On success, a pointer to the created and initialized HCD 2612 * structure. On failure (e.g. if memory is unavailable), %NULL. 2613 */ 2614 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver, 2615 struct device *dev, const char *bus_name) 2616 { 2617 return __usb_create_hcd(driver, dev, dev, bus_name, NULL); 2618 } 2619 EXPORT_SYMBOL_GPL(usb_create_hcd); 2620 2621 /* 2622 * Roothubs that share one PCI device must also share the bandwidth mutex. 2623 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is 2624 * deallocated. 2625 * 2626 * Make sure to deallocate the bandwidth_mutex only when the last HCD is 2627 * freed. When hcd_release() is called for either hcd in a peer set, 2628 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers. 2629 */ 2630 static void hcd_release(struct kref *kref) 2631 { 2632 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 2633 2634 mutex_lock(&usb_port_peer_mutex); 2635 if (hcd->shared_hcd) { 2636 struct usb_hcd *peer = hcd->shared_hcd; 2637 2638 peer->shared_hcd = NULL; 2639 peer->primary_hcd = NULL; 2640 } else { 2641 kfree(hcd->address0_mutex); 2642 kfree(hcd->bandwidth_mutex); 2643 } 2644 mutex_unlock(&usb_port_peer_mutex); 2645 kfree(hcd); 2646 } 2647 2648 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 2649 { 2650 if (hcd) 2651 kref_get (&hcd->kref); 2652 return hcd; 2653 } 2654 EXPORT_SYMBOL_GPL(usb_get_hcd); 2655 2656 void usb_put_hcd (struct usb_hcd *hcd) 2657 { 2658 if (hcd) 2659 kref_put (&hcd->kref, hcd_release); 2660 } 2661 EXPORT_SYMBOL_GPL(usb_put_hcd); 2662 2663 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd) 2664 { 2665 if (!hcd->primary_hcd) 2666 return 1; 2667 return hcd == hcd->primary_hcd; 2668 } 2669 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd); 2670 2671 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1) 2672 { 2673 if (!hcd->driver->find_raw_port_number) 2674 return port1; 2675 2676 return hcd->driver->find_raw_port_number(hcd, port1); 2677 } 2678 2679 static int usb_hcd_request_irqs(struct usb_hcd *hcd, 2680 unsigned int irqnum, unsigned long irqflags) 2681 { 2682 int retval; 2683 2684 if (hcd->driver->irq) { 2685 2686 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 2687 hcd->driver->description, hcd->self.busnum); 2688 retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 2689 hcd->irq_descr, hcd); 2690 if (retval != 0) { 2691 dev_err(hcd->self.controller, 2692 "request interrupt %d failed\n", 2693 irqnum); 2694 return retval; 2695 } 2696 hcd->irq = irqnum; 2697 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 2698 (hcd->driver->flags & HCD_MEMORY) ? 2699 "io mem" : "io base", 2700 (unsigned long long)hcd->rsrc_start); 2701 } else { 2702 hcd->irq = 0; 2703 if (hcd->rsrc_start) 2704 dev_info(hcd->self.controller, "%s 0x%08llx\n", 2705 (hcd->driver->flags & HCD_MEMORY) ? 2706 "io mem" : "io base", 2707 (unsigned long long)hcd->rsrc_start); 2708 } 2709 return 0; 2710 } 2711 2712 /* 2713 * Before we free this root hub, flush in-flight peering attempts 2714 * and disable peer lookups 2715 */ 2716 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd) 2717 { 2718 struct usb_device *rhdev; 2719 2720 mutex_lock(&usb_port_peer_mutex); 2721 rhdev = hcd->self.root_hub; 2722 hcd->self.root_hub = NULL; 2723 mutex_unlock(&usb_port_peer_mutex); 2724 usb_put_dev(rhdev); 2725 } 2726 2727 /** 2728 * usb_add_hcd - finish generic HCD structure initialization and register 2729 * @hcd: the usb_hcd structure to initialize 2730 * @irqnum: Interrupt line to allocate 2731 * @irqflags: Interrupt type flags 2732 * 2733 * Finish the remaining parts of generic HCD initialization: allocate the 2734 * buffers of consistent memory, register the bus, request the IRQ line, 2735 * and call the driver's reset() and start() routines. 