1 /* 2 * (C) Copyright Linus Torvalds 1999 3 * (C) Copyright Johannes Erdfelt 1999-2001 4 * (C) Copyright Andreas Gal 1999 5 * (C) Copyright Gregory P. Smith 1999 6 * (C) Copyright Deti Fliegl 1999 7 * (C) Copyright Randy Dunlap 2000 8 * (C) Copyright David Brownell 2000-2002 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the 12 * Free Software Foundation; either version 2 of the License, or (at your 13 * option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18 * for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software Foundation, 22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/version.h> 27 #include <linux/kernel.h> 28 #include <linux/slab.h> 29 #include <linux/completion.h> 30 #include <linux/utsname.h> 31 #include <linux/mm.h> 32 #include <asm/io.h> 33 #include <linux/device.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/mutex.h> 36 #include <asm/irq.h> 37 #include <asm/byteorder.h> 38 #include <asm/unaligned.h> 39 #include <linux/platform_device.h> 40 #include <linux/workqueue.h> 41 42 #include <linux/usb.h> 43 44 #include "usb.h" 45 #include "hcd.h" 46 #include "hub.h" 47 48 49 /*-------------------------------------------------------------------------*/ 50 51 /* 52 * USB Host Controller Driver framework 53 * 54 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 55 * HCD-specific behaviors/bugs. 56 * 57 * This does error checks, tracks devices and urbs, and delegates to a 58 * "hc_driver" only for code (and data) that really needs to know about 59 * hardware differences. That includes root hub registers, i/o queues, 60 * and so on ... but as little else as possible. 61 * 62 * Shared code includes most of the "root hub" code (these are emulated, 63 * though each HC's hardware works differently) and PCI glue, plus request 64 * tracking overhead. The HCD code should only block on spinlocks or on 65 * hardware handshaking; blocking on software events (such as other kernel 66 * threads releasing resources, or completing actions) is all generic. 67 * 68 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 69 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 70 * only by the hub driver ... and that neither should be seen or used by 71 * usb client device drivers. 72 * 73 * Contributors of ideas or unattributed patches include: David Brownell, 74 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 75 * 76 * HISTORY: 77 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 78 * associated cleanup. "usb_hcd" still != "usb_bus". 79 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 80 */ 81 82 /*-------------------------------------------------------------------------*/ 83 84 /* Keep track of which host controller drivers are loaded */ 85 unsigned long usb_hcds_loaded; 86 EXPORT_SYMBOL_GPL(usb_hcds_loaded); 87 88 /* host controllers we manage */ 89 LIST_HEAD (usb_bus_list); 90 EXPORT_SYMBOL_GPL (usb_bus_list); 91 92 /* used when allocating bus numbers */ 93 #define USB_MAXBUS 64 94 struct usb_busmap { 95 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))]; 96 }; 97 static struct usb_busmap busmap; 98 99 /* used when updating list of hcds */ 100 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */ 101 EXPORT_SYMBOL_GPL (usb_bus_list_lock); 102 103 /* used for controlling access to virtual root hubs */ 104 static DEFINE_SPINLOCK(hcd_root_hub_lock); 105 106 /* used when updating an endpoint's URB list */ 107 static DEFINE_SPINLOCK(hcd_urb_list_lock); 108 109 /* used to protect against unlinking URBs after the device is gone */ 110 static DEFINE_SPINLOCK(hcd_urb_unlink_lock); 111 112 /* wait queue for synchronous unlinks */ 113 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 114 115 static inline int is_root_hub(struct usb_device *udev) 116 { 117 return (udev->parent == NULL); 118 } 119 120 /*-------------------------------------------------------------------------*/ 121 122 /* 123 * Sharable chunks of root hub code. 124 */ 125 126 /*-------------------------------------------------------------------------*/ 127 128 #define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff) 129 #define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff) 130 131 /* usb 2.0 root hub device descriptor */ 132 static const u8 usb2_rh_dev_descriptor [18] = { 133 0x12, /* __u8 bLength; */ 134 0x01, /* __u8 bDescriptorType; Device */ 135 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 136 137 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 138 0x00, /* __u8 bDeviceSubClass; */ 139 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 140 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 141 142 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */ 143 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 144 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 145 146 0x03, /* __u8 iManufacturer; */ 147 0x02, /* __u8 iProduct; */ 148 0x01, /* __u8 iSerialNumber; */ 149 0x01 /* __u8 bNumConfigurations; */ 150 }; 151 152 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 153 154 /* usb 1.1 root hub device descriptor */ 155 static const u8 usb11_rh_dev_descriptor [18] = { 156 0x12, /* __u8 bLength; */ 157 0x01, /* __u8 bDescriptorType; Device */ 158 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 159 160 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 161 0x00, /* __u8 bDeviceSubClass; */ 162 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 163 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 164 165 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */ 166 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 167 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 168 169 0x03, /* __u8 iManufacturer; */ 170 0x02, /* __u8 iProduct; */ 171 0x01, /* __u8 iSerialNumber; */ 172 0x01 /* __u8 bNumConfigurations; */ 173 }; 174 175 176 /*-------------------------------------------------------------------------*/ 177 178 /* Configuration descriptors for our root hubs */ 179 180 static const u8 fs_rh_config_descriptor [] = { 181 182 /* one configuration */ 183 0x09, /* __u8 bLength; */ 184 0x02, /* __u8 bDescriptorType; Configuration */ 185 0x19, 0x00, /* __le16 wTotalLength; */ 186 0x01, /* __u8 bNumInterfaces; (1) */ 187 0x01, /* __u8 bConfigurationValue; */ 188 0x00, /* __u8 iConfiguration; */ 189 0xc0, /* __u8 bmAttributes; 190 Bit 7: must be set, 191 6: Self-powered, 192 5: Remote wakeup, 193 4..0: resvd */ 194 0x00, /* __u8 MaxPower; */ 195 196 /* USB 1.1: 197 * USB 2.0, single TT organization (mandatory): 198 * one interface, protocol 0 199 * 200 * USB 2.0, multiple TT organization (optional): 201 * two interfaces, protocols 1 (like single TT) 202 * and 2 (multiple TT mode) ... config is 203 * sometimes settable 204 * NOT IMPLEMENTED 205 */ 206 207 /* one interface */ 208 0x09, /* __u8 if_bLength; */ 209 0x04, /* __u8 if_bDescriptorType; Interface */ 210 0x00, /* __u8 if_bInterfaceNumber; */ 211 0x00, /* __u8 if_bAlternateSetting; */ 212 0x01, /* __u8 if_bNumEndpoints; */ 213 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 214 0x00, /* __u8 if_bInterfaceSubClass; */ 215 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 216 0x00, /* __u8 if_iInterface; */ 217 218 /* one endpoint (status change endpoint) */ 219 0x07, /* __u8 ep_bLength; */ 220 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 221 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 222 0x03, /* __u8 ep_bmAttributes; Interrupt */ 223 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 224 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 225 }; 226 227 static const u8 hs_rh_config_descriptor [] = { 228 229 /* one configuration */ 230 0x09, /* __u8 bLength; */ 231 0x02, /* __u8 bDescriptorType; Configuration */ 232 0x19, 0x00, /* __le16 wTotalLength; */ 233 0x01, /* __u8 bNumInterfaces; (1) */ 234 0x01, /* __u8 bConfigurationValue; */ 235 0x00, /* __u8 iConfiguration; */ 236 0xc0, /* __u8 bmAttributes; 237 Bit 7: must be set, 238 6: Self-powered, 239 5: Remote wakeup, 240 4..0: resvd */ 241 0x00, /* __u8 MaxPower; */ 242 243 /* USB 1.1: 244 * USB 2.0, single TT organization (mandatory): 245 * one interface, protocol 0 246 * 