1 /* 2 * (C) Copyright Linus Torvalds 1999 3 * (C) Copyright Johannes Erdfelt 1999-2001 4 * (C) Copyright Andreas Gal 1999 5 * (C) Copyright Gregory P. Smith 1999 6 * (C) Copyright Deti Fliegl 1999 7 * (C) Copyright Randy Dunlap 2000 8 * (C) Copyright David Brownell 2000-2002 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the 12 * Free Software Foundation; either version 2 of the License, or (at your 13 * option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18 * for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software Foundation, 22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 #include <linux/bcd.h> 26 #include <linux/module.h> 27 #include <linux/version.h> 28 #include <linux/kernel.h> 29 #include <linux/slab.h> 30 #include <linux/completion.h> 31 #include <linux/utsname.h> 32 #include <linux/mm.h> 33 #include <asm/io.h> 34 #include <linux/device.h> 35 #include <linux/dma-mapping.h> 36 #include <linux/mutex.h> 37 #include <asm/irq.h> 38 #include <asm/byteorder.h> 39 #include <asm/unaligned.h> 40 #include <linux/platform_device.h> 41 #include <linux/workqueue.h> 42 #include <linux/pm_runtime.h> 43 44 #include <linux/usb.h> 45 #include <linux/usb/hcd.h> 46 47 #include "usb.h" 48 49 50 /*-------------------------------------------------------------------------*/ 51 52 /* 53 * USB Host Controller Driver framework 54 * 55 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 56 * HCD-specific behaviors/bugs. 57 * 58 * This does error checks, tracks devices and urbs, and delegates to a 59 * "hc_driver" only for code (and data) that really needs to know about 60 * hardware differences. That includes root hub registers, i/o queues, 61 * and so on ... but as little else as possible. 62 * 63 * Shared code includes most of the "root hub" code (these are emulated, 64 * though each HC's hardware works differently) and PCI glue, plus request 65 * tracking overhead. The HCD code should only block on spinlocks or on 66 * hardware handshaking; blocking on software events (such as other kernel 67 * threads releasing resources, or completing actions) is all generic. 68 * 69 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 70 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 71 * only by the hub driver ... and that neither should be seen or used by 72 * usb client device drivers. 73 * 74 * Contributors of ideas or unattributed patches include: David Brownell, 75 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 76 * 77 * HISTORY: 78 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 79 * associated cleanup. "usb_hcd" still != "usb_bus". 80 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 81 */ 82 83 /*-------------------------------------------------------------------------*/ 84 85 /* Keep track of which host controller drivers are loaded */ 86 unsigned long usb_hcds_loaded; 87 EXPORT_SYMBOL_GPL(usb_hcds_loaded); 88 89 /* host controllers we manage */ 90 LIST_HEAD (usb_bus_list); 91 EXPORT_SYMBOL_GPL (usb_bus_list); 92 93 /* used when allocating bus numbers */ 94 #define USB_MAXBUS 64 95 struct usb_busmap { 96 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))]; 97 }; 98 static struct usb_busmap busmap; 99 100 /* used when updating list of hcds */ 101 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */ 102 EXPORT_SYMBOL_GPL (usb_bus_list_lock); 103 104 /* used for controlling access to virtual root hubs */ 105 static DEFINE_SPINLOCK(hcd_root_hub_lock); 106 107 /* used when updating an endpoint's URB list */ 108 static DEFINE_SPINLOCK(hcd_urb_list_lock); 109 110 /* used to protect against unlinking URBs after the device is gone */ 111 static DEFINE_SPINLOCK(hcd_urb_unlink_lock); 112 113 /* wait queue for synchronous unlinks */ 114 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 115 116 static inline int is_root_hub(struct usb_device *udev) 117 { 118 return (udev->parent == NULL); 119 } 120 121 /*-------------------------------------------------------------------------*/ 122 123 /* 124 * Sharable chunks of root hub code. 125 */ 126 127 /*-------------------------------------------------------------------------*/ 128 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff)) 129 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff)) 130 131 /* usb 3.0 root hub device descriptor */ 132 static const u8 usb3_rh_dev_descriptor[18] = { 133 0x12, /* __u8 bLength; */ 134 0x01, /* __u8 bDescriptorType; Device */ 135 0x00, 0x03, /* __le16 bcdUSB; v3.0 */ 136 137 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 138 0x00, /* __u8 bDeviceSubClass; */ 139 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */ 140 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 141 142 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 143 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 144 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 145 146 0x03, /* __u8 iManufacturer; */ 147 0x02, /* __u8 iProduct; */ 148 0x01, /* __u8 iSerialNumber; */ 149 0x01 /* __u8 bNumConfigurations; */ 150 }; 151 152 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */ 153 static const u8 usb25_rh_dev_descriptor[18] = { 154 0x12, /* __u8 bLength; */ 155 0x01, /* __u8 bDescriptorType; Device */ 156 0x50, 0x02, /* __le16 bcdUSB; v2.5 */ 157 158 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 159 0x00, /* __u8 bDeviceSubClass; */ 160 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 161 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */ 162 163 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 164 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 165 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 166 167 0x03, /* __u8 iManufacturer; */ 168 0x02, /* __u8 iProduct; */ 169 0x01, /* __u8 iSerialNumber; */ 170 0x01 /* __u8 bNumConfigurations; */ 171 }; 172 173 /* usb 2.0 root hub device descriptor */ 174 static const u8 usb2_rh_dev_descriptor [18] = { 175 0x12, /* __u8 bLength; */ 176 0x01, /* __u8 bDescriptorType; Device */ 177 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 178 179 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 180 0x00, /* __u8 bDeviceSubClass; */ 181 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 182 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 183 184 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 185 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 186 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 187 188 0x03, /* __u8 iManufacturer; */ 189 0x02, /* __u8 iProduct; */ 190 0x01, /* __u8 iSerialNumber; */ 191 0x01 /* __u8 bNumConfigurations; */ 192 }; 193 194 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 195 196 /* usb 1.1 root hub device descriptor */ 197 static const u8 usb11_rh_dev_descriptor [18] = { 198 0x12, /* __u8 bLength; */ 199 0x01, /* __u8 bDescriptorType; Device */ 200 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 201 202 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 203 0x00, /* __u8 bDeviceSubClass; */ 204 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 205 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 206 207 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 208 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 209 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 210 211 0x03, /* __u8 iManufacturer; */ 212 0x02, /* __u8 iProduct; */ 213 0x01, /* __u8 iSerialNumber; */ 214 0x01 /* __u8 bNumConfigurations; */ 215 }; 216 217 218 /*-------------------------------------------------------------------------*/ 219 220 /* Configuration descriptors for our root hubs */ 221 222 static const u8 fs_rh_config_descriptor [] = { 223 224 /* one configuration */ 225 0x09, /* __u8 bLength; */ 226 0x02, /* __u8 bDescriptorType; Configuration */ 227 0x19, 0x00, /* __le16 wTotalLength; */ 228 0x01, /* __u8 bNumInterfaces; (1) */ 229 0x01, /* __u8 bConfigurationValue; */ 230 0x00, /* __u8 iConfiguration; */ 231 0xc0, /* __u8 bmAttributes; 232 Bit 7: must be set, 233 6: Self-powered, 234 5: Remote wakeup, 235 4..0: resvd */ 236 0x00, /* __u8 MaxPower; */ 237 238 /* USB 1.1: 239 * USB 2.0, single TT organization (mandatory): 240 * one interface, protocol 0 241 * 242 * USB 2.0, multiple TT organization (optional): 243 * two interfaces, protocols 1 (like single TT) 244 * and 2 (multiple TT mode) ... config is 245 * sometimes settable 246 * NOT IMPLEMENTED 247 */ 248 249 /* one interface */ 250 0x09, /* __u8 if_bLength; */ 251 0x04, /* __u8 if_bDescriptorType; Interface */ 252 0x00, /* __u8 if_bInterfaceNumber; */ 253 0x00, /* __u8 if_bAlternateSetting; */ 254 0x01, /* __u8 if_bNumEndpoints; */ 255 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 256 0x00, /* __u8 if_bInterfaceSubClass; */ 257 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 258 0x00, /* __u8 if_iInterface; */ 259 260 /* one endpoint (status change endpoint) */ 261 0x07, /* __u8 ep_bLength; */ 262 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 263 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 264 0x03, /* __u8 ep_bmAttributes; Interrupt */ 265 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 266 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 267 }; 268 269 static const u8 hs_rh_config_descriptor [] = { 270 271 /* one configuration */ 272 0x09, /* __u8 bLength; */ 273 0x02, /* __u8 bDescriptorType; Configuration */ 274 0x19, 0x00, /* __le16 wTotalLength; */ 275 0x01, /* __u8 bNumInterfaces; (1) */ 276 0x01, /* __u8 bConfigurationValue; */ 277 0x00, /* __u8 iConfiguration; */ 278 0xc0, /* __u8 bmAttributes; 279 Bit 7: must be set, 280 6: Self-powered, 281 5: Remote wakeup, 282 4..0: resvd */ 283 0x00, /* __u8 MaxPower; */ 284 285 /* USB 1.1: 286 * USB 2.0, single TT organization (mandatory): 287 * one interface, protocol 0 288 * 289 * USB 2.0, multiple TT organization (optional): 290 * two interfaces, protocols 1 (like single TT) 291 * and 2 (multiple TT mode) ... config is 292 * sometimes settable 293 * NOT IMPLEMENTED 294 */ 295 296 /* one interface */ 297 0x09, /* __u8 if_bLength; */ 298 0x04, /* __u8 if_bDescriptorType; Interface */ 299 0x00, /* __u8 if_bInterfaceNumber; */ 300 0x00, /* __u8 if_bAlternateSetting; */ 301 0x01, /* __u8 if_bNumEndpoints; */ 302 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 303 0x00, /* __u8 if_bInterfaceSubClass; */ 304 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 305 0x00, /* __u8 if_iInterface; */ 306 307 /* one endpoint (status change endpoint) */ 308 0x07, /* __u8 ep_bLength; */ 309 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 310 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 311 0x03, /* __u8 ep_bmAttributes; Interrupt */ 312 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 313 * see hub.c:hub_configure() for details. */ 314 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 315 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 316 }; 317 318 static const u8 ss_rh_config_descriptor[] = { 319 /* one configuration */ 320 0x09, /* __u8 bLength; */ 321 0x02, /* __u8 bDescriptorType; Configuration */ 322 0x1f, 0x00, /* __le16 wTotalLength; */ 323 0x01, /* __u8 bNumInterfaces; (1) */ 324 0x01, /* __u8 bConfigurationValue; */ 325 0x00, /* __u8 iConfiguration; */ 326 0xc0, /* __u8 bmAttributes; 327 Bit 7: must be set, 328 6: Self-powered, 329 5: Remote wakeup, 330 4..0: resvd */ 331 0x00, /* __u8 MaxPower; */ 332 333 /* one interface */ 334 0x09, /* __u8 if_bLength; */ 335 0x04, /* __u8 