2736 */ 2737 int usb_add_hcd(struct usb_hcd *hcd, 2738 unsigned int irqnum, unsigned long irqflags) 2739 { 2740 int retval; 2741 struct usb_device *rhdev; 2742 2743 if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) { 2744 struct usb_phy *phy = usb_get_phy_dev(hcd->self.sysdev, 0); 2745 2746 if (IS_ERR(phy)) { 2747 retval = PTR_ERR(phy); 2748 if (retval == -EPROBE_DEFER) 2749 return retval; 2750 } else { 2751 retval = usb_phy_init(phy); 2752 if (retval) { 2753 usb_put_phy(phy); 2754 return retval; 2755 } 2756 hcd->usb_phy = phy; 2757 hcd->remove_phy = 1; 2758 } 2759 } 2760 2761 if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) { 2762 struct phy *phy = phy_get(hcd->self.sysdev, "usb"); 2763 2764 if (IS_ERR(phy)) { 2765 retval = PTR_ERR(phy); 2766 if (retval == -EPROBE_DEFER) 2767 goto err_phy; 2768 } else { 2769 retval = phy_init(phy); 2770 if (retval) { 2771 phy_put(phy); 2772 goto err_phy; 2773 } 2774 retval = phy_power_on(phy); 2775 if (retval) { 2776 phy_exit(phy); 2777 phy_put(phy); 2778 goto err_phy; 2779 } 2780 hcd->phy = phy; 2781 hcd->remove_phy = 1; 2782 } 2783 } 2784 2785 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 2786 2787 /* Keep old behaviour if authorized_default is not in [0, 1]. */ 2788 if (authorized_default < 0 || authorized_default > 1) { 2789 if (hcd->wireless) 2790 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 2791 else 2792 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 2793 } else { 2794 if (authorized_default) 2795 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 2796 else 2797 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 2798 } 2799 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2800 2801 /* per default all interfaces are authorized */ 2802 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 2803 2804 /* HC is in reset state, but accessible. Now do the one-time init, 2805 * bottom up so that hcds can customize the root hubs before hub_wq 2806 * starts talking to them. (Note, bus id is assigned early too.) 2807 */ 2808 retval = hcd_buffer_create(hcd); 2809 if (retval != 0) { 2810 dev_dbg(hcd->self.sysdev, "pool alloc failed\n"); 2811 goto err_create_buf; 2812 } 2813 2814 retval = usb_register_bus(&hcd->self); 2815 if (retval < 0) 2816 goto err_register_bus; 2817 2818 rhdev = usb_alloc_dev(NULL, &hcd->self, 0); 2819 if (rhdev == NULL) { 2820 dev_err(hcd->self.sysdev, "unable to allocate root hub\n"); 2821 retval = -ENOMEM; 2822 goto err_allocate_root_hub; 2823 } 2824 mutex_lock(&usb_port_peer_mutex); 2825 hcd->self.root_hub = rhdev; 2826 mutex_unlock(&usb_port_peer_mutex); 2827 2828 switch (hcd->speed) { 2829 case HCD_USB11: 2830 rhdev->speed = USB_SPEED_FULL; 2831 break; 2832 case HCD_USB2: 2833 rhdev->speed = USB_SPEED_HIGH; 2834 break; 2835 case HCD_USB25: 2836 rhdev->speed = USB_SPEED_WIRELESS; 2837 break; 2838 case HCD_USB3: 2839 rhdev->speed = USB_SPEED_SUPER; 2840 break; 2841 case HCD_USB31: 2842 rhdev->speed = USB_SPEED_SUPER_PLUS; 2843 break; 2844 default: 2845 retval = -EINVAL; 2846 goto err_set_rh_speed; 2847 } 2848 2849 /* wakeup flag init defaults to "everything works" for root hubs, 2850 * but drivers can override it in reset() if needed, along with 2851 * recording the overall controller's system wakeup capability. 2852 */ 2853 device_set_wakeup_capable(&rhdev->dev, 1); 2854 2855 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is 2856 * registered. But since the controller can die at any time, 2857 * let's initialize the flag before touching the hardware. 