247 * USB 2.0, multiple TT organization (optional): 248 * two interfaces, protocols 1 (like single TT) 249 * and 2 (multiple TT mode) ... config is 250 * sometimes settable 251 * NOT IMPLEMENTED 252 */ 253 254 /* one interface */ 255 0x09, /* __u8 if_bLength; */ 256 0x04, /* __u8 if_bDescriptorType; Interface */ 257 0x00, /* __u8 if_bInterfaceNumber; */ 258 0x00, /* __u8 if_bAlternateSetting; */ 259 0x01, /* __u8 if_bNumEndpoints; */ 260 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 261 0x00, /* __u8 if_bInterfaceSubClass; */ 262 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 263 0x00, /* __u8 if_iInterface; */ 264 265 /* one endpoint (status change endpoint) */ 266 0x07, /* __u8 ep_bLength; */ 267 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 268 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 269 0x03, /* __u8 ep_bmAttributes; Interrupt */ 270 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 271 * see hub.c:hub_configure() for details. */ 272 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 273 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 274 }; 275 276 /*-------------------------------------------------------------------------*/ 277 278 /* 279 * helper routine for returning string descriptors in UTF-16LE 280 * input can actually be ISO-8859-1; ASCII is its 7-bit subset 281 */ 282 static unsigned ascii2utf(char *s, u8 *utf, int utfmax) 283 { 284 unsigned retval; 285 286 for (retval = 0; *s && utfmax > 1; utfmax -= 2, retval += 2) { 287 *utf++ = *s++; 288 *utf++ = 0; 289 } 290 if (utfmax > 0) { 291 *utf = *s; 292 ++retval; 293 } 294 return retval; 295 } 296 297 /* 298 * rh_string - provides manufacturer, product and serial strings for root hub 299 * @id: the string ID number (1: serial number, 2: product, 3: vendor) 300 * @hcd: the host controller for this root hub 301 * @data: return packet in UTF-16 LE 302 * @len: length of the return packet 303 * 304 * Produces either a manufacturer, product or serial number string for the 305 * virtual root hub device. 306 */ 307 static unsigned rh_string(int id, struct usb_hcd *hcd, u8 *data, unsigned len) 308 { 309 char buf [100]; 310 311 // language ids 312 if (id == 0) { 313 buf[0] = 4; buf[1] = 3; /* 4 bytes string data */ 314 buf[2] = 0x09; buf[3] = 0x04; /* MSFT-speak for "en-us" */ 315 len = min_t(unsigned, len, 4); 316 memcpy (data, buf, len); 317 return len; 318 319 // serial number 320 } else if (id == 1) { 321 strlcpy (buf, hcd->self.bus_name, sizeof buf); 322 323 // product description 324 } else if (id == 2) { 325 strlcpy (buf, hcd->product_desc, sizeof buf); 326 327 // id 3 == vendor description 328 } else if (id == 3) { 329 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 330 init_utsname()->release, hcd->driver->description); 331 } 332 333 switch (len) { /* All cases fall through */ 334 default: 335 len = 2 + ascii2utf (buf, data + 2, len - 2); 336 case 2: 337 data [1] = 3; /* type == string */ 338 case 1: 339 data [0] = 2 * (strlen (buf) + 1); 340 case 0: 341 ; /* Compiler wants a statement here */ 342 } 343 return len; 344 } 345 346 347 /* Root hub control transfers execute synchronously */ 348 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 349 { 350 struct usb_ctrlrequest *cmd; 351 u16 typeReq, wValue, wIndex, wLength; 352 u8 *ubuf = urb->transfer_buffer; 353 u8 tbuf [sizeof (struct usb_hub_descriptor)] 354 __attribute__((aligned(4))); 355 const u8 *bufp = tbuf; 356 unsigned len = 0; 357 int status; 358 u8 patch_wakeup = 0; 359 u8 patch_protocol = 0; 360 361 might_sleep(); 362 363 spin_lock_irq(&hcd_root_hub_lock); 364 status = usb_hcd_link_urb_to_ep(hcd, urb); 365 spin_unlock_irq(&hcd_root_hub_lock); 366 if (status) 367 return status; 368 urb->hcpriv = hcd; /* Indicate it's queued */ 369 370 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 371 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 372 wValue = le16_to_cpu (cmd->wValue); 373 wIndex = le16_to_cpu (cmd->wIndex); 374 wLength = le16_to_cpu (cmd->wLength); 375 376 if (wLength > urb->transfer_buffer_length) 377 goto error; 378 379 urb->actual_length = 0; 380 switch (typeReq) { 381 382 /* DEVICE REQUESTS */ 383 384 /* The root hub's remote wakeup enable bit is implemented using 385 * driver model wakeup flags. If this system supports wakeup 386 * through USB, userspace may change the default "allow wakeup" 387 * policy through sysfs or these calls. 388 * 389 * Most root hubs support wakeup from downstream devices, for 390 * runtime power management (disabling USB clocks and reducing 391 * VBUS power usage). However, not all of them do so; silicon, 392 * board, and BIOS bugs here are not uncommon, so these can't 393 * be treated quite like external hubs. 394 * 395 * Likewise, not all root hubs will pass wakeup events upstream, 396 * to wake up the whole system. So don't assume root hub and 397 * controller capabilities are identical. 398 */ 399 400 case DeviceRequest | USB_REQ_GET_STATUS: 401 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev) 402 << USB_DEVICE_REMOTE_WAKEUP) 403 | (1 << USB_DEVICE_SELF_POWERED); 404 tbuf [1] = 0; 405 len = 2; 406 break; 407 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 408 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 409 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 410 else 411 goto error; 412 break; 413 case DeviceOutRequest | USB_REQ_SET_FEATURE: 414 if (device_can_wakeup(&hcd->self.root_hub->dev) 415 && wValue == USB_DEVICE_REMOTE_WAKEUP) 416 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 417 else 418 goto error; 419 break; 420 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 421 tbuf [0] = 1; 422 len = 1; 423 /* FALLTHROUGH */ 424 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 425 break; 426 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 427 switch (wValue & 0xff00) { 428 case USB_DT_DEVICE << 8: 429 if (hcd->driver->flags & HCD_USB2) 430 bufp = usb2_rh_dev_descriptor; 431 else if (hcd->driver->flags & HCD_USB11) 432 bufp = usb11_rh_dev_descriptor; 433 else 434 goto error; 435 len = 18; 436 if (hcd->has_tt) 437 patch_protocol = 1; 438 break; 439 case USB_DT_CONFIG << 8: 440 if (hcd->driver->flags & HCD_USB2) { 441 bufp = hs_rh_config_descriptor; 442 len = sizeof hs_rh_config_descriptor; 443 } else { 444 bufp = fs_rh_config_descriptor; 445 len = sizeof fs_rh_config_descriptor; 446 } 447 if (device_can_wakeup(&hcd->self.root_hub->dev)) 448 patch_wakeup = 1; 449 break; 450 case USB_DT_STRING << 8: 451 if ((wValue & 0xff) < 4) 452 urb->actual_length = rh_string(wValue & 0xff, 453 hcd, ubuf, wLength); 454 else /* unsupported IDs --> "protocol stall" */ 455 goto error; 456 break; 457 default: 458 goto error; 459 } 460 break; 461 case DeviceRequest | USB_REQ_GET_INTERFACE: 462 tbuf [0] = 0; 463 len = 1; 464 /* FALLTHROUGH */ 465 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 466 break; 467 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 468 // wValue == urb->dev->devaddr 469 dev_dbg (hcd->self.controller, "root hub device address %d\n", 470 wValue); 471 break; 472 473 /* INTERFACE REQUESTS (no defined feature/status flags) */ 474 475 /* ENDPOINT REQUESTS */ 476 477 case EndpointRequest | USB_REQ_GET_STATUS: 478 // ENDPOINT_HALT flag 479 tbuf [0] = 0; 480 tbuf [1] = 0; 481 len = 2; 482 /* FALLTHROUGH */ 483 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 484 case EndpointOutRequest | USB_REQ_SET_FEATURE: 485 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 486 break; 487 488 /* CLASS REQUESTS (and errors) */ 489 490 default: 491 /* non-generic request */ 492 switch (typeReq) { 493 case GetHubStatus: 494 case GetPortStatus: 495 len = 4; 496 break; 497 case GetHubDescriptor: 498 len = sizeof (struct usb_hub_descriptor); 499 break; 500 } 501 status = hcd->driver->hub_control (hcd, 502 typeReq, wValue, wIndex, 503 tbuf, wLength); 504 break; 505 error: 506 /* "protocol stall" on error */ 507 status = -EPIPE; 508 } 509 510 if (status) { 511 len = 0; 512 if (status != -EPIPE) { 513 dev_dbg (hcd->self.controller, 514 "CTRL: TypeReq=0x%x val=0x%x " 515 "idx=0x%x len=%d ==> %d\n", 516 typeReq, wValue, wIndex, 517 wLength, status); 518 } 519 } 520 if (len) { 521 if (urb->transfer_buffer_length < len) 522 len = urb->transfer_buffer_length; 523 urb->actual_length = len; 524 // always USB_DIR_IN, toward host 525 memcpy (ubuf, bufp, len); 526 527 /* report whether RH hardware supports remote wakeup */ 528 if (patch_wakeup && 529 len > offsetof (struct usb_config_descriptor, 530 bmAttributes)) 531 ((struct usb_config_descriptor *)ubuf)->bmAttributes 532 |= USB_CONFIG_ATT_WAKEUP; 533 534 /* report whether RH hardware has an integrated TT */ 535 if (patch_protocol && 536 len > offsetof(struct usb_device_descriptor, 537 bDeviceProtocol)) 538 ((struct usb_device_descriptor *) ubuf)-> 539 bDeviceProtocol = 1; 540 } 541 542 /* any errors get returned through the urb completion */ 543 spin_lock_irq(&hcd_root_hub_lock); 544 usb_hcd_unlink_urb_from_ep(hcd, urb); 545 546 /* This peculiar use of spinlocks echoes what real HC drivers do. 547 * Avoiding calls to local_irq_disable/enable makes the code 548 * RT-friendly. 