if_bDescriptorType; Interface */ 336 0x00, /* __u8 if_bInterfaceNumber; */ 337 0x00, /* __u8 if_bAlternateSetting; */ 338 0x01, /* __u8 if_bNumEndpoints; */ 339 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 340 0x00, /* __u8 if_bInterfaceSubClass; */ 341 0x00, /* __u8 if_bInterfaceProtocol; */ 342 0x00, /* __u8 if_iInterface; */ 343 344 /* one endpoint (status change endpoint) */ 345 0x07, /* __u8 ep_bLength; */ 346 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 347 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 348 0x03, /* __u8 ep_bmAttributes; Interrupt */ 349 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 350 * see hub.c:hub_configure() for details. */ 351 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 352 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 353 354 /* one SuperSpeed endpoint companion descriptor */ 355 0x06, /* __u8 ss_bLength */ 356 0x30, /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */ 357 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */ 358 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */ 359 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */ 360 }; 361 362 /* authorized_default behaviour: 363 * -1 is authorized for all devices except wireless (old behaviour) 364 * 0 is unauthorized for all devices 365 * 1 is authorized for all devices 366 */ 367 static int authorized_default = -1; 368 module_param(authorized_default, int, S_IRUGO|S_IWUSR); 369 MODULE_PARM_DESC(authorized_default, 370 "Default USB device authorization: 0 is not authorized, 1 is " 371 "authorized, -1 is authorized except for wireless USB (default, " 372 "old behaviour"); 373 /*-------------------------------------------------------------------------*/ 374 375 /** 376 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors 377 * @s: Null-terminated ASCII (actually ISO-8859-1) string 378 * @buf: Buffer for USB string descriptor (header + UTF-16LE) 379 * @len: Length (in bytes; may be odd) of descriptor buffer. 380 * 381 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len, 382 * whichever is less. 383 * 384 * Note: 385 * USB String descriptors can contain at most 126 characters; input 386 * strings longer than that are truncated. 387 */ 388 static unsigned 389 ascii2desc(char const *s, u8 *buf, unsigned len) 390 { 391 unsigned n, t = 2 + 2*strlen(s); 392 393 if (t > 254) 394 t = 254; /* Longest possible UTF string descriptor */ 395 if (len > t) 396 len = t; 397 398 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */ 399 400 n = len; 401 while (n--) { 402 *buf++ = t; 403 if (!n--) 404 break; 405 *buf++ = t >> 8; 406 t = (unsigned char)*s++; 407 } 408 return len; 409 } 410 411 /** 412 * rh_string() - provides string descriptors for root hub 413 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor) 414 * @hcd: the host controller for this root hub 415 * @data: buffer for output packet 416 * @len: length of the provided buffer 417 * 418 * Produces either a manufacturer, product or serial number string for the 419 * virtual root hub device. 420 * 421 * Return: The number of bytes filled in: the length of the descriptor or 422 * of the provided buffer, whichever is less. 423 */ 424 static unsigned 425 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len) 426 { 427 char buf[100]; 428 char const *s; 429 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04}; 430 431 // language ids 432 switch (id) { 433 case 0: 434 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */ 435 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */ 436 if (len > 4) 437 len = 4; 438 memcpy(data, langids, len); 439 return len; 440 case 1: 441 /* Serial number */ 442 s = hcd->self.bus_name; 443 break; 444 case 2: 445 /* Product name */ 446 s = hcd->product_desc; 447 break; 448 case 3: 449 /* Manufacturer */ 450 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 451 init_utsname()->release, hcd->driver->description); 452 s = buf; 453 break; 454 default: 455 /* Can't happen; caller guarantees it */ 456 return 0; 457 } 458 459 return ascii2desc(s, data, len); 460 } 461 462 463 /* Root hub control transfers execute synchronously */ 464 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 465 { 466 struct usb_ctrlrequest *cmd; 467 u16 typeReq, wValue, wIndex, wLength; 468 u8 *ubuf = urb->transfer_buffer; 469 unsigned len = 0; 470 int status; 471 u8 patch_wakeup = 0; 472 u8 patch_protocol = 0; 473 u16 tbuf_size; 474 u8 *tbuf = NULL; 475 const u8 *bufp; 476 477 might_sleep(); 478 479 spin_lock_irq(&hcd_root_hub_lock); 480 status = usb_hcd_link_urb_to_ep(hcd, urb); 481 spin_unlock_irq(&hcd_root_hub_lock); 482 if (status) 483 return status; 484 urb->hcpriv = hcd; /* Indicate it's queued */ 485 486 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 487 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 488 wValue = le16_to_cpu (cmd->wValue); 489 wIndex = le16_to_cpu (cmd->wIndex); 490 wLength = le16_to_cpu (cmd->wLength); 491 492 if (wLength > urb->transfer_buffer_length) 493 goto error; 494 495 /* 496 * tbuf should be at least as big as the 497 * USB hub descriptor. 498 */ 499 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength); 500 tbuf = kzalloc(tbuf_size, GFP_KERNEL); 501 if (!tbuf) 502 return -ENOMEM; 503 504 bufp = tbuf; 505 506 507 urb->actual_length = 0; 508 switch (typeReq) { 509 510 /* DEVICE REQUESTS */ 511 512 /* The root hub's remote wakeup enable bit is implemented using 513 * driver model wakeup flags. If this system supports wakeup 514 * through USB, userspace may change the default "allow wakeup" 515 * policy through sysfs or these calls. 516 * 517 * Most root hubs support wakeup from downstream devices, for 518 * runtime power management (disabling USB clocks and reducing 519 * VBUS power usage). However, not all of them do so; silicon, 520 * board, and BIOS bugs here are not uncommon, so these can't 521 * be treated quite like external hubs. 522 * 523 * Likewise, not all root hubs will pass wakeup events upstream, 524 * to wake up the whole system. So don't assume root hub and 525 * controller capabilities are identical. 526 */ 527 528 case DeviceRequest | USB_REQ_GET_STATUS: 529 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev) 530 << USB_DEVICE_REMOTE_WAKEUP) 531 | (1 << USB_DEVICE_SELF_POWERED); 532 tbuf [1] = 0; 533 len = 2; 534 break; 535 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 536 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 537 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 538 else 539 goto error; 540 break; 541 case DeviceOutRequest | USB_REQ_SET_FEATURE: 542 if (device_can_wakeup(&hcd->self.root_hub->dev) 543 && wValue == USB_DEVICE_REMOTE_WAKEUP) 544 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 545 else 546 goto error; 547 break; 548 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 549 tbuf [0] = 1; 550 len = 1; 551 /* FALLTHROUGH */ 552 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 553 break; 554 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 555 switch (wValue & 0xff00) { 556 case USB_DT_DEVICE << 8: 557 switch (hcd->speed) { 558 case HCD_USB3: 559 bufp = usb3_rh_dev_descriptor; 560 break; 561 case HCD_USB25: 562 bufp = usb25_rh_dev_descriptor; 563 break; 564 case HCD_USB2: 565 bufp = usb2_rh_dev_descriptor; 566 break; 567 case HCD_USB11: 568 bufp = usb11_rh_dev_descriptor; 569 break; 570 default: 571 goto error; 572 } 573 len = 18; 574 if (hcd->has_tt) 575 patch_protocol = 1; 576 break; 577 case USB_DT_CONFIG << 8: 578 switch (hcd->speed) { 579 case HCD_USB3: 580 bufp = ss_rh_config_descriptor; 581 len = sizeof ss_rh_config_descriptor; 582 break; 583 case HCD_USB25: 584 case HCD_USB2: 585 bufp = hs_rh_config_descriptor; 586 len = sizeof hs_rh_config_descriptor; 587 break; 588 case HCD_USB11: 589 bufp = fs_rh_config_descriptor; 590 len = sizeof fs_rh_config_descriptor; 591 break; 592 default: 593 goto error; 594 } 595 if (device_can_wakeup(&hcd->self.root_hub->dev)) 596 patch_wakeup = 1; 597 break; 598 case USB_DT_STRING << 8: 599 if ((wValue & 0xff) < 4) 600 urb->actual_length = rh_string(wValue & 0xff, 601 hcd, ubuf, wLength); 602 else /* unsupported IDs --> "protocol stall" */ 603 goto error; 604 break; 605 case USB_DT_BOS << 8: 606 goto nongeneric; 607 default: 608 goto error; 609 } 610 break; 611 case DeviceRequest | USB_REQ_GET_INTERFACE: 612 tbuf [0] = 0; 613 len = 1; 614 /* FALLTHROUGH */ 615 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 616 break; 617 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 618 // wValue == urb->dev->devaddr 619 dev_dbg (hcd->self.controller, "root hub device address %d\n", 620 wValue); 621 break; 622 623 /* INTERFACE REQUESTS (no defined feature/status flags) */ 624 625 /* ENDPOINT REQUESTS */ 626 627 case EndpointRequest | USB_REQ_GET_STATUS: 628 // ENDPOINT_HALT flag 629 tbuf [0] = 0; 630 tbuf [1] = 0; 631 len = 2; 632 /* FALLTHROUGH */ 633 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 634 case EndpointOutRequest | USB_REQ_SET_FEATURE: 635 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 636 break; 637 638 /* CLASS REQUESTS (and errors) */ 639 640 default: 641 nongeneric: 642 /* non-generic request */ 643 switch (typeReq) { 644 case GetHubStatus: 645 case GetPortStatus: 646 len = 4; 647 break; 648 case GetHubDescriptor: 649 len = sizeof (struct usb_hub_descriptor); 650 break; 651 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 652 /* len is returned by hub_control */ 653 break; 654 } 655 status = hcd->driver->hub_control (hcd, 656 typeReq, wValue, wIndex, 657 tbuf, wLength); 658 659 if (typeReq == GetHubDescriptor) 660 usb_hub_adjust_deviceremovable(hcd->self.root_hub, 661 (struct usb_hub_descriptor *)tbuf); 662 break; 663 error: 664 /* "protocol stall" on error */ 665 status = -EPIPE; 666 } 667 668 if (status < 0) { 669 len = 0; 670 if (status != -EPIPE) { 671 dev_dbg (hcd->self.controller, 672 "CTRL: TypeReq=0x%x val=0x%x " 673 "idx=0x%x len=%d ==> %d\n", 674 typeReq, wValue, wIndex, 675 wLength, status); 676 } 677 } else if (status > 0) { 678 /* hub_control may return the length of data copied. */ 679 len = status; 680 status = 0; 681 } 682 if (len) { 683 if (urb->transfer_buffer_length < len) 684 len = urb->transfer_buffer_length; 685 urb->actual_length = len; 686 // always USB_DIR_IN, toward host 687 memcpy (ubuf, bufp, len); 688 689 /* report whether RH hardware supports remote wakeup */ 690 if (patch_wakeup && 691 len > offsetof (struct usb_config_descriptor, 692 bmAttributes)) 693 ((struct usb_config_descriptor *)ubuf)->bmAttributes 694 |= USB_CONFIG_ATT_WAKEUP; 695 696 /* report whether RH hardware has an integrated TT */ 697 if (patch_protocol && 698 len > offsetof(struct usb_device_descriptor, 699 bDeviceProtocol)) 700 ((struct usb_device_descriptor *) ubuf)-> 701 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT; 702 } 703 704 kfree(tbuf); 705 706 /* any errors get returned through the urb completion */ 707 spin_lock_irq(&hcd_root_hub_lock); 708 usb_hcd_unlink_urb_from_ep(hcd, urb); 709 usb_hcd_giveback_urb(hcd, urb, status); 710 spin_unlock_irq(&hcd_root_hub_lock); 711 return 0; 712 } 713 714 /*-------------------------------------------------------------------------*/ 715 716 /* 717 * Root Hub interrupt transfers are polled using a timer if the 718 * driver requests it; otherwise the driver is responsible for 719 * calling usb_hcd_poll_rh_status() when an event occurs. 