2858 */ 2859 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2860 2861 /* "reset" is misnamed; its role is now one-time init. the controller 2862 * should already have been reset (and boot firmware kicked off etc). 2863 */ 2864 if (hcd->driver->reset) { 2865 retval = hcd->driver->reset(hcd); 2866 if (retval < 0) { 2867 dev_err(hcd->self.controller, "can't setup: %d\n", 2868 retval); 2869 goto err_hcd_driver_setup; 2870 } 2871 } 2872 hcd->rh_pollable = 1; 2873 2874 /* NOTE: root hub and controller capabilities may not be the same */ 2875 if (device_can_wakeup(hcd->self.controller) 2876 && device_can_wakeup(&hcd->self.root_hub->dev)) 2877 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 2878 2879 /* initialize tasklets */ 2880 init_giveback_urb_bh(&hcd->high_prio_bh); 2881 init_giveback_urb_bh(&hcd->low_prio_bh); 2882 2883 /* enable irqs just before we start the controller, 2884 * if the BIOS provides legacy PCI irqs. 2885 */ 2886 if (usb_hcd_is_primary_hcd(hcd) && irqnum) { 2887 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags); 2888 if (retval) 2889 goto err_request_irq; 2890 } 2891 2892 hcd->state = HC_STATE_RUNNING; 2893 retval = hcd->driver->start(hcd); 2894 if (retval < 0) { 2895 dev_err(hcd->self.controller, "startup error %d\n", retval); 2896 goto err_hcd_driver_start; 2897 } 2898 2899 /* starting here, usbcore will pay attention to this root hub */ 2900 retval = register_root_hub(hcd); 2901 if (retval != 0) 2902 goto err_register_root_hub; 2903 2904 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2905 if (retval < 0) { 2906 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n", 2907 retval); 2908 goto error_create_attr_group; 2909 } 2910 if (hcd->uses_new_polling && HCD_POLL_RH(hcd)) 2911 usb_hcd_poll_rh_status(hcd); 2912 2913 return retval; 2914 2915 error_create_attr_group: 2916 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2917 if (HC_IS_RUNNING(hcd->state)) 2918 hcd->state = HC_STATE_QUIESCING; 2919 spin_lock_irq(&hcd_root_hub_lock); 2920 hcd->rh_registered = 0; 2921 spin_unlock_irq(&hcd_root_hub_lock); 2922 2923 #ifdef CONFIG_PM 2924 cancel_work_sync(&hcd->wakeup_work); 2925 #endif 2926 mutex_lock(&usb_bus_idr_lock); 2927 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2928 mutex_unlock(&usb_bus_idr_lock); 2929 err_register_root_hub: 2930 hcd->rh_pollable = 0; 2931 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2932 del_timer_sync(&hcd->rh_timer); 2933 hcd->driver->stop(hcd); 2934 hcd->state = HC_STATE_HALT; 2935 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2936 del_timer_sync(&hcd->rh_timer); 2937 err_hcd_driver_start: 2938 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0) 2939 free_irq(irqnum, hcd); 2940 err_request_irq: 2941 err_hcd_driver_setup: 2942 err_set_rh_speed: 2943 usb_put_invalidate_rhdev(hcd); 2944 err_allocate_root_hub: 2945 usb_deregister_bus(&hcd->self); 2946 err_register_bus: 2947 hcd_buffer_destroy(hcd); 2948 err_create_buf: 2949 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) { 2950 phy_power_off(hcd->phy); 2951 phy_exit(hcd->phy); 2952 phy_put(hcd->phy); 2953 hcd->phy = NULL; 2954 } 2955 err_phy: 2956 if (hcd->remove_phy && hcd->usb_phy) { 2957 usb_phy_shutdown(hcd->usb_phy); 2958 usb_put_phy(hcd->usb_phy); 2959 hcd->usb_phy = NULL; 2960 } 2961 return retval; 2962 } 2963 EXPORT_SYMBOL_GPL(usb_add_hcd); 2964 2965 /** 2966 * usb_remove_hcd - shutdown processing for generic HCDs 2967 * @hcd: the usb_hcd structure to remove 2968 * Context: !in_interrupt() 2969 * 2970 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 2971 * invoking the HCD's stop() method. 