549 */ 550 spin_unlock(&hcd_root_hub_lock); 551 usb_hcd_giveback_urb(hcd, urb, status); 552 spin_lock(&hcd_root_hub_lock); 553 554 spin_unlock_irq(&hcd_root_hub_lock); 555 return 0; 556 } 557 558 /*-------------------------------------------------------------------------*/ 559 560 /* 561 * Root Hub interrupt transfers are polled using a timer if the 562 * driver requests it; otherwise the driver is responsible for 563 * calling usb_hcd_poll_rh_status() when an event occurs. 564 * 565 * Completions are called in_interrupt(), but they may or may not 566 * be in_irq(). 567 */ 568 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 569 { 570 struct urb *urb; 571 int length; 572 unsigned long flags; 573 char buffer[4]; /* Any root hubs with > 31 ports? */ 574 575 if (unlikely(!hcd->rh_registered)) 576 return; 577 if (!hcd->uses_new_polling && !hcd->status_urb) 578 return; 579 580 length = hcd->driver->hub_status_data(hcd, buffer); 581 if (length > 0) { 582 583 /* try to complete the status urb */ 584 spin_lock_irqsave(&hcd_root_hub_lock, flags); 585 urb = hcd->status_urb; 586 if (urb) { 587 hcd->poll_pending = 0; 588 hcd->status_urb = NULL; 589 urb->actual_length = length; 590 memcpy(urb->transfer_buffer, buffer, length); 591 592 usb_hcd_unlink_urb_from_ep(hcd, urb); 593 spin_unlock(&hcd_root_hub_lock); 594 usb_hcd_giveback_urb(hcd, urb, 0); 595 spin_lock(&hcd_root_hub_lock); 596 } else { 597 length = 0; 598 hcd->poll_pending = 1; 599 } 600 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 601 } 602 603 /* The USB 2.0 spec says 256 ms. This is close enough and won't 604 * exceed that limit if HZ is 100. The math is more clunky than 605 * maybe expected, this is to make sure that all timers for USB devices 606 * fire at the same time to give the CPU a break inbetween */ 607 if (hcd->uses_new_polling ? hcd->poll_rh : 608 (length == 0 && hcd->status_urb != NULL)) 609 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 610 } 611 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 612 613 /* timer callback */ 614 static void rh_timer_func (unsigned long _hcd) 615 { 616 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd); 617 } 618 619 /*-------------------------------------------------------------------------*/ 620 621 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 622 { 623 int retval; 624 unsigned long flags; 625 unsigned len = 1 + (urb->dev->maxchild / 8); 626 627 spin_lock_irqsave (&hcd_root_hub_lock, flags); 628 if (hcd->status_urb || urb->transfer_buffer_length < len) { 629 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 630 retval = -EINVAL; 631 goto done; 632 } 633 634 retval = usb_hcd_link_urb_to_ep(hcd, urb); 635 if (retval) 636 goto done; 637 638 hcd->status_urb = urb; 639 urb->hcpriv = hcd; /* indicate it's queued */ 640 if (!hcd->uses_new_polling) 641 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 642 643 /* If a status change has already occurred, report it ASAP */ 644 else if (hcd->poll_pending) 645 mod_timer(&hcd->rh_timer, jiffies); 646 retval = 0; 647 done: 648 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 649 return retval; 650 } 651 652 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 653 { 654 if (usb_endpoint_xfer_int(&urb->ep->desc)) 655 return rh_queue_status (hcd, urb); 656 if (usb_endpoint_xfer_control(&urb->ep->desc)) 657 return rh_call_control (hcd, urb); 658 return -EINVAL; 659 } 660 661 /*-------------------------------------------------------------------------*/ 662 663 /* Unlinks of root-hub control URBs are legal, but they don't do anything 664 * since these URBs always execute synchronously. 665 */ 666 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 667 { 668 unsigned long flags; 669 int rc; 670 671 spin_lock_irqsave(&hcd_root_hub_lock, flags); 672 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 673 if (rc) 674 goto done; 675 676 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 677 ; /* Do nothing */ 678 679 } else { /* Status URB */ 680 if (!hcd->uses_new_polling) 681 del_timer (&hcd->rh_timer); 682 if (urb == hcd->status_urb) { 683 hcd->status_urb = NULL; 684 usb_hcd_unlink_urb_from_ep(hcd, urb); 685 686 spin_unlock(&hcd_root_hub_lock); 687 usb_hcd_giveback_urb(hcd, urb, status); 688 spin_lock(&hcd_root_hub_lock); 689 } 690 } 691 done: 692 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 693 return rc; 694 } 695 696 697 698 /* 699 * Show & store the current value of authorized_default 700 */ 701 static ssize_t usb_host_authorized_default_show(struct device *dev, 702 struct device_attribute *attr, 703 char *buf) 704 { 705 struct usb_device *rh_usb_dev = to_usb_device(dev); 706 struct usb_bus *usb_bus = rh_usb_dev->bus; 707 struct usb_hcd *usb_hcd; 708 709 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */ 710 return -ENODEV; 711 usb_hcd = bus_to_hcd(usb_bus); 712 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default); 713 } 714 715 static ssize_t usb_host_authorized_default_store(struct device *dev, 716 struct device_attribute *attr, 717 const char *buf, size_t size) 718 { 719 ssize_t result; 720 unsigned val; 721 struct usb_device *rh_usb_dev = to_usb_device(dev); 722 struct usb_bus *usb_bus = rh_usb_dev->bus; 723 struct usb_hcd *usb_hcd; 724 725 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */ 726 return -ENODEV; 727 usb_hcd = bus_to_hcd(usb_bus); 728 result = sscanf(buf, "%u\n", &val); 729 if (result == 1) { 730 usb_hcd->authorized_default = val? 1 : 0; 731 result = size; 732 } 733 else 734 result = -EINVAL; 735 return result; 736 } 737 738 static DEVICE_ATTR(authorized_default, 0644, 739 usb_host_authorized_default_show, 740 usb_host_authorized_default_store); 741 742 743 /* Group all the USB bus attributes */ 744 static struct attribute *usb_bus_attrs[] = { 745 &dev_attr_authorized_default.attr, 746 NULL, 747 }; 748 749 static struct attribute_group usb_bus_attr_group = { 750 .name = NULL, /* we want them in the same directory */ 751 .attrs = usb_bus_attrs, 752 }; 753 754 755 756 /*-------------------------------------------------------------------------*/ 757 758 static struct class *usb_host_class; 759 760 int usb_host_init(void) 761 { 762 int retval = 0; 763 764 usb_host_class = class_create(THIS_MODULE, "usb_host"); 765 if (IS_ERR(usb_host_class)) 766 retval = PTR_ERR(usb_host_class); 767 return retval; 768 } 769 770 void usb_host_cleanup(void) 771 { 772 class_destroy(usb_host_class); 773 } 774 775 /** 776 * usb_bus_init - shared initialization code 777 * @bus: the bus structure being initialized 778 * 779 * This code is used to initialize a usb_bus structure, memory for which is 780 * separately managed. 