720 * 721 * Completions are called in_interrupt(), but they may or may not 722 * be in_irq(). 723 */ 724 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 725 { 726 struct urb *urb; 727 int length; 728 unsigned long flags; 729 char buffer[6]; /* Any root hubs with > 31 ports? */ 730 731 if (unlikely(!hcd->rh_pollable)) 732 return; 733 if (!hcd->uses_new_polling && !hcd->status_urb) 734 return; 735 736 length = hcd->driver->hub_status_data(hcd, buffer); 737 if (length > 0) { 738 739 /* try to complete the status urb */ 740 spin_lock_irqsave(&hcd_root_hub_lock, flags); 741 urb = hcd->status_urb; 742 if (urb) { 743 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 744 hcd->status_urb = NULL; 745 urb->actual_length = length; 746 memcpy(urb->transfer_buffer, buffer, length); 747 748 usb_hcd_unlink_urb_from_ep(hcd, urb); 749 usb_hcd_giveback_urb(hcd, urb, 0); 750 } else { 751 length = 0; 752 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 753 } 754 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 755 } 756 757 /* The USB 2.0 spec says 256 ms. This is close enough and won't 758 * exceed that limit if HZ is 100. The math is more clunky than 759 * maybe expected, this is to make sure that all timers for USB devices 760 * fire at the same time to give the CPU a break in between */ 761 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) : 762 (length == 0 && hcd->status_urb != NULL)) 763 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 764 } 765 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 766 767 /* timer callback */ 768 static void rh_timer_func (unsigned long _hcd) 769 { 770 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd); 771 } 772 773 /*-------------------------------------------------------------------------*/ 774 775 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 776 { 777 int retval; 778 unsigned long flags; 779 unsigned len = 1 + (urb->dev->maxchild / 8); 780 781 spin_lock_irqsave (&hcd_root_hub_lock, flags); 782 if (hcd->status_urb || urb->transfer_buffer_length < len) { 783 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 784 retval = -EINVAL; 785 goto done; 786 } 787 788 retval = usb_hcd_link_urb_to_ep(hcd, urb); 789 if (retval) 790 goto done; 791 792 hcd->status_urb = urb; 793 urb->hcpriv = hcd; /* indicate it's queued */ 794 if (!hcd->uses_new_polling) 795 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 796 797 /* If a status change has already occurred, report it ASAP */ 798 else if (HCD_POLL_PENDING(hcd)) 799 mod_timer(&hcd->rh_timer, jiffies); 800 retval = 0; 801 done: 802 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 803 return retval; 804 } 805 806 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 807 { 808 if (usb_endpoint_xfer_int(&urb->ep->desc)) 809 return rh_queue_status (hcd, urb); 810 if (usb_endpoint_xfer_control(&urb->ep->desc)) 811 return rh_call_control (hcd, urb); 812 return -EINVAL; 813 } 814 815 /*-------------------------------------------------------------------------*/ 816 817 /* Unlinks of root-hub control URBs are legal, but they don't do anything 818 * since these URBs always execute synchronously. 819 */ 820 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 821 { 822 unsigned long flags; 823 int rc; 824 825 spin_lock_irqsave(&hcd_root_hub_lock, flags); 826 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 827 if (rc) 828 goto done; 829 830 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 831 ; /* Do nothing */ 832 833 } else { /* Status URB */ 834 if (!hcd->uses_new_polling) 835 del_timer (&hcd->rh_timer); 836 if (urb == hcd->status_urb) { 837 hcd->status_urb = NULL; 838 usb_hcd_unlink_urb_from_ep(hcd, urb); 839 usb_hcd_giveback_urb(hcd, urb, status); 840 } 841 } 842 done: 843 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 844 return rc; 845 } 846 847 848 849 /* 850 * Show & store the current value of authorized_default 851 */ 852 static ssize_t authorized_default_show(struct device *dev, 853 struct device_attribute *attr, char *buf) 854 { 855 struct usb_device *rh_usb_dev = to_usb_device(dev); 856 struct usb_bus *usb_bus = rh_usb_dev->bus; 857 struct usb_hcd *usb_hcd; 858 859 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */ 860 return -ENODEV; 861 usb_hcd = bus_to_hcd(usb_bus); 862 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default); 863 } 864 865 static ssize_t authorized_default_store(struct device *dev, 866 struct device_attribute *attr, 867 const char *buf, size_t size) 868 { 869 ssize_t result; 870 unsigned val; 871 struct usb_device *rh_usb_dev = to_usb_device(dev); 872 struct usb_bus *usb_bus = rh_usb_dev->bus; 873 struct usb_hcd *usb_hcd; 874 875 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */ 876 return -ENODEV; 877 usb_hcd = bus_to_hcd(usb_bus); 878 result = sscanf(buf, "%u\n", &val); 879 if (result == 1) { 880 usb_hcd->authorized_default = val? 1 : 0; 881 result = size; 882 } 883 else 884 result = -EINVAL; 885 return result; 886 } 887 static DEVICE_ATTR_RW(authorized_default); 888 889 /* Group all the USB bus attributes */ 890 static struct attribute *usb_bus_attrs[] = { 891 &dev_attr_authorized_default.attr, 892 NULL, 893 }; 894 895 static struct attribute_group usb_bus_attr_group = { 896 .name = NULL, /* we want them in the same directory */ 897 .attrs = usb_bus_attrs, 898 }; 899 900 901 902 /*-------------------------------------------------------------------------*/ 903 904 /** 905 * usb_bus_init - shared initialization code 906 * @bus: the bus structure being initialized 907 * 908 * This code is used to initialize a usb_bus structure, memory for which is 909 * separately managed. 910 */ 911 static void usb_bus_init (struct usb_bus *bus) 912 { 913 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 914 915 bus->devnum_next = 1; 916 917 bus->root_hub = NULL; 918 bus->busnum = -1; 919 bus->bandwidth_allocated = 0; 920 bus->bandwidth_int_reqs = 0; 921 bus->bandwidth_isoc_reqs = 0; 922 923 INIT_LIST_HEAD (&bus->bus_list); 924 } 925 926 /*-------------------------------------------------------------------------*/ 927 928 /** 929 * usb_register_bus - registers the USB host controller with the usb core 930 * @bus: pointer to the bus to register 931 * Context: !in_interrupt() 932 * 933 * Assigns a bus number, and links the controller into usbcore data 934 * structures so that it can be seen by scanning the bus list. 935 * 936 * Return: 0 if successful. A negative error code otherwise. 937 */ 938 static int usb_register_bus(struct usb_bus *bus) 939 { 940 int result = -E2BIG; 941 int busnum; 942 943 mutex_lock(&usb_bus_list_lock); 944 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1); 945 if (busnum >= USB_MAXBUS) { 946 printk (KERN_ERR "%s: too many buses\n", usbcore_name); 947 goto error_find_busnum; 948 } 949 set_bit (busnum, busmap.busmap); 950 bus->busnum = busnum; 951 952 /* Add it to the local list of buses */ 953 list_add (&bus->bus_list, &usb_bus_list); 954 mutex_unlock(&usb_bus_list_lock); 955 956 usb_notify_add_bus(bus); 957 958 dev_info (bus->controller, "new USB bus registered, assigned bus " 959 "number %d\n", bus->busnum); 960 return 0; 961 962 error_find_busnum: 963 mutex_unlock(&usb_bus_list_lock); 964 return result; 965 } 966 967 /** 968 * usb_deregister_bus - deregisters the USB host controller 969 * @bus: pointer to the bus to deregister 970 * Context: !in_interrupt() 971 * 972 * Recycles the bus number, and unlinks the controller from usbcore data 973 * structures so that it won't be seen by scanning the bus list. 974 */ 975 static void usb_deregister_bus (struct usb_bus *bus) 976 { 977 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 978 979 /* 980 * NOTE: make sure that all the devices are removed by the 981 * controller code, as well as having it call this when cleaning 982 * itself up 983 */ 984 mutex_lock(&usb_bus_list_lock); 985 list_del (&bus->bus_list); 986 mutex_unlock(&usb_bus_list_lock); 987 988 usb_notify_remove_bus(bus); 989 990 clear_bit (bus->busnum, busmap.busmap); 991 } 992 993 /** 994 * register_root_hub - called by usb_add_hcd() to register a root hub 995 * @hcd: host controller for this root hub 996 * 997 * This function registers the root hub with the USB subsystem. It sets up 998 * the device properly in the device tree and then calls usb_new_device() 999 * to register the usb device. It also assigns the root hub's USB address 1000 * (always 1). 1001 * 1002 * Return: 0 if successful. A negative error code otherwise. 1003 */ 1004 static int register_root_hub(struct usb_hcd *hcd) 1005 { 1006 struct device *parent_dev = hcd->self.controller; 1007 struct usb_device *usb_dev = hcd->self.root_hub; 1008 const int devnum = 1; 1009 int retval; 1010 1011 usb_dev->devnum = devnum; 1012 usb_dev->bus->devnum_next = devnum + 1; 1013 memset (&usb_dev->bus->devmap.devicemap, 0, 1014 sizeof usb_dev->bus->devmap.devicemap); 1015 set_bit (devnum, usb_dev->bus->devmap.devicemap); 1016 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 1017 1018 mutex_lock(&usb_bus_list_lock); 1019 1020 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); 1021 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); 1022 if (retval != sizeof usb_dev->descriptor) { 1023 mutex_unlock(&usb_bus_list_lock); 1024 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 1025 dev_name(&usb_dev->dev), retval); 1026 return (retval < 0) ? retval : -EMSGSIZE; 1027 } 1028 if (usb_dev->speed == USB_SPEED_SUPER) { 1029 retval = usb_get_bos_descriptor(usb_dev); 1030 if (retval < 0) { 1031 mutex_unlock(&usb_bus_list_lock); 1032 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n", 1033 dev_name(&usb_dev->dev), retval); 1034 return retval; 1035 } 1036 } 1037 1038 retval = usb_new_device (usb_dev); 1039 if (retval) { 1040 dev_err (parent_dev, "can't register root hub for %s, %d\n", 1041 dev_name(&usb_dev->dev), retval); 1042 } else { 1043 spin_lock_irq (&hcd_root_hub_lock); 1044 hcd->rh_registered = 1; 1045 spin_unlock_irq (&hcd_root_hub_lock); 1046 1047 /* Did the HC die before the root hub was registered? */ 1048 if (HCD_DEAD(hcd)) 1049 usb_hc_died (hcd); /* This time clean up */ 1050 } 1051 mutex_unlock(&usb_bus_list_lock); 1052 1053 return retval; 1054 } 1055 1056 /* 1057 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal 1058 * @bus: the bus which the root hub belongs to 1059 * @portnum: the port which is being resumed 1060 * 1061 * HCDs should call this function when they know that a resume signal is 1062 * being sent to a root-hub port. The root hub will be prevented from 1063 * going into autosuspend until usb_hcd_end_port_resume() is called. 1064 * 1065 * The bus's private lock must be held by the caller. 1066 */ 1067 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum) 1068 { 1069 unsigned bit = 1 << portnum; 1070 1071 if (!(bus->resuming_ports & bit)) { 1072 bus->resuming_ports |= bit; 1073 pm_runtime_get_noresume(&bus->root_hub->dev); 1074 } 1075 } 1076 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume); 1077 1078 /* 1079 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal 1080 * @bus: the bus which the root hub belongs to 1081 * @portnum: the port which is being resumed 1082 * 1083 * HCDs should call this function when they know that a resume signal has 1084 * stopped being sent to a root-hub port. The root hub will be allowed to 1085 * autosuspend again. 1086 * 1087 * The bus's private lock must be held by the caller. 