2972 */ 2973 void usb_remove_hcd(struct usb_hcd *hcd) 2974 { 2975 struct usb_device *rhdev = hcd->self.root_hub; 2976 2977 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 2978 2979 usb_get_dev(rhdev); 2980 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2981 2982 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2983 if (HC_IS_RUNNING (hcd->state)) 2984 hcd->state = HC_STATE_QUIESCING; 2985 2986 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 2987 spin_lock_irq (&hcd_root_hub_lock); 2988 hcd->rh_registered = 0; 2989 spin_unlock_irq (&hcd_root_hub_lock); 2990 2991 #ifdef CONFIG_PM 2992 cancel_work_sync(&hcd->wakeup_work); 2993 #endif 2994 2995 mutex_lock(&usb_bus_idr_lock); 2996 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2997 mutex_unlock(&usb_bus_idr_lock); 2998 2999 /* 3000 * tasklet_kill() isn't needed here because: 3001 * - driver's disconnect() called from usb_disconnect() should 3002 * make sure its URBs are completed during the disconnect() 3003 * callback 3004 * 3005 * - it is too late to run complete() here since driver may have 3006 * been removed already now 3007 */ 3008 3009 /* Prevent any more root-hub status calls from the timer. 3010 * The HCD might still restart the timer (if a port status change 3011 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke 3012 * the hub_status_data() callback. 3013 */ 3014 hcd->rh_pollable = 0; 3015 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 3016 del_timer_sync(&hcd->rh_timer); 3017 3018 hcd->driver->stop(hcd); 3019 hcd->state = HC_STATE_HALT; 3020 3021 /* In case the HCD restarted the timer, stop it again. */ 3022 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 3023 del_timer_sync(&hcd->rh_timer); 3024 3025 if (usb_hcd_is_primary_hcd(hcd)) { 3026 if (hcd->irq > 0) 3027 free_irq(hcd->irq, hcd); 3028 } 3029 3030 usb_deregister_bus(&hcd->self); 3031 hcd_buffer_destroy(hcd); 3032 3033 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) { 3034 phy_power_off(hcd->phy); 3035 phy_exit(hcd->phy); 3036 phy_put(hcd->phy); 3037 hcd->phy = NULL; 3038 } 3039 if (hcd->remove_phy && hcd->usb_phy) { 3040 usb_phy_shutdown(hcd->usb_phy); 3041 usb_put_phy(hcd->usb_phy); 3042 hcd->usb_phy = NULL; 3043 } 3044 3045 usb_put_invalidate_rhdev(hcd); 3046 hcd->flags = 0; 3047 } 3048 EXPORT_SYMBOL_GPL(usb_remove_hcd); 3049 3050 void 3051 usb_hcd_platform_shutdown(struct platform_device *dev) 3052 { 3053 struct usb_hcd *hcd = platform_get_drvdata(dev); 3054 3055 if (hcd->driver->shutdown) 3056 hcd->driver->shutdown(hcd); 3057 } 3058 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 3059 3060 /*-------------------------------------------------------------------------*/ 3061 3062 #if IS_ENABLED(CONFIG_USB_MON) 3063 3064 const struct usb_mon_operations *mon_ops; 3065 3066 /* 3067 * The registration is unlocked. 3068 * We do it this way because we do not want to lock in hot paths. 3069 * 3070 * Notice that the code is minimally error-proof. Because usbmon needs 3071 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 3072 */ 3073 3074 int usb_mon_register(const struct usb_mon_operations *ops) 3075 { 3076 3077 if (mon_ops) 3078 return -EBUSY; 3079 3080 mon_ops = ops; 3081 mb(); 3082 return 0; 3083 } 3084 EXPORT_SYMBOL_GPL (usb_mon_register); 3085 3086 void usb_mon_deregister (void) 3087 { 3088 3089 if (mon_ops == NULL) { 3090 printk(KERN_ERR "USB: monitor was not registered\n"); 3091 return; 3092 } 3093 mon_ops = NULL; 3094 mb(); 3095 } 3096 EXPORT_SYMBOL_GPL (usb_mon_deregister); 3097 3098 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ 3099