781 */ 782 static void usb_bus_init (struct usb_bus *bus) 783 { 784 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 785 786 bus->devnum_next = 1; 787 788 bus->root_hub = NULL; 789 bus->busnum = -1; 790 bus->bandwidth_allocated = 0; 791 bus->bandwidth_int_reqs = 0; 792 bus->bandwidth_isoc_reqs = 0; 793 794 INIT_LIST_HEAD (&bus->bus_list); 795 } 796 797 /*-------------------------------------------------------------------------*/ 798 799 /** 800 * usb_register_bus - registers the USB host controller with the usb core 801 * @bus: pointer to the bus to register 802 * Context: !in_interrupt() 803 * 804 * Assigns a bus number, and links the controller into usbcore data 805 * structures so that it can be seen by scanning the bus list. 806 */ 807 static int usb_register_bus(struct usb_bus *bus) 808 { 809 int result = -E2BIG; 810 int busnum; 811 812 mutex_lock(&usb_bus_list_lock); 813 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1); 814 if (busnum >= USB_MAXBUS) { 815 printk (KERN_ERR "%s: too many buses\n", usbcore_name); 816 goto error_find_busnum; 817 } 818 set_bit (busnum, busmap.busmap); 819 bus->busnum = busnum; 820 821 bus->dev = device_create(usb_host_class, bus->controller, MKDEV(0, 0), 822 bus, "usb_host%d", busnum); 823 result = PTR_ERR(bus->dev); 824 if (IS_ERR(bus->dev)) 825 goto error_create_class_dev; 826 827 /* Add it to the local list of buses */ 828 list_add (&bus->bus_list, &usb_bus_list); 829 mutex_unlock(&usb_bus_list_lock); 830 831 usb_notify_add_bus(bus); 832 833 dev_info (bus->controller, "new USB bus registered, assigned bus " 834 "number %d\n", bus->busnum); 835 return 0; 836 837 error_create_class_dev: 838 clear_bit(busnum, busmap.busmap); 839 error_find_busnum: 840 mutex_unlock(&usb_bus_list_lock); 841 return result; 842 } 843 844 /** 845 * usb_deregister_bus - deregisters the USB host controller 846 * @bus: pointer to the bus to deregister 847 * Context: !in_interrupt() 848 * 849 * Recycles the bus number, and unlinks the controller from usbcore data 850 * structures so that it won't be seen by scanning the bus list. 851 */ 852 static void usb_deregister_bus (struct usb_bus *bus) 853 { 854 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 855 856 /* 857 * NOTE: make sure that all the devices are removed by the 858 * controller code, as well as having it call this when cleaning 859 * itself up 860 */ 861 mutex_lock(&usb_bus_list_lock); 862 list_del (&bus->bus_list); 863 mutex_unlock(&usb_bus_list_lock); 864 865 usb_notify_remove_bus(bus); 866 867 clear_bit (bus->busnum, busmap.busmap); 868 869 device_unregister(bus->dev); 870 } 871 872 /** 873 * register_root_hub - called by usb_add_hcd() to register a root hub 874 * @hcd: host controller for this root hub 875 * 876 * This function registers the root hub with the USB subsystem. It sets up 877 * the device properly in the device tree and then calls usb_new_device() 878 * to register the usb device. It also assigns the root hub's USB address 879 * (always 1). 880 */ 881 static int register_root_hub(struct usb_hcd *hcd) 882 { 883 struct device *parent_dev = hcd->self.controller; 884 struct usb_device *usb_dev = hcd->self.root_hub; 885 const int devnum = 1; 886 int retval; 887 888 usb_dev->devnum = devnum; 889 usb_dev->bus->devnum_next = devnum + 1; 890 memset (&usb_dev->bus->devmap.devicemap, 0, 891 sizeof usb_dev->bus->devmap.devicemap); 892 set_bit (devnum, usb_dev->bus->devmap.devicemap); 893 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 894 895 mutex_lock(&usb_bus_list_lock); 896 897 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); 898 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); 899 if (retval != sizeof usb_dev->descriptor) { 900 mutex_unlock(&usb_bus_list_lock); 901 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 902 dev_name(&usb_dev->dev), retval); 903 return (retval < 0) ? retval : -EMSGSIZE; 904 } 905 906 retval = usb_new_device (usb_dev); 907 if (retval) { 908 dev_err (parent_dev, "can't register root hub for %s, %d\n", 909 dev_name(&usb_dev->dev), retval); 910 } 911 mutex_unlock(&usb_bus_list_lock); 912 913 if (retval == 0) { 914 spin_lock_irq (&hcd_root_hub_lock); 915 hcd->rh_registered = 1; 916 spin_unlock_irq (&hcd_root_hub_lock); 917 918 /* Did the HC die before the root hub was registered? */ 919 if (hcd->state == HC_STATE_HALT) 920 usb_hc_died (hcd); /* This time clean up */ 921 } 922 923 return retval; 924 } 925 926 927 /*-------------------------------------------------------------------------*/ 928 929 /** 930 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 931 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 932 * @is_input: true iff the transaction sends data to the host 933 * @isoc: true for isochronous transactions, false for interrupt ones 934 * @bytecount: how many bytes in the transaction. 935 * 936 * Returns approximate bus time in nanoseconds for a periodic transaction. 937 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 938 * scheduled in software, this function is only used for such scheduling. 939 */ 940 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 941 { 942 unsigned long tmp; 943 944 switch (speed) { 945 case USB_SPEED_LOW: /* INTR only */ 946 if (is_input) { 947 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 948 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp); 949 } else { 950 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 951 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp); 952 } 953 case USB_SPEED_FULL: /* ISOC or INTR */ 954 if (isoc) { 955 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 956 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp); 957 } else { 958 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 959 return (9107L + BW_HOST_DELAY + tmp); 960 } 961 case USB_SPEED_HIGH: /* ISOC or INTR */ 962 // FIXME adjust for input vs output 963 if (isoc) 964 tmp = HS_NSECS_ISO (bytecount); 965 else 966 tmp = HS_NSECS (bytecount); 967 return tmp; 968 default: 969 pr_debug ("%s: bogus device speed!\n", usbcore_name); 970 return -1; 971 } 972 } 973 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 974 975 976 /*-------------------------------------------------------------------------*/ 977 978 /* 979 * Generic HC operations. 980 */ 981 982 /*-------------------------------------------------------------------------*/ 983 984 /** 985 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 986 * @hcd: host controller to which @urb was submitted 987 * @urb: URB being submitted 988 * 989 * Host controller drivers should call this routine in their enqueue() 990 * method. The HCD's private spinlock must be held and interrupts must 991 * be disabled. The actions carried out here are required for URB 992 * submission, as well as for endpoint shutdown and for usb_kill_urb. 993 * 994 * Returns 0 for no error, otherwise a negative error code (in which case 995 * the enqueue() method must fail). If no error occurs but enqueue() fails 996 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 997 * the private spinlock and returning. 998 */ 999 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1000 { 1001 int rc = 0; 1002 1003 spin_lock(&hcd_urb_list_lock); 1004 1005 /* Check that the URB isn't being killed */ 1006 if (unlikely(atomic_read(&urb->reject))) { 1007 rc = -EPERM; 1008 goto done; 1009 } 1010 1011 if (unlikely(!urb->ep->enabled)) { 1012 rc = -ENOENT; 1013 goto done; 1014 } 1015 1016 if (unlikely(!urb->dev->can_submit)) { 1017 rc = -EHOSTUNREACH; 1018 goto done; 1019 } 1020 1021 /* 1022 * Check the host controller's state and add the URB to the 1023 * endpoint's queue. 1024 */ 1025 switch (hcd->state) { 1026 case HC_STATE_RUNNING: 1027 case HC_STATE_RESUMING: 1028 urb->unlinked = 0; 1029 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1030 break; 1031 default: 1032 rc = -ESHUTDOWN; 1033 goto done; 1034 } 1035 done: 1036 spin_unlock(&hcd_urb_list_lock); 1037 return rc; 1038 } 1039 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1040 1041 /** 1042 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1043 * @hcd: host controller to which @urb was submitted 1044 * @urb: URB being checked for unlinkability 1045 * @status: error code to store in @urb if the unlink succeeds 1046 * 1047 * Host controller drivers should call this routine in their dequeue() 1048 * method. The HCD's private spinlock must be held and interrupts must 1049 * be disabled. The actions carried out here are required for making 1050 * sure than an unlink is valid. 