1088 */ 1089 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum) 1090 { 1091 unsigned bit = 1 << portnum; 1092 1093 if (bus->resuming_ports & bit) { 1094 bus->resuming_ports &= ~bit; 1095 pm_runtime_put_noidle(&bus->root_hub->dev); 1096 } 1097 } 1098 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume); 1099 1100 /*-------------------------------------------------------------------------*/ 1101 1102 /** 1103 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 1104 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 1105 * @is_input: true iff the transaction sends data to the host 1106 * @isoc: true for isochronous transactions, false for interrupt ones 1107 * @bytecount: how many bytes in the transaction. 1108 * 1109 * Return: Approximate bus time in nanoseconds for a periodic transaction. 1110 * 1111 * Note: 1112 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 1113 * scheduled in software, this function is only used for such scheduling. 1114 */ 1115 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 1116 { 1117 unsigned long tmp; 1118 1119 switch (speed) { 1120 case USB_SPEED_LOW: /* INTR only */ 1121 if (is_input) { 1122 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 1123 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp); 1124 } else { 1125 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 1126 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp); 1127 } 1128 case USB_SPEED_FULL: /* ISOC or INTR */ 1129 if (isoc) { 1130 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1131 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp); 1132 } else { 1133 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1134 return (9107L + BW_HOST_DELAY + tmp); 1135 } 1136 case USB_SPEED_HIGH: /* ISOC or INTR */ 1137 // FIXME adjust for input vs output 1138 if (isoc) 1139 tmp = HS_NSECS_ISO (bytecount); 1140 else 1141 tmp = HS_NSECS (bytecount); 1142 return tmp; 1143 default: 1144 pr_debug ("%s: bogus device speed!\n", usbcore_name); 1145 return -1; 1146 } 1147 } 1148 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 1149 1150 1151 /*-------------------------------------------------------------------------*/ 1152 1153 /* 1154 * Generic HC operations. 1155 */ 1156 1157 /*-------------------------------------------------------------------------*/ 1158 1159 /** 1160 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 1161 * @hcd: host controller to which @urb was submitted 1162 * @urb: URB being submitted 1163 * 1164 * Host controller drivers should call this routine in their enqueue() 1165 * method. The HCD's private spinlock must be held and interrupts must 1166 * be disabled. The actions carried out here are required for URB 1167 * submission, as well as for endpoint shutdown and for usb_kill_urb. 1168 * 1169 * Return: 0 for no error, otherwise a negative error code (in which case 1170 * the enqueue() method must fail). If no error occurs but enqueue() fails 1171 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 1172 * the private spinlock and returning. 1173 */ 1174 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1175 { 1176 int rc = 0; 1177 1178 spin_lock(&hcd_urb_list_lock); 1179 1180 /* Check that the URB isn't being killed */ 1181 if (unlikely(atomic_read(&urb->reject))) { 1182 rc = -EPERM; 1183 goto done; 1184 } 1185 1186 if (unlikely(!urb->ep->enabled)) { 1187 rc = -ENOENT; 1188 goto done; 1189 } 1190 1191 if (unlikely(!urb->dev->can_submit)) { 1192 rc = -EHOSTUNREACH; 1193 goto done; 1194 } 1195 1196 /* 1197 * Check the host controller's state and add the URB to the 1198 * endpoint's queue. 1199 */ 1200 if (HCD_RH_RUNNING(hcd)) { 1201 urb->unlinked = 0; 1202 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1203 } else { 1204 rc = -ESHUTDOWN; 1205 goto done; 1206 } 1207 done: 1208 spin_unlock(&hcd_urb_list_lock); 1209 return rc; 1210 } 1211 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1212 1213 /** 1214 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1215 * @hcd: host controller to which @urb was submitted 1216 * @urb: URB being checked for unlinkability 1217 * @status: error code to store in @urb if the unlink succeeds 1218 * 1219 * Host controller drivers should call this routine in their dequeue() 1220 * method. The HCD's private spinlock must be held and interrupts must 1221 * be disabled. The actions carried out here are required for making 1222 * sure than an unlink is valid. 1223 * 1224 * Return: 0 for no error, otherwise a negative error code (in which case 1225 * the dequeue() method must fail). The possible error codes are: 1226 * 1227 * -EIDRM: @urb was not submitted or has already completed. 1228 * The completion function may not have been called yet. 1229 * 1230 * -EBUSY: @urb has already been unlinked. 1231 */ 1232 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1233 int status) 1234 { 1235 struct list_head *tmp; 1236 1237 /* insist the urb is still queued */ 1238 list_for_each(tmp, &urb->ep->urb_list) { 1239 if (tmp == &urb->urb_list) 1240 break; 1241 } 1242 if (tmp != &urb->urb_list) 1243 return -EIDRM; 1244 1245 /* Any status except -EINPROGRESS means something already started to 1246 * unlink this URB from the hardware. So there's no more work to do. 1247 */ 1248 if (urb->unlinked) 1249 return -EBUSY; 1250 urb->unlinked = status; 1251 return 0; 1252 } 1253 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1254 1255 /** 1256 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1257 * @hcd: host controller to which @urb was submitted 1258 * @urb: URB being unlinked 1259 * 1260 * Host controller drivers should call this routine before calling 1261 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1262 * interrupts must be disabled. The actions carried out here are required 1263 * for URB completion. 1264 */ 1265 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1266 { 1267 /* clear all state linking urb to this dev (and hcd) */ 1268 spin_lock(&hcd_urb_list_lock); 1269 list_del_init(&urb->urb_list); 1270 spin_unlock(&hcd_urb_list_lock); 1271 } 1272 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1273 1274 /* 1275 * Some usb host controllers can only perform dma using a small SRAM area. 1276 * The usb core itself is however optimized for host controllers that can dma 1277 * using regular system memory - like pci devices doing bus mastering. 1278 * 1279 * To support host controllers with limited dma capabilites we provide dma 1280 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag. 1281 * For this to work properly the host controller code must first use the 1282 * function dma_declare_coherent_memory() to point out which memory area 1283 * that should be used for dma allocations. 1284 * 1285 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for 1286 * dma using dma_alloc_coherent() which in turn allocates from the memory 1287 * area pointed out with dma_declare_coherent_memory(). 1288 * 1289 * So, to summarize... 1290 * 1291 * - We need "local" memory, canonical example being 1292 * a small SRAM on a discrete controller being the 1293 * only memory that the controller can read ... 1294 * (a) "normal" kernel memory is no good, and 1295 * (b) there's not enough to share 1296 * 1297 * - The only *portable* hook for such stuff in the 1298 * DMA framework is dma_declare_coherent_memory() 1299 * 1300 * - So we use that, even though the primary requirement 1301 * is that the memory be "local" (hence addressible 1302 * by that device), not "coherent". 1303 * 1304 */ 1305 1306 static int hcd_alloc_coherent(struct usb_bus *bus, 1307 gfp_t mem_flags, dma_addr_t *dma_handle, 1308 void **vaddr_handle, size_t size, 1309 enum dma_data_direction dir) 1310 { 1311 unsigned char *vaddr; 1312 1313 if (*vaddr_handle == NULL) { 1314 WARN_ON_ONCE(1); 1315 return -EFAULT; 1316 } 1317 1318 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr), 1319 mem_flags, dma_handle); 1320 if (!vaddr) 1321 return -ENOMEM; 1322 1323 /* 1324 * Store the virtual address of the buffer at the end 1325 * of the allocated dma buffer. The size of the buffer 1326 * may be uneven so use unaligned functions instead 1327 * of just rounding up. It makes sense to optimize for 1328 * memory footprint over access speed since the amount 1329 * of memory available for dma may be limited. 1330 */ 1331 put_unaligned((unsigned long)*vaddr_handle, 1332 (unsigned long *)(vaddr + size)); 1333 1334 if (dir == DMA_TO_DEVICE) 1335 memcpy(vaddr, *vaddr_handle, size); 1336 1337 *vaddr_handle = vaddr; 1338 return 0; 1339 } 1340 1341 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1342 void **vaddr_handle, size_t size, 1343 enum dma_data_direction dir) 1344 { 1345 unsigned char *vaddr = *vaddr_handle; 1346 1347 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1348 1349 if (dir == DMA_FROM_DEVICE) 1350 memcpy(vaddr, *vaddr_handle, size); 1351 1352 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1353 1354 *vaddr_handle = vaddr; 1355 *dma_handle = 0; 1356 } 1357 1358 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb) 1359 { 1360 if (urb->transfer_flags & URB_SETUP_MAP_SINGLE) 1361 dma_unmap_single(hcd->self.controller, 1362 urb->setup_dma, 1363 sizeof(struct usb_ctrlrequest), 1364 DMA_TO_DEVICE); 1365 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL) 1366 hcd_free_coherent(urb->dev->bus, 1367 &urb->setup_dma, 1368 (void **) &urb->setup_packet, 1369 sizeof(struct usb_ctrlrequest), 1370 DMA_TO_DEVICE); 1371 1372 /* Make it safe to call this routine more than once */ 1373 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL); 1374 } 1375 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma); 1376 1377 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1378 { 1379 if (hcd->driver->unmap_urb_for_dma) 1380 hcd->driver->unmap_urb_for_dma(hcd, urb); 1381 else 1382 usb_hcd_unmap_urb_for_dma(hcd, urb); 1383 } 1384 1385 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1386 { 1387 enum dma_data_direction dir; 1388 1389 usb_hcd_unmap_urb_setup_for_dma(hcd, urb); 1390 1391 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1392 if (urb->transfer_flags & URB_DMA_MAP_SG) 1393 dma_unmap_sg(hcd->self.controller, 1394 urb->sg, 1395 urb->num_sgs, 1396 dir); 1397 else if (urb->transfer_flags & URB_DMA_MAP_PAGE) 1398 dma_unmap_page(hcd->self.controller, 1399 urb->transfer_dma, 1400 urb->transfer_buffer_length, 1401 dir); 1402 else if (urb->transfer_flags & URB_DMA_MAP_SINGLE) 1403 dma_unmap_single(hcd->self.controller, 1404 urb->transfer_dma, 1405 urb->transfer_buffer_length, 1406 dir); 1407 else if (urb->transfer_flags & URB_MAP_LOCAL) 1408 hcd_free_coherent(urb->dev->bus, 1409 &urb->transfer_dma, 1410 &urb->transfer_buffer, 1411 urb->transfer_buffer_length, 1412 dir); 1413 1414 /* Make it safe to call this routine more than once */ 1415 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE | 1416 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL); 1417 } 1418 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma); 1419 1420 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1421 gfp_t mem_flags) 1422 { 1423 if (hcd->driver->map_urb_for_dma) 1424 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags); 1425 else 1426 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1427 } 1428 1429 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1430 gfp_t mem_flags) 1431 { 1432 enum dma_data_direction dir; 1433 int ret = 0; 1434 1435 /* Map the URB's buffers for DMA access. 