1051 * 1052 * Returns 0 for no error, otherwise a negative error code (in which case 1053 * the dequeue() method must fail). The possible error codes are: 1054 * 1055 * -EIDRM: @urb was not submitted or has already completed. 1056 * The completion function may not have been called yet. 1057 * 1058 * -EBUSY: @urb has already been unlinked. 1059 */ 1060 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1061 int status) 1062 { 1063 struct list_head *tmp; 1064 1065 /* insist the urb is still queued */ 1066 list_for_each(tmp, &urb->ep->urb_list) { 1067 if (tmp == &urb->urb_list) 1068 break; 1069 } 1070 if (tmp != &urb->urb_list) 1071 return -EIDRM; 1072 1073 /* Any status except -EINPROGRESS means something already started to 1074 * unlink this URB from the hardware. So there's no more work to do. 1075 */ 1076 if (urb->unlinked) 1077 return -EBUSY; 1078 urb->unlinked = status; 1079 1080 /* IRQ setup can easily be broken so that USB controllers 1081 * never get completion IRQs ... maybe even the ones we need to 1082 * finish unlinking the initial failed usb_set_address() 1083 * or device descriptor fetch. 1084 */ 1085 if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags) && 1086 !is_root_hub(urb->dev)) { 1087 dev_warn(hcd->self.controller, "Unlink after no-IRQ? " 1088 "Controller is probably using the wrong IRQ.\n"); 1089 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags); 1090 } 1091 1092 return 0; 1093 } 1094 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1095 1096 /** 1097 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1098 * @hcd: host controller to which @urb was submitted 1099 * @urb: URB being unlinked 1100 * 1101 * Host controller drivers should call this routine before calling 1102 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1103 * interrupts must be disabled. The actions carried out here are required 1104 * for URB completion. 1105 */ 1106 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1107 { 1108 /* clear all state linking urb to this dev (and hcd) */ 1109 spin_lock(&hcd_urb_list_lock); 1110 list_del_init(&urb->urb_list); 1111 spin_unlock(&hcd_urb_list_lock); 1112 } 1113 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1114 1115 /* 1116 * Some usb host controllers can only perform dma using a small SRAM area. 1117 * The usb core itself is however optimized for host controllers that can dma 1118 * using regular system memory - like pci devices doing bus mastering. 1119 * 1120 * To support host controllers with limited dma capabilites we provide dma 1121 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag. 1122 * For this to work properly the host controller code must first use the 1123 * function dma_declare_coherent_memory() to point out which memory area 1124 * that should be used for dma allocations. 1125 * 1126 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for 1127 * dma using dma_alloc_coherent() which in turn allocates from the memory 1128 * area pointed out with dma_declare_coherent_memory(). 1129 * 1130 * So, to summarize... 1131 * 1132 * - We need "local" memory, canonical example being 1133 * a small SRAM on a discrete controller being the 1134 * only memory that the controller can read ... 1135 * (a) "normal" kernel memory is no good, and 1136 * (b) there's not enough to share 1137 * 1138 * - The only *portable* hook for such stuff in the 1139 * DMA framework is dma_declare_coherent_memory() 1140 * 1141 * - So we use that, even though the primary requirement 1142 * is that the memory be "local" (hence addressible 1143 * by that device), not "coherent". 1144 * 1145 */ 1146 1147 static int hcd_alloc_coherent(struct usb_bus *bus, 1148 gfp_t mem_flags, dma_addr_t *dma_handle, 1149 void **vaddr_handle, size_t size, 1150 enum dma_data_direction dir) 1151 { 1152 unsigned char *vaddr; 1153 1154 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr), 1155 mem_flags, dma_handle); 1156 if (!vaddr) 1157 return -ENOMEM; 1158 1159 /* 1160 * Store the virtual address of the buffer at the end 1161 * of the allocated dma buffer. The size of the buffer 1162 * may be uneven so use unaligned functions instead 1163 * of just rounding up. It makes sense to optimize for 1164 * memory footprint over access speed since the amount 1165 * of memory available for dma may be limited. 1166 */ 1167 put_unaligned((unsigned long)*vaddr_handle, 1168 (unsigned long *)(vaddr + size)); 1169 1170 if (dir == DMA_TO_DEVICE) 1171 memcpy(vaddr, *vaddr_handle, size); 1172 1173 *vaddr_handle = vaddr; 1174 return 0; 1175 } 1176 1177 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1178 void **vaddr_handle, size_t size, 1179 enum dma_data_direction dir) 1180 { 1181 unsigned char *vaddr = *vaddr_handle; 1182 1183 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1184 1185 if (dir == DMA_FROM_DEVICE) 1186 memcpy(vaddr, *vaddr_handle, size); 1187 1188 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1189 1190 *vaddr_handle = vaddr; 1191 *dma_handle = 0; 1192 } 1193 1194 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1195 gfp_t mem_flags) 1196 { 1197 enum dma_data_direction dir; 1198 int ret = 0; 1199 1200 /* Map the URB's buffers for DMA access. 1201 * Lower level HCD code should use *_dma exclusively, 1202 * unless it uses pio or talks to another transport. 1203 */ 1204 if (is_root_hub(urb->dev)) 1205 return 0; 1206 1207 if (usb_endpoint_xfer_control(&urb->ep->desc) 1208 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) { 1209 if (hcd->self.uses_dma) 1210 urb->setup_dma = dma_map_single( 1211 hcd->self.controller, 1212 urb->setup_packet, 1213 sizeof(struct usb_ctrlrequest), 1214 DMA_TO_DEVICE); 1215 else if (hcd->driver->flags & HCD_LOCAL_MEM) 1216 ret = hcd_alloc_coherent( 1217 urb->dev->bus, mem_flags, 1218 &urb->setup_dma, 1219 (void **)&urb->setup_packet, 1220 sizeof(struct usb_ctrlrequest), 1221 DMA_TO_DEVICE); 1222 } 1223 1224 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1225 if (ret == 0 && urb->transfer_buffer_length != 0 1226 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1227 if (hcd->self.uses_dma) 1228 urb->transfer_dma = dma_map_single ( 1229 hcd->self.controller, 1230 urb->transfer_buffer, 1231 urb->transfer_buffer_length, 1232 dir); 1233 else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1234 ret = hcd_alloc_coherent( 1235 urb->dev->bus, mem_flags, 1236 &urb->transfer_dma, 1237 &urb->transfer_buffer, 1238 urb->transfer_buffer_length, 1239 dir); 1240 1241 if (ret && usb_endpoint_xfer_control(&urb->ep->desc) 1242 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) 1243 hcd_free_coherent(urb->dev->bus, 1244 &urb->setup_dma, 1245 (void **)&urb->setup_packet, 1246 sizeof(struct usb_ctrlrequest), 1247 DMA_TO_DEVICE); 1248 } 1249 } 1250 return ret; 1251 } 1252 1253 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1254 { 1255 enum dma_data_direction dir; 1256 1257 if (is_root_hub(urb->dev)) 1258 return; 1259 1260 if (usb_endpoint_xfer_control(&urb->ep->desc) 1261 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) { 1262 if (hcd->self.uses_dma) 1263 dma_unmap_single(hcd->self.controller, urb->setup_dma, 1264 sizeof(struct usb_ctrlrequest), 1265 DMA_TO_DEVICE); 1266 else if (hcd->driver->flags & HCD_LOCAL_MEM) 1267 hcd_free_coherent(urb->dev->bus, &urb->setup_dma, 1268 (void **)&urb->setup_packet, 1269 sizeof(struct usb_ctrlrequest), 1270 DMA_TO_DEVICE); 1271 } 1272 1273 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1274 if (urb->transfer_buffer_length != 0 1275 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1276 if (hcd->self.uses_dma) 1277 dma_unmap_single(hcd->self.controller, 1278 urb->transfer_dma, 1279 urb->transfer_buffer_length, 1280 dir); 1281 else if (hcd->driver->flags & HCD_LOCAL_MEM) 1282 hcd_free_coherent(urb->dev->bus, &urb->transfer_dma, 1283 &urb->transfer_buffer, 1284 urb->transfer_buffer_length, 1285 dir); 1286 } 1287 } 1288 1289 /*-------------------------------------------------------------------------*/ 1290 1291 /* may be called in any context with a valid urb->dev usecount 1292 * caller surrenders "ownership" of urb 1293 * expects usb_submit_urb() to have sanity checked and conditioned all 1294 * inputs in the urb 1295 */ 1296 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1297 { 1298 int status; 1299 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1300 1301 /* increment urb's reference count as part of giving it to the HCD 1302 * (which will control it). HCD guarantees that it either returns 1303 * an error or calls giveback(), but not both. 1304 */ 1305 usb_get_urb(urb); 1306 atomic_inc(&urb->use_count); 1307 atomic_inc(&urb->dev->urbnum); 1308 usbmon_urb_submit(&hcd->self, urb); 1309 1310 /* NOTE requirements on root-hub callers (usbfs and the hub 1311 * driver, for now): URBs' urb->transfer_buffer must be 1312 * valid and usb_buffer_{sync,unmap}() not be needed, since 1313 * they could clobber root hub response data. Also, control 1314 * URBs must be submitted in process context with interrupts 1315 * enabled. 