1436 * Lower level HCD code should use *_dma exclusively, 1437 * unless it uses pio or talks to another transport, 1438 * or uses the provided scatter gather list for bulk. 1439 */ 1440 1441 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1442 if (hcd->self.uses_pio_for_control) 1443 return ret; 1444 if (hcd->self.uses_dma) { 1445 urb->setup_dma = dma_map_single( 1446 hcd->self.controller, 1447 urb->setup_packet, 1448 sizeof(struct usb_ctrlrequest), 1449 DMA_TO_DEVICE); 1450 if (dma_mapping_error(hcd->self.controller, 1451 urb->setup_dma)) 1452 return -EAGAIN; 1453 urb->transfer_flags |= URB_SETUP_MAP_SINGLE; 1454 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1455 ret = hcd_alloc_coherent( 1456 urb->dev->bus, mem_flags, 1457 &urb->setup_dma, 1458 (void **)&urb->setup_packet, 1459 sizeof(struct usb_ctrlrequest), 1460 DMA_TO_DEVICE); 1461 if (ret) 1462 return ret; 1463 urb->transfer_flags |= URB_SETUP_MAP_LOCAL; 1464 } 1465 } 1466 1467 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1468 if (urb->transfer_buffer_length != 0 1469 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1470 if (hcd->self.uses_dma) { 1471 if (urb->num_sgs) { 1472 int n; 1473 1474 /* We don't support sg for isoc transfers ! */ 1475 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) { 1476 WARN_ON(1); 1477 return -EINVAL; 1478 } 1479 1480 n = dma_map_sg( 1481 hcd->self.controller, 1482 urb->sg, 1483 urb->num_sgs, 1484 dir); 1485 if (n <= 0) 1486 ret = -EAGAIN; 1487 else 1488 urb->transfer_flags |= URB_DMA_MAP_SG; 1489 urb->num_mapped_sgs = n; 1490 if (n != urb->num_sgs) 1491 urb->transfer_flags |= 1492 URB_DMA_SG_COMBINED; 1493 } else if (urb->sg) { 1494 struct scatterlist *sg = urb->sg; 1495 urb->transfer_dma = dma_map_page( 1496 hcd->self.controller, 1497 sg_page(sg), 1498 sg->offset, 1499 urb->transfer_buffer_length, 1500 dir); 1501 if (dma_mapping_error(hcd->self.controller, 1502 urb->transfer_dma)) 1503 ret = -EAGAIN; 1504 else 1505 urb->transfer_flags |= URB_DMA_MAP_PAGE; 1506 } else { 1507 urb->transfer_dma = dma_map_single( 1508 hcd->self.controller, 1509 urb->transfer_buffer, 1510 urb->transfer_buffer_length, 1511 dir); 1512 if (dma_mapping_error(hcd->self.controller, 1513 urb->transfer_dma)) 1514 ret = -EAGAIN; 1515 else 1516 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1517 } 1518 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1519 ret = hcd_alloc_coherent( 1520 urb->dev->bus, mem_flags, 1521 &urb->transfer_dma, 1522 &urb->transfer_buffer, 1523 urb->transfer_buffer_length, 1524 dir); 1525 if (ret == 0) 1526 urb->transfer_flags |= URB_MAP_LOCAL; 1527 } 1528 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE | 1529 URB_SETUP_MAP_LOCAL))) 1530 usb_hcd_unmap_urb_for_dma(hcd, urb); 1531 } 1532 return ret; 1533 } 1534 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma); 1535 1536 /*-------------------------------------------------------------------------*/ 1537 1538 /* may be called in any context with a valid urb->dev usecount 1539 * caller surrenders "ownership" of urb 1540 * expects usb_submit_urb() to have sanity checked and conditioned all 1541 * inputs in the urb 1542 */ 1543 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1544 { 1545 int status; 1546 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1547 1548 /* increment urb's reference count as part of giving it to the HCD 1549 * (which will control it). HCD guarantees that it either returns 1550 * an error or calls giveback(), but not both. 1551 */ 1552 usb_get_urb(urb); 1553 atomic_inc(&urb->use_count); 1554 atomic_inc(&urb->dev->urbnum); 1555 usbmon_urb_submit(&hcd->self, urb); 1556 1557 /* NOTE requirements on root-hub callers (usbfs and the hub 1558 * driver, for now): URBs' urb->transfer_buffer must be 1559 * valid and usb_buffer_{sync,unmap}() not be needed, since 1560 * they could clobber root hub response data. Also, control 1561 * URBs must be submitted in process context with interrupts 1562 * enabled. 1563 */ 1564 1565 if (is_root_hub(urb->dev)) { 1566 status = rh_urb_enqueue(hcd, urb); 1567 } else { 1568 status = map_urb_for_dma(hcd, urb, mem_flags); 1569 if (likely(status == 0)) { 1570 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1571 if (unlikely(status)) 1572 unmap_urb_for_dma(hcd, urb); 1573 } 1574 } 1575 1576 if (unlikely(status)) { 1577 usbmon_urb_submit_error(&hcd->self, urb, status); 1578 urb->hcpriv = NULL; 1579 INIT_LIST_HEAD(&urb->urb_list); 1580 atomic_dec(&urb->use_count); 1581 atomic_dec(&urb->dev->urbnum); 1582 if (atomic_read(&urb->reject)) 1583 wake_up(&usb_kill_urb_queue); 1584 usb_put_urb(urb); 1585 } 1586 return status; 1587 } 1588 1589 /*-------------------------------------------------------------------------*/ 1590 1591 /* this makes the hcd giveback() the urb more quickly, by kicking it 1592 * off hardware queues (which may take a while) and returning it as 1593 * soon as practical. we've already set up the urb's return status, 1594 * but we can't know if the callback completed already. 1595 */ 1596 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1597 { 1598 int value; 1599 1600 if (is_root_hub(urb->dev)) 1601 value = usb_rh_urb_dequeue(hcd, urb, status); 1602 else { 1603 1604 /* The only reason an HCD might fail this call is if 1605 * it has not yet fully queued the urb to begin with. 1606 * Such failures should be harmless. */ 1607 value = hcd->driver->urb_dequeue(hcd, urb, status); 1608 } 1609 return value; 1610 } 1611 1612 /* 1613 * called in any context 1614 * 1615 * caller guarantees urb won't be recycled till both unlink() 1616 * and the urb's completion function return 1617 */ 1618 int usb_hcd_unlink_urb (struct urb *urb, int status) 1619 { 1620 struct usb_hcd *hcd; 1621 int retval = -EIDRM; 1622 unsigned long flags; 1623 1624 /* Prevent the device and bus from going away while 1625 * the unlink is carried out. If they are already gone 1626 * then urb->use_count must be 0, since disconnected 1627 * devices can't have any active URBs. 1628 */ 1629 spin_lock_irqsave(&hcd_urb_unlink_lock, flags); 1630 if (atomic_read(&urb->use_count) > 0) { 1631 retval = 0; 1632 usb_get_dev(urb->dev); 1633 } 1634 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); 1635 if (retval == 0) { 1636 hcd = bus_to_hcd(urb->dev->bus); 1637 retval = unlink1(hcd, urb, status); 1638 usb_put_dev(urb->dev); 1639 } 1640 1641 if (retval == 0) 1642 retval = -EINPROGRESS; 1643 else if (retval != -EIDRM && retval != -EBUSY) 1644 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n", 1645 urb, retval); 1646 return retval; 1647 } 1648 1649 /*-------------------------------------------------------------------------*/ 1650 1651 static void __usb_hcd_giveback_urb(struct urb *urb) 1652 { 1653 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1654 int status = urb->unlinked; 1655 unsigned long flags; 1656 1657 urb->hcpriv = NULL; 1658 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1659 urb->actual_length < urb->transfer_buffer_length && 1660 !status)) 1661 status = -EREMOTEIO; 1662 1663 unmap_urb_for_dma(hcd, urb); 1664 usbmon_urb_complete(&hcd->self, urb, status); 1665 usb_unanchor_urb(urb); 1666 1667 /* pass ownership to the completion handler */ 1668 urb->status = status; 1669 1670 /* 1671 * We disable local IRQs here avoid possible deadlock because 1672 * drivers may call spin_lock() to hold lock which might be 1673 * acquired in one hard interrupt handler. 1674 * 1675 * The local_irq_save()/local_irq_restore() around complete() 1676 * will be removed if current USB drivers have been cleaned up 1677 * and no one may trigger the above deadlock situation when 1678 * running complete() in tasklet. 1679 */ 1680 local_irq_save(flags); 1681 urb->complete(urb); 1682 local_irq_restore(flags); 1683 1684 atomic_dec(&urb->use_count); 1685 if (unlikely(atomic_read(&urb->reject))) 1686 wake_up(&usb_kill_urb_queue); 1687 usb_put_urb(urb); 1688 } 1689 1690 static void usb_giveback_urb_bh(unsigned long param) 1691 { 1692 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param; 1693 struct list_head local_list; 1694 1695 spin_lock_irq(&bh->lock); 1696 bh->running = true; 1697 restart: 1698 list_replace_init(&bh->head, &local_list); 1699 spin_unlock_irq(&bh->lock); 1700 1701 while (!list_empty(&local_list)) { 1702 struct urb *urb; 1703 1704 urb = list_entry(local_list.next, struct urb, urb_list); 1705 list_del_init(&urb->urb_list); 1706 __usb_hcd_giveback_urb(urb); 1707 } 1708 1709 /* check if there are new URBs to giveback */ 1710 spin_lock_irq(&bh->lock); 1711 if (!list_empty(&bh->head)) 1712 goto restart; 1713 bh->running = false; 1714 spin_unlock_irq(&bh->lock); 1715 } 1716 1717 /** 1718 * usb_hcd_giveback_urb - return URB from HCD to device driver 1719 * @hcd: host controller returning the URB 1720 * @urb: urb being returned to the USB device driver. 1721 * @status: completion status code for the URB. 1722 * Context: in_interrupt() 1723 * 1724 * This hands the URB from HCD to its USB device driver, using its 1725 * completion function. The HCD has freed all per-urb resources 1726 * (and is done using urb->hcpriv). It also released all HCD locks; 1727 * the device driver won't cause problems if it frees, modifies, 1728 * or resubmits this URB. 1729 * 1730 * If @urb was unlinked, the value of @status will be overridden by 1731 * @urb->unlinked. Erroneous short transfers are detected in case 1732 * the HCD hasn't checked for them. 1733 */ 1734 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1735 { 1736 struct giveback_urb_bh *bh; 1737 bool running, high_prio_bh; 1738 1739 /* pass status to tasklet via unlinked */ 1740 if (likely(!urb->unlinked)) 1741 urb->unlinked = status; 1742 1743 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) { 1744 __usb_hcd_giveback_urb(urb); 1745 return; 1746 } 1747 1748 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) { 1749 bh = &hcd->high_prio_bh; 1750 high_prio_bh = true; 1751 } else { 1752 bh = &hcd->low_prio_bh; 1753 high_prio_bh = false; 1754 } 1755 1756 spin_lock(&bh->lock); 1757 list_add_tail(&urb->urb_list, &bh->head); 1758 running = bh->running; 1759 spin_unlock(&bh->lock); 1760 1761 if (running) 1762 ; 1763 else if (high_prio_bh) 1764 tasklet_hi_schedule(&bh->bh); 1765 else 1766 tasklet_schedule(&bh->bh); 1767 } 1768 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1769 1770 /*-------------------------------------------------------------------------*/ 1771 1772 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1773 * queue to drain completely. The caller must first insure that no more 1774 * URBs can be submitted for this endpoint. 1775 */ 1776 void usb_hcd_flush_endpoint(struct usb_device *udev, 1777 struct usb_host_endpoint *ep) 1778 { 1779 struct usb_hcd *hcd; 1780 struct urb *urb; 1781 1782 if (!ep) 1783 return; 1784 might_sleep(); 1785 hcd = bus_to_hcd(udev->bus); 1786 1787 /* No more submits can occur */ 1788 spin_lock_irq(&hcd_urb_list_lock); 1789 rescan: 1790 list_for_each_entry (urb, &ep->urb_list, urb_list) { 1791 int is_in; 1792 1793 if (urb->unlinked) 1794 continue; 1795 usb_get_urb (urb); 1796 is_in = usb_urb_dir_in(urb); 1797 spin_unlock(&hcd_urb_list_lock); 1798 1799 /* kick hcd */ 1800 unlink1(hcd, urb, -ESHUTDOWN); 1801 dev_dbg (hcd->self.controller, 1802 "shutdown urb %p ep%d%s%s\n", 1803 urb, usb_endpoint_num(&ep->desc), 1804 is_in ? "in" : "out", 1805 ({ char *s; 1806 1807 switch (usb_endpoint_type(&ep->desc)) { 1808 case USB_ENDPOINT_XFER_CONTROL: 1809 s = ""; break; 1810 case USB_ENDPOINT_XFER_BULK: 1811 s = "-bulk"; break; 1812 case USB_ENDPOINT_XFER_INT: 1813 s = "-intr"; break; 1814 default: 1815 s = "-iso"; break; 1816 }; 1817 s; 1818 })); 1819 usb_put_urb (urb); 1820 1821 /* list contents may have changed */ 1822 spin_lock(&hcd_urb_list_lock); 1823 goto rescan; 1824 } 1825 spin_unlock_irq(&hcd_urb_list_lock); 1826 1827 /* Wait until the endpoint queue is completely empty */ 1828 while (!list_empty (&ep->urb_list)) { 1829 spin_lock_irq(&hcd_urb_list_lock); 1830 1831 /* The list may have changed while we acquired the spinlock */ 1832 urb = NULL; 1833 if (!list_empty (&ep->urb_list)) { 1834 urb = list_entry (ep->urb_list.prev, struct urb, 1835 urb_list); 1836 usb_get_urb (urb); 1837 } 1838 spin_unlock_irq(&hcd_urb_list_lock); 1839 1840 if (urb) { 1841 usb_kill_urb (urb); 1842 usb_put_urb (urb); 1843 } 1844 } 1845 } 1846 1847 /** 1848 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds 1849 * the bus bandwidth 1850 * @udev: target &usb_device 1851 * @new_config: new configuration to install 1852 * @cur_alt: the current alternate interface setting 1853 * @new_alt: alternate interface setting that is being installed 1854 * 1855 * To change configurations, pass in the new configuration in new_config, 1856 * and pass NULL for cur_alt and new_alt. 1857 * 1858 * To reset a device's configuration (put the device in the ADDRESSED state), 1859 * pass in NULL for new_config, cur_alt, and new_alt. 1860 * 1861 * To change alternate interface settings, pass in NULL for new_config, 1862 * pass in the current alternate interface setting in cur_alt, 1863 * and pass in the new alternate interface setting in new_alt. 1864 * 1865 * Return: An error if the requested bandwidth change exceeds the 1866 * bus bandwidth or host controller internal resources. 1867 */ 1868 int usb_hcd_alloc_bandwidth(struct usb_device *udev, 1869 struct usb_host_config *new_config, 1870 struct usb_host_interface *cur_alt, 1871 struct usb_host_interface *new_alt) 1872 { 1873 int num_intfs, i, j; 1874 struct usb_host_interface *alt = NULL; 1875 int ret = 0; 1876 struct usb_hcd *hcd; 1877 struct usb_host_endpoint *ep; 1878 1879 hcd = bus_to_hcd(udev->bus); 1880 if (!hcd->driver->check_bandwidth) 1881 return 0; 1882 1883 /* Configuration is being removed - set configuration 0 */ 1884 if (!new_config && !cur_alt) { 1885 for (i = 1; i < 16; ++i) { 1886 ep = udev->ep_out[i]; 1887 if (ep) 1888 hcd->driver->drop_endpoint(hcd, udev, ep); 1889 ep = udev->ep_in[i]; 1890 if (ep) 1891 hcd->driver->drop_endpoint(hcd, udev, ep); 1892 } 1893 hcd->driver->check_bandwidth(hcd, udev); 1894 return 0; 1895 } 1896 /* Check if the HCD says there's enough bandwidth. Enable all endpoints 1897 * each interface's alt setting 0 and ask the HCD to check the bandwidth 1898 * of the bus. There will always be bandwidth for endpoint 0, so it's 1899 * ok to exclude it. 1900 */ 1901 if (new_config) { 1902 num_intfs = new_config->desc.bNumInterfaces; 1903 /* Remove endpoints (except endpoint 0, which is always on the 1904 * schedule) from the old config from the schedule 1905 */ 1906 for (i = 1; i < 16; ++i) { 1907 ep = udev->ep_out[i]; 1908 if (ep) { 1909 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1910 if (ret < 0) 1911 goto reset; 1912 } 1913 ep = udev->ep_in[i]; 1914 if (ep) { 1915 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1916 if (ret < 0) 1917 goto reset; 1918 } 1919 } 1920 for (i = 0; i < num_intfs; ++i) { 1921 struct usb_host_interface *first_alt; 1922 int iface_num; 1923 1924 first_alt = &new_config->intf_cache[i]->altsetting[0]; 1925 iface_num = first_alt->desc.bInterfaceNumber; 1926 /* Set up endpoints for alternate interface setting 0 */ 1927 alt = usb_find_alt_setting(new_config, iface_num, 0); 1928 if (!alt) 1929 /* No alt setting 0? Pick the first setting. */ 1930 alt = first_alt; 1931 1932 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 1933 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); 1934 if (ret < 0) 1935 goto reset; 1936 } 1937 } 1938 } 1939 if (cur_alt && new_alt) { 1940 struct usb_interface *iface = usb_ifnum_to_if(udev, 1941 cur_alt->desc.bInterfaceNumber); 1942 1943 if (!iface) 1944 return -EINVAL; 1945 if (iface->resetting_device) { 1946 /* 1947 * The USB core just reset the device, so the xHCI host 1948 * and the device will think alt setting 0 is installed. 1949 * However, the USB core will pass in the alternate 1950 * setting installed before the reset as cur_alt. Dig 1951 * out the alternate setting 0 structure, or the first 1952 * alternate setting if a broken device doesn't have alt 1953 * setting 0. 1954 */ 1955 cur_alt = usb_altnum_to_altsetting(iface, 0); 1956 if (!cur_alt) 1957 cur_alt = &iface->altsetting[0]; 1958 } 1959 1960 /* Drop all the endpoints in the current alt setting */ 1961 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) { 1962 ret = hcd->driver->drop_endpoint(hcd, udev, 1963 &cur_alt->endpoint[i]); 1964 if (ret < 0) 1965 goto reset; 1966 } 1967 /* Add all the endpoints in the new alt setting */ 1968 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) { 1969 ret = hcd->driver->add_endpoint(hcd, udev, 1970 &new_alt->endpoint[i]); 1971 if (ret < 0) 1972 goto reset; 1973 } 1974 } 1975 ret = hcd->driver->check_bandwidth(hcd, udev); 1976 reset: 1977 if (ret < 0) 1978 hcd->driver->reset_bandwidth(hcd, udev); 1979 return ret; 1980 } 1981 1982 /* Disables the endpoint: synchronizes with the hcd to make sure all 1983 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 1984 * have been called previously. Use for set_configuration, set_interface, 1985 * driver removal, physical disconnect. 1986 * 1987 * example: a qh stored in ep->hcpriv, holding state related to endpoint 1988 * type, maxpacket size, toggle, halt status, and scheduling. 1989 */ 1990 void usb_hcd_disable_endpoint(struct usb_device *udev, 1991 struct usb_host_endpoint *ep) 1992 { 1993 struct usb_hcd *hcd; 1994 1995 might_sleep(); 1996 hcd = bus_to_hcd(udev->bus); 1997 if (hcd->driver->endpoint_disable) 1998 hcd->driver->endpoint_disable(hcd, ep); 1999 } 2000 2001 /** 2002 * usb_hcd_reset_endpoint - reset host endpoint state 2003 * @udev: USB device. 2004 * @ep: the endpoint to reset. 2005 * 2006 * Resets any host endpoint state such as the toggle bit, sequence 2007 * number and current window. 2008 */ 2009 void usb_hcd_reset_endpoint(struct usb_device *udev, 2010 struct usb_host_endpoint *ep) 2011 { 2012 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2013 2014 if (hcd->driver->endpoint_reset) 2015 hcd->driver->endpoint_reset(hcd, ep); 2016 else { 2017 int epnum = usb_endpoint_num(&ep->desc); 2018 int is_out = usb_endpoint_dir_out(&ep->desc); 2019 int is_control = usb_endpoint_xfer_control(&ep->desc); 2020 2021 usb_settoggle(udev, epnum, is_out, 0); 2022 if (is_control) 2023 usb_settoggle(udev, epnum, !is_out, 0); 2024 } 2025 } 2026 2027 /** 2028 * usb_alloc_streams - allocate bulk endpoint stream IDs. 2029 * @interface: alternate setting that includes all endpoints. 2030 * @eps: array of endpoints that need streams. 2031 * @num_eps: number of endpoints in the array. 2032 * @num_streams: number of streams to allocate. 2033 * @mem_flags: flags hcd should use to allocate memory. 2034 * 2035 * Sets up a group of bulk endpoints to have @num_streams stream IDs available. 2036 * Drivers may queue multiple transfers to different stream IDs, which may 2037 * complete in a different order than they were queued. 2038 * 2039 * Return: On success, the number of allocated streams. On failure, a negative 2040 * error code. 2041 */ 2042 int usb_alloc_streams(struct usb_interface *interface, 2043 struct usb_host_endpoint **eps, unsigned int num_eps, 2044 unsigned int num_streams, gfp_t mem_flags) 2045 { 2046 struct usb_hcd *hcd; 2047 struct usb_device *dev; 2048 int i; 2049 2050 dev = interface_to_usbdev(interface); 2051 hcd = bus_to_hcd(dev->bus); 2052 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams) 2053 return -EINVAL; 2054 if (dev->speed != USB_SPEED_SUPER) 2055 return -EINVAL; 2056 2057 /* Streams only apply to bulk endpoints. */ 2058 for (i = 0; i < num_eps; i++) 2059 if (!usb_endpoint_xfer_bulk(&eps[i]->desc)) 2060 return -EINVAL; 2061 2062 return hcd->driver->alloc_streams(hcd, dev, eps, num_eps, 2063 num_streams, mem_flags); 2064 } 2065 EXPORT_SYMBOL_GPL(usb_alloc_streams); 2066 2067 /** 2068 * usb_free_streams - free bulk endpoint stream IDs. 2069 * @interface: alternate setting that includes all endpoints. 2070 * @eps: array of endpoints to remove streams from. 2071 * @num_eps: number of endpoints in the array. 2072 * @mem_flags: flags hcd should use to allocate memory. 2073 * 2074 * Reverts a group of bulk endpoints back to not using stream IDs. 2075 * Can fail if we are given bad arguments, or HCD is broken. 2076 */ 2077 void usb_free_streams(struct usb_interface *interface, 2078 struct usb_host_endpoint **eps, unsigned int num_eps, 2079 gfp_t mem_flags) 2080 { 2081 struct usb_hcd *hcd; 2082 struct usb_device *dev; 2083 int i; 2084 2085 dev = interface_to_usbdev(interface); 2086 hcd = bus_to_hcd(dev->bus); 2087 if (dev->speed != USB_SPEED_SUPER) 2088 return; 2089 2090 /* Streams only apply to bulk endpoints. */ 2091 for (i = 0; i < num_eps; i++) 2092 if (!eps[i] || !usb_endpoint_xfer_bulk(&eps[i]->desc)) 2093 return; 2094 2095 hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags); 2096 } 2097 EXPORT_SYMBOL_GPL(usb_free_streams); 2098 2099 /* Protect against drivers that try to unlink URBs after the device 2100 * is gone, by waiting until all unlinks for @udev are finished. 2101 * Since we don't currently track URBs by device, simply wait until 2102 * nothing is running in the locked region of usb_hcd_unlink_urb(). 2103 */ 2104 void usb_hcd_synchronize_unlinks(struct usb_device *udev) 2105 { 2106 spin_lock_irq(&hcd_urb_unlink_lock); 2107 spin_unlock_irq(&hcd_urb_unlink_lock); 2108 } 2109 2110 /*-------------------------------------------------------------------------*/ 2111 2112 /* called in any context */ 2113 int usb_hcd_get_frame_number (struct usb_device *udev) 2114 { 2115 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2116 2117 if (!HCD_RH_RUNNING(hcd)) 2118 return -ESHUTDOWN; 2119 return hcd->driver->get_frame_number (hcd); 2120 } 2121 2122 /*-------------------------------------------------------------------------*/ 2123 2124 #ifdef CONFIG_PM 2125 2126 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) 2127 { 2128 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 2129 int status; 2130 int old_state = hcd->state; 2131 2132 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n", 2133 (PMSG_IS_AUTO(msg) ? "auto-" : ""), 2134 rhdev->do_remote_wakeup); 2135 if (HCD_DEAD(hcd)) { 2136 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend"); 2137 return 0; 2138 } 2139 2140 if (!hcd->driver->bus_suspend) { 2141 status = -ENOENT; 2142 } else { 2143 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2144 hcd->state = HC_STATE_QUIESCING; 2145 status = hcd->driver->bus_suspend(hcd); 2146 } 2147 if (status == 0) { 2148 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 2149 hcd->state = HC_STATE_SUSPENDED; 2150 2151 /* Did we race with a root-hub wakeup event? */ 2152 if (rhdev->do_remote_wakeup) { 2153 char buffer[6]; 2154 2155 status = hcd->driver->hub_status_data(hcd, buffer); 2156 if (status != 0) { 2157 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n"); 2158 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME); 2159 status = -EBUSY; 2160 } 2161 } 2162 } else { 2163 spin_lock_irq(&hcd_root_hub_lock); 2164 if (!HCD_DEAD(hcd)) { 2165 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2166 hcd->state = old_state; 2167 } 2168 spin_unlock_irq(&hcd_root_hub_lock); 2169 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2170 "suspend", status); 2171 } 2172 return status; 2173 } 2174 2175 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) 2176 { 2177 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 2178 int status; 2179 int old_state = hcd->state; 2180 2181 dev_dbg(&rhdev->dev, "usb %sresume\n", 2182 (PMSG_IS_AUTO(msg) ? "auto-" : "")); 2183 if (HCD_DEAD(hcd)) { 2184 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume"); 2185 return 0; 2186 } 2187 if (!hcd->driver->bus_resume) 2188 return -ENOENT; 2189 if (HCD_RH_RUNNING(hcd)) 2190 return 0; 2191 2192 hcd->state = HC_STATE_RESUMING; 2193 status = hcd->driver->bus_resume(hcd); 2194 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2195 if (status == 0) { 2196 struct usb_device *udev; 2197 int port1; 2198 2199 spin_lock_irq(&hcd_root_hub_lock); 2200 if (!HCD_DEAD(hcd)) { 2201 usb_set_device_state(rhdev, rhdev->actconfig 2202 ? USB_STATE_CONFIGURED 2203 : USB_STATE_ADDRESS); 2204 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2205 hcd->state = HC_STATE_RUNNING; 2206 } 2207 spin_unlock_irq(&hcd_root_hub_lock); 2208 2209 /* 2210 * Check whether any of the enabled ports on the root hub are 2211 * unsuspended. If they are then a TRSMRCY delay is needed 2212 * (this is what the USB-2 spec calls a "global resume"). 