1316 */ 1317 status = map_urb_for_dma(hcd, urb, mem_flags); 1318 if (unlikely(status)) { 1319 usbmon_urb_submit_error(&hcd->self, urb, status); 1320 goto error; 1321 } 1322 1323 if (is_root_hub(urb->dev)) 1324 status = rh_urb_enqueue(hcd, urb); 1325 else 1326 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1327 1328 if (unlikely(status)) { 1329 usbmon_urb_submit_error(&hcd->self, urb, status); 1330 unmap_urb_for_dma(hcd, urb); 1331 error: 1332 urb->hcpriv = NULL; 1333 INIT_LIST_HEAD(&urb->urb_list); 1334 atomic_dec(&urb->use_count); 1335 atomic_dec(&urb->dev->urbnum); 1336 if (atomic_read(&urb->reject)) 1337 wake_up(&usb_kill_urb_queue); 1338 usb_put_urb(urb); 1339 } 1340 return status; 1341 } 1342 1343 /*-------------------------------------------------------------------------*/ 1344 1345 /* this makes the hcd giveback() the urb more quickly, by kicking it 1346 * off hardware queues (which may take a while) and returning it as 1347 * soon as practical. we've already set up the urb's return status, 1348 * but we can't know if the callback completed already. 1349 */ 1350 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1351 { 1352 int value; 1353 1354 if (is_root_hub(urb->dev)) 1355 value = usb_rh_urb_dequeue(hcd, urb, status); 1356 else { 1357 1358 /* The only reason an HCD might fail this call is if 1359 * it has not yet fully queued the urb to begin with. 1360 * Such failures should be harmless. */ 1361 value = hcd->driver->urb_dequeue(hcd, urb, status); 1362 } 1363 return value; 1364 } 1365 1366 /* 1367 * called in any context 1368 * 1369 * caller guarantees urb won't be recycled till both unlink() 1370 * and the urb's completion function return 1371 */ 1372 int usb_hcd_unlink_urb (struct urb *urb, int status) 1373 { 1374 struct usb_hcd *hcd; 1375 int retval = -EIDRM; 1376 unsigned long flags; 1377 1378 /* Prevent the device and bus from going away while 1379 * the unlink is carried out. If they are already gone 1380 * then urb->use_count must be 0, since disconnected 1381 * devices can't have any active URBs. 1382 */ 1383 spin_lock_irqsave(&hcd_urb_unlink_lock, flags); 1384 if (atomic_read(&urb->use_count) > 0) { 1385 retval = 0; 1386 usb_get_dev(urb->dev); 1387 } 1388 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); 1389 if (retval == 0) { 1390 hcd = bus_to_hcd(urb->dev->bus); 1391 retval = unlink1(hcd, urb, status); 1392 usb_put_dev(urb->dev); 1393 } 1394 1395 if (retval == 0) 1396 retval = -EINPROGRESS; 1397 else if (retval != -EIDRM && retval != -EBUSY) 1398 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n", 1399 urb, retval); 1400 return retval; 1401 } 1402 1403 /*-------------------------------------------------------------------------*/ 1404 1405 /** 1406 * usb_hcd_giveback_urb - return URB from HCD to device driver 1407 * @hcd: host controller returning the URB 1408 * @urb: urb being returned to the USB device driver. 1409 * @status: completion status code for the URB. 1410 * Context: in_interrupt() 1411 * 1412 * This hands the URB from HCD to its USB device driver, using its 1413 * completion function. The HCD has freed all per-urb resources 1414 * (and is done using urb->hcpriv). It also released all HCD locks; 1415 * the device driver won't cause problems if it frees, modifies, 1416 * or resubmits this URB. 1417 * 1418 * If @urb was unlinked, the value of @status will be overridden by 1419 * @urb->unlinked. Erroneous short transfers are detected in case 1420 * the HCD hasn't checked for them. 1421 */ 1422 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1423 { 1424 urb->hcpriv = NULL; 1425 if (unlikely(urb->unlinked)) 1426 status = urb->unlinked; 1427 else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1428 urb->actual_length < urb->transfer_buffer_length && 1429 !status)) 1430 status = -EREMOTEIO; 1431 1432 unmap_urb_for_dma(hcd, urb); 1433 usbmon_urb_complete(&hcd->self, urb, status); 1434 usb_unanchor_urb(urb); 1435 1436 /* pass ownership to the completion handler */ 1437 urb->status = status; 1438 urb->complete (urb); 1439 atomic_dec (&urb->use_count); 1440 if (unlikely(atomic_read(&urb->reject))) 1441 wake_up (&usb_kill_urb_queue); 1442 usb_put_urb (urb); 1443 } 1444 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1445 1446 /*-------------------------------------------------------------------------*/ 1447 1448 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1449 * queue to drain completely. The caller must first insure that no more 1450 * URBs can be submitted for this endpoint. 1451 */ 1452 void usb_hcd_flush_endpoint(struct usb_device *udev, 1453 struct usb_host_endpoint *ep) 1454 { 1455 struct usb_hcd *hcd; 1456 struct urb *urb; 1457 1458 if (!ep) 1459 return; 1460 might_sleep(); 1461 hcd = bus_to_hcd(udev->bus); 1462 1463 /* No more submits can occur */ 1464 spin_lock_irq(&hcd_urb_list_lock); 1465 rescan: 1466 list_for_each_entry (urb, &ep->urb_list, urb_list) { 1467 int is_in; 1468 1469 if (urb->unlinked) 1470 continue; 1471 usb_get_urb (urb); 1472 is_in = usb_urb_dir_in(urb); 1473 spin_unlock(&hcd_urb_list_lock); 1474 1475 /* kick hcd */ 1476 unlink1(hcd, urb, -ESHUTDOWN); 1477 dev_dbg (hcd->self.controller, 1478 "shutdown urb %p ep%d%s%s\n", 1479 urb, usb_endpoint_num(&ep->desc), 1480 is_in ? "in" : "out", 1481 ({ char *s; 1482 1483 switch (usb_endpoint_type(&ep->desc)) { 1484 case USB_ENDPOINT_XFER_CONTROL: 1485 s = ""; break; 1486 case USB_ENDPOINT_XFER_BULK: 1487 s = "-bulk"; break; 1488 case USB_ENDPOINT_XFER_INT: 1489 s = "-intr"; break; 1490 default: 1491 s = "-iso"; break; 1492 }; 1493 s; 1494 })); 1495 usb_put_urb (urb); 1496 1497 /* list contents may have changed */ 1498 spin_lock(&hcd_urb_list_lock); 1499 goto rescan; 1500 } 1501 spin_unlock_irq(&hcd_urb_list_lock); 1502 1503 /* Wait until the endpoint queue is completely empty */ 1504 while (!list_empty (&ep->urb_list)) { 1505 spin_lock_irq(&hcd_urb_list_lock); 1506 1507 /* The list may have changed while we acquired the spinlock */ 1508 urb = NULL; 1509 if (!list_empty (&ep->urb_list)) { 1510 urb = list_entry (ep->urb_list.prev, struct urb, 1511 urb_list); 1512 usb_get_urb (urb); 1513 } 1514 spin_unlock_irq(&hcd_urb_list_lock); 1515 1516 if (urb) { 1517 usb_kill_urb (urb); 1518 usb_put_urb (urb); 1519 } 1520 } 1521 } 1522 1523 /* Disables the endpoint: synchronizes with the hcd to make sure all 1524 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 1525 * have been called previously. Use for set_configuration, set_interface, 1526 * driver removal, physical disconnect. 1527 * 1528 * example: a qh stored in ep->hcpriv, holding state related to endpoint 1529 * type, maxpacket size, toggle, halt status, and scheduling. 1530 */ 1531 void usb_hcd_disable_endpoint(struct usb_device *udev, 1532 struct usb_host_endpoint *ep) 1533 { 1534 struct usb_hcd *hcd; 1535 1536 might_sleep(); 1537 hcd = bus_to_hcd(udev->bus); 1538 if (hcd->driver->endpoint_disable) 1539 hcd->driver->endpoint_disable(hcd, ep); 1540 } 1541 1542 /* Protect against drivers that try to unlink URBs after the device 1543 * is gone, by waiting until all unlinks for @udev are finished. 1544 * Since we don't currently track URBs by device, simply wait until 1545 * nothing is running in the locked region of usb_hcd_unlink_urb(). 