2213 * Otherwise we can skip the delay. 2214 */ 2215 usb_hub_for_each_child(rhdev, port1, udev) { 2216 if (udev->state != USB_STATE_NOTATTACHED && 2217 !udev->port_is_suspended) { 2218 usleep_range(10000, 11000); /* TRSMRCY */ 2219 break; 2220 } 2221 } 2222 } else { 2223 hcd->state = old_state; 2224 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2225 "resume", status); 2226 if (status != -ESHUTDOWN) 2227 usb_hc_died(hcd); 2228 } 2229 return status; 2230 } 2231 2232 #endif /* CONFIG_PM */ 2233 2234 #ifdef CONFIG_PM_RUNTIME 2235 2236 /* Workqueue routine for root-hub remote wakeup */ 2237 static void hcd_resume_work(struct work_struct *work) 2238 { 2239 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 2240 struct usb_device *udev = hcd->self.root_hub; 2241 2242 usb_lock_device(udev); 2243 usb_remote_wakeup(udev); 2244 usb_unlock_device(udev); 2245 } 2246 2247 /** 2248 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 2249 * @hcd: host controller for this root hub 2250 * 2251 * The USB host controller calls this function when its root hub is 2252 * suspended (with the remote wakeup feature enabled) and a remote 2253 * wakeup request is received. The routine submits a workqueue request 2254 * to resume the root hub (that is, manage its downstream ports again). 2255 */ 2256 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 2257 { 2258 unsigned long flags; 2259 2260 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2261 if (hcd->rh_registered) { 2262 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2263 queue_work(pm_wq, &hcd->wakeup_work); 2264 } 2265 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2266 } 2267 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 2268 2269 #endif /* CONFIG_PM_RUNTIME */ 2270 2271 /*-------------------------------------------------------------------------*/ 2272 2273 #ifdef CONFIG_USB_OTG 2274 2275 /** 2276 * usb_bus_start_enum - start immediate enumeration (for OTG) 2277 * @bus: the bus (must use hcd framework) 2278 * @port_num: 1-based number of port; usually bus->otg_port 2279 * Context: in_interrupt() 2280 * 2281 * Starts enumeration, with an immediate reset followed later by 2282 * khubd identifying and possibly configuring the device. 2283 * This is needed by OTG controller drivers, where it helps meet 2284 * HNP protocol timing requirements for starting a port reset. 2285 * 2286 * Return: 0 if successful. 2287 */ 2288 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 2289 { 2290 struct usb_hcd *hcd; 2291 int status = -EOPNOTSUPP; 2292 2293 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 2294 * boards with root hubs hooked up to internal devices (instead of 2295 * just the OTG port) may need more attention to resetting... 2296 */ 2297 hcd = container_of (bus, struct usb_hcd, self); 2298 if (port_num && hcd->driver->start_port_reset) 2299 status = hcd->driver->start_port_reset(hcd, port_num); 2300 2301 /* run khubd shortly after (first) root port reset finishes; 2302 * it may issue others, until at least 50 msecs have passed. 2303 */ 2304 if (status == 0) 2305 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 2306 return status; 2307 } 2308 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 2309 2310 #endif 2311 2312 /*-------------------------------------------------------------------------*/ 2313 2314 /** 2315 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 2316 * @irq: the IRQ being raised 2317 * @__hcd: pointer to the HCD whose IRQ is being signaled 2318 * 2319 * If the controller isn't HALTed, calls the driver's irq handler. 2320 * Checks whether the controller is now dead. 2321 * 2322 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise. 2323 */ 2324 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 2325 { 2326 struct usb_hcd *hcd = __hcd; 2327 unsigned long flags; 2328 irqreturn_t rc; 2329 2330 /* IRQF_DISABLED doesn't work correctly with shared IRQs 2331 * when the first handler doesn't use it. So let's just 2332 * assume it's never used. 2333 */ 2334 local_irq_save(flags); 2335 2336 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) 2337 rc = IRQ_NONE; 2338 else if (hcd->driver->irq(hcd) == IRQ_NONE) 2339 rc = IRQ_NONE; 2340 else 2341 rc = IRQ_HANDLED; 2342 2343 local_irq_restore(flags); 2344 return rc; 2345 } 2346 EXPORT_SYMBOL_GPL(usb_hcd_irq); 2347 2348 /*-------------------------------------------------------------------------*/ 2349 2350 /** 2351 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 2352 * @hcd: pointer to the HCD representing the controller 2353 * 2354 * This is called by bus glue to report a USB host controller that died 2355 * while operations may still have been pending. It's called automatically 2356 * by the PCI glue, so only glue for non-PCI busses should need to call it. 2357 * 2358 * Only call this function with the primary HCD. 2359 */ 2360 void usb_hc_died (struct usb_hcd *hcd) 2361 { 2362 unsigned long flags; 2363 2364 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 2365 2366 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2367 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2368 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2369 if (hcd->rh_registered) { 2370 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2371 2372 /* make khubd clean up old urbs and devices */ 2373 usb_set_device_state (hcd->self.root_hub, 2374 USB_STATE_NOTATTACHED); 2375 usb_kick_khubd (hcd->self.root_hub); 2376 } 2377 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) { 2378 hcd = hcd->shared_hcd; 2379 if (hcd->rh_registered) { 2380 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2381 2382 /* make khubd clean up old urbs and devices */ 2383 usb_set_device_state(hcd->self.root_hub, 2384 USB_STATE_NOTATTACHED); 2385 usb_kick_khubd(hcd->self.root_hub); 2386 } 2387 } 2388 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2389 /* Make sure that the other roothub is also deallocated. */ 2390 } 2391 EXPORT_SYMBOL_GPL (usb_hc_died); 2392 2393 /*-------------------------------------------------------------------------*/ 2394 2395 static void init_giveback_urb_bh(struct giveback_urb_bh *bh) 2396 { 2397 2398 spin_lock_init(&bh->lock); 2399 INIT_LIST_HEAD(&bh->head); 2400 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh); 2401 } 2402 2403 /** 2404 * usb_create_shared_hcd - create and initialize an HCD structure 2405 * @driver: HC driver that will use this hcd 2406 * @dev: device for this HC, stored in hcd->self.controller 2407 * @bus_name: value to store in hcd->self.bus_name 2408 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the 2409 * PCI device. Only allocate certain resources for the primary HCD 2410 * Context: !in_interrupt() 2411 * 2412 * Allocate a struct usb_hcd, with extra space at the end for the 2413 * HC driver's private data. Initialize the generic members of the 2414 * hcd structure. 2415 * 2416 * Return: On success, a pointer to the created and initialized HCD structure. 2417 * On failure (e.g. if memory is unavailable), %NULL. 2418 */ 2419 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver, 2420 struct device *dev, const char *bus_name, 2421 struct usb_hcd *primary_hcd) 2422 { 2423 struct usb_hcd *hcd; 2424 2425 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 2426 if (!hcd) { 2427 dev_dbg (dev, "hcd alloc failed\n"); 2428 return NULL; 2429 } 2430 if (primary_hcd == NULL) { 2431 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex), 2432 GFP_KERNEL); 2433 if (!hcd->bandwidth_mutex) { 2434 kfree(hcd); 2435 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n"); 2436 return NULL; 2437 } 2438 mutex_init(hcd->bandwidth_mutex); 2439 dev_set_drvdata(dev, hcd); 2440 } else { 2441 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex; 2442 hcd->primary_hcd = primary_hcd; 2443 primary_hcd->primary_hcd = primary_hcd; 2444 hcd->shared_hcd = primary_hcd; 2445 primary_hcd->shared_hcd = hcd; 2446 } 2447 2448 kref_init(&hcd->kref); 2449 2450 usb_bus_init(&hcd->self); 2451 hcd->self.controller = dev; 2452 hcd->self.bus_name = bus_name; 2453 hcd->self.uses_dma = (dev->dma_mask != NULL); 2454 2455 init_timer(&hcd->rh_timer); 2456 hcd->rh_timer.function = rh_timer_func; 2457 hcd->rh_timer.data = (unsigned long) hcd; 2458 #ifdef CONFIG_PM_RUNTIME 2459 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 2460 #endif 2461 2462 hcd->driver = driver; 2463 hcd->speed = driver->flags & HCD_MASK; 2464 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 2465 "USB Host Controller"; 2466 return hcd; 2467 } 2468 EXPORT_SYMBOL_GPL(usb_create_shared_hcd); 2469 2470 /** 2471 * usb_create_hcd - create and initialize an HCD structure 2472 * @driver: HC driver that will use this hcd 2473 * @dev: device for this HC, stored in hcd->self.controller 2474 * @bus_name: value to store in hcd->self.bus_name 2475 * Context: !in_interrupt() 2476 * 2477 * Allocate a struct usb_hcd, with extra space at the end for the 2478 * HC driver's private data. Initialize the generic members of the 2479 * hcd structure. 2480 * 2481 * Return: On success, a pointer to the created and initialized HCD 2482 * structure. On failure (e.g. if memory is unavailable), %NULL. 2483 */ 2484 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver, 2485 struct device *dev, const char *bus_name) 2486 { 2487 return usb_create_shared_hcd(driver, dev, bus_name, NULL); 2488 } 2489 EXPORT_SYMBOL_GPL(usb_create_hcd); 2490 2491 /* 2492 * Roothubs that share one PCI device must also share the bandwidth mutex. 2493 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is 2494 * deallocated. 2495 * 2496 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is 2497 * freed. When hcd_release() is called for the non-primary HCD, set the 2498 * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be 2499 * freed shortly). 2500 */ 2501 static void hcd_release (struct kref *kref) 2502 { 2503 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 2504 2505 if (usb_hcd_is_primary_hcd(hcd)) 2506 kfree(hcd->bandwidth_mutex); 2507 else 2508 hcd->shared_hcd->shared_hcd = NULL; 2509 kfree(hcd); 2510 } 2511 2512 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 2513 { 2514 if (hcd) 2515 kref_get (&hcd->kref); 2516 return hcd; 2517 } 2518 EXPORT_SYMBOL_GPL(usb_get_hcd); 2519 2520 void usb_put_hcd (struct usb_hcd *hcd) 2521 { 2522 if (hcd) 2523 kref_put (&hcd->kref, hcd_release); 2524 } 2525 EXPORT_SYMBOL_GPL(usb_put_hcd); 2526 2527 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd) 2528 { 2529 if (!hcd->primary_hcd) 2530 return 1; 2531 return hcd == hcd->primary_hcd; 2532 } 2533 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd); 2534 2535 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1) 2536 { 2537 if (!hcd->driver->find_raw_port_number) 2538 return port1; 2539 2540 return hcd->driver->find_raw_port_number(hcd, port1); 2541 } 2542 2543 static int usb_hcd_request_irqs(struct usb_hcd *hcd, 2544 unsigned int irqnum, unsigned long irqflags) 2545 { 2546 int retval; 2547 2548 if (hcd->driver->irq) { 2549 2550 /* IRQF_DISABLED doesn't work as advertised when used together 2551 * with IRQF_SHARED. As usb_hcd_irq() will always disable 2552 * interrupts we can remove it here. 2553 */ 2554 if (irqflags & IRQF_SHARED) 2555 irqflags &= ~IRQF_DISABLED; 2556 2557 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 2558 hcd->driver->description, hcd->self.busnum); 2559 retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 2560 hcd->irq_descr, hcd); 2561 if (retval != 0) { 2562 dev_err(hcd->self.controller, 2563 "request interrupt %d failed\n", 2564 irqnum); 2565 return retval; 2566 } 2567 hcd->irq = irqnum; 2568 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 2569 (hcd->driver->flags & HCD_MEMORY) ? 2570 "io mem" : "io base", 2571 (unsigned long long)hcd->rsrc_start); 2572 } else { 2573 hcd->irq = 0; 2574 if (hcd->rsrc_start) 2575 dev_info(hcd->self.controller, "%s 0x%08llx\n", 2576 (hcd->driver->flags & HCD_MEMORY) ? 2577 "io mem" : "io base", 2578 (unsigned long long)hcd->rsrc_start); 2579 } 2580 return 0; 2581 } 2582 2583 /** 2584 * usb_add_hcd - finish generic HCD structure initialization and register 2585 * @hcd: the usb_hcd structure to initialize 2586 * @irqnum: Interrupt line to allocate 2587 * @irqflags: Interrupt type flags 2588 * 2589 * Finish the remaining parts of generic HCD initialization: allocate the 2590 * buffers of consistent memory, register the bus, request the IRQ line, 2591 * and call the driver's reset() and start() routines. 2592 */ 2593 int usb_add_hcd(struct usb_hcd *hcd, 2594 unsigned int irqnum, unsigned long irqflags) 2595 { 2596 int retval; 2597 struct usb_device *rhdev; 2598 2599 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 2600 2601 /* Keep old behaviour if authorized_default is not in [0, 1]. */ 2602 if (authorized_default < 0 || authorized_default > 1) 2603 hcd->authorized_default = hcd->wireless? 0 : 1; 2604 else 2605 hcd->authorized_default = authorized_default; 2606 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2607 2608 /* HC is in reset state, but accessible. Now do the one-time init, 2609 * bottom up so that hcds can customize the root hubs before khubd 2610 * starts talking to them. (Note, bus id is assigned early too.) 2611 */ 2612 if ((retval = hcd_buffer_create(hcd)) != 0) { 2613 dev_dbg(hcd->self.controller, "pool alloc failed\n"); 2614 return retval; 2615 } 2616 2617 if ((retval = usb_register_bus(&hcd->self)) < 0) 2618 goto err_register_bus; 2619 2620 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) { 2621 dev_err(hcd->self.controller, "unable to allocate root hub\n"); 2622 retval = -ENOMEM; 2623 goto err_allocate_root_hub; 2624 } 2625 hcd->self.root_hub = rhdev; 2626 2627 switch (hcd->speed) { 2628 case HCD_USB11: 2629 rhdev->speed = USB_SPEED_FULL; 2630 break; 2631 case HCD_USB2: 2632 rhdev->speed = USB_SPEED_HIGH; 2633 break; 2634 case HCD_USB25: 2635 rhdev->speed = USB_SPEED_WIRELESS; 2636 break; 2637 case HCD_USB3: 2638 rhdev->speed = USB_SPEED_SUPER; 2639 break; 2640 default: 2641 retval = -EINVAL; 2642 goto err_set_rh_speed; 2643 } 2644 2645 /* wakeup flag init defaults to "everything works" for root hubs, 2646 * but drivers can override it in reset() if needed, along with 2647 * recording the overall controller's system wakeup capability. 2648 */ 2649 device_set_wakeup_capable(&rhdev->dev, 1); 2650 2651 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is 2652 * registered. But since the controller can die at any time, 2653 * let's initialize the flag before touching the hardware. 2654 */ 2655 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2656 2657 /* "reset" is misnamed; its role is now one-time init. the controller 2658 * should already have been reset (and boot firmware kicked off etc). 2659 */ 2660 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) { 2661 dev_err(hcd->self.controller, "can't setup: %d\n", retval); 2662 goto err_hcd_driver_setup; 2663 } 2664 hcd->rh_pollable = 1; 2665 2666 /* NOTE: root hub and controller capabilities may not be the same */ 2667 if (device_can_wakeup(hcd->self.controller) 2668 && device_can_wakeup(&hcd->self.root_hub->dev)) 2669 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 2670 2671 /* initialize tasklets */ 2672 init_giveback_urb_bh(&hcd->high_prio_bh); 2673 init_giveback_urb_bh(&hcd->low_prio_bh); 2674 2675 /* enable irqs just before we start the controller, 2676 * if the BIOS provides legacy PCI irqs. 2677 */ 2678 if (usb_hcd_is_primary_hcd(hcd) && irqnum) { 2679 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags); 2680 if (retval) 2681 goto err_request_irq; 2682 } 2683 2684 hcd->state = HC_STATE_RUNNING; 2685 retval = hcd->driver->start(hcd); 2686 if (retval < 0) { 2687 dev_err(hcd->self.controller, "startup error %d\n", retval); 2688 goto err_hcd_driver_start; 2689 } 2690 2691 /* starting here, usbcore will pay attention to this root hub */ 2692 if ((retval = register_root_hub(hcd)) != 0) 2693 goto err_register_root_hub; 2694 2695 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2696 if (retval < 0) { 2697 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n", 2698 retval); 2699 goto error_create_attr_group; 2700 } 2701 if (hcd->uses_new_polling && HCD_POLL_RH(hcd)) 2702 usb_hcd_poll_rh_status(hcd); 2703 2704 /* 2705 * Host controllers don't generate their own wakeup requests; 2706 * they only forward requests from the root hub. Therefore 2707 * controllers should always be enabled for remote wakeup. 2708 */ 2709 device_wakeup_enable(hcd->self.controller); 2710 return retval; 2711 2712 error_create_attr_group: 2713 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2714 if (HC_IS_RUNNING(hcd->state)) 2715 hcd->state = HC_STATE_QUIESCING; 2716 spin_lock_irq(&hcd_root_hub_lock); 2717 hcd->rh_registered = 0; 2718 spin_unlock_irq(&hcd_root_hub_lock); 2719 2720 #ifdef CONFIG_PM_RUNTIME 2721 cancel_work_sync(&hcd->wakeup_work); 2722 #endif 2723 mutex_lock(&usb_bus_list_lock); 2724 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2725 mutex_unlock(&usb_bus_list_lock); 2726 err_register_root_hub: 2727 hcd->rh_pollable = 0; 2728 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2729 del_timer_sync(&hcd->rh_timer); 2730 hcd->driver->stop(hcd); 2731 hcd->state = HC_STATE_HALT; 2732 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2733 del_timer_sync(&hcd->rh_timer); 2734 err_hcd_driver_start: 2735 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0) 2736 free_irq(irqnum, hcd); 2737 err_request_irq: 2738 err_hcd_driver_setup: 2739 err_set_rh_speed: 2740 usb_put_dev(hcd->self.root_hub); 2741 err_allocate_root_hub: 2742 usb_deregister_bus(&hcd->self); 2743 err_register_bus: 2744 hcd_buffer_destroy(hcd); 2745 return retval; 2746 } 2747 EXPORT_SYMBOL_GPL(usb_add_hcd); 2748 2749 /** 2750 * usb_remove_hcd - shutdown processing for generic HCDs 2751 * @hcd: the usb_hcd structure to remove 2752 * Context: !in_interrupt() 2753 * 2754 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 2755 * invoking the HCD's stop() method. 2756 */ 2757 void usb_remove_hcd(struct usb_hcd *hcd) 2758 { 2759 struct usb_device *rhdev = hcd->self.root_hub; 2760 2761 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 2762 2763 usb_get_dev(rhdev); 2764 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2765 2766 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2767 if (HC_IS_RUNNING (hcd->state)) 2768 hcd->state = HC_STATE_QUIESCING; 2769 2770 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 2771 spin_lock_irq (&hcd_root_hub_lock); 2772 hcd->rh_registered = 0; 2773 spin_unlock_irq (&hcd_root_hub_lock); 2774 2775 #ifdef CONFIG_PM_RUNTIME 2776 cancel_work_sync(&hcd->wakeup_work); 2777 #endif 2778 2779 mutex_lock(&usb_bus_list_lock); 2780 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2781 mutex_unlock(&usb_bus_list_lock); 2782 2783 /* 2784 * tasklet_kill() isn't needed here because: 2785 * - driver's disconnect() called from usb_disconnect() should 2786 * make sure its URBs are completed during the disconnect() 2787 * callback 2788 * 2789 * - it is too late to run complete() here since driver may have 2790 * been removed already now 2791 */ 2792 2793 /* Prevent any more root-hub status calls from the timer. 2794 * The HCD might still restart the timer (if a port status change 2795 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke 2796 * the hub_status_data() callback. 2797 */ 2798 hcd->rh_pollable = 0; 2799 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2800 del_timer_sync(&hcd->rh_timer); 2801 2802 hcd->driver->stop(hcd); 2803 hcd->state = HC_STATE_HALT; 2804 2805 /* In case the HCD restarted the timer, stop it again. */ 2806 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2807 del_timer_sync(&hcd->rh_timer); 2808 2809 if (usb_hcd_is_primary_hcd(hcd)) { 2810 if (hcd->irq > 0) 2811 free_irq(hcd->irq, hcd); 2812 } 2813 2814 usb_put_dev(hcd->self.root_hub); 2815 usb_deregister_bus(&hcd->self); 2816 hcd_buffer_destroy(hcd); 2817 } 2818 EXPORT_SYMBOL_GPL(usb_remove_hcd); 2819 2820 void 2821 usb_hcd_platform_shutdown(struct platform_device* dev) 2822 { 2823 struct usb_hcd *hcd = platform_get_drvdata(dev); 2824 2825 if (hcd->driver->shutdown) 2826 hcd->driver->shutdown(hcd); 2827 } 2828 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 2829 2830 /*-------------------------------------------------------------------------*/ 2831 2832 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 2833 2834 struct usb_mon_operations *mon_ops; 2835 2836 /* 2837 * The registration is unlocked. 2838 * We do it this way because we do not want to lock in hot paths. 2839 * 2840 * Notice that the code is minimally error-proof. Because usbmon needs 2841 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 2842 */ 2843 2844 int usb_mon_register (struct usb_mon_operations *ops) 2845 { 2846 2847 if (mon_ops) 2848 return -EBUSY; 2849 2850 mon_ops = ops; 2851 mb(); 2852 return 0; 2853 } 2854 EXPORT_SYMBOL_GPL (usb_mon_register); 2855 2856 void usb_mon_deregister (void) 2857 { 2858 2859 if (mon_ops == NULL) { 2860 printk(KERN_ERR "USB: monitor was not registered\n"); 2861 return; 2862 } 2863 mon_ops = NULL; 2864 mb(); 2865 } 2866 EXPORT_SYMBOL_GPL (usb_mon_deregister); 2867 2868 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ 2869