1546 */ 1547 void usb_hcd_synchronize_unlinks(struct usb_device *udev) 1548 { 1549 spin_lock_irq(&hcd_urb_unlink_lock); 1550 spin_unlock_irq(&hcd_urb_unlink_lock); 1551 } 1552 1553 /*-------------------------------------------------------------------------*/ 1554 1555 /* called in any context */ 1556 int usb_hcd_get_frame_number (struct usb_device *udev) 1557 { 1558 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 1559 1560 if (!HC_IS_RUNNING (hcd->state)) 1561 return -ESHUTDOWN; 1562 return hcd->driver->get_frame_number (hcd); 1563 } 1564 1565 /*-------------------------------------------------------------------------*/ 1566 1567 #ifdef CONFIG_PM 1568 1569 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) 1570 { 1571 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 1572 int status; 1573 int old_state = hcd->state; 1574 1575 dev_dbg(&rhdev->dev, "bus %s%s\n", 1576 (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "suspend"); 1577 if (!hcd->driver->bus_suspend) { 1578 status = -ENOENT; 1579 } else { 1580 hcd->state = HC_STATE_QUIESCING; 1581 status = hcd->driver->bus_suspend(hcd); 1582 } 1583 if (status == 0) { 1584 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 1585 hcd->state = HC_STATE_SUSPENDED; 1586 } else { 1587 hcd->state = old_state; 1588 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 1589 "suspend", status); 1590 } 1591 return status; 1592 } 1593 1594 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) 1595 { 1596 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 1597 int status; 1598 int old_state = hcd->state; 1599 1600 dev_dbg(&rhdev->dev, "usb %s%s\n", 1601 (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "resume"); 1602 if (!hcd->driver->bus_resume) 1603 return -ENOENT; 1604 if (hcd->state == HC_STATE_RUNNING) 1605 return 0; 1606 1607 hcd->state = HC_STATE_RESUMING; 1608 status = hcd->driver->bus_resume(hcd); 1609 if (status == 0) { 1610 /* TRSMRCY = 10 msec */ 1611 msleep(10); 1612 usb_set_device_state(rhdev, rhdev->actconfig 1613 ? USB_STATE_CONFIGURED 1614 : USB_STATE_ADDRESS); 1615 hcd->state = HC_STATE_RUNNING; 1616 } else { 1617 hcd->state = old_state; 1618 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 1619 "resume", status); 1620 if (status != -ESHUTDOWN) 1621 usb_hc_died(hcd); 1622 } 1623 return status; 1624 } 1625 1626 /* Workqueue routine for root-hub remote wakeup */ 1627 static void hcd_resume_work(struct work_struct *work) 1628 { 1629 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 1630 struct usb_device *udev = hcd->self.root_hub; 1631 1632 usb_lock_device(udev); 1633 usb_mark_last_busy(udev); 1634 usb_external_resume_device(udev, PMSG_REMOTE_RESUME); 1635 usb_unlock_device(udev); 1636 } 1637 1638 /** 1639 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 1640 * @hcd: host controller for this root hub 1641 * 1642 * The USB host controller calls this function when its root hub is 1643 * suspended (with the remote wakeup feature enabled) and a remote 1644 * wakeup request is received. The routine submits a workqueue request 1645 * to resume the root hub (that is, manage its downstream ports again). 1646 */ 1647 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 1648 { 1649 unsigned long flags; 1650 1651 spin_lock_irqsave (&hcd_root_hub_lock, flags); 1652 if (hcd->rh_registered) 1653 queue_work(ksuspend_usb_wq, &hcd->wakeup_work); 1654 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 1655 } 1656 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 1657 1658 #endif 1659 1660 /*-------------------------------------------------------------------------*/ 1661 1662 #ifdef CONFIG_USB_OTG 1663 1664 /** 1665 * usb_bus_start_enum - start immediate enumeration (for OTG) 1666 * @bus: the bus (must use hcd framework) 1667 * @port_num: 1-based number of port; usually bus->otg_port 1668 * Context: in_interrupt() 1669 * 1670 * Starts enumeration, with an immediate reset followed later by 1671 * khubd identifying and possibly configuring the device. 1672 * This is needed by OTG controller drivers, where it helps meet 1673 * HNP protocol timing requirements for starting a port reset. 1674 */ 1675 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 1676 { 1677 struct usb_hcd *hcd; 1678 int status = -EOPNOTSUPP; 1679 1680 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 1681 * boards with root hubs hooked up to internal devices (instead of 1682 * just the OTG port) may need more attention to resetting... 1683 */ 1684 hcd = container_of (bus, struct usb_hcd, self); 1685 if (port_num && hcd->driver->start_port_reset) 1686 status = hcd->driver->start_port_reset(hcd, port_num); 1687 1688 /* run khubd shortly after (first) root port reset finishes; 1689 * it may issue others, until at least 50 msecs have passed. 1690 */ 1691 if (status == 0) 1692 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 1693 return status; 1694 } 1695 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 1696 1697 #endif 1698 1699 /*-------------------------------------------------------------------------*/ 1700 1701 /** 1702 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 1703 * @irq: the IRQ being raised 1704 * @__hcd: pointer to the HCD whose IRQ is being signaled 1705 * 1706 * If the controller isn't HALTed, calls the driver's irq handler. 1707 * Checks whether the controller is now dead. 1708 */ 1709 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 1710 { 1711 struct usb_hcd *hcd = __hcd; 1712 unsigned long flags; 1713 irqreturn_t rc; 1714 1715 /* IRQF_DISABLED doesn't work correctly with shared IRQs 1716 * when the first handler doesn't use it. So let's just 1717 * assume it's never used. 1718 */ 1719 local_irq_save(flags); 1720 1721 if (unlikely(hcd->state == HC_STATE_HALT || 1722 !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags))) { 1723 rc = IRQ_NONE; 1724 } else if (hcd->driver->irq(hcd) == IRQ_NONE) { 1725 rc = IRQ_NONE; 1726 } else { 1727 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags); 1728 1729 if (unlikely(hcd->state == HC_STATE_HALT)) 1730 usb_hc_died(hcd); 1731 rc = IRQ_HANDLED; 1732 } 1733 1734 local_irq_restore(flags); 1735 return rc; 1736 } 1737 1738 /*-------------------------------------------------------------------------*/ 1739 1740 /** 1741 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 1742 * @hcd: pointer to the HCD representing the controller 1743 * 1744 * This is called by bus glue to report a USB host controller that died 1745 * while operations may still have been pending. It's called automatically 1746 * by the PCI glue, so only glue for non-PCI busses should need to call it. 1747 */ 1748 void usb_hc_died (struct usb_hcd *hcd) 1749 { 1750 unsigned long flags; 1751 1752 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 1753 1754 spin_lock_irqsave (&hcd_root_hub_lock, flags); 1755 if (hcd->rh_registered) { 1756 hcd->poll_rh = 0; 1757 1758 /* make khubd clean up old urbs and devices */ 1759 usb_set_device_state (hcd->self.root_hub, 1760 USB_STATE_NOTATTACHED); 1761 usb_kick_khubd (hcd->self.root_hub); 1762 } 1763 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 1764 } 1765 EXPORT_SYMBOL_GPL (usb_hc_died); 1766 1767 /*-------------------------------------------------------------------------*/ 1768 1769 /** 1770 * usb_create_hcd - create and initialize an HCD structure 1771 * @driver: HC driver that will use this hcd 1772 * @dev: device for this HC, stored in hcd->self.controller 1773 * @bus_name: value to store in hcd->self.bus_name 1774 * Context: !in_interrupt() 1775 * 1776 * Allocate a struct usb_hcd, with extra space at the end for the 1777 * HC driver's private data. Initialize the generic members of the 1778 * hcd structure. 1779 * 1780 * If memory is unavailable, returns NULL. 1781 */ 1782 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver, 1783 struct device *dev, const char *bus_name) 1784 { 1785 struct usb_hcd *hcd; 1786 1787 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 1788 if (!hcd) { 1789 dev_dbg (dev, "hcd alloc failed\n"); 1790 return NULL; 1791 } 1792 dev_set_drvdata(dev, hcd); 1793 kref_init(&hcd->kref); 1794 1795 usb_bus_init(&hcd->self); 1796 hcd->self.controller = dev; 1797 hcd->self.bus_name = bus_name; 1798 hcd->self.uses_dma = (dev->dma_mask != NULL); 1799 1800 init_timer(&hcd->rh_timer); 1801 hcd->rh_timer.function = rh_timer_func; 1802 hcd->rh_timer.data = (unsigned long) hcd; 1803 #ifdef CONFIG_PM 1804 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 1805 #endif 1806 1807 hcd->driver = driver; 1808 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 1809 "USB Host Controller"; 1810 return hcd; 1811 } 1812 EXPORT_SYMBOL_GPL(usb_create_hcd); 1813 1814 static void hcd_release (struct kref *kref) 1815 { 1816 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 1817 1818 kfree(hcd); 1819 } 1820 1821 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 1822 { 1823 if (hcd) 1824 kref_get (&hcd->kref); 1825 return hcd; 1826 } 1827 EXPORT_SYMBOL_GPL(usb_get_hcd); 1828 1829 void usb_put_hcd (struct usb_hcd *hcd) 1830 { 1831 if (hcd) 1832 kref_put (&hcd->kref, hcd_release); 1833 } 1834 EXPORT_SYMBOL_GPL(usb_put_hcd); 1835 1836 /** 1837 * usb_add_hcd - finish generic HCD structure initialization and register 1838 * @hcd: the usb_hcd structure to initialize 1839 * @irqnum: Interrupt line to allocate 1840 * @irqflags: Interrupt type flags 1841 * 1842 * Finish the remaining parts of generic HCD initialization: allocate the 1843 * buffers of consistent memory, register the bus, request the IRQ line, 1844 * and call the driver's reset() and start() routines. 1845 */ 1846 int usb_add_hcd(struct usb_hcd *hcd, 1847 unsigned int irqnum, unsigned long irqflags) 1848 { 1849 int retval; 1850 struct usb_device *rhdev; 1851 1852 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 1853 1854 hcd->authorized_default = hcd->wireless? 0 : 1; 1855 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1856 1857 /* HC is in reset state, but accessible. Now do the one-time init, 1858 * bottom up so that hcds can customize the root hubs before khubd 1859 * starts talking to them. (Note, bus id is assigned early too.) 1860 */ 1861 if ((retval = hcd_buffer_create(hcd)) != 0) { 1862 dev_dbg(hcd->self.controller, "pool alloc failed\n"); 1863 return retval; 1864 } 1865 1866 if ((retval = usb_register_bus(&hcd->self)) < 0) 1867 goto err_register_bus; 1868 1869 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) { 1870 dev_err(hcd->self.controller, "unable to allocate root hub\n"); 1871 retval = -ENOMEM; 1872 goto err_allocate_root_hub; 1873 } 1874 rhdev->speed = (hcd->driver->flags & HCD_USB2) ? USB_SPEED_HIGH : 1875 USB_SPEED_FULL; 1876 hcd->self.root_hub = rhdev; 1877 1878 /* wakeup flag init defaults to "everything works" for root hubs, 1879 * but drivers can override it in reset() if needed, along with 1880 * recording the overall controller's system wakeup capability. 1881 */ 1882 device_init_wakeup(&rhdev->dev, 1); 1883 1884 /* "reset" is misnamed; its role is now one-time init. the controller 1885 * should already have been reset (and boot firmware kicked off etc). 1886 */ 1887 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) { 1888 dev_err(hcd->self.controller, "can't setup\n"); 1889 goto err_hcd_driver_setup; 1890 } 1891 1892 /* NOTE: root hub and controller capabilities may not be the same */ 1893 if (device_can_wakeup(hcd->self.controller) 1894 && device_can_wakeup(&hcd->self.root_hub->dev)) 1895 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 1896 1897 /* enable irqs just before we start the controller */ 1898 if (hcd->driver->irq) { 1899 1900 /* IRQF_DISABLED doesn't work as advertised when used together 1901 * with IRQF_SHARED. As usb_hcd_irq() will always disable 1902 * interrupts we can remove it here. 1903 */ 1904 if (irqflags & IRQF_SHARED) 1905 irqflags &= ~IRQF_DISABLED; 1906 1907 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 1908 hcd->driver->description, hcd->self.busnum); 1909 if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 1910 hcd->irq_descr, hcd)) != 0) { 1911 dev_err(hcd->self.controller, 1912 "request interrupt %d failed\n", irqnum); 1913 goto err_request_irq; 1914 } 1915 hcd->irq = irqnum; 1916 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 1917 (hcd->driver->flags & HCD_MEMORY) ? 1918 "io mem" : "io base", 1919 (unsigned long long)hcd->rsrc_start); 1920 } else { 1921 hcd->irq = -1; 1922 if (hcd->rsrc_start) 1923 dev_info(hcd->self.controller, "%s 0x%08llx\n", 1924 (hcd->driver->flags & HCD_MEMORY) ? 1925 "io mem" : "io base", 1926 (unsigned long long)hcd->rsrc_start); 1927 } 1928 1929 if ((retval = hcd->driver->start(hcd)) < 0) { 1930 dev_err(hcd->self.controller, "startup error %d\n", retval); 1931 goto err_hcd_driver_start; 1932 } 1933 1934 /* starting here, usbcore will pay attention to this root hub */ 1935 rhdev->bus_mA = min(500u, hcd->power_budget); 1936 if ((retval = register_root_hub(hcd)) != 0) 1937 goto err_register_root_hub; 1938 1939 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group); 1940 if (retval < 0) { 1941 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n", 1942 retval); 1943 goto error_create_attr_group; 1944 } 1945 if (hcd->uses_new_polling && hcd->poll_rh) 1946 usb_hcd_poll_rh_status(hcd); 1947 return retval; 1948 1949 error_create_attr_group: 1950 mutex_lock(&usb_bus_list_lock); 1951 usb_disconnect(&hcd->self.root_hub); 1952 mutex_unlock(&usb_bus_list_lock); 1953 err_register_root_hub: 1954 hcd->driver->stop(hcd); 1955 err_hcd_driver_start: 1956 if (hcd->irq >= 0) 1957 free_irq(irqnum, hcd); 1958 err_request_irq: 1959 err_hcd_driver_setup: 1960 hcd->self.root_hub = NULL; 1961 usb_put_dev(rhdev); 1962 err_allocate_root_hub: 1963 usb_deregister_bus(&hcd->self); 1964 err_register_bus: 1965 hcd_buffer_destroy(hcd); 1966 return retval; 1967 } 1968 EXPORT_SYMBOL_GPL(usb_add_hcd); 1969 1970 /** 1971 * usb_remove_hcd - shutdown processing for generic HCDs 1972 * @hcd: the usb_hcd structure to remove 1973 * Context: !in_interrupt() 1974 * 1975 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 1976 * invoking the HCD's stop() method. 1977 */ 1978 void usb_remove_hcd(struct usb_hcd *hcd) 1979 { 1980 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 1981 1982 if (HC_IS_RUNNING (hcd->state)) 1983 hcd->state = HC_STATE_QUIESCING; 1984 1985 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 1986 spin_lock_irq (&hcd_root_hub_lock); 1987 hcd->rh_registered = 0; 1988 spin_unlock_irq (&hcd_root_hub_lock); 1989 1990 #ifdef CONFIG_PM 1991 cancel_work_sync(&hcd->wakeup_work); 1992 #endif 1993 1994 sysfs_remove_group(&hcd->self.root_hub->dev.kobj, &usb_bus_attr_group); 1995 mutex_lock(&usb_bus_list_lock); 1996 usb_disconnect(&hcd->self.root_hub); 1997 mutex_unlock(&usb_bus_list_lock); 1998 1999 hcd->driver->stop(hcd); 2000 hcd->state = HC_STATE_HALT; 2001 2002 hcd->poll_rh = 0; 2003 del_timer_sync(&hcd->rh_timer); 2004 2005 if (hcd->irq >= 0) 2006 free_irq(hcd->irq, hcd); 2007 usb_deregister_bus(&hcd->self); 2008 hcd_buffer_destroy(hcd); 2009 } 2010 EXPORT_SYMBOL_GPL(usb_remove_hcd); 2011 2012 void 2013 usb_hcd_platform_shutdown(struct platform_device* dev) 2014 { 2015 struct usb_hcd *hcd = platform_get_drvdata(dev); 2016 2017 if (hcd->driver->shutdown) 2018 hcd->driver->shutdown(hcd); 2019 } 2020 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 2021 2022 /*-------------------------------------------------------------------------*/ 2023 2024 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 2025 2026 struct usb_mon_operations *mon_ops; 2027 2028 /* 2029 * The registration is unlocked. 2030 * We do it this way because we do not want to lock in hot paths. 2031 * 2032 * Notice that the code is minimally error-proof. Because usbmon needs 2033 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 2034 */ 2035 2036 int usb_mon_register (struct usb_mon_operations *ops) 2037 { 2038 2039 if (mon_ops) 2040 return -EBUSY; 2041 2042 mon_ops = ops; 2043 mb(); 2044 return 0; 2045 } 2046 EXPORT_SYMBOL_GPL (usb_mon_register); 2047 2048 void usb_mon_deregister (void) 2049 { 2050 2051 if (mon_ops == NULL) { 2052 printk(KERN_ERR "USB: monitor was not registered\n"); 2053 return; 2054 } 2055 mon_ops = NULL; 2056 mb(); 2057 } 2058 EXPORT_SYMBOL_GPL (usb_mon_deregister); 2059 2060 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ 2061